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 Investment in life history traits such as immune function and reproduction 

is constrained by finite available resources. A cost-of-immunity trade-off may occur in 

response to infection when resources are diverted away from reproductive effort and into 

an immune response. Alternatively, an infected individual may enhance reproductive 

effort to maximize terminal reproductive success in response to the survival threat 

inherent to infection (terminal investment). We measured male Aedes aegypti 

reproductive behavior following inoculations with: living bacteria; killed bacteria as an 

immune elicitor; and a sham control. Mating competitiveness relative to naïve males was 

also determined through a binary mate choice experiment using wild-type and eye-color 

mutant populations to assess paternity. We found that male mating behaviors did not 

differ among immune challenge treatments, but immune challenged males had greater 

mating success relative   to naïve males, consistent with terminal investment. Though 

previous experiments using similar immune challenges in females show induction of 

immune responses, our treatments yielded no detectable effect in males based on two 

standard physiological immune assays. However, the eye-color mutants had high levels 



of immune function relative to the wild-type males. Male terminal investment has the 

potential to improve the success of sterile male release programs that rely on male mating 

performance to control mosquito populations. Increasing male sexual competitiveness 

after sterilization is an emerging topic within insect behavioral ecology, and illustrates 

the important role of evolutionary theory in contributing to the efficacy of these 

population control strategies for medically and economically important pests.
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CHAPTER I 

BACTERIALLY-BASED IMMUNE CHALLENGES AND  

TRAUMA ELICIT TERMINAL INVESTMENT IN  

MALE AEDES AEGYPTI 

Lay Summary 

On encountering an infectious pathogen, males should invest in immune defense, 

but if the infection is severe and signals impending death, invest in reproduction. When 

competing against unchallenged males, male yellow-fever mosquitoes receiving an 

immune challenge, signaling a survival threat, had higher mating success than control 

males, supporting the latter prediction. Infection-enhanced mating success may be 

valuable for mosquito control strategies based on releasing sterile, yet sexually 

competitive males. 

Abstract 

Investment in life history traits such as immune function and reproduction is constrained 

by finite available resources. A cost-of-immunity trade-off may occur in response to 

infection when resources are diverted away from reproductive effort and into an immune 

response upregulation. Alternatively, an infected individual may enhance reproductive 

effort to maximize terminal reproductive success in response to the survival threat 



2 

 

inherent to infection (terminal investment). We measured male Aedes aegypti 

reproductive behavior following inoculations with: living bacteria; killed bacteria as an 

immune elicitor; and a sham control. Mating competitiveness relative to naïve males was 

also determined through a binary mate choice experiment using wild-type and eye-color 

mutant populations to assess paternity. We found that male mating behaviors did not 

differ among immune challenge treatments, but immune challenged males had greater 

mating success relative to naïve males, consistent with terminal investment. Though 

previous experiments using similar immune challenges in females show induction of 

immune responses, our treatments yielded no detectable effect in males based on two 

standard physiological immune assays. However, the eye-color mutants had higher levels 

of immune function relative to the wild-type males. Male terminal investment has the 

potential to improve the success of sterile male release programs that rely on male mating 

performance to control mosquito populations. Increasing male sexual competitiveness 

after sterilization is an emerging topic within insect behavioral ecology, and illustrates 

the important role of evolutionary theory in contributing to the efficacy of these 

population control strategies for medically and economically important pests. 

Introduction 

Life history theory suggests that investment and allocation of resources to traits 

such as reproduction, growth and immune function all require investment of material 

resources, resulting in trade-offs among these traits that impact lifetime fitness of an 

individual (Sheldon and Verhulst 1996; Ahmed et al. 2002; Zuk and Stoehr 2002; Ahmed 

and Hurd 2006; Sadd et al. 2006). For insects that are no longer growing after adult 
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eclosion, two key life history traits are reproduction and pathogen resistance, often 

equated with immune investment. Finite resources dictate a coupling between these life 

history traits, which will frequently manifest in reduced reproductive effort upon 

infection due to investment into costly immunity. However, if the perceived threat to 

survival imposed by pathogen infection is large terminal investment into current 

reproduction is an alternative outcome.   

Upregulating immune defense is costly (Sheldon and Verhulst 1996; Hosken 

2001; Ahmed et al. 2002; Ahmed and Hurd 2006; Sadd and Schmid-Hempel 2009), and 

though defense against or elimination of an infection has obvious advantages, the high 

cost may result in restriction of resources that can be invested in reproduction (Sheldon 

and Verhulst 1996; Hurd 2001; Zuk and Stoehr 2002; Jacot et al. 2004; Ahmed and Hurd 

2006; Lawniczak et al. 2007; Contreras-Garduño et al. 2009; Kerr et al. 2010; Nystrand 

and Dowling 2014). For males, courtship (Marden and Cobb 2004; Kerr et al. 2010), 

mate guarding (Low 2006), male-male interactions (Marden and Cobb 2004), 

territoriality (Contreras-Garduño et al. 2009), sperm quantity and quality (Simmons 2012; 

McNamara et al. 2013) and investment in substances that manipulate female post 

copulatory behavior (Perry et al. 2013) may all be compromised upon infection. Some of 

these results can be explained by virulence, with infection altering physiological 

functions through tissue damage or nutrient deficiencies (Harrison et al. 2001), or 

resources the pathogen appropriates from the host that the host requires for vigorous 

physical activity and endurance, metabolism, and mobility necessary for male courting 

and sexual signals (Schall 1982; Munger and Karasov 1989; Marden and Cobb 2004). 
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Perhaps even more interesting is the observation that simple immune challenges 

consisting of killed pathogens or benign immune elicitors can cause a decrease in 

courting quality and quantity in males (Jacot et al. 2004; Kerr et al. 2010), suggesting that 

costs of immunity are central to this response. The negative relationship between immune 

defense and current reproduction may manifest itself through the reallocation of 

resources, which would otherwise be used for reproduction, into fighting an infection, 

and thus, enabling that individual to achieve greater lifetime fitness by increasing their 

longevity and future reproduction (Jacot et al. 2004; Contreras-Garduño et al. 2009). This 

forms the basis of the Cost-of-Immunity Hypothesis.  

As an alternative to the Cost-of-Immunity Hypothesis, the Terminal Investment 

Hypothesis postulates that in response to the survival threat represented by a pathogenic 

infection, an individual may enhance resource allocation to current reproduction to 

compensate for the potential loss of future reproduction events (Clutton-Brock 1984; 

Sadd et al. 2006; Kivleniece et al. 2010). This enhanced allocation to current 

reproduction comes at a cost: reduced immune function, reduced future reproduction, and 

possibly decreased longevity (Kivleniece et al. 2010). However, if longevity is reduced 

due to infection, lifetime fitness of terminal investing individuals will exceed that of 

infected individuals that do not shift investment to accelerate reproduction. The 

phenomenon of terminal investment has been described in numerous invertebrate taxa, 

including the decorated cricket (Kerr et al. 2010), mealworm beetle (Sadd et al. 2006), 

burying beetle (Creighton et al. 2009), and cotton bollworm (McNamara et al. 2013).  
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Exploiting plasticity in life-history traits by manipulating males into increasing 

reproduction could be of practical use for insect control methods that rely on the success 

of male mating behavior. Reproductive success of male mosquitoes is central to several 

population control strategies in which males are mass released into wild populations, 

mate with wild females, and produce inviable eggs or offspring (e.g., sterile insect 

technique via radiation sterilization (SIT); release of insects carrying a dominant lethal 

allele (RIDL)) (Alphey et al. 2010; Oliva et al. 2013; Pérez-Staples et al. 2013). These 

males must be behaviorally competent to compete for mates: they necessarily must 

locate, court, and mate with females to produce inviable offspring required for the 

success of these programs (Alphey et al. 2010; 2013; Pérez-Staples et al. 2013). Sterile 

release strategies have had limited success (Benedict and Robinson 2003), in part due to 

the poor performance of males after sterilization (Lopez-Martinez and Hahn 2012), and 

in part because females may avoid mating with released males (Alphey et al. 2013), 

though this possibility has not been empirically tested. We know that radiation 

sterilization reduces male fruit fly flight performance, female attraction, and mating 

success (Nestel et al. 2007; Lopez-Martinez and Hahn 2012) and similar trends are 

apparent in sterilized mosquitoes. Sterile Aedes males inseminate fewer females relative 

to wild type males, and are unable to replenish sperm supplies after depletion (Oliva et al. 

2013), and mating ability declines with increasing irradiation dose when males are 

sterilized as pupae (Helinski et al. 2006). For a more detailed review of the mating 

failures of sterile male release strategies, see Pérez-Staples et al. (2013). 
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Manipulating male fruit flies to increase sexual performance has been achieved 

via anoxic conditioning (Lopez-Martinez and Hahn 2012) and semiochemical and 

hormonal dietary supplements (for a review see Pereira et al. 2013). Despite the potential 

benefits of improving sexual performance for sterile male release programs, attempts to 

enhance mating success of males via application of evolutionary life-history theory, such 

as the terminal investment hypothesis, are nonexistent. 

In this study, we tested the reproductive responses of male Aedes aegypti to actual 

or simulated bacterial infection as a means of distinguishing the alternative hypotheses of 

cost-of-immunity or terminal investment. We inoculated males with living Escherichia 

coli, heat-killed E. coli, or sterile saline. This latter group was a sham control for 

integument injury because injection through integument alone represents physiological 

trauma, and can induce immune upregulation (Korner and Schmid-Hempel 2004; Wigby 

et al. 2008). Based on our hypotheses, we predicted that challenged males will either: (1) 

shift investment of resources away from reproduction and towards immunity, which in 

turn predicts that challenged males will have decreased frequency and duration of mating 

behaviors, and decreased probability of mating relative to naïve  males (Cost-of-

Immunity Hypothesis); or (2) increase reproductive effort, which in turn predicts an 

increased frequency and duration of mating behaviors, and a higher probability of mating 

relative to naïve males (Terminal Investment Hypothesis). The purpose of this paper is 

to report a test of these alternative hypotheses using male Aedes aegypti, a medically and 

economically important vector of dengue, chikingunya, and yellow-fever viruses. Ahmed 

et al. (2002) report decreased reproductive output of female Anopheles gambiae 
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following immune stimulation, and similar findings are reported in malaria infected 

females (Ahmed and Hurd 2006), providing evidence for the Cost-of-Immunity 

Hypothesis. While the Terminal Investment Hypothesis has never been directly 

demonstrated in mosquitoes, Ponlawat and Harrington (2007) found that older male A. 

aegypti have higher reproductive success relative to young males, suggesting support of 

the terminal investment hypothesis when the survival threat is increased age rather than a 

pathogenic infection. 

Methods 

To determine how immune challenge treatments alter frequency and duration of 

mating behaviors, immune challenged (see below) or naïve males were paired with 

females in behavioral assays and video recorded to quantify behaviors that are necessary 

for mating: approaching and mounting females, copulation, and time spent flying, as 

mating is typically initiated in swarms (Roth 1948; Williams and Berger 1980). To 

determine success of immune challenged males in competition for mates with naïve 

males, immune challenged and naïve males were paired in binary mating trials with a 

single female, and the “winner” of those trials was determined based on phenotypes of 

resulting offspring. To determine the role, if any, of altered immune function in this 

system we assayed phenoloxidase activity (PO) to assess investment into the 

melanization response and the humoral antimicrobial activity through zone of inhibition 

assays. In other insect systems, phenoloxidase activity is associated with encapsulation 

and is an indicator of an organism’s capacity to resist pathogens (Wilson et al. 2001; 

Rantala and Roff 2007), but it’s titers return to baseline levels within 12-24 hours post 
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immune challenge (Korner and Schmid-Hempel 2004). In contrast, measurable induction 

of humoral antimicrobial activity, including action of antimicrobial peptides (AMPs) 

such as cecropin that provides a strong defense against gram-negative bacteria in Diptera, 

can persist for several days (Vernick 1997) or weeks (Korner and Schmid-Hempel 2004; 

Schmid-Hempel 2005).  

Mosquito Husbandry 

First instar wild-type New Orleans, LA, USA (NOLA, several generations in the 

laboratory) and mutant (recessive KHW white eyed mutant; MRA-730-CDC, obtained 

through the MR4 BEI Resources Repository, NIAID, NIH) Aedes aegypti larvae (n = 

100) were raised at 28°C, 60% relative humidity and 14:10 h light:dark photoperiod 

(hereafter “standard A. aegypti conditions”) in 1 L white polystyrene beakers containing 

300 mL of live oak (Quercus virginiana) infusion (105 g dry leaves in 3 L reverse 

osmosis (RO) water, and aged 5 days under standard A. aegypti conditions), 700 mL 

nanopure water, and 0.08 g lactalbumin, a larval diet supplement. Larvae were provided 

0.05 g and 0.02 g lactalbumin 5 and 7 days post larval addition, respectively. Pupae were 

collected daily and stored individually in screened vials (15 mL, 21x70 mm) to ensure 

virginity. Water was extracted from the vials once a day as adults eclosed. Females were 

provided ad libitum sucrose (1:20 sucrose:RO water on cotton pads, replenished every 

other day), whereas males were provided sucrose solution for the first 24 h post eclosion. 
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Immune Challenges 

At 24 h post eclosion, males were sucrose starved for 24 h (provided RO H2O on 

a cotton pad) in an effort to limit reserves prior to immune challenge, thus, increasing the 

probability of a trade-off between life history traits. Males were ice anesthetized in 

screened glass vials for 2-4 min and given one of three immune challenge treatments: 

living DH5α E. coli (Stratagene) suspended in sterile phosphate buffered saline, heat-

killed E. coli suspended in sterile PBS, or sterile PBS as a sham control. Populations of E. 

coli were grown overnight in liquid LB medium (37°C, 200 rpm, 7 h) and diluted to 109 

cells per mL (Murdock et al. 2013). The suspension was centrifuged (10000 rpm, 6 min), 

the supernatant replaced with sterile PBS and vortexed. This procedure was repeated 3x 

and the final pellet was re-suspended in PBS. A portion of this suspension was heat-killed 

on a heat block (90°C, 7 min) and stored at -80 °C. For treatments, a sterile pulled 

capillary tube (50 µL, 100 cm) was dipped into solutions representing each of the 

immune challenge solutions then used to puncture lateral thoracic membrane between the 

paratergite and sternopleuron sclerites of anesthetized males. Additionally, naïve control 

males were cold anesthetized, positioned laterally on a stereoscope and then returned to 

the glass vial. Bacterial solutions were used for a maximum of 1 h post preparation due to 

the increasing probability of cell death via osmosis. Samples of the living and heat-killed 

E. coli and sterile PBS were plated on 1.5% LB agar and incubated at 37°C overnight to 

ensure growth of living E. coli solutions, and no growth of heat-killed E. coli and PBS 

solutions. Males were returned to the glass vial, housed at standard A. aegypti conditions 

and provided 5% sucrose solution for 36 h post inoculation, followed by a 12-20 h liquid 
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starvation. All males had a minimum 48 h post-inoculation recovery period, a time period 

sufficient to resume normal behavior and flight capability (Helinski et al. 2012). Wing 

length of each male in mating trials was recorded as a measure of overall size 

(Christophers 1960).  

Mating Trials 

Behavioral Assay 

Mating trials were conducted using NOLA males that were 12-20 h liquid starved, and 

NOLA females that were 0-2 days younger than the male in that mating trial. Males were 

placed into (diameter x height = 8.5x8.5 cm) paper cups with a ~2 cm diameter hole in 

the side of for mosquito transfer, a mesh bottom, and a 15x15 cm Plexiglas® top 

(=”arenas”), and allowed to acclimate for 1 h in an observation room (27°C, 20% relative 

humidity, 15.5:8.5 light:dark photoperiod). Females acclimated for 1 h in screened glass 

vials, then were transferred to the arena through the hole in the side. To provide the pair 

additional mating cues, three arenas and cameras were secured with Velcro® onto a 

plastic cutting board and transferred to a large wood and plastic screened cage (60 cm3 

cage, with a 60x20 cm sleeve-covered hole in the front bottom face for mosquito transfer) 

containing a colony of NOLA A. aegypti that were allowed to swarm, to produce 

aggregation pheromones, and to mate. Males will swarm near hosts to attract females 

(Cator et al. 2011; Helinski and Harrington 2012), and male and female mating behavior 

is stimulated by host cues such as carboxylic acid found in human foot odors (Owino et 

al. 2014, 2015). Therefore, we added to the colony cage 2 socks that had been worn the 
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day before and stored in a plastic bag to stimulate swarming and sexual behavior. Aedes 

aegypti mating is also stimulated after they take flight (Christophers 1960), and can be 

induced by continually disturbing mosquito cages (Williams and Berger 1980). 

Therefore, we placed a 56 cm table-top tower fan (Wexford®, low speed/oscillation) 

behind the colony cage to provide air movement to disturb the colony and to promote 

flight activity.  

Behavioral assays were recorded for 1 h using time-lapse photography (1 frame 

per 2 sec) on GoPro Hero 3 (Woodman Labs Inc. ©) cameras (Schumacher et al, in 

review). After the trial, males were aspirated into screened glass vials, whereas females 

were aspirated into white 1 L polyethylene containers (height x diameter: 114x119 mm) 

where they remained for 1-6 days post mating trial, until we dissected them to determine 

if there were sperm in their spermathecae (Benedict 2014), and to confirm male mating 

success. We provided males and females 5% ad libitum sucrose, and recorded survival 

every other day and every 4 days for males and females, respectively. The first 1200 

frames after female entrance into the arena were used for behavioral data collection. We 

scored observable behaviors necessary for mating for each male: number of frames 

flying; number of frames mounting/grasping a female; number of approaches to a female; 

latency to approach a female; latency to mating, and mating success, which was scored 

when the male and female took ventral, face-to-face position with physical contact of 

genitalia (Roth 1948; Helinski and Harrington 2012). Success or failure of mating was 

cross-checked via determining presence or absence of sperm in the female’s spermatheca.  
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Binary Mating Trials 

Binary mating choice trials between a single immune challenged male (either 

inoculated with living E. coli, heat-killed E. coli, or sterile PBS) and a naïve control male 

were run to determine if immune challenged males can compete successfully for access 

to females relative to naïve males. Because video resolution was not sufficient to 

distinguish the two males while in flight, behavior was not quantified in binary trials. 

Instead, we determined mating success by determining the phenotypes of resulting larval 

offspring. Males in the binary mating trials were from the lines mentioned above: white-

eyed mutants and wild-type NOLA, whereas females were exclusively white-eyed 

mutants. The mutant phenotype is observable in first-instar larva and is determined by a 

single recessive allele inherited with 100% penetrance (Bhalla 1968). Thus, offspring 

from a white-eyed females will either be wild-type or white-eyed mutant if the male sire 

is wild-type or white-eyed, respectively (Bhalla 1968; Clements 1992, Figure 1.1). To 

ensure no bias due to an innate preference of females for male phenotype, we alternated 

the assignment of immune challenge treatments or naïve controls across trials (i.e., males 

were: immune challenged=white-eyed mutant vs. naïve control=wild-type or immune 

challenged=wild-type vs. naïve control=white-eyed). 

NOLA and mutant A. aegypti males and females were reared as described above 

in separate replicate containers. After liquid starvation, a single white-eyed female, along 

with a naïve control and an immune challenged male (either inoculated with living E. 

coli, heat-killed E. coli, or sterile PBS) were transferred into the screened polyethylene 

mating arenas (described above) which was secured to a ~15x15 cm sheet of clear 
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Plexiglas®. We housed arenas in standard A. aegypti conditions, provided ad libitum 5% 

sucrose solution, and recorded survival daily. Mating trials lasted 4 days unless a 

mosquito died, in which case the entire trial was removed from the paternity assays but 

remained in survival assays. Males were aspirated into 15 mL vials, whereas females 

remained in mating arenas. We offered all males and females ad libitum 5% sucrose and 

recorded survival every other day and every 4 days for males and females, respectively.  

Females were offered a blood meal from an anesthetized mouse (IACUC protocol 

#01-2013) upon termination of the mating trial. Females that did not blood feed were 

offered up to two additional blood meals on subsequent days, and those that did not blood 

feed after three feeding attempts were eliminated from the study. Two-to-four days post 

blood meal, gravid females were provided a black polystyrene beaker (50 mL) lined with 

seed germination paper and filled with 35 mL of 4:3 x water:oak infusion (described 

above), for oviposition. Beakers were replaced after 7 days, and eggs allowed to 

embryonate in A. aegypti conditions for 7 days, then dried and hatched in nutrient broth 

(0.4 g per L RO water). Number of eggs laid was recorded as a measure of female 

fecundity. First instar larvae were scored for white-eyed or wild-type phenotype using a 

stereoscope, determining the sire of the offspring, and thus the “winner” of male binary 

choice mating trials. 

Measures of Male Immunity 

Subsamples of males from each inoculation treatment were randomly selected 

after 12 h liquid starvation period (the same period used in mating trials) and frozen and 
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stored in a 1.5 mL screw top Eppendorf® tubes at -80°C for future immune assays. 

Phenoloxidase Assay  

Melanization is a humoral, non-specific immune defense against a range of 

pathogens that are encapsulated by hemocytes and melanized, a process that depends on 

the activation of phenoloxidase (PO) (Schmid-Hempel 2005; Cerenius et al. 2008; Nunn 

et al. 2009). Pro-phenoloxidase is quickly activated in the hemolymph upon wounding or 

infection (Hosken 2001) and the speed at which it is converted can be measured using a 

spectrophotometric assay (Kohlmeier et al. 2015). 

Mosquitoes were homogenized (Bead Ruptor 12®) for 30 s with a 2.4 mm bead 

and 50 µL PBS on high (5 m/s). Homogenates were centrifuged (3000 rpm, 4°C, 5 min) 

and 35 µL of supernatant was snap frozen in liquid nitrogen and stored at -80°C. We 

thawed samples on ice and added 15 µL of the unknown sample or 15 µL PBS as a 

control to flat-bottomed 96-well plates containing 20 µL PBS and 140 µL RO water, and 

mixed by pipetting. We then added 20 µL of RO water saturated with L-Dopa (4 mg per 

mL H20; 3,4 dihyroxyl L-phenyla) to each well, and the solutions were shaken for 5 s at 

30°C in a spectrophotometer (Multiskan GO®, Thermal Scientific). Active PO activity 

(measured by the slope of the reaction curve in its linear phase) was determined by 

measuring absorbance (490 nm) every 15 s for 160 readings with a spectrophotometer. 

Duplicate plates were measured for each sample to obtain at least one successful reading, 

or to determine the mean of 2 successful readings. 
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Zone of Inhibition 

In insects, AMPs are produced several hours after infection or injury (Hosken 

2001) and are an important mode of defense against various microbes (Nystrand and 

Dowling 2014). Antibacterial activity, including the action of AMPs, can be quantified 

by plating samples on bacteria seeded agar and measuring the diameter of zones around 

the samples with inhibited growth following incubation (Ahmed et al. 2002).  

We homogenized individual mosquitoes (Bead Ruptor 12®) on high (5 m/s) for 

30 s in a 1.5 mL screw-top Eppendorf® tube containing a 2.4 mm bead and 25 µL of 

Anticoagulant II (Mead et al. 1986). We centrifuged the homogenates (10000 rpm, 4°C, 5 

min) and transferred 10 µL of supernatant to a new Eppendorf® tube, snap froze samples 

in liquid nitrogen and stored them at -80°C. 

A single colony of Arthrobacteur globiformus (DSM No. 20124, DSZM 

Braunschweig, Germany) was grown overnight in liquid LB medium in a shaking 

incubator (30°C, 250 rpm). A 1% LB agar (pH 7.2-7.5) was prepared, autoclaved, and 

cooled in a water bath (45°C, 45 min). Once cooled, we mixed A. globiformus into the 

agar so that the final concentration was 105 cells/mL, and distributed evenly 7 mL onto 

sterile 10 cm petri plates and allowed them to cool. Sample wells (10 per plate) were 

stamped out using a sterilized Pasteur Pipette (150 mm, Volac #D810), and 2 µL of the 

prepared sample was added to each well with 2 µL of Anticoagulant II (negative control). 

A positive control of 2 µL tetracycline (0.004 mg per mL) was added to a well on a 

separate plate prepared simultaneously. After 20 min, plates were inverted and incubated 
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at 30°C for 18 h. Due to a low resolution of zones of inhibition from the mosquitoes, we 

could not accurately measure zone diameters; hence we recorded data as presence or 

absence of a zone for each sample. 

Statistical Analyses 

All statistical analyses were performed in SAS 9.3 (SAS Institute Inc. 2011). 

Male Survival 

We analyzed effects of immune challenge on male survival using a proportional 

hazard survival analysis (PROC PHREG). Longevity was censored for males that were 

assayed for immune function, and for males that were accidentally killed. To ensure that 

the outcome of the mating trials did not depend on males of a particular treatment or 

phenotype dying during the mating trials, an additional proportional hazards survival 

analysis (PROC PHREG) was performed on age at death over the first 8 days, with any 

male that lived beyond the mating trial termination (i.e., day 8 post adult eclosion) 

counted as censored.  

Behavioral Assay 

For proportion of observations a male spent flying and mounting, the data did not 

meet assumptions of normality and homogeneity of variances even after several 

transformations and use of a Poisson distribution of errors. Instead, we analyzed the 

number of frames flying and mounting a female, along with the number of approaches to 

a female with a mixed effects ANOVA (PROC GLIMMIX) with a zero inflated Poisson 
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distribution (Leisnham et al. 2014) and a log link function. Our sampling unit for video 

trials was 1200 frames, though some trials contained slightly fewer frames. Trials were 

not considered if they contained 1180 frames or less (1.67 % deviation from our target 

sampling unit), which removed 9 trials from the data set because of camera battery 

failure. Trials that contained between 1180-1199 frames occurred due to accidental 

deletion of a few frames from the ends of trials. Due to fluorescent light failure in 2 

mating trials, light status (fluorescent or incandescent) was tested as a main effect in the 

models. Light status improved Akaike Information Criterion (AICc) in the analysis of 

number of frames flying, but not in the analysis of number of frames a male spent 

mounting a female, the number of approaches to a female, mating success, or latencies to 

approach or to mate. Random effects of mating trial, larval rearing block, order in which 

cameras starting recording, day of adult eclosion, and sock status were tested in each 

model, and none of these improved AICc; hence they were excluded.  

We analyzed latency to approach a female or to a mating event with a survival 

analysis (PROC PHREG) to generate hazard ratios, and performed pairwise contrasts of 

immune challenge treatments. Those that did not approach or mate with a female were 

recorded as censored observations (latency = 2360-2400 s depending on total number of 

frames). 

To determine if immune challenge treatment affected mating, we used mixed-

effects ANOVA (PROC GLIMMIX) with a logit link function, where mating success 

was recorded as a binary variable (yes or no). We were interested in four specific 

hypotheses that we tested using contrasts among treatment groups (Table 1.1). We follow 
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Rosenthall and Rosnow (1985) and focus on contrasts regardless of whether or not the 

overall ANOVA yielded a P < 0.05. First we tested whether inoculation differed from 

naïve (Table 1.1; punctured vs. none). Second, we tested whether inoculation with 

bacteria (living or heat-killed) differed from sterile inoculation (Table 1.1; sterile vs. 

bacterial puncture). Third, we tested whether inoculation with living bacteria differed 

from inoculation with dead bacteria (Table 1.1; living vs. heat-killed). These 3 contrasts 

were orthogonal; we also tested one non-orthogonal contrast, testing whether sterile 

inoculation differed from naïve (Table 1.1; sterile vs. none). We corrected for multiple 

comparisons using the false discovery rate (FDR; Waite and Campbell 2006). The 

random effects listed above again did not improve AICc, and they were excluded from 

the model. Mating success was cross-referenced with female spermatheca dissection data, 

and mating is only considered successful if a female was inseminated. There were 4 

mating trials where mating status=no, but the female’s spermatheca contained sperm. 

Because copulation was not observed in the videos, we infer that copulation occurred 

after the trial ended but before the male and female were separated. We elected to regard 

them as unmated because we did not see mating in the time allotted in the video 

recording. 

Binary Mate Choice Trials 

We analyzed the binary mate choice trials using a mixed effects ANOVA (PROC 

GLIMMIX) with the male immune challenge treatment and phenotype as main effects 

and sire status (binary variable: yes or no) as the categorical dependent variable with 

binomial error and a logit link function. Mating trial was included as a random effect to 



19 

 

account for the linked responses for the two males in a trial. We used the same 

orthogonal and non-orthogonal contrasts (described above) to test four specific 

hypotheses, and corrected for multiple comparisons using the false discovery rate (Table 

1.1). To determine if males affected female fecundity, a random effects ANOVA (PROC 

MIXED) was performed on number of eggs laid by the female with treatment and 

phenotype as main effects, and mosquito rearing block as a random effect. 

Measures of Male Immunity 

To determine if male treatment or phenotype affected PO activity, the rate of PO 

activity increase (Vmax) was calculated as the slope of the reaction curve at its linear 

phase (Kohlmeier et al. 2015). We log10 transformed and analyzed this variable using a 

mixed effects ANOVA (PROC MIXED) with male treatment and phenotype as main 

effects and larval rearing blocks as a random effect. Other random effects (e.g., 96-well 

plate block, adult eclosion cohort) were tested but removed from the model as they did 

not improve AICc. To determine if male immune challenge treatment or phenotype 

affected presence of measureable antimicrobial activity, a mixed effects ANOVA (PROC 

GLIMMIX) with a logit link function was performed including larval rearing block and 

different batches of agar as random variables. The interaction of male 

treatment*phenotype was tested, but removed from the model as it was not significant 

and did not improve the model AICc. To investigate further the difference between naïve 

control males and those that received an immune challenge, we tested a contrast of naïve 

control males versus the three immune challenged groups (inoculated with living E. coli, 

heat-killed E. coli or sterile PBS) for both immune assays. 
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Mosquito Size 

We had wing measurements only for individuals that died young (n = 50/112 and 

n = 59/160 males for behavioral analyses and binary mate choice experiments, 

respectively). During lab rearing, wings become damaged and unmeasurable with 

increased age at death. To test whether wing length as a covariate had statistically 

important effects, we analyzed these smaller data sets (i.e., only males that had 

measureable wings) with and without the covariate wing length. Models without wing 

length always yielded better AICc. Thus, we elected to disregard wing length, and used 

the entire data set for all analyses reported. 

Results 

Survival 

Eighty percent of inoculated males lived beyond the end of the binary mate choice 

trials (i.e., 8 days post adult eclosion). Immune challenge treatment did not affect overall 

survival (Wald 2
3
 = 3.5805, P = 0.3105), or survival during the first 8 days post adult 

eclosion, which constitutes the critical period for the mating trials (Wald 2
3

 = 6.4419, P 

= 0.0920). Phenotype affected overall survival, with white-eyed mutants having a greater 

hazard of death than wild-type males (Wald 2
1 = 40.0017, P = <0.0001), but did not 

similarly affect survival during the first 8 days post adult eclosion (Wald 2
1 = 2.0172, P 

= 0.1555). There was a marginally non-significant interaction of treatment*phenotype in 

the first 8 days post adult eclosion (Wald 2
3
 = 7.6128, P = 0.0547), but this effect was 

not significant when total survival was considered (Wald 2
3 =3.0414, P = 0.3853). As 
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expected, we found a significant larval rearing block effect when overall survival was 

considered (Wald 2
18 =60.5523, P = < 0.001), but this did not affect survival during the 

first 8 days post eclosion (Wald 2
18 =22.9741, P = 0.1916). 

Behavioral Assay 

Out of 103 males, only 4 did not fly in the 40 min. Immune challenge treatment 

did not affect the flight of males (F3,97 = 0.97, P = 0.409). Trials under fluorescent vs. 

incandescent lights yielded significantly different frequencies of flight (ANOVA, F2,97 = 

7.40, P = 0.001) with male flying greater under incandescent light. Male immune 

challenge treatment affected neither the number of frames spent mounting a female 

(ANOVA, F3,99 = 0.81, P = 0.3974) nor the number of times approaching a female 

(ANOVA, F3,86 = 0.80, P =0.4945). 

Out of 103 males that were video recorded and assessed for mating behaviors, 39 

males approached females, and 15 successfully mated (censored observations 64 and 88 

respectively). Male immune challenge treatments did not affect latency to approach 

(Wald 2
3 = 3.212, P =0.36) or to mate with a female (Wald 2

3 = 3.292, P =0.3488). 

Immune challenge treatment also did not affect overall mating success (ANOVA, F3,99 = 

1.15, P =0.3346), and orthogonal and non-orthogonal contrasts indicated no significant 

differences in mating success between: males punctured vs. not punctured (i.e., living E. 

coli + heat-killed E. coli + sham vs. naïve); males inoculated with E. coli (living or heat-

killed) vs. sterile PBS; males inoculated with living vs. heat-killed E. coli; and males 

inoculated with sterile PBS vs. naïve males (Table 1.1). 
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Binary Mate Trials 

A total of 92 mating trials produced offspring enabling determination of the sire. 

Males from 12 of these mating trials were inoculated with PBS that had become 

contaminated with living E. coli (confirmed by negative control plates) and we elected to 

eliminate trials that contained these males. The control plates indicated no contamination 

of the living or heat-killed E. coli for that round of inoculations, so these trials were 

included in the analysis. These 80 trials included 30 males inoculated with living E. coli, 

33 males inoculated with heat-killed E. coli, and 17 males inoculated with sterile PBS, 

each paired with a naïve male (n = 80). Four females had offspring that were sired by 2 

males, and in these cases both males were considered “winners” of their mating trials.  

We found marginally non-significant effects of male immune challenge 

treatments on mating success (ANOVA, 2
3 = 7.05, P =0.0703). Contrasts indicated 

significantly greater mating success for punctured vs. not punctured (i.e., living E. coli + 

heat-killed E. coli + sham vs. naïve) males (Table 1.1, Figure 1.2b). There were no 

significant differences in success between males inoculated with E. coli (living or heat-

killed) vs. sterile PBS (Table 1.1, Figure 1.2b), and no difference between males 

inoculated with living vs. heat-killed E. coli (Table 1.1, Figure 1.2b).  There was a 

marginally non-significant difference in mating success between males inoculated with 

sterile PBS vs. naïve males (Table 1.1, Figure 1.2a). We found no significant effect of 

male phenotype on male mating success (ANOVA, 2
1 = 0.04, P = 0.8332), indicating 

that females in these trials had no innate preference for wild-type (n = 80) vs. mutant (n = 

80) males. We found no effect of male treatment (ANOVA, F1,64 = 0.83, P =0.3660), 
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phenotype (ANOVA, F3,64 = 0.83, P =0.4819), or their interaction (ANOVA, F3,64 = 0.77, 

P =0.5169) on female fecundity, indicating that reproductive success is largely 

determined by male ability to secure mates and to sire offspring, not male ability to 

manipulate females to lay more eggs.  

Measures of Male Immunity 

Phenoloxidase (PO) Activity 

We tested PO activity of n = 42, 30, 24, and 23 males from naïve control, living 

E. coli, heat-killed E. coli and sterile PBS groups, respectively. There was no significant 

treatment effect on PO activity (ANOVA, F3,110 = 1.60, P = 0.1939) and no significant 

difference between naïve control males vs. pooled immune challenged males (ANOVA, 

F1,110=0.01, P =0.9281). Mutants (n = 32) had greater PO activity than did wild-type 

males (n = 87) (ANOVA, F1, 110 = 12.73, P = 0.0005, Figure 1.3a) but there was no 

significant treatment*phenotype interaction effect on PO activity (ANOVA, F3,110 = 1.76, 

P = 0.1585).  

Antimicrobial Activity 

Of 82, only 8 male homogenates produced clear zones of inhibition, and we found 

no effect of immune challenge on presence vs. absence of a zone of inhibition (ANOVA, 

2
3 = 3.47, P = 0.325), and no significant difference between naïve control males vs. 

pooled immune challenged males (ANOVA, 2
1 = 0.00, P = 0.9957). Male phenotype 

had a marginally non-significant effect (ANOVA, 2
1
 = 3.48, P = 0.062), with mutant 
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males (n = 22) more frequently showing a zone of inhibition relative to wild type males 

(n = 60) (Figure 1.3b).  

Discussion 

We have demonstrated that males inoculated with different immune challenges 

(living E. coli, heat-killed E. coli or sterile PBS) have similar likelihood of successful 

mating in competition with naïve control males. When pooling these immune challenged 

males we find they are more likely to succeed in mating than competing naïve control 

males (Figure 1.2b). This result is, in some ways, opposite the trend observed among 

immune-challenged female mosquitoes. For example, Anopheles gambiae females show 

decreased reproductive output following inoculation with lipopolysaccharide (LPS) 

(Ahmed et al. 2002), or malaria (Ahmed and Hurd 2006). Thus, our data suggest males 

respond to potential immune challenges in a manner consistent with terminal investment, 

whereas past data of females suggest support for the cost-of-immunity hypothesis. 

We did not reach this same conclusion when analyzing the single male behavioral 

assays: immune challenged and naïve males had indistinguishable probabilities of 

acquiring a mate in the 40 minute assays, and mating behaviors were unaffected by 

immune challenge treatments. One interpretation of this discrepancy in the results of our 

experiment is that the lack of male competition in the single-male behavioral assays did 

not provide a sufficiently stringent test of which males are more successful in acquiring 

mates. It is perhaps possible that these males in the single-male trials did not have an 

adequate amount of time to mate relative to males in the longer binary mating experiment 
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(40 min vs. 4 days, respectively), though this seems unlikely, as A. aegypti copulation 

duration lasts an average of 10 s (Roth 1948, Ponlawat and Harrington 2009), and our 

behavioral assays show that some males start courting immediately upon introduction of 

the female. What is more probable is that males in the binary mating trials were prompted 

to mate when handled and disturbed daily to check for mortality. The additional 

disturbance over the 4 day trials likely prompted mating behaviors (Christophers 1960; 

Williams and Berger 1980) and though we provided a routine disturbance (i.e., oscillating 

fan) to males in the 40 minute behavioral assays, the binary trial males ultimately had 

more time and opportunities to mate. Additionally, mate choosiness is predicated to be 

greater when the chance of encountering another potential mate is greater (e.g., lek, dense 

populations, and highly mobile species) (Johnstone et al. 1996). Males and females in the 

behavioral assays may perceive more sexual signals relative to those in the binary mating 

trials (i.e., sexual signals of many conspecifics swarming in the cage vs. sexual signals of 

only two conspecifics, respectively). Females in the video behavioral assays may 

perceive a benefit by waiting for other potentially high quality males to court her, while 

females in the binary mating trials may mate with one of the two males in the trial 

because they detect no chance of encountering another male. 

The interpretation that the three inoculation treatments were comparable in their 

effects on mating is supported by the immune assays that we performed. We found no 

differences in male immune responses, (active PO assay, zone of inhibition) even when 

the pooled immune challenged males were compared to naïve males. Further, we 

observed no treatment effect on male survival, which is the same result that has been 
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observed in LPS-injected female Anopheles stephensi (Ahmed et al. 2002). An infected 

individual may buffer against early mortality if resource competition between life history 

traits is balanced in a way to maximize its fitness (i.e., increased longevity, decreased 

reproduction) (Hurd 2001; Ahmed et al. 2002), therefore longevity may not be a good 

indicator of immune function. It is possible that our concentration of 109 living or heat-

killed E. coli per mL was insufficient to elicit an immune response, but previous 

experiments using a concentration of 109 E. coli cells per mL induced upregulated AMPs 

in Anopheles stephensi females (Murdock et al. 2013), and interestingly, a concentration 

lower by an order of magnitude (108 E. coli cells per mL) was successful at inducing 

cecropin production in female A. aegypti (JA Breaux, dissertation). Given that males are 

the smaller sex in the case of A. aegypti, with mean male dry mass about 75% that of 

females (Wormington and Juliano 2014), we considered a concentration of 109 E. coli 

cells per mL sufficient, and perhaps extreme, to elicit an immune response. One 

explanation for detectable immune responses in female but not male A. aegypti is that 

males and females experience different costs and benefits of any given immune strategy. 

Males maximize fitness through frequent matings, whereas females do so via increased 

longevity or fecundity (Bateman 1948; Rolff 2001; Schmid-Hempel 2005). For example, 

in mosquitoes, it is necessary for a female to live long enough to mate, to search for 

blood meals, to synthesize eggs, and to locate oviposition substrates to complete a single 

gonotrophic cycle. Thus females are predicted to gain greater benefits from immune 

investment. Further, as vectors of blood-borne pathogens, female mosquitoes have a 

greater probability of exposure to parasites and pathogens during blood feeding, which 
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we postulate would select for high sex-specific investment into immunity (Rolff 2002; 

Nunn et al. 2009). Male mosquitoes do not blood feed, and sexual dimorphism in PO 

activity is evident in other insect taxa (Rolff 2001; for a meta-analysis see Nunn et al. 

2009), thus, sexually dimorphic investment into immune defenses is also expected in 

mosquitoes.   

Given their smaller size, males may exhibit reduced baseline levels of 

antimicrobial activity, rendering the immune assays ineffective if they do not have the 

resolution to detect such low levels. Nystrand and Dowling (2014) found weak AMP 

signals in male Drosophila melanogaster when injected with LPS, and it has been 

suggested that large effects of inoculations via integument piercing on immunity make it 

difficult to discern differences among groups in immune traits (Wigby et al. 2008; see 

below). Additionally, our mosquitoes were reared under favorable conditions as larvae, 

and kept in benign conditions as adults. Immune challenges are often more pronounced 

when reared under stressful or nutrient limited conditions (Rolff et al. 2004; Nystrand and 

Dowling 2014), and this should be considered in future immune studies on male 

mosquitoes. We assayed immunity at 48 h post-immune challenge, as this corresponded 

to the initiation of mating trials, and it is likely that PO activity had by this time declined 

back to pre-inoculation levels. Though antimicrobial activity and AMP titers can persist 

for days or weeks after immune challenge (Vernick 1997; Korner and Schmid-Hempel 

2004), only 8 of our homogenates produced any zones of inhibition, rendering this assay 

limited in its ability to generate strong conclusions. 
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Immune assay resolution did not result in inability to detect differences in 

immune responses between mutant and wild-type males. We found a marginally non-

significant difference in antimicrobial activity between mutant and wild-type NOLA 

males, though few homogenates produced zones of inhibition. We found a highly 

significant difference in PO activity between male phenotypes, indicating that the KHW 

white-eye mutant males have greater immune responses than do the wild-type NOLA 

males (Figure 1.3). The mutant males have a long history of laboratory-based inbreeding, 

as the colony was first established in 1965 (Bhalla 1968), whereas the NOLA males have 

been lab reared for 12-18 months. Surprisingly, previous studies show that inbreeding has 

no effect on immune defense in invertebrates (Stevens et al. 1997; Gerloff et al. 2003; 

Calleri et al. 2006; Rantala and Roff 2006), and adverse inbreeding effects may be 

dampened if deleterious mutations have been purged from family lines (Schmid-Hempel 

2005). Selection would favor differential investment into immunity if the populations 

have different histories of parasite exposure. Because we only have two lines, it cannot be 

determined if this wild-type population is investing less into immunity, or alternatively, if 

the mutant population is heavily investing into immunity, relative to any other 

population.  

As we measured two immune responses at one time point, and not total immune 

investment, we cannot draw strong conclusions about whether males diverted resources 

to or away from immune defense. To verify this, responses to consecutive immune 

challenges must be evaluated on the same individual to understand how immune 

responses vary throughout their lifetime (Ryder 2007). Such measurements of sequential 
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immune investment are attainable in larger vertebrate and invertebrate species, in which a 

non-destructive blood or hemolymph sample is obtained for the immune assays; however, 

such measurements are impossible in mosquitoes, as our measurements of immune 

function are destructive (i.e., require entire homogenates). For animals like mosquitoes, a 

snapshot of several immune parameters is the best measurement of immune function 

(Adamo 2004), but absence of effects at one time-point do not exclude differences at 

other time-points or in other parameters. 

In studies where insects are subjected to immune stimulations (e.g., heat-killed 

bacteria or LPS), sham-controls are often administered to account for the difference 

between immune stimulation and the trauma inflicted by the antigen administration. 

Though animals that receive sham inoculations are often considered “un-stimulated”, 

integument piercing and wounding may have substantial effects on immune responses 

(Wigby et al. 2008; Adamo 2010), especially in small insects. First, the insect cuticle 

surface is home to abundant opportunistic bacteria that enter the epithelium and 

hemolymph during wounding or piercing (Brey et al. 1993). Second, cellular and 

humoral immune responses are activated in the cuticular epithelium upon wounding or 

integument piercing. The wound must be healed to prevent further hemolymph loss, 

hence hemocytes are recruited and PO is activated for defense against invading pathogens 

and for melanization for cuticle scherlotization (Ashida and Brey 1998; Siva-Jothy et al. 

2005). Further, AMP expression is upregulated after integument piercing (Wigby et al. 

2008). Stress hormones such as the neurohormone octopamine are also released upon 

immune challenge and are hypothesized to facilitate the energy release that is required for 
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enhanced immune function (Adamo and Parsons 2006; Adamo 2010). Similar 

physiological responses (i.e., upregulated levels of the stress hormone corticosterone) 

induce terminal investment in female house wrens (Bowers et al. 2015). It is possible that 

stress hormones, or the combination of immune responses and stress hormones, serve as a 

signal for a short life in insects. Sham punctures do not affect octopamine levels in 

crickets (Gryllus texensis) (Adamo 2010), indicating that a puncture alone does not 

trigger a stress response. We know nothing about the relationship between puncture 

wounding and octopamine levels in mosquitoes, and we cannot assume that mosquitoes’ 

responses would be similar to those of crickets. Given that mosquitoes are considerably 

smaller than crickets, mosquitoes would likely perceive a puncture as a greater survival 

threat relative to crickets.  

Our immune assays did not detect differences between immune challenged and 

naïve males (perhaps because of low assay resolution or low immune investment in 

males). However, the mosquitoes treated with immune challenges responded differently 

than did naïve controls. We found evidence of terminal investment following an 

integument puncture delivering living bacteria, heat-killed bacteria, or sterile PBS. Given 

that our living bacterial challenge was non-pathogenic, and that integument piercing 

might eclipse minor differences in immune responses (Wigby et al. 2008), we may not 

expect strong differences among our immune challenge treatments as all three were 

delivered via integument piercing. If all three of our immune challenge treatments were 

perceived the same way (i.e., indicating low probability of surviving trauma), then the 

males would likely behave similarly in all immune challenge treatments, which is what 
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we observe. This result may be interpreted as indicating that terminal investment is 

provoked in our mosquitoes by the damage inflicted by physical trauma, over and above 

the cue from live bacteria or immune stimulation by heat-killed bacteria. If the response 

to physical trauma alone is costly and diverts a large supply of resources towards immune 

defense and cuticle repair, in turn acting as a signal for impending death, terminal 

investment may be the optimal strategy for maximizing lifetime fitness of a male 

mosquito subjected to such trauma.  

The greater mating success of punctured males in male-male competition with 

naïve males (Figure 1.2) may prove valuable as a potential means to enhance mating 

success of sterile males in efforts to control mosquito populations via sterile-male release 

or RIDL (release of insects with a dominant lethal allele). Treating males in ways that 

artificially increase male mating competitiveness (e.g., inducing trauma) after 

sterilization could improve the efficiency of these control programs. Further 

investigations of terminal investment in males should include: First, identification of the 

physiological mechanisms leading to terminal investment and greater mating success in 

males that have received a puncture. Second, tests of terminal investment for males that 

have been sterilized or carry the RIDL genes, as there could be an interaction between the 

immune challenge or trauma and the sterilization process. Third, a more efficient method 

of challenging or traumatizing male mosquitoes would be needed for any use in mass 

release control programs, as manually inoculating the many males used in such programs 

is impractical. The current strategy to overcome decreased sexual competitiveness in 

sterile males is to release sufficient numbers so that they numerically outcompete the 
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wild population of males (Alphey et al. 2010), but this approach is neither cost nor time 

effective. Additionally, the high ratio of male:female mosquitoes will have negative 

effects on male competition (Pérez-Staples et al. 2013), where the more dense the male 

population, the more likely copulation is interrupted (Ponlawat and Harrington 2009; 

Helinski and Harrington 2012) and multiple insemination will occur (Ponlawat and 

Harrington 2009). Because manipulating male sexual competitiveness is becoming an 

increasingly popular topic for such control programs (Lopez-Martinez and Hahn 2012; 

Pereira et al. 2013; Pérez-Staples et al. 2013; Segoli et al. 2014), tests of basic behavioral 

and evolutionary theory to understand the mechanisms provoking terminal investment 

should be a priority for medically and economically important insects. 
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TABLE 

Table 1.1. Multiple Contrasts of Behavioral Assays and Binary Mate Trials. Orthogonal 

and non-orthogonal1 contrasts test the effects of puncture and living or heat-killed 

bacteria inoculation on the probability of obtaining a mate in the male behavioral assay 

and binary mating trials. Multiple comparisons were corrected with the false discovery 

rate (FDR). Comparisons are significant if the uncorrected P < Critical P (FDR), and 

denoted by bold type and an asterisk. 

 

 

 

    Behavioral Assay  Binary Mating Trials 

Contrast Hypothesis P critical   2
1 P uncorrected  2

1 P uncorrected 

Naïve vs. 

living E. 

coli + heat-

killed E. 

coli + sham 

The effect of 

puncture vs. 

none 

0.0125 

 

0.47 0.4934 

 

6.90 0.0086* 

1Naïve vs. 

sham 

The effect of 

sterile 

puncture vs. 

none 

0.025 

 

1.17 0.2801 

 

4.18 0.0408 

Sham vs. 

heat-killed 

E. coli + 

living E. 

coli 

The effect of 

bacteria (live 

or heat-killed) 

vs. sterile 

inoculation 

0.0375 

 

0.86 0.353 

 

0.59 0.4433 

Living E. 

coli vs. 

heat-killed 

E. coli 

The effect of 

living bacteria 

vs. dead 

bacteria 

0.05 

 

2.27 0.1321 

 

0.21 0.6455 
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FIGURES 

 

Figure 1.1. Inheritance of Wild-Type and White-Eyed Mutant Phenotypes. Phenotype is 

determined by a single recessive KHW mutant allele inherited with 100% penetrance 

(adapted from Clements 1995).  All females in binary mating trials express white eyes 

(ww), and can mate with either a wild-type (++) or white-eyed (ww) mutant male. 

Mating with the wild-type male will produce wild-type phenotype (w+) in 100% of her 

offspring, and mating with the white-eyed mutant will result in 100% of her offspring 

having white eyes (ww). Dark circles represent black eyed phenotypes, while white 

circles represent the white-eyed phenotype. 
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Figure 1.2. Proportion of Mating Trials Where a Male Successfully Sired Offspring. 

Least square mean ± SE proportion of the proportion mating trials where a male 

successfully sired offspring for immune challenge treatment groups. (a) Males inoculated 

with three different immune challenges display marginally non-significant trends of 

higher mating success relative to naïve control males (ANOVA, 2
3  = 7.05, P =0.0703). 

(b) When the immune challenged males are pooled into one category, they have 

significantly higher mating success relative to naïve control males (ANOVA, 2
1 = 6.90, 

P =0.0086). An asterisk between groups indicates a significant difference between 

immune challenged naïve controls, experimentwise α = 0.05. 
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Figure 1.3. Measures of Innate Immunity for Male Phenotype. Active PO and proportion 

of plates containing zones are reported as least square means ± SE. Within each panel, an 

asterisk indicates significantly different immune responses of mutant and wild-type 

males, experimentwise α = 0.05. (a) Mutant males had significantly (*) higher titers of 

active phenoloxidase relative to wild-type males (ANOVA, F1, 110 = 12.73, P = 0.0005). 

(b) Though marginally non-significant, mutant male homogenates produced more zones 

of inhibition relative to wild type male homogenates (ANOVA, 2
1 = 3.48, P = 0.062). 
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CHAPTER II 

QUANTIFYING SEXUAL PERFORMANCE IN YELLOW FEVER MOSQUITOES 

(DIPTERA: CULICIDAE) USING EXOGENOUS MATING CUES AND  

RAPID TIME LAPSE PHOTOGRAPHY 

Abstract 

Our understanding of mosquito mating behavior, though an important aspect of 

population management, is limited by a shortage of methods for quantifying individual 

mosquito sexual behavior. We describe the use of low cost digital cameras for behavioral 

assays that precisely measure rapid and frequent sexual behaviors of individual 

mosquitoes using time lapse video recording. These mating trials simulate natural 

breeding conditions in which mating cues such as pheromone emission and swarming 

behavior of conspecifics, as well as host cues are present and influence the mating 

behaviors in focal individuals. Such cues have been scarce or nonexistent in previous 

mosquito mating studies. We found that male Aedes aegypti mating behaviors are highly 

variable, and that few individuals succeed in obtaining mates, while most are 

unsuccessful despite the presence of some mating-related behavior. Approximately 95% 

of males yielded quantitative behavioral data, regardless of their ultimate mating success. 

We offer suggestions on improving this technique, as well as supplementary post hoc 

assays to get a comprehensive indication of male sexual competence.  
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Introduction 

Mosquito mating behavior is of potentially great medical and economic 

importance. Some current control strategies seek to reduce populations and disease 

transmission through the release or of modified mosquitoes, such as Sterile Insect 

Technique (SIT), Release of Insects with Dominant Lethal alleles (RIDL), and transgenic 

females with altered susceptibility to pathogens (Irvin et al. 2004; Helinski et al. 2006; 

Alphey et al. 2010; Oliva et al 2013). The success of these strategies depends on the 

sexual performance of the released males relative to wild males, or on receptivity of 

released females. Despite this, at least in SIT, radiation treatments hinder male 

reproductive success (Helinski et al. 2006; Oliva et al. 2013). If transgenic females suffer 

from low reproductive success due to lack of mating they will fail to become established 

in wild populations (Irvin et al. 2004). Consequently, detailed understanding of mating 

behavior can be vital for successful control (Helinski et al. 2006; Helinski et al. 2009; 

Bargielowski et al. 2011; 2013; Segoli et al. 2014). Beyond this practical consideration, 

the role of sexual selection in mosquito populations is a fundamentally interesting topic 

in its own right (Ponlawat and Harrington 2007; Ponlawat and Harrington 2009; Cator et 

al. 2009; Cator et al. 2011; Cator and Harrington 2011; Helinski and Harrington 2012; 

Helinski et al. 2012b) that merits further experimentation.  

Existing approaches to investigating mosquito mating behavior have distinct 

limitations. Audio recordings of wing beat frequencies only quantify one aspect of 
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reproductive investment, and quantifying this for many individuals simultaneously may 

be problematic for the audio software that detects harmonic frequencies (SK Sakaluk, 

personal communication). Visual surveillance of individuals yield low throughput data, 

and observing individuals in swarms is problematic due to the high risk of human error 

when following small, rapidly-moving focal individuals in swarms. In addition, it is 

difficult to induce mating in a short period of time in the controlled laboratory setting, 

perhaps because natural cues that mosquitoes would perceive in the field, such as 

pheromones, swarming conspecifics, and host cues that stimulate mating behavior, are 

absent (Cabrera and Jaffe 2007). The use of males with phenotypically obvious mutations 

that are expressed in their offspring, or the use of males with isotope or fluorescent 

labeled semen may be informative and practical if the principal objective of the study is 

to determine insemination success. This technique does not yield quantification of the 

differences in behavior between successful and unsuccessful males. 

The purpose of this paper is to describe methods for behavioral assays of mating 

behavior that were developed while studying terminal investment in Aedes aegypti 

(Schumacher et al 2015, in review). We describe behavioral mating assays that use low-

cost digital cameras to quantify behavior of focal individuals that receive exogenous 

mating cues from a swarm of individuals that help to stimulate mating behaviors. We 

used rapid time lapse video recording so that observations can be tallied rather than timed 

to obtain precise behavioral measurements of mating-related behaviors that are brief and 

numerous. These behaviors include several measurements of harassment and persistence, 

confirmation of copulation and insemination, as well as flying (a swarming behavior that 
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requires males that are capable of high levels of exertion). These behavioral assays 

provide high throughput data relative to visual surveillance methods, and are ideal for 

studies that aim to quantify and to compare general mating behaviors of individual 

mosquitoes or other swarming insects. 

Methods 

Study Organism 

We quantified the mating behaviors of Aedes aegypti. This species is easy to rear 

in the laboratory and willingly mates in small containers, but equally important, A. 

aegypti is a major disease vector that is often the target of SIT and RIDL population 

control because of its medical importance as a vector of dengue virus (Alphey et al. 2010; 

Alphey et al. 2013; Segoli et al. 2014). Mating behavior typically occurs in the presence 

of a blood-meal host. Males release aggregation pheromones in the presence of this host, 

attracting both females and males, creating a 3 dimensional lek in the form of a swarm 

(Cabrera and Jaffe 2007). Females enter the swarm where they are approached by one or 

more males, and it is common for several males to grasp a single female at once 

(Christophers 1960). Swarming is energetically expensive for a male (Yuval et al. 1994), 

and though it increases the probability of copulation, a swarm is not necessary for mating 

to occur (Oliva et al. 2014) and males will also attempt to mate with resting females 

(Christophers 1960). Male- female pair forming occurs when they acoustically match 

their wing beat frequencies, a potential mate choice mechanism known as harmonic 

convergence (Cator et al. 2009). Because of their relatively larger size and ability to 

decline harmonic convergence, females are ultimately the choosey sex and often reject 
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grasping males (Cabrera and Jaffe 2007; Ponlawat and Harrington 2009; Cator and 

Harrington 2011). Copulation and insemination lasts an average of only 10 seconds (Roth 

1948; Ponlawat and Harrington 2009), and males transfer accessory gland protein 

secretions in their ejaculate that act as a long-term post copulatory mating barrier, making 

females refractory to mating for one or more gonotrophic cycles, (Craig 1967; Lima-

Camara et al. 2013) while also increasing host seeking and oviposition behavior (Sirot et 

al. 2008; Ponlawat and Harrington 2009). Multiple matings are not necessary for females 

because a female can store sperm indefinitely in her 3 sperm storage organs 

(spermatheca), though multiple paternity does occur at low frequencies (10-15%) in 

Aedes (Boyer et al. 2012; Helinski and Harrington 2012). 

Animal Husbandry 

Mosquito larval environments are likely to influence the sexual competitiveness 

and mating behavior of male and female mosquitoes. Better fed and less crowded larval 

environments result in larger mosquitoes, and larger males have higher mating success 

(Ponlawat and Harrington 2009), possibly because of their ability to attract females 

through increased resource reserves that impact flight and courting ability. Larger 

females have higher reproductive success, and are better able to thwart males, though it is 

also possible that assortative mating based on size can influence male mating success 

(Cabrera and Jaffe 2007). A full description of our larval rearing environments was 

provided by Schumacher et al. (2015, in review).  

For controlled mating trials, it is critical to ensure adult virginity because of the 

lasting effects of accessory gland protein on females. To obtain adult virgins, larvae were 
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allowed to develop collectively in a 1 L plastic container, then separated after pupation 

into individual 15 mL glass vials (21 x 70 mm). Vials were covered with a fine mesh, 

secured with a rubber band and queued on a vial rack. Water was removed from the vials 

as adults eclosed, and a sucrose (1:5 sucrose:reverse osmosis water) dipped cotton roll 

was placed across vials, and remoistened every other day to prevent desiccation of cotton 

pads. Mosquitoes were housed in benign conditions (28°C, 60% relative humidity, 14:10 

h light:dark photoperiod) until ready for behavioral assays. Adult male mosquitoes are 

not physically prepared for reproduction until their terminal abdominal segments rotate 

180⁰, which may take 24-48 h after adult emergence (Roth 1948), though this time may 

vary among species. Females are capable of mating immediately after emergence, though 

newly emerged females are not as attractive to males relative to older females (Roth 

1948). Therefore, behavioral assays began after males and females were > 48 h old. 

Behavioral Assay Materials and Methods 

A colony cage containing several hundred A. aegypti was used to provide mating 

cues from swarming and pheromones to the focal males. The colony cage was a screened 

cube 60 cm on each side with a wooden frame and a 60 x 20 cm opening at the bottom 

front of the cage covered with a cloth sleeve for mosquito transfer (Figure 2.1). 

Mosquitoes were reared and maintained for this colony so that small groups from 1-2 

days of adult eclosion were added as cohorts on the days in which behavioral assays 

occurred. Thus, the colony always contained a new group of females to stimulate colony 

and focal male mating behavior. 
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Mating arenas were 300 mL Solo paper cups (CDC Janitor/Paper Supply catalog 

#410W height x diameter: 8.5 x 8.5 cm). A ~15 x 15 cm sheet of clear Plexiglas ® was 

taped to the opening of the cup to provide a clear view for video recording. The bottoms 

of the cups were replaced with fine (625 holes per square inch) mosquito mesh so that the 

mosquitoes in the cup were exposed to adequate airflow and auditory and pheromone 

cues from the colony during the mating trials, and to prevent condensation on the 

Plexiglas. A ~2 cm hole for mosquito transfer by aspiration was cut in the side of the cup 

and covered with tape. 

Individuals were acclimated to the environment in which they were tested prior to 

observation. Because males were the focal subject in our study, we acclimated single 

males in their respective mating arenas for 1 hr, whereas we acclimated females 

individually in the screened glass vials in which they had eclosed. The environment in 

which we recorded behavior was: 27 ⁰C, 20% relative humidity. Behavioral assays were 

staggered so that while the first group of three mating trials was video recorded, a second 

group of 3 mating trials was acclimating to the environment. 

We used Go Pro Hero ® 3 (Woodman Labs Inc. ©) cameras because they are 

known for their ability to connect to mobile devices via Wi-Fi for easy operating and 

monitoring, free editing software, lightweight and miniature size facilitating multiple 

cameras to fit in a small recording space, shock-and water-proof features, and affordable 

supplementary batteries. Other mountable time lapse digital cameras likely could be used. 

Our behavioral assays used 3 cameras simultaneously for video recording. Because 

camera and mating arena orientation must be precise, and focal mosquitoes may initiate 
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mating behaviors immediately upon introduction of the female, the cameras and mating 

arenas were afixed onto a 42 x 35 cm plastic “stage” using hook-and-loop fasteners prior 

to female introduction into the arena. With the 3 cameras and 3 arenas secured to the 

stage (Figure 2.1) and an acclimated male occupying each arena, we began recording, 

then added females to the arenas by holding the vial to the 2 cm opening and allowing the 

female to fly in. Once all three females were added to their respective arenas, the entire 

stage was transferred into the colony box (Figure 2.1) containing a swarm of mosquitoes 

(see supplementary video). Aedes aegypti copulation is often stimulated after they have 

been disturbed and take flight (Christophers 1960), and previous mating studies have 

been performed by disturbing cages to induce mating (Williams and Berger 1980). We 

provided a continuous, but gentle disturbance for the colony and focal males using an 

oscillating tower fan (Wexford®, low speed/oscillation) placed behind the colony box 

and facing the mesh-covered end of the arenas for the entirety of the behavioral assay. 

Because A. aegypti are attracted to carboxylic acids found in foot odors (Owino et al. 

2014; 2015), and males and females become sexually active when a host cue is present 

(Christophers 1960; Cabrera and Jaffe 2007), unwashed socks (worn the day before and 

sealed in a plastic bag) were placed in the colony box with the mating arenas (Figure 2.1) 

to stimulate host seeking and mating behaviors of males and females in the colony and 

arenas. 

Our behavioral assays were recorded for ~1 h, though exact timing depended on 

camera battery life and data storage. To avoid manually timing behaviors with a stop 

watch and to obtain the most accurate observations, videos were recorded with wide 
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angle time lapse photography (1 photograph every 2 sec) so that the exact number of 

frames per behavior could be quantified and converted to time (e.g., 10 frames flying x 2 

s per frame= 20 s flying). We chose a standard sampling unit for all mating trials, where 

the trials of the first 1200 frames (40 min) after the female entered the mating arena were 

observed for data collection. Several trials had slightly fewer frames (by < 20 frames, or 

40 s). Any videos that were fewer than < 1180 frames (e.g., due to battery failure) were 

not considered for quantifying behavior. 

Observable mating behaviors were quantified after all videos were recorded 

(Table 2.1). To be confident in our visual assessment of male mating success and female 

insemination (Figure 2.2), we dissected females and examined spermathecae under 100X 

oil immersion magnification to confirm presence of sperm (for a review of A. aegypti 

spermatheca dissection, see Benedict 2014) (Figure 2.3). Latency measurements were 

censored if that particular behavior did not occur in the 40 minute trial period and 

recorded as the maximal number of frames in the video (1180-1200 frames). Males and 

females were separated immediately following mating trial termination to decrease the 

probability of insemination after the time allotted for mating trials. Mating arenas were 

wiped down with 95% ethanol between uses in an effort to remove any chemical cues 

that may have been deposited during the trial. 

Results  

With the use of an extra battery for each camera, we were able to complete up to 5 

series of mating trials each day (15 trials total). Batteries had to be replaced after the first 

2 series of trials and recharged while other batteries were used. We video recorded 110 
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behavioral assays, though 9 assays were not considered because the standard sampling 

unit of 1180-1200 photographs was not obtained due to battery failure.  

Out of 103 behavioral assays that were considered, 99 trials included males that 

had flight activity. The time males devoted to flying during the trial period was highly 

variable (Table 2.1). Two different lighting regimes were used because of malfunction of 

room fluorescent lights for several days. During this time, we illuminated the room with 

an incandescent desk lamp, which increased the time males spent flying (ANOVA, F2,97 

=7.40, P = 0.0010), but did not affect any other measurement of sexual behavior.  

Of 103 trials, 40 involved males approaching females in an apparent attempt to 

mate. Among these males, mating attempts ranged from 1 to 9 times, and the amount of 

time these males spent harassing females was highly variable (Table 2.1). Measurements 

on latency to initial contact, or the male’s first approach to the female, were obtained for 

all trials. Of these, 40 males were uncensored, and the range of observed values was, 

again, broad (Table 2.1). 

Out of the 40 trials where males courted females, 15 males successfully mated at 

least once, and 2 males successfully mated (as determined by face-to-face orientation and 

clasping of genitalia, Figure 2.2) 2-3 times in a single trial. We recorded 4 mating trials 

where copulation was not visible, though sperm was present in the female’s spermathecae 

(Figure 2.3). All of the females in this study were virgins, and it is likely that disturbance 

of the arena at termination of the mating trial stimulated flying and mating (i.e., before 

the male and female were separated, but after video recording terminated). Because 

copulation was not observed in the time allotted for the behavioral assay, we did not 
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count these individuals as “mated” in our data set. Time to a successful mating event also 

varied considerably (Table 2.1). 

We found a significant random effect of block (i.e., temporally separated batches 

of larvae from individual larval rearing containers) in both latency to initial approach and 

latency to successful mating events (Wald 2 = 0.000, P = <0.0001), but this effect was 

not evident in any other sexual behavior.  

Discussion 

Mating behaviors from this study were highly variable, and sexual competence 

was likely influenced by factors other than artificial laboratory conditions. The males in 

our study were manipulated with four treatments for a separate study (Schumacher et al 

2015, in review), including inoculation via a puncture with: a living bacterium; heat-

killed bacteria as an immune stimulator; a sterile puncture (a sham control); and a naïve 

(unmanipulated) control. Energetically demanding behaviors such as flying and female 

harassment largely depend on resource reserves available to males. Nutritional reserves 

will be affected by the larval crowding and feeding regimen (Christophers 1960) and 

significant life history events, such as a pathogenic infection, that might divert resources 

away from reproduction and toward immunity (Sheldon and Verhulst 1996; Hurd 2001; 

Zuk and Stoehr 2002; Jacot et al. 2004; Ahmed and Hurd 2006; Lawniczak et al. 2007). 

The time of day at which behavioral trials were done may affect mating behaviors as 

well. For example, our behavioral assays were all performed mid-morning to late 

afternoon, though they may have been more successful if they occurred just after sunrise 
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or before sunset when A. aegypti are typically the most active (Hartberg 1971; Oliva et al. 

2014). 

Only ~4% of the males in our assays showed no observable sexual behavior, 

though approximately 15% of our total behavioral assays (or 38% of all males that 

approached females) resulted in a successful mating attempt. We did not expect the 

majority of males to mate successfully because: 1) Mating success is generally more 

variable for males than for females (Trivers 1972), 2) Female mosquitoes can be choosey, 

selecting only a small minority of sexually attractive males, leaving the majority of males 

unsuccessful at attracting females, 3) Females in these assays were exposed to sexual 

signals from many conspecifics, which would predict a higher degree of choosiness if the 

chance of encountering a higher quality male is high (Johnstone et al. 1995), and 4) 

Predation risk is high in mosquito swarms (Yuval and Bouskila 1993), and females may 

benefit by waiting to mate with the most attractive male, storing his sperm indefinitely, 

and forgoing future mating opportunities (Yuval and Fritz 1994). Few males within 

mosquito populations mate several times, and many males may never mate (for a review, 

see Yuval et al. 1993). This pattern was evident in our mating trials: many males grasped 

females multiple times (40 trials) though only 38% of the males that attempted to mate 

were eventually accepted by a female. In addition, several males were able to mate with a 

single female 2-3 times, though we do not know the extent of sperm and accessory gland 

protein transfer within each of these successful matings beyond the fact that females 

stored sperm from at least one of these matings.  
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Supplementary information could be added to behavioral assays to achieve better 

measures of male sexual behavior without hindering the video assays. Post hoc assays 

could be performed after behavioral trials, such as spermatheca (Ponlawat and Harrington 

2009) or testes (Ponlawat and Harrington 2007) sperm counts, degree of female 

refractoriness influenced by male accessory gland proteins (Helinski et al. 2012a), and 

sperm depletion rates (Radhakrishnan et al. 2009). Male and female size can be important 

in sexual behavior, though we were unable to test for this in our data set. To obtain 

longevity data that were necessary for our study, we allowed male and female mosquitoes 

to live until they died naturally, and because their wings become damaged and 

unmeasurable with age, we only had wing length data for those that died young 

(approximately 48% of the data set). Because we reared our mosquitoes in favorable 

conditions, size did not vary substantially (mean ± SD = 2.03 ± 0.07 mm), and as a result 

of low wing length variation, we found that wing length did not improve our statistical 

model, as determined by Akaike information criterion (AICc) in SAS 9.3. We thus 

omitted wing length in our analysis, though we suggest that in future studies mosquitoes 

be killed and measured immediately after behavioral trials (especially if wing length is 

potentially variable, as is the case for crowded or otherwise stressful larval environments) 

or obtaining some other measure of size (e.g., dry mass). 

Our behavioral assays were designed for A. aegypti, a vector mosquito that has 

very simple rearing requirements in the laboratory.  These methods could be readily 

adapted for other Aedes mosquitoes such as Aedes albopictus, or other insects with 

similar mating biology and behavior (i.e., mating in swarms or other leks involving 
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aggregation pheromones: e.g., midges, black flies, robber flies, dance flies, mayflies, and 

ants; for a more complete list see Downes (1969) and Sullivan (1981)). We believe these 

video techniques could be adapted to suit species that are more difficult to rear, or have 

different mating cues and behaviors. Though we measured male mating success, females 

could be scored for similar behaviors, such as whether she immediately accepts the initial 

mating attempt, how many mating attempts she experiences before she accepts a mate, 

and whether or not she instigates the mating attempt. Given the considerable amount of 

research on mosquito mating behavior and the relatively few attempts to quantify 

individual male behavior, the approach we took using multiple, small, digital cameras 

and replicate mating arenas housed within a larger swarm cage should prove useful. The 

ability to quantify sexual behavior in these males is vital for understanding and 

improving male sexual performance, in the context of release modified males (SIT, 

RIDL) for mosquito control. 
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TABLE 

Table 2.1. Male Aedes aegypti Mating Behaviors. Mating behaviors were quantified 

using rapid time lapse behavioral assays. Within behavioral assays, individual frames 

were tallied and converted to time. The percentage of males (total n = 103) that 

performed a given behavior is reported as performance. Mean ± SD and range was 

calculated among males that performed the behavior 

Male behavior Performance (%) Measurement (unit) Mean ± SD Range 

Swarming/Flying 96.11 Time spent flying (s) 72.67 ± 

102.92 

2-690 

Harassment/ 

Persistence 

 

38.83 Times male 

approaches female 

(number) 

2.55 ±  

2.18 

1-9 

  Time spent grasping 

/ in physical contact 

with female (s) 

75.3 ± 

63.89 

2-274 

  Latency to first 

approach event (s) 

325.65 ± 

420.80 

2-1472 

Successful 

mating 

14.56 Face-to-face 

orientation and 

physical contact of 

genitalia (yes/no) 

- - 

  Latency to 

successful mating 

event (s) 

582.13 ± 

659.32 
12-2084 
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FIGURES 

 

Figure 2.1. Materials and Methods of Behavioral Assays. Mating trials in a 60 cm3 cage 

containing a colony of mosquitoes, a tower fan and a pair of socks to stimulate mating 

behaviors (left). Three mating arenas and 3 cameras secured with hook-and-loop 

fasteners to a plastic cutting board for ease of transfer to the colony cage (right). 
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Figure 2.2. Observable Behaviors of Male and Female A. aegypti. Males approach 

females and harass them through persistent physical contact, though may not successfully 

mate (left). In successful mating attempts, males and females are oriented face-to-face, 

and their genitalia are in physical contact for sperm transfer (right). 
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Figure 2.3. Inseminated and Un-inseminated Spermathecae. Females were dissected and 

described as inseminated (left) or un-inseminated. Photographs were taken under 100X 

oil immersion compound microscope. 
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