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 Baptisia alba macrophylla, a native, herbaceous perennial legume, produces 

inflorescences with a large number of flowers, yet matures relatively few fruits.  I 

hypothesized that the number of seeds matured by B. alba macrophylla is maximized 

based on resource availability at each stage of development, but this optimal number is 

further compromised by extrinsic factors including pollen limitation and pre-dispersal 

seed predation by the weevils Apion rostrum and Tychius sordidus.  To test this 

hypothesis, I conducted a field experiment at the John English Prairie, located in NW 

Hudson, IL, and also the Sugar Grove Nature Center and Funks Grove, located in SW 

McLean County, IL.  Whole ramets were randomly assigned to one of two fertilizer 

treatments (no fertilizer, application of a granular fertilizer prior to first flowering and 

again post-flowering) and one of two seed predation treatments (no insect barrier, 

application of Tanglefoot® insect barrier).  Individual flowers were then assigned to one 

of two pollination treatments (open pollination, open pollination supplemented with hand 

pollinated outcrossing) in an alternating manner.   

 At Sugar Grove Nature Center and Funks Grove, flowers that were supplemented 



 
 

with hand pollination initiated significantly more fruits per flower than flowers that were 

not supplemented with hand pollination, but this did not translate to increased fruit 

maturation or an increased number of seeds matured per fruit.  Nutrient treatment did not 

have significant effects on fruit initiation, fruit maturation, or seed maturation at this site.  

Application of Tanglefoot® significantly increased the number of initiated fruits that 

reached maturity.  Likewise, plants treated with Tanglefoot® matured significantly more 

seeds per fruit than control plants.  Further, although pollen supplementation significantly 

increased fruit initiation, predation treatment was the only treatment that had a significant 

effect on the number of initiated fruits that matured and the number of seeds matured per 

fruit.  When the data were analyzed by ramet, rather than individual flowers or fruits, 

Tanglefoot®-treated ramets matured more fruits per ramet and more seeds per ramet than 

control ramets at this site. 

 At the John English Prairie, flowers that were supplemented with hand pollination 

initiated significantly more fruits per flower than flowers that were not supplemented 

with hand pollination, but neither nutrient treatment nor predation treatment affected fruit 

initiation at this site.  There were no significant effects of nutrient treatment, pollination 

treatment, or predation treatment on fruit maturation at the John English Prairie.  No 

statistical analysis was conducted on the number of seeds matured per fruit at this site 

because all but three fruits experienced complete reproductive failure (=zero seeds) due 

to pre-dispersal seed predation by T. sordidus.  Further, it can be concluded that pre-

dispersal seed predation has an overwhelming and devastating effect on seed maturation 

in this population. 



 
 

 I conclude that reproductive output of B. alba macrophylla is serially adjusted 

during offspring development, but there is no data indicating that this adjustment is 

caused by nutrient availability at each stage.  Pollen supplementation increased fruit 

initiation at both sites, but these populations are not pollen limited because this effect did 

not translate to increased fruit maturation or an increased number of seeds per fruit.  Pre-

dispersal seed predation by weevils severely reduced the number of fruits matured per 

initiated fruit, the number of seeds matured per fruit, the number of fruits matured per 

ramet, and the number of seeds matured per ramet.  Further, this study indicates that seed 

predation is a driving force shaping reproduction of this native legume, but neither 

nutrient limitation nor pollen limitation are limiting reproductive output in these 

populations of B. alba macrophylla.   
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CHAPTER I 

 

INTRODUCTION 

Limitations to Reproductive Output—Much research has been devoted to 

understanding what limits reproduction in flowering plants (Stephenson, 1981; Burd, 

1994).  Although the maximum number of fruits and seeds that can be produced by a 

plant is ideally limited by the number of female flowers and the number of ovules, 

respectively, a number of other factors can reduce the number of fruits and seeds that 

ultimately mature (Stephenson, 1981).  These factors include, but are not limited to, fruit 

and seed predation (Boucher and Sork, 1979; Haddock and Chaplin, 1982; Mundahl, 

2014), limited resource availability (Willson and Price, 1980), limited pollination and/or 

poor ovule fertilization (Piña et al., 2007), and can reduce fruit and seed maturation via 

flower and/or fruit abortion. 

Many angiosperm species produce far greater numbers of flowers than 

fruits, and thus experience high levels of flower and/or fruit abortion (Willson and Price, 

1977; Stephenson, 1979; Stephenson, 1981; Bawa and Webb, 1984; Montalvo and 

Ackerman, 1987), and Stephenson (1981) reports that these species are exceptionally 

diverse in both taxonomy and ecology.  Investing nutrients in the production of a flower 

or fruit that is later aborted might seem like an unproductive strategy yet, as Darwin 

(1876) states, "...when we behold our orchard-trees covered with a white sheet of bloom 

in the spring, we should not falsely accuse nature of wasteful expenditure, though 
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comparatively little fruit is produced in the autumn."  Hypotheses explaining the 

production of excess flowers, i.e., those that do not yield fruit, are numerous and include 

the following: these flowers are not in excess and instead they are produced for the male 

function of pollen dispersal (Willson and Price, 1977); the production of excess flowers is 

a strategy to attract pollinators (Stephenson, 1979); the production of excess reproductive 

units is a strategy that allows the plant some selection among offspring (Lloyd, 1980; 

Kozlowski and Stearns, 1989); and lastly, excess flowers can provide insurance against 

losses (Darwin, 1876; Groeneveld et al., 2010).   

 According to Lloyd's (1980) serial adjustment hypothesis, levels of 

maternal investment change throughout various stages of offspring development in a way 

that maximizes maternal fitness.  At each developmental stage, a plant must resolve 

whether the continuity of resources into a given reproductive unit will maximize its 

maternal fitness and will then either continue or terminate investment into that unit.  

Using internal cues, such as the number of seeds in a fruit, and external cues, such as 

resource availability and pre-dispersal seed predation, a plant can adaptively and 

selectively abort offspring (Meyer et al., 2014), thus allowing the plant to invest in fruits 

with the greatest potential to survive and contribute viable seeds to the next generation.  

The following sections outline how pollen limitation, nutrient limitation, and pre-

dispersal seed predation can limit reproduction, with specific reference to potential 

effects on reproductive output of Baptisia alba (L.) Vent. var. macrophylla (Larisey) 

Isely (Fabales: Fabaceae). 

 Pollen Limitation—Pollen limitation is a phenomenon that results in fewer 

fruits and/or seeds than could be produced if sufficient or higher quality pollen was 
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received (Ashman et al., 2004; Knight et al., 2005), thus compromising reproductive 

output.  In their recent review of pollen supplementation experiments, Knight et al.  

(2005) report that 63% of the 482 records (1 record=1 population for a single year) were 

pollen limited in terms of fruit set, suggesting that pollen limitation is, in fact, a 

widespread occurrence in angiosperm species.  Similarly, Burd (1994), using published 

data on 258 angiosperm species, found that 62% of the species were pollen limited at 

some time or site during experimentation.  The high frequency of pollen limitation 

reported in angiosperm species is not surprising given that many generalist pollinators, 

notably several Bombus species (Hymenoptera: Apidae), have experienced precipitous 

declines in both abundance and geographic range in recent years (Cameron et al., 2011).  

Approximately 87.5% of all angiosperm species rely on animals for pollination (Ollerton 

et al., 2011), and these animal-pollinated species are at further risk of pollen limitation 

when found in low densities (Amarasekare, 2004).   

 Pollen limitation can be caused by a number of factors including 

insufficient visits by pollinators, insufficient pollen availability, unsuccessful pollen 

transfer, poor pollen-tube survival and/or zygote death (Harder and Aizen, 2010).  In 

pollen-limited populations, various adaptations can reduce fitness losses caused by pollen 

limitation.  For example, a number of strategies can increase visits by pollinators, 

including increased floral lifespan which can increase attractiveness to pollinators 

(Ashman, 2004) and increased plant size (Valido et al., 2002).  Large plants are often 

preferentially visited by pollinators compared with smaller neighboring plants (Valido et 

al., 2002), which is not surprising given that increased floral density can increase visits 

by pollinators seeking to reduce energetic costs of searching (Hegland and Boeke, 2006; 
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Seifan et al., 2014).  Additionally, adaptations that minimize interspecific pollen transfer, 

and thus encourage intraspecific pollen transfer, can ensure that available pollen is 

successfully transferred to appropriate flowers (Harder and Aizen, 2010).  For example, 

pollinators of B. alba macrophylla move from basal, pollen-receiving flowers to distal, 

pollen-donating flowers two and a half times more frequently than in the reverse 

direction (Haddock and Chaplin, 1982).  Pollinators that move distally on the racemes of 

B. alba macrophylla are rewarded by the increased nectar contained within the basal, 

pistillate-phase flowers, a mechanism that enhances outcrossing (Haddock and Chaplin, 

1982).  Further, if B. alba macrophylla is pollen limited, high floral density and the 

spatial arrangement of flowers may increase visits by pollinators and may encourage 

outcrossing, respectively. 

 Nutrient Limitation—While the number of female flowers should ideally 

limit the number of fruits produced by a plant, maternal resources often determine the 

ultimate number of flowers that set fruit (Stephenson, 1981), as demonstrated by 

experiments in which levels of fruit set are much smaller than the number of female 

flowers even when all female flowers are appropriately pollinated (Stephenson, 1979).   

 Given that maternal resources are often finite, the probability that an 

individual reproductive unit will acquire sufficient nutrients depends on the number of 

reproductive units already initiated (Stephenson, 1981).  Seeds within developing fruits 

produce growth hormones that draw limited maternal resources into developing fruits 

(Biale, 1978).  As resources are allocated to early-setting fruits, the total amount of 

available resources decreases, thus decreasing the probability that later-setting fruits will 

acquire sufficient nutrients for maturation.  Interestingly, when early-setting fruits are 
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artificially removed, rates of abortion in later-setting fruits decrease, demonstrating that 

fruits do compete for limited resources (Tamas et al., 1979).  Additionally, fertilizer 

application can decrease fruit abortion by increasing the availability of nutrients for fruit 

maturation (Willson and Price, 1980; Shi et al., 2010).  When fruits are unable to acquire 

sufficient nutrients for growth via hormonal signaling, the quantity of growth hormones 

produced by the seeds decreases, and the fruits begin to release growth inhibitors (Tamas 

et al., 1979), thus prompting the abscission of juvenile fruits.  This clearly demonstrates 

that fruit abortion can result from limited maternal resources.   

 A threshold exists in which maturation of a fruit with few seeds is 

disadvantageous because the amount of resources invested exceeds the reproductive 

potential of that investment (Stephenson, 1981; Bertin, 1982).  When fruits with few 

seeds are aborted, resources that would have been invested in the continued maturation of 

these fruits can instead be allocated to fruits containing more seeds or to future 

reproduction and/or vegetative growth (Stephenson, 1981).  Thus, fruit abortion may be 

an adaptive mechanism which ensures that the maximum number of offspring reach 

independence through the reallocation of limited maternal resources (Lloyd, 1980).   

Pre-dispersal Seed Predation—Pre-dispersal seed predation can result in 

selective fruit abortion in which aborted fruits are more frequently occupied by seed 

predators than are non-damaged fruits (Fernandes and Whitham, 1989).  Selective 

abortion of damaged fruits is advantageous because it allows a plant to cease resource 

investment in fruits that have few or no seeds that will reach maturation, and it can 

increase larval mortality of destructive seed predators (Fernandes and Whitham, 1989), 

thus minimizing future seed predation.   
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 When predation pressure is high, various traits can decrease fitness losses 

caused by pre-dispersal seed predation, including the production of less showy, or 

smaller, inflorescences (Molau et al., 1989), the production of deterrent chemicals 

(Guimarães et al., 2003), and even the adoption of off-peak flowering phenologies to 

escape predation (Albrectsen, 2000).  B. alba macrophylla exhibits several traits 

consistent with selection by seed predators.  For example, B. alba macrophylla produces 

defensive alkaloids (Gibbons et al., 1990), but despite these compounds, insects, 

including Apion rostrum Say (Coleoptera: Apionidae) and Tychius sordidus LeConte 

(Coleoptera: Curculionidae), are known to cause significant damage to the developing 

seeds (Haddock and Chaplin, 1982).   

 Individuals can also escape seed predation as a result of their location 

relative to other individuals.  In a study by Haddock and Chaplin (1982), 49 of the mere 

52 seeds produced by B. alba macrophylla at a single site in 1978 were produced by a 

single, hidden plant in thickets.  Although a plant's location is not a response to predation 

pressure by weevils, it can minimize losses caused by seed predation in some cases.  

Seeds produced by hidden plants may be of special importance for populations 

experiencing significant losses in seed yield, but the significance of these plants requires 

additional research (Haddock and Chaplin, 1982).   

  Objective and Hypotheses—B. alba macrophylla, commonly named 

white wild indigo, is an herbaceous perennial legume that produces large inflorescences, 

yet matures a limited number of fruits and seeds (Petersen and Sleboda, 1994).  High 

levels of flower and fruit abortion make B. alba macrophylla an ideal model species for 

testing hypotheses regarding the reproductive ecology of angiosperm species. 
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  The objective of this one-year field study was to identify proximate factors 

that limit reproductive output of B. alba macrophylla.  Specifically, I postulated that the 

number of seeds in which B. alba macrophylla invests is serially adjusted based on 

resource availability at each stage of development, but that the final number matured is 

further compromised by extrinsic factors.  I tested the following hypotheses:  

1. Pollen limitation constrains reproductive output of B. alba macrophylla.  I 

predicted that pollen supplementation would increase the number of fruits 

initiated, the number of fruits matured, and the number of seeds matured.   

2. Nutrient availability limits reproductive output of B. alba macrophylla.  I 

predicted that addition of fertilizer would increase the number of fruits initiated, 

the number of fruits matured, and the number of seeds matured. 

3. Pre-dispersal seed predation by Apion rostrum and Tychius sordidus further limits 

reproductive output of B. alba macrophylla.  I predicted that application of an 

insect barrier would increase the number of fruits and seeds matured.   

 Baptisia alba macrophylla—B. alba macrophylla is native to the central 

and southeastern United States where it is found growing in prairies, woods, open fields, 

and along floodplains and roadsides (Woods and Diamond, 2014).  B. alba macrophylla 

leaves are trifoliate with each leaflet being up to 2-6 cm long (Woods and Diamond, 

2014).  The shoots of B. alba macrophylla, sometimes called white false indigo, often 

have a dark purple tint.  Native Americans used this species as a substitute for the true 

indigo (Indigofera) when creating indigo dyes, as suggested by the aforementioned 

common name (Missouri Botanical Gardens, n.d.).  These shoots, which resemble 
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asparagus (Asparagus officinalis) when emerging from the soil, can yield up to 14 erect 

racemes per ramet (Petersen and Sleboda, 1994).  The number of flowers produced per 

raceme varies tremendously among raceme, ramet, and site.  In the present study, primary 

racemes produced an average of 53.21 + 41.02 flowers (averaged across site), and 

secondary racemes produced an average of 22.66 + 17.86 flowers (averaged across site).   

 Flowering phenology varies substantially within this species.  In central 

Illinois, early emerging shoots can flower as early as May, but late emerging shoots can 

flower well into August (pers. obs.).  Petersen et al. (2010a) report that early flowering 

plants have a longer flowering period and a greater number of racemes per ramet than 

later flowering plants in northeastern Illinois.  The inflorescences of B. alba macrophylla 

are indeterminate racemes whose youngest flowers are in the staminate phase and are 

distal to the older flowers in the pistillate phase (Haddock and Chaplin, 1982).  The 

inflorescences of B. alba macrophylla can produce a myriad of flowers; in fact, a single 

plant can yield more than 500 flowers in a single season (pers. obs.).  If pollination and 

fertilization are successful, each flower can yield an inflated fruit ranging 2 to 5 cm in 

length (Woods and Diamond, 2014), each of which has the potential to produce between 

30 and 38 seeds (Petersen and Sleboda, 1994).   

 Interactions of B. alba macrophylla with Other Organisms—

Reproductive success of angiosperm species, including B. alba macrophylla, is 

dependent on mutualistic relationships with pollinators but is constrained by antagonistic 

relationships with herbivores and pre-dispersal seed predators (Horn and Hanula, 2004).  

The following section will examine the numerous interspecific relationships of B. alba 
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macrophylla that have both direct and indirect effects on the reproductive output of B. 

alba macrophylla.   

 Bombus fervidus, B. bimaculatus, B. pennsylvanicus and B. nevadiensis 

auricomis are known pollinators of B. alba macrophylla (Haddock and Chaplin, 1982; 

Petersen and Sleboda, 1994; Petersen, 1996), but other organisms, including a single 

Ruby-throated Hummingbird (Archilochus colubris), have been observed visiting the 

flowers of B. alba macrophylla (pers. obs.).  These natural pollinators are critical for the 

reproductive success of B. alba macrophylla because they are responsible for the transfer 

of the male gametes.  In B. alba macrophylla, levels of fruit set are influenced by pollen 

source under different pollination treatments.  While the transfer of pollen between 

flowers of the same plant (=geitonogamy) and between flowers of different plants 

(=xenogamy) yields 100% fruit set, the transfer of pollen within a single flower 

(=autogamy) results in very low rates of fruit set (~5%) in B. alba macrophylla  

(Haddock and Chaplin, 1982).  These differences in fruit set suggest that although B. alba 

macrophylla is self-compatible, autogamy is unlikely to be a primary means of 

pollination.    

 A. rostrum is a well-documented pre-dispersal seed predator of B. alba 

macrophylla (Haddock and Chaplin, 1982; Petersen, 1989; Petersen and Sleboda, 1994; 

Petersen et al., 2006; Petersen et al., 2010a, Petersen et al., 2010b).  Females oviposit 

within developing B. alba macrophylla fruits by making a hole at the base of the fruit and 

pushing their eggs inside of the fruit (Haddock and Chaplin, 1982).  The weevil larvae 

emerge within a few days of oviposition and feed exclusively on the developing seeds of 

the fruit (Petersen, 1989).  The effect of seed predation by A. rostrum can be remarkably 
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substantial; in fact, a single fruit can experience complete reproductive failure if occupied 

by several developing weevils.  The weevil larvae then pupate within the developing 

fruit, and adults emerge from the fruit upon dehiscence which can occur in early fall or 

the following spring (Haddock and Chaplin, 1982).  In the latter case, the adults 

overwinter within the fruits of B. alba macrophylla (Haddock and Chaplin, 1982).   

 T. sordidus is a known herbivore and pre-dispersal seed predator of 

several Baptisia species, including B. alba macrophylla (Clark and Burke, 1977; 

Haddock and Chaplin, 1982).  T. sordidus is found in the eastern and midwestern United 

States and in the eastern part of Texas (Clark and Burke, 1977).  The range of T. sordidus 

appears to coincide with the range of its host species, including B. leucantha (=B. alba 

var macrophylla), B. bracteata, B. cuneata, and B. villosa (Clark, 1971; Clark and Burke, 

1977).  According to Clark (1971), T. sordidus is not restricted to Baptisia hosts alone 

and has been recorded on species of both Acerates (Gentianales: Apocynaceae) and 

Croton (Malpighiales: Euphorbiaceae). 

 Adults of T. sordidus emerge from pupal cases underground in early 

spring when Baptisia host plants are emerging from the soil (Clark and Burke, 1977).  

Emerging adults feed on Baptisia stamens and leaves despite the presence of glycosides 

and alkaloids, specifically quinolizidines, which are found in all parts of the plant 

(Gibbons et al., 1990) and are characteristic of Baptisia species (Clark and Burke, 1977).  

In addition to herbivory, T. sordidus further impacts B. alba macrophylla via pre-

dispersal seed predation.  After mating, which occurs on the flowers of Baptisia, the 

females chew a hole through the side of the calyx and then deposit an egg inside the 

immature ovary (Clark and Burke, 1977).  The resulting larvae will then feed on the 
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developing seeds of the fruit.  Rather than consuming one seed at a time, the larvae move 

within the developing fruit and feed on several seeds at a time, so that even very young 

larvae can damage all of the seeds within a fruit (Clark and Burke, 1977).  Up to thirteen 

eggs have been reported within a single Baptisia fruit, and sometimes the larger larvae 

will consume the smaller larvae (Clark and Burke, 1977).  After consuming all of the 

seeds within a single fruit, larvae chew an emergence hole through the wall of the fruit.  

The larvae then burrow in the soil beneath their host plant where they pupate inside a 

pupal cell made from a secretion obtained from the anal lobes (Clark and Burke, 1977).  

Adults overwinter in pupal cells beneath the soil, and emerge in the spring when host 

plants begin to emerge from the soil (Clark and Burke, 1977).   
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CHAPTER II 

MATERIALS AND METHODS 

 Study Sites—The field experiment was conducted at the John English 

Prairie, a restored tallgrass prairie located in Comlara Park, NW McLean County, Illinois, 

USA and the Sugar Grove Nature Center and Funks Grove (hereinafter referred to as 

Funks Grove), a restored tallgrass prairie located in SW McLean County, Illinois, USA.  

Directly surrounding both prairies are forested areas and some rural roads.  Both prairies 

are nested within the larger agricultural matrix which covers much of central Illinois.  

The John English Prairie was last burned in the spring of 2014, and Funks Grove was last 

burned in the spring of 2013.     

 Experimental Design—B. alba macrophylla ramets were selected for 

experimentation beginning on 8 June 2014 based on the following criteria: ramet recently 

emerged from soil (all ramets <92 cm tall), emerging ramet not yet branching, and ramet 

located more than two meters from other experimental ramets.  Twenty-four ramets were 

initially selected for experimentation at the John English Prairie and thirty-five ramets 

were initially selected at Funks Grove.  One of the twenty-four experimental ramets at the 

John English Prairie was damaged due to human error and was thus excluded from the 

analysis.  Four additional ramets were not included in the statistical analysis because they 

failed to produce flowers during the 2014 flowering season.  Four of the experimental 
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ramets at Funks Grove died during flowering and were thus excluded from the 

experiment.  Because two of these ramets died relatively early in the flowering period, I 

substituted two additional ramets that met the above criteria.  As a result, a total of thirty-

three ramets from Funks Grove were included in the experiment.  Between the two sites, 

fifty-two ramets were included in the analysis.  I found that that a sample size of fifty-two 

was sufficiently large due to the time-intensive nature of this hand-pollination study.   

Although I sampled only a small proportion of plants at both sites, the experimental data 

appear to be representative of each site based on personal field observations.   

 Experimental ramets were randomly assigned one of two fertilizer 

treatments: (i) no fertilizer application, or (ii) application of 70 grams of Ideal
TM

 All-

Purpose 10-10-10 NPK granular fertilizer (Eau Claire Coop Oil Company, Eau Claire, 

Wisconsin, USA) to the 1 m
2
 area surrounding the base of the ramet prior to first 

flowering and again post-flowering.  Experimental ramets were then randomly assigned 

one of two insect barrier treatments: (i) application of Tanglefoot® insect barrier 

(Contech Enterprises, Inc., Victoria, British Columbia, Canada) on a plastic drinking 

straw that was slit open lengthwise and wrapped around the base of the emerging ramet, 

or (ii) placement of a bare drinking straw around the base of the emerging ramet.  The 

straws varied in length because they were cut to fit the base of each emerging ramet.  

Tanglefoot® was not applied directly to the ramet of B. alba macrophylla to ensure that 

the experimental treatment did not interfere with photosynthetic activity.  Tanglefoot® 

was re-applied as needed throughout the season. 
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 The first flower to bloom on each raceme was randomly assigned one of 

two pollination treatments: (i) open pollination supplemented with hand pollinated 

outcrossing, or (ii) open pollination.  The next flower to bloom on each raceme was 

assigned the remaining pollination treatment, and all subsequent flowers on that same 

raceme were assigned a pollination treatment following this alternating pattern.  Hand 

pollination was performed using homemade bee sticks that were constructed by pasting a 

toothpick to the abdomen of a dead bee (Carolina Biological Supply Company©, 

Burlington, North Carolina, USA).  After assigning individual flowers to a pollination 

treatment, a small piece of colored drinking straw was placed around the pedicel to 

indicate the pollination treatment.  Each flower continued to receive its assigned 

pollination treatment daily until it set fruit, was aborted, or otherwise lost from the plant.  

On average, the lifespan of a single B. alba macrophylla flower is 3-4 days (Haddock and 

Chaplin, 1982), and thus hand pollinated flowers were supplemented for approximately 3 

or 4 days depending on the lifespan of each individual flower.  Not all flowers assigned 

to the hand pollination treatment were hand pollinated on 21 June 2014 due to extended 

rain showers.  Given that each hand pollinated flower was supplemented for several days, 

it is unlikely that lack of hand pollination on this date adversely affected the study.   

 Fruits from both prairies matured in the field, and were collected prior to 

dehiscence.  Collection from the John English Prairie occurred on the 29
th

 of July, 2014, 

and collection from Funks Grove occurred on the 28th and 29th of August, 2014.  Most 

of the fruits were placed in a freezer at -10 °C, and were dissected between 25 September 

2014 and 13 February 2015.  During dissection of each fruit, I quantified the following: 

the number of undamaged seeds, the number of A. rostrum and T. sordidus at each stage 
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of development, the number of other organisms, and the length of the fruit.  A random 

subset of the fruits was not placed directly in the freezer because these fruits were used 

for a germination experiment which is not included in this document.  These pods were 

placed in a refrigerator at 5 
o
C and were dissected via microscopy between 11 September 

2014 and 24 September 2014.   

 Statistical Analysis—Data were analyzed using SAS 9.3 software (SAS 

Institute Inc., Cary, North Carolina, USA).  The first analysis I conducted examined the 

probability that an individual flower will initiate fruit, that an initiated fruit will reach 

maturity, and that an individual flower will eventually produce seeds.  Data from the John 

English Prairie and Funks Grove were analyzed independently due to differences in site, 

including differences in seed predators, differences in burning patterns, and differences in 

plant traits, including length of flowering period, number of racemes per ramet and size 

of ramet.   

 At the John English Prairie, the effects of pollination treatment, predation 

treatment, and nutrient treatment on the probability of fruit initiation were analyzed with 

a generalized linear model using a binomial error distribution and logit link function.  At 

Funks Grove, the effect of each treatment on the probability of fruit initiation was 

analyzed with a generalized linear model using a Gaussian error distribution and logit 

link function.  At both sites, each flower was treated as a replicate of pollination 

treatment within whole plants given a single nutrient-predation treatment.  At both the 

John English Prairie and Funks Grove, a similar analysis utilizing a binomial error 

distribution was performed on the probability that an individual initiated fruit would be 
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retained through maturation.  The number of seeds that matured within pods at Funks 

Grove was analyzed using a zero inflated Poisson error distribution.   

 The second analysis examined reproduction of entire ramets rather than 

individual flowers or fruits.  Reproduction was analyzed by MANOVA using site, 

nutrient treatment, and predation treatment as main effects and log-transformed flowers, 

matured fruits, and total seeds per ramet as response variables.  Differences among means 

for significant interactions were tested using Tukey-Kramer adjustment for multiple 

comparisons.  Pollen treatment was not examined in this analysis because pollen 

treatment was assigned to individual flowers, not entire ramets.   
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CHAPTER III 

RESULTS 

 Analysis by Flower and Fruit—The first analysis I conducted examined 

the probability that an individual flower will initiate fruit, that an initiated fruit will be 

retained through maturation, and that an individual flower will eventually produce seeds.  

The results of this analysis are listed below by site.    

  Funks Grove—At Funks Grove, the mean number of flower-producing 

racemes/ramet was 4.15 + 2.83 (mean + SD).  All ramets at this site produced flowers 

during the 2014 flowering season.  The mean flowering period, defined as the time span 

between the date of first flowering and the last date a new flower opened on an individual 

ramet, was 15.36 days + 5.62 days.  Although I did not record these data, the ramets 

produced at Funks Grove appeared much taller than the ramets produced at the John 

English Prairie (pers. obs.).   

  The mean number of flowers that initiated fruit was significantly affected 

by pollen treatment (F1,4771 = 4.75, P = 0.0294) but not nutrient treatment, predation 

treatment, or any interactions (P > 0.05 for all).  Flowers that were supplemented with 

hand pollination were significantly more likely to initiate fruit than were flowers that 

were not supplemented with hand pollination (Fig. 1).  Only predation treatment affected 

the probability that initiated fruits were retained through maturation (F1,29 = 10.41, P = 
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0.0031).  Ramets treated with Tanglefoot® matured significantly more initiated fruits 

than did ramets receiving the control treatment (Fig. 2).  Likewise, the mean number of 

seeds matured per fruit was significantly affected by predation treatment (F1,29 = 10.93, P 

= 0.0025).  Ramets treated with Tanglefoot® matured significantly more seeds per fruit 

than did ramets receiving the control treatment (Fig. 3), but nutrient treatment, pollen 

treatment, or their interactions were not significant factors (P > 0.05 for all). 

John English Prairie—At the John English Prairie, four of the twenty-

three experimental ramets (17.39%) failed to produce any flowers during the 2014 

flowering season and were thus excluded from statistical analysis.  The mean number of 

flower-producing racemes/ramet was 1.05 + 0.23 racemes (mean + SD), which is 

approximately one-fourth the mean number of racemes/ramet at Funks Grove.  Only one 

ramet produced multiple flower-producing racemes at this site.  The mean flowering 

period was 5.89 + 2.66 days.  The mean flower period at the John English Prairie was 

approximately two-fifths the mean flowering period at Funks Grove.   

 Pollen treatment significantly affected fruit initiation (F1,289 = 4.23, P = 

0.0405).  Flowers that were supplemented with hand pollination were significantly more 

likely to initiate a fruit than were flowers not supplemented with hand pollination (Fig. 

4).  Although pollen supplementation significantly increased fruit initiation, nutrient 

treatment, predation treatment, and their interactions were not significant factors (P > 

0.05 for all).  The probability that initiated fruits subsequently matured was not 

significantly affected by pollination treatment, nutrient treatment, or predation treatment, 

and none of the interactions were significant (P > 0.05 for all).  Statistical analysis was 
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not conducted on the number of seeds matured per fruit, because only three of the sixty-

seven mature fruits produced one or more mature seeds.  It is worth noting that the three, 

seed-producing fruits were not from plants assigned to the same treatments.  The nutrient 

treatment, predation treatment, and pollen treatment for the first fruit which initiated a 

single seed were as follows: application of fertilizer, application of Tanglefoot®, and 

open pollination supplemented with hand pollinated outcrossing.  The treatments for the 

second fruit which initiated two seeds were as follows: no fertilizer application, no 

Tanglefoot® application, and open pollination.  The treatments for the third fruit which 

initiated a single seed were as follows: no fertilizer application, Tanglefoot® application, 

and open pollination.   

  Analysis by Ramet—The second analysis I conducted examined 

reproduction of whole ramets rather than individual flowers or fruits.  There was a 

significant predation by site interaction (Pillai’s Trace: F3,42 = 3.99, P = 0.0137).  The 

effect of Tanglefoot® insect barrier on flower number was significant at Funks Grove (P 

= 0.0152), but not at the John English Prairie (P = 0.9186).  At Funks Grove, 

Tanglefoot®-treated ramets initiated more flowers than control ramets (Fig. 5).  It is 

possible that ramets assigned the Tanglefoot® treatment initiated more flowers by 

chance.  The effect of Tanglefoot® insect barrier on fruit maturation was significant at 

Funks Grove (P < 0.0001), but not at the John English Prairie (P = 0.9992).  At Funks 

Grove, Tanglefoot®-treated ramets matured more fruits than control ramets (Fig. 6).  The 

effect of Tanglefoot® insect barrier on seed number was also significant at Funks Grove 

(P < 0.0001), but not at the John English Prairie (P = 0.9994).  At Funks Grove, 

Tanglefoot®-treated ramets matured more seeds than control ramets (Fig. 7).  There was 
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no effect of nutrient treatment on flower number, fruit number, or seed number (P > 0.05 

for all).   
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CHAPTER IV 

DISCUSSION 

  The objective of this one-year field study was to identify proximate factors 

that limit reproductive output of B. alba macrophylla.  Specifically, I hypothesized that 

the number of seeds matured by B. alba macrophylla is serially adjusted based on 

nutrient availability at each stage of development, but that the final number matured is 

further compromised by extrinsic factors such as pollen limitation and pre-dispersal seed 

predation by the weevils A. rostrum and T. sordidus.  My data provide equivocal support 

for the hypothesis.  While reproductive output of B. alba macrophylla is serially adjusted 

during each stage of development, there are no data indicating that this adjustment is 

caused by nutrient availability at each stage.  Pollen supplementation was found to 

increase fruit set, although this did not translate to greater fruit and/or seed maturation.  

Pre-dispersal seed predation reduces the number of fruits matured per initiated fruit, the 

number of seeds matured per fruit, the number of fruits matured per ramet, and the 

number of seeds matured per ramet.   

  Pollen Limitation—The hypothesis that pollen limitation reduces 

reproductive output of B. alba macrophylla during all stages of offspring development 

was not supported by the data.  Flowers that were supplemented with hand pollination 

initiated slightly, but significantly, more fruits than flowers not supplemented with hand 
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pollination at both the John English Prairie and Funks Grove, yet only a small proportion 

of initiated fruits subsequently matured, and pollen treatment did not significantly affect 

the number of initiated fruits that matured or the number of seeds matured per fruit.  As a 

result, these populations are likely not pollen limited, which is a specific term referring to 

the production of fewer fruits and seeds than could be produced if sufficient or higher 

quality pollen was received (Ashman et al., 2004; Knight et al., 2005).   

  Rates of pollen limitation can be elevated in pollen supplementation 

experiments if less than all of the flowers on an individual plant are supplemented by 

hand pollination (Zimmerman and Pyke, 1988; Knight et al., 2005).  In such experiments, 

flowers supplemented with hand pollination may be able to yield a greater number of 

fruits and/or seeds than non-supplemented flowers, but that does not mean that the entire 

plant would be able to yield more fruits and/or seeds if all flowers were supplemented 

(Zimmerman and Pyke, 1988; Knight et al., 2005).  Although I observed an effect of 

pollen treatment during the fruit initiation stage, this effect was not significant in terms of 

fruits and/or seeds matured, and it is possible that this effect would not be observed if a 

different experimental design were utilized, such as assigning whole racemes or ramets to 

a single pollination treatment.   

  Nutrient Limitation—Although the number of fruits and seeds produced 

by a plant is ideally determined by the number of female flowers and ovules, respectively 

(Stephenson, 1981), the availability of maternal resources during each stage of offspring 

development can sequentially decrease the number of reproductive units that are 

ultimately produced (Lloyd, 1980).  The hypothesis that nutrient limitation sequentially 
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reduces reproductive output of B. alba macrophylla during fruit initiation, fruit 

maturation, and seed maturation was not supported by the experimental data.  Absence of 

a fertilizer effect during all stages of offspring development suggests that the B. alba 

macrophylla populations at the John English Prairie and Funks Grove are not nutrient 

limited.  However, it is possible that I may have observed a significant effect of nutrient 

treatment if the effect of predation was not so overwhelmingly large even on 

Tanglefoot®-treated plants.       

  It is worth noting that the application of granular fertilizer to this perennial 

species may not have increased the availability of nutrients for reproduction in the current 

season.  Instead, these resources may be used for growth and/or reproduction in 

subsequent years.  A multi-year study would yield a more comprehensive understanding 

of resource availability and allocation in B. alba macrophylla.   

  Pre-dispersal Seed Predation—The hypothesis that pre-dispersal seed 

predation by weevils constrains reproductive output of B. alba macrophylla was strongly 

supported by our data.  Pre-dispersal seed predation by T. sordidus at the John English 

Prairie and A. rostrum at Funks Grove reduced reproductive output during fruit 

maturation and seed maturation, but there was no indication that weevils had a significant 

effect during the fruit initiation stage.  At the John English Prairie, only 4.5% of all 

mature fruits escaped some degree of damage by seed predators (n = 67).  At Funks 

Grove, 58.8% of mature fruits escaped some degree of damage by seed predators (n = 

690).  While these losses seem great in magnitude, even greater losses in seed production 

by B. alba macrophylla were observed by Haddock and Chaplin (1982) who report that 
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only 1.3% and 5.9% of all fruits produced any seeds in 1978 and 1979, respectively, 

mostly due to pre-dispersal seed predation by insects.  

  When the data were analyzed by ramet, rather than individual flowers or 

fruits, there was a significant effect of predation treatment on the number of fruits and 

seeds matured at Funks Grove, though this effect was not observed at the John English 

Prairie.  This site difference is likely due to differences in the species of seed predators 

found at the two field sites and/or the effectiveness of the Tanglefoot® treatment at each 

site.  A. rostrum was the only species of weevil observed on B. alba macrophylla at 

Funks Grove, whereas T. sordidus was the only species of weevil observed on B. alba 

macrophylla at the John English Prairie.  Only 3 ramets at the John English Prairie 

produced any seeds during the 2014 flowering season which suggests that the 

Tanglefoot® treatment was less effective at this site possibly due to the species of seed 

predator found here. 

  It is worth noting that Tanglefoot® treatment did not completely eliminate 

seed predators from Tanglefoot®-treated plants.  Although Tanglefoot® application 

prevented weevils from advancing up the base of the plant, ovipositing weevils were 

observed moving between plants that were in physical contact with one another.  To 

minimize the occurrence of such movement, I regularly trimmed neighboring vegetation 

that surrounded all experimental plants.  Nonetheless, some weevils were capable of 

accessing the Tanglefoot®-treated plants in this manner.  Additionally, A. rostrum adults 

were observed moving between plants via weak flight.  Although it does not appear that 

this species has strong flight abilities (Peter Brabant, pers. comm.; May 2014), it certainly 
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has the ability to fly, or rather glide, short distances between plants (pers. obs.).  Further, 

although the Tanglefoot® treatment was effective at reducing predation by weevil larvae, 

this treatment was not effective in completely eliminating seed predators from plants.  

  Conclusions and Implications—These data provide equivocal support for 

the hypothesis that reproductive output of B. alba macrophylla is serially adjusted during 

each stage of offspring development.  At the John English Prairie, 324 flowers were 

initiated, yet only 270 of these flowers initiated fruit.  A mere 67 of these initiated fruits 

reached maturity, and only 3 fruits matured any seeds.  At Funks Grove, 4,821 flowers 

were initiated, yet only 4,268 of these flowers initiated fruit.  A mere 690 of these 

initiated fruits reached maturity, and only 406 mature fruits contained any seeds.  It is 

quite evident that there is a sequential reduction in reproductive units during offspring 

development, but there is no evidence to suggest that this adjustment is based on resource 

availability at each stage of development.   

  Although flowers supplemented with hand pollination initiated 

significantly more fruits than control flowers, this difference did not translate into a 

greater probability of fruit maturation or a greater number of seeds per fruit, and I 

conclude that our populations of B. alba macrophylla are likely not pollen limited.   

  I conclude that seed predation by weevil larvae, specifically A. rostrum 

and T. sordidus, has significant and negative effects on the realized reproductive output 

of B. alba macrophylla, as measured by the number of seeds matured per fruit and per 

ramet.  These data are in accordance with previous work by Petersen (1989) who reports 

that Tanglefoot®-treated ramets yielded greater grand mean numbers of fruits/ramet and 
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seeds/fruit than control ramets.  Petersen (1989) also reports that Tanglefoot®-treated 

ramets had smaller grand mean numbers of A. rostrum/fruit.  In conclusion, this study 

indicates that seed predation is a driving force shaping reproduction of this native 

legume, but neither nutrient limitation nor pollen limitation are limiting reproductive 

output in these populations of B. alba macrophylla.   

  Recommendations for Future Research—Although this study indicates 

that pre-dispersal seed predation by weevils significantly reduces reproductive output of 

B. alba macrophylla, further research should be conducted to determine the long-term 

consequences of pre-dispersal predation on B. alba macrophylla at the population level.  

Weevil larvae cause almost complete reproductive failure on some sites, and thus it is 

important to investigate the consequences of predation at the population level.   

  Additionally, further research should be conducted to determine the 

reproductive potential of B. alba macrophylla in the absence of weevils.  As outlined 

above, Tanglefoot® insect barrier was effective in minimizing predation pressure by 

weevils in the present study and in a study by Petersen (1989), yet this treatment did not 

completely eliminate weevils from experimental plants.  In this study and others 

(Haddock and Chaplin, 1982), seed predation by weevils causes very high levels of seed 

destruction.  A study in which weevils are completely eliminated from B. alba 

macrophylla would determine if the fitness losses caused by pre-dispersal seed predation 

are additive or compensatory.      
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CHAPTER V 

SIGNIFICANCE 

 Determining the factors that limit reproductive output of B. alba 

macrophylla is imperative for (i) understanding the reproductive ecology of angiosperm 

species and (ii) making informed decisions regarding the conservation and restoration of 

tallgrass prairies in North America.  It is estimated that angiosperm species account for 

approximately 89% of all extant plant species (Crepet and Niklas, 2009), and thus 

research examining the reproductive ecology of angiosperm species is essential. 

 Understanding the life history of all organisms is important, but this is 

especially true for B. alba macrophylla, a native, leguminous component species of the 

tallgrass prairie ecosystem.  In the "Prairie State" of Illinois where this study took place, 

it is estimated that the tallgrass prairie occupied 8.9 million hectares of the Illinois 

landscape during the 1820's (Petersen, 1996).  Over the past two centuries, the tallgrass 

prairie ecosystem has been degraded to a mere 0.01% of its historic range in Illinois 

(Samson and Knopf, 1994).  These disheartening data certainly demonstrate the need for 

research on what remains of this rare and fragmented ecosystem.   

  Although possessing membership in the tallgrass prairie ecosystem is 

enough to justify the necessity of research, B. alba macrophylla is a legume and, like 

other legumes, plays a critical role in nutrient cycling of the tallgrass prairie ecosystem 
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(Mundahl, 2014).  When legumes are not present in prairie habitats and restorations, 

prairie development and diversity can be compromised (Graham et al., 2008).  Further, 

this research and any research investigating factors which limit reproduction in 

leguminous, tallgrass prairie component species is critical for the restoration and 

preservation of what remains of this beautiful ecosystem.  
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FIGURES 

 

Fig. 1.  Fruits Initiated/Flower (Least Squares Means) at Funks Grove.  Flowers 

supplemented with hand pollination initiated significantly more fruits per flower than 

open pollinated flowers.   

0.83 

0.84 

0.85 

0.86 

0.87 

0.88 

0.89 

0.9 

0.91 

0.92 

Open Pollination Hand Pollinated Outcrossing 

F
ru

it
s 

In
it

ia
te

d
/F

lo
w

er
 (

L
S

M
) 

Pollination Treatment 

Fruits Initiated/Flower at Funks Grove 



35 
 

 

Fig. 2.  Fruits Matured/Initiated Fruit (Least Squares Means) at Funks Grove.  Ramets 

treated with Tanglefoot® matured significantly more initiated fruits than control ramets.   
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Fig. 3.  Seeds Matured/Fruit (Least Squares Means) at Funks Grove.  Ramets treated with 

Tanglefoot® matured significantly more seeds per fruit than control ramets.   
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Fig. 4.  Fruits Initiated/Flower (Least Squares Means) at the John English Prairie.  

Flowers supplemented with hand pollination initiated significantly more fruits than open 

pollinated flowers.   
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Fig. 5.  Flowers Initiated/Ramet (Least Squares Means) at Funks Grove.  Tanglefoot®-

treated ramets initiated significantly more flowers than control ramets. 
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Fig. 6.  Fruits Matured/Ramet (Least Squares Means) at Funks Grove.  Tanglefoot®-

treated ramets initiated significantly more fruits than control ramets.   
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Fig. 7.  Seeds Matured/Ramet (Least Squares Means) at Funks Grove.  Tanglefoot®-

treated ramets matured significantly more seeds than control ramets. 
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