
Illinois State University
ISU ReD: Research and eData

Theses and Dissertations

9-10-2015

Utilization Of Antibody-Conjugated Gold
Nanoparticles, Dynamic Light Scattering And Sers
In Influenza Virus Detection
Yen Hoang Lai
Illinois State University, laihoangyen@gmail.com

Follow this and additional works at: https://ir.library.illinoisstate.edu/etd

Part of the Chemistry Commons

This Thesis and Dissertation is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of ISU ReD: Research and eData. For more information, please contact ISUReD@ilstu.edu.

Recommended Citation
Lai, Yen Hoang, "Utilization Of Antibody-Conjugated Gold Nanoparticles, Dynamic Light Scattering And Sers In Influenza Virus
Detection" (2015). Theses and Dissertations. 461.
https://ir.library.illinoisstate.edu/etd/461

https://ir.library.illinoisstate.edu?utm_source=ir.library.illinoisstate.edu%2Fetd%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=ir.library.illinoisstate.edu%2Fetd%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/etd/461?utm_source=ir.library.illinoisstate.edu%2Fetd%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ISUReD@ilstu.edu


 
 

 
 

UTILIZATION OF ANTIBODY-CONJUGATED GOLD NANOPARTICLES, 

DYNAMIC LIGHT SCATTERING AND SERS 

IN INFLUENZA VIRUS DETECTION

 

 

Yen H. Lai 

78 Pages  

 Influenza A H3N2, H1N1, and influenza B viruses primarily cause winter illness 

in humans, leading to significant morbidity and mortality in the population of the very 

young, the elderly, and people with chronic disease. In addition to the regular seasonal 

epidemics of influenza, influenza pandemics associated with the emergence of new 

influenza A strains are threatening due to high levels of mortality, social disruption, and 

economic losses. These novel strains are not affected by the human immunity developed 

to older strains of influenza, therefore can spread readily and infect a vast number of 

people. The most recent flu pandemic outbreak was in 2009, in which pandemic swine 

influenza A H1N1 was transmitted. Thus, an initiative to prevent human infections with 

new strains of influenza A virus with pandemic potential has been supported by the 

government and become a focus of many laboratories. The first step in any preventative 

measures is early detection. Therefore, it is essential to develop a detection platform that 

is capable of simultaneous multiplexing and exploitable for point-of-care (POC) analysis. 



 
 

 
 

 Virus culture, nucleic acid testing, and immunoassays are primary detection 

approaches to confirm acute human influenza virus infection. Nucleic acid testing has 

great sensitivity and specificity to subtype influenza strains, and high capacity for 

multiplexed detection. However, it is time and labor intensive, and expensive. Virus 

isolation is slow, costly, and not feasible for routine diagnostic testing. Immunoassays, in 

contrast, are known for availability, low-cost, accuracy, and versatility, and therefore 

have become a centerpiece in diagnostics. Among a number of analytical detection 

techniques developed for immunoassays, SERS (surface enhanced Raman spectroscopy) 

biosensing utilizing antibody-conjugated gold nanoparticles (Ab-AuNPs) is a promising 

virus detection technique providing high sensitivity (down to single molecule detection) 

and multiplexing (distinction of different strains of a single virus type).   

 Herein a simple, rapid, sensitive AuNP-based immunoassay was developed to 

quantitatively detect influenza A virus, utilizing dynamic light scattering (DLS) and 

surface enhanced Raman spectroscopy (SERS). The assay platform was established based 

on the principle of homogeneous format. Antigen-specific antibodies (Abs) were attached 

to the surface of gold nanoparticles (AuNPs), rendering the biospecificity for the 

detection. AuNPs serve as a signal generator or label. A biological sample containing 

targeted analytes was mixed with Ab-conjugated AuNPs (or AuNP probes); aggregation 

of nanoparticle was induced in the presence of the analyte(s). The antibody molecules on 

the particle surface recognized and bound to the analyte via the key-lock like mechanism, 

cross-linking AuNPs together to form aggregates. The quantification of antigen became 

the matter of detecting aggregation. The reaction happened in a timely fashion, 

oftentimes in a few minutes owing to the fast solution phase kinetics. No washing was 



 
 

 
 

required; therefore, time and labor were remarkably saved relative to heterogeneous 

assays. When utilizing this platform, alteration of different antigen-specific antibodies 

can perform detection of different antigen analytes individually (singleplexing). The 

combination of multiple types of AuNP probes in one assay allows simultaneously 

multiplexed detection.  

 In order to ensure the robustness of the assay, optimization for each stage of the 

platform design was thoroughly studied. The optimal conditions for maintaining the 

stability of the gold nanoparticles coated with monoclonal antibodies (mAbs) were 

investigated by varying pH, conjugation chemistry, mAbs concentrations, and blocking 

reagents. DLS is exploited to monitor the conjugation of the antibodies on AuNPs and 

verify the aggregate formation of the antigen-induced AuNP probes based on 

hydrodynamic diameter measurements. The DLS-based immunoassay has been 

demonstrated as an excellent rapid screening method to evaluate the specificity and 

affinity of antibody-antigen binding. Comparing to a conventional method for antibody 

screening (i.e. ELISA), a DLS assay requires only 30 min while it takes 24 h to perform 

an ELISA.  

 To address the urgent need for multiplexed detection, we have slightly modified 

the DLS assay to develop a SERS-based homogeneous immunoassay. Namely, Raman 

reporters and antibody were co-immobilized on the AuNPs to construct ERLs (extrinsic 

Raman labels). Raman reporters provide distinctive and amplified signal for detection. In 

order to detect multiple analytes, multiple types of ERLs were separately prepared; each 

type was a unique combination of one antigen-specific antibody and one Raman reporter. 

The ERLs were then mixed together and added to the sample. Aggregation was induced 



 
 

 
 

upon the introduction of the antigen to the suspension of ERLs on the order of minutes. 

ERLs of the same type were cross-linked via the antigen specific to the antibody 

conjugated to the very type of ERLs. The nonspecific ERLs remained unreacted if their 

antigens were not present in the sample. Once aggregation occurred, the SERS signals 

provided by the Raman reporters on the reacted ERLs were turned on. AuNPs in the 

aggregating state were in proximity to each other and created small gaps between them. 

Raman reporters once trapped in those gaps generated signal for detection. In theory, 

SERS analysis can be performed in solution but in reality poor plasmonic coupling 

between antibody-modified AuNP limits the SERS enhancement. However, dehydration 

of the aggregates reduces interparticle spacing to yield higher SERS signals. Therefore, 

separation of aggregated ERLs on a well-defined nanoporous membrane was applied to 

intensify the signal. The conditions for optimal filtration process have been investigated. 

Preliminary data have shown progress made toward a fully developed configuration for a 

portable multiplexed, sensitive, and rapid POC detection platform. 

 

KEYWORDS: Antibody-Antigen Binding Properties SERS, Antibody Conjugation, 

Direct Adsorption, DLS, ERLs, Gold Nanoparticle Probes, Homogeneous Immunoassay, 

Influenza Virus Detection, Nanoparticle Aggregates, Raman Reporters  
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CHAPTER I 

INTRODUCTION 

Influenza A Virus- Impact on Society

 Influenza viruses cause a contagious respiratory illness, commonly called flu. 

Even though most people infected with flu have mild illness, some high-risk groups 

might have severe flu complications, which may result in hospitalization and death. 

Influenza virus outbreaks occur annually from October through May with flu activity 

peaks between December and February, but the severity of outbreaks differs. Despite a 

long history of defending humans against influenza A via a number of preventive 

strategies, influenza epidemics still account for significant morbidity and mortality every 

year with the average of 9,187 deaths and 128,710 hospitalizations. 1 The estimation of 

the total economic burden of seasonal influenza and influenza complication in the US is 

$87.1 billion. 1a In addition to seasonal epidemics, influenza pandemics with the 

emergence of new influenza A strains are potentially threatening. These novel strains, 

evolved by a dynamic combination of mutations and frequent re-assortment (known as 

antigen shift) 1b, 2, are not affected by the human immunity. Furthermore, the diverse 

genomic evolution may result in virus infection to multiple animal hosts. This incident 

may increase the frequencies of transmission from animals to humans and among 

humans, therefore can readily spread and infect a vast number of people. The most recent 

pandemic outbreak occurred worldwide in 2009 with an unprecedented speed, in which 
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swine-origin influenza viruses A/H1N1 (S-OIVs, re-assortment of swine H1N1, avian 

H1N1, and human H3N2) 2 transmitted to humans. During 16 months of the outbreak, 

284,000 deaths including 201,200 respiratory deaths and 83,300 cardiovascular disease 

deaths associated with H1N1 infections were reported by the US Centers for Disease 

Control and Prevention (CDC). As a result, influenza has drawn an extraordinary level of 

attention with concerns about the ability to respond to an influenza pandemic on a 

national and international scale. The availability of effective means of flu surveillance is 

critical for the control of influenza virus infection. 3 To this end, point-of-care (POC) 

diagnosis for influenza is vital in administration of therapeutics and prevention of virus 

outbreaks, yet current POC diagnostic tests have relatively poor performance and are in 

need of further development. The focus of this work, therefore, is to develop a POC 

detection method for influenza A virus that overcomes the limitations of current 

approaches on sensitivity, limit of detection (LOD), ease of use, and assay time. 
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Figure 1. The weekly influenza surveillance report on Nov 2009 when the outbreak was 

at its peak. This map indicates geographic spread and does not measure the severity of 

influenza activity. Adapted with permission from WHO.int Apr. 2015 4. 

Influenza Virus 

 Influenza viruses are RNA viruses, i.e. RNA as their genetic materials, and are 

classified as influenza virus type A, B, and C, which share many similarities in overall 

structure. Influenza viruses infect a wide range of host animals including humans, pigs, 

horses, dogs, and aquatic birds; of which pigs are the natural reservoir of all influenza A 

subtypes. 1b, 5 The type A viruses are the most virulent human pathogens among the three 

influenza types and cause the most severe disease. Influenza A viruses are roughly 

spherical of 80-120 nm in diameter. Two glycoproteins, hemagglutinin (HA) and 

neuraminidase (NA) (Figure 2), are abundantly distributed on the virus particle surface, 

playing significant roles in the infection cycle of the viruses.6 HA contributes to high 
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pathogenicity of the virus in many animal species and initiates the entry of the virion 

while NA plays a key role in the budding process of the newly formed virion from the 

host cell. Based on the distribution and functions of HA and NA, researchers target them 

for certain purposes. A number of polyclonal and/or monoclonal antibodies are generated 

to selectively bind to different HA serotypes and they can be employed to detect and 

differentiate influenza A subtypes and strains. 

 

Figure 2. Different features of an influenza virus particle, including two surface proteins 

HA (in blue) and NA (in red). Adapted with permission from CDC.gov. Apr. 2015 7. 
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Traditional and Current Influenza Virus Detection Platforms 

 Virus culture 8, nucleic acid testing 3, 9, and immunoassays 10 are primary 

detection approaches to confirm acute human influenza virus infection. These three 

platforms possess different extents of analytical sensitivities and specificities. The 

selection of an appropriate method also greatly depends on technical diagnostic variables 

such as required turnaround time, available technical expertise, and financial resources. 

Indeed, there is no single method satisfying all the desired criteria.  

 Virus isolation in cell culture has been employed in infection diagnosis since its 

discovery in the early 1960s and drastic expansion in the early 1970s. 8b Despite 

technological advances in more modern detection platforms, virus culture still serves as 

the standard for virus detection and a reference point for all other methods. A specimen 

after collection and processing is introduced to a cell culture monolayer and allowed to 

incubate for days to weeks until degenerative changes or cytopathogenic effects (CPE) in 

the monolayer cells are observed. Characteristics of CPE (i.e. swelling, shrinking, 

rounding of cells to clustering, syncytium formation, and total damage of the monolayer), 

infected cell types, specimen collected sites, and length of time to CPE are the criteria 

used to predict the type of virus present. For influenza viruses A and B in particular, CPE 

is slowly or not apparently expressed in primary culture. Another test, hemadsorption 

(HAD), is performed afterwards. Infected cells generate and express viral hemagglutinin 

proteins on their plasma membranes. These proteins can be detected by their formation of 

clumps with erythrocytes in the HAD test. It is worth noting that besides influenza 

viruses A and B, parainfluenza virus and mumps virus are positive with HAD as well. 

Thus, additional confirmatory testing is required. 8b Virus isolation in cell culture 
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provides a great capacity to detect multiple viruses yet is time-consuming, expertise 

demanding, and limited to laboratory examination (in other words not feasible for routine 

diagnostic testing). 

 Nucleic acid testing, especially RT-PCR (reverse-transcriptase polymerase chain 

reaction) 9 has been developed and applied to speed viral detection. This platform can be 

utilized separately or in combination with virus culture to identify viruses. The target 

viral RNA strands of influenza A viruses in clinical samples or in cell culture 

supernatants are isolated, reverse translated to complementary DNA and amplified to 

generate a larger number of copies for detection using gel electrophoresis. Hence, even at 

a low concentration of virus in the specimen, remarkable sensitivity is still provided. 

Furthermore, assay time is significantly reduced to several hours. Nucleic acid testing 

platforms, thus, have been applied broadly in a variety of applications in research and 

clinical diagnostics for most known viruses. Nevertheless, the performance of PCR-based 

methods significantly depends on viral nucleic acid extraction, primer and probe design, 

and technical expertise. The cost for instruments varies from $5,000 to more than 

$50,000, plus additional expenses for reagents 8b. As a result, many POC facilities have 

limited access to this technology because of limited resources. 

 Immunoassays (IAs), on the other hands, are known for availability, specificity, 

and versatility, and therefore have become a centerpiece in diagnostics 11. IAs are 

bioanalytical methods to examine the presence or concentration of macromolecules (or 

analytes), utilizing immunoglobulins, also called antibodies. These assays have been 

engineered and innovated to maximize the simplicity of use and speed of the assays so 

that they are not limited to lab-based testing but can also be operated in the field for POC 
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testing.11b, 12 To date, IAs remain the most widely used POC diagnostic platform. 

However, this convenience comes at the expense of assay sensitivity. With that said, a 

part of the work presented in this thesis is dedicated to the improvement of IA sensitivity. 

Key terms and characteristics of IAs will be addressed in greater details in the following 

sections.  

Immunoassay Fundamentals 

Immunoassay Compositions: Antibody 

 As dictated in the name of the platform, it goes without saying that antibodies 

play a central role in IAs. Antibodies (Abs), also known as immunoglobulins are 

glycoprotein molecules produced by plasma cells (white blood cells). They are critical to 

the response of the immune system to antigens such as bacteria and viruses. Among the 5 

classes of antibodies (including IgM, IgD, IgG, IgA, and IgE), IgG is the most common 

one used in IAs. An IgG molecule is a large Y-shaped protein, constructed by basic 

components, two large heavy chains and two small light chains held together by disulfide 

bonds (Figure 3). 13 The two identical arms of the Y-shaped protein are termed Fab 

fragments for fragment antigen binding, while the stem is named Fc for fragment 

crystallizable. Antibodies recognize pathogens such as bacteria and viruses by 

specifically binding to antigens (targeted molecules of antibodies) on bacteria or viruses. 

Each tip on the two arms of the Y is a paratope, which is similarly analogous to a lock, 

specific to an epitope on the antigen, which is also analogous to a key. These two 

structures (a paratope and an epitope) are spatially complementary, hence, bind together 

with high precision. IgG is further classified into different subclasses based on subtle 

alterations confined to the Fc portion. For the purpose of detecting influenza A virus, IgG 
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antibodies are used to specifically target hemagglutinin or HA proteins expressed 

abundantly on the surface of the virus particle. In this case, HAs act as epitopes of the 

virus. With various strains of influenza A, HA proteins are subtly different; thus, the IgG 

antibodies are selectively generated in correspondence to each HA subtype.  

 Antibodies can be either polyclonal or monoclonal. Figure 4 demonstrates the 

difference between the two terms. The former one is used to define a pool of antibodies 

with different paratopes, which target multiple epitopes on an antigen. The latter one 

describes a pool of antibodies with identical paratopes, which target a single epitope on 

an antigen. Depending on the analysis purposes, polyclonal or monoclonal antibodies are 

preferred. Polyclonal antibodies are usually more cost-effective and better in overall 

affinity due to multiple binding sites whilst monoclonal antibodies possess a higher level 

of specificity owing to unique antibody-antigen interaction. 14 
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Figure 3. (A) Spatial structure of an antibody molecule. (B) Fundamental components of 

an antibody molecule including heavy chains (in yellow and blue) and light chains (in 

pink). (C) Fab and Fc fragment breakdown. Adapted with permission from Janeway et al. 

2001 13. 
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Figure 4. Polyclonal antibodies are a collection of immunoglobulin molecules that react 

against a specific antigen; each antibody recognizes a different epitope (demonstrated as 

color coded species). Monoclonal antibodies are monospecific antibodies that target a 

single epitope of a specific antigen. 

Immunoassay Compositions: Signal Generators 

 A signal generator is the second essential component of an immunoassay in 

addition to antibodies. In immunoassays, antibodies are often modified with some signal 

generating labels so that the complex formed between antibody and antigen is determined 

by measuring the labels’ properties such as radioactivity, enzyme activity, light 

absorption or emission or scattering, etc. These labels provide magnified signals therefore 

significantly enhance the sensitivity of the detection. Some common immunoassay labels 

are radioactive labels 15 and non-radioactive labels including enzymes 11a, 16, fluorescent 

probes 17, chemiluminescent compounds 18, and nanoparticle labels 10d, 19, etc. 

Radioactive labels offer outstanding sensitivity, however possess health and safety risks. 
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Consequently, radio immunoassays are not ubiquitously used for analysis nowadays and 

are replaced by other assays with non-radioactive labels. Even though these alternative 

labels provide relatively sufficient sensitivity, most of the assays utilizing them are 

restricted to lab-based analysis due to the non-portability of the instruments used for 

detecting generated signals. Moreover, these labels are not capable of multiplexed 

detection.  

Immunoassay Formats 

 IAs are generally classified as heterogeneous and homogeneous assays (Figure 5A 

and 5B, respectively). Heterogeneous IAs require the removal of unbound antigen and 

antibody from the surface of a substrate on which the reaction occurs. For instance, when 

implementing an direct ELISA (enzyme-linked immunoassay) 20, a representative of 

heterogeneous assays, samples containing targeted antigen are loaded onto separate wells 

(usually in a 96-well polystyrene plate) and incubated for 4 to 24 hr. The unbound 

antigen is washed from the surface. A solution of non-reacting protein, such as bovine 

serum albumin or casein, is added to the well in order to block any plastic surface in the 

well, which remains uncoated by the antigen. The following step is the introduction of a 

primary antibody linked to an enzyme, which is specific to the antigen. Another 4 hr is 

consumed on incubation, and then the excess antibody is removed from the well plate. A 

substrate of the enzyme is added and the reaction between the substrate and enzyme 

produces a colored product, which indicates the presence of the antigen. UV-Vis 

instruments can measure the color change; the intensity of the color is correlated to the 

concentration of the antigen. If the antigen is absent, there should not be any change in 

color. A heterogeneous IA is a lengthy process with multiple cycles of incubation and 
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rinsing, therefore is time and labor intensive. A primary reason for long incubation time 

is that the binding between antibody and antigen (as macro-biomolecules) is limited by 

small diffusional coefficients of the antigen when delivered to the sensing surface.5b  

 Homogeneous assays (Figure 5B) are another option for immunoassay format. 

Antibody molecules are immobilized onto mobile carriers, e.g. gold nanoparticles 12, 21. 

The conjugated particles then are mixed with the sample containing analytes, leading to 

the formation of sandwiched antibody-antigen-antibody complex in solution. Gold 

nanoparticles function as signal transducers, rendering changes in optical properties to 

indicate the occurrence of antibody-antigen binding events. In contrast to heterogeneous 

format, no separation of unbound reagents is required in homogeneous assays. Multiple 

washing cycles are eliminated from homogeneous assay protocols; the incubation time is 

short, usually in a few minutes owing to fast solution phase kinetics. 10d, 19c Thus, it is less 

time and labor consuming to employ this format. Nevertheless, there are limited readout 

technologies that have been developed for homogeneous IAs. 
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Figure 5. Schematic illustration of (A) heterogeneous immunoassays and (B) 

homogeneous immunoassays. 

Immunochromatographic Assays 

 Immumochromatographic assays or lateral flow assays (LFAs) are heterogeneous 

assays engineered to overcome time and labor of conventional heterogeneous assays. 

 Figure 6 shows the configuration that describes the generic mechanism of how a 

LFA works. 22 Three different antibodies employed in the configuration are detection 

antibody (specific binding to antigen), capture antibody (specific binding to antigen), and 

anti-detection antibody (specific binding to the detection antibody). There are five 

primary compartments composing an immunochomatographic system including sample 

application pad, reagent pad (containing detection antibody labeled with latex beads or 

gold colloids), test line (at which capture antibody is immobilized), control line (having 

anti-detection antibody attached to the surface), and absorption pad (functioning as a 

waste chamber and creating capillary driving force) (Figure 6A). Samples containing 

A 

B 
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Figure 6. Schematic illustration of immunochromatographic assays. (A) A sample is 

applied at the sample application pad, (B) The sample travels to the reagent pad, and (C) 

The sample arrives at the test line. Redrew from O’Farrell et al. 2009 23 

analytes/virus are collected and prepared in an aqueous medium and applied at the 

sample application pad. The aliquot is drawn along the stick by capillary action and 

travels to the reagent pad. The detection antibody with gold colloid label is placed in a 

dehydrated state in the reagent pad and restored to active form by dissolving in the 

aqueous medium. The detection antibody possesses paratopes that bind to distinct 

epitopes of the antigen on the analyte; a complex of antigen-detection antibody is formed 

(Figure 6B). The complex and the unreacted reagent (detection antibody-gold colloid 

labels) continue flowing to the test line, at which only the complex of antigen-detection 
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antibody is captured via specific interaction of the antigen to the capture antibody. The 

unreacted labels pass through the test line to the control line and are anchored there. The 

accumulations of gold-colloids at both lines produce a distinct red color to indicate a 

positive test for antigen. One red line only at the test line indicate a negative sample 

(Figure 6C). The control line indicates proper sample flow. LFAs typically provide 

yes/no responses but some efforts are put in to obtain semi-quantification. It is worth 

noting that the color change of the test line depends on the concentration of antigen and 

the binding of the antigen to detection antibody and capture antibody. False negative 

results are often caused at the early or late stage of infection when the level of virus in the 

body is relatively low. Even though LFAs are relatively efficient in terms of cost, 

simplicity, and speed, their poor detection limit is a major limitation. The sensitivity of 

rapid antigen tests validated using PCR assays demonstrates a significant variation of 39-

80% 24. Furthermore, LFAs are currently limited to singleplexed detection. With that 

said, the next generation of rapid tests for influenza detection should be focused on 

addressing the detection limit (LOD) and multiplexing challenges.  

Functionalized Gold Nanoparticles for Bio-Detection 

 Nanoparticles are defined as nanomaterial having the average diameter no greater 

than 100 nm 25. Among them, gold nanoparticles (AuNPs) are the most extensively 

investigated due to their unique optical properties, which can be utilized as a label in 

various applications such as sensing and imaging. AuNPs provide an outstanding 

platform in developing analytical methods for biosensing in nanoscale owing to size-

tunable properties and extremely large scattering cross-section to facilitate highly 

sensitive multiplexed detection. The modification of the AuNP surface can be tailored to 
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meet the requirements for specific applications, e.g. biosensors, by coating AuNPs with a 

bio-recognition element such as an antibody. When AuNPs are used as labels in IAs, 

detection can be achieved by a change in the intensity or peak position of optical 

absorption, fluorescence emission, reflection, surface plasmon resonance (SPR), surface 

enhanced Raman scattering (SERS), and dynamic light scattering (DLS). The majority of 

AuNP assays are the heterogeneous format. While providing high sensitivity, they still 

require long assay time and many laborious steps. An alternative format is homogeneous 

IAs but they are limited in the readout technology. In this regard, DLS has emerged as a 

promising detection method for homogeneous AuNP-based assays. The principles of 

DLS and its application for AuNP bioconjugation monitoring and aggregate detection in 

homogeneous AuNP-based assays will be discussed in the following section.

 AuNP-based biosensors are prepared via various immobilization techniques of the 

biomolecules to the particles’ surface. The active conformations of the biomolecules 

when adsorbed on AuNPs directly affect both stability of the biosensors and 

reproducibility of signals. AuNPs possessing a high surface-to-volume ratio lead to a 

large amount of biological molecules (e.g. antibody) can be immobilized on the surface. 

Direct adsorption is fast; it can take place on the order of seconds. Biomolecules can 

easily adsorb through electrostatic interaction and protect AuNPs from aggregation in 

high saline concentration environment of real biological samples. However, there is no 

control over the orientation of adsorbed molecules; therefore, the activity of the 

biomolecule after immobilization is not guaranteed. Moreover, it has been suggested that 

the weakly adsorbed biomolecules can desorb from the particle surface since the 

molecule is not covalently attached. 26 An alternative way to avoid the likelihood of 
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antibody desorption is to covalent attach antibody to the AuNP surfaces via linker 

molecules. 27 Biofunctional linkers that have anchor groups such as thiols, disulfides, or 

phosphine ligands are often used for their binding to Au. The other end of the linkers is 

covalently coupled with biological molecules via carbodiimide, succinimide, 

maleidiimide functional groups. Regarding the effort to manage the proper orientation of 

antibody on the particle surface, protein A or protein G has been utilized by some 

research groups as cross-linkers for antibody. 19c, 28 In the scope of this thesis, the two 

former methods of modification were utilized in correspondence to a specific goal for 

each project. 

Dynamic Light Scattering for AuNP Probe Assembly and Aggregates Detection 

 AuNPs are known to have a large light absorption and scattering cross section. 

Dynamic light scattering (DLS) is a technique used widely for particle size and size 

distribution studies based on the light scattering property and the Brownian motion of 

spherical particles (Figure 7). The size of the particles is calculated according to the 

Stokes-Einstein relation and Doppler shift of the incident laser beam after interacting 

with moving particles 29. The advancement in development of recent DLS instruments 

offers benefits of low cost and low maintenance. In comparison to other methods, 

monitoring AuNPs via DLS is simply done with higher sensitivity and in a timely 

manner.  

 DLS has been successfully developed to monitor and characterize biomolecule-

AuNP conjugation in situ according to Jans et al. 2009 [54]. DLS can readily measure a 

small change of 3-5 nm for a 100 nm diameter nanoparticle. Kinetic studies of protein-

AuNP surface (e.g. protein A adsorption) and protein-protein (e.g. protein A-human IgG) 
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interactions can also be obtained via DLS. [54] The adsorption process of proteins was 

observed as the growth of AuNP in size over time during incubation. As the diameter of 

the particle increases, the particle diffusion is reduced in the suspension (according to 

Stoke-Einstein equation). When the particle reaches the maximum growth of the 

monolayer (complete coverage), the stability of the AuNP probes can be tested in high 

salt content environment. [51, 54] If the conjugate is not stable after adding salt, DLS 

readout indicates a dramatic change in size (at least more than double the size of a 

           

Figure 7. Dynamic light scattering principle for (A) large particles and (B) small 

particles; larger particles produce more scattering light. Adapted with permission from 

Kim et al. 2014 30. (C) A hydrodynamic diameter distribution histogram of a DLS 

reading for 60 nm AuNP. 

free particle). Also as stated in Jans et al. 2009 31, the size increment of a full layer of IgG 

molecules on AuNP is 15-20 nm regardless the particle size.  

 Based on the same principle, the correlation between diffusion rate and particle 

size, DLS can differentiate individual nanoparticles versus nanoparticle dimers, 

C 

A 
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oligomers or aggregates in solution. DLS is capable of detecting nanoparticle aggregates 

at low analyte concentration (high pg/mL to low ng/mL). 32 DLS was reported to be used 

in a homogeneous AuNP-based IAs for cancer biomarker detection for the first time in 

Liu et al. 2008 33. Free prostate specific antigen (f-PSA) was targeted as a biomarker for 

prostate cancer diagnosis. Two different monoclonal anti-PSA antibodies were used to 

detect f-PSA; one of them works as a capture antibody while the other one functions as a 

detector antibody. Each antibody specifically binds to a single epitope on the antigen; 

therefore, it takes a pair of one capture antibody and one detector antibody to form a 

sandwich complex with a prostate antigen molecule. For the AuNP probes preparation, 

the detector Ab was immobilized on citrate-caped Au nanospheres as it binds better to 

negatively charge surface. Whereas, the capture Ab favors the positively charged surface 

so it was attached to cetyltrimethyl ammonium bromide (CTAB)-coated Au nanorods. 

These two probes were prepared separately prior to mixing with the sample containing f-

PSA. The interactions of the capture Ab and f-PSA and detector Ab induced aggregation 

of Au nanospheres and Au nanorods, which is detected via DLS. It was reported in the 

paper that an unknown sample of 0.5 ng/mL f-PSA was determined via the DLS assay. 

Yet, they did not report the LOD.  

 In Driskell et al. 2011, the homogeneous AuNP-based IA coupled with DLS was 

adapted to detect influenza A virus with slight modifications. 10d It was proposed in the 

study that the DLS assay works better for larger targets such as viruses since they have 

multiple epitopes to form more contact with Ab-assembled AuNP. Different from Liu et 

al. 2008, only one type of AuNP probes was synthesized using Au nanospheres and one 

monoclonal antibody specific to native HA from one particular influenza A virus strain. 
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This protocol is versatile and highly adaptable to detect a different strain of influenza 

virus when a monoclonal antibody specific to the corresponding HA protein is available 

to use. The multiple copies of HA abundantly distributed on the virus particle provide 

more access for the antibody on AuNP probes to come into contact. Less time and labor 

are consumed in AuNP probe assembly since one type of probe is needed. The simplicity 

of DLS detection based on size change is a merit yet becomes a disadvantage for 

developing multiplexed detection since no differentiation between aggregates of different 

AuNP-Ab probes for different virus strains is obtained.  

Surface-Enhanced Raman Scattering (SERS) Biosensors 

 Raman spectroscopy is a technique that is associated to inelastic scattering of 

monochromatic light. Raman effects refer to the frequency of the scattered photons 

shifted up and down relative to incident light. The difference between excitation and 

emission wavelength is called Stokes shift. This shift provides information about 

vibrational, rotational, and other low-frequency transitions in molecules. Whereas most 

of the scattered photons conserve the same energy of the incident ones (Rayleigh 

scattering), a small fraction of them is scattered either at higher (anti Stokes scattering) or 

lower (Stokes scattering) energy levels (example of Rhodamine 6G spectra in Figure 8). 

27b The spectroscopic vibrational fingerprint of the investigated molecule is the collection 

of the scattered photons corresponding to the energy difference between vibrational states 

in the molecule. Raman (both anti-Stokes and Stokes) scattering is inherently weak and it 

is difficult to separate the weak inelastically scattering light from the intense Rayleigh 

scattered light. The applications of Raman scattering has been expanded since the 

discovery of SERS by Fleischmann et al. in 1974. 34 Raman signal can be enhanced by a 
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factor as much as 109 when the analyte is adsorbed onto nanostructured-metals that have 

high optical reflectivity such as silver, gold, and copper. According to electromagnetic 

theory, the size of the metal particles is required to be much smaller than the wavelength 

of the exciting radiation, usually in 10-80 nm range. That explains why AuNPs are 

perfect substrates for SERS. In addition, SERS enhancement is even greater for 

nanoparticles in an aggregated state with small gaps between them. 27b, 35 The gaps, also 

called hot spots, enhance the light scattering efficacy of the analyte once they are small 

enough for plasmon coupling between particles to occur. The SERS signal of the 

investigated molecule when located in the gap is drastically increased. 27b, 35a 

    

Figure 8. Normal Raman spectrum of Rhodamine 6G 10-3 M in nanopure water (blue 

line) multiplied by a factor of 100 and SERS spectrum of Rhodamine 6G 10-7 M on silver 

colloid under the same experimental conditions. Adapted from Guerrini et al 2012. 27b 
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 As stated above, distinct vibrational profiles for each molecule provided by SERS 

make this technique ideal for detection of multiple analytes in a mixture due to the sharp 

fingerprint spectra. The combination of SERS with immunoassays utilizing antibody-

conjugated gold nanoparticles (Ab-AuNPs) is promising for a multiplexed detection 

technique providing high sensitivity (down to single molecule detection 36) and 

specificity (distinction of different strains of a single virus type 36a). SERS itself serves as 

a powerful analytical tool to provide detailed information at the molecular level. In order 

to enhance the specificity of the detection, antibodies with high selectivity are 

immobilized onto nanostructured surfaces to only target the antigen of interest in 

complex biological matrix. Although the signal obtained from a biomolecule absorbed on 

a roughened metallic surface or trapped between nanoparticles is significantly enhanced 

relative to original Raman signals, the high protein content nature of biological matrix 

still interfere with SERS analysis. Therefore, extrinsic labels, aromatic compounds with 

intrinsically strong Raman scattering, are utilized as signal generators to amplify the 

binding event of interest and alleviate background signals. 36b AuNP probes having 

extrinsic labels attached are referred to as extrinsic Raman labels (or ERLs). Remarkable 

efforts have been paid to develop a platform for SERS multiplexed detection such as the 

work done by Wang et al. 2009. 26 The group reported they were able to detect four 

different IgG antigens simultaneously in a single heterogeneous sandwiched IA. 

However, the assay setup falls back to inherent limitations of the heterogeneous format, 

i.e. a tedious protocol with long incubation times and multiple washing cycles. 
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Thesis Objective 

 Based on preliminary studies and literature research, the focus of this thesis is to 

investigate a gold nanoparticle-based homogeneous immunoassay and SERS for read-out 

to develop a multiplexed and POC detection platform for influenza A virus. This method 

is pursued to overcome the existing drawbacks of current rapid antigen testing kits, 

namely sensitivity and multiplexing.  

Research Overview 

 In this study gold nanoparticles are utilized as carriers for antibody as well as 

labels for detection. (1) AuNP probes are prepared by immobilization of antibody on the 

gold surface of the particle. The modification process is monitored by size measuring via 

DLS. Antibody molecules bind directly on the gold nanoparticles to form a full layer 

(Figure 9A). (2) After the preparation of AuNP probes, a homogenous immunoassay is 

carried out by mixing a specimen with the AuNP probes without pre-treating the sample. 

Antibodies bind to HA protein on the virion and cross-link AuNPs to produce 

aggregation in solution (Figure 9B). The level of aggregation corresponds to virus 

concentration. Thus, the detection of virus is actually the matter of detecting the 

nanoparticle aggregates. (3) Aggregates of particles can be detected based on sizing 

measurement via DLS since clusters of AuNP have a bigger size compared to the free 

AuNP probes. (4) A second technique, which can be employed to detect the aggregates, 

is SERS. To this end, an extra step needs to be added to the preparation of particle 

assembly; Raman reporter molecules are attached to the AuNP probes, which are now 

referred as extrinsic Raman labels (ERLs) (Figure 9A). Once aggregation is induced by 

the introduction of virus, AuNPs are brought into close proximity with each other and 
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form small gaps in between them. The Raman reporters are trapped in the gaps producing 

strong Raman scattering when dehydrated on a filter membrane and excited with a laser 

beam (Figure 9C). There is direct correlation between the concentration of virus and the 

intensity of Raman signal provided by the Raman reporter. (5) Toward the ultimate goal 

of our research group, the assay platform employing SERS can be developed to perform 

multiplexed detection when multiple ERLs are synthesized using different antibodies 

targeting different strains of virus and distinct Raman label molecules correspondingly 

assigned to each antibody (Figure 10).  
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Figure 9. Schematic illustration of one-step homogeneous immunoassay coupled with 

SERS analysis. (A) Immobilization of Raman reporter and antibody molecules to 

synthesize AuNP probes or ERLs, (B) Virus-induced aggregation of ERLs in solution, 

(C) Filtration to separate aggregates from unbound ERLs to concentrate SERS signals. 
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Figure 10. Schematic illustration of SERS homogeneous multiplexed immunoassay. 

Multiplexed detection can be carried out when multiple types of ERLs targeting different 

strains of virus are used. 
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CHAPTER II 

RAPID SCREENING OF ANTIBODY-ANTIGEN BINDING USING DYNAMIC 

LIGHT SCATTERING (DLS) AND GOLD NANOPARTICLES 

This study has been published in the journal Analytical Methods as Lai, Y. H.; 

Koo, S.; Oh, S. H.; Driskell, E. A.; & Driskell, J. D. Rapid Screening of Antibody-

Antigen Binding Using Dynamic Light Scattering (DLS) and Gold 

Nanoparticles. Analytical Methods. 2015, 7, 7249-7255 37. 

Introduction 

 Nanoparticle–based immunoassays have emerged as a great tool for rapid, 

sensitive, and low-cost point of care diagnostic tests due to the selective molecular 

recognition based on antibody-antigen specificity and unique properties of nanoparticles 

(NP). Antibodies are immobilized onto the surface of nanoparticles that vary in material, 

size, and shape which can be tailored to improve the detection of pathogens and 

biomarkers. Despite the advantages provided by NPs and readout technology, detection 

improvement is also inherently governed by the antibody. There is a direct correlation 

between assay performance and antibody affinity, regardless of the readout technology.  

 Advances in genetic engineering of antibodies have led to the development of 

many recombinant monoclonal antibodies (mAb) highly specific to many targets. In 

antibody engineering and production, several antibody selection platforms such as 

phage/ribosome and mRNA/microbial cell displays, 38 flow cytometry, 39 and protein 
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arrays, 40 have been employed to isolate potential antibodies for maturation and to build 

an antibody library for target binding. As an outcome of the selection process, a mixture 

of antibody clones needs to be individually analyzed to obtain certain target binding 

properties. Additionally, many mAbs developed using traditional means (i.e. hybridomas) 

are commercially available yet vendors provide little information on antibody affinity. 

Thus, the burden to evaluate mAb affinity and specificity falls on the user to identify the 

most appropriate mAb candidate for a particular study, and the ability to rank the affinity 

of mAbs in addition to specificity towards the molecule of interest becomes essential.  

 Enzyme-linked immunosorbent assay (ELISA) is a primary method to screen the 

specificity and affinity of mAbs. 38b ELISA has many attributes such as sensitivity due to 

enzyme driven amplification, and low cost of analysis; 11a, 16 however, it possesses certain 

limitations. For example, ELISAs require multiple steps of incubation and washing 

cycles that are labor-intensive and time-consuming. Moreover, results are often 

irreproducible and matrix dependent because plasma constituents often impact enzyme 

activity. A single ELISA assay usually takes up to 24 h for analysis; a major portion of 

assay time is consumed by incubation due to small diffusion coefficients of 

biomacromolecules. 

 Additional challenges may be encountered when an ELISA is used to screen 

antibodies to be incorporated into emerging AuNP-based immunoassays. Conjugation of 

the antibody to AuNPs may affect the bioactivity of the antibody which will not be 

detected by ELISA. Thus, ELISA may not accurately select for the most suitable 

antibody in AuNP-based immunoassays. An alternative method to screen and 

characterize mAbs that overcomes the limitations of ELISA is needed. 
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 Herein a rapid screening method for determining antibody-antigen binding 

specificity and affinity was developed using AuNPs and dynamic light scattering (DLS). 

Briefly, AuNP probes are produced by the immobilization of antibodies onto AuNP. The 

probes are then mixed with the specimen, and the presence of the target antigen induces 

aggregation of the AuNP probe. The formation of aggregates is detected as an increase in 

hydrodynamic diameter by the DLS instrument with high sensitivity. 31, 33, 41 To develop 

the DLS-based mAb screening method and establish proof-of-principle, four anti-

influenza virus monoclonal antibodies were directly adsorbed onto the surface of AuNP. 

Each of the antibodies was developed against influenza virus A/New Caledonia/20/99 

and directed towards the H1 hemagglutinin, a surface protein on the virus. Next, a series 

of dilutions of the corresponding antigen (influenza virus A/New Caledonia/20/99 

(H1N1)) was mixed with the AuNP probes. Calibration curves for each of the antibodies 

were constructed to rank the specificity and affinity of their binding. Owing to single-step 

and wash-free procedure, the screening time using DLS was significantly reduced to 30 

min in comparison to 24 h by ELISA. 

Experimental 

Reagents 

 Gold nanoparticles (60 nm; 2.6 ×1010 particles/mL) were purchased from Ted 

Pella, Inc (Redding, CA). Phosphate buffered saline (PBS) was purchased from Thermo 

Scientific (Logan, UT). Borate buffers were prepared from sodium borate obtained from 

Fisher Scientific (Fair Lawn, NJ). Bovine serum albumin (BSA) was purchased from 

Sigma (St. Louis, MO).  
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Antibodies 

 Mouse monoclonal anti-influenza A antibodies (InA4, InA16, InA88, and InA97) 

specific to native HA from influenza virus A/New Caledonia/20/99 (H1N1) were 

purchased from Novus Biological. The antibodies were purified by protein A affinity 

chromatography and supplied in PBS, pH 7.4. 

Viruses 

 Two independently prepared virus samples were used, one was propagated in-

house (UIUC) and a second stock was graciously provided by collaborators at the 

University of Georgia (UGA). 

 Human influenza virus isolates (both H1N1 subtypes) A/New Caledonia/20/99 

and A/Puerto Rico/8/34 were grown in 9 to 11-day old embryonated chicken eggs for 48 

to 72 hours at 37 C. Fertile eggs were obtained from a flock of specific pathogen-free 

leghorn chickens (Merial Select, Gainesville, GA and Sunrise Farms, Catskill, NY). 

Allantoic fluid from infected eggs was then collected and pooled for each strain, divided 

into aliquots, and stored at -80 C. The 50% tissue culture infectious dose (TCID50) of the 

stock viruses was determined by the Reed and Meunch method on MDCK cells. 42 

A/New Caledonia/20/99 (UGA) titer was 1.75 × 107 TCID50/mL and A/New 

Caledonia/20/99 (UIUC) was 3.00 × 105 TCID50/mL. A/Puerto Rico/8/34titer was 3.70 × 

107 TCID50/mL. 

Optimization of pH for AuNP-mAb Conjugation 

 A 100 µL aliquot of 60 nm gold nanoparticle suspension was added to separate 

0.50 mL microcentrifuge tubes (5 tubes in total). The pH of the colloidal gold sol was 

adjusted to 5.5, 6.5, 7.5, 8.5, or 9.5 by adding 4 µL of 50 mM phosphate buffer pH 5.5, 
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6.5, and 7.5, and borate buffer 8.5 and 9.5 into each tube, respectively. The antibody (30 

µg/mL) was mixed with the pH adjusted suspension 15 min. DLS was used to monitor 

the hydrodynamic diameter of the particles. A 10 µL aliquot of 10% (wt/v) NaCl was 

added to each tube to verify the stability of AuNP conjugates in saline environment. 43 

DLS measurement was conducted again to determine the appropriate pH for stabilization. 

Optimization of Ab Concentration for AuNP-mAb Conjugation 

A 100 µL aliquot of 60 nm gold nanoparticle suspension was added to separate 

0.50 mL microcentrifuge tubes (11 tubes in total). The pH of the colloidal gold was 

adjusted to optimal pH by adding 4 µL of 50 mM borate buffer at the optimal pH into 

each tube. Different amounts of the antibody were added into each tube to obtain a wide 

range of concentrations (namely, 0, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 

80.0, 90.0, 100.0, 110.0 µg/mL). The solutions were mixed well. After 15 min, the 

hydrodynamic diameter of antibody-conjugated AuNPs was measured via DLS. Next, 10 

µL of 10% (wt/v) NaCl was added to each tube to verify the stability of AuNP conjugates 

in saline environment.43 The changes in size of the particles were measured again by 

DLS. The amount of antibody added at the stabilization point plus 10% should be used to 

produce the final antibody-AuNP conjugate. 28b 

Preparation and Characterization of Ab-AuNP 

 A 4 µL aliquot of 50 mM borate buffer (at the optimal pH for the antibody 

adsorption) was added to 100 µL AuNP to adjust the pH. The stabilization amount of 

mAb plus an additional 10% was added to the AuNP for 15 min. A 33 µL aliquot of 1% 

BSA in borate buffer or phosphate buffer (at the optimal pH for the antibody absorption, 

2 mM) was added to bring the concentration of BSA to 0.25% in the Ab-AuNP 
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suspension. BSA helps to further stabilize the sol against aggregation and also blocks 

nonspecific binding sites. After 5 min, excess antibody was removed via centrifugation at 

5,000 rpm for 5 min. The conjugate was resuspended in100 µL PBS (pH 7.4, 10 mM) 

with 0.25% BSA to mimic physiological conditions and promote mAb-virus binding. 

Immunoassay Protocol 

 A previously described procedure for the assay was used with slight 

modifications. 10d Four-fold serial dilutions of virus stocks were prepared in 10 mM PBS 

(pH 7.4). A total of 90 µL of virus dilutions were added per well of a 96-well round-

bottom microliter plate (Corning, Corning, NY). PBS served as negative control. A 10 µL 

aliquot of antibody-modified gold nanoparticles made by the above procedure was added 

to each well and allowed to incubate for 30 min at room temperature. The AuNP 

reagent/sample mixture was then transferred to a 70 µL small volume disposable cuvette 

(Eppendorf, Germany) for DLS measurement. 

DLS Measurement 

 A BI-90Plus (Brookhaven Instruments Corporation, NY) equipped with a 658 nm 

laser and avalanche photodiode detector (Perkin) was used to measure hydrodynamic 

diameters of AuNP for all DLS measurements. The backscattered light collection angle 

was set at 90°. Each sample was analyzed in triplicate and each measurement was an 

average of three 30-s runs. Data were collected and analyzed using MAS OPTION 

particle sizing software. Hydrodynamic diameters were referred to as the effective 

diameter by cumulants analysis. 
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ELISA 

 All the ELISA experiments were conducted by Koo S. and Oh S. H., our 

collaborators at UIUC. 

 Virus (diluted 1:100) or PBS (negative control) was added, 100 µL per well in a 

96 well Immulon 2HB microtiter plate, and incubated 18 hours at 4 C. Wells were 

washed and then blocked with BSA/non-fat milk. Serial dilutions (1:4) of anti-influenza 

mAbs were applied to pre-adsorbed plates, starting with a dilution of 1:100. After 

washing, HRP labelled goat anti-mouse IgG (Thermo-Fisher) was applied as the 

secondary antibody, 1:1000, to all wells. After the final washing step, 1-step Turbo TMB 

ELISA (Thermo-Fisher) was added for the substrate and the reaction was stopped with 

1M H2SO4. Absorbance was measured at 450 nm on a 96-well format plate reader 

(SpectraMax Gemini reader and SpectraMax software). Absorbance readings for mAbs 

against PBS were subtracted from absorbance readings for mAbs against virus and 

plotted. 

Results and Discussion 

Adsorption of Proteins onto Gold Nanoparticles 

 One major concern relating to any AuNP–based immunoassay is the stability of 

antibody-AuNP conjugates in biological environments of high ionic strength. Antibodies 

can be immobilized onto a gold surface via a cross-linker or directly adsorbed to the 

surface. Regardless of the immobilization strategy, the conjugate needs to be protected 

from salt-induced aggregation. 44 In this study, direct adsorption was applied. The 

behaviors of different subclasses of antibody in the direct conjugation are distinct. 43 The 

direct adsorption of proteins onto the gold surface is a complex process dependent on 
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several parameters such as the concentration, isoelectric point of protein, bound fraction 

of segments, ionic strength, and pH. 19c, 28b, 45 However, it is not practical to 

simultaneously study all the factors for the optimization of this process. Herein DLS was 

employed to investigate the immobilization of mouse monoclonal IgG1 (InA4 and 

InA97) and IgG2 antibodies (InA88 and InA16) on gold nanoparticles primarily in 

relation to pH and concentration of the protein; the other parameters will be 

correspondingly discussed.  

 The pH has great influence on the hydrogen bonds and overall charge of the 

biomacromolecule. Extremely high or low pH can cause a dramatic change in molecular 

configuration and perhaps its bioactivity. Therefore, the pH range selected for this study 

was 5.5 to 9.5, which minimizes the likelihood of damage to the molecular activity. It is 

well established that the pH slightly above or equal to isoelectric point of the biomolecule 

is the optimal pH for protein adsorption. 45 However, we suggest that the pH dependent 

study is more broadly applicable since the surface charge distribution is necessary to be 

taken into account. Zhang et al. 2014 indicated that proteins and AuNP can be alike in 

charge at a certain pH and still interact with each other, e.g. negatively charged BSA, can 

still interact with citrate–capped gold particles via its positive patches. 46 

 Previous studies by our group and others suggest 30 µg/mL IgG will fully coat 

AuNP. 19c, 47 Therefore, as a starting point to investigate pH dependent adsorption, 60 nm 

AuNP were mixed well with each antibody (30 µg/mL) at the adjusted pH. DLS was used 

to measure the mean hydrodynamic diameter (DH) and monitor antibody adsorption. The 

adsorption curve for InA4, plotted as DH versus pH is displayed in Figure 11A. 

Adsorption of the antibody caused the DH to increase by 10 nm to 40 nm, depending on 
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the pH, relative to the unconjugated AuNP. We have previously demonstrated that DH 

increases by ~20 nm when the AuNP is fully saturated with a layer of antibody. 19c Thus, 

we speculate that at pH 5.5, in which the DH increased by 40 nm, the charge of the 

antibody was sufficiently positive that the antibody itself destabilized the AuNP to induce 

aggregation. Conversely, at pH 9.5, in which the DH only increased by 10 nm, the 

antibody had sufficient negative charge that a full monolayer of antibody was not 

adsorbed on the negatively charged citrate-capped AuNP. NaCl was then added to a final 

concentration of 1% (wt/v) to confirm antibody adsorption and establish stability of the 

conjugate in a solution of high ionic strength. Figure 11A shows the DH as a function of 

pH for the InA4-AuNP conjugate after the addition of NaCl. It is evident that at the 

extreme pHs, e.g., 5.5 and 9.5, not enough antibody adsorbed onto the AuNP to render 

the particles stable. However, at pH 8.0 the InA4-AuNP conjugates were least affected by 

the electrolytes and the data confirm complete antibody adsorption for stability. 

Additional antibody-AuNP conjugates were prepared with three other antibodies and the 

coagulation curves for the conjugates in a saline environment are provided in Figure 11B. 

The adsorption of IgG1 antibodies (InA4 and InA97) were highly unstable at pH lower 

than 6.5. InA97 was quite stable at pH higher than 6.5 whilst InA4 reached the smallest 

diameter of 107 nm at only pH 8.0 (the expected diameter of AuNP-InA4 is ~80 to 90 

nm). It is worth mentioning that the stability of InA4-AuNP conjugate was not obtained 

at the optimal pH since the adsorption also relies on a sufficient amount of antibody 

required for full protection. This will be further discussed in the following section. As for 

IgG2 (InA16 and InA88), the stability of nanoparticles after adsorption did not undergo 

such a dramatic change for the tested pH range (Figure 11B). The adsorption of IgG2 was 



 

36 

 

Figure 11. DLS aggregation curves to assess pH-dependent adsorption of mAb onto 

AuNP. The mAb concentration is fixed at 30 µg/mL. (A) Mean hydrodynamic diameter 

of InA4-AuNP conjugate as a function of pH before and after addition of 1% NaCl. (B) 

Mean hydrodynamic diameter of four mAb-AuNP conjugate as a function of pH after 

addition of 1% NaCl. Each data point is the average of 3 independent experiments with 

standard deviations presented by error bars. 

optimized at pH 6.5-7.5. These results showed good agreement with the optimal pH for 
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IgG subtypes adsorbed on gold nano particle concluded by William et al. 1980. 43 

 

Figure 12. Mean hydrodynamic diameter of mAb-AuNP conjugates as a function of 

mAb concentration after the addition of 1% NaCl. 

 In addition to pH, the adsorption and subsequent stabilization of gold 

nanoparticles are also affected by antibody concentration. To determine the minimum 

amount of antibody required for adsorption and stabilization of AuNP, various amounts 

of antibody (0-110 µg/mL) were incubated for 15 min with AuNP adjusted to the optimal 

mAb-dependent pH, followed by the addition of NaCl. DLS was then used to measure the 

DH as a means of evaluating AuNP-antibody stability (Figure 12). At optimal pH, InA97 

and InA88 only required 5.0 µg of antibody per ml of AuNP to protect against salt-

induced aggregation and the stability was also maintained at higher concentrations of the 

antibody. A slightly greater concentration of InA16 was required for stabilization (20 

µg/ml) while InA4 required 50 µg/mL to stabilize the gold suspension. It is likely that 

InA97, A16, and A88 have confirmations that form more contacts with the gold surface 

so that the surface rapidly reaches saturation by these antibodies at lower coverage. On 
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the other hand, InA4 has fewer contacts to the gold surface per molecule. 

 It was reported that the addition of 110% of the minimum amount of antibody is 

sufficient for conjugate stabilization. 28b In general, it is more favorable to use a 

secondary stabilizer such as BSA to obtain the desired stability of the colloidal gold 

conjugation in saline environment for longer storage time due to steric stabilization 

created by the double layer. 45 Therefore, to prepare AuNP probes for use in DLS assays, 

the AuNP suspension was adjusted to the optimal pH, the requisite amount of antibody 

was mixed with colloidal gold, and 0.25% (wt/v) BSA was added to the suspension 

without the removal of excess antibody. Centrifugation before adding BSA may bring the 

antibody-AuNP proximal to each other and cross-link therefore is not recommended. 

Zhang et al. 2014 reported that IgG molecules displace citrate ligands during adsorption 

and BSA forms a monolayer and stabilizes the antibody-nanoparticle conjugate by its 

electrostatic interaction to the antibody monolayer. 46 The unbound antibodies were then 

removed by centrifugation three times and the colloidal gold nanoparticles were 

resuspended in PBS (10 mM) buffer containing 0.25% (wt/v) BSA. No significant 

increase in size indicated that the conjugate was stable in the saline solution. The 

conjugates were stored at 4 C for 5 days without aggregation or a loss in activity.  

Validating DLS Assay to Monitor Antibody-Antigen Binding 

 To establish this platform as a means of monitoring antibody-antigen interaction, 

AuNPs were modified with the mAb InA97 using the optimized conjugation procedure 

detailed in the previous section. The InA97-AuNP probes suspended in PBS measured 83 

nm in diameter via DLS, consistent with the expected size of a 60 nm AuNP coated with 

a protective IgG layer. The InA97-AuNP probes were mixed with dilutions of influenza 
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A/New Caledonia virus or PBS, e.g. negative control, for 30 min and the mean 

hydrodynamic diameter (DH) was measured via DLS. The calibration curve, constructed 

as a plot of DH increase versus virus concentration, is displayed in Figure 13. Figure 13

 

Figure 13. DLS response curves to evaluate the specific binding of influenza A viruses 

with InA97-AuNP probes. Two assays were performed on independent preparations of 

New Caledonia virus and one assay was performed on the PR8 strain of influenza virus. 

Each data point is the average of 3 independent experiments with standard deviations 

presented by error bars. 

shows a detectable increase in DH relative to the DH of the InA97-AuNP probe at a New 

Caledonia virus concentration of 103 TCID50/mL. Moreover, the increase in DH correlates 

with an increase in New Caledonia virus concentration reaching a maximum value at a 

virus concentration of 106 TCID50/mL. The “hook effect” was observed at the highest 

concentration of New Caledonia virus as a decrease in diameter. This phenomenon was 

previously reported and discussed in detail for DLS assays. 10d, 32 

 The robustness of the assay was evaluated by analyzing a second, independently 
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prepared New Caledonia virus stock. This virus was propagated using the same 

procedure and yielded a viral titer of 3.00 × 105 TCID50/mL. InA97-AuNP probes were 

mixed with 4-fold dilutions of this New Caledonia stock and DLS was used to measure 

the formation of aggregates resulting from virus-antibody binding. The results are 

displayed in Figure 13 and the measured DH provided a similar concentration-dependent 

response to that obtained for the original virus stock.  

 Upon mixing the InA97-AuNP probes with influenza A/Puerto Rico/8/34 virus, 

no significant aggregates were detected via DLS (Figure 13). It is worth noting that a 

slight increase in DH was measured for InA97 probes when mixed with the highest 

concentration of influenza A/Puerto Rico/8/34 virus. It is possible that this increase is due 

to a specific or non-specific interaction between this strain of influenza virus and InA97, 

albeit very weak (low Ka). However, it is more likely that the increase in DH at this virus 

concentration is caused by the matrix. While AuNP is highly efficient at light scattering 

and is the primary source of light scattering in the DLS measurement, 48 the high 

concentrations of large particulate in undiluted allantoic fluid is likely the cause of the 

measured increase in DH for this concentration. Thus, we conclude that the InA97 mAb 

selectively binds influenza A/New Caledonia virus and does not have an affinity for 

influenza A/Puerto Rico/8/34 virus. 
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Figure 14. ELISA results to evaluate InA97 binding specificity towards New Caledonia 

and PR8 strains of influenza A viruses. The data were collected by our collaborators at 

UIUC. 

 ELISA is the gold standard platform for testing antibody-antigen binding. 

Therefore, an ELISA was performed by our collaborators at UIUC to evaluate the 

binding of InA97 to New Caledonia and PR8 viruses, and the results were compared to 

the DLS-derived binding specificity results. The ELISA results are presented in Figure 

14. ELISA confirmed that InA97 specifically binds to New Caledonia; however, InA97 

does not have a specific interaction with PR8 as minimal binding of the antibody is 

detected even for high antibody concentrations. These results are in agreement with the 

DLS results for InA97 binding specificity, and serve as validation of the DLS platform. 

Screening and Evaluating Antibody-Virus Binding Specificity 

 The selection of the antibody is critical to any antibody-based detection method. 

The assay performance is governed by the antibody-antigen binding; thus, it is essential 

to understand the specificity and affinity of this interaction. To this end, the DLS assay 
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was explored as a potential candidate for rapidly screening antibody-antigen specificity 

and affinity. The antibody-antigen binding assay is reduced to 30 min using the DLS 

assay compared to 24 h using ELISA. Moreover, the DLS assay may be better suited for 

rapidly screening antibodies intended for use in AuNP-based immunoassays. During 

conjugation to AuNP, conformational changes may affect the antibody bioactivity 

relative to the free antibody that is evaluated for binding in the ELISA format.49 Thus, 

this novel DLS-based screening method may be a better alternative to ELISA with 

respect to time and effectiveness. 

 Three additional monoclonal anti-influenza antibodies InA4, InA16, and InA88 

were investigated to evaluate specific binding interactions with intact influenza A/New 

Caledonia/20/99 (H1N1). All four antibodies were developed using influenza A/New 

Caledonia/20/99 as the immunogen and the vendor advertises the antibodies as broadly 

cross-reactive with H1 subtype influenza viruses. Figure 15A shows the DLS response 

curves of the four antibody-AuNP probes incubated with 4-fold dilutions of the New 

Caledonia strain. The extent of aggregation was used to evaluate the interaction between 

the antibody and the virus. Only InA97 and InA4 antibodies were found to specifically 

bind to New Caledonia virus. The assay suggests that InA97 had a greater affinity toward 
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Figure 15. Evaluation of antibody binding to influenza A New Caledonia virus. (A) DLS 

response curves to evaluate the specific binding of influenza A New Caledonia virus with 

five Ab-AuNP probes. Each data point is the average of 3 independent experiments with 

standard deviations presented by error bars. (B) ELISA. The ELISA data were collected 

by our collaborators at UIUC. 

the New Caledonia virus strain compared to InA4, given that aggregation of the InA97-

AuNP probes was detected at a lower virus concentration than for the InA4-AuNP 
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conjugates. Interestingly, no increase in DH was measured for the antibody-AuNP 

conjugates for the other two antibodies, InA16 and InA88. The small increase in DH a the 

highest concentration of virus was similar for each antibody probe and was likely due to 

particulate in the undiluted matrix as discussed above. These data suggest that these two 

antibodies do not specifically bind New Caledonia virus. This is in contrast to the 

expected results as both of these antibodies were also developed with New Caledonia as 

the immunogen. 

 One explanation for the unexpected results is that the InA16 and InA88 antibodies 

lost bioactivity upon adsorption to the AuNP, but in the unconjugated state do 

specifically bind to New Caledonia virus. To test this possibility each antibody was 

evaluated using an ELISA and the results were directly compared to the DLS assay. The 

ELISA results are presented in Figure 15B. The direct correlation between the mAb 

dilution and absorbance demonstrate that InA4 and InA97 are the only antibodies that 

specifically bind New Caledonia virus. These results are consistent with the DLS results, 

provide evidence that the lack of InA16 and In88 antibody affinity to the immunogen is 

not a result of conjugation to the AuNP, and ultimately validate DLS as a rapid and 

effective platform for screening antibody-antigen binding. 
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Figure 16. DLS response curves to evaluate the specific binding of influenza A PR/8 

virus with four Ab-AuNP probes. The DLS curve for the binding of InA97 to New 

Caledonia is included as a reference to illustrate specific binding. Each data point is the 

average of 3 independent experiments with standard deviations presented by error bars. 

 The DLS assay was also conducted using the three antibody probes and influenza 

A/PR/8 virus to determine the antibody specificity towards a different H1N1 influenza 

virus. The DLS response curves are plotted in Figure 16, along with one New Caledonia 

calibration curve as a point of reference.  As is evident in the data, no significant binding 

of these antibodies to PR8 was detected. While PR8 is the same subtype as New 

Caledonia, it is not surprising that the antibodies do not bind PR8 as it was not the 

immunogen used to develop the antibodies. It is probable that the epitopes to which 

InA97 and InA4 bind are specific to the New Caledonia strain and not conserved across 

all H1 subtype influenza viruses. 
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Conclusions 

 In this investigation, we demonstrate a simple, rapid, and cost–effective method to 

screen specificity of antibodies in a single–step homogeneous assay using mAb–AuNP 

probes and DLS. This novel method offers a significant improvement in terms of 

screening time compared to ELISA assays, while providing the same accurate results as 

the conventional method. This platform could be easily implemented in most laboratories 

to select antibodies for a wide variety of targets. This screening method has the potential 

to expedite the development and optimization of antibody-based diagnostics and antibody 

therapeutics. In addition, a straightforward protocol to synthesize antibody-AuNP 

conjugates was presented. 
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CHAPTER III 

SERS-BASED MULTIPLEXED HOMOGENEOUS ASSAY DEVELOPMENT

Overview 

As mentioned in the thesis objective, the ultimate goal of our research group is to 

develop a detection method that can address the issues of sensitivity and multiplexing for 

POC detection. With that, the third project focusing on multiplexed detection 

investigation had been launched. The assay platform was developed for mouse IgG, 

rabbit IgG, and human IgG as model antigens; SERS was used as the primary detection 

method. The platform, once successfully developed, will be applied to influenza A 

viruses and other pathogen detection. In the following experiments, polyclonal antibodies 

were used due to the low-cost and ease of use. The immobilization of these antibodies on 

AuNPs has been well studied and the binding specificity and selectivity is also known. 

Therefore, there is no need to go through the processes of optimizing AuNP probe 

assembly. Yet, the optimization for antibody conjugation and antibody screening 

(presented in chapter II) will need to be performed when developing the configuration for 

detecting infectious species, e.g. influenza A viruses, since monoclonal antibodies are 

usually preferred.  

In addition, immobilization of antibody on the AuNP was performed with the 

assistance of a cross-linker instead of direct adsorption. ERLs, firstly, were produced by 

coating AuNPs with a monolayer of two thiols (i.e., thiolated Raman reporter molecules 



 

48 

and thiolated cross-linkers). The second thiolate was employed to covalently attach 

antibody to the particle surface to prevent cross-talk between antibodies from different 

ERLs in the same suspension. After thiolation, antibodies were attached to the gold 

surface via the binding to the cross-linker. In this study, goat anti-mouse, goat anti-rabbit, 

and goat anti-human were utilized. Three ERLs, one with each antibody, were prepared 

separately before they were mixed together and with the antigens. The procedure was 

adapted from Wang et al. 2009 26, 50 with modification. Three Raman reporter molecules 

(or Raman labels) with distinctive spectra were selected. Each of them was assigned to 

pair with each of the antibodies. The ERLs, after synthesis, were mixed with the 

specimen. When the antigen bound to its corresponding antibody and induced 

aggregation, the SERS signal of the corresponding Raman label on the ERLs was turned 

on. The aggregates were captured by a membrane filter with well-defined pore size while 

the free ERLs were allowed to flow through. SERS analysis was performed on the 

membrane filters afterwards since it was proven from Driskell et al. 2014 51 that the 

aggregates in the dehydrated state provide higher SERS signals (Figure 17). 
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Figure 17. Schematic illustration of the change in the size of the gap between antibody-

modified AuNPs and Au surface in accordance to the (A) dehydration and (B) hydration 

states of the IgG molecules. (C) The SERS responses provided by 4-NBT corresponding 

to the dry and wet states of the ERLs. There is almost no SERS signal collected from the 

ERLs when the IgG molecules are hydrated. Adapted with permission from Driskell et al. 

2014. 51 

Experimental 

Reagents and Materials 

Gold nanoparticles (80 nm, 1.1 x 1010 particles/mL) were purchased from Ted 

Pella, Inc (Redding, CA). Sodium borate buffer (50 mM, pH 8.96), phosphate-buffered 

saline (PBS, 10 mM, pH 7.4), goat anti-mouse IgG polyclonal antibody (2 mg/mL), goat 

anti-rabbit IgG polyclonal antibody (1.7 mg/ mL), goat anti-human polyclonal antibody 

(1.7 mg/mL), mouse IgG (1.0 mg/mL), rabbit IgG (11.3 mg/mL), and human IgG (2.5 

mg/mL) were obtained from Thermo Scientific (Rochford, IL). Bovine serum albumin 

(BSA), 2-methoxybenzenthiol (2-MeOBT), 4-methoxybenzenthiol (4-MeOBT), 3-

methoxybenzenthiol (3-MeOBT), 2-naphthalenethiol (2-NT), 4-nitrobenzenethiol (4-

A B 

C 



 

50 

NBT), 3,3’-dithiobis(sulfosuccinimidyl propionate) (DTSSP) were purchased from 

Sigma-Aldrich (St. Louis, MO). Polycarbonate track etched (PCTE) membrane filters 

with a nominal pore diameter of 0.2 μm were purchased from Millipore. All chemicals 

were analytical grade. All aqueous solutions were prepared with NANO pure deionized 

water from a Barnstead water purification system (18 MΩ). 

Preparation of Extrinsic Raman Labels (ERLs) 

ERLs were prepared by co-adsorbing a Raman reporter molecule (i.e. 4-MeOBT 

or 2-NT or 4-NBT) and DTSSP at the optimal ratio (with the total of 15 nmol for both 

thiolates) onto gold nanoparticles according to a previously reported procedure, with 

slight modification 50. In a microcentrifuge tube, 1000 μL of AuNP was combined with 

40 μL 50 mM borate buffer, 12.5 μL thiol mixtures of 1 mM NBT and 1 mM DTSSP; the 

mixture was incubated for 15 min, and then centrifuge at 5000g for 5 min to remove 

unbound thiols. The particles were resuspended in 1000 μL 2 mM borate buffer pH 8.5. 

Next, 16.6 μL goat anti-mouse IgG (or 23.5 μL for goat anti-rabbit or 23.5 μL for goat 

anti-human) polyclonal antibody was added. The mixture was allowed to incubate 

overnight on the bench top at room temperature. The ERL suspension was centrifuged at 

5000g for 5 min. The supernatant was decanted and the AuNP pellet was resuspended in 

1000 μL of 2 mM borate buffer with 1% BSA (pH 8.5). This centrifugation/suspension 

process was repeated twice more, with the final suspension in 2 mM borate buffer 

containing 1% BSA and 1% NaCl at pH 8.5. 
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Antigen-Mediated Assembly and Capture of ERLs 

Mouse, rabbit, and human IgG standard solutions were prepared through serial 

dilutions using PBS. Antigen (10 μL) was introduced to a suspension of ERLs (90 μL) 

and allowed to incubate at room temperature for one hour. The membrane filters were 

treated with 200 μL of 1% BSA for 20 min to block non-specific binding. The filtration 

process was performed via a Bio-Dot microfiltration apparatus. Using a micropipette, 80 

μL of the ERL-sample mixture were blotted onto the filter membrane, and then washed 

with 160 μL of 2 mM borate buffer. Filters were allowed to dry before SERS analysis. 

Instrumental Characterization and Assay Readout 

Dynamic light scattering was used to monitor the conjugation of antibody onto 

AuNP and measure the size of the hydrodynamic diameter of antigen-induced aggregates. 

Measurements were taken with a BI-90 Plus (Brookhaven Instrument Corporation, New 

York) equipped with a 658-nm laser and an avalanche photodiode laser (Perkin) with the 

detection angle of backscatterd light set to 90o. The mean hydrodynamic diameter for 

each sample was averaged from three 30-s runs using MAS OPTION particle sizing 

software to perform cumulants analysis.  

SERS measurements were performed using an Ennwave Optronics, Inc. 

ProRaman-L-785B Analyzer, using a diode laser at the fixed wavelength 785 nm. The 

laser was focused to a 100-μm spot with a 10x objective (N.A. 0.52), and the power was 

adjusted to 10 mW. The instrument was equipped with a high-sensitivity CCD 

thermoelectrically cooled to -60 oC. Membrane filters were placed onto a motorized 

translational stage and tuned to a speed of approximately 0.3 mm/s during 10-s spectral 

acquisitions. Five spectra were collected at five different locations for each sample. 
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Sample rastering during spectral acquisition increases sampling area and effectively 

averages signal from heterogeneous locations to improve signal reproducibility.  

Results and Discussion 

Assay Design 

The intrinsic design of this platform is the employment of gold nanoparticles 

decorated with Raman active reporters and whole antibody molecules attached via 

covalent interaction to biofunctional linker molecules (i.e. DTSSP). This configuration of 

ERLs was slightly different from the classic self-assembly approach, which was 

presented in chapter II as direct adsorption of antibody on gold surface. The cross-linker 

molecules with the thiol end binding to gold surface and the other end forming covalent 

bond to antibody were used instead. The direct adsorption is fast and simple but can be 

used for singleplexed assays only since the antibody is immobilized via mainly 

electrostatic force. In multiplexed assays, multiple antibodies are used to assemble ERLs; 

therefore, covalent linking is essential to minimize the possibility of crosstalk caused by 

the exchange of antibodies. The use of DTSSP as a cross-linker was anticipated to 

prevent the cross-talk between different ERLs in the same suspension. 26 In the presence 

of AuNP in solution, the DTSSP disulfide bond breaks and binds to the gold surface. 

Each DTSSP molecule provides two binding sites for antibodies on the gold surface. 

When added in the particle suspension solution, antibodies having primary amine groups 

perform nucleophilic attack to the succinamidyl ester linkage, break the bond, and form a 

new amide bond which covalently anchors antibody to the surface (Figure 18).  
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 3,3'-dithiobis(sulfosuccinimidyl propionate) 

 

Figure 18. Mechanism of reactions of DTSSP’s moieties to Au surface and antibody. 

Adapted with permission from Escamilla-Gómez et al. 2009 52. 

The ERLs, after a complete assembly, were mixed with the specimen containing 

antigen analytes. Upon the introduction of antigen, the sandwiched antibody-antigen-

antibody formation occurred; these interactions brought the nanoparticles close to each 

other (forming clusters of particles), and creating hot spots for plasmonic coupling inside 

the cluster. However, in this design whole IgG molecules were used, leading to an 

interparticle distance of ~21-30 nm according to a previous work done by our group in 

Driskell et al. 2014 51. This sufficiently large gap can significantly affect plasmonic 

coupling efficiency of particles and SERS intensity. In solution, SERS signal can still be 

measured but the signal-to-background is really low, leading to a compromised 

sensitivity. An approach to overcome this limitation is to capture the aggregates on a 
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membrane. By doing this, aggregated ERLs were concentrated and dehydrated; therefore, 

the interparticle spacing was reduced. Driskell et al. 2014 showed that SERS signal can 

be increased by 50-fold when the aggregate is in dry state versus wet state. It was found 

that the signal increases when the gaps between particles are small, i.e. antibody and 

antigen are in dehydrated state (Figure 17).  

 

Figure 19. A 48-well Bio-Dot microfiltration apparatus. The apparatus consists of 6 

primary components, including sample template with attached sealing screws, parafilm 

sheet, sealing gasket, gasket support plate, vacuum manifold, and tubing and flow valve.  

After allowing for complete aggregation, the solution containing aggregates was 

transferred for filtration to a 48-well Bio-Dot microfiltration apparatus (Figure 19). Two 

hundred nm pore size PCTE membrane filters were used for filtration. They were 

incubated with BSA prior to use to prevent undesired adsorption of unbound ERLs to the 

surface. The pore size was optimized for capturing both large and small (i.e. dimers or 

trimers) aggregates formed at even very low concentration of antigen while allowing free 

ERLs to flow through. The filter membranes with the BSA side facing up were placed 

underneath the sample template to cover the bottoms of the wells, which had the analyte 

mixtures added in later (Figure 19). Unused wells were covered by parafilm. The 
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filtration apparatus was connected to a mini-pump; the suction via vacuum was the 

driving force for the filtration. With this setting, multiple samples can be filtered 

simultaneously and separately to save time and avoid cross-contamination. While using 

200 nm pore size filter membranes, the optimal size of AuNPs used to prepare ERLs was 

80 nm according to Lopez et al. 2015. 53 

Only 80 μL of the filtrate solution was needed for the microfiltration apparatus 

and only 10 μL of specimen was needed for the assay. That means this homogeneous 

assay can be performed with a very small amount of specimen. In addition, using the 

vacuum filtration accelerates the filtering process comparing to the apparatus used in 

Lopez, A. et al. 2015. The filtration time was reduced to 15 s including two times of 

rinsing. Aggregated particles were better concentrated in 3 mm spots via microfiltration 

apparatus comparing to 4.5 mm spots via home-built apparatus in Lopez et al. 2015 53 

(Figure 20).  

   

Figure 20. (A) A home-built blotting apparatus: four sheets of blot paper were layered on 

the Teflon base and the membrane was placed on top. A rubber O-ring (4-mm inner 

diameter) was placed between the membrane and top Teflon sheet. (B) the size 

comparison of two spots of aggregates obtained after filtration via the home-built blotting 

apparatus (left) and 48-well Bio Dot blotting apparatus (right). Each filter diameter is 13 

nm. 

A 
B 
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Screening and Selecting Raman Reporter Molecules 

Five thiol molecules (2-MeOBT, 3-MeOBT, 4-MeOBT, 2-NT, and 4-NBT) were 

tested for potential Raman reporter use; their SERS spectra are shown in Figure 21. In 

order to compare the relative intensity of the Raman labels against each other, five micro-

centrifuge tubes of ERLs were prepared. Each tube contained AuNPs modified with 

DTSSP mixed with one label molecule (mole ratio of 1:4), and goat anti-mouse IgG. 

After preparation, one drop of ERLs of each label was placed on a gold-coated glass slide 

and allowed to air dry. SERS spectra were collected on each spot. Four labels, 2-MeOBT, 

4-MeOBT, 2-NT, and 4-NBT, provided distinct spectra, whereas no significant SERS 

signal was measured from 3-MeOBT. 4-MeOBT, 2-NT, and 4-NBT provided the unique 

bands, and therefore were selected to serve as Raman labels for a triplex assay. It is worth 

noticing that this experiment was used to qualitatively examine the distinctions in spectra 

of the label molecules; relative intensity was not taken into account. The three molecules 

can be differentiated based on the distinct signature peaks at 1378 cm-1 for 2-NT (ring 

stretching), 1336 cm-1 for 4-NBT (vibration of NO2), and 1076 cm-1 for 4-MeOBT 

(vibration of S-C aromatic).  
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Figure 21. SERS spectra of the five Raman reporter molecules collected on the gold-

coated glass slide. The intensities are not drawn to scale. The reporters with their 

signature peaks are 2-NT (red, 1378 cm-1), 4-NBT (light blue, 1336 cm-1), 2-MeOBT 

(dark blue, 1032 cm-1), 3-MeOBT (green, 990 cm-1), and 4-MeOBT (purple, 1076 cm-1). 

The spectra of 4-NBT and 2-NT are drawn to the vertical axis on the left and those of 2-

MeOBT, 3-MeOBT, and 4-MeOBT are drawn to the right axis. 

4-MeOBT 2-NT 4-NBT 

Figure 22. Chemical structures of 4-MeOBT, 2-NT, and 4-NBT 
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Customizing ERL Intensity 

For multiplexed detection, having comparable intensities for all labels is also 

another feature we need to optimize. The significantly higher intensity of one Raman 

molecule may dominate the overall spectrum of the mixture and cause difficulty in signal 

identification and quantification. Wang et al. 2009 26 showed that the scattering intensity 

of the Raman labels can be tuned by varying the ratio of linker (DTSSP) to reporter in the 

thiol mixture (the total concentration of thiols was kept constant at 15 nmol). ERLs were 

prepared by adding a mixed monolayer of DTSSP and a Raman reporter molecule to the 

AuNPs. Anti-mouse IgG was added to the modified AuNP. After assembly, ERLs were 

mixed with mouse IgG at the concentration of 5 µg/mL. The antigen-induced ERL 

aggregates were filtered through 200 nm pore membranes and allowed to dehydrate prior 

to SERS analysis. The dependence of SERS intensity on the mole fraction of 4-MeOBT 

was demonstrated via Figure 23. The intensity undergoes a steep increase when the mole 

fraction of 4-MeOBT is below 0.4 and starts to plateau when it reaches higher than 0.4 

(as the label adsorption approaches surface saturation). Similar behavior was also 

observed with 4-NBT and 2-NT (data not shown).  

Relating to the coating process, one could argue that the amount of DTSSP 

controls antibody coverage on the AuNP. In the mixture of the two thiols, as the amount 

of the label increased, the amount of DTSSP decreased. That might lead to less antibody 

adsorbed to AuNPs and affect the aggregation level as a result. Regarding this concern, 

Wang et al 2009 found that the number of antibodies coating the nanoparticles remains 

constant regardless of high or low concentration of DTSSP. Antibodies have much larger 

size relative to DTSSP and Raman labels; thus, one antibody molecule covers several 
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thiol molecules, only one of which needs to be DTSSP for linkage of the antibody. The 

binding of antibody and antigen therefore should be relatively similar over the range of 

the reporter/DTSSP ratios tested. It was indicated on the response curve that the mole 

fractions of 4-MeOBT, which were smaller than 0.4, resulted in less fluctuation in signal 

(smaller error bars). In addition, taking into account the relative intensities of the three 

labels, the optimal mole fraction for 4-MeOBT is 0.2 or 1:5 (i.e. one part of 4-MeOBT 

per four parts of DTSSP in the total 15 nmol thiol mixture), that for 4-NBT is 1:9, and 

that for 2-NT is 1:3. 

  

Figure 23. SERS intensity of ERLs as a function of the mole fraction of a Raman 

reporter molecules (4-MeOBT) in the thiol mixture with DTSSP to coat AuNPs. Each 

data point is the average of 2 independent experiments with standard deviations presented 

by error bars. 
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Analytical Performance of Singleplexed Assays 

The specificity of anti-rabbit IgG modified ERLs was evaluated against rabbit 

IgG as on-target antigen and  human and mouse IgG as off-target antigens separately via 

three singleplexed assays. The ERLs were produced by modification of AuNPs with anti-

rabbit IgG antibody and 4-MeOBT as Raman label. ERLs from the same batch were 

mixed with three serial dilutions (0.5-50,000 ng/mL) of rabbit IgG, mouse IgG, or human 

IgG to investigate the specificity of the anti-rabbit against the on/off-target antigens. 

ERLs were mixed with PBS to serve as a blank control. The reaction was allowed to 

occur for 90 min in a 96-well plate. The mixtures then were transferred to microcuvettes 

and the mean hydrodynamic diameter of the particles was measured via DLS (as 

previously mentioned, DLS was used to validate the SERS result). It is clearly presented 

in Figure 24 that anti-rabbit antibody is specific to rabbit IgG but not mouse IgG and 

human IgG. The shape of the response curve of anti-rabbit versus rabbit IgG is similar to 

results previously reported in chapter II of this thesis and literature 10d, 53; whereas, there 

was no significant change in the mean diameter of the ERLs after mixing with mouse IgG 

and human IgG. The mixtures of ERLs and specimen were passed through the 200 nm 

PCTE membranes placed in the microfiltration apparatus. After filtration the membrane 

filters were allowed to air dry prior to SERS analysis. This experiment was a replication 

of the similar experiment done with anti-mouse IgG and mouse IgG model in Lopez et al. 

2015 53, but replacing the home-built blotting apparatus with the microfiltration 

apparatus. The filtration occurred via vacuum suction instead of capillary action. This is 

one of the attempts to better concentrate aggregated nanoparticles (from 4.5 mm down to 

3 mm for the spot size on the PCTE membrane) and to obtain more uniform distribution 
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of aggregates on the membrane surface to reduce the variation of SERS signal. The 

intensity of the peak at 1076 cm-1 (the strong vibration of S-C aromatic in 4-MeOBT 

molecule) was used to detect the formation of particle aggregates. Figure 25 indicates the 

SERS signal intensity obtained with off-target antigens was significantly lower than the 

one with on-target antigen at the antigen concentration of 500 ng/mL. Therefore, the 

selectivity of the assay was verified by both DLS and SERS analysis.  
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Figure 24. (A) Aggregation of ERLs as a function of rabbit IgG concentration 

(duplicated) versus anti-rabbit (blue diamond), anti-mouse (green triangle), and anti-

human (purple circle) measured as an increase in hydrodynamic diameter via DLS. The 

dash line represents the negative control for the response curve of goat anti-rabbit ERLs 

vs rabbit IgG. (B) Goat anti-rabbit ERLs versus anti-rabbit calibration curve constructed 

using SERS data. The dash line represents the negative control. 
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Figure 25. SERS intensity obtained from aggregated ERLs induced from mixing goat 

anti-rabbit ERLs with rabbit IgG, mouse IgG, and human IgG separately at the antigen 

concentration of 500 ng/mL and 0 ng/mL (or PBS). The experiment was done in 

duplicate. 

Noticeably, the SERS signal collected from the negative control was quite 

significant; the detection limit of the assay via SERS, therefore, was highly affected. It is 

possible that some free ERLs were caught on the membrane surface during filtration due 

to non-specific binding or the use of not sufficiently large rinsing volume of buffer. 

Further investigation for filtration process needs to take place to eliminate undesired 

signal from negative controls and improve the sensitivity of the method. 
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CHAPTER IV 

CONCLUSION AND FUTURE WORK

Research Summary 

The preceding results lead to several remarks made via this research investigation. 

The focus of this work is to develop a multiplexed POC detection method for influenza A 

virus in a sensitive and timely manner. The first part of the thesis focuses on employing 

antibody-conjugated gold nanoparticles and dynamic light scattering for the study of 

conjugation assembly and monoclonal antibody screening. Namely, influenza-specific 

antibodies were attached to the surface of AuNPs, and aggregation was mediated by 

introduction of the target virus to the nanoparticle solution. A fundamental concern of the 

work was to ensure aggregates only formed in the presence of the virus not due to the 

instability of the particles; therefore, optimal conditions for maintaining the stability of 

the AuNPs coated with anti-influenza monoclonal antibodies, specifically for IgG1 and 

IgG2a isotypes, were investigated by varying pH, conjugation chemistry, and blocking 

reagents. Furthermore, DLS was exploited to screen the binding specificity of the anti-

influenza antibodies to different strains of the virus, namely Influenza A/Puerto Rico/8/34 

(H1N1) and A/New Caledonia/20/99 (H1N1). The extent of aggregation formed by 

mixing the mAb-AuNPs with the virus was measured to verify the specific interaction 

and binding affinity between the antibodies and virus. In addition, the DLS data were in 

good agreement with the results conducted with a well-established virus detection 

method, ELISA. Noticeably, DLS assay required 30 min to perform the same work that 



 

65 

took approximately 24 hours if using ELISA. This method offers a straight-forward 

protocol, high accuracy, low cost, and short assay time for monoclonal antibody 

screening. The insights obtained from the first part of the thesis have great contribution to 

better understand determining factors for the conjugation of monoclonal antibodies onto 

gold nanoparticles and the antibodies’ binding characteristics to a specific antigen. It is 

also crucial to POC detection platform development because the selection of the most 

appropriate antibody for each individual antigen/pathogen is vital for the assay 

performance, especially selectivity.  

The second part of the thesis demonstrated efforts devoted to develop an IA 

configuration coupled with SERS analysis for multiplexing. It is worth mentioning that 

viruses were not used in the development of the detection platform but human, rabbit, and 

mouse IgG were employed as model antigens instead since the research group recognizes 

more benefits can be gained when using the model of small antigens. First, IgG 

molecules are indeed proteins; thus, the method of detection developed for IgG molecules 

can also easily translated into the application of quantifying protein biomarkers. Second, 

in order to elevate the sensitivity of the method, the intact virus particle can be sliced 

open to free HA protein molecules from the viral membrane using some lysis buffer 

(potential future work). Then, 500 copies of HA from every virus particle are released 

into solution and become individual small targets in suspension. AuNP probes or ERLs 

have more possibility to form interaction with the antigen and induce aggregation. The 

detection of virus particles actually returns to the detection of small target indeed. This 

study has continued the work established to develop a SERS-based platform for 

singleplexed detection in Lopez et al. 2015. In that paper, polyclonal anti-mouse IgG 
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antibody and a Raman active label were directly immobilized on the AuNPs to produce 

ERLs. The ERLs after assembly were mixed with the sample containing mouse IgG 

antigen to induce aggregation. The ERL aggregate suspension was concentrated on a 

membrane and allowed to dehydrate prior to SERS analysis. The dependence of the 

analytical features of the assay on the membrane pore diameter and AuNP size was 

systematically investigated, and membranes of 200 nm pore diameter and 80 nm AuNPs 

were determined to provide maximal sensitivity. These optimizing elements were applied 

to the updated design of the platform studied in the second part of this thesis. There were 

some alterations in the ERL synthesis and blotting process make this design more 

adaptable to multiplexing. Firstly, selected antibody molecules were covalently 

conjugated on AuNPs via a bifunctional cross-linker (DTSSP in particular). The 

assistance of a cross-linker is anticipated to minimize the possibility of antibody 

exchange between ERLs since more than one type of ERLs are present in the solution. In 

addition to the primary function of DTSSP as a cross-linker, it also serves as the 

determining factor to customize the intensity of Raman labels in accordance to each 

other. The response curves dictating the dependence of labels’ intensity on the ratio of 

DTSSP/Raman label were constructed to select the ratios such that no label has SERS 

intensity dominance and completely overwhelm the rest. The selected mole fractions 

were 1:9, 1:5, and 1:3 for 4-NBT, 4-MeOBT, and 2-NT, respectively. Secondly, the 

home-built Teflon blotting tool used in Lopez et al. 2015 was replaced by a 48 well Bio-

blot apparatus to better concentrate the aggregated particles in a smaller spot to obtain 

stronger and more repeatable signals. Multiple samples were able to be filtered 

simultaneously to save more time and labor. However, in the attempts to replicate the 
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experiment, variations of signal from time to time were relatively large. The source of 

errors is not clear and therefore under further investigation. 

Outlook and Future Work 

To date, lateral flow assays still remain as the mainstream POC diagnostic 

platform for influenza virus detection but having the deficiencies of sensitivity and 

multiplexing. Great efforts from the scientific community have been devoted to address 

limitations of lateral flow assays. The utilization of nanoparticles as substrates in SERS-

based homogeneous immunoassays has proven to pave the way for more advancement in 

POC diagnostic development. SERS-based homogeneous immunoassays potentially 

become an alternative for LFAs. It has been demonstrated in a recent study by the Jiang 

group 54 the capability of SERS-based homogeneous IAs to simultaneously detect three 

proteins with high sensitivity (namely 0.5 pM). The findings obtained from their research 

study will be applied to the continuing work of the Driskell group. Their work mainly 

focused on the synthetic strategies for the extrinsic labels. Antibody fragments are 

utilized in place of whole antibody molecules. The interparticle gaps between aggregated 

particles are anticipated to significantly decrease and therefore strongly elevate the SERS 

enhancement. The half antibody fragments are produced by the reduction of the whole 

antibodies by a mild reducing reagent, TCEP (tris(2-carboxyethyl) phosphine). TCEP 

breaks apart disulfide bonds that hold together two halves of the Y-shaped antibody. The 

thiol groups after cleaving are available for the covalent attachment of the half fragment 

to the gold surface. This will lead to the elimination of using DTSSP as a cross-linker in 

the protocol since half antibody fragments can be covalently conjugated to AuNP via 

direct adsorption. This approach is promising to more properly orient the antigen 
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binding-site and subsequently enhance the interaction of the ERLs to antigen. Better 

control over binding site orientation also would improve the reproducibility of the SERS 

immunoassay. 

The new strategy of assembling ERLs, if successful with the antibodies we have 

in our lab, can be applied to our design for multiplexed assays. ERLs can be prepared by 

decorating AuNPs with TCEP-reduced antibody fragment. Raman labels will be mixed 

with DTSSP at the selected ratios and then added to the particle suspension. Herein 

DTSSP will only serve as a controlling factor for relative intensity of the Raman labels 

not as a cross-linker. Furthermore, more effort will be paid to the design and optimization 

of filtration apparatus to obtain a setup that can be incorporated to SERS hand-held 

devices.  
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