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Children’s conceptions of length measurement has bige focus of research that
has built on the work of Piaget and his colleagogsroduce developmental accounts for
the acquisition of conceptual and procedural kndgge Prior research focused on
children’s developing conceptions of length measwat for straight or rectilinear paths;
however, little is known about how these conceigrow beyond the elementary
grades. The present study increased the scopesaottearch beyond elementary grades
to include middle and secondary level studentsloexyy the development of students’
intuitive and analytical thinking for determininiget length of a curved path across a wide
span of development. Finally, this study extentig@othetical learning trajectory (LT),
to include intuitions for path length.

| administered a written LT-based length assesstoe82 students in Grades 4, 6,
8, and 10, which | coded using a length LT. Basethts assessment, | selected four
participants from each of Grades 4, 6, 8, and l@@®sentatives of four levels of the

LT. I conducted two individual task-based intervee{oldin, 2000) with each of the 16



participants, which | analyzed using codes froneaesh on path length intuition (Chiu,
1996) and emergent codes generated through a obostaparative method. | then
tracked the frequency of each code to explore dpveéntal patterns.

Results suggest that the tasks included in thidystifectively differentiated
students’ thinking at different LT levels. Thesedings are consistent with Fischbein’s
theory of intuition (1987), which describes intaitias a developmental phenomenon.
Participants who exhibited different levels of sigibhation, measured by the length LT,
exhibited different ways of evoking intuitions grms of (a) intuitions and analytical
strategies overall, (b) each individual intuiti@amd (c) analytical strategies with
embedded intuitions. Furthermore, findings confaomjectured concepts and processes

outlined in the LT.
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CHAPTER 1
INTRODUCTION AND RATIONALE

Introduction

Early research on children’s conceptions of lemgdasurement conducted by
Piaget and his colleagues focused on the develdpohéme logical operations of
conservation and transitivity and the developmémtnaiterable unit of length through
subdividing and ordering those subdivisions (Piglptelder, & Szeminksa, 1960).
Mathematics educators later extended this workvestigate the development of
children’s capabilities for concepts and procedueésted to unit: unit iteration, tiling or
structuring with units, relationships among diffgrenits, additivity, and understanding
of the zero point (Lehrer, 2003). However, mosthef research on children’s conceptions
of length measurement has been done within theeRaemgtradition of coupling the study
of measurement with the study of space (e.g., Bar€lements, 2003; Barrett et al.,
2006; Barrett, et al, 2012; Battista, 2006; ClaBkeeeseman, McDonough, & Clarke,
2003; Hiebert, 1981; Sarama & Clements, 2009; Si&fHirstein, 1976). This work has
focused mainly on elementary children’s capabdgiti¢ measuring lengths of rectilinear
paths in one- and two-dimensional space (see Bdurg2, and 3) and has produced
developmental accounts for the acquisition of ssdation in conceptual and procedural
knowledge for length measurement (Battista, 200&rk&, Cheeseman, McDonough, &

Clarke, 2003; Piaget, Inhelder, & Szeminksa, 18#rama & Clements, 2009).



Figure 1.Comparing lengths of segments that are not osdhee line (Battista, 2006;
Piaget, Inhelder, & Szeminksa, 1960).

Figure 2.Finding lengths of bent paths and perimeter (B@iti2006; Piaget, Inhelder, &
Szeminksa, 1960).

A C

Figure 3.Triangle inequality (Barrett et al., 2006) or dlest distance between points.

Although a strong basis of empirical evidence texXigr the developmental
accounts offoungchildren’s conceptions of length measurementeligt known about
how these concepts continue to grow beyond theeziary grades to become more
sophisticated and coherent. Researchers have tatldte elaboration of these
developmental accounts for measurement to middledstudents (Daro, Mosher,
Corcoran, 2011). Moreover, a growing number ofaedeers are calling for this work to
further extend the research that was inspired bgd®iand his colleagues (i.e. Battista,

2006; Sarama & Clements, 2009) by including thestigation of children’s conceptual



and procedural knowledge related to linear measemém the context of curved paths
(Clements et al., in press) as well as intuitiarsplath length (Chiu, 1996). This study
seeks to extend the work of Piaget in this manndrta provide an empirical basis for
expanding developmental accounts into the Middietdigh School Levels.

Extending the Work of Piaget

Osborne (1976) outlined four problems of length distiince to consider in the
teaching and learning of measurement: (a) comp#emgths of segments on two
different lines, (b) measuring lengths of bent path) finding the shortest distance
between two points, and (d) determining the lemdth curve. Piaget and many
researchers who extended his work have used tashs brst three types described by
Osborne to inform the articulation of developmetadounts of elementary children’s
conceptions of length measurement (see Figuresahd3).

Osborne (1976) claimed that determining the ledid curve “is a step beyond
school mathematics” because “the solution dependsit processes, the additivity
property, extended to allow for adding an infimtember of segments” (p. 24). However,
a small body of research (see Clements et al, @aspiGrugnetti, Rizza, & Marchini,
2007) suggests that, before students have acceafctous as a conceptual tool,
determining the length of a curve is a task thatpg@ential instructional value for
addressing measurement from a mathematical pergpéOtsborne, 1976) using
informal limit arguments, an approach that has seeammended in the Common Core
State Standards for Mathematics (Common Core Statedards Initiative, 2010).

Before instruction in calculus, the length of avaucould be determined by

measuring it directly using a string or by a disedenear approximation. A discrete



linear approximation of a continuous curve involvegresenting the curve as a collection
of linear segments (Figure 4); the length of thevewcan be approximated by adding the

lengths of the linear segments.

/N

Figure 4.Representing a curve as a collection of lineamssds

Figure 5.Increasing the number and decreasing the lengtadi segment to reduce
error.

This representation highlights key ideas abounttere of measure: all measurement of
continuous quantity is an approximation, increasirgnumber and decreasing the length
of the segments provides a better representatitimeafurve and reduces approximation
error (Figure 5), an approximation can be an ovenage (Figure 6) or an underestimate
(Figure 5), and approximation error can be redumedveraging over- and

underestimates for the length of a curve (Figure 7)

Figure 6.0verestimating the length of a curve.



Figure 7.Averaging over- and underestimates using Archirseaiethod (see Traub,
1984).

The task of determining the length of a curve bgrapimation provides the potential
opportunity to investigate children’s thinking alb@oncepts related to unit, such as their
developing capabilities for coping with units ofitsnboth sub and superordinate units)
with efficiency and precision, and coordinatiorotiier features with linear measures,
such as curvature (i.e., using smaller units tosuesaa tighter curve will result in a more
precise measure).

Researchers have mainly carried on the Piagetalitibn of investigating
children’s developing conceptual and proceduraMkedge for length measurement (i.e.,
Battista, 2006; Barrett & Clements, 2003; Clemettal, in press). However, researchers
in psychology and mathematics education have shibatrchildren, as well as adults,
also possess intuitive knowledge for path lengtn.dxample, several studies by
mathematics educators (see Barrett & Clements,; 2008, 1996 Clements, Battista,
Sarama, & Swaminathan, 19%nd psychologists (e.g., Thordyke, 1981; KossBink
& Fariello, 1974; Luria, Kinney; & Weissman, 19&essey, 1974) have documented
the prevalence of the complexity intuition (Chi@98), which is characterized by an
attention to the number of segments or turns wioemparing rectilinear paths. In their
work, Barrett and Clements (2003) suggested thabeaelementary level, children’s
developing abstractions for linear measurement) véispect to establishing exact

correspondence between counting and linear dimesisibpaths, interacts with intuitive



thinking for path length. However, no prior studhshexamined how intuitive thinking
for path length changes or how intuitive thinkimg path length interacts with conceptual
and procedural knowledge for length measuremensa@ large span of development.
Purpose of the Study

The purpose of this study is to extend the liteabn children’s conceptions of
length measurement in two-dimensional space iretimgortant ways. First, this study
increases the scope of the body of research oemstsidhinking in the context of length
measurement beyond elementary aged children todachiddle and secondary level
students. Next, this study involves the exploratbthe development of students’
thinking in the context of approximating the lengfta curve (see Figures 4-8) across a
wide span of development, which has not been agéldes prior studies (see Figures 1,
2, and 3). Finally, this study seeks to extendtargsdevelopmental accounts for the
learning of length measurement to explore inteoastiamong students’ conceptual and
procedural knowledge for length measurement widir intuitions for rectilinear and
curvilinear path length.

Research Questions

This study seeks to explore elementary, middle,ssedndary school level
students’ intuitive and analytical thinking whemgugaring rectilinear and curvilinear
paths in two-dimensional space by length. Spedificthis study examines the intuitions
and analytical strategies that students at diftdesrels of sophistication for length
measurement use for path length. The following toles guided task design and

subsequent analysis:



. What intuitions and analytical strategies do staslese when comparing sets of
rectilinear or curvilinear paths by length?
How does their use of intuitive and analytical #ung for path length change or

develop across levels of sophistication for lengdrasurement?



CHAPTER II
THEORETICAL GROUNDING AND REVIEW OF RELATED LITERAURE
Theoretical Framework

To explore students’ intuitions and analyticahstgies for path length and how
their use of intuitive or analytical thinking foath length changes or develops across
levels of sophistication for length measureméngquired a theoretical tool that could
serve two main purposes. First, | needed a thé@atywiould allow me to differentiate
intuitive thinking from analytical thinking. Seconidneeded a theoretical vantage point
from which to identify students at different levelssophistication for length
measurement for the purpose of selecting a sanfiigieidents at the same and adjacent
levels. A single theoretical framework could notaneoth of these criteria. However, a
synthesis of key features of Fischbein’s (1987dthen intuition and a hypothetical
learning trajectory (LT) for length measurementegf@énts et al., in press) provided a
theoretical framing that could serve both purpokbeginthis chapter with sections in
which | describe components of these frameworkschwvare most germane to the
present study and conclude with a review of thateel literature that was informed by
the synthesis of these two theoretical perspectives
Fischbein’s Theory on Intuition

The most relevant aspect of Fischbein’s (1987rhen intuition for the present
study is an operational definition for intuitioratallows for distinguishing intuitive

thinking from analytical thinking or perceptionsehbein defined an intuition as “a
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primary phenomenon which may be described but wisiciot reducible to more
elementary components” (p. ix). He characterizedhantion as having the appearance
of being a self-evident and self-consistent cognitmuch like perceiving a color or
experiencing an emotion. Fischbein argued that mupeangs possess a natural and
almost instinctual belief in the existence of sabeolute certitude, which has
manifested itself throughout the history of mathgasaand science. It is this need for
certitude, “our fundamental need ‘to see’ with mind, as we see with our eyes” (p. 7),
that motivates intuitive thought. The sections be&aborate Fischbein’s definition of
intuition by outlining the properties and classésuuitions.

Properties of intuitions. Fischbein (1987) described intuitive knowledgaas
self-evident, immediate cognition. For examplethia case of path length, one intuitively
knows that the shortest distance between two p@rastraight line (Chiu, 1996;
Fischbein, 1987). This statement is “accepted agybmmediate and self-evident
without feeling the need for a proof either forrmalkempirical” (Fischbein, 1987, p. 13).
Fischbein argued that this self-evident natureddadhree other key properties of
intuitions: extrapolativeness, coerciveness, antalty.

Fischbein (1987) argued that an intuition alwayseexis observable facts. An
intuition, then, is a theory; “it implies an extdation beyond the directly accessible
information” (p. 13). For example, one does notchiekuition toseethat pairs of
opposite angles of two intersecting lines are coagt. However, one uses intuition to
accept the universality of this property.

Although intuitions appear to be self-evident amdreautonomous, Fischbein

(1987) noted that they are also robust and arelyleepted in one’s mental organization.



That is, intuitions are coercive (Fischbein, 198Hey “appear, generally, as absolute,
unchangeable ones” (p. 14). Altering, eliminatiaggcontrolling an intuition would
require “a profound, structural transformationange areas of mental activity” (p. xi).
Therefore, according to Fischbein, the coersivaneatf intuitions contributes to the
perpetuation of wrong interpretations. For exampieen comparing paths by length,
both children and adults have a propensity to dtterthe complexity, such as the
number of segments or turns in a path, rather dvanall length (e.g., Barrett &
Clements, 2003; Chiu, 1996; Kosslyn, Pick, & Faoiel974; Luria, Kinney, &
Weissman, 1967; Pressey, 1974; Thorndyke, 1981).

Fischbein (1987) argued that the globality ofr@mition is a consequence of its
self-evident nature. “A certain statement acceptedelf-evident is also accepted
globally as a structured, meaningful, unitary repregation” (p. 14). An intuition, a
global and synthetic view, is a direct and quickwiwithout preliminary analysis.
Furthermore, the globality of intuition is revealegla repeated application of an
intuition, informed by a recognition that one cotitis analogous to another. For
example, the global character of the complexityitran described above is evinced by
both an immediate application without preliminanabysis as well as its application
across multiple tasks and contexts.

This global property of intuitions serves to digtirsh between intuitive and
analytical thinking. Whereas intuitive thinkingdsect and quick without preliminary
analysis, analytical thinking proceeds in a stegst®p manner, in which one notion is

connected to the next. For the present study,destis response to a task is regarded as
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intuitive thinking only if it appears to be an imdiate, direct, and global solution. A
response that appears to exhibit step-by-step meagss regarded as analytical thinking.

Classes of intuitions.To further elaborate on his definition of intuitidiischbein
(1987) offered two approaches for classifying itiuns, one based on roles or origins.
The classification system that is based on rokes ebnsiders the relationship between an
intuition and the solution to a particular probldmthis system, intuitions can be
affirmatory, conjectural, anticipatory, or conchsi In the case of an affirmatory
intuition, one affirms or makes a claim. A conjeeluntuition is one in which an
assumption about future events is expressed. fatiory and conclusive intuitions
represent phases in the process of solving a prolAaticipatory intuitions express a
preliminary, global view that precedes an analyscdution to a problem. Conclusive
intuitions summarize in a global, structured visiba solution to a problem that had
previously been elaborated. For the present stueljause students’ claims about
comparisons among paths by length are being olbdeitve intuitions subject to
examination are affirmatory.

Fischbein’s (1987) alternative system for clagsdyintuitions is based on the
origin of an intuition and distinguishes intuitioas either primary or secondary. Primary
intuitions are “those cognitive beliefs which deyein individuals independently of any
systematic instruction as an effect of their peas@xperience” (p. 64). Secondary
intuitions, however, are not produced by naturatymal experiences. Secondary
intuitions are formed when a learned conceptidraissformed into a belief. For
example, the claim that the sum of the interiorl@mngf a triangle is 180 degrees,

regardless of its shape, is not self-evident. itloa proved. Fischbein explained that if
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one comes to “sedirectly that the sunmust necessarilgemain constant (because of
inner compensation)” (p. 68) one has acquired asesendary intuition.

Intuition as a developmental phenomenonThe term “primary intuition” does
not indicate that an intuition is innate (Fischhdif87). Both primary and secondary
intuitions are learned, and they are both “alwégsgroduct of an ample and lasting
practice in some field of activity” (p. 69). Theoeg, Fischbein argued, “intuitions are a
developmental phenomena, and their structure clsaagyan effect of experience and a
general intellectual development” (p. 115). A chulohtuition use changes over time. For
example, classic Piagetian conservation of quatagis have been used to show that
young children intuitively apprehend the numbedistrete objects laid in a row based
on the length of the row rather than a count ofabgects (see Piaget and Szeminska,
1964, p. 99). This apprehension is “intuitive, glhlwithout hesitation, based on
configurations rather than on operational crite(l@schbein, 1987, p. 65). This
apprehension is a primary intuition.

Over time, new intuitions develop “based on thenposability and reversibility
of intellectual operations: intuitions related tmeervation capacities, to the notions of
number and cardinality, to elementary logical anthaetical operations” (Fischbein,
1987, p. 65). For example, on Piagetian consematiauantity tasks, over time children
begin to attend to the number of discrete objextsih a row rather the length of the row.
Although new intellectual operations become avédlab the child, “the reactions of the
child remain, nevertheless, global, direct, andrtesrpretations appear to him as self-
evident” (p. 65). These new intellectual operatibasome the essential texture of

intuitive reactions. That is, a child’s responsa tiask may be based on these intellectual
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operations, the response may still “display thgpprbes of an intuitive cognition; it
appears subjectively non-explicitly justified amgbriori evident” (p. 65).

Fischbein’s (1987) theory on intuition providesaperational definition that
allows for distinguishing intuitive thinking fronmalytical thinking; however, it does not
provide a structure for describing the hierarcl@gelopment of children’s conceptions
for length measurement. A hypothetical learningetiory (LT) for length measurement
(Clements et al, in press) addresses this aspélae giresent study by providing a means
for describing how children’s thinking about reictdar and curvilinear path length
changes or develops across levels of sophistic&tiolength measurement. An LT has
three parts: (a) an instructional goal, (b) a yke&th for learning through increasingly
sophisticated levels of thinking, and (c) the instional tasks that engender the mental
processes or actions that support children’s grakrtbugh those levels (Clements &
Sarama, 2007). In the present study, the LT fagtlemeasurement serves as a tool for
describing and differentiating children’s responaesording to those levels of
sophistication.

Hierarchic Interactionalism

LTs are a central feature of hierarchic interacl@m (HI), which is a theory of
cognitive development that is represents a syrglsempiricism, (neo)nativism, and
interactionalism (Clements & Sarama, 2007). “Hielnge” indicates the influence and
interaction of domain-general and domain-specihigrotive components and the
interactions of innate competencies, internal reseg) and experience. LTs originate
from a key tenet of HI, which postulates that dd@tdprogress through domain-specific

levels of understanding in ways that can be charaetd by specific mental objects and
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actions (i.e., both concept and process) that udcarchically on previous levels
(Clements & Sarama, 2007).

Clements and Sarama (2007) elaborated HI usingrigts. The first of the twelve
tenets addresséevelopmental progressianBhe next five tenets of Hilomain specific
progressionhierarchic developmentyclic concretizationco-mutual development of
concepts and skillJsandprogressive hierarchizatigraddress the levels of and a child’'s
movement within a developmental progression. Thfdgbe twelve tenets of Hinitial
bootstrapsdifferent developmental coursesdenvironment and culturexplain how
these developmental progressions are guided. Twtedivelve tenetgonsistency of
developmental progressions and instructesndLTs both address effective instruction
and developmental progressions. The final tenétlpinstantiation of LTsaddresses
some of the limitations and affordances of LTs.

Of these 12 tenets of HI, five address key assumgtof HI that are relevant to
the investigation of intuitive and analytical thing about path length as a developmental
phenomenon. In the following sections | descrileséhfive relevant tenets as well as
how they contribute to the framing of the preseutlg

Developmental progressionsAccording to the perspective of HI, “knowledge is
acquired along developmental progressions of thgikiClements & Sarama, 2007, p.
464). These developmental progressions are “camsigtith children’s intuitive
knowledge and patterns of thinking and learningaaious levels of development”
(Clements & Sarama, 2007, p. 464). Hence, each ¢éwkevelopment is characterized
by different concepts and processes. Thereforedas this tenet, a key assumption of

the present study is that children who are at dffelevels within a developmental
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progression possess different concepts and prasesséhey would exhibit different
intuitions and analytical strategies for rectilinaad curvilinear path length.

Domain-specific progressionClements and Sarama (2007) emphasized that
developmental progressions address specific matieh@pics; therefore,
developmental progressions must be domain-spekifiowledge is the “main
determinant of the thinking within each progressalthough hierarchic interactions
occur at multiple levels within and between topaswell as general cognitive
processes” (Clements & Sarama, 2007, p. 464). Enenperspective that intuition is a
cognition (Fischbein, 1987), this tenet of HI supg®that a hierarchic interaction exists
within and between knowledge for length measurerardtintuition for path length.

Hierarchic development.Development is an “interactive interplay among
specific components of knowledge and processe€nf€hts & Sarama, 2007, p. 464).
Each level of a developmental progression builésanchically out of the concepts and
processes that constitute the previous levels.éllee®ls are organized according to
increasing “sophistication, complexity, abstractipawer, and generality” (Clements &
Sarama, 2007, p. 465).

The process of learning or development is increalemtd gradual. Various types
of thinking develop in tandem, “but a critical madsdeas from each level must be
constructed before thinking characteristic of thkesequent level becomes ascendant in
the child’s thinking and behavior” (Clements anda®aa, 2007, p. 465). As the child
moves through developmental progressions, preveuess of thinking are not deleted
from memory. These levels of thinking become modieit mental representations,

which do not erase the earlier representationfadt) these early representations emerge
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as fallback strategies under conditions of incréaseess, when confronted with more
complex tasks, or when another process fails (Gtésn& Sarama, 2007).

This tenet of HI indicates that, although a clildy be operating predominantly
at a particular level for length measurement, hehermay exhibit evidence of higher or
lower levels of thinking. Therefore, within a groapchildren who are appear to be
operating at the same length LT level based om tesponses to a collection of tasks,
individual differences may be observed as childr@pe with more complex tasks.
Furthermore, this tenet of HI supposes that childvého are operating predominantly at
the same LT level, may exhibit some individual eiéinces in aspects of length
measurement outside the current LT, such as iatigtand analytical strategies for
rectilinear and curvilinear paths.

Co-mutual development of concepts and skillsConcepts and skills develop in
constant interaction; concepts and skills encompwasiolic representations, utilization
competence, and general cognitive skills (Clemé&rfiarama, 2007). As a child ascends
through a developmental progression, he or sheughgdnakes “connections between
various mathematically relevant concepts and pnaee] weaving ever more robust
understandings that are hierarchical” (p. 465).rétwee, the domain-specific
developmental progression for length measuremamtgsireflected in the length LT
(Clements et al., in press) outlines levels ofeasingly sophisticated conceptual and
procedural knowledge for key length measuremenceots.

Learning trajectories. A fruitful approach for instruction is based ond.T
(Clements & Sarama, 2007). “On the basis of theothgsized specific mental

constructions (mental actions-on-objects) and pagtef thinking that constitute
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children’s thinking, curriculum developers desigstructional tasks that include external
objects and actions that mirror the hypothesizethematical activity of the children as
closely as possible” (p. 466).

The most relevant aspect of HI for this study is tperational definition for an
LT. Based on this definition, the LT for length maeement (Clements et al., in press)
articulates a developmental progression of increggisophisticated thinking for length
measurement; therefore, it serves as a tool touneasildren’s conceptual and
procedural knowledge for length measurement. Intiadd the instructional tasks
component of the definition of an LT provides aganizing structure for reflecting on
the role that task play in revealing students’kimg as well as helping them progress
through the levels. In the present study, this comept lends itself to the reflection about
the potential role of tasks involving comparing anelasuring rectilinear and curvilinear
paths for eliciting children’s thinking about andgsibly construct new and powerful
understandings about key length measurement cancept
A Learning Trajectory for Length Measurement

The LT for length measurement “describes an ingmrsequence of knowledge
about quantity, based on a ratio between a unitlEmdheasured object, and other
measured lengths as ratios” (Barrett, et al, 2p131). In the following sections I
summarize the concepts and processes that deérievéls of the LT for length
measurement (Clements et al., in press). AcrosBrgteéwo levels of the length LT,
children use continuous mental processes as thayate continuous extents. At the
earliest level of the length LTength Quantity Recogniz@rQR), children identify

length (the extent of an object from end-to-end) distance (the amount of space
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between two points) as attributes; however, thegato/et understand length as a
comparative. The second leveength Compare(LC), involves two sub-leveld,ength
Direct Comparer(LDC) and Indirect Length Comparéi_C). At the LDC sublevel,
children are able to physically align a pair ofesitg for the purpose of determining
which is longer, and children at the ILC sublew& able to use a third object to compare
the lengths of two objects.

The transition into the third level of the lendfh, the End-to-End(EE) level,
marks a significant conceptual advance over tist fiivo levels because it marks the
development of the implicit concept that lengths ba composed of repetitions of
shorter lengths. Students at this level understiaaidthe number of repetitions of shorter
lengths, or units, that fit along an object deseiib length. Students at this level typically
lay units end-to-end to measure the length of gacbbAt theLength Unit Relater and
Repeate(LURR) level, children measure by repeating, erating, a unit. They also
understand that more shorter units or fewer langés are needed to measure the same
object and can add two lengths to determine thgtheof a whole.

By theConsistent Length Measur@CLM) level of the length LT, children are
able to simultaneously imagine and conceive oflgaab’s length as a total extent and a
comparison of units. At this level of the length,lchildren see length as a ratio
comparison between the unit and the object measiiley measure straight paths
consistently, use equal-length units, understaadéno point on the ruler, and can
partition units to make use of units and subumtgtie purpose of increasing precision.
However, when determining the length of a bent paltiidren operating predominantly

at this level may make rounding errors when meaguwach segment and may not equate
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the sum of the parts of the bent path to the lenfthe whole. In addition, they may not
be perturbed with geometric inconsistencies wheangpwith perimeter tasks. For
example, when asked to draw a rectangle with afsgp@perimeter, a child at the CLM
level may draw a rectangle with opposite sides d@natot congruent. Children at this
level apply multiplicative comparisons in simpleusitions, but typically rely on additive
reasoning when making comparisons.

By theConceptual Ruler Measuré€CRM) level of the length LT, children have
an “internal” measurement tool. That is, they erg@gplicit strategies to estimate
lengths reasonably, such as mentally iteratingmateunits of length or partitioning a
length into equal-length parts. Children who areraping predominantly at the CRM
level project or translate given lengths to detesrmmissing lengths. When asked to draw
a rectangle with a specified perimeter, childrethatCRM level notice or are perturbed
by geometric inconsistencies; they no longer acmsgiangles with opposite sides that
are not congruent. At this level, children incregsy use multiplicative reasoning in
comparison situations.

At thelntegrated Conceptual Path Measui¢CPM) level, children are able to
integrate and compare sets of units along eaclosauita bent path. When reflecting on
the measure of a bent path or the perimeter ofhygpn, they regard a group of units as a
flexible object, a “string” of units wrapped aroutigk entire perimeter or along the entire
path. Therefore, in the context of a fixed perimetefixed path length task, children at
the ICPM level are able to compensate for changedeno one side of a figure by
adjusting other sides to maintain the fixed ovdeadbth. Although, they can find several

related cases of polygons with the same perimgttey, may not yet be able to organize
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and synthesize a set of related polygons base@mmgter to formulate and justify a
valid argument. At this level, children also betprcoordinate other measures with linear
measures, such as curve, and show well-develoged @bout precision, such as
constructing smaller units for the purpose of iasieg precision.

The highest level of the current length LT is Alestract Length Measurer
(ALM) level. At this level, children have developadtontinuous sense of length, and
engage dynamic imagery to coordinate and opertgenally on collections of units of
units as well as collections of complex paths. Withe context of a fixed perimeter or
path length task, they can synthesize sets ofdgjbased on perimeter to formulate and
justify a valid argument. Children at this levehaaordinate multiplicative and additive
reasoning in fluent ways and can engage in prapmatireasoning about coordinated
cases of paths for the purpose of reflecting otepad among cases.
Summary: Relating Intuition to an LT for Length Mea surement

The length LT describes a hierarchical sequenémaiviedge about quantity,
based on a ratio between a unit and a measurectoBgechildren grow along the length
LT, they develop sophisticated intellectual openagi or mental actions (concepts and
processes). According to Fischbein’s (1987) th@woryntuition, children develop new
intuitions as an effect of experience as well asdévelopment of new intellectual
operations; intuition is a developmental phenomeitwerefore, informed by a synthesis
of the two theoretical positions discussed in #&iens above, this study was designed
to explore developmental patterns of intuitive andlytical thinking for rectilinear and
curvilinear path length for children who are opergiat different levels of the LT for

length measurement.
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Review of the Related Literature

The LT for length measurement (Clements et alprass) describes how children
“establish rich conceptual knowledge of units cditsgd measurement and use that
knowledge as they measure in complex situationatr@t et al., 2011). It is a product of
a line of research that has followed in the traditf Piaget and his colleagues (1960).
This length LT has been refined and revised owvee tusing both cross-sectional (Barrett,
Clements, Klanderman, Pennisi, Polaki, 2006; Cleamenal., 1997) and longitudinal
approaches (Barrett & Clements, 2003; Barrett.e28llL1; Barrett, et al., 2012; Clements
et al., in press) and is rooted in prior researcklaldren’s thinking about length
measurement concepts.

In the sections below, | first provide an overviefathe body of literature from a
about how children think and learn about length sneament concepts from a hierarchic
interactionalist perspective (Sarama & Clement®92Garama, Clements, Barrett, Van
Dine, & McDonel, 2011). Next, | describe the worfkother teams of researchers that
followed in the Piagetian tradition to produce aitgive accounts to how children
develop sophistication in conceptual and proceduralledge for length measurement
(e.g., Battista, 2006; Clarke, Cheeseman, McDonp&dblarke, 2003). Finally, |
conclude with a review of studies in mathematiascation and psychology that address
how children use intuitions for path length, andvitbose intuitions might interact with
their conceptual and procedural knowledge for lemgéasurement.

Children’s Thinking about Length Concepts: A Develgpmental Perspective

Researchers in mathematics education have lafgahged on children’s thinking

and learning about conceptual foundations of measent: establishing a

21



correspondence between a unit and an object todlasumed, equal partitioning, the
relationship between the size and number of utinéesneed for identical units, the
iteration of same-size units, the accumulationistashce, and an understanding of the
zero point on the ruler (Lehrer, 2003; Sarama &@&ats, 2009; Stephan & Clements,
2003). This section focuses on studies in mathesatlucation that, from a hierarchic
interactionalist perspective and taken togethaggsst that children develop these key
measurement concepts over time (Clements et giregs; Sarama & Clements, 2009;
Sarama, Clements, Barrett, Van Dine, & McDonel,201

By Grade 2, most children develop an understandirtige inverse relationship
between the size and number of units (Carpenteewis, 1976; Lehrer, Jenkins, &
Osana, 1998; Nunes & Bryant, 1996). For examplaesdiand Bryant (1996) found that
some 5-yr old children and most 7-year old childreunld reason that two objects that are
spanned with the same count of units, but diffesered units, have a different measure.

Children in the primary grades exhibit difficultiesth unit iteration (Ellis,
Siegler, & Van Voorhis, 2003; Horvath & Lehrer, 20@ehrer, 2003). For example,
Ellis, Siegler, and Van Voorhis (2003) found a #igant age difference in the
understanding of the concept of unit iteration frdmdergarten to Grade 2. Early on,
children leave gaps or iterate with overlaps (Htin& Lehrer, 2000; Lehrer, 2003).
Researchers have also shown that children exhibdudties with a related concept, an
understanding of the zero point (Lehrer, 2003; Baep Bowers, Cobb, & Gravemeijer,
2004). For example, when using a standard rul@édreim often begin measuring from

the tick mark labeled as “1” on a ruler (LehrerD20 Similarly, when using nonstandard
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units, such as counting heal-to-toe steps, mardests begin their count with their first
movement (Stephan, Bowers, Cobb, & Gravemeijer4200

Results from the National Assessment of EducatiBnagress (NAEP) indicate
that the difficulties with unit iteration documedtby researcher in mathematics
education may persist beyond the primary gradeseXample, when shown an image of
a paper strip placed along a broken section ofeat aind asked to determine the length of
the paper strip, 25% and 22% of Grade 4 studerstwened correctly for 2000 and 1996
NAEP, respectively (Kloosterman et al., 2004; Sawatal., 2004). For a similar item,
40% and 63% of Grade 8 students answered cortfecttife 2000 and 1996 NAEP, and
83% of Grade 12 students answered correctly fol 986 NAEP. Although children
exhibited higher percentages of correct respongessithe elementary, middle, and
secondary levels, these findings suggest that abimgenumerical measurement with the
process of unit iteration develops over time (Ba&eClements, 2003; Battista, 2006;
Clements, Battista, Sarama, Swaminathan, McMill&97).

Most researchers in mathematics education havetigeged children’s
developing conceptions for linear measurementenctintext of straight or rectilinear
paths. The task of determining the length of theelnas largely been regarded as a task
that is beyond the scope of most K — 12 mathem@@lsborne, 1976). However, some
researchers used the context of determining cemnvgth to examine children’s ability to
operate on units and subunits and coordinate lime@sure with another attribute, curve
(see Clements et al., in press; Grugnett, Rizzilag&chini, 2007). Specifically, Clements
et al. (in press) showed that, when measuring eeownith a nonstandard unit, Grade 5

students exhibited strategies of fracturing thestamdard unit to operate on subunits
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around the entire curve. Grugnetti, Rizza, & Manci2007) showed that, in an
instructional setting, tasks involving approximatihe length of a curve elicited
elementary students’ pre-conceptions of the lifitiis suggests that, the task of
determining the length of a curve could be a paaéntfruitful context for investigating
students’ developing abilities to make sense ofws®linformal limit arguments by
discussing processes in which a curve is repreddayténcreasingly large numbers of
segments of decreasing lengths to decrease theiemeasuring and approach a true
length of the curve.

Developmental Accounts for the Learning of Length Masurement

Using a developmental perspective, researcheratheamatics education have
formulated models that describe how children’skhig and learning of length
measurement concepts and procedures developsimeeBeginning with Piagetian
theory (1960), in the following sections | descrée then compare and contrast these
different developmental accounts for length measers.

Piagetian theory. According to Piagetian theory, “[tjo measureadake out of a
whole one element, taken as a unit, and to traeshos unit on the remainder of the
whole: measurement is therefore a synthesis ofistision and change of position”
(Piaget, Inhelder, & Szeminska, 1960, p. 3). Pidgstribed a developmental account of
increasing sophistication beginning wilrceptual measuremeand culminating in
operational measuremerferceptual measurement, which is characterizeddasuring
using visual comparisons, “is inexact and merelyoamative, and it is subject to
illusions or systematic errors (Piaget, InheldeiS&eminska, 1960, p. 29).” The process

of evolution from perceptual measurement to openalimeasurement is complete when
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the child is capable of unit iteration, or “the stmuction of units to measure any distance
in stepwise movement” (Piaget, Inhelder, & Szemang©60, p. 30)

Piaget et al. (1960) specified a developmental atictor the acquisition of
increasing sophistication in the understandingnfth measurement. This account
distinguishes between an intuitive gme@-operationalor perceptual conception of length
measure andperational compositiarPre-operational children (Levels | and lla and-su
stage lIb) do not yet understand the function ohé of measure; however, operational
children (Stages Il and V) conserve length andrdmate between subdivision and
order of position. The following sections detah&et's account of the development of
measurement of length.

Levels| andIla. At levels | and lla, children do not yet conseruedo a lack of
coordination between subdivision and change oftjposiThat is, children at this level
either subdivide without correctly applying the tuofi measure or apply a change of
position of the unit of measuring without adequagelbdividing. At these stages,
children have not yet constructed a unit and doyabhave transitivity; they rely mainly
on visual inspection or motion along a path.

Sub-stage I 1b. Sub-stage IIb is an intermediate stage. At tlagestconservation
is “dimly perceived, and children at this levelalsegin to understanding transitivity in
common measure, and later, even the role of a magaunit” (Piaget, Inhelder, &
Szeminska, 1960, p. 124). Children exhibit growmtherms of coordination, and progress
toward “the beginnings of a synthesis of subdivisamd relations of order and change of
position” (p. 125). Understanding or sophisticatismeached by trial-and-error.

Understanding of transitivity may be pre-operatlarantuitive here. Although children
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at this stage do not necessarily appreciate the foeexhaustively using same-size units,
their understanding of a unit of measure increéisesigh the process of trial-and-error.

Stagelll. Stage Il marks the transition to operational measat this stage,
children coordinate subdivision and change of pmsitherefore, they are able to
conserve. Within this stage, children at level Bidhibit evidence of operational
transitivity without being able to subdivide a Iémgnto equal parts. At level llib,
children have both operational transitivity and ¢apability of subdividing a length into
equal parts, which is unit iteration.

Stage I V. At stage IV, children are capable of deductive cosmpon. Children at
this stage may initially engage in reasoning alspetific cases using trial and error.
Eventually, though, children at Stage IV may itigji@ngage in actions that are
experimental at first, their actions “eventuataireversible operational grouping, so
coordinated as to yield universal generalizatiohgivare deductive and necessary and
which therefore transcend experience” (Piaget,ltdre& Szeminska, 1960, p. 208).
That is, children at Stage IV are able to genegdiiam specific cases to form a logical
deduction.

Following in the tradition of Piaget and his caligies (1960), researchers have
investigated how children develop sophisticatiothir thinking about length and
measure over time (e.g., Barrett & Clements, 2@28rett et al., 2006; Battista, 2006;
Clarke, Cheeseman, McDonough, & Clarke, 2003; Ciemet al., 1997; Sarama &
Clements, 2009). Clarke, Cheeseman, McDonoughCéantte (2003) and Battista
(2006) discussed the development of frameworkghi®igrowth of children’s

conceptions of length for the purpose of informgngfessional development. In each of
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these projects, the primary purpose of the framkwa@s to inform formative assessment
in the classroom. Sarama and Clements (2009) ssindtkeearlier work (e.g., Barrett &
Clements, 2003; Barrett et al., 2006; Clement$.£1897) into the length LT described
above.

Early numeracy research project (ENRP) framework The ENRP was a
research and professional development project adadun Australia in which teachers
utilized a framework consisting of “growth points’early mathematics learning (Clarke,
Cheeseman, McDonough, & Clarke, 2003). The framkvarlength measurement,
which was also meant to address mass, was infobyegtailable literature (e.g., Brown
et al., Dickson, Brown, & Gibson, 1984; PengellyR&nkin, 1985; Wilson & Rowland,
1993), and used to develop assessment items tt @ath of the growth points. The
classroom teachers who participated in the praetiucted this assessment in an
individual interview format with students in thewn classrooms. Based on this
assessment, particular growth points were assiggngee children. The framework for
length (and mass) measurement consisted of fingtgrpoints:

1. At the first growth point (GP1), children show amaaeness of the attribute of
length and its descriptive language.

2. By the second growth point (GP2), children comparder, and match objects by
their lengths.

3. Next, at the third growth point (GP3), children egyriately use uniform units.
That is, children are able to assign number anttarthe measure of length.

4. Children at the fourth growth point (GP4) choosd ase formal units for

accurately estimating and measuring length.
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5. By the fifth and final growth point in this framewo(GP5), children solve a
range of problems that involve important concepts skills that are related to
length and its measure.

This growth points framework for length measurenveait meant to provide “a sense of
the typical order in which important understandiagsd skills develop” (p. 71).
Cognitively based assessmenin the United States, Battista (2006) designed a
developmental account of elementary children’skinig about length measurement
based on his own empirical work within his CogretiwBased Assessment (CBA)
project, which was a professional development ptofattista posed a two-part
hierarchical account for the development of chitdsdength measurement concepts.
Each part consists of levels, which describe cognftlateaus that children reach as
reasoning about length and measure evolves frofartiral, pre-instructional reasoning
to formal mathematical reasoning about length” {iB&, 2006, p. 141). This framework
includes a 4-level account of the development oFm@asurement reasoning and the
second characterizes the development of measureesstning in 6 levels (Barrett &
Battista, in progress). According to Battista’sdksvof reasoning for length measurement,
non-measurement reasoning “involves using viswddnuents, direct comparisons,
correspondences between parts, and transformatjpn$41). Measurement reasoning
then “involves determining the number of unit ldrgythat fit end to end along an object,
with no gaps or overlaps” (Battista, 2006, p. 144his framework, non-measurement
reasoning often emerges before measurement regsdnithcontinues to develop even

after measurement reasoning appears.
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CBA and non-measurement reasoning. The account of non-measurement begins
with NO. Children at this level rely on holistic visualmparisons. At the next leve\ll,
children correctly compare straight paths eithengi¢a) direct comparison by placing
objects next to each other or (b) indirect comparisy comparing objects using a third
object. At theN2 level, children manipulate or compare parts of plax paths in a
systematic way; this level consists of two sublsvki the first sublevel, students can
rearrange pieces of paths to make new paths fquutmse of making comparisons. In
the second sublevel, rather than transform oneipaihhe other, students compare paths
by matching same length pieces one-by-one in pBivs.second sublevel is a conceptual
advancement from the first because, at the fiigkesael, children rely on visual
comparisons or manipulations, but at the secorel ey make inferences about the
length of the entire path based on comparisonseopieces of the paths (Battista, 2006).
At the N3 level, children make property-based transformatidinat is, students make
comparisons by transforming paths in ways thatrmfmferences based on geometric
properties of shapes.

CBA and measurement reasoning. At the first measurement levéMlO, children
do not connect number to unit iteration. They oftecite numbers while continuously
moving their finger along a path or count dots withrecognizing their count as an
indicator of length. At th&11 level, children attempt to iterate units, butially do so
incorrectly because they iterate with gaps, ovetlap different size units. Eventually,
they are able to iterate correctly along straigtthp. By thevi2 level, children iterate
correctly along all path types (straight, bent, aloded), and at levéli3, they can

operate on these iterations logically (by makirfgriences) and numerically (by adding,
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subtracting, multiplying, and dividing). At thé4 level, children make property-based
transformations, iterating unit lengths is not resegy because children can operate
inferentially or numerically on length measuremeptsthe highest levelM5, children
can understand and use formulas and variabledi@hican understand and apply
perimeter formulas and use variables in their nei@gpabout length (without referring to
specific numbers).

Learning progressions in science educatiorbevelopmental accounts for the
acquisition of knowledge of length and its measreeof interest to science educators as
well as mathematics educators. Parallel to thearistruct that contributes to the
conceptual framing of this study, science educdtax® outlined learning progressions
(LPs) as “descriptions of successively more soaittd ways of thinking about a topic
that can follow one another as children learn albodtinvestigate a topic over a broad
span of time (e.g., 6 to 8 years)” (National Resle&ouncil [NRC], 2007, p. 214). These
LPs are critically dependent upon instruction (NRQ@)7). According to an NRC
Committee on Science Learning (2007), LPs in s@eare anchored on one end by what
is known about young children’s reasoning and endatimer end by societal expectations
with respect to what older children should knowwtsrience. These progressions “are
also constrained by research-based conceptualoaial analyses of the structure of the
disciplinary knowledge and practice that is toderhed” (p. 220).

A well-recognized LP in science education is theftuPthe atomic-molecular
theory of matter (LP for AMTM), which is a core mlen modern science, which was
developed by Smith, Wiser, Anderson, and KrajclBO@. The LP for AMTM describes

a progression of more sophisticated answers tqubstions regarding (a) what are
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things made of and how can one explain their ptagser(b) what changes and what stays
the same when things are transformed, and (c) hewnew. Measurement plays an
important role across all three questions. Howeaves critically important for addressing
the third question because, from this perspectine,learns about the world through
measurement, modeling, and formulating and makemge of arguments (NRC, 2007, p.
364; see also Smith, Wiser, Anderson, & Krajcik)@0

According to Smith, Wiser, Anderson, and Krajck(6), measurement is a
practice that is enabled by scientific knowledg®nkthis perspective, measurement
involves ordering and quantifying. Ordering, or gring along a dimension, involves
going beyond categorization toward conceptualiarmgntinuous dimension, such as
weight, temperature, hardness, or density. Quangifgncompasses measuring
“important physical magnitudes such as volume, Weidensity, and temperature using
standard or nonstandard units” (Smith, Wiser, Asdey & Krajcik, 2006, p. 8). The
process of measuring itself “is a form of mathegatmodeling and goes hand in hand
with developing deeper conceptual understandinglseophysical quantities in question”
(p- 8). Smith et al. noted that many practices Ethby scientific knowledge are not
limited only to the domain of science; they areshee practices that people use to
“make sense of the world on everyday terms” (p. 9).

Smith, Wiser, Anderson, and Krajcik (2006) outtitree components of this big
idea that are elaborated throughout the progre$siom Kindergarten through Grade 8:
a) Good measurements provide more reliable andilusédrmation about object

properties than common-sense impressions, b) nmapisliconcerned with capturing key
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relations among ideas rather than surface appegrand c) arguments use reasoning to
connect ideas and data.

In Kindergarten through Grade 2, children learpamant conceptual foundations
of good measurement practices. That is, they lgmati‘good measurements use
iterations of a fixed unit (including fractionalpsof that unit) to cover the measured
space completely (no gaps)” (NRC, 2007, p. 364§1ades 3 through 5, children
become aware that “measurements can be more grrlegse and there is always some
measurement error” (p. 365). Later, in Grades 6uin 8, children become aware that
“sources of measurement error can be examined @aatifed” and that “we can learn
about properties of things using indirect measurgir(@. 365).

A Comparison of Developmental Accounts for Length Masurement

Table 1 below illustrates the relationships betwiendevelopmental accounts
for children’s conceptions of length measuremenbeting to Piagetian Theory (Piaget,
Inhelder, & Szeminksa, 1960), ENRP (Clarke, CheesemicDonough, & Clarke,
2003), CBA (Barrett & Battista, in press), and kegth LT (Clements et al, in press) as

well as the LP for AMTM (Smith, Wiser, Anderson,K&ajcik, 2006).
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Table 1

A Comparison for Developmental Accounts for Lemg#asurement

Piagetian ENRP* CBA LP for
Non-Measurement Measurement Length LT
Theory : . AMTM
Reasoning Reasoning
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. - and distance as
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Level I and Ila GP1 perceptual,
. comparisons
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w . . N1 LDC
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: . straight paths physically or
applying unit or  of length and .
. . o Nla mentally aligns
applies change its descriptive . . .
o direct comparison MO objects to compare
of position language
: does not connect ILC
without )
number to unit compares lengths of
adequately N1b . . . .
Y - . iteration two objects using a
subdividing; indirect comparison . N >
. third object; applies
relies on o :
inspection or transitive reasoning
. GP2 N2 EE
motion along a . .
compares, manipulates or K-2 lays units end-to-end
path .
orders, and  compare parts of Measurement  to measure linear
matches complex paths in a good extent (not
objects by systematic way measurements necessarily using
length N2.1 use iterations same-sized units);
GP3 rearrange pieces of of a fixed unit the number of these
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appropriately paths to make new

uses uniform paths for the
Sub-stage llb  units; assigns purpose of making
may not number and comparisons

appreciate the  unit to the
need for same- measure of

size units; length
- M1
understanding of .
o attempt to iterate
unit increases ; L
. units, but initially
through trial- :
do so incorrectly
and-error
because they
Stage Il , .
e iterate with gaps,
transitions to
operational overlaps, or
P , N2.2 different size
measure; : o
. makes inferences units; eventually
coordinates .
. about the length of iterates correctly
subdivision and . :
the entire path along straight
change of
based on paths

position; able to
conserve

Sub-stage llla

have operational

comparisons of the
pieces of the paths

transitivity
without ability to GP4 M2
subdivide a uses formal correct iteration
length into equal  units for on all paths
parts accurately M3
Sub-stage lllb estimating operate on
have both and iterations by
operational measuring making

(including units that fit
fractional parts  describes length
of that unit) to LURR

cover the Iterates a single unit;

measured begins to appreciate

space the need for same-
completely (no  size units; relates
gaps) size and number of
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lengths to obtain a
whole
CLM
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to increase
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lengths along
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; segments along
there is always
curves to reduce
measurement

overall error
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unit iteration

Stage IV
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specific cases to

form a logical
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based
transformations
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accuracy in selection

length Y
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Length Conservation

Aside from the Piagetian (Piaget, Inhelder, & Szgsa, 1960) account of the
learning of length measurement, the developmentadunts summarized in Table 1
above all articulate levels of sophistication fonceptual and procedural knowledge for
length measurement. In Piaget and his colleaguesk {1960), the role of conservation
of length, the recognition that length remains neat under transformation, constrained
concept growth for length measurement. Accordingischbein’s (1987) theory on
intuition, the ability or inability to conserve Igth is an intuitive apprehension.
Therefore, Piaget’'s account of the learning of tengeasurement also attends to
intuition as length conservation.

In the decades after Piaget and his colleaguegé€Rilnhelder, & Szeminksa,
1960) published their findings, researchers in ewidtics education (see Carpenter,
1975; Hiebert, 1981a, 1981b) showed that childreaiscept growth for length
measurement is not constrained by the developnie@nservation. For example, in his
work with some length conserving and non-consereimtgiren in Grade 1, Hiebert
(1981a, 1981Db) investigated the effect of instarcon some of the key conceptual
foundations of length measurement, such as umétiten and the relationship between
the size and number of units, on their ability domserve length. He found that children’s
ability to iterate units of length had no impacttbeir ability to conserve; however,
recognition of the relationship between the size mummber of units needed to measure a
length was related to conservation.

Results from research have indicated that theistsea general lack of

relationship between the conservation of lengthwamerstanding of length measurement
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concepts and procedures (Clements, 1999; LehréB)2Uherefore, for the case of
length conservation, research has shown that éhesés a general lack of relationship
between intuition for path length and conceptua procedural understanding of length
measurement.
Intuitions for Path Length

Researchers have explored students’ intuitionstdkagth in the contexts of
rectilinear paths (Barrett & Clements, 2003; CHi896). Chiu (1996) explored sixth
grade students’ origins, uses, and interactiorstuafents’ intuitions in the context of
comparing rectilinear paths. In keeping with Fisaihts (1987) characterization of
intuition, he defined intuitions as “self-evidergtions that are robust, holistic, and
conceptual” (Chiu, 1996, p. 479). First, intuiticare robust because they are applicable
in many situations and alternatives are not pldeslhtuitions are holistic because they
retain meaning only as a whole. Finally, intuiti@e conceptual because creating and/
or applying an intuition requires conceptualizireybnd just immediate perception.

The sixth grade students in Chiu’s (1996) stugheatedly used a limited number
of intuitions, which originated from their everydaxperiences: compression, detour,
complexity, and straightness. Students who useddhgression intuition discussed the
unfolding or straightening of the path and refet@d path as being longer than it seems
because it is compressed. The detour intuition agoleas students discussed a path in
terms of its wandering away from the destinatiod@ng something else instead of
moving toward it. The complexity intuition emergasl students attended to the number
of components such as segments or turns when corgpactilinear paths. Students who

relied on the straightness intuition chose a paldicpath as the shortest because it was
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straighter than another path without providingificgttion. Chiu distinguished these four
intuitions from analytic procedures and compleoathms. An analytic procedure, such
as using a ruler to measure each path and compherigngths, or applying an “align-
and-compare algorithm” (Chiu, 1996, p. 485), whitbolves projecting corresponding
horizontal and vertical segments, are not intugion

Chiu (1996) posed one rectilinear path length camspn task within each of two
problem-solving sessions. In the initial sessianfitst posed the tasks of ranking the
lengths of three rectilinear paths. For childrerowdid not solve the problem, he provided
access to a ruler, graph paper, index cards, @dipsr rubber bands, string, scissors, and
tacks to afford the opportunity for the child ta gerceptual feedback. If a child did not
use the align-and-compare algorithm, he encourttlgeedhild to construct the algorithm
through the use of guiding questions. He found ¢vaty child used at least one
intuition. Many of the children used a variety ofuitions when comparing and ranking
rectilinear paths by length; these intuitions supgabone another in some instances and
provided conflicting information in others. Evenafbeing taught an applicable
algorithm for comparing sets of rectilinear patlgddngth, they first used their intuitions
before applying the algorithm. Chiu concluded tn&ldle school students’ intuitions for
rectilinear paths were sparsely connected and staekwith standard mathematical
knowledge, such as the align-and-compare algorithm.

Chiu (1996) regarded these intuitions not as nmseptions, but as productive
knowledge pieces. He suggested that children “reagnlmore by assessing them with
more sophisticated criteria, such as range of egiplity, ease of use, and coherence with

other ideas” (p. 500). Many of the children appleedariety of intuitions to solve the
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problems that Chiu posed; therefore, he argueth&ruction that helps children
“develop tools to coordinate and elaborate theereiy avoiding indecision and
capitalizing on learning opportunities” (p. 500nhiC suggested that children’s intuitions
for path length serve as an important foundatiomfathematical concepts. For example,
the detour and straightness intuitions are pagityipowerful for understanding the
triangle inequality theorem. Imagining decomposartgangle into two paths, a straight
path consisting of a single segment and a bentqmatkisting of two segments, and
comparing those paths by length can help childréntheir path length intuitions to
formal mathematics.

In their work, Barrett and Clements (2003) foundience of intuitive thinking
for path length when investigating children’s deypghg abstractions for linear
measurement. Over the course of their six-montthiag experiment with four children
in Grade 4, students were presented a task inglip4-unit notched straw
manipulative to make rectangles and triangleshbdta perimeter of 24, and drew
records of the rectangles and triangles they hatkmath the straw manipulative. When
asked to respond to a fictitious student who hathtibcounted corner tick marks in a
drawing of a straw triangle, one of the four studeAlex, said that tick marks at corners
should be counted twice because “corners coumhtwe.” Alex explained that paths
with more corners are longer because one musttore when traversing them. Barrett
and Clements (2003) noted that Alex’s explanatsoevidence of Chiu’s (1996)
description of intuitive thinking for path lengtivhich is deeply ingrained and based on
children’s informal experiences. Alex’s responsggasts that his developing

abstractions for linear measurement, with resgeestablishing exact correspondence
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between counting and linear dimensions of pathsract with his intuitive thinking for
path length.
Psychological Foundations of Intuitions for Path Lagth

Studies in mathematics education (i.e., Barre@l&ments, 2003; Chiu, 1996;
Clements, Battista, Sarama, & Swaminathan, 1996&hdIimore, 1997) and psychology
(i.e., Montello, 1997Pressey, 1974; Thordyke, 198hgve explored the psychological
foundations of intuitions for path lengfihe complexity intuition (Chiu, 1996), observed
by an attention to the number of segments or twimen comparing rectilinear paths, has
been documented by psychologists across sevethéstifllen (1981) and Montello
(1997) documented the “route segment” hypothedimscimthey described as people’s
tendency to provide longer estimates for pathsdahapartitioned into several separate
segments. Sadalla and Staplin (1980) observeditécleffect” on people’s judgments
or estimates for path length. In their study, peapho crossed several intersections
estimated length to be longer than people who etb&swver intersections. Byrne (1979)
found that people tend to overestimate lengtheutes with a greater number of bends.
Thorndyke (1981) observed a similar phenomenohidrstudy, he concluded that people
overestimate length of routes with a greater nurobertervening points. All of these
studies suggest that the complexity intuition isust across a wide age range and across
a wide variety of contexts (e.g., Thordyke, 198bs&lyn, Pick & Fariello, 1974; Luria,

Kinney; & Weissman, 1967; Pressey, 1974).
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CHAPTER 1l
METHODOLOGY
Introduction
In this chapter, | discuss the design of the gat@i research methodology that
guided the study. | then describe participant $ele@nd data collection procedures.
Next, | discuss the design and coding, as welrasgalures used for measuring the
validity of a participant selection instrument, atten length measurement assessment.
This is followed by a section in which | describ@ahinterview participants were selected
and interview data were collected. Finally, | expldne design of the interview tasks,
highlighting the purpose for including each tasle imethods used for analyzing
students’ responses for the interview data, angbtbeedures used for the frequency
analysis that informed elaborations to the curhgmiothetical learning trajectory (LT) for
length measurement (Clements et al., in press).
Overview of the Study Design and Procedures
The study seeks to relate students’ intuitive amalytical thinking for path length
to an LT for length measurement (Clements etralpress). Specifically, this study
explores the intuitions and analytical strategied elementary, middle, and secondary
students use when comparing rectilinear as wetbaglinear paths in two-dimensional
space by length, which has not been addressedbingtudies. This study is exploratory

in nature; therefore, | planned it according taaib qualitative research design
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(Merriam, 2009) so that | would be able to folloemnor unexpected themes present in
the data. The design of this study makes use ofteewlength LT-based assessment
administered to a sample of students and structteiekl-based interviews with a subset
of the sample (Goldin, 2000). The design of thiglgtwas informed by methods used in
previous research that was focused on extendingdrTiength (Beck, Eames, Cullen,
Barrett, Clements, & Sarama, 2014), volume (Ka@d,3, and area measurement
(Cullen, Miller, Witkowksi-Rumsey, Barrett, & Saramn?2011). These studies made use
of a similar methodological organizing structure éatending an LT. Key elements of
this method of extending an LT include a) desigriagks that reveal student thinking for
an aspect not addressed in the LT, b) presentogettasks to a sample of students that
include some students at the same LT levels an@ soadjacent LT levels, c¢) describing
and differentiating students’ responses to eadt) tagl d) comparing the strategies of
students within the same LT level and across adjdcE levels to inform
recommendations for extensions to the LT.

In the present study, the aspect not addressi@ inT were student’s intuitions
and analytical strategies for comparing sets dilneear or curvilinear paths. | designed
task-based interviews (Goldin, 2000) to reveal stusf intuitive and analytical thinking
for rectilinear and curvilinear paths. In additibmised a written length LT-based
assessment, which was designed to probe studbimkirtg at different levels of the
length LT so that the level best describing eactigypant’s conceptual and procedural
knowledge for length measurement could be idexutifiie the purpose of recruiting a
sample of students that include some studenteagaime LT levels and some at adjacent

LT levels. | coded students’ responses to the evritiT-based assessment using the
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length LT. | described and differentiated studergsponses to the structured, task-based
interviews (Goldin, 2000) using an existing codgafpeme (Chiu, 1996) and a constant
comparative method (Corbin & Strauss, 2008). | tbempared strategies among
students within the same level and across adjdeeals to inform recommendations for
extending the length LT with respect to studentslitions and analytical strategies for
rectilinear and curvilinear path length.

Because one of the goals of this study is to ektka literature on children’s
conceptions of length measurement beyond elemeatgy children to include middle
and secondary school students, | recruited pasatntgofrom Grades 4, 6, 8, and 10 as
both a convenient and purposeful sample. The writle-based assessment (Appendix
A) was administered as part of regular classroatmities to all of the students in each
grade included in the study for the purpose of pr@istudents’ thinking at different
levels of the length LT and identifying the levieat best described each student’s level
of sophistication for length measurement. The lendt level placements attributed to
each of the students in the entire sample inforthedelection of a subset of these
students to participate in two individual, taskdxhterviews designed to probe
students’ intuitive and analytical thinking for tdéiaear and curvilinear path length.

Participant Selection and Data Collection Procedure
Participants and Context for Research

The sample consisted of 82 consenting studentsa2R in Grades 4 and 6, 20 in
Grade 8, and 18 in Grade 10. | recruited partidp&mom two different private schools in
the Midwest, one for pre-K — 8 students and anditrepre-K — 12. At the pre-K — 8

school, | selected participants from two classes @aGrades 4, 6, and 8. | selected the
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18 consenting Grade 10 participants from the predR school where there were a total
of 22 Grade 10 students enrolled in Algebra |, Algell, and advanced math.

The pre-K — 8 school, from which | recruited thadents in Grades 4, 6 and 8
offers an academic program that includes five soifgects: language arts, math, reading,
science, and social studies. Classes in religibysipal education, art, computers, choral
music, and instrumental music are also included.

The pre-K — 12 school, from which | selected thrad& 10 students is an
independent liberal arts, college-preparatory scitadents at all levels take six core
subjects: Bible, history, English, science, matid foreign language. In addition,
students in Grades 9 through 12 may elect to tekenasic, physical education, or
technology to supplement the six core subjectsl-bDueglit and on-line courses are also
made available to them.

Data Collection Procedures

| administered a participant selection instrumantyritten length LT-based
assessment, to all Grade 4, 6, and 8 students ar¢hK — 8 school and Grade 10
students at the pre-K — 12 school. | coded assegsrfa the 82 consenting students
using the levels of the length LT; these codingcpoures and methods for analysis are
described in the sections below. Based on thetsestithis assessment, | recruited a
subset of 16 students, who represented the fodedesels and four length LT levels
relevant to the present study, to participate io stvuctured task-based interviews.
Participant Selection Instrument: Design and Coding

Prior to the study, | anticipated that most of shedents across Grades 4 through

10 would be operating within the Consistent Leng#asurer (CLM), Conceptual Ruler
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Measurer (CRM), Integrated, Conceptual Path MeagiC&M), and Abstract Length
Measurer (ALM) levels of the length LT. Thereforsgelected items, which were initially
developed and refined through a process of pilosiiiigin NSF-funded projects aimed at
studying elementary (DRL 0732217) and middle sciib&L 1222944) students’
conceptions of spatial measurement, to be accedsilstudents within the these four
levels.

Each assessment task was designed to elicit oliderstrategies that are
indicative of particular mental actions and objebtst differentiate the levels of the
established length LT (Clements et al., in preéSe)ne of the tasks included in the written
LT-based assessment were designed to reveal thiakia variety of LT levels. For the
purpose of designing the LT-based assessmentifostiidly, | mapped tasks to the
highest length LT level of thinking they have betiown to elicit in prior research (DRL
0732217; DRL 1222944). To provide confidence inleéhwel placement assigned by this
instrument, | included two items each for the CLdé€ Figures 1 and 2) and CRM levels
(see Figures 3 and 4). Because prior researchdwasrebnted difficulties with designing
items that can differentiate students at the higleesls of the length LT (Clements et al.,
in press), | included a set of three items to pstineents’ thinking at the ICPM and
ALM levels (see Figures 5, 6, and 7). The followsegtions describe my design, the
purpose of including each task, as well as the atstlor procedures that | used to
analyze students’ responses to the written lengithésed assessment.

CLM level items. Assessment Tasks 1 and 2 shown in Figures 8 aetb@&b
have been shown to elicit thinking at the EE, LURRCLM levels of the length LT

(Barrett et al., 2012). Therefore, in the preséundys | regarded them as CLM-level
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items. (Note: The actual length -based assessmtan the form that was administered

the Grade 4, 6, 8, and 10 classes is included peAgix A.

4 5 13 7 8

Using the drawing of a part of a ruler as a guide, measure the strip of paper
shown above it. How many inches long is the strip?

Figure 8.Written LT-based assessment Cllevel item, Task 1.

inches

This is a picture of a rod just below a broken section of a ruler. Use this picture
to measure the length of the rod. How long is the rod?

Figure 9.Written LT-based acessment CLM level item, Task 2.

The CLM level items shown in Figur8 and 9were designed to investigate stude
ability to integrate intervals and endpoints ofdgdanterval (Barrett et al., 2012; Culle
2009) For example, when resolving the misaligned papgy item in Figure8, students
who report the length of the misaligned paper €tsfY, the number corresponding to
endpoint, have developed the implicit concepts dhgtcts can be composed of sme
objects and that a count of those objects can septe&a measuref an attribute of al
object. However, they have not yet developed tineept of unit iteration; this |
consistent with EBevel thinking. Students, who incorrectly counktimarks and repo
the length of the paper strip as 6, have begumeveldp theconcept of unit iteration. Th
tick mark counting strategy is indicative of LU-level thinking. Children who correct
resolve this task by counting intervals, correcthynting tick marks at the end of e¢

interval, or operating arithmetically on mures (i.e., computing 72) and answer £
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show that they see a measure as a ratio compdrgtaeen an object and a unit, and t
have a welldeveloped concept of unit iteren. This is consistent with CLNevel
thinking. Therefore, tonsiderecthis item to be a CLMevel item when designing tt
written length LTbhased assessment. Task 2 (Fi¢9), which involves fractional unit:
also probes students’ capabilities for maintairihig integration of intervals ar
endpoints for units, inches, and srdinate units, quarter inches.

CRM level items Assessment Tasks 3 and 4 (Figures 10 afdhdve beel
shown to indicate whethstudents are at the CRIgvel of the length LT or are not yet

CRM (Clements et al., in pres
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Find the measure of the missing side length.

Figure 10.Written LT-based assessme¢CRM level item, Task 3.
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start end

Find the length of the total path, from start to end, shown above.

Figure 11.Written LT-based assessmeCRM level item, Task 4.
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These two tasks were designed to explore studeapsibilities for projecting ¢
translating given lengths to determine missing fea(Clements et al., in presin the
context of a rectilinear figure, Tas (Figure 10) and a rectilinear path, Tas (Figure
11). A correct numerical response of 9 for Task 3 or &itOrask 4 indicates that
student is capable of projecting or traning given lengths to determine one or m
missing lengths, which is consistent WCRM level thinking. An incorrect respon
indicates that a studentn®t yet at the CRM level.

ICPM and ALM level items. Assessment Tasks 5, 6, and 7 (Figi12, 13, and
14) have been shown to be accessible to childreémeatt M, CRM, ICPM, ancALM
levels of the length LTDRL 073221"; DRL 1222944) Specifically, Tasks 5 and 6 we
designed to explore students’ ability to find seVeelated cases of polygons with -
sane perimeter and to relate those cases to oneanmtHogical comparison, which
ICPM level thinking(Clements et al., in pre«. Task 6 also reveatgudents’ abilities fo
coping efficiently and precisely with subordinatats in the context of fiding related
cases of polygons with the same perimeter. Paot bdth items 5 and 6 also have
potential to reveal whether students are awarestitadividing a unit into subunits is
process that is potentially unlimited, whictALM-level thinking.

Imagine making an L-shaped path from a string that is 10 cm long.

a. How many different L-shaped paths would you be able to form in all?

b. Use the space below to explain how you got your answer and why you think
your answer is correct.

Figure 12.Written LT-based assessmeCPM and ALMIevel item, Task !
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a. Use the space below to sketch two different rectangles, each having a
perimeter of 2 inches. For each of your rectangles, label the lengths of all
four sides.

b. How many more rectangles have a perimeter of 2 inches?

Figure 13.Written LT-based assessmeCPM and ALMIevel item, Task ¢

ForTasks 5 and 6, drawings that reflect geometricnsiencies, such as a rectar
with opposite sides labeled as different lengindicate that a student dc not yet
coordinate linear extent with geometric propertigss is consistent witthe CLM level.
Studentavho provide drawings that ¢ not geometrically inconsistebtit do not show
evidence of coordinatingsetof comprehensive cases exhibit the CRMel. Responses
that reflect several related cases of paths wihstime length or polygc with the same
perimeteras well as evidence of relating those cases t@aoather by logica
comparisonindicate an ability to conceive of a group of uritsa flexibly wrappe
string along the length of a path or perimeter pblygor; this is constent with the
ICPM level(Clements et al., in pre:. Responses that reflected a synthesis of se
paths with a fixed length or polygons with a fixgefimeter, including those with n-
integer segments or side lengths, to formulatejastify an argment, while attending t
the potentially unlimited process of subdividingtanexhibitthe ALM level (Clement:
et al., in press).

The final task included on the written length-based assessment, Tasiwas
designed to assess students’ ability to coordigabtenetric properties, such as an
with linear extent. These mental actions are coasisviththe highest level of th
current LT for length measurement (Clements efrapress). Task 7 is sho in Figure
14 below.
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You need to bury a wire in your backyard that connects points A and C. One
option is to run a 10-foot wire directly from points A and C, which is indicated by
the solid line in the picture below. Another option is to run a wire from point A to
C through point B, which is indicated by the dotted line.

We know that points A and B are 10 feet apart. However, no one measured the
length of the path from A to C through point B (the dotted line).

10 feet

a. Use the space below to explain how Jong you think the wire will need to be
to connect points A and C through B.

b. Use the space below to explain how much wire you will buy so that you can
be sure you have enough to connect points A and C through B.

Figure 14.Written LT-based assessmeCPM and ALMlevel item, Task ~
Written Length LT- basedAssessment: Task-by-Task Analysis

| coded ach student’s response for each of the seven ibéthe written lengtt
LT-based assessment using the levels of the lengthdsed on the observable strate:
used to generate a solution. Because the levéledéngth LT are described in terms
the observable strategies and corresponding meritahaor objectsl then usethese
strategies to assign a length LT level claim farrestudent for each of the seven task:
the assessment instrumel coded sudents’ observable strategies, whictre not
consistent with any of the levels of the length B%,"No Claim.

| tracked he distribution of the level claims for each taskwmn and across eac
grade.l then compared theistributions of level claims for conceptually congnt tasks

such aghe pair of CLM item, Tasks 1 and 2 (Figures 9 and 10}),the purpose c
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describing the validity of the items with respexessessing the mental actions

objects associated with the intended length LTIle&wethe gradsincluded in the stud
| coded students’ responses to Tasks 1 and 2 asUHER|or CLM.The

distribution of levels exhibited by the 82 Gradé43, and 10 students’ responses

Tasks 1 and Bsee Figure9 and 10) are shown in Figure 15 below.

ALM ALM
ICPM ICPM
CRM CRM
| v AIETEEN | s ESRIEREE
LURR 27% 20% 11% LURR 32% 20% 11%
EE 27% 32% 5% 17% EE 5% 23% 5%
NC NC
Grade 4 Grade 6 Grade 8 Grade 10 Grade 4 Grade 6 Grade 8 Grade 10
N=22 N =22 N =20 N=18 N =22 N=22 N =20 N=18
Task 1 Task 2

Figure 15 Distribution oflength LT levels for Tasks 1 and 2.
Figure 15shows that the distribution of level placementdimittach grade is genera
consistent across Tasks 1 anThe percentage of students within each grade
exhibited CLM level thinking on Tasks 1 and 2reased from Grades 4 to 6 and a(
from Grades 6 to 8. However, the increasfrequency ofCLM level thinking remaine:
consistent across Grades 8 and 10. Fewer instah&ds level thinking were observe
on Task 2, the fractional broken ruler taskn on Task 1, the integer broken ruler t

| coded students’ responsor Tasks 3 and 4 (see Figuresat@ill) as either
CRM or not yet CRMFigurel6 below illustrates the distribution of students’pesses

to Tasks 3 and 4 within each of Grades 8, and 10.

ALM ALM
ICPM ICPM
CRM| 9% 27% _ [N75%No0% CRM 9%
not yet CRM 25% not yet CRM 28%

CLM CLM
LURR LURR

EE EE

NC NC

Grade 4 Grade 6 Grade 8 Grade 10 Grade 4 Grade 6 Grade 8 Grade 10
N=22 N=22 N =20 N=18 N=22 N=22 N=20 N=18

Task 3 Task 4

Figure 16 Distribution oflength LT levels for Tasks 3 and 4.
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The distribution of CRM” and “not yet CRM level thinking within each grade is large
consistent across Tasks 3 and 4. However, withth geade, fewer students usCRM
level thinking on Task 4 than on Task 3. Figl6illustrates a pattern of increas
instances of CRMevel thinking across Grades 4, 6, 8, and 10. ®att higher grad
levels, higher percentages of students ICRM level thinking to resolve Tasl3 and 4.
| coded sudents’ repsonses on Tasks 5 and 6 as No Clait; (CRM; not yet
ICPM; (ICPM), which indicates some evidence of ICRMel thinking; ICPM; ant
ALM. Figure 17below shows the distribution of level claims forska 5 and 6 withil

Grades 4, 6, 8, and 10.

ALM 10% 33% ALM 10%

T
ICPM|  14% 9%  [EHIN 2% ICPM 18%  [40% N 39%

(IcPm) 9% (IcPm) 23% 32% 25% 6%

notyet IcPM(32%  EEZI  15% 10% 6%

15%

6%

Grade 4 Grade 6 Grade 8 Grade 10 Grade 4 Grade 6 Grade 8 Grade 10

N =22 N =22 N=20 N=18 N=22 N =22 N =20 N=18
Task 5 Task 6

Figure 17 Distribution oflength LT levels for Tasks 5 and 6.

Between 30 and 45% of students’ responses withih geade were coded as “No Clai
for Task 5; whereas, only 6% of students in onglsigrade level, Grade 10, were coi
as “No Claim” for Task 6. This suggests that Taskdy not be a valid task foriciting
students’ thinking at the CLNCRM, ICPM, and ALMlevels of the length LT. For Tas
5 and 6, instances of thd.M level did not emerge until Grades 8 and 10, wittigher
percentage of occurrersen Grade 10. Tasks 5 and 6 showed thatlien & young as
Grade 4 showedvidence of ICPM levi thinking. For Task 6, instances of “not y
ICPM” decreased across Grades 4, 6, 8, and 10n€laf some evidence of ICPM le\

thinking, denoted as “(ICPM in Figure 17jncreased from Grade 4 toFull placement
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at ICPM, denoted as “ICPM” in Figul6, increased from Grade 6 tpahdremained
stable across Grades 8 and 10. Instancthe ALM level increased from Gras 8 to 10.
| selectedlrask 7 on the written length l-based assessment ($eégure 14) to
revealstudents’ thinking at e ALM level of the length LT; bwever, students’ respons
to this task yieded codes of “No Claim” in mosttarxes. Thereford did not conside
this task forfurther for analysis within and across Grades 4, and 10.
Written Length LT- basedAssessment: The Distribution of Level Ricement:
Based on the collection of seven tasks, which nugdiae written length L-
based assessmehtnadea predominant length LT level claim for each of 8&
participants in theample (22 students in Grades 4 and tin Grade 8, and 18 in Gra
10). | trackedhe distribution of aggregate level claims withirdacross the grade leve
for the purpose of comparing the performance ohéaierview participant to their pee

Figure 18below illustrates the distribution of these levielggments within each gra

AM| 0% 0% 0% [NSERIN
ICPM| 0% 5%  [00E0% T 2%
cRM| 0% [N 30% 2%

10% 0%
LURR 32% 18% 5% 0%
EE 27% 23% 5% 0%
Grade 4 Grade 6 Grade 8 Grade 10
N=22 N=22 N =20 N=18

Figure 18 Distribution of predominant length LT levels witlreach grad

In Grade 4, all of the students placed in the BERR, and CLM levels of the LT fc
length measurement. Most of the students in Gragehtbited EE, LURR, and CL!
level thinking, but some students showed evidemggawth into theCRM (27%) and
ICPM (5% levels. In Grade 8, most of the students showgtkace 0iICRM (30%) and
ICPM (50%) level thinking; however, the lowest 2@¥%the class still operated at the

(5%), LURR (5%), and CLM (10%) levels of the lengfh. By Grade 10, none of tt
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students predominantly exhibited EE, LURR, or Clévdl thinking on the written
assessment tasks. Over half of the Grade 10 swgtaded at the ALM level with the
rest of the students at the ICPM (22%) and CRM (R2els.
Written LT-based Assessment: Four Length LT Level Goups

From the sample of 82 students, a subset of 1&pants, who were operating
predominantly at the CLM, CRM, ICPM, or ALM levelsas selected for two individual
interviews. Students whose responses on the widtegth LT-based assessment that
were clearly identifiable using the length LT, amdose aggregate level claim reflected a
placement at CLM, CRM, ICPM, or ALM were considefedthe interviews. Table 2
shows each of the 16 interview participant’s preohamt LT level placement in relation
to the distribution of predominant length LT levelghin his or her grade (Figure 18).
Table 2

Interview Participants’ Length LT Placements Relatio Grade Level Distribution

Length LT
Name Predominant Length Grade Placement Relative
LT Level Placement to the Distribution
of Length LT Levels

Mia CLM Grade 4 Upper 41%
Kevin CLM Grade 4 Upper 41%
Noah CLM Grade 4 Upper 41%
Jenny CLM Grade 4 Upper 41%
Trent CRM Grade 6 Upper 32%
Ned CRM Grade 6 Upper 32%
Rose CRM Grade 6 Upper 32%
Lynn CRM Grade 8 Lower 50%
Grant ICPM Grade 6 Upper 5%
Rick ICPM Grade 8 Upper 50%
David ICPM Grade 8 Upper 50%
Ruth ICPM Grade 8 Upper 50%
Zane ALM Grade 10 Upper 56%
Scott ALM Grade 10 Upper 56%
Marie ALM Grade 10 Upper 56%
Kyle ALM Grade 10 Upper 56%
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| sought to evenly represent the four grade leaetsthe four length LT levels, with two
girls and two boys within each of the four lengfh levels. Because the only ALM level
placements came from Grade 10 students, | firssefour Grade 10 ALM level
participants. From there, | chose interview pgpacits to form groupings of two girls and
two boys operating predominantly at each of the CORM, and ICPM levels from
Grades 4, 6, and 8. Because only 41% of Gradedésts were at the CLM level, 33% of
Grade 6 students were at the CRM level and ab®%, & Grade 8 students were at the
ICPM level, and 56% of students were at leasta#thM level, most of the students
recruited to participate in interviews performedhe top half of their grade on the
written LT-based assessment (see Figure 18).

Task-Based Interviews: Task Design

Each of the 16 interview participants was intemad individually on two
separate occasions through structured, task-basagiews (Goldin, 2000). The
interviews consisted of a participant (student) andnterviewer interacting in relation to
the tasks introduced to the student using a scriptetocol (Goldin, 2000), which |
refined through pilot work.

A total of 10 tasks were spread across two intersjevith five tasks included in
each interview. The protocols for each interview iacluded in Appendix B. The
duration of each interview varied from 20 to 30 utes. The time between the two
interviews for each individual student was lessitttaee weeks. | presented each
participant with the same tasks across those sessidhe same order. The interviews
took place in the school building during class titnasked the Grade 4, 6, 8, and 10
teachers for the best time to interview the stuslemiminimize interruption of normal
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classroom activities. Table 3 below summarizesstimedule for interview data

collection.

Table 3

Interview Data Collection Schedule

Pseudonym Interview 1 Interview 2

Mia 10/14/13 1:00 PM 10/21/13 1:00 PM
Kevin 10/14/13 1:30 PM 10/21/13 1:30 PM
Noah 10/14/13 2:15PM 10/21/13 2:15PM
Jenny 10/14/13 2:45 PM 10/23/13 2:45 PM
Lynn 10/15/13 9:15 AM 10/22/13 9:15 AM
Rose 10/15/13 10:45 AM 10/22/13 10:45 AM
Trent 10/15/13 1:45PM 10/22/13 1:45 PM
Ned 10/16/13 1:45PM 10/23/13 1:45PM
David 10/15/13 12:15 PM 10/22/13 12:15 PM
Rick 10/16/13 9:15 AM 10/23/13 9:15 AM
Grant 10/16/13 10:00 AM 10/23/13 10:00 AM
Ruth 10/16/13 12:15 PM 10/23/13 12:15 PM
Scott 11/4/13 8:55AM  11/5/13 8:55 AM
Zane 11/4/13 9:20 AM  11/5/13 2:30 PM
Marie 11/4/23 12:50 PM 11/5/13 12:50 PM
Kyle 11/4/13 1:20PM  11/5/13 1:20 PM

Structured, task-based interviews, involve anringsver and participant(s)
interacting within one or more scripted, preplantasks. The goal in a structured, task-
based interview is to “observe, record, and inerpomplex behaviors and patterns in
behavior, including subjects’ spoken words, inteigns, movements, writings,
drawings, actions on and with external materiadstgyres, facial expressions, and so
forth” (Goldin, 2000, p. 527). Because studentkimg, reasoning, cognitive processes,
internal representations, or knowledge structuaemot be directly observed, the aim of a
task-based interview is to produce observable ouésothat can inform inferences about
students’ thinking. The primary purpose for inchgistructured, task-based interviews in

this study (a total of 32) was to address the rebeguestion with respect to exploring
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the intuitions and analytical strategies that eletagy, middle, and secondary school
students use when comparing rectilinear and cuaeali paths by length.

The exploration of student thinking during struetl} task-based interviews
proceeds according to four stages (Goldin, 200@3t,khe question is posed and time is
allowed for the child to respond. The interviewesponds with a nondirective follow-up,
such as “Please, tell me more about that.” Therskstage, in the event that the response
from the subject is not spontaneous, the intervigegponds with minimal heuristic
suggestions, such as “Could you show me using sdrie materials on the table?” The
third stage proceeds in the event that the desmmipgquested from stage 2 does not
occur; this stage involves the guided use of aiktisuggestion, such as “Do you see a
pattern in the cards?” The fourth and final stag®ives questioning that is exploratory
and metacognitive in nature, such as “Could yodanmow you thought about the
task?” At each stage, the interviewer’s goal isltoit “a complete, coherent verbal
reason for each of the child’s responses, and areahexternal representation
constructed by the child” (Goldin, 2000, p. 523).

| selected interview tasks to elicit observablelemce of students’ intuitive and
analytical thinking for rectilinear and curvilinepaths as statements, gestures, and
manipulations of tools. To draw out intuitive oradytical thinking, | asked students to
compare sets of rectilinear paths and curvilinedhgwithout tools (Tasks 1, 2, 6A, 7,
and 8A). Because of the scant body of researchnegipect to students’ thinking about
curvilinear paths in two-dimensional space, | pasatts that involved comparing a
straight object and a curve (Tasks 3, 4, and 8)jrectly comparing two curves using a

straight object (Tasks 6B and 8B), or measuringesi{Tasks 9 and 10). | posed the
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same tasks in the same order to all students, selédted tasks to be accessible to
students at the CLM, CRM, ICPM, and ALM levels b&tLT. Across the tasks, | varied
the representation of the unit: no tool, a 4-initksor a standard ruler. In addition, |
varied the paths according to intuitive interfergnguch as the number of turns, deviation
from endpoint (Chiu, 1996), and tightness of cuiee design process described above
yielded four categories of conceptually congruasks, which | describe in Table 4
below.

Table 4

Summary of Classes of Conceptually Congruent liger\asks

Task Category Description Order Appearing in Ini@ms

Comparing sets of rectilinear paths by lengths Tasks 1 and 2

Comparing sets of curvilinear paths by lengths Tasks 6A, 7, and 8A

Comparing curves and a straight object  Tasks 3, 4, 5, 6B, and 8B

Measuring a curve with a standard ruler Tasks 9 and 10

The protocol for each interview in Appendix B cantaa complete description of the
implementation of each task. See Appendix C forgesaof the actual size that were
given to students during the interviews.
Overview of Interview 1 Tasks

The first interview consisted of two rectilineamb@ath comparison tasks,
Interview Tasks 1 and 2 (Chiu, 1996), and threkstéisat involved comparing a curve

and a straight object, Interview Tasks 3, 4, ai@l&Bments et al., in press).
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The purpose of including the two rectilinear bpath comparison tasks (Chiu,
1996) was to probe students’ intuitive and ana#ytihinking for comparing sets of
rectilinear paths. To avoid potential confusionizsn the distance traveled and path

length, | contextualized both tasks as compariedehgths of “strings” or “paths.”

A A 2

String 1 String 2 String 3

Figure 19 Image of strings shown for Interview 1 Task 1.
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pppppppppp

uuuuuuu

Figure 2Q Image of paths shown for Interview 1 Task 2.
The strings for Interview Task 1 and paths for TAgkigures 19 and 20 above) were
each printed on a separate transparency pagetlapged all of the transparencies to
show that the strings or paths connected the saméspdesignated as “A” and “B” for
Task 1 and “Home” and “School” for Task 2. | aslstadents to compare the strings or
paths by their lengths. | included a series ofgdeaned follow-up questions in the
protocol to probe students’ intuitive and analytstsategies for defending their claims
about the order of the strings or paths by theigles.

| also included tasks involving comparing a cuawel a straight object (Clements

et al, in press) to probe students’ intuitive andlgtical thinking for curves.
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Figure 21 Image of curve shown for Interview 1 Task 3.

Figure 22 Image of curve shown for Interview 1 Task 4.

Figure 23 Image of curve shown for Interview 1 Task 5.
For Interview Tasks 3, 4, and 5, | provided studemth an image of a curve printed on a
standard piece of paper, a 4-in. wooden stick,aapen. | then asked students to compare
the length of the curved path and the stick. ludeld a series of pre-planned follow-up
guestions in the interview protocol designed ebtitdents’ explanations about their ways
of comparing the curve and the stick, whether thewyght they had over- or
underestimated when comparing, and why they thotingyt had over- or underestimated.
Overview of Interview 2 Tasks

The second interview consisted of curvilinear pagimparison tasks, Interview

Tasks 6A, 7, and 8A, tasks involving comparing twoves using a straight object,
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Interview Tasks 6B and 8B (Clements et al., in pyesnd tasks involving measuring a
curve with a ruler, Interview Tasks 9 and 10 (GritjnRizza, & Marchini, 2007).

The purpose of including the three curvilineahpaimparison tasks was to
extend the literature on path length intuition lbglpng students’ intuitive and analytical

thinking for comparing sets of curvilinear pathstbgir lengths.

Figure 24 Image of curve shown for Interview 2 Tasks 6A &id

A
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B \ 1/2/\
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String 1

String 2 String 3

Figure 25 Image of curve shown for Interview 2 Task 7.
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Figure 26 Image of curve shown for Interview 2 Tasks 8A &&d

The curves for Tasks 6A and 8A were printed onddeshpieces of paper. | asked
students to compare the curves by their lengthsowittools. For Task 7, each curve was
printed on a separate transparency page. | ovexthihe transparencies to show that the
strings connected the same points, designatedaasiA. | included a series of pre-
planned follow-up questions for Tasks 6A, 7, andt84robe students’ intuitive and

analytical thinking while defending their claimsoaib their order of the curves.
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I included Tasks 6B and 8B to further probe stusfantuitive and analytical
thinking for curves. After comparing the two curweishout tools, | gave students a 4-
inch stick, which is a nonstandard unit, and a pémen asked them to use the stick to
help them check the comparison they had made wtitiools about the order of the
curves by their lengths. Similar to the structurénterview Tasks 3, 4, and 5, | included
a series of pre-planned follow-up questions to prstindents ways of comparing the
curves and straight object, whether they had aweunderestimated when comparing,
and why they though they had over- or underestithate

| selected Interview Tasks 9 and 10 to probe stigdertuitive and analytical
thinking for curves when using a standard toolnf@asuring length, a ruler. To vary the
representation of the unit as well as to contextadhe image as an outline of a doorway

on a blueprint, | printed the curves for Tasks @ &8 on gridded paper.

Figure 27 Image of curve shown for Interview 2 Task 9.

Figure 28 Image of curve shown for Interview 2 Task 10.
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| gave students a standard ruler and a pen. thelch that the curve on the paper was the
outline of a doorway on a blueprint, and asked tb@measure the outline of the
doorway in the most precise possible way. | inctudeseries of pre-planned follow-up
guestions in the protocol for the purpose of prglstudents’ use of intuitions and
analytical strategies while measuring the curvegisi standard ruler.
Interview Data Analysis

The data in this study were derived from the wnittength LT-based assessment
and structured, task-based interviews. In addtibostudents’ written responses to the
written length LT-based assessment, sources ofstdjected to analysis included
videotaped records of the task-based interviewstramgcripts of these interviews, my
reflections, and students’ written work generatedrd the interviews. The sections
below describe the methods and procedures thad tasanalyze the interview data.

| distinguished intuitions and analytical stratagie®m each other according to
the definition and properties of an intuition aslioed by Fischbein (1987). Fischbein
defined intuition as “a primary phenomenon whichyrba described but which is not
reducible to more elementary components” (p. piuitive statements are ones that
appear to be immediate, direct, and global. | @g@iobservable behaviors, including
statements, gestures, or manipulations of toolgwidlid not meet Fischbein’s definition
and properties of intuitions, as evidence of anadythinking. Because intuitions and
analytical strategies for comparing sets of raw#ir or curvilinear paths are not
described in the length LT, | described segmentiatd in the interviews using a

combination of codes from prior research on sixtidg students’ intuitions about path
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length (Chiu, 1996), and emergent codes generhteddh a constant comparative
method of analysis (Merriam, 2009).

| defined a unit to be the smallest meaningfuhsexgt of data within each task for
each participant. For the purpose of the analydiBi® study, a segment of data had to
meet two criteria to be considered a unit (Linc&IGuba, 1985). First, the segment must
reveal information relevant to the study, which methat the segment must reveal the
student’s intuitive or analytical thinking. Secotite segment must be “the smallest piece
of information about something that can stand bglft (p. 345).

| selected each task to evoke one or more urotse¥ample, on Interview Task 2
involving comparing a set of rectilinear paths egydth with the follow-up question,
“Why is Path B the shortest?” a student might heaid, “This path is the shortest
because a straight line is the shortest path bativee points.” This response reflects a
unit and would be assigned one code. For anotilemfap question, “Why is Path D the
longest?” the same student might have said, “Taik [ the longest because it has a lot
of turns.” This response reflects another unit wodld have been assigned another code.
The sections below the code development and frexyusmalysis.
Code Development Process

After | conducted the interviews I transcribed themeluding descriptions of
students’ gestures and ways of using the toolsenbaging in each of the ten interview
tasks. | reviewed the transcripts and my post-unter reflections and, for each task for
each participant, | identified relevant units ofadarhrough an initial cycle of open

coding (Corbin & Strauss, 2008), | made comparisoneng units of data among
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participants, and developed codes to identify dga@ely different instances of intuitive
and analytical thinking that reoccurred with regija

| then extracted thematic categories from theolishitial codes through axial
coding (Corbin & Strauss, 2008). | constructed ¢htbematic categories to be (a)
representative of what is in the data, (b) exhaes(c) mutually exclusive, and (d)
conceptually congruent (Merriam, 2009). For exampbategorized codes as either
pertaining to an intuition or an analytical strate@y/ithin each of these broad categories
of intuitive and analytical thinking, | developeddes to describe and differentiate
different types of intuitive and analytical thinkior four groups of similar tasks (see
Table 4 above): comparing sets of rectilinear phthheir lengths (Tasks 1 and 2), sets
of curvilinear paths by their lengths (Tasks 6Aafid 8A), curves and a straight object
(Tasks 3, 4, 5, 6B, and 8B), and measuring a cwithea standard ruler (Tasks 9 and 10).

This process yielded a total of 39 codes that tiusedescribe participants’
statements, gestures, or tool manipulations. lggdwcodes into four thematic categories:
intuitions, with eight codes; analytical strategwwg&h 23 codes; analytical strategies with
embedded intuitions, with two codes; and descriptor students’ reflections on error,
with six codes. After | developed codes inductivialyhis initial round of open and axial
coding for each of the four types of tasks, | deghety applied the coding scheme to all
units of data in a second round of coding. See AgpeD for a comprehensive list of the
codes, organized by thematic category.
Frequency Analysis

| simultaneously reviewed video records and trapscto identify units in all 32

interviews. | then color-coded and labeled traqgsrusing the coding scheme |
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developed for the study. Figu29 shows the color coding and labeling of part of

Interview 1 transcript for Task 2 for one participantial

M: And this one's probably longer ¢ug it has a lot of straight lines Complexity intuition
(looking at path D) going up and down.

I: OK.

M: And this one's the longest (looking at path B) guz it goes down...it has | Detour intuition
to go all the way down to the bottom of the page and then over there.

I: Alright. So, let me...let me see...Tell me again why is path C the
shortest?

M: cuz...um..it just has two straight lines (tracing over the segments/of | Straightness intuition
path C)

I: OK. So, what is it about path C that makes you think it's the shortest?

Figure 29 lllustration of color coding and labeling of regnt units of dat:

After | coded and labeled ec of the 32 interview transcriptsthen subjectethe coded
datato a frequency analys. | tracked the frequency of éacode per student aper task
using spreadsheet softw. Figure 30 illustrates the trackingthie code:assigned to the

relevant units of data for each interview participtor Task z

Task 2
Total
Analytical  Number of Used a
Straightness = Complexity Detour  Compression Conflicting Combination Strategy Intuitions  Rejectedan  Rejected
Intuition Intuition Intuition Intuition Intuitions  of Intuitions Use Used Intuition Intuition

Mia 2 6 2 2 1 1 0 12 1 2
Kevin 1 2 0 0 0 0 0 3 0 0
Noah 0 3 2 0 0 1 0 5 0 0
Jenny 1 2 1 0 0 0 0 4 0 0
Ned 2 5 4 0 0 4 0 11 0 0
Rose 2 4 0 I 0 T 0 7 0 0
Trent 0 3 0 0 0 0 2 3 0 0
Lynn 0 0 0 0 0 0 2 0 0 0
Grant 2 2 1 0 0 I 0 5 0 0
Rick 1 1 2 0 0 1 0 4 ) 0
David 1 2 0 0 0 0 0 3 0 0
Ruth 0 0 0 0 0 0 5 0 0 0
Zane 1 0 0 0 0 0 2 1. 0 0
Scott 4 1 2 1 1 2 3 8 1 0
Marie 1 2 3 2 2 2 0 8 0 2
Kyle 0 2 0 S 0 1 0 7 0 0
Totals 18 35 17 11 4 14 14 81 2 4

Figure 3Q Example of trackincoded data for each interview participant for T2:
Next, | trackedhe frequency of each code for each participardassthefour groups of
similar tasks (see Tab#y: comparing sets of rectilinear paths with no tqdlasks 1 an
2), comparing setsf@urvilinear paths with no tools (Tasks 6A, 7, &#), comparing

curves and straight objects (Tasks 3, 4, 5, 6B,88)dand measuring curves witl
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standard ruler (Tasks 9 and : Figure 31below illustrates the tracking of tifrequency

of the codegor each participant within a growof similar task§Tasks 1 and Z

Tasks 1 &2
Total

Analytical Number of Useda
Straightness ~ Complexity =~ Detour  Compression Conflicting Combination = Strategy  Intuitions Rejectedan Rejected
Intuition Intuition Intuition Intuition Intuitions _of Intuitions Use Used Intuition Intuition

Mia 5 6 4 6 2 2 21 2 4
Kevin
Noah
Jenny
Ned
Rose
Trent
Lynn
Grant
Rick
David
Ruth
Zane
Scott
Marie
Kyle
Totals

o

6
12
8

14
10
6
0
10
1
6
2
1
11
15
10
143
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Figure 31.Example of tracking coded data for each interviewtipipant for a group ¢
similar tasks (Tasks 1 and

After | trackedcodes for each participant for groups of sin tasks,| trackedthe
frequency of each code for groups of students wepoesentethe length LT levels
Figure 32below illustrates this tracking of coded data withnd acrosa group of
participants who represented particular length éviels fora goup of similar task

(Tasks 1 and 2).

Tasks 1 &2
Total
Number of Used a
Straightness Complexity Detour  Compression| Intuitions [Combination of Conflicting Rejected an Rejected  Analytical
Intuition Intuition Intuition Intuition Used Intuitions Intuitions Intuition Intuition  Strategy Use

CLM Group 12 19 10 6 47 6 2 2 4 0
CRM Group 7 15 6 2 30 6 0 0 0 10
ICPM Group 12 10 7 0 29 7 0 0 0 7
ALM Group 11 8 8 10 37 8 4 2 2 6

Totals 42 52 31 18 143 27 6 4 6 23

Figure 32.Example of tracking coded data within and acrossgy@ants representin
specific length LT level

Finally, | examined evelopmental patterns acrcthese groupsf participants whe
represented particular length LT levfor each of the four groups of similar ta (see
Table 4) Findings from this frequency analysis informed #taboration of the fot
levels of the length LT thid addressed in this study: the CLM, CRMPM, ancALM

levels.
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CHAPTER IV
RESULTS AND DISCUSSSION

This chapter describes results pertaining to lenggasurement, as well as results
related to students’ intuitive and analytical stgaés for comparing rectilinear and
curvilinear paths. In the first section, | charae participants’ level of sophistication
for length measurement, as measured by a write#sasent based on a hypothetical
learning trajectory (LT) for length measurementef@énts et al, in press). Following this
are sections in which | (a) describe and diffeagstihe intuitive and analytical strategies
for rectilinear and curvilinear paths that | obsshacross 16 interview participants, and
(b) compare students’ responses within and acijasent LT levels to relate students’
intuitive and analytical strategies for rectilin@ard curvilinear paths to the LT for length
measurement.

Length Measurement

The sections below describe results of the lengtthased assessment for the 16
students who were selected to participate in twiovidual interviews. Specifically, the
following sections illustrate how the length LT wased to analyze students’ responses
to each of the items on the assessment and categbam into LT groups that represent
four levels: Consistent Length Measurer (CLM), Geptaal Ruler Measurer (CRM),

Integrated, Conceptual Path Measurer (ICPM), anstrabt Length Measurer (ALM).

68



CLM Level Group

The CLM level group represents the lowest leveheflength LT included in the
individual task-based interviews. This group cotsstg four Grade 4 students, Jenny,
Mia, Noah, and Kevin, who exhibited predominantiy\Glevel thinking and provided
similar responses on the seven tasks on the watsassment. The following sections
include descriptions of their responses to each@hssessment tasks, and the analysis of
these responses using the length LT.

CLM level tasks. Jenny, Mia, and Noah correctly answered both @hitoken
ruler tasks, Tasks 1 and 2 (see Figures 9 andH&pt€r 3). Their ability to answer both
of these tasks correctly, including the task inugdvfractions, suggests that they could
see aruler as a collection of iterated units amtkustand the zero point on the ruler,
which are concepts that are consistent with the &l of the length LT. Therefore,
their responses on these tasks suggest that tteparating at least at the CLM level.

Kevin incorrectly answered “6 in” for Task 1. Ttagggests that he may have
been counting tick marks, which is an LURR levehtggy. He then correctly answered
“3 Y2 in” for Task 2. Kevin’s correct numerical resyse on Task 2 indicates that he was
at least beginning to develop the CLM conceptseifrgy a ruler as a collection of
iterated units and understanding the zero poirthenuler.

CRM level tasks.All of the students in the CLM level group, JenNpah, Mia,
and Kevin, gave incorrect responses to both olR& level tasks, Tasks 3 and 4 (see
Figures 11 and 12, Chapter 3). For Task 3, Jensywamed 10 cm Kevin answered 6 cm,
Mia answered 7 cm, and Noah answered 11 cm. Eaitiesé responses is only 2 cm off

from the correct answer of 9 cm for the lengthhaf missing side; however, none of the
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students used the CRM level strategy of projeadingganslating a given length to
determine a missing length.

On Task 4, none of the students in the CLM leveligrprovided a correct
numerical response of 210; Jenny incorrectly ans200, Noah and Kevin both
answered 180, and Mia answered 150. Kevin inclsd@de addition, written vertically
along the side: “60 + 40 + 20 + 30 + 30 = 180.”sTviiggests that he added the labeled
segments (60, 20, 40, and 30), and estimated tigghl@f only one of the unlabeled
segments as 30. Mia included the calculation 20 + 80 + 60 = 150, written vertically.
This indicates that she added only the labeled satgyof the path on Task 4 and did not
attend to the missing measures. Jenny, Kevin, 8id,Noah’s incorrect responses to
Tasks 3 and 4 suggest that they did not projettboslate the given lengths in the
diagrams to determine the missing lengths, whighgtrategy that children who have
developed CRM level concepts and processes wolply &pthese tasks. Therefore, their
responses on Tasks 3 and 4 indicate that theyoigehat the CRM level.

ICPM and ALM level tasks. Jenny, Kevin, and Noah gave similar responses for
the ICPM and ALM level tasks (see Figures 13, 1l 85, Chapter 3). For Task 5a,
which asked how many different L-shaped paths doeyd make with a string that is 10
cm long, and 5b, which asked them to explain haey tot their answer and why they
think it is correct. Jenny answered five and wrtkétried to) made each turn one cm
long, so if it takes two turns for one L-shape theave five. {0 + 2 = 5).” Kevin
answered eight and drew eight L-shaped paths, w#ilchhe side lengths labeled as five.
He wrote, “You have to flip and swith [sic] to geem.” Noah answered 4 and explained

how he got his answer by writing, “you could forrsquare.” Jenny, Kevin, and Noah’s

70



responses indicate that they were not able toipateeand monitor sets of related cases
of L-shaped bent paths, which involves mental astithat are consistent with ICPM
level thinking. This suggests that either they mdrrstood the question, or they do not
yet possess ICPM level concepts and processes.

Within this group, Mia provided a unique respor@e.Tasks 5a and 5b, she
wrote that she could form “15” L-shaped paths tfité string, “because | keped [sic]
making one side shorter and the other longer amdde 15 that could worked [sic] and
then | ran out of string.” She included the follogyidrawing of 15 L-shaped paths in a

line across the page (Figure 33)

Figure 33 Mia’s set of 15 L-shaped paths made with 10 crstiang.

The first path on the left had a tall vertical sael a short horizontal side. As Mia drew
the paths across the paper, the vertical side besaorter and the horizontal side
became longer until the final path was nearly azonital line. She labeled the vertical
sides of the two leftmost paths as 9 cm and 9 ¥Sima.labeled the horizontal side of one
of these paths as ¥2 cm; however, it was not cteawnhiich path this label was intended.
She did not label the side lengths of any of tteot.-shaped paths she had drawn. On
this task, Mia showed that she was able to thirduglat least in a qualitative way,
coordinating a series of changes in a systematycageoss multiple figures. When this
coordination also involves the association of sgaw®number, it is consistent with the
ALM level of the length LT. Therefore, Mia’s respmon this task suggests that she may

be developing ICPM and ALM concepts.
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On Task 6a, Noah (Figure 34) and Kevin (Figured@®)e similar responses.
Although their rectangles did not reflect geomeimionsistencies, neither drew

rectangles with a perimeter of 2 inches.

Figure 34 Noah'’s rectangles.

Figure 35 Kevin’s rectangles.
Noah and Kevin's responses suggest that they drgehable to determine side lengths
from perimeter, at least when the situation requihem to fracture the unit. This
indicates that they have not developed the aliditgccurately operate on multiple units
and collections of units or on subunits, whichG&®M level thinking.

Jenny (Figure 36) and Mia (Figure 37) exhibitedikr ways of thinking on Task

6a. Both Jenny and Mia drew figures that had awpeter of 2 inches.

Figure 36 Jenny’s triangles.
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Figure 37 Mia’s rectangles.
Rather than sketching rectangles, Jenny sketchedlifferent triangles that both had a
perimeter of 2 inches. She labeled the side leraglkin., % in., and ¥ in. for one
triangle and 1 in., ¥z in., and ¥z in. for the sectiiahgle. In Mia’s sketch, one rectangle
had a perimeter of 2 inches (the 2 inch by % irdtangle), and another had a perimeter
of approximately 2 inches (the 1 cm by 1 inch regta). Although both of Jenny’s
triangles violate the triangle inequality, her aMid's responses here show that they
could think about determining side lengths fromipeter even in the case when the
situation requires her to fracture the unit. Thiggests that they may be developing the
ability to operate on multiple units and collecsasf units or on subunits, which is ICPM
level thinking.

For Task 6b, all four students provided similap@nses. Jenny answered three,
Kevin answered zero, Mia answered five, and Noahwared that two more rectangles
would have a perimeter of 2 inches. This suggéstisrione of the students in this group
have developed a continuous sense of length, wieeblops later at the ALM level of
the length LT.

All of the students in the CLM level group provileorrect responses for Tasks
7a, b, c, and d by not violating the triangle inggy. Kevin, Mia, and Noah'’s written

work indicated that they used similar strategiegtiese tasks. In Task 7a, when asked
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how long the wire would need to be to connect gofktand C through B, Kevin
answered “14 feet” without making any marks ondfegram or showing any work on
the page. On Task 7b, he explained how he gots®er by drawing a triangle with the
vertices labeled as A, B, and C like the one pregidn the page. He labeled the segment
from A to C as 10 and the segment from B to C ag{X labeling ofBC as 21 in Task
7b is inconsistent with his response of “14 feet"Task 7a; however, he provided no
explanation about his thinking. Mia answered “1€tfeOn the diagram, she labeld®

as five andBC as seven. She also drew a segment connectingBeiith approximately
the middle ofAC. For Task 7b, she explained “I put my fingers lo& B and moved them
to the 10 feet line it was in the middle or 5 sattivas that anser [sic]”. Then | put my
fingers on the five and moved them to the othex ti Noah answered “25 ft.” without
writing any calculations or making any marks ondregram. For Task 7b, he wrote “B
+ C = 15” without offering an explanation of why ti®ught the sum of the lengths of
these segments should be 15.

On Task 7c, when asked how much wire he woulddouthat he could be sure to
have enough to connect points A and C through BjriKanswered that he would buy
“20 feet.” He explained his thinking on Task 7dtmg, “It is beter [sic] to have more in
case you mis mesuer [sic] or brake some.” Mia erpththat she would buy “15 feet” of
wire because “I think there should be extra in dag& the wrong number.” Noah
explained that he would buy “30 ft.” of wire becads + B + C = 30 ft.”

Kevin, Mia, and Noah'’s responses to the partsaskI7 are plausible. That is,
they did not violate the triangle inequality. Hoveeyvthe context of the problem or the

inclusion of the diagram on the page may have ldelpem answer correctly without
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engaging the concepts and processes describee levitls of the length LT. Therefore, |
made no level claim for them for Task 7.
Jenny (Figure 38) provided a unique response mithis group for Task 7. On

Task 7a, Jenny answered “12 4 ft.”

Figure 38 Jenny’s partitioning.
She made tick marks ofC to partitionAC into 10 segments. She labelgd as 8, but
she did not make tick marks on eitl®&f or AB. Jenny vertically wrote 4 %2 + 8 Y2 = 12
Y, presumably because she thought #fiatvas 4 Y.

For Task 7b, she explained, “A to C was ten ft, &mund out how long one foot
is. Then | used it on A to B to C.” This suggesiattlenny partitionedC to find a unit
that she could iterate, either physically with fiegers or mentally o®C andAB, to
determine the length of the bent path from A tdv@uigh point B. For Task 7c, Jenny
said that she would buy “14 ft” of wire to be stiat she had enough to connect points A
and C through B. On 7C, she explained “I got 1gbft would have 1 %2 inches extra.”
Jenny’s ability to partition a 10-unit segment idf® same-size pieces to create a unit and
then operate on that unit to measure is evideratestte may be developing an internal
measurement tool, which is consistent with the CBW\&| of the length LT.

CLM level group summary. Overall, on this assessment, Jenny, Kevin, Mid, an

Noah all showed evidence that they were operatiaggminantly at the CLM level of
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the length LT. Kevin showed that he was still réingrback to LURR level strategies by
counting tick marks on one of the broken ruler $a3kvo students, Jenny and Mia
showed evidence that they were developing somieeofdncepts and processes
consistent with higher levels of the length LT thae CLM level. Specifically, Jenny’'s
responses indicated that she might have been hegitmdevelop some of the concepts
and processes at the CRM level, and Mia showecderea of ICPM level thinking.

CRM Level Group

The CRM level group consists of three Grade 6 sttgjdrent, Ned, and Rose,
and one Grade 8 student, Lynn, who exhibited predantly CRM-level thinking and
responded in similar ways to the set of seven taskfie written assessment. The
sections below describe their responses to thesssat tasks, and the coding of these
responses using the levels of the length LT.

CLM level tasks. Ned and Trent both provided the same correct nigader
answers to the CLM level tasks, Tasks 1 and 2. Do#ly correctly answered “5 in,” for
Task 1 and “3 ¥z in.” for Task 2. Their ability toreectly resolve these broken ruler
tasks, indicates that they have an understanditigeafero point and see a ruler as a
collection of iterated units. This suggests thahbided and Trent were operatiagleast
at the CLM level of the length LT.

Rose and Lynn responded in similar ways to theskem ruler tasks. They both
incorrectly answered “6 in.” for Task 1. Lynn exiplad her answer by writing, “Because
the one on the rule is not shown. Therefore yowganeg to subtract 1 inch from your
answer.” This suggests that they counted tick marksave a misconception about the

zero point on the ruler, which consistent with théRR level of the length LT. Lynn
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went on to correctly answer “3 ¥z inches” for thes®l broken ruler task; however, Rose
incorrectly answered “4 in” for Task 2. Rose, dieaps to connect the numbered tick
marks on the image of the broken ruler and drewctéecaround the interval between the
tick mark corresponding to 6 % and the tick mablelad as 7. This suggests that both
Lynn and Rose are at least beginning to develoCthid level concepts of
understanding the zero point on the ruler and getbi@ ruler as a collection of iterated
units. Therefore, Lynn and Rose’s performance @k3d and 2 suggest that they were
operating within the LURR and CLM levels of thedgmLT.

CRM level tasks.For Task 3, Ned, Rose, Trent, and Lynn all coryeatiswered
“9 cm.” Ned and Rose, included no markings on thgep but Trent and Lynn also
included the calculation 22 — 13 = 9, written vaally. Although all of the students in
this group correctly answered Task 3, all of theamegincorrect responses for Task 4. On
this task, Ned, Rose, and Lynn all answered 15@.iNeuded no calculations, but Rose
and Lynn each included a calculation on the sideeofpaper, which indicated that they
added only the labeled segments of the path anddadidttend to the missing measures
(For example, Rose included the calculations: @0 « 80, 40 + 30 = 70, and 80 + 70 =
150, written vertically). Trent incorrectly answdr&20” and included no calculations.
Therefore, it is not clear whether he applied Haahe strategy to Tasks 3 and 4, making
computational error on Task 4, or if he estimatezllengths of the unlabeled segments.

Ned, Rose, Trent, and Lynn’s inconsistent resppogelasks 3 and 4 suggest
that they can project or translate given lengthdeti@rmine missing lengths in some

situations (such as Task 3), which is a strategydlchild who has developed CRM level
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concepts and processes would apply to these tesksefore, their responses on Tasks 3
and 4 indicate that they were beginning to dev&l&M level thinking.

ICPM and ALM level tasks. On Task 5, Ned, Rose, Lynn, and Trent exhibited
similar ways of thinking. Ned answered that he ddalm two different L-shaped paths
from a string that is 10 cm long. He defended hsager by writing “I think 2 because it
may require a lot of bending the string.” Rose oesfed that she could form four and
explained how she got her answer writing, “I ddaibw what the question is asking so |
thought of turning the ‘L’ so I turn it (Rose drewm L-shaped path and then three
additional versions of it rotated at 90, 180, aii@ degrees) and | got 4 paths.” This
suggests that Rose only attended to the orientafitime L-shaped path and did not
attend to creating L-shaped paths of varying ssdgths. Lynn wrote that she could form
five, “Because there is only so much space fortte bf Ls. If this is the L. You can
form them out or down.” She drew a single L-shapatth with two horizontal rays
projecting out of the vertical segment and two masical rays projecting out of the
horizontal segment. Trent drew a single bent path six segments, labeling the
segments of the path as 1 cm, 2, cm, 1 cm, 4 @m,and 1 cm. He also wrote that he
would be able to form five and explained his thimtkby writing, “I think my answer is
correct becauseifyouadd1+2+1+4+1+dwould get 10 and I made 5 L’s".
Ned, Rose, Lynn, and Trent’s responses to Tasks@&db suggest that they
misunderstood the question, or they did not yesess the concepts and processes at the
ICPM level of the length LT.

On Task 6a, Ned, Lynn, Trent, and Rose all pravisienilar responses. Ned and

Lynn both drew two squares, both with all four sitebeled as 2 in. Rose drew a % in
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by ¥4 in rectangle and a %z in by % in rectanglenfdeew two rectangles, both with
perpendicular adjacent sides labeled as % in hy. here were no geometric
inconsistencies in their sketches, but each styslectuced only one rectangle that had a
perimeter of 2 inches. Therefore, Ned, Lynn, Trant] Rose are able to think about
determining side lengths from perimeter even indése when the situation requires
them to fracture the unit. This suggests that thay be developing the ability to operate
on multiple units and collections of units or omsnits, which is consistent with ICPM
level thinking.

For Task 6b, Ned and Rose both said three motangles would have a
perimeter of 2 inches. Lynn said there would bey @me more, and Trent answered that
there would be zero more. This indicates that Nae, Lynn, and Trent do not yet have
a continuous sense of length, which develops &itdre ALM level of the length LT.

For Task 7, Ned, Rose, Trent and Lynn all providiedilar correct responses;
they did not violate the triangle inequality. BdNled and Rose said that it might take 13
feet of wire to connect points A and C through Bent answered 12 feet, and Lynn
answered 14 feet. Ned and Trent both wrote abdumasng when explaining their
thinking for Task 7b. Ned wrote, “I used my fingéosmake a path to the line AC to
guess how long that would be then | added both musibTrent defended his answer of
12 feet by writing, “Because if | estimated corhg®&C should be about 8 ft amtB
should be about 4 ftand 8 + 4 =12.”

Rose and Lynn gave similar explanations of how tha their answers in Task
7b. Rose explained, “I got my answer from usingfimgers to go from point to point

then compared it to the line that is ‘ten ft’ andegsed how long, added the dotted lines
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and got my answer. | think it's correct becausedms reasonable.” Lynn wrote that she
thought the wire would need to be 14 feet long bsedlf you take your fingers and go
from point A to point C it's 10 ft. If you keep yofingers that far apart and go a little
over point B, that'll be 10 ft. It looks to me thfabm the top of point B to the point of C

is 9 ft. from A to the top of B is 5 ft. If you takyour fingers and keep that and connect it
with the 10 ft, it's 5 (half-way) 9 + 5 = 14.” Prgasably, Lynn and Rose each measured
the distance between points A and B by spanningdpefrom her thumb to her index
finger and checked to see if that span fit thefgam points A to C and A to B.

Therefore, both Lynn and Rose made an indirect esisgn between each 4B andBC

to AC.

On Task 7c, Both Ned and Rose explained thatwoayd buy 15 feet of wire to
make sure they would have enough to connect paiatsd C through B. Ned defended
his answer by explaining, “I think this is corré&icause because [sic] I'm making sure |
have enough wire to get from A to C through B” asK 7d. Rose explained her thinking
by writing, “How | got it is | rounded 13 and whyHink it's correct is because you could
cut the wire to 13 feet if you had 14 and if maytbgas 13.5 you needed, you would
have it.”

Trent and Lynn provided responses that suggesedititerpreted the question to
mean that they would need enough wire to conneot$é and C through B, and then
back from point C to point A again, forming theiemtriangle with wire. Trent explained
that he would buy “25 feet of wire and defendedamiswer by explaining, “I think my
answer is correct Because 10 + 12 = 22 and if yantwo be sure you have enough wire

I'd at most get 25 ft of wire.” Lynn explained thatte would buy 30 feet of wire because
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“If point B is also 10 ft then we’ll need an exi@ ft. But we don’t know so if point B is
over 20 ft I'll have enough instead of being slaocbuple feet of wire.”

Ned, Rose, Trent, and Lynn provided plausible sasps to all of the parts of
Task 7. Meaning they did not violate the trianglequality and they all talked about
buying extra wire to make sure they would have ntlba®@ enough to connect points A
and B through C. However, like the students inGh&/ level group, their articulation of
their thinking does reflect the concepts and preegshat are described in the levels of
the length LT. Therefore, | made no level claimtfuem for Task 7.

CRM level group summary.Overall, on this assessment, Lynn and Rose’s
responses indicate that they are still falling bckise LURR level and CLM level
thinking on broken ruler tasks. Ned and Trent'dgrenance on this assessment indicate
that they are still reaching back to use CLM leb@hking on tasks in which the level is
relevant. However, all four students also showed tiney could operate predominantly
using CRM level strategies on tasks that requiréQ&vel thinking. In addition, they all
showed that they might be beginning to develop softiike concepts and processes at
the ICPM level. Therefore, the level that best ebtarizes the concepts and processes
that Lynn, Rose, Ned, and Trent exhibited on thi&evr length LT-based assessment is
the CRM level.

ICPM Level Group

The ICPM level group is comprised of one Gradeu@est, Grant, and three

Grade 8 students, David, Rick, and Ruth. All of lG@M level students used

predominantly ICPM level strategies and providedilsir responses to the seven tasks on
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the written assessment. The following sectionsuiekeldescriptions of their responses and
the coding of these responses using the lengtteldld.

CLM level tasks. All of the students in the ICPM level group, Grabavid,

Rick, and Ruth provided similar responses to tloddm ruler tasks, Tasks 1 and 2. They
all correctly answered “5 inches” for Task 1. Grdddvid, and Rick included no
markings on the page, but Ruth included the cdiicn& — 2 = 5, written vertically. For
Task 2, Grant and David correctly answered andi@ctes; however, Rick and Ruth
both provided incorrect responses of 3 ¥4 inchesk Rid not include any work or
explanation, but Ruth included the calculation 634/ = 3 ¥, again written vertically.
Rick and Ruth’s incorrect answers both refleckalli computational error, rather than a
misconception about the ruler. Therefore, Grany/i@eRick, and Ruth’s responses to the
Tasks 1 and 2 indicate that they see a ruler adlection of iterated units and have an
understanding of the zero point on the ruler, wiaichboth CLM level concepts.
Therefore, their responses to these tasks providermce that they were operatiag
leastat the CLM level.

CRM level tasks.All four students in the ICPM level group corrgcinswered
both of the tasks designed to elicit CRM level kimig, Tasks 3 and 4. On Task 3, Grant,
David, Rick, and Ruth all answered 9 cm. Grant,iDaand Rick did not make any
markings on the page, but Ruth included the calion&@2 — 13 = 9, written vertically.
For Task 4, all four students answered 210. Adamant and Rick did not show any
work on the page or offer any explanation of thieinking. David included the
calculation 60 + 20 + 40 + 30 + 60 = 210 and Rutotev120 + 90 = 210; both

calculations were written vertically. Grant, DavRick, and Ruth’s responses on these
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tasksindicate that they can project or translate thegilengths to determine missi
lengths, which is a strategy that a child who iast at thiCRM level would use t
solve these tasks. Therefore, their responsiTasks 3 and 4 indicatbat theycould use
CRM level strategies to solve tasks for which the lesglertinen

ICPM and ALM level tasks. On Task5, Grant, David, and Ruth all provid
similar responses. Grant and David both answergdhiey could form five -shaped
paths with the 10-cratring. Grant wrot, “You could have an L by having a string tha
9cm+1lcm,or8cm+2cm,or7cm+3cm,onticd cm, or5cm + 5 cm.” Alon
the side of the paper, David wrote five pairs ofmfers: 1 and 9,2and 8, 3and 7, 4
6, and 5 and 5, and he explained his thinking b$ivgr“I think it would be correc
because there are five ways you can make ten ardieyou put it facing a differer
way it would still be the same.” Ruth (FigL39) answered that he could form 4aths,

and she drew a set of ten paths in a line frontdefight

Figure 39 Ruth’s set ofelated L-shaped paths.

The leftmost path was a vertical line, which sheelad as 10. Next, she drew &-
shaped path with side lengths labeled as 9 aThis was followed by eight more-
shaped paths with side lengths labeled as 8 an@2d 3, 6 and 4, 5 and 5, 4 and
and 7, 2 and 8, and then 1 and 9. She explainethinging by writing “As you can se
above, there can be different lengths foih side making 9. Also, how about the lov

case ‘1. You could also do things from differengkes (here she drew rotate-shaped
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paths). If you do all this, you can get up to 4fedent paths.” On this task, Grant, David,
and Ruth found several related cases of bent pathghe same length and relate those
cases to one another to provide evidence thatttfmeyght about an underlying pattern.
This thinking is consistent with the ICPM leveltbe length LT; therefore, their
responses to this task suggest that they were topged the ICPM level.

Rick’s response to Task 5 was unique within theNMOevel group. He answered
that he could form an infinite number of differénshaped paths, and he explained his
thinking by writing, “The long side could be 5.0@0Q1 cm or something like that. It
could be a million 0’s.” Rick did not show evidenakreasoning about several related
cases of bent paths with the same length andnigl#ibse cases to one another to
provide evidence that he thought about an undeylgattern here, which is ICPM level
thinking. However, he showed a growing awarenesspaftential infinite number of
cases and a continuous sense of length, whichaevet the ALM level of the length
LT. Therefore, Rick’s response to Task 5 suggéstshe could have been operating at
least at the ICPM level.

On Task 6a, Grant, David, Rick, and Ruth all pded similar responses. Grant
drew two triangles that both had a perimeter afches: one with side lengths labeled as
% in, %2 in, and 1 in and another with side lendgbeled as % in by % in by %2 in. David
drew a 0.6 by 0.4 rectangle and a square withoall $ides labeled as 0.5. Rick drew a
0.75 by 0.25 rectangle and a 0.1 in by 0.9 in regiea Ruth drew a square with all four
sides labeled as Y2 and a % by ¥ rectangle. Grant ttiangles rather than rectangles;
however, he, along with the other three studentsedCPM level group, drew figures

that had a perimeter of two inches. Furthermoreegmthan one of Grant’s triangles,
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which violated the triangle inequality, none of 8tadent’s sketches had geometric
inconsistencies. Their responses to this task sugdieat they were able to think about
determining side lengths from perimeter even in #iuation that required them to
operate on fractional units. This indicates thar@rDavid, Rick, and Ruth had the
ability to operate on multiple units and collecsasf units or on subunits, which is ICPM
level thinking.

On Task 6b, when asked David answered that thoge nectangles would have a
perimeter of two inches. This suggests that Daiuddhdt yet developed a continuous
sense of length, which appears later at the ALMIle¥ the length LT. Grant did not
provide a response to Task 6b.

Rick and Ruth provided similar responses to TdskRéck answered that there
would be an “infinite” amount of more rectangleattivould have a perimeter of two
inches. Ruth answered “If you do it in fractiorieliabove, the number is pretty much
infinite.” She also included the expression- 2, written vertically. Presumably, she
subtracted two from infinity to account for the tnextangles she had drawn as her
response to Task 6a. This provides evidence tlgkt &1d Ruth have a continuous sense
of length, which is consistent with the ALM levdltbe length LT. Rick and Ruth’s
performance on this task suggests that they werabhda of using ICPM level strategies,
and that they were beginning to develop ALM lev@hking.

For Task 7, Grant, David, Rick, and Ruth all exteith similar ways of thinking;
none of these students provided responses to THek Violated the triangle inequality.
Grant and Ruth both answered that they would nédeédt of wire to connect points A

and C through B. Grant explained his thinking itk &b writing, “You have to add a
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little bit because you are going a little off theagyht path, so | added a bit.” Ruth wrote,
“If you image [sic] put the two dotted lines togethiio make one huge line, and put it
next to the solid line, it would be bigger. But rmbkely not twice as big.” This suggests
that Grant understands, at least intuitively, thatraight line is the shortest distance
between two points, and Ruth relied on a stratéggemtally straightening the bent path
to compare it to the straight segment.

David and Rick both answered that they would riekéeet. David explained his
thinking when answering Task 7b writing, “becausaf + bé = aé, so those two lines
have to equal 10 feet and864 + 5 = 25 is 99 so if you add a little bit and thenmrdu
up you get 14 ft.” Rick wrote, “I did pathagren b [sic] so 8 + 6 = 14.” Although
David and Rick’s responses here show that theydidiiolate the triangle inequality,
their application of the Pythagorean theorem iggeeeralized to a non-right triangle
case.

All of the students in the ICPM level group prosttsimilar responses to Tasks
7c and 7d. They all said they would be 20 feet ioé w0 make sure they would have
enough to connect points A and C through B. Graplagned “You want to make sure
you have enough so you should buy a little exttavid explained that he would buy 20
“because that way you can have extra if its [9ager than you think it is.” Rick
defended his answer by explaining, “Double the wiiltbe more than enough,” and
Ruth justified her answer of 20 “just in case yestimate is not really 20 feet. So,
always go more than you think you need to be s##tiough Grant, David, Rick, and
Ruth reasonably answered Task 7, their stratedientally straightening the bent path,

applying an intuition that a straight line is thegest distance between two points, and
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overgeneralizing the Pythagorean theorem do nt#atefoncepts and processes within
the levels of the length LT. Therefore, | made exel claim for Task 7.

ICPM level group summary. Throughout this assessment, Grant, David, Rick,
and Ruth’s responses indicate that they used CLIMCGRIM level strategies for
situations in which those levels were appropriadtesks 1 through 4. For tasks designed
to elicit thinking at higher LT levels, they all e@ated predominantly using ICPM level
strategies. Therefore, based on this assessmaatdd all four of these students at the
ICPM level. Ruth and Rick also showed that theyhhltave been beginning to develop
some of the concepts and processes consistentheithLM level of the length LT.

ALM Level Group

The ALM level group consists of four Grade 10 studeMarie, Kyle, Scott, and
Zane. Each of these four students showed consestetence of ALM level strategy use
and answered in similar ways to the written assesstasks. The sections below
describe their answers and coding of their ansaecsrding the length LT.

CLM level tasks. All four students in the ALM level group providedrrect
numerical responses to the broken ruler tasks,wlare designed to elicit thinking at
the CLM level, Tasks 1 and 2. Scott, Marie, Kyled &ane all correctly answered five
inches for Task 1 and 3.5 in for Task 2. Their ectiresponses to these tasks indicate
that each of these students sees a ruler as atewil®f iterated units and understands the
zero point on the ruler, which is evidence of CLdwdl thinking. Therefore, Scott, Marie,
Kyle, and Zane used CLM level thinking to resolasks that required CLM level

concepts and processes.
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CRM level tasks.All four students in this group also correctly aesed both
tasks designed to elicit CRM level thinking, Ta8kand 4. Kyle, Scott, Marie, and Zane
correctly answered 9 cm on Task 3 and 210 on TaSkdtt, Kyle, and Marie included
no explanations or work for Task 3. Zane includesldalculation 22 — 13 = 9, written
vertically. For Task 4, Scott, Kyle, and Zane wrotemarkings on the page, and Marie
included the calculations 20 + 40 + 30 = 90 and- 8D + 60 = 210. These four students’
correct responses to Tasks 3 and 4 suggest thatdod project or translate the given
lengths to determine missing lengths, which igatet)y that a CRM level student could
apply on these tasks. Therefore, Kyle, Scott, Mamel Zane’s responses to Tasks 3 and
4 indicate that they could use CRM level thinkingontexts in which the level is
relevant.

ICPM and ALM level tasks. On Tasks 5a and 5b, Kyle and Scott provided
similar responses. Kyle answered that he could famrfinfinite” number of L-shaped
paths from a string that is 10 cm long. Scott $laéd he could form “Any number.
Infinite.” Kyle explained his answer by writing, liEre are so many answers for just have
the string like so (he drew a picture of one L-gthpath without labeling the lengths of
the sides) because if you adjust it by the smatlegtee, the length of both sides would
be different than before.” Kyle’'s response doessugigest that he was reasoning about
several related sets of paths with the same lemgtith would have provided evidence
that he is operating at the ICPM level of the léngi. However, he did exhibit a
continuous sense of length, which develops at the fevel. Therefore, Kyle’s response
to this task indicates that he may have been dpwadALM level concepts and

processes.
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Scott defended his answer by writing, “You canénaway length for each of the

sides of thé0° angle..[sic]” He included sketches of three pgEigure 40).

L roan el

Figure 4Q Scott's sequence of L-shaped paths.
The leftmost path had a vertical segment labeladd®a horizontal segment labeled 1.
The next path had a vertical segment labeled 3dlagrorizontal segment labeled .9, and
the rightmost path had a vertical segment label@d19and a horizontal segment labeled
.999. Scott’s sequence of three paths suggesthehaas reasoning about several related
sets of paths here with the same length, and mgl#tiose cases to one another to provide
evidence that he was thinking of an underlyinggrattwhich suggests that he is
operating at the ICPM level of the length LT. Fertinore, his willingness to suggest that
there are infinitely many cases indicates thatdseadcontinuous sense of length, which is
evidence of ALM level thinking. Therefore, Scottesponse to this task indicates that
had concepts and processes that are consistentheit@PM and ALM levels.

Marie and Zane provided similar responses to bashn Task 5a, Zane
explained that he could form “10 (19 if you coum upside down L’s).” Zane defended
his answer of 10 (or 19 when counting the “upsideml L’s”) by writing, “Knowing the
properties of string | know it probably is reallsiid to form an L shape that has legs
smaller than around 5 mm each. Therefore, one & Lgen of string, but if you count the
upside down L’s formed by your regular L’s, youlvgét 19 full L's because the upside

down ones don’t form a complete L at the end.” Zanesponse to this task suggests that
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he may have misunderstood the question. Therdfanade no level claim for him on
this task.

Marie answered that he could form “9” differenshaped paths from a string that
is 10 cm long. Along the side of the paper, Marewda sequence of nine L-shaped
paths. The leftmost path had a short side labedeldan and a long side labeled as 9. The
following paths were similarly labeled as 2 an@&nd 7, 4 and 6, 5and 5, 6 and 4, 7
and 3, 8 and 2, and 9 and 1. For Task 5b, sheiarpld'Because you could make an L
shape pathwith9cmand 1cm,8cm &2 cm, 7 cBidn, 6 cm &4 cm,5cm &5 cm
and then do the reverse.” Marie’s response totdisis suggests that, like Scott in the
ALM level group, she was able to find several redlatases of bent paths with the same
length and relate those cases to one another imatedhat she was thinking about an
underlying pattern. This thinking is consistenthwtihe ICPM level.

On Task 6a, Kyle, Scott, Marie, and Zane all gaivalar answers. When asked
to draw two rectangles that had a perimeter ofitwebes, Kyle drew a 0.3 by 0.7 inch
rectangle and a 0.2 by 0.8 inch rectangle. Scetv@ 0.1 by 0.4 inch rectangle and a
square with all four sides labeled 0.25 inches.i®drew a square with all four sides
labeled as %2 in and a % in by %4 in rectangle. Zmee a square with all four sides
labeled as .5 in and a .75 in by .25 in rectanfhere were no geometric inconsistencies
in their sketches, and each of these four studmmtectly sketched rectangles that had a
perimeter of two inches. This indicates that K@eptt, Marie, and Zane could determine
side lengths from perimeter, even when the tasuired them to operate on fractional
units. Therefore, they had the ability to operataraultiple units and collections of units

or on subunits, which is ICPM level thinking.
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On Task 6b, Kyle, Marie, and Zane provided simalaswers. Kyle said that an
“Infinite (the length of the decimals could keeparding)” number of additional
rectangles could be made that would have a pernméte/o inches. Marie answered “an
infinite amount if using decimals & fractions.” Zaanswered “Infinite. For example,
one side could go all the way down to the sidemsno&tom, but the other two sides can
still add up to 2 inches.” Along the side, he pd®d the following example: .0000001 +
.000001 + .999999 + .999999 = 2 in, written veftlcd his indicates that Kyle, Zane,
and Marie have a continuous sense of length, wikicbnsistent with the ALM level of
the length LT. Their performance on this task sgtg#hat they are capable of using
ICPM level strategies, and that they also possessepts and processes at the ALM
level. Scott answered, “Any number.” His resporsthis task is vague and unclear;
therefore, | made no level claim for Scott for Tésk

For Task 7a, Kyle answered, “about 13 ft.” He expd his thinking when

answering Task 7b writing, “I moved lif®C into AC and it only appeared to B  of

line AC (6 in). Then | pictured lindB coming and connecting to lirRC, which | still
have placed inside of linéC, and the collective length of lin&B andBC appeared to be
close to 13 ft.” Kyle’s response suggests that batally straightened the bent path from
A to C through B and compared it to the straighhpahich he knew was 10 units.

Scott and Marie provided responses for Tasks daahike Kyle, Scott also
answered, “13 ft.,” which he defended by writingestimated (then drew a smiley
face)...an educated guess.” Marie gave an answexbafut 18 ft. more than 15 but less
than 20.” She explained her thinking when answefiagk 7b writing, “10 will be

enough to get from C to B but not enough to geklfimmm B to A and 20 feet would be
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too long.” Scott and Marie’s explanations for T&tksuggest that they relied on
estimation to determine their responses for Task 7a

Kyle, Scott, and Marie responded to 7a with plalesanswers for the length of
wire needed to connect points A and C through Byéier, Kyle’s strategy of mentally
straightening the bent path to compare its lengthé straight segment, and Scott and
Marie’s strategy of estimating do not reflect cqrtseand processes within the levels of
the length LT. Therefore, | made no level claimtfugse three students for this task.

Within this ALM level group, Zane used a uniqueattgy on Task 7. For Task 7a
he answered, “11.95 feet,” which he explained bying, “I used my finger to draw a
straight line between A to C through B then brdke 10 feet line into fifths (setting two

feet) giving me a basic 2 foot estimated measurémoeguess my new line” (Figure 41).

10 feet

Figure 41 Zane’s partitioning.
This suggests that Zane partitioned the segmealtddlas 10 to construct a composite
unit of 2, which he then operated on, either méntal physically, to measure the
unknown side lengths. Zane’s response here indichtet he possessed an internal
measurement tool, which develops at the CRM lef/dl@length LT.

Kyle, Scott, Marie, and Zane all answered in samilays on Tasks 7c and d. On
Task 7c, when asked how much wire he would needitoect A and C through B, Kyle

answered “14 ft (unless they have a better pricd5oft).” Marie explained that she
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would buy “20 ft.” Zane explained that he would Bd.5 ft.” Scott said that he would
“Buy more than the exact amount (he again drew igegrface) to be sure’..When
answering Task 7d, Kyle defended his answer byagxiplg, “I want to buy a little bit
extra in case my estimation was too short, althdughl that | wasn’t off by much.”

Marie explained, “cause ten feet would cover &lithore than enough to get from C to B
but not enough to get from B to A.” Zane wrote;s‘ijood to be sure, and | could leave a
little room for a guess. To be honest | just pud@ number close to my guess.” When
articulating why he thought his answer was corr®cttt responded, “I still have no
idea.” Although all of their numerical responsesTask 7c are plausible, meaning they
did not violate the triangle inequality, their resges to Tasks 7c and 7d do not reflect
the mental actions that characterize the leveteefength LT. Therefore, | made no
level claim for the students in the ALM level groigp these tasks.

ALM level group summary. Kyle, Scott, Marie, and Zane’s responses indicate
that they reached back to use CLM and CRM levekihg to resolve tasks pertaining to
those levels (Tasks 1 through 4). However, thewlath showed that they could operate
predominantly using ICPM level strategies on takblas require ICPM level thinking.
Marie showed evidence that she may be beginnidgvelop some of the concepts and
processes at the ALM level. Kyle, Scott, and Zaripled evidence that they could
operate predominantly using ICPM or ALM level stgies on tasks that require concepts
and processes from the highest levels of the leb§th
Summary of Length LT Groups

Participants in each of the four length LT levedgps exhibited the same

predominant level of thinking; however, there walé Some variability in participants’
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strategy use within the groups. For example, inGh# level group, Mia showe
evidence tht she was beginning to develop concepts and esdkat are consiste
with the ICPM level, Kevin used LURR level strategyiand Jenny exhibited CRM le

thinking. However, all of the students within theNL level group operated primarily

= - -
ALM [
n . . o = L | o
ICPM ‘ | ‘ ‘ ‘
11l
CLM I
LURR
Mia Kevin Noah Jenny Trent Ned Rose Lynn Grant Rick David Ruth Zane Scott Marie Kyle
Gré4 Grd Gr4 Gré Gr6 Gré Gré Grg Gré Grg Grg Grg Gr10 Gr 10 Gr 10 Gr 10
CLM Level Group CRM Level Group ICPM Level Group ALM Level Group

Figure 42 Participant LT level placemer

Figure 42depicts the variability along with the predomingevel observed for eac
participant within each length LT level group. liyre42, a blue rectangle indicates
particular student’s maitevel of thinking, and the thin line indicates thbey levels tha
| observed in the student’s work on the writter-based assessment (Clements et ¢
press).

In this section, | established four groups anchamettie LT for lengtf
measurement as ldwepresentatives for the CLM, CRM, ICPM, and ALBVeéls
(Clements et al., in press). In the following sees, | describe these le\
representatives’ responses to tasks involving aspédength measurement outside
LT to inform recommendations 1 extensions to the LT. Specifically, in the secti
below | describe and differentiate students’ resgsnboth within and across length
level groups, to four different categories of cqutoally congruent tasks: (a) compar

sets of rectilinear pashby their lengths without tools, (b) comparingsatcurvilinear
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paths by their lengths without tools, (¢) compartnigves and a straight object (a
nonstandard unit), and (d) measuring a curve wgtaadard ruler.
Rectilinear Paths: Intuitions and Analytical Strategies

| posed two tasks (Tasks 1 and 2 in Interview t}He purpose of eliciting
students’ intuitions (Chiu, 1996) and analyticahttgies for comparing sets of rectilinear
paths. In the next two sections | illustrate thiitrons and analytical strategies that the
16 interview participants used. These are followge section in which | describe
individual differences with respect to how studamsd these intuitions and analytical
strategies for path length to justify arguments mvhaking comparisons among
rectilinear paths. In the final section, | relateuition and analytical strategy use for path
length to the LT for length measurement.
Four Intuitions for Rectilinear Paths

Four qualitatively different intuitions for rectilear paths were used by the 16
interview participants across Tasks 1 and 2 dutiegstudy: straightness, detour,
complexity, and compression (Chiu, 1996). Eacthesé intuitions was identified using
Fischbein’s (1987) definition of an intuition asgamary phenomenon which may be
described but which is not reducible to more elgagcomponents” (p. ix). A student’s
statement was considered to be an intuition ifas wonsistent with properties of
intuitions as described by Fischbein. That is,spoase was coded as an intuition if it
appeared to be an immediate, direct, and globatisalto the task. In the following
sections, | illustrate how students used eachedehntuitions to defend their claims
about their ordering of sets of rectilinear “stsi@r “paths” by their lengths for Tasks 1

and 2 (see Figures 43 and 44 below), beginning thitstraightness intuition.

95



>
>
r

String 1 String 2

Figure 43.Image of strings shown for interview Task 1.
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Figure 44.Image of strings shown for interview Task 2.

Straightness.When asked to compare Strings 1, 2, and 3 by kegths, Jenny
(Grade 4, CLM Group) ordered them from shortesbngest as String 2, 3, and then 1.
When asked why she thought String 2 was the shpsies defended her claim using an
intuition:

Interviewer: Can you tell me why you think StringsZhe shortest?

Jenny: um...because it's in a straight line anather ones...um...are going

around longer (traced finger around turns in Stih@nd 3) so they're longer

because they need more string.

Interviewer: OK. What is it about being a straigghe that makes it the shortest?

Jenny: Because you...because...cuz it just goaglstiand the other ones need

more string.

Jenny’s response reflects the use of the straightimtuition. It is an intuition because it
is an immediate, direct, and global approach t@ngd the three strings by their lengths.

It is immediate because she provided her respamsklyg without superimposing the
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transparencies on which the different strings vpeneted or attempting to measure first
using an improvised tool, such as her finger. Janggponse is direct and global
because it appears to be self-evident to her. Berlef the global characteristic of the
straightness intuition can be derived from Jenayd the other participants’ repeated use
of the straightness intuition when defending tloederings of rectilinear “paths” or
“strings” by their lengths.

When comparing Paths A, B, C, and D for Task 2fegi4) by their lengths,
Ned (Grade 6, CRM Group) used the straightnesgimuvhen describing his ordering
saying, “I think Path C is the shortest becausénitost goes directly from home to
school, but it takes a little bit of a turn andritgoes to it.” Like Jenny’s response, Ned’s
explanation reflects an immediate, direct, and gl@pproach to ordering the three
strings by their lengths. Although none of the patitiuded in Task 2 were perfect
diagonal lines like String 2 for Task 1, Ned useel straightness intuition to defend his
selection of the path with the longest diagonahsemf as the straightest path from the
starting point to the destination.

Detour. Students who used the detour intuition discusgegtiaas going out of
the way or being the least direct. Marie (GradeAlOM Group), for example, used the
detour intuition to explain why Path B was the lesigfor Task 2 (Figure 44):

Interviewer: OK. And why is Path B the longest?

Marie: Probably because it goes completely likaeiadb(traced along Path B with

her fingers) that it might be the longest.

Interviewer: So, what is it about the way Path 8ki®that makes you think it's

the longest?
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Marie: It's the least direct.
Marie’s response here is an intuition becauseiihmediate, direct, and global approach.
That is, she answered quickly, it appeared to bees@lent to her, and Marie and the
other participants in the study repeatedly usedli#teur intuition to defend their
orderings of the “paths” or “strings” in Tasks 1dah by their lengths.
Complexity. Students who defended their orderings using thepbexity
intuition discussed the number of a certain featditde “string” or “path,” such as the
number of turns, segments, or angles. For exarkphan (Grade 4, CLM Group) used
the complexity intuition to defend why he thouglir®y 3 was the longest for Task 1
(Figure 43):
Interviewer: Why is String 3 over here the longest?
Kevin: Because it’'s like a whole bunch of stringsz it’s like do-do-do-do
(motioning through the turn with his finger) andakes up more of the paper.
Interviewer: OK. So, why does having a whole buathtrings like this...a whole
bunch of strings...why does that make a string?ong
Kevin: because it's like got all those...like besmit's got so many turns, and so
it's like so long.
Kevin's response is an intuition because it isamediate, direct, and global approach. It
was given without further justification or elabocat, and it was repeatedly used in
multiple rectilinear path length comparison sitaai throughout the study.
Compression.Students who used the compression intuition desaligither
straightening “strings” or “paths: that were benbending “strings” or “paths” that were

straight. For example, Kyle (Grade 10, ALM Groupkd the compression intuition to
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defend why String 1 was the longest in his ordeahthe strings in Task 1 from shortest
to longest as String 2, String, 3 and String 1:
Interviewer: Why is String 1 the longest?
Kyle: Um...l imagined putting this...the first lie(tracing along the vertical
segment of String 1) into the a line looking likeii®) 2, and then adding line B
(tracing along the horizontal segment of Stringolljne A, and then it looks...it
appears to be longer than String 3. And | did #raesthing for String 3.
Rose (Grade 6, CRM Group) also used the comprestiaition for Task 2; however,
her application of this intuition was different inoKyle’s because she used it to defend
why she thought Path C was the shortest:
Interviewer: So, can | ask you why you think threts (pointed to Path C) the
shortest?
Rose: Because...um...it’s like, | could pull it dowkdithis (indicating
straightening out the path to form a single veltsggment), it would still be
shorter than this because it would be kind of cuikey this (pointed to Path B).
Kyle and Rose’s explanations here are consistahttive compression intuition because
they talked about how the paths would compareey straightened them out. In the
following section | illustrate how multiple partpants used this intuition, as well as the
other three main intuitions, throughout the study.
Interactions Among Intuitions for Comparing Rectilinear Paths
Individual students exhibited interactions in these of these four main types of
intuitions in two different ways, combinations atwhflicts. Some students applied

intuitions in combination when defending their oigiabout their ordering of a particular
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set of rectilinear paths. In those situations, siiisl used multiple intuitions to defend a
single claim. Some students experienced conflictbeir intuition use. That is, they may
have defended their claim about the ordering atakrectilinear paths through the use
of one intuition, and then subsequently used agfft intuition to justify a claim that the
ordering of the paths should be different. Thedwihg sections illustrate how the 16
interview participants used intuitions in conflatcombination to support their claims
about the order of the rectilinear paths (TaskedL.2) by length.

Complexity and straightness in combinationStudents used a combination of
the complexity and straightness intuitions in camalion a total of eight times across
Tasks 1 and 2. For example, Ned (Grade 6, CLM Grased the complexity and
straightness intuitions in combination during T@dlo defend why he thought Path C
was the shortest saying, “Because it only has emeand it almost goes straight to
school.” Ned’'s comment that Path C “only has oma’tis indicates that he was
attending to the number of turns, or complexitythef path. Because he followed this
comment with “and it almost goes straight to schoulicates that he was also attending
to the directness, or straightness, of Path C.&fber, Ned's response here indicates that
he used both complexity and straightness intuittordefend his placement of Path C as
the shortest in the set.

Complexity and detour in combination. There were six instances of the use of
the complexity and detour intuitions used in comlion for Tasks 1 and 2. For example,
Noah (Grade 4, CLM Group) used the complexity astbal intuitions to justify why he
thought String 1 was the longest. He initially eatped that String 1 is the longest

because “this one goes down (tracing his fingerrdthve vertical segment of String 1)
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and then that way (tracing his finger along thazumtal segment of String 1).” That is,
Noah initially used the detour intuition. Howeveshen asked another probing question,
he relied on a combination of intuitions:

Interviewer: Alright. What is it about going downdithen that way (tracing

finger along String 1) that makes String 1 the kestg

Noah: cuz um...you would have a right angle hemnd,ifiyou took a ruler, this

one would be long (spanning fingers across thecatitiegment of String 1) and

that one would be long (spanning fingers alonghttiézontal segment of String
1)...um...and it doesn't have like a bunch of regigles like this one (pointing to

String 3) does.

Noah'’s initial attention to the lengths of the veat and horizontal segments as making
String 1 long suggests that he used the detoutioriuHis follow-up statement about the
“bunch of right angles” of String 3 is evidencettha also used the complexity intuition
to justify his claim that String 1 was the longest.

Complexity and compression in combinationl observed one instance of the
complexity and compression intuitions being usedambination across Tasks 1 and 2.
For example, Kyle (Grade 10, ICPM Group) used thraglexity and compression
intuitions as a combination to defend his claint thath D was the longest for Task 2:

Interviewer: OK. And why is Path D the longest?

Kyle: All of the separate lines adding them togeilp@inting to Path D),

especially the last two lines that are much lorigan they should

be...but...uh...putting all of these lines (off campointing to Path D) and
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straightening them out into one direction, it wojuldt go farther than how I think

Path A would go.

Kyle's initial attention to “all of the separat@ds” is an indication that he initially was
relying on the number of a specific feature of plaghs, the number of line segments.
This is evidence that he was initially using thenptexity intuition. His next statements
about “adding lines together” and “straighteningrthout into one direction” suggests
that he was also thinking about straightening @éat@g which is consistent with the
compression intuition. Therefore, he used the cexipgl and compression intuitions in
combination to defend a single claim about PatreDddpthe longest in the set of
rectilinear paths for Task 2.

Detour and straightness in combinationNine instances of the use of the
combination of the detour and straightness intngizvere observed in students’
responses to Tasks 1 and 2. For example, Scottl¢@@ ALM Group) used the detour
and straightness intuitions as a combination temtghis claim that Path D was the
longest for Task 2:

Interviewer: OK. And why is Path D the longest?

Scott: | think the length of D's short turns cob#ljust one straight line or

diagonal, and...nmmm...because if you make a trgdrtgle with those it would

be (traces finger as a diagonal from the beginoingne horizontal segment to
the end of a vertical segment on path D)...the sagrtee...hmmm...

Interviewer: So are you imagining making a rigldngle...will you show me

what you're imagining with the triangle?
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Scott: Like a right triangle the hypotenuse woutdabshorter way...to get from A
to B (traces finger as a hypotenuse from the béggnof the first horizontal
segment of Path D at home to the end of the fedical segment of path D)
than...(traced finger along the first horizontagreent of path D and the first
vertical segment of path D).
Scott’s initial response was to make a diagonal Wuith all of the short turns in Path D.
He then quickly switched from talking about makandiagonal to making a right angle
with all of the segments of Path D. When askechtmswhat he was imagining with the
triangle, Scott talked about the hypotenuse otriegle being a short way to get from
one point to another. This is consistent with tin@ightness intuition. His comparison of
the short, straight hypotenuse way of getting faom point to another as being shorter
than going between the same two points in an L-ath@ath suggests that he was also
using the detour intuition to defend his claimehaistingly, Scott's mention of the
hypotenuse of a triangle as being a shorter letingth the sum of the legs of the triangle
suggests that Scott’s intuitive thinking for paghdgth is integrated with his mathematical
reasoning about right triangles.

Three intuitions in combination. One student used three intuitions to defend a
claim. Rick (Grade 8, ICPM Group) used the compigxdetour, and straightness
intuitions to explain why String 3 was shorter ti&tnng 1:

Interviewer: OK. Why is this one (pointing to Sgi) shorter than this one

(pointing to String 1)?

Rick: Um...because it (pointing to String 3) doegpo' like one long way all the

way (traces an L-shape path on the String 3 traespg in the same shape as
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String 1) it just goes like (traces along the segsef String 3) all the way...it

goes like...it's like this (pointing to String Ms diagonal, but it's just a little bit

longer because it goes out and down and out and.dow
Rick's statement that String 3 doesn’t go “like doleg way all the way” while tracing
the L-shape of String 2 with his finger indicatkatthe initially used the detour intuition.
His follow-up comment about String 3 going “...likag (pointing to String 2). It's
diagonal,” suggests that he relied on the stragggnntuition to support his argument
that String 3 is straighter than String 1, so $tBmmust be shorter than String 1. His final
statement about String 3 being “just a little bitgeer [than String 2] because it goes out
and down and out and down” suggests that he ugecbtinplexity intuition to justify his
claim that String 3 is only approximately straigivhich makes it shorter than String 1,
but not as short as String 2.

Compression and detour in combinationOne student, Marie (Grade 10, ALM
Group) used the compression and detour intuitisres @mbination to defend a claim.
Her responses also indicate that she experiencdtiot® in the claims she made based
on intuitions. The section below describes Mariese of intuitions in combination and
conflict.

Conflicting intuitions. Marie (Grade 10, ALM Group) exhibited conflicting
intuitions when resolving Task 1. She had initiahgered the strings from shortest to
longest as String 2, 1, and 3 when she re-exantiaedrdering using intuitive thinking:

Marie: I'm just stuck between these two on whicle'srthe longest (pointed to

Strings 1 and 3).

Interviewer: OK. Well, tell me what you’re thinkirapout.
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Marie: Because this one like has more like stoppimg) starting points (pointed to

String 3). It doesn’t go like as direct as likestbne is obviously the most direct

(pointed to String 2). But...um...and then this oneydrds like one other

stopping point (traced around String 1). But I'kelitrying to like imagine them

bent out, and I'm not sure. This one might actubaéiythe longest (pointed to

String 1).

Marie first used the complexity and straightnessitions as a combination. She first
mentioned the complexity intuition to make a stagatabout the “stopping and starting
points” for String 3. She then used the straighgnetiition when describing String 2 as
“obviously the most direct.” Next, Marie exhibitédte compression intuition when she
talked about “trying to like imagine them bent dthis compression intuition seemed to
inform her conclusion that String 1 must be thegkst and overruled her initial
conclusion that String 3 was the longest basedercdmplexity intuition.

Although Marie rejected her conclusion based enctbmplexity intuition, when
she evoked the compression intuition on Task 1agipdied the rejected complexity
intuition again in Task 2. She initially orderea thaths from left to right (from shortest
to longest) as Paths C, A, D, and B:

Marie: | think that's pretty much it.

Interviewer: That's pretty much it?

Marie: um...these two might switch (pointed to RBathand D). I'm just not sure.

Interviewer: Which two?

Marie: These two middle ones (pointed to Paths &R

Interviewer: OK. Tell me what you're thinking abdlibse two middle ones.
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Marie: Um...that this one (pointed to Path A) hks less like starting and

stopping points like going around (pointed to Aajhbut it (pointed to path A)

also has like longer stretches so when lengthengdtenight end up actually

being longer than this (pointed to Path D).
Marie used the complexity intuition when she coregaPaths A and D by the number of
“starting and stopping points.” Her next statenagtut the longer stretches of Path A
are consistent with the detour intuition, which wasonflict with the claim she had just
defended using the complexity intuition. Therefdhe, complexity and detour intuitions
were in conflict in this statement. She then evolkedcompression intuition by talking
about lengthening the paths out, in order to resttis conflict between the complexity
and detour intuitions. By doing so, Marie was ableeason about the size and number of
segments in a path. She then changed her orddrthg paths as Path C, D, A, and B.
Although the detour intuition alone (or even indam with the complexity intuition) was
not convincing enough for Marie to make a decisibout the order of Paths A and D,
she used it again to defend why Path B was thesking

Re-using rejected intuitions.Some students who experienced conflicting
intuitions, and rejected one intuition in favorasfother, later re-used a rejected intuition
to defend a subsequent claim. Mia (Grade 4, CLMu@)dlid this on four separate
instances. For example, when asked to comparegSttin2, and 3 by their lengths she
said:

Mia: um...well...these two are probably about the sdength (pointed to Strings

1 and 3) because you could just make these strgoghtted to the first two

segments of String 3) and then they would probblblgbout the same as this
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(pointed to String 1)...and if you made this oneijed to String 1) bumpy it

would probably be the same as this (pointed to&3)).
Mia’s discussion of making String 1 straight oriiggr3 bumpy for the purpose of
comparing them indicates that she used the compresduition to defend her claim that
the two strings were the same length. However, vdsied to put the strings in order,
she ordered them as String 2, 1, and 3. When adb®at her order, she experienced a
conflict in her intuitions:

Interviewer: Is this one the longest (pointing targy 3)?

Mia: | think...no.

Interviewer: No? Because why?

Mia: Because...(She switched the order of Stringad. 3 to reflect an ordering of

String 2, String 3, and String 1 from left to rightt is longer to get from here to

here (traced finger along the two segments of &ttinthan it is to get from here

to here (traced finger along segments of String 3).

Interviewer: Oh, | see. So, a minute ago you dzad these are the same (pointed

to Strings 1 and 3). Are they the same?

Mia: No.

Interviewer: Or are they different?

Mia: They are different. This one is longer (pothte String 1).
Mia initially engaged with the task by operatingtbe compression intuition to defend
her claim that Strings 1 and 3 were the same ytherdowever, she later evoked the
detour intuition when tracing and explainifig,is longer to get from here to here (traced

finger along the two segments of String 1) thas tb get from here to here (traces finger
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along segments of String 3.” These intuitions dotét and she rejected the conclusion
that she had reached by using the compressioniantuilhat is, the detour intuition was
predominant in her thinking here.

Although she rejected the compression intuitiofawor of the detour intuition in
this instance, she continued using both of thoseesatuitions when responding to
further questions about her ordering of the strings

Interviewer: OK. What is it about String 2 that reakyou think it's the shortest?

Mia: cuz it's...um...just straight (pointed to Stringy@nd this one’s bumpy

(pointed to String 3) so then if this one (pointedtring 3) was straight then it

would be a lot longer than this one (pointed tangte).

Here, Mia defended her claim that String 2 is thertest by using a combination of
intuitions, straightness and compression. Shealhjtoperated on the straightness
intuition when claiming that String 2 is just sght. She then elaborated and offered
further justification by operating on the compressintuition, which she had previously
rejected, when explaining that if String 3 werd&omade straight, it would be “a lot
longer” than String 2. She continued using theigtaess, compression, and detour
intuitions to address questions about her ordénepaths:

Interviewer: OK. um...why is String 1 the longest?

Mia: cuz...um...it takes a lot longer to go dowratoorner (traced along the

vertical segment of String 1) and then over th&eacéd along the horizontal

segment of String 1) than it does to just go shtaigrough the middle (traced a

finger over String 2).

Interviewer: What is it about String 1 that makes yhink it's the longest?
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Mia: cuz...um...if you put both of these stringsiping to both the vertical and

horizontal segments of String 1) in a straight,lithen it would be pretty long.

Interviewer: OK.

Mia: probably a lot longer than this one (pointstong three) and obviously this

one (pointed to String 2) ‘cuz it's already straigh
Mia initially defended her claim that String 1 wiag longest using a combination of
intuitions, detour and straightness. She usedebeud intuition first when she talked
about how much longer it would take to go down tmener (along the vertical segment)
and then over (along the horizontal segment). Bée ¢voked the straightness intuition
by saying it takes longer and tracing String 1 thaoes to just go straight along string
two. When asked a clarifying question about what #bout String 1 that made her think
it was the longest, she used the compressionioruilthough she had previously used
the detour intuition to reject her initial deterrmaiion (that Strings 1 and 3 were the same
length) derived from the compression intuition, sked the detour and compression
intuitions, with the straightness intuition to soppher claim that String 1 is the longest.

For Task 2, Mia used all four intuitions, includimuitions in combination in
some instances, as she defended her ordering &ftins from shortest to longest by
their lengths as Path C, A, D, and B. She alsorepeed conflicting intuitions and used
rejected intuitions when defending her claim thathFB was the longest:

Interviewer: OK. Let's see. Why is Path B the |stge

Mia: Um...cuz it has to go...um...really far dowrdahen it has to go far over

there.
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Interviewer: OK. Why does going far down and faeothere make Path B the
longest?

Mia: mmmm...hmmm...hmmm....

Interviewer: Can you explain it? Can you explainpgoing down far and going
over far makes a path longer...makes a path long?

Mia: hmmm...actually I think this one (pointed tatR D) is longer than that one
(pointed to Path B and switched Paths B and Dhewmtdering was Path C, A, B,
D)

Interviewer: Oh. OK. Can you tell me why you swedhyour order?

Mia: Because | think that if you put this one (#d@long the horizontal segment
of Path B) there (rotated end-to-end with the eattsegment of Path B, forming
a single straight line), it would be about likestlong or this big (indicated on the
table where this single straight line would end ap}his one would be, if you
stretched it out like that (pointed to Path D).

Interviewer: OK. Alright. So, was there somethifmpat one of these paths
looked that made you switch the order?

Mia: um...this one (pointed to Path D) was all bumgych meant it...took up

more string, and this one was less bumpy and jteght (pointed to Path B).

Mia initially defended her claim that Path B wase thngest by using the detour intuition

saying that Path B is longest because it goeslyr&al down and then it has to go far

over there.” When probed about why this featurPath B makes it the longest, she

exhibited conflicting intuitions. That is, she setied her ordering of the paths from

CADB to CABD and explained that she switched beealne imagined stretching the
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paths out, which indicates that she operated ordhgression intuition. In this
situation, the compression intuition was the preahamt intuition over the detour
intuition in Mia’s thinking, despite the fact thstte had previously used the detour
intuition to reject a conclusion derived from th@npression intuition in Task 1. When
further pressed what it was about the paths thaerhar switch the order, she talked
about how Path D was bumpy and therefore took ug msining than Path B; this
explanation was based on the complexity intuition.

Analytical Strategy Use for Rectilinear Paths

Twenty-three instances of analytical strategy useevexhibited by seven of the
16 interview participants when they compared setedilinear paths. Six of these seven
students who used analytical strategies also Umetbur intuitions described in the
sections above to defend their orderings of thaliregar “strings” or “paths” by their
lengths. Only one student, Lynn (Grade 8, CRM GJjaafed solely on analytical
strategies to justify her claims when comparingreilinear “strings” or “paths” by
their lengths. The 23 instances of analytical sgiatuse consisted of three types of
physical comparison strategies and one strategyrthalved projecting or translating
segments of paths either vertically or horizontdlythe sections below I illustrate each
of these four analytical strategies and descrilve participants used them.

Indirect comparison using finger span.Students who used this indirect
comparison strategy placed a finger span acrosgraent of one path and then placed
the same finger span across a segment of anottierqma example, Scott used the
“indirect comparison using finger span” strategyl@sk 2 after using the fist

straightness intuition to defend his claim thathRatwas the shortest, and then
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experiencing a conflict between the complexity aachpression intuitions to justify his
ordering of Path B as longer than Path A. Whendskecifically about what he was
thinking about Paths A and B, he said:

Hmmm...this one’s probably about the same lengthnised fingers across the

vertical segments closest to school on both PathsdAC) so | would think this

would be longer (traced finger along the first fe@agments of Path A) than that

(pointed to the diagonal segment of Path C).

Scott’s strategy of spanning his fingers across/drgcal segments that were closest to
the point labeled as “school” on both Paths A ardb€s not meet the definition of being
an intuition. It is not an immediate, direct, arldl@al solution. It is a solution derived
from comparing parts of the paths indirectly, usanignger span.

The indirect comparison strategy using a fingenspas observed a total of two
times by two students, Rose (Grade 6, CRM Groug)Suott (Grade 10, ALM Group).
Both Rose and Scott used this analytical stratémygawith intuitions. Scott went on to
use additional comparison and projection strategigsstify his claims about the order
of the paths for Task 2.

Superimposed pairs of rectilinear paths to comparelirectly. Students who
used this analytical strategy placed one transpgreontaining a “string” or “path”
directly on top of another transparency contairardifferent “string” or “path.” For
example, Zane (Grade 10, ALM Group) used the aicalystrategy of superimposing
pairs of paths to compare the paths directly dféang initially asked to compare the
paths in Task 2 by their lengths. He superimposet R onto Path C. He then switched

the positions of Path A and C, so the paths wese tndered as CBAD. Next, he
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switched the position of Paths B and A, so the patére ordered as CABD. He again
superimposed Path B onto Path D and said, “Got it.”

This direct comparison strategy involving superisipg pairs of rectilinear
“strings” or “paths” was observed a total of nimads by six participants: Trent (Grade
6, CRM Group), Lynn (Grade 8, CRM Group), Rick (@&, ICPM Group), Ruth
(Grade 8, ICPM Group), Zane (Grade 10, ALM Growgnoett (Grade 10, ALM Group).
Aside from Lynn, who used analytical strategiesydhtoughout Tasks 1 and 2, the other
five of these participants used this superimpasistvategy along with intuitions to
justify their claims about the ordering of the iisgs” or “paths” by their lengths. Of
these five, Rick was the only student who did net aise at least one other analytical
strategy on Tasks 1 and 2.

Segment matching comparison strategyStudents who used the “segment
matching comparison strategy” purposefully matctmedsegments of one “path” or
“string” to the segments of another “path” or “sg? when superimposing pairs of
strings or paths to directly compare. For exampleen initially asked to compare
Strings 1, 2, and 3 by their lengths for Task BniGrade 6, CRM Group)
superimposed the transparency of String 3 ontaréimsparency of String 2 and then took
them apart. He then placed each segment of Stravgd String 2 to compare directly
and then took them apart again. He said, “OK. htbii.” When asked what he found, he
explained that he thought string three was thedehgnd string two was the shortest.

Participants used the segment matching comparisategy a total of six times

by three students: Trent (Grade 6, CRM Group), L{@grade 8, CRM Group), and Ruth
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(Grade 8, ICPM Group). Both Trent and Ruth alsalubkes analytical strategy along
with intuitions, and other analytical strategies Ruth.

Project to form right angle. Students who used the “project to form right ahgle
analytical strategy indicated that they comparetilneear paths by imagining translating
vertical segments horizontally (left and right)harizontal segments vertically (up and
down) to form a single right angle. For examplégrafising a combination of intuitions
(straightness and detour) to justify why String @&whe shortest, Ruth (Grade 8, ICPM
Group) used the “project to form right angle” stigat when asked why she thought
String 1 was the longest:

Ruth: Cuz, for the middle one I kind of visually dpowhereas if | take this line,

this line, this line (pointed to horizontal segnweat String 3) and make it like a

straight line over here (traced finger across targparency for String 3 to

indicate how long the three horizontal segmentStahg 3 would be if they were
one segment.)

Interviewer: mm-hmmm

Ruth: It would be the same as...like this one @dafinger along the horizontal

segment of String 1)...and then if it's like theseéh(traced finger along three

vertical segments of String 3).

Interviewer: OK

Ruth: Oh! OK...s0...OK OK OK.

Interviewer: You can draw. You can write more onehié you want to. Do you

want to write what you were imagining on there?
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Ruth: So this one here (touched the marker atndeoéthe second horizontal
segment of String 3 and then projected it end-tbeith the first horizontal
segment) and this one (touched the marker at thetthe third horizontal
segment of String 3 and then projected it end-teith the projected second
horizontal segment of String 3)...and | was thinkihgse three (swept marker
over each of the three vertical segments of S@g'm confused now because it
looks like they're the exact same length (lookeSitahgs 1 and 3).

Interviewer: OK. Tell me what you were doing wittese three (pointed to each
of the three vertical segments of String 3).

Ruth: And | would move these (touched the firsticat segment of String 3 with
the marker) back over here, (placed marker atiideoé the horizontal line
representing the three projected horizontal segsremd drew the first vertical
segment perpendicular to this segment) so themwthigd go down here. This
would go down here (touched the marker to the sttgertical segment and then
projected it end-to-end with the projected firsttial segment of String 3; this
new segment touched the third vertical segmentraig3) and that would the

exact same length.

After Ruth applied the project to form right angteategy here to justify her claim that

String 1 was the longest, she changed the ordefittte paths that she had initially

defended using a combination of the straightneddatour intuitions. That is, her

application of this analytical strategy createaaflict between the combination of

intuitions she had used and this analytical stsat€bis conflict led her to reject a claim

she had initially defended using the combinatiomafitions. Three different participants
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usedthe project to form right angle analytical strategiptal of six times: Ruth (Grade
ICPM Group), Zane (Grade 10, ALM Group), and S¢{Gtiade 10, ALM Group). Eac
student who used this analytical stratelso used other intuitions and analyti
strategies to defend their claims about the orflarset of rectilinear patf

Relating Intuition for Rectilinear Paths to theLevels of the Length LT

| tracked patterns of use of the four main intuiipcombinations of intuition
analytical strategies, rejecting intuitions, anthgsejected intuitions when compari
sets of rectilinear paths (Tasks 1 and 2) withid across the four length LT lel groups.
Figure 45illustrates the frequency of the appearance oftintuand analytical stratec

codes relevant to Tasks 1 an

Tasks 1 &2
Total
Number of Used a
Straightness  Complexity Detour  Compression| Intuitions |Combination of Conflicting Rejectedan Rejected  Analytical
Intuition Intuition Intuition Intuition Used Intuitions Intuitions Intuition Intuition Strategy Use

CLM Group 12 19 10 6 47 6 2 2 4 0
CRM Group 7 15 6 2 30 6 0 0 0 10
ICPM Group il 10 7 0 29 7 0 0 0 74
ALM Group 11 8 8 10 37 8 4 2 2 6

Totals 42 52 31 18 143 27 6 4 6 23

Figure 45 Patterns of intuition and analytical strategy issecomparing rectilinear patt
within and across LT grou.

In Figure 45 within each column, the darkest shade indicdted T group with the
highest frequency of an intuition or analyticabstgy code. The lightest shade indic:
the LT group with the lowest frequency of an intuitor analytical strate( code. Figure
45illustrates developmental patterns within and atoE groups for the use of the fc
main types of intuitions and overall analyticabstgy and intuition use. In the sectic

below | describe these patterns, beginning wable 5.

116



Table 5

Distribution of Each Intuition for Comparing Reatiéar Paths across Length LT Level
Groups (Tasks 1 and 2)

CLM Group CRM Group ICPM Group ALM Group Totals
28.57%* 16.67% 28.57% 26.19%

Straightness 42
’ (12) (7) (12) (11)

Complexity ~ 36:54%  28.85%  19.23%  1538% .,
(19) (15) (10) (8)

Detour 32.36% 19.35% 22.58% 25.81% 31
(10) (6) (7) (8)

Compression 55,5570 11.11% 0.00% 55.56% 1o
(6) 2 0) (10)

32.98%  20.98%  20.28%  25.87%
Totals (47) (20) 59) ' 143

* 28.57% of the instances in which the straightriestion was observed occurred with
the participants who were classified as membetseCLM group.

Patterns of Intuition Use within LT Groups for Rectilinear Paths

| observed a total of 143 instances of intuitior irsthe 16 main participants
responses to Tasks 1 and 2, which both involvedpeoimg sets of rectilinear paths. For
these two tasks, participants evoked the complexitytion more often overall than any
of the other three main types of path length irdng observed during the study. This was
followed by straightness, then detour, and fintily compression intuition. | observed
this same overall trend for the frequency of thpesgpance of each of the four main
intuitions for the CLM and CRM level groups. Howewvihe participants in the ICPM
and ALM level group exhibited a different pattednrduition use. In the ALM and

ICPM level groups, participants used the straigbgnptuition most often. This was
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followed by complexity, detour, and compressiontfa ICPM group, and compression,
complexity, and detour for the ALM level group.
Patterns of Intuition Use across LT Groups for Redtinear Paths

The complexity intuition was used most often bydstuts in the CLM level
group, with 19 instances, and decreased acrogsrigth LT groups as the level of
sophistication increased. The detour intuition wsed most often by the CLM group,
and the use of this intuition was approximatelyrdyelistributed across the CRM,

ICPM, and ALM level group, The straightness intuitiwas used most often by the CLM
group, and the compression intuition was used wivsh by the ALM group.

Students in the CLM level group, the lowest lediethe LT for length
measurement that was included in the present séxtiybited the highest number of
instances of intuition use, for a total of 47. Toisup was followed by the ALM level
group, the highest level of the length LT includiedhe study, for a total of 37. The
CRM and ICPM level groups both exhibited approxiehathe same number of instances
of intuition use, with 30 and 29 respectively. Thiggests that there exist developmental
patterns in intuition use across the levels ofiémgth LT. Specifically, the types of
intuition, as well as the frequency of use of iitui, changes across the levels of
sophistication for length measurement.

Intuitive and Analytical Thinking in Combination an d Conflict

Participants used intuitive and analytical thirikin combination and conflict

when ordering rectilinear paths by length (Tasksd 2). Table 6 illustrates the

frequency with which these events occurred througfiasks 1 and 2.
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Table 6

Distribution of Intuitions Used in Combination, Gbet, and in Tandem with Analytical
Thinking for Comparing Rectilinear Paths (Tasksntl 2) across Length LT Groups

CLM CRM ICPM ALM  Overall
Group Group Group Group Totals

33.33%* 0.00% 0.00% 66.66%

Conflicting Intuitions 6
g 2) © © @
L " 22.22% 22.22% 25.93% 29.63%
Combination of Intuitions 27
(6) (6) (7) (8)
) ” 50.00% 0.00% 0.00% 50.00%
Rejected an Intuition 4
’ 2) © © @
. ” 66.66% 0.00% 0.00% 33.33%
Rejected Intuition Use 6
J (4) © © @
With Analytical Strategies 0.00% 42.86% 14.29% 42.86% 14

(0) (6) (2) (6)

* 33.33% of the instances in which a conflict inumion use was observed occurred with
the participants who were classified as membetseCLM level group.

Intuitive and Analytical Thinking in Combination an d Conflict within LT Groups
Participants in the CLM level group showed evideoicasing intuitions in
combination, experiencing conflicts among intuidhat lead to the rejection of an
intuition, and also later used rejected intuiticBEM level participants showed no
evidence of using analytical strategies with intuis when comparing rectilinear paths
by their lengths. CRM and ICPM level participans&d intuitions in combination and
with analytical strategies. Participant at the Aldwtel showed evidence of using
intuitions in combination, with analytical strategj experienced conflicts among

intuitions that lead to the rejection of an intoiitj and also used rejected intuitions.
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Intuitive and Analytical Thinking in Combination an d Conflict across LT Groups
Only students in the lowest and highest LT leveugs, the CLM and ALM
levels, exhibited evidence of experiencing conftigtintuitions on Tasks 1 and 2. These

six instances of conflicting intuitions appearedha responses of three students: Mia
(Grade 4, CLM Group), Scott (Grade 10, ALM Groummd Marie (Grade 10, ALM
Group). The instances of intuitions used in comibdmeappeared almost evenly across
the four length LT level groups. None of the studen the CLM level group, the lowest
LT level group included in the study, used anabjtgtrategies with intuitions to resolve
Tasks 1 or 2. The students in this LT level groelped solely on intuition to justify their
claims about their orderings of rectilinear patigddngth. Analytical strategy use in
tandem with intuitions appeared most often at tR¢MGnd ALM levels (6 instances)

and dropped off for the level between those lew€lBM (2 instances). Instances of
students rejecting intuitions and using rejectedifions appeared only within the highest
and lowest LT level groups included in the stutig, CLM and ALM groups. Although
the instances of rejecting a claim based on aitiouwere evenly dispersed across these
two level groups (two instances in each of the Catd ALM groups), students in the
CLM level group exhibited evidence of returningue rejected intuitions more often
than students in the ALM level groups.

Instances of intuition use occurred within eacktheffour length LT level groups
for the tasks involving comparing rectilinear pafiasks 1 and 2). However, not all of
the length LT level groups showed evidence of uaimglytical thinking when making
such comparisons. Table 7 below illustrates thidigion of intuitive and analytical

thinking across the four length LT level groups Tasks 1 and 2.
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Table 7

Distribution of Intuition and Analytical Strategyse for Rectilinear Paths (Tasks 1 and
2) across Length LT Level Groups

CLM CRM ICPM  ALM

Group Group Group Group Totals
Intuitions 32.87%* 20.98% 20.28% 25.87% 143
(47) (30) (29) (37)
0, 0, 0 )
Analytical Strategies 0.00% 43.48% 30.43% 26.09% 23

() (10) (6) (6)

* 32.87% of the instances in which an intuition vadserved for Tasks 1 and 2 occurred
with the participants who were classified as memloéthe CLM level group (for a total
of 47 instances).

Patterns of Intuition and Analytical Strategy Use wthin LT Groups

Within each LT level group, instances of intuitivénking were more frequent
than analytical thinking when comparing sets ofilieear paths by lengths without
tools. At the CLM level, students relied only ouitions to defend their orderings of
rectilinear paths by their lengths. At each ofshbsequent levels, the CRM, ICPM, and
ALM levels, students used both intuitions and atiedy strategies to defend their claims
about the order of rectilinear paths by their lasgt
Patterns of Intuition and Analytical Strategy Use &ross LT Groups

Table 7 indicates that, at the lowest level oflémgth LT included, the CLM
level, students used the highest percentage afions, with 32.87%. The highest
percentage of analytical strategy use occurredinvitie group representing the next
level, the CRM level, with 43.48%. This level groalgo exhibited one of the smallest
percentages of intuition use, with 20.98%. Anabljtstrategy use then decreased as the
length LT levels increased, with 30.43% for the MCroup and 26.09% for the ALM

group. Intuition use remained approximately thes&mm the CRM level group to the
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ICPM level group, with 20.28%; however, there wasreerease in intuition use for tl
ALM level group, with 25.87%

This suggests an interaction between intuitive amalytical thiking for
comparing sets of rectilinear paths with the lewdlthe length LT. This interaction
illustrated in Figure 46where the blue bar represents the percentageitsfaf date
within each LT group that were coded as intuitaveg the red bar presents th

percentage of units of data that were coded aytisl!
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Figure 46.Interaction between intuitive and analytical stggtese within each LT levt
group.

Figure 46indicates that, early on in the development of eptical and procedur
knowledge for length measurement, at the CLM lesteldents used only intuiti
statements to defend claims about the order ofireszr paths by length. Students at
subsequent level of conceptual and procedural keabyd for length measurement,

CRM level, used newly acquired analytical stratedeejustify their claims about tt
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lengths of rectilinear paths. Across the CRM, ICR¥g ALM levels, the ratio of
intuition to analytical strategy use increases.
Curvilinear Paths: Intuitions and Analytical Strate gies

| posed tasks involving curves to elicit studemglitions and analytical
strategies when comparing a pair or set of curvdsowt tools (Task 6A, 7, and 8A),
comparing a curve and a straight object (Tasks 8nd 5), a pair of curves with a
straight object (Tasks 6B and 8B), or measuringraewith a ruler. In the first section
below | describe the intuitions and analytical tetgges that students used when
comparing a pair or a set of curvilinear pathssTsifollowed by a section in which |
describe relationships between intuition use amiteptual and procedural knowledge
for length measurement, as measured by the LTefgth measurement.

For Tasks 6A, 7, and 8A (Figures 47, 48, and 4&kied students to compare a

pair or set of curves without tools.

e

Figure 47.Image of a pair of curvilinear paths for intervidasks 6A and 6B.

A
A A
B \ LZ/)
B B
String 1
String 2 String 3

Figure 48.Image of a pair of curvilinear paths for intervidask 7.

C)7 N

Figure 49.Image of a pair of curvilinear paths for intervidasks 8A and 8B.
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Five Intuitions for Curvilinear Paths

The 16 interview participants’ responses to taskslving ordering pairs or sets
of curvilinear paths by their lengths without treewof tools (Tasks 6A, 7, and 8A)
reflected five main intuitions. | observed fourtbése five intuitions in their responses as
they compared rectilinear paths by their lengthesKE 1 and 2 in the sections above), as
well as in prior research (Chiu, 1996). These laeestraightness, complexity, detour, and
compression intuitions. One new intuition, callbd turve tightness intuition here,
emerged as students attended to curve when telliogt their ordering or answering
clarifying questions about why a particular patlswhortest or longest. In the following
section | describe how the 16 interview particigamnded these five intuitions.

Straightness.As with the rectilinear paths, students who usedstraightness
intuition when defending their claims about theasrdf curvilinear paths by their lengths
(Tasks 6A, 7, and 8A) attended to the straightoéssparticular path, without providing
further justification. For example, Kevin (GradeCLM Group) used the straightness
intuition when asked why the wider curve for Tagk(8ee Figure 49) was the shortest.
He said, “Because it's...it look...um...um...beeaitls more of a straight line than this one
(pointed to the tighter curve).” Participants ircleaf the four length LT level groups
reflected the straightness intuition in their resgEs across Tasks 6A, 7, and 8A.

Detour. Consistent with the use of this intuition for caamipg sets of rectilinear
paths (Tasks 1 and 2), students who used the detoitron when defending their claims
about the order of curvilinear paths (Tasks 6] 8B) discussed a particular path as
going out of the way or not being a direct router &xample, when asked to tell about

his ordering of the three strings by their lengtirsTask 7 (see Figure 48), Rick (Grade
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8, ICPM Group) said, “I was thinking this is thengest (pointed to String 1) because you
have to go all the way around.” | observed the deiatuition in students’ responses
across all four length LT level groups; howevennty appeared in students’ responses
to Task 7.

Complexity. Similar to some of the responses observed asrgsidempared
rectilinear paths (Tasks 1 and 2), students whd tise complexity intuition to defend
their claims about the ordering of curvilinear gaffiasks 6A, 7, and 8A) attended to the
number of turns of a particular path. For exam@gnt (Grade 6, ICPM Group) used the
complexity intuition when defending his claim tt&tting 3 was the longest for Task 7:

Interviewer: OK. And why is string three the lonties

Grant: Because it like zig-zags all over and zigeggag takes, like, extra time.

Interviewer: OK. So, why does zig-zagging makeitder?

Grant: Because you're like...you're like goingoaiér the place instead of like

straight from one point to another.

Grant’s response reflects his attention to the rermobzig-zags in a path, as well as his
belief that zig-zags add time and length to a pdit.response illustrates the complexity
intuition as applied to a set of curvilinear patimsl a potential reason that people develop
the complexity intuition, an interference of distartraveled versus the time it would take
to travel that distance. For Task 7, Strings 1 auade the same length. However, to
traverse String 3 as a path in reality, one woaéddto slow down to make the turn, thus
adding more time to the trip without adding lendttke the detour intuition, the

complexity intuition was reflected in the responeéstudents in all four length LT level
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groups, but | observed it as they defended thaimd about their orderings of the three
curvilinear paths only for Task 7.

Compression.As with the sets of rectilinear paths (Tasks 1 2naétudents who
used the compression intuition to justify theinmla about the order of pairs or sets or
curvilinear paths (Tasks 6A, 7, and 8A) discusstteestraightening curves or bending
curves for the purpose of making comparisons. kamgple, Scott (Grade 10, ALM
Group) used the compression intuition to defend iayhought the wider curve was
shorter for Task 8A saying, “just how | imagineddu...if it were a string you could just
pull it (gestured to the wider curve with his fingeas if to pull the ends straight.)” The
compression intuition was observed in studentgaases for Tasks 6A, 7, and 8A and
across all four length LT level groups.

Curve tightness.Students who used the curve tightness intuitisoudised one
curve as being longer than another because it wasd in more or had more curve.
When asked how he thought about comparing the twaes for Task 6A, David (Grade
8, ICPM Group) said:

| saw this one (pointed to the spiral curve) waseraurved than this one (pointed

to the curve with the straight segment). So, | g@asna see if...like...how close

they are in length this way (gestured with his lsimda back and forth horizontal
direction), and if this one (pointed to the spoatve) was like the same size as
this one (pointed to the curve with the straiglgmsent), this one would be longer

(pointed to the spiral curve) because it's curveahore. This one's slightly longer

(pointed to the curve with the straight segmentj,lstill think that one's longer

(pointed to the spiral curve).
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David’s response here is qualitatively differeminfrthe other four intuitions. He did not
attend to the straightness of a path (the straggstmtuition), or discuss straightening or
bending one of the curves (the compression intjtiDavid also did not discuss one
path as deviating away from the destination moa@ #mnother (the detour intuition) or
attend to the number of turns or bends in a path ¢omplexity intuition). Although his
response here did not fit with the descriptionmyf af the four previously mentioned
intuitions, his response is consistent with thepprties of intuitions as described by
Fischbein (1987). That is, it is a statement thatimediate, direct, and global. It was
given without further justification or elaborationhis response from David is an
illustrative example of the curve tightness intuiti which was repeatedly used in
multiple curvilinear path length comparison sitoas (Tasks 6A, 7, and 8A) and by
interview participants in each of the four length level groups throughout the study.
Analytical Strategy Use for Curvilinear Paths

Twenty-two instances of analytical strategy useewsserved in the responses of
nine of the interview participants as they made gamsons among curvilinear paths
(Tasks 6A, 7, and 8A). Five of these nine studebtsit (Grade 10, ALM Group), Trent
(Grade 6, CRM Group), Zane (Grade 10, ALM Groupjled{Grade 10, ALM Group),
and Rose (Grade 6, ALM Group) each used only aicalytrategies, without also using
an intuition, to defend their order of the curvdar paths for one of these tasks. Four
students Lynn (Grade 8, CRM Group), Ruth (Grad€BM Group), Scott (Grade 10,
ALM Group), and Kyle (Grade 10, ALM Group) used tiple analytical strategies

across these tasks. One student, Lynn, used oalyteal strategies on all of these tasks.
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The following sections illustrate how participantsed five different analytical strategies
as they defended their orderings of sets of cunedr paths for Tasks 6A, 7, and 8A.

Superimposed pairs of curvilinear paths to comparelirectly. Students who
used this strategy placed one curve on top of therdor the purpose of directly
comparing the strings. This strategy does not ieetefinition of an intuition as an
immediate, direct, and global approach becauswdves a physical, direct comparison.
Kyle (Grade 10, ALM Group) used this analyticabstgy when comparing the tight
curve and the wide curve for Task 7 (Figure 49) eWitially asked to compare the set
of three curvilinear “strings” by their lengths, I€yplaced the String 1 transparency on
top of the String 2 transparency with points A &lihed up. Next, he placed the String
2 transparency on top of the String 3 transpareaggin with points A and B lined up.
He said, “String 2 is definitely the smallest besmwhen | put it on top of 1 of...each of
the other strings...(trailed off).” Although Kyleddnot articulate how superimposing the
strings informed his answer, the fact that he dgigests that he did not use an intuition.

A total of 14 instances of the analytical stratefguperimposing pairs of
curvilinear paths to compare sets of curvilineahgalirectly (Tasks 6A, 7, and 8A) were
observed in seven participants’ responses: Rosal@3, CRM Group), Lynn (Grade 8,
CRM Group), David (Grade 8, ICPM Group), Ruth (G&] ICPM Group), Zane (Grade
10, ALM Group), Scott (Grade 10, ALM Group), andl&yGrade 10, ALM Group). Six
of these seven participants who used this stratidyso more than once. Once student,
Ruth (Grade 8, ICPM Group) used this strategy @ ed& Tasks 6A, 7, and 8A.

Indirect comparison using finger span.Students exhibited the strategy of

indirectly comparing using finger span by placinfinger span, or space pinched
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between fingers, on two or more curves. For exampient (Grade 6, CRM Group) used
this strategy when he was asked to compare thmbartle-shaped curves for Task 8A
without any tools. He placed one hand in an L-sl@apeach side of the tighter curve,
with his thumbs touching. Next, he placed his handke same formation on top of the
wider curve. He said, “I think this one is longpointed to the tight curve).” Kyle’s
application of the indirect comparison using a éingpan strategy was in his placement
of a hand in a L-shape on each side of the tighiere.

A total of three instances of the analytical sggtef indirect comparison using a
finger span were observed in three student’s resgsmrent (Grade 6, CRM Group),
Scott (Grade 10, ALM Group), and Kyle (Grade 10 M\Group). These instances were
observed on Tasks 6A and 8A.

Accumulating length comparison strategy Students who used the accumulating
length strategy superimposed a pair of curvilinesgths and rotated one of the paths,
while accumulating the length of the first on as®tpath. Lynn (Grade 8, CRM Group)
used this strategy when comparing the three stbygheir lengths. She placed the
String 1 transparency on top of the String 2 transpcy, positioning String 2 as a
tangent to String 1 and aligning them accordingdimts A and B. Next, Lynn made a
tick mark on String 1 at the point at which Strihgppeared to deviate from the curve.
She then rotated String 1 on top of String 2, refmwsng String 1 at a new point of
tangency on String 2. Lynn again made a tick mankne String 2 appeared to deviate
from the curve. This suggests that Lynn physicdilymaking tick marks, transformed
one path into the same shape as another to cortqgamedirectly. Lynn repeated this

procedure of adjusting the point of tangency, makick marks to keep track, and
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accumulating the length of String 2 along Stringhe also applied this strategy for
comparing Strings 1 and 3. She then ordered thegstfrom shortest to longest as String
2,1, and 3.

| observed three instances of the accumulatingfecgmparison strategy in three
participants’ responses: Lynn (Grade 8, CRM GroRplth (Grade 8, ICPM Group), and
Scott (Grade 10, ALM Group). | observed all of thetances of this strategy on Task 7.

Rate comparison strategyl observed one instance of the rate comparison
strategy in one student’s response to Task 7: Ratade 8, ICPM Group). She first
superimposed the three “strings” to directly conegliem. She then traced along the path
of String 2 with a marker onto the String 1 tramrepay, and traced along String 1 on the
String 2 transparency. Next, she placed Stringt8 8iring 1, aligned according to points
A and B and traced the shape of Strings 1 andthe®tring 3 transparency. She ordered
the strings from shortest to longest as Strings and 1. While superimposing the
strings, Ruth drew some marks (see Figure 50):

Interviewer: | saw you making some marks on heotnfed to String 3) and then

making some marks on there (pointed to the paBtrfig 1 traced on the String 3

transparency).

Ruth: I was...what | was doing is...I was kindistdning to it a little, and then

look at it and...so that much right there (traclesh@ a piece of String 3)...1 tried

to imitate that along...like right there (tracedraj a little piece of String 1 to

show how part of String 3 mapped to String 1).
Here, Ruth’s “listening” to “that much right ther@thile tracing along a piece of String

3) and imitating “that much right there” (while tiag along a piece of String 1) suggests
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that she may have been attempting to traverse sggrokthe two paths whil
maintaining the same rate. Thatshe compared the time it took to traverse a leog!
each string at the same rate as an attribute bghwdiie could compare the curviline
“strings.”

Imposed internal unit. | observed one instance of the analytical strat
imposing an internal unwhen comparing curvilinear paths in one studem&ponse fo
Task 7: Ruth (Grade 8, ICPM Group). While usingrtiie comparison strategy, Rt
made marks on the String 1, 2, and 3 transparenglgsh suggests that she also app
an internal unit whe comparing the curvilinear paths by their lendtirsTask 7. The
following figure (Figures0) illustrates the tick marks the Ruth made whilenparing the

curvilinear paths by their lengtl

A A
't.; ‘P;
B B il

String 3

A

String 1 String 2

Figure 5Q Ruth’s application of an internal unit fTask 7.
Ruth So, what my thing would be was this amount riggate would be equal-
this amount right here (again, pointing to a segmeéstring 3 and showing ho
it mapped to a segment of String 1) and then | ebkle bit from here and rigt
there. So the little marks | made...like...to kind dbp it up a little bit. And, righ
here, this was 10 little tiny marks. And | triedn@ke sure my marks e the
same as much as poss

Interviewer: OK.
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Ruth: | have doubt, but...I'm pretty sure that thisorrect.

Interviewer: OK. So, this was 10 tiny marks witlhiere (pointed to the segment
of String 1 labeled as 10)?

Ruth: Yes.

Interviewer: OK. Got it. How did you know how big take the marks? Cuz you
made tiny marks on here (pointed to String 3)?

Ruth: Yeah.

Interviewer: OK.

Ruth: So, | did one right there, one right thefghowed how she made tiny marks
on String 3)...they were roughly about this lorfthen made marks along String
1).

Interviewer: That's where they are?

Ruth: yeah.

Interviewer: Got it.

Ruth: I don't know if that's exactly ten, but, yeah

Ruth’s partitioning of segments of Strings 1 aneb8h with tiny marks, which created

same-size intervals on each “string,” suggestsghatapplied an internal unit for the

purpose of comparing the curvilinear paths.

Two of the analytical strategies that | observedtadents compared curvilinear

paths (Tasks 6A, 7, and 8A), | observed as studmmtgared rectilinear paths by their

lengths (Tasks 1 and 2): superimposed pairs ofilowear paths to compare directly and

indirect comparison using finger span.
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Interactions Among Intuitions for Comparing Curvili near Paths

| observed the same two types of interactions annmugions for students’
comparisons of rectilinear (Tasks 1 and 2) andibnear paths (Tasks 6A, 7, and 8A):
intuitions in combination and conflict. While compey curvilinear paths, students used
intuitions in combination with other intuitions. Wever, all of the instances of intuitions
in conflict that | observed as students comparectthvilinear paths, occurred as
conflicts with analytical strategies or with contiggd and procedural knowledge for
length measurement. The sections below | descolethe students used intuitions in
combination with other intuitions, and how they espnced conflicts between intuitive
and analytical thinking for path length.

Complexity and straightness in combinationParticipants exhibited the
complexity and straightness intuitions in combioatiive times in five different
students’ responses for Task 7 when comparingo$etsrvilinear paths. For example,
Kevin (Grade 4, CLM Group) ordered the three “gfsihfrom shortest to longest as
String 2, 1, and 3. He used the complexity andgttaess intuitions in combination to
explain why String 3 was the longest saying, ‘tité to curve more so it goes out and
then it's gotta keep on going out instead of gaimgight it's got like it goes out and that
makes it a lot longer (tracing the shape of StBran the table).” Kevin's attention to the
String 3 as one that has to “keep on going outbissistent with the complexity intuition.
He elaborated by saying, “instead of going strafghhich is evidence that he also
evoked the straightness intuition to defend theeselam,; therefore, he used the

complexity and straightness intuitions in combioati
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Complexity and detour in combination. Three participants used the complexity
and detour intuitions in combination three timeshey justified their orderings of
curvilinear paths. David (Grade 8, ICPM Group) oedkthe “strings” for Task 7 as
String 2, 3, and 1. When asked why String 1 istelndhan String 3 he said, “Because,
even though it goes further away from them, it dakes one turn there and back (traced
around String 1) and String 3 goes back and foiavid’s attention to the String 1
going “further away from them” shows that he evokael detour intuition. He elaborated
by evoking the complexity intuition by talking alidstring 3 as going “back and forth.”
Therefore, David used two intuitions, complexitylatetour, in combination.

Complexity and compression in combinationl observed one instance of the
complexity and compression intuitions in combinatishen a student defended a claim
about the order of the set of curvilinear pathsTask 7. Kyle (Grade 10, ALM Group)
ordered the “strings” from shortest to longest am§ 2, 1, and 3. He then used the
complexity and compression intuitions in combinatio defend his claim that String 3
was the longest:

Interviewer: OK...And why is String 3 the longest?

Kyle: Um...because it goes around and keeps onrguand curving until it gets

to the point, and...um...with String 1, I...um.tined that there would have been

enough for...enough to cover A and B (traced frono 8 on the String 1

transparency)...

Interviewer: mm-hmm

Kyle: ...and going straight line out from A andasght line out from B and

then...uh...there would be a shorter amount...ild/@about go up to here (pointed
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on the table to indicate where String 1 would epdf tne were to straighten it and
make it go through point B) with the excess parthefline, but with this (pointed
to String 3) there would probably...I'm just kinbestimating that there would
be...it would go out farther (pointed to the tatolendicate where String 3 would
end up if he were to straighten it and make it gstpoint B to show that it would
go out further than String 1).
Kyle’s initial attention to String 3 as one thab&p around and keeps on curving and
curving” shows that he first evoked the complexityition. He then elaborated by
discussing and indicating how far both Strings d @mwould stretch if they were
straightened out, which suggests that he also thgedompression intuition. Kyle used
both intuitions to justify the same claim; there&fohe used two intuitions in combination.
Kyle’s response here to Task 7 was the only ingtafithe use of the complexity and
compression intuitions used in combination to defére ordering of curvilinear paths.
Compression and straightness in combinatiorf-our different participants used
the compression and straightness intuitions in ¢oation five times as they compared
sets of curvilinear paths for Tasks 6A and 7. B@maple, Rick (Grade 8, ICPM Group)
used the compression and straightness intuitionsenmbination to defend his claim that
the spiral curve was longer than the curve withstingight segment for Task 6A (see
Figure 47). When asked why he thought the spiralecewas longer he said, “Um...l don't
know. It coils around more than this one (pointdhie string with the straight segment),
which is just more straight (traced finger aroulne turve with the straight segment).
This one seems (pointed to the spiral curve) lobgeause it...I don't know...just seems

longer that way (traced finger around the spiravey” Rick’s initial claim that the spiral
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curve “coils around more than” the curve with thaight segment is evidence that he
initially evoked the compression intuition to dedems claim. He then elaborated by
talking about the string with the straight segnmenbne that “is just more straight,”
which shows that he used the straightness intuibatefend the same claim. His use of
the compression and straightness intuitions torakflee same claim that the spiral curve
is longer for Task 6A suggests that he used thamtuitions in combination.

Compression and detour in combinationl observed one instance of the
combination of the compression and detour intugtiona student’s justification for the
ordering of the set of curvilinear paths for TaslMarie (Grade 10, ALM Group)
ordered the “strings” from shortest to longest am§ 2, 3, and 1. When asked to explain
why String 1 is longer than String 3 she saidhfthk cuz it goes so far around (traced
around String 1), where this one (pointed to StBhdas little places where it goes
around, but | think if we stretched them out, tme would still be shorter (pointed to
String 3).” Marie’s initial claim about String 1 geing “so far around” shows that she
first used the detour intuition to explain why 8gil is long. Her next claim about
stretching the strings out for the purpose of cammgashows that she also used the
compression intuition to defend the same claim. &f&#l the detour and compression
intuitions to justify the same claim; thereforegslsed them in combination.

Detour and straightness in combination] observed two instances of the
combination of the detour and straightness intogim two students’ responses as they
compared the set of curvilinear paths for Taskof.éxample, when initially asked to
compare the three “strings” by their lengths R@hnade 8, ICPM Group) said, “I know

String 2 is shortest because it's the straightt @ go there, and this one goes all the
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way around (traced finger around String 1).” Rutatement about String 2 being the
shortest because it is the straightest shows tieafiist evoked the straightness intuition
to defend her ordering. She then turned to Stringhich she said “goes all the way
around.” This suggests that she also operatedeoddtour intuition to defend the same
claim. Therefore, Ruth used detour and straightimessmbination.

Curve tightness and straightness in combinatiorOne student’s response
reflected the combination of the curve tightness straightness intuitions when
defending the ordering of a set of curvilinear gathoah (Grade 4, CLM Group) used
this combination of intuitions to justify his ordeg of the set of three curvilinear
“strings” by their lengths for Task 7. He providaa ordering of the “strings” from
shortest to longest as String 3, 1 and 2. | th&rda series of follow-up questions to
probe Noah'’s thinking with respect to why he thaugtiing 3 was the shortest and
String 2 was the longest:

Noah: Because there's all these curves (trailed off

Interviewer: OK. What is it about all those curtleat makes you think it's the

shortest?

Noah: Um...

Interviewer: Or, what is it about...why do curveak®a a string short?

Noah: Um...because...um...um...like the curves nitadteorter because...um...if

you were measuring it from just like a straightliike String 2, um...it would be

the easiest to walk cuz it would just be one shriagplid line.
Noah'’s attention to curves making a “string” shokdecause walking a straight line

would be easier to walk than a curve is evidenathk evoked the curve tightness
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intuition. Because his thinking about why a straiglid line segment that connects two
points is shorter than a curved line segment thahects the same two points was
unclear, | asked further clarifying questions:

Interviewer: OK. So, can you tell me again why ybunk the curves make the

path short or make the string short?

Noah: Because...um...if you had to walk it you vdolihve to make all of the

curves...like walk them

Interviewer: OK. And that makes the path...makesstiing shorter?

Noah: mm-hmm

Interviewer: OK. Why is String 2 the longest?

Noah: Because it's just one straight solid line thredle's no curves, so you can

just walk it straight.
Noah'’s explanation that String 2 is “just one gjhaisolid line” indicates that he used the
straightness intuition. He elaborated by sayingl“drere’s no curve,” which indicates
that he also evoked the curve tightness intuitiooambination with the straightness
intuition to defend his claim that String 2 is fbagest. Noah’s response to Task 7 was
the only instance of the combination of the curgathess and straightness intuition.
Conflicting Intuitions

Only two instances of intuitions in conflict werbserved as students compared
the set of curvilinear paths for Task 7. For thiskt one student, Noah (Grade 4, CLM
Group) experienced a conflict between a combinatfantuitions and an important unit

concept for length measurement. Another studertt) Rerade 8, ICPM Group)
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experienced a conflict between an intuition an@uaalytical strategy. The sections below
illustrate Noah and Ruth’s intuitions for curvilerepaths in conflict.

Conflict between intuitions in combination and a urt concept. Noah (Grade 4,
CLM Group) experienced a conflict between a comipimeof the straightness and curve
tightness intuitions and a key unit concept for sueament. Noah initially evoked the
curve tightness and straightness intuitions in doation to defend his ordering of the
three “strings” for Task 7 as String 3, 1, and 2nB of the other participants claimed that
String 2, the straight string, was the longest. éXiglanation that String 2 is the longest
because it is “just one straight solid line andélgeno curves, so you can just walk it
straight” was unclear. Therefore, | broke the witaw protocol to further probe his
intuitive thinking about the lengths of this setoofvilinear “strings” by asking him to
imagine comparing them by the length of wire, yamnumber of steps it would take to
span each of the paths:

Interviewer: Alright. Which one of these stringsthey were paths, which one

would take the most steps?

Noah: Probably String 3 (pointed to String 3).

Interviewer: OK. Which would take the fewest steps?

Noah: Probably String 2 (pointed to String 2).

Interviewer: OK. And if you really were to...havewever heard the story about

Hansel and Gretel?

Noah: yeah

Interviewer: What do you remember about the story?

Noah: They left a trall...
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Interviewer: Trail that's exactly what | was thingiabout. Of what?

Noah: | forgot.

Interviewer: Candy or something. They left a tr#douldn't it be fun if it were

candy? Maybe I'm just hungry for candy. | don't eember if it was candy. What

if you were walking each of these paths from A tari®8l you were leaving a tralil

of like wire behind you or yarn, which one woul#teghe most yarn?

Noah: String 3.

Interviewer: OK. Which one would take the least amtoof yarn?

Noah: String 2.

Interviewer: OK. So, I'm going to ask, | promiséstis the last time, which string

is longest?

Noah: String 2.

Interviewer: OK. Which string is shortest?

Noah: String 3.
When Noabh initially thought about the set of cunghr paths as strings, he ordered them
from shortest to longest as String 3, 1, and 2. él@s, when | asked him to think of
them as if they were wire, yarn, or the numberteps that it would take to span each of
the paths, he changed his order (from shortestnigest) as String 2, 1, and 3. After this,
once again he claimed that String 2 was the lorg@s$iString 3 was the shortest. That is,
Noah was willing to change his ordering from Stargy 1, 2 to Strings 2, 1, 3 as |
changed the context from curved “strings” to coregdarcurved “paths” to traverse and

compare by the number of steps walked or the amafumire or yarn left behind.
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When thinking about Strings 1, 2, and 3 as “patbdtaverse, Noah was willing
to say that String 2 would be “easiest to walkyirgt 3 would take the most steps, and
insistence that String 2 was the longest. This ssggthat he may have attended to
number of steps he thought would be needed to eadk path without thinking those
steps needed to be the same size to give a vahgaason. Specifically, | interpreted his
response to my questions to indicate that he mag treought that a person would have
to take a large number of small steps to walk b péith many turns (String 3), but one
could take a small number of large steps to wakaght path (String 2). Although
Noah'’s intuitive thinking about the “strings” usitige straightness and curve tightness
intuitions conflicted with his thinking about tharae objects as spanned by wire or yarn,
or even unitized by steps, both ideas seemed tastaes part of Noah'’s intuitive and
conceptual knowledge for length measurement.

Conflict between an intuition and an analytical stategy.Ruth (Grade 8, ICPM
Group) experienced a conflict between an intuiaod an analytical strategy for
comparing the set of curvilinear paths in Taskhe Biitially ordered the “strings” as
String 2, 1, and 3. She then superimposed Strimgt@ String 1, aligning them according
to points A and B. Ruth then said:

| know String 2 is shortest because it's the skbpath to go there and this one is

all the way around (traced finger around Stringid this one kinda is longer

because (traced finger around string three) it gtresght there but then it takes
like extra path, where this is just straight (tihéi@ger again along String 2), so |
know this is the shortest one. The thing is degdiatween String 1 and String

2...wait String 1 and String 3. From first glanitégoks like they are the same
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because, like, if you visually do it, and you takis out (gestured with figures as

though to re-shape String 3 to make it the sampesha String 1) to make it a

circle like this one (traced along String 1) it ksdike it would be the same. But

then, at the same time, | think it could be aditilt different. | wanna go

with...(superimposed String 3 onto String 1 anated String 3 along String 1,

accumulating the length of String 1 onto String 3).
Ruth evoked the compression intuition when she gldwow she would “visually do it”
by gesturing with her fingers how she was imagingghaping String 3 to make it the
same shape as String 1. Using the compressioniamushe concluded “at first glance”
that Strings 1 and 3 were the same. She then dppti@nalytical strategy of
superimposing String 3 onto String 1, aligning tilve strings according to points A and
B. After comparing the strings directly by rotatiSging 3 along String 1 and
accumulating the length of String 1 onto StrindR8th experienced a conflict with her
initial conclusion that Strings 1 and 3 were theedength, which was derived from the
compression intuition. Based on her conclusion fegplying the analytical strategy, she
changed her order of the curved “strings” from $sirto longest as String 2, 3, and 1.
That is, Ruth rejected her conclusion derived fthencompression intuition in favor of
her conclusion derived from an analytical stratesgygerimposing the strings to directly
compare them. Ruth used the rejected compresdioition again when comparing two
curves for Task 8A.

Relating Intuitions for Curvilinear Paths to the Levels of the Length LT

| tracked the developmental patterns for the fhaen intuitions, combinations of

intuitions, analytical strategies, and rejecteditidns for comparing curves (Tasks 6A,
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7, and 8A) within and acroiLT level groups. Figure 5&hows the frequency «
intuitions and analytical strategies used. In easbbmn, the darkest shade indicates

highest frequencgnd the lightest shade shows lowest frequency of aintuition.

Tasks 6A, 7, and 8A
Curve Total Used a
Straightness Complexity Detour  Compression Tightness Intuition | Combination of Conflicting Rejectedan Rejected Analytical
Intuition Intuition Intuition Intuition Intuition Use Intuitions Intuitions Intuition Intuition  Strategy Use

CLM Group[ 10 4 3 7 3 27 5 i 0 0 0
CRM Group 5 3 1 11 1 21 3 0 0 0 6
ICPM Group [N 8 4 5 3 31 7 il 1 1 8
ALM Group 5 1 2 8 1 17 3 1 0 0 8

Totals 31 16 10 31 3 % 18 3 1 1 2

Figure 51 Patterns of intuitioiand analytical strategy use for comparing curvdir
paths within and across LT grou

Figure 51depicts the patterns for intuitive and analytitahking for comparing curve
within and across the grougNext, | describe the nature of these patte beginning with
intuitive thinking fortasks involvinccomparing curves without tooils Table8 below.
Table 8

Distribution of Each ttuition for Comparing Curvilinear Paths (Tasks 6A, 7, and
within and across éngth LTLevel Groups

CLM CRM ICPM ALM
Group Group Group Group

32.26%* 16.13% 35.48% 16.13%
(10) () (11) ()

Totals

Straightnes 31

Complexit 25.00% 18.75% 50.00% 6.25% 16
Xt Ty e @ o

30.00% 10.00% 40.00% 20.00%

® O @ @ W

Detour

, 22.58% 35.48% 16.13% 25.81%
Compressio 31

(7) (11) (5) (8)

33.33% 11.11% 44.44% 11.11%
(3) 1) (4) 1)
27.84% 21.65% 32.99% 17.53%

Totals 27) (21) (32) (17) 97

Curve Tightnes

143



* 32.26% of the instances in which the straightrniestion was observed over Tasks
6A, 7, and 8A occurred with the participants in @ieM group.

Patterns of Intuition Use within LT Groups for Curv ilinear Paths

| observed 97 instances of intuition use in theni€rview participants’ responses
to curvilinear path comparison tasks (Tasks 6Agnd 8A). For these tasks, participants
evoked the straightness and compression more thfsenany other intuition. This was
followed by complexity, then detour, and finallyethurve tightness intuition. For the
CLM group, | observed the straightness intuitiorsimaften; this was followed by
compression, complexity, and the same number tdmees of detour and curve
tightness. Participants in the CRM group used tmpression intuition most often,
followed by straightness, complexity, and one instaeach of detour and curve
tightness. In the ICPM group, the most frequensigdiintuition was straightness, which
was followed by complexity, compression, the sammalmer of occurrences of detour and
curve tightness. The ALM group used the compressituition most often, followed by
straightness, detour, and one instance each ofleaitypand curve tightness.
Patterns of Intuition Use across LT Groups for Cunilinear Paths

The CRM and ALM groups exhibited almost the santéepa of intuition use as
was observed with the entire sample. The CLM arRM@roups exhibited patterns of
intuition use that were similar to each other, different from the entire sample. Both
the CLM and ICPM groups exhibited the straightriegtion most often. This was
followed by the complexity and compression intuigdin reverse order for CLM) and
then the same number of instances of the detoucamwve tightness intuitions. The

straightness, complexity, detour, compression,cmde tightness intuitions were used

144



most often in the ICPM group. The compression tidniwas used most often at the
CRM level. The ICPM group exhibited the highestfrency of intuition use.
Intuitions for Curves in Combination, Conflict, and with Analytical thinking

As was the case when participants compared rezaitipaths by their lengths
(Tasks 1 and 2), when comparing curvilinear paththbir lengths (Tasks 6A, 7, and
8A), participants sometimes used analytical stiagegr intuitions in combination. Some
responses also suggested a conflict between caomatudrawn from intuitions and those
drawn from analytical strategies, whereas othgrareses indicated that intuitions were
used with analytical strategies. Table 9 shows mdwitions were used in combination,
conflict, and with analytical strategies for compgrcurves.
Table 9

Intuitions in Combination, Conflict, and in Tand&th Analytical Thinking (Tasks 6A,
7, and 8A) across Length LT Level Groups

CLM CRM ICPM ALM  Overall
Group Group Group Group Totals

) 0 0, 0,
Conflicting Intuitions 50.00% 0.00% 50.00% 0.00% 5

(1) (0) (1) (0)

Combination of Intuitions 27.78% 16.67% 38.89% 16.67% 18
(5) (3) (7) 3

0 0 0 0
Rejected an Intuition 0.00% 0.00% 100.00% 0.00% 0

©) ©) (1) ()

0 0 0 0
Rejected Intuition Use 0.00% 0.00% 100.00% 0.00% 0

©) ©) (1) )

With Analytical Strategies 0.00% 10%  50.00% 40.00% 10
Q) 1) 5) (4)
* 50.00% of the instances in which a conflict inuion use was observed when
comparing curvilinear paths (Tasks 6A, 7, and 8&Jdusred with CLM level participants.
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Intuitive and Analytical Thinking in Combination an d Conflict within LT Groups
Participants in the CLM group showed evidence aigigtuitions in
combination and experiencing a conflict among ias, but showed no evidence of
rejecting intuitions, using a rejected intuitiom,using an intuition with an analytical
strategy. CRM and ALM level participants used ihiuis in combination and with
analytical strategies. At the ICPM level, participmshowed evidence of using intuitions
in combination, with analytical strategies, expeced conflicts among intuitions that
lead to the rejection of an intuition, and useeéctgd intuitions.
Intuitive and Analytical Thinking in Combination an d Conflict across LT Groups
One student each in the CLM and ICPM level groskated conflicting
intuitions when comparing curves for Tasks 6A, 8A: Noah (Grade 4, CLM Group)
and Ruth (Grade 8, ICPM Group). The instances oflipations of intuitions appeared
most often in the ICPM level group, which was immaéely followed by the CLM group
and the CRM and ALM groups. | observed one instarficejecting a claim made based
on an intuition, the compression intuition, at lB&®M level by Ruth (Grade 8). She was
the only student who later went on to use thisctegkintuition when comparing a
different pair of curves. Intuitions used with aytelal strategies appeared most often at
the ICPM and ALM levels, with five and four instas; respectively. One instance of
using intuitions and analytical strategies to corapaurves appeared in the CRM group.
The use of intuitions when comparing curves (Td&ks7, and 8A) occurred
within each length LT level group. However, onlyrsoof the LT groups evoked
analytical thinking when comparing curves. Tablebg&w illustrates the distribution of
intuitive and analytical thinking across the LT gps for Tasks 6A, 7, and 8A.
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Table 10

Intuition and Analytical Strategy use for Compari@grvilinear Paths (Tasks 6A, 7, and
8A) across Length LT Level Groups

CLM CRM ICPM ALM

Group  Group Group Group Total
Intuitions 27.84%* 21.65% 32.99% 17.53% 97
(27) (21) (32 (17)
0, 0, 0 0
Analytical Strategies 0.00% 27.27% 36.36% 36.36% 22

() (6) (8) (8)

* 27.84% of the instances in which an intuition wagd when comparing curvilinear
paths (Tasks 6A, 7, and 8A) occurred with the pgrdints who were in the CLM group.

Patterns of Intuition and Analytical Strategy Use wthin LT Groups

In each LT level group, the intuitions were usedenaften analytical strategies
when comparing curves without tools (Tasks 6A,nd 8A). At CLM level, participants
only showed evidence of using intuitions to defémar orderings of curvilinear paths by
length. Intuition use dropped slightly for the sedpsent length LT level group. At the
CRM, ICPM, and ALM levels, participants used battuitions and analytical strategies.
Patterns of Intuition and Analytical Strategy Use &ross LT Groups

Table 10 shows that, the highest percentage atioriustrategy use occurred at
the ICPM level, with 32.99%. Intuition use was ah@mimum at the highest level, the
ALM group, with 17.53%. Analytical strategy usereased from the CRM level group,
at 27.27%, to the ICPM level group at 36.36%. Ténel of analytical strategy use was
maintained at the highest level with the ALM legebup. These results suggest that there
exists an interaction between intuitive and anadytthinking for comparing sets of
curvilinear paths with conceptual and proceduraiviiedge for length measurement, as

measured by the length LT. At the lowest lengthlével that was included in the study,
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the CLM level, students relied only on intuitiomsjaistify orderings of curvilinear patl
by their lengths. Students at the subsequent Iefete length LT, the CRM anCPM
levels, used analytical strategies along with intaistatements, with approximately 1
same ratio of intuitions to analytical strategtesgefend their claims when compari
curvilinear paths by their lengths. By the higHesel, the ALM level the ratio ol
intuitions to analytical strategies decreased. ffdtere of this interaction is illustrated
Figure 52 In this figure, the blue bar indicates the petaga of the units of da
occurring within each length LT level group, whictodedas intuitions, and the red kt

indicates the percentage of those units of dat&iwihcoded as analytical strateg
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Figure 52 Interaction between intuitive and analytical &gy use for comparin
curvilinear paths (Tasks 6A, 7, 8A) within each level group.

Comparing Curves andStraight Objects: Intuitions and Analytical Strategies
| posed five tasks (Tasks 3, 4, 5, 6B, and 8B)tbe students’ intuitive ar
analytical thinking for curvilinear paths by askitigem to compare a curve anstraight

object. In the following sections | describe thaiitions and analytical strategies tl
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students used to make these comparisons and refiebe error in their comparisons of
curves and straight objects. The first section dless the analytical strategies that
students used to compare a curvilinear path toagghkt object (Tasks 3, 4, and 5) or to
indirectly compare two curvilinear paths usingraigit object (Tasks 6B and 8B). Next,
| illustrate how students used intuitive thinkingem making such comparisons and
reflecting on the error involved with their waysagmparing. Finally, | relate all of the
intuitions and analytical strategies that studesed when comparing curvilinear paths
with straight objects to the levels of the LT fength measurement.
Analytical Strategies for Comparing Curvilinear Paths to Straight Objects

| observed analytical strategies as students cadpmacurve and a straight object
(Tasks 3, 4, and 5) or indirectly compared two esrwith a straight object (Tasks 6B

and 8B). Figures 53, 54, and 55 illustrate the esifior Tasks 3, 4, and 5.

Figure 53 Image of curve shown for interview Task 3.

Figure 54 Image of curve shown for interview Task 4.

149



Figure 55.Image of curve shown for interview Tab.

See Figures 47 and 4& the images of the curves shown to student3 &sks 6B an
8B. In the following sections | describe how studamsed analytical strategies
comparing curves and straight obje(Tasks 3, 4, 5, 6B, and 8B).

Chord iteration strategy. There were 51 occurrences of the chord itere
strategy across Tasks 3, 4, 5, 6B, and 8B. Trerad&6, CRM Group) used the che
iteration strategy when using a straight stickdmpare two partial circ-shaped curves
indirectly for Task8B. For example, when measuring the tighter cumeeplaced th
stickas a chord aligned with oilend of the curve antlaced along the edge of the st
that was closest to the curve. NeTrentrepositioned the stick as a chord and alig
with this tick mark; le again traced along the edge of the stick cldedsie curveHe
repeated this procedure for a thfull stick unitand one partial stick uniHe used the
same strategip compare the stick the tighter curvehowever, three stick unifit

perfectly inside the curve (see Figi56 below).

Figure 56 Trent's chord iteration strategy for indirectigraparing two curve
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Continuous comparison strategy to estimatel'he continuous comparison
strategy was used by students to estimate a tbtaliptimes for Tasks 3, 4, 5, 6B, and
8B. For example, Mia (Grade 4, CLM Group) useddbhetinuous comparison strategy to
initially estimate the length of the spiral-shapedve for Task 4. She placed the stick as
a chord on the inside of the curve aligned with ené of the curve and then iterated the
stick three times without using a finger or drawanghark to keep track. Mia then moved
the stick in a continuous motion for the final ktimit iteration. Mia’s movement of the
stick in a continuous motion suggests that sheusag) a continuous strategy for
comparing by estimating rather than spanning tmeecwith stick units.

Tangent iteration strategy.Fourteen instances of the tangent iteration gjyate
appeared in students’ responses to Tasks 3, 8, aml 8B. After initially using the
continuous comparison strategy to estimate, Miadéd, CLM Group) used the tangent
iteration strategy to compare the stick to theadgghaped curve for Task 4. She placed
the stick as a tangent, aligned with one end otthree. Next, Mia traced along the edge
of the stick furthest away from the curve. She sffjmned the stick, again placing it as a
tangent along the outside of the curve and alignédthe segment representing her

previous placement of the stick. She applied thie&tegy to the entire curve (Figure 57).

Figure 57 Mia’s tangent iteration strategy for comparinguave and a straight object.
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Mixed unit iteration strategy. Eight instances of the mixed unit iteration strgteg
were observed in students’ responses to Tasks53,68, and 8B. Kevin (Grade 4, CLM
Group) used a mixed unit iteration strategy whemgaring a straight object to a partial
circle-shaped curve for Task 3. He aligned theksiiith one endpoint of the curve and
iterated it around the curve, sometimes layingstick as a chord and sometimes laying
the stick directly on the curve. He said that these was three sticks longer than the
stick.

Path intersection iteration strategy.The path intersection iteration strategy was
observed in three responses for Tasks 3, 4, 5aed@8B. David (Grade 8, ICPM Group)
used this strategy when comparing a stick to ah&ped curve for Task 5. David placed
the stick on the curve, aligned with one endpofrihe curve. He then repositioned the
stick to the opposite end of the curve, again plad on the curve aligned with one
endpoint of the curve. He then drew three stickgirctangles on the curve to represent
how he had either physically or mentally placeddtiek on top of the curved path.

Adjusting point of tangency iteration strategy.There were 11 occurrences of
the adjusting point of tangency iteration strataggoss Tasks 3, 4, 5, 6B, and 8B. For
example, Ruth (Grade 8, CRM Group) used the adjgtoint of tangency iteration
strategy to compare a stick to a partial circlepglubpath for Task 3. She placed the stick
as a tangent aligned with one endpoint of the guamd she rotated the stick while
changing the point of tangency and accumulatindehgth of a segment of the curve
along the stick. Ruth then drew a tick mark whéeednd of the stick touched the curve.
Next, she repositioned the stick, aligning one efithe stick with this tick mark and

again applied the strategy of rotating the sticklevbhanging the point of tangency and

152



accumulating the length of a segment of the culmegathe stick. She repeated this
procedure for a total of four full stick units aode partial stick unit. She wrote "about
four and one third" on the page.

Modified circumference formula strategy.| observed five instances of applying
an algorithmic approach, a modified circumfereraenula, in students’ responses to
Tasks 3, 4, 5, 6B, and 8B. Two students, David & ICPM Group) and Zane (Grade
10, ALM Group) used this strategy in their respat®eTasks 3, 4, and 8B. For example,
on Task 3 Zane placed the stick on the interidhefcurve positioned as a radius. He
said the curve “is two thirds the circumferencehef whole...if it was a whole circle.” He
then said the length of the curve would be “twedbitwo pi R,” where “R” is the length
of the stick.

Analytical Strategies Related to Unit

| observed different analytical strategies reldtethe ways in which students
operated on the nonstandard unit, the 4-inch stiblen comparing a curve and a straight
object (Tasks 3, 4, and 5) or indirectly comparivg curves with a straight object
(Tasks 6B and 8B).

Used the whole stick as a unitParticipants applied the strategy of using the
whole stick as a unit when comparing a curve astilaaght object (a stick) a total of 75
times over Tasks 3, 4, 5, 6B, and 8B. Marie (GrHleALM Group) used this strategy
when indirectly comparing two rectilinear pathshwat straight object (a stick) for Task
6B. For the spiral-shaped curve, she placed tbk at a chord, aligned with one end of
the curve. Marie traced along the edge of the sfickest to the curve, and then she

repositioned the stick as a chord, placing it atititersection of the line segment
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representing the previous chord stick unit andctirge. As she used the stick to compare
the two curves indirectly, she applied this chdrcksunit iteration strategy, using the
whole stick as a unit, for a total of four stickitsn

Fractured non-standard unit once at the endpoint othe curve. Students
fractured the non-standard unit, the stick, wheuotlzer full stick unit did not fit along the
curve at the end, 31 times for Tasks 3, 4, 5, 68,8B. For example, Marie (Grade 10,
ALM Group) also applied this strategy when using shtick to measure the spiral-shaped
curve during Task 3 (described in the previous graiah). After applying the fourth full
stick unit, part of the curve extended beyond tie @ the stick. Rather than ignoring
this remaining segment of curve, Marie quantifiellyi fracturing the stick unit, saying
the curve “has about four and then...like...anolikerprobably three fourths” stick units.

Fractured non-standard unit in the tightest part of the curve.l observed the
strategy of increasing precision by fracturing tio@-standard unit, the stick, in the
tightest part of the curve 12 times in studentspomses to Tasks 3, 4,5, 6B, and 8B.
Rose (Grade 6, CRM Group) used this strategy wheasoring the spiral-shaped curve
for Task 4. She began comparing the curve to tlaggst object (the stick) by placing
half of the stick as a chord inside the tightest pathe curve. She drew a tick mark on
the curve to represent the end of half of the stise then traced along the edge of the
stick closest to the curve and re-positioned tlok &ty rotating it so that most of the
second half was a chord inside the curve. Nextnsdde a tick mark to represent the end
of this portion of the stick and traced the aldmg ¢dge that was closest to the curve. She
re-positioned the stick a third time by rotatingatthat the small remaining portion was

aligned as a chord and made a tick mark to reptéiserend of this remaining piece.
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Next, Rose tracedlong this small remaining porticof the stickalong the edge thwas
closest to the curve. Skeentinu«d measuring the rest of the spisilaped curve b
iterating full stick units. Fcthe final iteration, only slightly more @im half of the sticl
fit. She labeled théhird tick mark asone, the fourth tick mark as twihefifth tick mark
as three, theixth tick mark as fouthe seventh tick mark as five, and eighth tick

mark agwo thirds (see Figur58 below).

Figure 58 Rose’s fracturing of the nonstandard unit intthktest part of the curv
Fractured non-standard unit around the entire curve | observed 20 instanc:
in which students increased precision by fractutirgnonstandard unit, the stick, arot
the entire curve across Tasks 3, 4, 5, 6B, andRtk (Grade 8, ICPM Group) used tl
strategy when comparing the partial ci-shaped arve to a straight object (a stick) 1
Task 3. He alignethe stickto one end of the curve, placing it as a chordallowed the
stick to hang over the cur, effectively using oly half of the stick as a unit. Fplaced a
finger to keep track of whethe stick intersected the curve and iterated tic&,gtlacing
the end of the stickt his finger mark each tir. When asked to explain how he thou
about comparing the curved path to the stick he, “I would start at the end, and th

since if | wen like that (showed placing the entire stick asard) it'd be more curved ¢
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it wouldn't be as long, so | just did halfway (stemiby placing half of the stick as a
chord). And then I'd do half and half (demonstrdted he iterated the half-stick around
the inside of the curve as a chord) and then therght halves so four.” Rick exhibited
the fractured non-standard unit around the entireecstrategy here by operating on half-
stick units as he compared the curve and a sticketpreted the observable strategies of
fracturing the nonstandard unit in the tightest pathe curve (see Rose’s drawing in
Figure 58) and fracturing the non-standard unitiadothe entire curve (see Rick’s the
preceding discussion of Rick) as evidence of comtilng linear extent with another
attribute, curve.

Counted a partial unit as a wholel observed two instances of counting a partial
unit as a whole in students’ responses to Tasks3,6B, and 8B. Kevin (Grade 4, CLM
Group) applied this strategy after using the chtaghtion strategy to compare the spiral-
shaped curve to the straight object (the stick)lfask 4. He made a record of how he
compared the curved path to the stick by firstrafig the stick to one end of the curve,
placing it as a chord and tracing the edge of tic& slosest to the curve. He then
repositioned the stick, aligning the endpoint @& $tick to the intersection of the curve
and the line segment representing the positiohefitst chord stick unit. He repeated
this process drawing five full chord stick unitewever only a partial stick fit for the
final stick unit (see Figure 59 below).

Kevin showed how many stick units longer the cumas by pointing and
counting the segments in his drawing, “One (poinitethe second segment), two

(pointed to the third segment), three (pointechtofourth segment); four (pointed to the
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fifth segment), five (poired to the partial sixth segmeritiHe counted the final parti

segment as a whole.

Figure 592 Kevin’s cownting of a partial unit as a whao

Compensated for curvature Students applied a strategy of increasing prec
by compensating for curvature a total of 10 tin@sTasks 3, 4, 5, 6B, and 8B. Ma
(Grade 10, ALM Group) used this strategy when caing the spiralshaped curve to
straight object (the stick) for Task 4. She comgdhe stick to the curve by applying t
chord iteration strategy and fracturing non-standard unit the tightest part of tl

curve (see Figure dfelow)

Figure 6Q Marie’s comparison of a curve and a straight objecctnterview Task
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After measuring Marie said, “OK. So, | when | measlit | got like six and three
guarters it looks like. But, again, since it woblel pulled up | guess it would be around
seven or eight to cover. It would be a little bivma since the curves like here would pull
a little bit more in some spots than others.” Madended the number of stick units
needed to span the length of the curve from sixtlre® quarters, which she obtained by
directly measuring the curve, to seven or eighatT$, she compensated for curvature.

Applied benchmark. | observed two instances of applying a benchmark
measurement across Tasks 3, 4, 5, 6B, and 8B. ([Geatle 6, CRM Group) applied this
benchmark strategy when comparing the partialesistiaped curve and a straight object
(the stick) for Task 3. He first placed the stitklee eight and a half inch side of the
paper. Next, he drew a tick mark to represent titkad the stick and iterated the stick,
aligning the end of the stick with this tick mamkdadrawing another tick mark at the end
of the stick to keep track of the position of thesond stick unit. When asked what he
was thinking he said, “an average sheet of commaper's about eight and a half inches
long, so this took about two...two times it woulsldbout four and a half inches.”
Although Trent’s calculation of half of eight andhalf as four and a half was incorrect,
he remembered the length of a standard piece @frpapnches and used this
information to determine the length of the sticknohes. For him, the length of the short
side of a standard sheet of computer paper as &nghé half inches was a benchmark.

Applied conceptual standard unit. The strategy of comparing a straight object
to a curve by applying a conceptual standard ua# abserved five times in students’

responses to Tasks 3, 4, 5, 6B, and 8B. David &8adCPM Group) applied a
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conceptual standard unit, a mental image of an, wblen comparing the partial circle-
shaped curve to a straight object (a stick) fokTaR:
David: This is roughly like, three inches...andn.uthis is like probably the
radius of this (pointed to the curve).
Interviewer: Can you show me how you thought alboat?
David: How | thought about how this was the radius?
Interviewer: Yeah.
David: Cuz if you put that there (placed the stiska radius again) that's like
almost half-way from one end of the circle to thieen. And then if you would be
finding the...um...how long this is (pointed to theve), which would be like the
circumference of it minus that (pointed to the nmggart of the circle), which is
like a third of it. Um...So you would just find tleercumference of the circle and
divided it by three.
David then calculated the length of the partiatlesshaped curve in inches.
Intuitions Embedded in Analytical Strategies
Two distinct strategies for comparing a curve amstraight object or using a
straight object to compare two curves indirectiyolved an intuition, the compression
intuition, embedded in an analytical strategy. Eh&tsategies are related to either the
chord iteration strategy or the tangent iteratiwategy.
Tangent curved unit iteration strategy.Participants used the tangent curved
unit iteration strategy a total of four times thgbout Tasks 3, 4, 5, 6B, and 8B. Ned
(Grade 6, CRM Group) exhibited the tangent curvetliteration strategy when

comparing a spiral-shaped curve and a stick fok B&s He first placed the stick on the
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outside of the curve as a tangent aligned withesrteof the curve. Next, Ned drew a tick
mark at the end of this first stick unit intervaldarealigned the stick with this tick mark,
placing it again as a tangent. He then drew a skttok mark to indicate the end of this
second stick unit interval. For the third and fauterations of the stick along the tightest
part of the curve, he placed the stick as a tangéighed with the tick mark representing
the end of the previous stick unit interval andwakd the stick to extend beyond the
curve. He then drew a tick mark further along these than the point at which the stick
departed from the curve. A small part of the cumees still extending beyond the fourth
iteration. Ned placed part of the stick along gnsll part of the curve and wrote four
and one third sticks. He then explained how heghbabout using the stick to help him
check saying, “I laid the stick by trying to linkup as...at about as straight as it can go
(laid the stick as a tangent on the outside offhigal-shaped curve) against the line and
then...I figured out since it was curving, | wotig to straighten it out and then figure
out about where it would be if it was straight.”d&explanation of “figure out about
where it would be if it was straight” indicates the@ was imagining mentally
straightening parts of the curve, at least fortttiel and fourth tangent stick unit
iterations. This suggests that he evoked the cossme intuition while using an
analytical strategy of directly comparing a stiskaatangent to a curvilinear path.

Other students used a slightly different versibthe tangent curved unit iteration
strategy. One such example is Grant’s (Grade 6MGPoup) strategy for comparing a
partial circle-shaped curve to a straight objecflfask 3. He initially placed the stick on
the outside of the curve, aligned with one endpdiithough the stick extended far

beyond the point at which it intersected the cuheedrew a tick mark to represent the
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end of the stick on the curve. He then repositichedstick, again placing it as a tangent
on the outside of the curve and aligned to theriekk he had just drawn. Grant again
allowed the stick to extend beyond the curve, anddain made a tick mark on the curve
beyond where the stick intersected the curve. Heated this strategy all the way around
the curve; the curve extended a small amount betfmnéinal iteration of the stick. He
said it was “Probably like just over four sticks.”

When asked to explain how he thought about comgahie curved path to the
stick Grant said, “I just like put the stick whetevas (again placed the stick as a tangent
aligned with one endpoint of the curve, allowing #tick to extend beyond the point at
which it intersected the curve) and | just guesskdre it would be if the stick curved.”
Grant’s discussion of imagining the stick as curteeduide the placement of his tick
marks suggests that he used the compression amtwithile applying an analytical
strategy of directly measuring the curve with tariggick units. Although Ned and Grant
both applied this tangent curved unit iteratiomatggy, Ned thought about mentally
straightening segments of the curve to match ttaggéit unit and Grant thought about
mentally curving the unit to match the curve.

Chord curved unit iteration strategy. Fifteen instances of the chord curved unit
iteration strategy appeared in students’ respaias€asks 3, 4, 5, 6B, and 8B. Kyle
(Grade 10, ICPM Group) used the chord curved temation strategy when comparing
an S-shaped curve and a straight object in Table5nitially placed the stick along one
end of the S-shaped curve and drew a tick markermarve just before the end of the
stick. He then iterated the stick, again placinasia chord and aligning it with this tick

mark. Kyle once again drew a tick mark just befiwe@end of the stick. He continued this
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process of iterating the stick and drawing tick ksgust before the end of the stick the
entire way around the S-shaped curve. When askedbdhought about comparing the
length of the stick to the length of the curvedhp&yle said:
l...had to take into account that...um...when | pat $tick up the curved parts of
the line | would end up having to straighten time lout and | would do it with my
pen to see how...to make sure that the amountreéddine that | chose would
come out to be closest to the length of the stic&.l \gould just flatten that out
and it would come out to here (placed stick asacain the position of the
second stick unit).
Kyle’'s explanation about flattening out the curgenatch the straight unit suggests that
he mentally straightened parts of the curve. Thevidence that he evoked the
compression intuition as he applied an analytitaksgy of directly measuring the length
of the curve in chord stick units. Therefore, theved chord unit iteration strategy is
another example of an intuition embedded in anyaical strategy.
Other students used a different version of thedlkearved unit iteration strategy.
For example, Rose (Grade 6, CRM Group) comparedtitle to the spiral-shaped
curved path (Task 6B) by exhibiting a strategy &mntio the chord iteration strategy. She
placed the stick as a chord aligned with one erntti@Epiral curve and traced along the
edge of the stick closest to the curve. She rapasidl the stick at the intersection of the
segment representing the initial position of theksand the curve and again traced along
the stick. She repeated this process for fourstidk units and one partial stick unit in the
tightest part of the curve. When asked how sheghbabout comparing the curve to the

stick she explained, “l imagined if the stick.. &iaf...was bent. If it were like jello or
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something | could bend it and then it would fithere (indicated on the curve how the
segment representing the third stick unit woulclng the curve), and then if | could

move this, it would stretch out and might do thedded finger around the piece of the
curve spanned by the chord representing the thickl gnit).”

Rose’s explanation of imagining the stick as beiggests that she mentally
curved the stick, which is evidence that she evdakedompression intuition. Her
application of the stick as a unit placed as adlawong the curve did not appear to be
influenced by her application of the compressidnitron. However, her explanation
suggests that the compression intuition was presdrer thinking as she applied the
analytical chord iteration strategy. Therefores kianother instance of an intuition, the
compression intuition, embedded in an analyticaitsgy.

Intuitions Used when Comparing Curvilinear Paths toStraight Objects

| observed three of the five intuitions studentsdue compare curves (Tasks 6A,
7, and 8A) as students compared a curve and glsti@ject (Tasks 3, 4, and 5) or
indirectly compared two curves with a straight abj@asks 6B and 8B): the
compression, straightness, and curve tightnesgiaris. Forty-nine responses reflected
the use of compression, and 44 of these instanckgled an analytical strategy.

The compression intuition was used with seven efamalytical strategies
observed as students compared curvilinear patimsangtraight object (Tasks 3, 4, 5, 6B,
and 8B). | observed this intuition most often wiitle chord iteration and chord curved
unit iteration strategies. The straightness indaitoccurred only with the chord and
tangent iteration strategies. Participants usedtinee tightness intuition only with the

chord iteration and mixed unit iteration strateg@aly the straightness intuition
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appeared without an analytical strategy (five insés) when comparing a curvilinear
path to a straight object. Table 11 shows how stigdgsed intuitions with analytical
strategies.

Table 11

Intuitions Used with Analytical Strategies When @anng a Curve to a Straight Object
(Tasks 3, 4, 5, 6B, and 8B)

Compression Straightnes%iggtrxsss Analytical without

Intuition
. 38.78% 71.43% 80%
Chord lteration 16
(19) (5) (4)
) 6.12% 0.00% 0.00%
Continuous 3) ) ) 0
Comparison
0, 0, 0,
Tangent Iteration 10('5)0 % 28(';5)7 % O(%()) % 5
0, 0, 0,
Tangent Curved 4'(02?/0 O'(%?/O O'(%())/O 2
22.45% 0.00% 0.00%
Chord Curved 0
(11) 0) 0)
0, 0, 0,
Mixed Unit Iteration 6(132) % O(%? % 28)A) 3
0, 0, 0,
Path Intersection 2(014)' % 0(%8) % O(%()) % 1
0, 0, 0,
Adjusting Tangency 0'(%())/0 0'(%())/0 O'(%()M) 8
. 0.00% 0.00% 0.00%
Modified Formula 5
0) 0) (0)
Intuition without 10.20% 0.00% 0.00% 0
analytical (5) (0) (0)
Totals 49 7 5 40
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* 38.78% of the instances in which the compresgiuntion was used with an analytical
strategy occurred when the chord iteration strategy used (Tasks 3, 4, 5, 6B, and 8B).

| did not observe the continuous comparison orctied curved unit analytical strategies
without an intuition. Furthermore, participants diot use the adjusting point of tangency
and modified circumference formula strategies \aithintuition.
Reflecting on Error

For each of the tasks involving comparing curviéinpaths to a straight object
(Tasks 3, 4, 5, 6B, and 8B), after making a quaini® comparison, | further probed
students’ intuitive and analytical thinking about\es by askingvhetherthey thought
they had over- or underestimated &oavthey knew they had over- or underestimated.
Across these five tasks, the 16 interview participanswered that they had
underestimated 36 times, overestimated 22 timesckammed that an answer was neither
an over- or underestimate 12 times. Table 12 riiss the interaction between students’
claims about over- or underestimating and the aicalyiteration strategies they used to
compare a straight object to a curve.

| categorized combinations of these codes relatetiuidents’ claims about over-
or underestimating as correct or incorrect. Twatstgies, the chord iteration strategy and
the tangent iteration strategy, provided eithelearcover- or underestimate. Therefore, a
student who used the chord iteration strategy #éaiched his or her answer was an
overestimate or said he or she did not over- oetgstimate was coded as “incorrect
acknowledgement of over- or underestimate.” Anotitedent who used the same chord
iteration strategy, but claimed his or her answas an underestimate was coded as
“correct acknowledgement of over- or underestini@eme strategies, such as the path
intersection iteration strategy in which studentsrapted to control error by placing the
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straight object directly on the curve, did not pdevclear over- or underestimates.
Therefore, the combination of this strategy witheaknowledgement of an over- or
underestimate or a claim that an answer was nathewer- nor an underestimate was
considered to be neither correct nor incorrectdble 12, correct responses are indicated
as green, incorrect responses are indicated aamddgsponses that could not be clearly
identified as correct or incorrect are indicatethvgrey shading.

Table 12

Interaction Between Iteration Strategies and Statetsabout Over- or Underestimating
when Comparing a Straight Object and a Curve (T&slg 5, 6B, and 8B)

Acknowledged Acknowledged Claimed answer not an
Underestimate Overestimate under- or overestimate

Chord Iteration

Continuous Comparison

Tangent Iteration

Tangent Curved

Chord Curved

Mixed Unit

Path Intersection

Adjusting Tangency

Circumference Formula

166



Students’ Justifications when Reflecting on Error

After students’ claims abowthetherthey had over- or underestimated were
analyzed for correctness for Tasks 3, 4, 5, 6B,&Bdheir justifications regardinghy
they thought they had over- or underestimated &ratyzed in terms of the intuitions
and analytical strategies for curvilinear pathslescribed in the sections above.
Specifically, | coded students’ responses accortbrtfe five main intuitions for
comparing curvilinear paths, the analytical stregedor comparing curves and straight
objects, and the analytical strategies relatedhitb This analysis focused on the 43
responses that could be clearly defined as coordacorrect, or those that were
associated with the chord and tangent unit itenadtoategies.

Participants justified their claims regarding whgy thought they had over- or
underestimated using an intuition or a combinatibimtuitions on 18 instances, by
discussing an analytical strategy for comparingesito straight objects on 19 instances,
and by discussing an analytical strategy relatathtbon 10 occasions. In the following
sections | illustrate how students used each imtudr analytical strategy to justify why
they thought they had over- or underestimated vdoemparing a curve and a straight
object for Tasks 3, 4, 5, 6B, and 8B.

Using intuitions to justify claims to reflect on eror. Students exhibited seven
instances of the straightness intuition, 18 instaraf the compression intuition, and 2
instances of the curve tightness intuition whetiflying their claims about over- or
underestimating when comparing a curve to a sttapject. Seven of these instances of
intuition use occurred as intuitions used in corabon. Mia (Grade 4, CLM Group) used

an intuition when reflecting on her way of compagranstraight object to a curve by
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iterating the stick around the inside of two partiecle-shaped curves as chords, using
the whole stick as the unit, for Task 8B. She #agdtighter curve was four stick units
long and the wider curve was three stick units Idthgwever, she used an intuition to
defend claims about both curves being the saméHeargl about overestimating when
comparing. She saithmmm...Cuz if you curve this one in more (gestuasdf to bend
the wider curve into the same shape as the tight®e) then it would look like this one
(pointed to the tighter curve).”

Although Mia had measured the tighter curve as $tigk units and the wider
curve as three stick units, she justified her raspdy evoking the compression intuition
by mentally bending the wider curve into the sahmgpg as the tighter curve. Her
conclusion that both curves were the same lengitedbon the compression intuition,
was incorrect. Therefore, | further probed Mia'smking about why she thought the
curves were the same length, even after determthigwere different by directly
measuring each curve with the stick:

Interviewer: OK. And did the stick help you know fure that they were the

same?

Mia: (picked up the stick) A little bit.

Interviewer: A little bit? How so?

Mia: Because this one (pointed to the tighter cuhaes four (pointed to the

middle of each of the four chord segments reprasgtie length of the tighter

curve)...and this one just has three (pointed tonider curve)...but this one is

off (pointed to an error segment created by hewoig of chord stick units on the
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tighter curve), so I think that they would still Bbout the same (pointed to both

curves).

Mia’s response suggests that she thought that ofdhes larger error segments on the
tighter curve meant that her answer of four sticksuwas an overestimate. When asked
what she would say to convince someone that theeswere the same length she said,
“I think that they're the same because this limé igery exact | think it would be...there
would be a lot of lack in there (pointed to an egegment on the tighter curve)...like not
very exactly on it, not exactly right...I think if Was exactly on it, there would be less
than four.” Mia’s use of compression when reflegton the error involved with
comparing a curve and a straight object, or theeaticomparison of two curves with a
straight object in the case of this particular tdskd her to conclude incorrectly that she
had overestimated when using the chord iteratiatesyy.

Jenny (Grade 4, CLM Group) used an intuition whisaussing her comparison
between a straight object to a curve for Task & ®&ed the chord iteration strategy,
using the whole stick as the unit, and answeretithigacurve was four times longer than
the stick. When asked whether she thought the heofgthe curve was more or less than
four, she explained that it was more “becauseciiived (traced around the curve with
her finger).” Jenny’s response reflects an intaitabout the curve as being longer than its
representation of the curve as four chord stick segments, which is consistent with the
compression intuition. Unlike Mia, Jenny’s applicatof the compression intuition when
reflecting on the error involved with comparingteaght object and a curve resulted in a

correct response.
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Analytical strategies for comparing to reflect on eror. After Jenny used the
compression intuition to defend her claim that¢@nparison between the curve and the
straight object for Task 3 involved an underestanahe also attended to the analytical
strategy that she had used to make the compafdmnelaborated on her statements
about the length of the curve as being more tharidbr chord stick units she had
measured because it was curved by saying, “and..luhd this (placed the stick inside
the curve as a chord and aligned with one endpditite curve).” Therefore, Jenny
correctly attended to her strategy of comparingctivee and the stick by iterating the
stick around the curve as a chord as a sourcaaf, @sulting in an underestimate.

Like Jenny, when Kevin (Grade 4, CLM Group) refiégton whether he had
over- or underestimated for Task 6B when compaaiegrve and a straight object, he
also attended to his analytical strategy of itegathe whole stick as a chord. When asked
if he had over- or underestimated, he said he thilg got it “exactly right.” Kevin
defended this claim by explaining, “Because | tti@dine up like the stick almost
perfectly on the line and it pretty much turned Itk that all the time.” Although he had
underestimated when comparing the straight obgettte curve by representing the curve
in chord stick units, he reasoned that his anal/Strategy for comparing the straight
object to the curve resulted in him lining the lstip perfectly to the line and giving an
exactly right comparison. Although Kevin used theng kind of reasoning that Jenny did
when reflecting on error, attending to the anafjtgtrategy for comparing a curve and a
straight object, his conclusion was incorrect.

Analytical strategies for operating on units to refect on error. Some students

attended to the analytical strategies they usedgerating on units (such as mentally
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curving units, mentally straightening parts of theve, accuracy of fracturing units, or
the alignment of the final stick unit and the efdh@ curve) to reflect on the error in
their comparisons between a straight object anghzec For example, after using the
tangent iteration strategy to compare a straigfgabland a curve for Task 4, Lynn
(Grade 8, CRM Group) correctly stated that sheghbbher comparison involved an
overestimate. She explained her reasoning by attgro her accuracy in partitioning a
stick unit into thirds saying, “Slightly over, betse my fifth ended here (pointed the
endpoint of the stick as it was placed the fifiokstinit position)...and that does not look
like two thirds. Two thirds would be like there ésmed fingers to surround the
remaining part of the curve not covered by thdafiferation) so | think it's a little over.”
Lynn’s claim about overestimating the length of tueve using the tangent iteration
strategy was correct; however, she only attendégt@perations on units to defend this
claim.

Trent (Grade 6, CRM Group) also attended to hisytioal strategy of operating
on units when discussing the error of his comparlsetween a straight object and a
curve for Task 3. After using the chord iteratitrategy, he claimed that his comparison
between the straight object and the curve yielaedva@restimate “because this was a
little bit longer than the curve (placed the stickhe fourth stick unit position to
illustrate that the stick extended beyond the drnti@curve).” Like Lynn, Trent attended
to his operations on units to defend a claim alfo@ierror involved with his comparison
of the straight object and the curve. However,dlaen Trent was defending, that he had

overestimated using the chord iteration strate@g imcorrect.
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Using multiple justifications. Six different students justified their claims using
either a combination of two analytical strategi@sg related to comparing curves to
straight objects and one related to unit) or amition and an analytical strategy (either
an analytical strategy related to comparing cuteestraight objects or one related to
unit). Jenny (Grade 4, CLM Group), described abexel]ained why she thought her
comparison between a straight object and a stickdésk 3 was an underestimate using
both an intuition and the analytical strategy sbedito compare the straight object to the
curve. Like Jenny, Trent (Grade 6, CRM Group), G(&rade 6, ICPM Group), and
Marie (Grade 10, ALM Group) exhibited one instan€e@sing both an intuition with a
discussion about the analytical strategy used nopewe a straight object to a curve when
defending a claim about whether a comparison regutlt an over- or underestimate.

Rick (Grade 8, ICPM Group) justified why he thougis comparison of a curve
and a straight object for Task 6B was an undereséirhy using a combination of two
analytical strategies: one related to his way ofgaring a curve to a straight object and
another related to his way of operating on the. ifier using the chord iteration strategy
to compare he said, “I think | underestimated tmis (pointed to the curve with the
straight segment) more than this one (pointedecsfiiral curve) because this one is
like...this has more curve to it (points to the tegttpart of the curve with the straight
segment) | wasn't dead on the line...And | didvéreget all the way to the end either...”
His discussion about not being “dead on the limelicates that he was reflecting on the
fact that he used an analytical strategy of conmgathe straight object to the curve by
representing the straight object as chord sticksiwom the curve, resulting in an

underestimate. Rick elaborated by also mentioniagperations on units. He noted that
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he “didn’t even get all the way to the end eithandicating an attention to the curve
extending beyond the final chord stick unit. Ricklaim about underestimating when
comparing the straight object and the curve wasectr

Kevin (Grade 4, CLM Group) defended his claim thigstcomparison of a curve
to a straight object for Task 8B was an overesgnuging an intuition and an analytical
strategy related to his way of comparing the cdovihe straight object. He used the
chord iteration strategy to compare the straiglgalio each curve. When asked whether
he thought he had over- or underestimated when aongphe said, “I think |
overestimated a little, because this one it goka bftle (pointed to the end of the wider
curve where the third stick unit extended beyoreddiwve), and this one when it was
going here it was more of just like a straight l{peinted to the first stick unit for the
tighter curve). The stick can't like curve intdreellike a circle.” Kevin’s discussion of
curving the stick indicates that he evoked the a@sgion intuition. He also discussed his
operations on units; he attended to a stick unéreking beyond the curve to defend his
claim that he overestimated. Kevin evoked bothnamtion and an analytical strategy,
but his claim that he overestimated when usingtiwed iteration strategy was incorrect.
Relating Correctness andStudents’ Justifications when Reflecting on Error

Table 13 illustrates the interaction between theembness of a claim about over-
or underestimating and the use of intuitions, arnadystrategies for comparing curves

and straight objects, and analytical strategiested|to unit for justifying claims.
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Table 13

Interaction Between Correctness and Students’ ficegions when Reflecting on Error
When Comparing a Curve to a Straight Object (T&slks 5, 6B, and 8B)

Use of an  Analytical strategy Analytical
o ) strategy for
Intuition for comparing .
units
Correct acknowledgement  77.78%* 84.21% 40.00%
of an over- or underestimate  (14) (16) (4)
Incorrect acknowledgement 22.22% 15.79% 60.00%
of an over- or underestimate (4) 3) (6)
Totals 18 19 10

* 77.78% of the instances in which an intuition waed to defend whether a comparison
between a curve and a straight object was an ovexr underestimate were correct.

Students’ discussions about whether a comparistwelka a curve and a straight object
was an over- or an underestimate that involveceedh intuition or a discussion about
the analytical strategy used to make the compaygszded a correct answer in most
instances, with 77.78% and 84.21% respectively. él@n, when students attended to the
analytical strategy used to operate on units, sisch partitioning of units or the
alignment of the final stick unit iteration and tied of the curve, their answer was
correct only 40% of the time.
Relating Intuitions and Analytical Strategies for Qurvilinear Paths to the Length LT

| tracked patterns in intuition and analytical s#gy use for comparing a
nonstandard unit and a curve (Tasks 3, 4, 5, 68 8&) within and across the LT groups.
| differentiated and categorized analytical strege@nd intuitions for comparing and
analytical strategies related to unit accordinthr appearance within and across the LT

groups to explore developmental patterns. In tlhé@es below | describe these
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developmental patterns with respect to the usataitions and analytical strategies
comparirg as well as thparticipants’use of analytical strategies related to operatim
units.

Figures 61 and®illustrate the frequency of each intuition and ghedl strategy
for comparing a straight object and a curve. Irheadumn, the darkest she of blue
indicates the LT levajroupwith the highest frequency and the lightest shddduz

shows the LT level group with the lowest frequenty particular intuition or analytici

strategy.
Tasks 3, 4, 5, 6B, & 8B: Analytical Strategies Related to Comparing
Direct Direct
Measurement Measurement
Continuous Path Applied Tangent Strategies Strategies
Comparison Tangent Mixed Unit Intersection  Adjusting Point of Modified Curved Unit Chord Curved (without (with Indirect
Chord Iteration ~ Strategy to Iteration iteration Iteration Tangency Iteration Circumference Iteration  Unit Iteration embedded embedded Measurement

Strategy Estimate Strategy strategy Strategy Strategy Formula Strategy Strategy intuition) intuition) Strategy
CLM Group 20 2 3 2 2 0 0 0 0 29 0 0
CRM Group 12 0 4 S 0 1 0 1 6 22 7 0
ICPM Group 9 0 4 0 1 77 2 < 2 21 5 2
ALM Group 10 0 5 1 0 3 3 0 il 19 7 3
Totals 51 2 16 8 3 11 5 4 15 91 19 5

Figure 61.Patterns of analytical strategy use for coring straight objects and curv
within and across LT groug

Tasks 3, 4, 5, 6B, & 8B: Intuitions Related to Comparing

Compression Straightness Curve Tightness Combination of | Total Intution
Intuition Intuition Intuition Intuitions Use
CLM Group 9 2 2 1 13
CRM Group 16 0 1 0 17
ICPM Group 8 3 1 1 12
ALM Group 14 2 1 2 I 17
Totals 47 7 5 4 59

Figure 62.Patterns of intuition use for comparing straighjects and curves within ar
across LT groups.

| describe th@levelopmentgpatterns within and across the four lengthlevel groups
included in the present study, which depicted in Figures 61 and 68,the section:

belowbeginning with Tabld4.
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Table 14

Distribution of Analytical Strategies for Compari@yrves and Straight Objects (Tasks
3, 4, 5, 6B, and 8B) within and across Length LV¥el&roups

CLM CRM ICPM ALM Totals
Group Group Group Group
. . 39.22%* 23.53% 17.65% 19.61%
Chord iteration 51
(20) (12) 9) (10)
Continuous 50.00% 0.00% 50.00% 0.00% 4
comparison (2) (0) (2) (0)
Tangent iteration 21.43% 28.57% 14.29% 35.71% 14
(3) (4) (2 (5)
. . . 25.00% 62.50% 0.00% 12.50%
Mixed unit iteration 8
(2) %) 0) (1)
Path intersection 66.67% 0.00% 33.33% 0.00% 3
iteration (2) (0) Q) (0)
0, 0, 0, 0
Adjusting tangency O'(%?/O 9'(11?/0 63('%3 # 27('?2’)7 % 11
Tangent curved unit 0.00% 25.00% 75.00% 0.00% 4
(0) 1) 3 0)
0, 0, 0, 0
Chord curved unit O'(%?/O 40('2)0 # 13('3)3 # 46('76)7 % 15
0, 0, 0, 0,
Modified formuia Q0% 000%  4000% G000

* 39.22% of the instances in which the chord iterastrategy was used occurred when
CLM students compared a straight object and a ciava total of 20 instances.

Patterns of Analytical Strategy Use within LT Groups
Participants within each length LT level group usieelchord iteration strategy
most often. For the CLM group, this was followedtbg use of four additional analytical

strategies: the continuous comparison and tangexéd unit, and the path intersection
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iteration strategies. Within the CRM group, thisswallowed by three more analytical
strategies: mixed unit, tangent, adjusting pointaoigency iteration strategies. At the
CRM level, students used two analytical strategigls embedded intuitions: chord
curved unit and tangent curved unit iteration sgas. The group of ICPM level
participants used all but one of the analyticatstgies observed for comparing a curve
and a straight object, the mixed unit iteratioatglgy. The students in the ALM level
group used all of the analytical strategies extleppath intersection and tangent curved
unit iteration strategies.
Patterns of Analytical Strategy Use across LT Groug

| observed the chord iteration strategy most oifteihe CLM level participants’
responses, and the use of this strategy generhedsed as the levels of the LT for
length measurement increased in sophistication.iRstances occurred for most
analytical strategies for comparing a curve anttaght object shown in Table 14.
Therefore, | organized codes according to thremétie categories. The direct
measurement category includes the continuous casopaaind chord, tangent, mixed
unit, path intersection, and adjusting point ofgemcy iteration strategies. The direct
measurement with embedded intuition use strategohsde the tangent curved unit and
chord curved unit iteration strategies. The indiraeasurement category consists of the
modified circumference formula stratedy.Table 15, | describe the interaction of the
thematic categories for the analytical strategleseoved in the present study within and

across groups.
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Table 15

Interaction of Thematic Categories for Analyticalg®egies for Comparing Curves and
Straight Objects (Tasks 3, 4, 5, 6B, and 8B) witind across Length LT Level Groups

CLM CRM ICPM ALM Totals
Group Group Group Group
Direct measurement: 5 zgo0c 241806  23.08%  21.88%
analytical without (29) 22) 21) (19) 91
embedded intuition
Direct measurement: 550, 358406 26320  36.84%
analytical with ) 7) 5) 7) 19
embedded intuition
Indirect measurement 0.00% 0.00% 40% 60%
0) (0) (2) (3) 5

* 31.78% of the instances in which a direct measem strategy was observed as
students compared a straight object to a curveroattin the CLM level group.

Patterns in Thematic Categories of Analytical Stragégy Use within LT Groups

Within the CLM level group, only direct measuremanalytical strategies
without embedded intuitions were used. At the CRMel, students used only direct
measurement strategies, with or without embedd®itions. For the ICPM and ALM
level groups, | observed direct measurement stiegegth or without embedded
intuitions and a strategy for indirect measurenfapplying a modified circumference
formula).
Patterns in Thematic Categories of Analytical Stragégy Use across LT Groups

Table 15 shows that the analytical direct measun¢ésteategies were used most
often by students in the CLM group, the lowest graand decreased across the groups as
the levels increased in sophistication. Analytohiaéct measurement strategies with

embedded intuitions were not observed in the CLbMugrand were almost evenly
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distributed across the CRM, ICPM, and ALM groupleTndirect measurement strate
a modified circumference formula, was observed amiype ICPM and ALM group

| tracked pattrns of analytical strategy use related to unitwt@mparing
straight objects and curves (Tasks 3, 4, 5, 6B,88)dwvithin and across the grou
representing CLM, CRM, ICPM, and ALM levels of tlemgth LT. The number ¢
instances of each analyticalategy related to unit for comparing a curve anttaght
object is shown in Figur63 below. In this figure, within each of the columttse darkes
shade indicates the LT level with the highest fesgry of a specific analytical strate(
and white indtates the LT level with the lowest frequency opadfic analytica

strategy related to unit.

Tasks 3, 4, 5, 6B, & 8B: Analytical Strategies Related to Unit
Fractured Unit Mentally Mentally
inthe Tightest Fractured Unit  Counted a Mentally  Straightened  Applied Transformed
Used the Whole Fractured Unit  Part of the along Entire  Partial Unitasa Compensated for Curved Straight Partofthe  Conceptual Applied Applied the Unit or
Stick as a Unit Once Curve Curve Whole Unit Unit Curve Standard Unit Benchmark | Fractured Unit Mental Units the Curve

0 0
i 5
4 0
0 2
5 12

0 10 0
17 6
19 1
17 0
63 7

CLM Group 25 7 1
CRM Group 23 10 2
ICPM Group 14 6 5
ALM Group 13 8 4

Totals 75 31 12
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Figure 63.Patterns of analytical strategy use related tofonitomparing straight objec
and curves within and across LT grot

Figure 63 shows develapental patterns for analytical strategy use rel&tathit acros:
LT groups. To explore developmental patterns irlydical strategy use related to u
across the LT levels, codes related to conceptealtgruent themes concerning
analytical stratgies related to unit (Tasks 3, 4, 5, 6B, and 8Bewmllapsed. Code
describing strategies for fracturing units (fraetlinonstandard unit once at the endp
of the curve, fractured nonstandard unit in thiategt part of the curve, and fractu
norstandard unit around the entire curve), mentaflgdforming the unit or the cur
(mentally curved unit and mentally straightenedrewsegments), and the applicatior

mental units (applied benchmark and applied conedgtandard unit) were collap:.
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Analytical strategies mentally curved straight wamtl mentally straightened curve
segments occurred with the chord curved and targgewed unit strategies. Table 16
shows how the distribution of these collapsed codkede to the LT levels.

Table 16

Distribution of Conceptually Congruent Analyticdat&egies Related to Unit (Tasks 3, 4,
5, 6B, and 8B) across Length LT Groups

CLM CRM ICPM ALM

Group Group Group Group Totals
. .33.33%* 30.67% 18.67% 17.33%
Used the whole stick as a unlfq’ (25) (23) (14) (13) 75
Fractured unit 15.87% 26.99% 30.16% 26.99% 63
(20) a7 (19) a7
Eractured unit once 2258% 32.36% 19.35% 25.81% 31
(7) (10) (6) (8)
Fractured unit in 8.33% 16.67% 41.67% 33.33% 12
tightest part of curve (1) (2) 5) 4)
Fractured unit along 10.00% 25.00% 40.00% 25.00% 20
entire curve (2) (5) (8) (5)
. . 50.00% 50.00% 0.00% 0.00%
Counted partial unit as whole 2
P (1) (1) (0) (0)
0.00% 40.00% 0.00% 60.00%
Compensated for curvature 10
P (0) (4) (0) (6)
Applied mental units 0.00% 85.71% 14.29%  0.00% 2
0) (6) 1) (0)
Mentally transformed the unit 0.00% 35.29% 23.53% 41.18% 12

or curve (0) (6) (4) (7)

* 33.33% of the instances in which the whole sticks used as a unit were observed in
students from the CLM group when comparing a cane a straight object.
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Patterns of Analytical Strategy Use Related to Unitvithin LT Level Groups

Within the CLM level group, the strategy of usitg twhole stick as a unit was
observed most often. This was followed by instarédsacturing the unit once, and one
instance each of fracturing the unit in the tighpest of the curve and counting a partial
unit as a whole unit. CRM level students also ex&bthe strategy of using the whole
stick as the unit most often. This was followedistances of fracturing the unit once,
applying mental units, and mentally transforming thit or curve. Few instances of
fracturing the unit in the tightest part of theaior along the entire curve, counting a
partial unit as a whole, and compensating for dumeawere also observed in the CRM
level group. For the ICPM and ALM level participaninstances of fracturing units
occurred more often than instances of using thdewttck as the unit. At both of these
levels, several instances each of fracturing theante, fracturing the unit in the tightest
part of the curve, and fracturing the unit along émtire curve were all observed. Within
the ICPM level, participants used the strategyppiiying the whole stick as a unit and
mentally transforming the unit or curve; howeverlyoone instance of applying mental
units was observed. At the ALM level, instancesisig the whole stick as the unit,
compensating for curvature, and mentally transfogmhe unit or curve occurred.
Patterns of Analytical Strategy Use Related to Uniacross LT Level Groups

Table 16 indicates that the instances of the aicalydtrategy of using the whole
stick as the unit occurred most often within thedst level group included in the study,
the CLM level group, with 25 occurrences. The tabd$® illustrates a trend of decreasing
instances of using the whole stick as the unihadedvel groups increased in

sophistication, across the CRM, ICPM, and ALM lsvéverall, the fewest instances of
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fracturing units occurred within the CLM group, ahére exists an overall trend
increasing instances of fracturing units as the lguwalips increase in sophisticatit
Within the CLM and CRM level groups, participantaimy fractured units when
whole unit could not fit at the end of the curvg.tBe ICPM and ALM levels
participans exhibited more instances of fracturing unitsh@ tightest part of the cun
and along the entire curve. | interpreted this oladde strategy of fracturing units in t
tightest part of the curve or along the entire ewas evidence of coordinatilinear
extent with curve. Therefore, this suggests thathle ICPM level, students were able
coordinate linear extent with curve. Counting @niinits as whole units occurred only
the CLM and CRM groups, whereas the applicatiomehtal units ad mentally
transforming the curve or the unit occurred onlyhm the CRM, ICPM, and ALM leve
groups. The strategy of comparing a curve andadg$ir object by applying mental un
(either a benchmark or a conceptual standard oodyrred most ofteat the CRM leve
Reflecting on Error

| tracked students’ statements about the errorvweebin their comparisor
between a straight object and a curve (Tasks 3, 8B, and 8B) within and across 1
LT groups. Patterns in the ways participants rédd on error involed are illustrated i
Figure 64 In this figure, the darkest shade indicates thddvel group with the highe

frequency of a particular code related to studamtfections on the error involve

Tasks 3, 4, 5, 6B, and 8B: Reflecting on Error

Acknowledgement
Claimed Answer| Incorrectly Correctly of Over- or
Was Notan | Acknowledged Acknowledged Underestimate was
Acknowledged Acknowledged Over- or Over-or Over- or Neither Correct nor
Underestimate _Overestimate Underestimate | Underestimate Underestimate Incorrect

CLM Group 13 6 1 2 14 6
CRM Group 74 6 2 ) 5 6
ICPM Group 9 7 3 2 5 9
ALM Group 7 3 6 2 6 4
Totals 36 21 12 12 30 25

Figure 64.Patterns of studentstatements regarding the error involved in t
comparisons between straight objects and curvdsnaaind across LT grou
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Figure 64 illustrates developmental patterns foethbr students thought they had over-
or underestimated and whether their statementstalvew or underestimating were
correct. In the sections below | describe thestepa, starting with Table 17, which
illustrates the interaction between LT groups dathts about over- and underestimating.
Table 17

Distribution of Claims of Over- and Underestimat¥ben Reflecting on Error (Tasks 3,
4,5, 6B, and 8B) across Length LT Level Groups

CLM CRM ICPM ALM

Group Group Group Group Totals
Acknowledged 36.11%* 19.44% 25.00% 19.44% 36
Underestimate (13) (7) 9) (7)
Acknowledged 27.27% 27.27% 31.82% 13.64% 29
Overestimate (6) (6) (7) (3)

Claimed answer was notan 8.33% 16.67% 25.00% 50.00%

under- or overestimate (1) (2) 3) (6) 12

Totals 28.57% 21.43% 27.42% 22.86% 70
(20) (15) (19) (16)

* 36.11% of the instances in which a student ackedged an underestimate when
comparing a straight object and a curve occurretderCLM group.

Patterns in Claims of Over- and Underestimates witim LT Level Groups

In each LT group, participants claimed they undereged most often. This was
followed by acknowledgements of overestimates daiths that a comparison was
neither an over- nor an underestimate. This sastahlition was observed in the CLM,
CRM, and ICPM groups. However, for ALM, claims tlatomparison did not involve

an over- or underestimate occurred more often #ttktnowledgements of overestimates.
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Patterns in Claims of Over- and Underestimates acss LT Level Groups

Table 18 shows that acknowledgements of underestgwehnen comparing a
straight object and a curve occurred most oftehénCLM level group. | observed
acknowledgements of overestimates with approximdkel same frequency across the
CLM, CRM, and ICPM level groups; however, suchmaidecreased for the ALM level
group. The number of claims that an answer wafi@e#n over- nor underestimate was
at a minimum for the CLM level and increased irgfrency as the LT level groups
increased in sophistication.

Based on strategies for comparing, a claim tlmaparison resulted in an over-
or underestimate or neither an over- nor undereséirmay have been correct or
incorrect. Table 18 illustrates the interactiondmn the correctness and the levels of the
LT for length measurement.

Table 18

Distribution of Correctness faClaims of Over- and Underestimates When Reflecimg
Error (Tasks 3, 4, 5, 6B, and 8B) across Length_eVel Groups

CLM CRM ICPM ALM

Group  Group  Group Group Totals
Incorrectly acknowledged 13.04%* 31.25% 12.5% 8.33% 12
over- or underestimate (3) (5) (2) (2)
Correctly acknowledge  60.89% 31.25% 31.25% 50.00% 30
over- or underestimate (24) (5) (5) (6)
Acknowledgement of OVer- -, g0, 37504 56250 33.33%
or underestimate was (6) (6) ) 4) 25
neither correct nor incorrect
Totals 23 16 16 12 67

* CLM students’ discussions about comparing a ghtaobject and a curve resulted in an
incorrect acknowledgement of an over- or underegem 3.04% of the time.
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Patterns in Correctness when Reflecting on Error whin LT Groups

Participants in the CLM and ALM level groups disseed their comparisons
between a straight object and a curve by corredtilyg an over- or underestimate most
often. For both of these LT level groups, this Walowed by claims that an over- or
underestimate was neither correct nor incorrectiaomrectly acknowledging an over-
or underestimate. For the CRM and ICPM level groppsticipants’ acknowledgements
of over- or underestimates were neither correcimmrrect most often. This was
followed by correct acknowledgements of over- cdenestimates. Within the CRM
group, these correct statements occurred withdheedrequency as incorrect statements
about over- or underestimates. At the ICPM levelpirect statements about over- or
underestimates occurred least often.
Patterns in Correctness when Reflecting on Error amss LT Groups

Participants in the CLM level group exhibited thghest frequency of
acknowledgements of over- or underestimates. Tieelst number of instances of
acknowledgements of over- or underestimates thatiawt be considered as correct or
incorrect occurred within the ICPM level group. Thegest number of instances of
incorrectly acknowledging an over- or underestinveds observed at the CRM level.
The frequency of instances within each categorlable 18 was evenly distributed for
the CRM level group.

| tracked students’ justifications for why thewtlght they had over- or
underestimated when comparing a curve to a straigjlect within and across the four
length LT level groups. Table 19 illustrates thstidoution of students’ justifications

across the LT level groups.
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Table 19

Distribution of Intuitions and Analytical Strategi¢or Reflecting on Error (Tasks 3, 4, 5,
6B, and 8B) across Length LT Level Groups

CLM CRM ICPM ALM

Group Group  Group Group Totals
Intuition 40.00%* 25.00% 60.00% 22.22% 18
(8) 2) (6) 2)
Analytical strategy for . hooex 125006 20.00%  66.67%
comparing a straight (8) (1) ) (6) 19
object and curve
Analytical strategy for unit 10.00% 62.50% 20.00% 11.11% 10
operation (2) (5) (2) (1)
Totals 20 8 10 9 47

* CLM level students’ discussions about the errtwew comparing a straight object and a
curve reflected the use of an intuition for 40%kha responses given by CLM level
students.
Intuition and Analytical Strategy Use for Reflecting on Error within LT Groups

Table 19 indicates that CLM level participantsedlon justifying their claim by
discussing analytical strategies they had usednapare a straight object and a curve or
intuitions, with the same frequency. At the CRMdk\students relied most often on
justifying claims by discussing the analytical s#ges used to operate on units, such as
fracturing units. Within the ICPM level group, sards most often relied on intuitions. At
the highest level, the ALM level, participants mofien discussed their analytical
strategies for comparing a straight object andraecu
Intuition and Analytical Strategy Use for Reflecting on Error across LT Groups

Clear developmental patterns were not observeadrincppants’ justifications of

claims about why they had over- or underestimal@e. use of intuition occurred most
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often at the CLM and ICPM levels. Attention to aiglal strategies for comparing a
straight object and a curve occurred most ofteheaCLM and ALM levels.
Justifications involving a discussion of analytistiategies for operating on units
occurred most often at the CRM level, and were @agprately evenly distributed across
the CLM, ICPM, and ALM levels.
Analytical and Intuitive Thinking for Measuring Cur ves

Two tasks were posed for the purpose of probindestts’ intuitive and analytical
strategies for measuring curvilinear paths, Tas&e®10 (Figures 65 and 66 below,
respectively). For Tasks 9 and 10 students weragbed with an image of a curvilinear
path printed on gridded paper, which they were tefitesents the outline of a fancy
doorway on a blueprint. They were then given adda ruler and asked to measure the

outline of the fancy doorway in the most precisegae way.

Figure 65.Measuring a curvilinear path, interview Task 9.

Figure 66.Measuring a curvilinear path, interview Task 10.
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| coded students’ responses with respect to thetive thinking exhibited in their
discussions of how they measured the doorway agiddhalytical thinking indicated by
their strategies for measuring the curves withrther.

Analytical Strategies for Measuring a Curve with aRuler

Five of the seven analytical strategies that wéseeosed when students compared
a straight object to a curve (Tasks 3, 4, 5, 68, &B) were also observed when students
measured a curve with a ruler: chord iterationtstya tangent iteration strategy, path
intersection iteration strategy, adjusting pointasfgency iteration strategy, and the
modified circumference iteration strategy.

Chord iteration strategy. As was observed when students compared a straight
object and a curve (Tasks 3, 4, 5, 6B, and 8Bylestts who used the chord iteration
strategy when measuring a curve with a ruler placsthndard unit (an inch or
centimeters), fraction of a standard unit (a quaotenhalf inch), or composition of
standard units (2, 3, or 10 centimeters or 2 inches chord on the interior of the curve.
Nine instances of this strategy were observedvm diifferent students’ responses to
Tasks 9 and 10: Mia (Grade 4, CLM Group), Keving@ 4, CLM Group), Trent (Grade
6, CRM Group), Rick (Grade 8, ICPM Group), and Mgfsrade 10, ALM Group). For
example, Trent used the chord iteration strateggyeasure the partial circle curve for
Task 10 (see Figure 66). He first partitioned these into two halves. Then Trent
aligned the ruler to the leftmost endpoint of theve. Next, he used the interval on the
ruler from O to 1 as a chord and traced along tlye @f the ruler closest to the curve to
create a 1-inch chord segment. Trent repositioheduler with the zero point aligned to

the intersection of the first inch segment andcinee and again used the interval from 0O
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to 1 as a chord to guide the placement of the secbard inch segment. He repeated this
procedure around half of the curve, creating sdverch chord segments, with the end of
the seventh segment meeting the vertical line kdedinawn to partition the curve into two
halves. He said, “OK. One, two, three, four, figk, seven” and wrote 7 x 2 = 14. He
then said the length of the curve was “around thes.”

Tangent iteration strategy. Similar to a strategy observed when students
compared a straight object and a curve (Tasks %, 8B, and 8B), students used the
tangent iteration strategy to measure a curve avitlier. There were six instances of the
tangent iteration strategy reflected in four studeresponses to Tasks 9 and 10: Noah
(Grade 4, CLM Group), Jenny (Grade 4, CLM Groupgnt (Grade 6, CRM Group), and
Lynn (Grade 8, CRM Group). For example, Jenny ukexdstrategy when measuring the
partial circle curve with the ruler for Task 10dEre 66). She initially placed the ruler as
a tangent on the outside of the curve aligned with endpoint. Jenny then used the tick
mark on the ruler that was labeled as 1 to guidalfeving of a tick mark on the curve.
Next, she repositioned the ruler as a tangent hgidea with the tick mark she had
drawn and again used the tick mark on the rulezl&abas 1 to guide the placement of
another tick mark on the curve. She continuedphosess of positioning the ruler as a
tangent and applying the interval from 0 to 1 amthler to guide her drawing of the next
tick mark on the curve. She said the curve was\tHdas.

Path intersection iteration strategy.The path intersection strategy, which was
also observed when students compared a straigittdbj a curve, was reflected in one
students’ response for measuring a curve withexrrulynn (Grade 8, ICPM Group) used

this strategy when measuring the outline of thernday for Task 9 (see Figure 66). Lynn
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first correctly measured one of the straight segmand labeled it as 4 inches. Next, she
realigned the ruler so that the tick mark labeled @nch was aligned with a tick mark
she drew at the end of the straight segment sh@usatheasured. She placed the ruler
directly on this curved segment, drew a tick manktpand labeled this section as one
inch. She continued this process of realigningtiber and placing a portion of the ruler
direction on the curve, drawing a tick mark, angklang the section with %2, 1 or 1 %2
inches. When asked how she thought about measimencurve with the ruler Lynn said:

Lynn: When | went here (placed the ruler along ohthe straight segments), |

went as straight as possible. And then here lItjiest to go straight around

(indicated with her ruler on the curved segmentsspmably to show that she

used the largest possible interval on the rulersha could match to a curved

portion on a curved segment).

Interviewer: So, you found parts that were strétght

Lynn: Yeah.

Adjusting point of tangency iteration strategy.Students who used the adjusting
point of tangency iteration strategy placed themals a tangent to the curve and rotated
the ruler, adjusting the point of tangency and audating the length of the curve along
the ruler. This strategy was also observed whedtesiis compared a straight object to a
curve (Tasks 3, 4, 5, 6B, and 8B). Four studenisbéed a total of seven instances of
this strategy when measuring a curve with a rulesks 9 and 10): Mia (Grade 4, CLM
Group), (Grade 6, CRM Group), Ruth (Grade 8, ICPMUp), and Scott (Grade 10,

ALM Group).
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Mia (Grade 4, CLM Group) used the adjusting poirtangency iteration strategy
to measure the curve for Task 9 (Figure 66). Uliegcentimeter side, she aligned the
ruler along one of the straight segments and ldheks 10. Mia then realigned the ruler
to the intersection of the straight segment anditbecurved segment. Next, she rotated
the ruler around to the intersection of the fitstved segment and the second curved
segment, adjusting the point of tangency and actatmg the length of the first curved
segment on the ruler. She wrote “7” next to thet fourved segment. Mia repeated this
process of realigning the ruler with the intersaciof the previous curved segment and
the next curved segment to be measured, rotatengutbr around the outside of the
curved segment, accumulating the length of theedisegment on the ruler, and writing
the length above the segment. She then added thik straight and curved segments that
she had measuredas 10+ 10+ 7+7+6+6+5 =5

Modified circumference formula strategy.| observed the modified
circumference formula in students’ responses tistas/olving the comparison of a
curve to a straight object (Tasks 3, 4, 5, 6B, @&ylas well as tasks involving the
measurement of a curve with a ruler (Tasks 9 andSt0dents who applied a modified
circumference formula strategy used the formulaHercircumference of a circle in their
solutions. Three instances of this strategy wesenled as students measured a curve
with a ruler: David (Grade 8, ICPM Group), Zaned@ 10, ALM Group), and Scott
(Grade 10, ALM Group).

David (Grade 8, ICPM Group) applied a modified girderence formula when
measuring the partial circle curve for Task 10 (ffgy66). He placed the ruler vertically

across the rounded doorway and drew a vertical Hieethen drew a horizontal line,
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which intersected the vertical line in the centethe partial circle curve. Next, he drew
two segments from the intersection of the vertegal horizontal lines to each endpoint of
the partial circle curve. He multiplied 6.28 bytb5get an answer of 94.2 and then
divided 94.2 by 3 to get 31.4. Finally, he subtedcB1.4 from 94.2 to get 62.8, which he
wrote and circled. When asked how he thought abmatsuring the curve he said, “...1
found the circumference of it because it's a circ@d then | divided it by three because
that is roughly one third of it (spanned fingeraas the open part of the circle).”

Intuition embedded in analytical strategies for meauring a curve with a
ruler. In addition to the analytical strategies discugadtie section above, | observed
the same two types of intuitions embedded in aitalystrategies that | saw in students’
responses for tasks involving the comparison afaght object and curve (Tasks 3, 4, 5,
6B, and 8B) and using rulers to measure curvekélasnd 10). These strategies were
the tangent curved unit iteration strategy andctimd curved unit iteration strategy.
Similar to the application of these strategiesamparisons between a straight object and
a curve, students either mentally straighteneds pdrthe curve to match a section of the
ruler (such as an inch or a centimeter) or mentallyed a segment of the ruler to match
a part of the curve.

The mental straightening of part of the curve ontakcurving of part of the ruler
is an illustration of the application of the comgsi®n intuition that has been described
elsewhere. Therefore, the compression intuitimméedded in both the tangent curved
unit and chord curved unit strategies. The compoagatuition was the only intuition

observed in students’ responses to Tasks 9 anthi®intuition was only observed as
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the mental straightening of parts of curves or mleturving of part of the ruler, as part
of these strategies as students used a ruler teureea curve (for Tasks 9 and 10).

Tangent curved unit iteration strategy. Students who used the tangent curved
unit iteration strategy placed the ruler on thesml# of the curve as a tangent and then
mentally curved part of the ruler to match a sectbthe curve or mentally straightened
part of the curve to match the ruler. Two instarafethis strategy were observed in one
student’s responses to Tasks 9 and 10, Grant (&;d@¥M Group). For example, when
measuring the partial circle curve with the rular Task 10 (Figure 66), Grant placed the
ruler as a tangent to the curve with the zero pafitihe ruler aligned to one endpoint. He
then drew a tick mark on the curve and labeled [13a’ Next, he realigned the ruler to
this tick mark placing it as a tangent and drewtl@otick mark, which he labeled as “6.”
He then continued this process around the curvétipaing the curve into 3-centimeter
segments. When asked about his method for meaghengurve in the most precise way
that he could, he said:

Grant: Um...l imagined if the ruler was curved amddrked like every three

centimeters.

Interviewer: OK. Could you show me like how you didsay from here to here

(traced finger around the segment of the curve éetwvhis tick marks labeled as 3

and 6)?

Grant: | just like put it here (aligned the zeromof the ruler to the tick mark

labeled as 3) and like, if it was curved, it wopldbably go like, right there

(showed where the tick mark labeled as 3 on ther ubuld intersect with the

curve if the ruler was curved).
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Interviewer: OK. | think | see it. So, why did yoecide three centimeters?

Grant: Uh...cuz it was quicker than two.

Interviewer: | see. And why not four?

Grant: Uh...because four would like...it would lzder to like guess if it was

curved with this. It would be like longer measuremseso it would be harder to

guess where it would be if it was curved.
For each instance in which Grant applied the tahgerved unit iteration strategy when
measuring a curve with a ruler, he applied the aesgon intuition by mentally curving
the unit, which was a composite of 3 centimeteithis case.

Chord curved unit iteration strategy. Students who applied the chord curved
unit iteration strategy placed the ruler on thedef the curve as a chord. They then
applied the compression intuition by either megtallrving part of the ruler to match the
curve or mentally straightening part of the curventatch the ruler. | observed four
instances of this strategy in two students’ respsr@s they measured a curve with a
ruler: Ned (Grade 6, CRM Group) and Kyle (GradeAlOvi Group).

For example, Kyle applied the chord curved unititen strategy when
measuring the partial circle curve with the rular Task 10 (Figure 66). He placed the
interval from O to 1 on the ruler as a chord onittséde of the curve and aligned with one
of the endpoints. He then drew a tick mark on tee, realigned the interval from 0 to 1
on the ruler as a chord on the inside of the cuawd,then drew another tick mark. He
continued applying the interval from O to 1 as ardnaround the curve and said:

Kyle: | found that all together, if you were toaghten the whole thing out, it

would be 14.25 inches.
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Interviewer: OK. Now, tell me a little bit about\Wwoyou decided to make these
marks right here (pointed to the tick marks ondteve)

Kyle: Um...since | was using inches and it's nat tnuch of a far distance
apart...and, also, in that amount of space theecgrvt too far going out, | ended
up...um...starting at 1 and then ending right altioerte (pointed to a mark near
the zero point). So, | went about a tenth away ftbenend of the inch.
Interviewer: So, how did you decide to...to stoga@t of this...after this first
interval (pointed to the point on the ruler justdse the zero point that Kyle had
previously indicated) why didn't you go up a second?

Kyle: Um...well, from here to there (pointed to first inch unit on the curve) it's
hardly curving at all, so to straighten it out wabjuist be like going...
Interviewer: a very minimal amount...

Kyle: Yeah.

Both Ned and Kyle applied compression intuitionhivitthe chord curved unit iteration

strategy by mentally straightening parts of thevedor Tasks 9 and 10.

Attending to symmetry when measuring a curve with auler. As students

measured the curves with a ruler for Tasks 9 anddfe students’ strategies suggested

that they recognized symmetry in the shape of timeec(Figures 66 and 67). These

students measured only parts of each shape, sunilyathe curved segments on the left-

hand side of the “doorway” for Task 9 or half oé tpartial circle shaped curve for Task

10, rather than directly measuring the entire cLiilere were nine instances in which

students’ strategies for measuring a curve withler reflected an attention to symmetry:

Ned (Grade 6, CRM Group), Rose (Grade 6, CRM Grol@nt (Grade 6, CRM Group),
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Rick (Grade 8, ICPM Group), Ruth (Grade 8, ICPM @) Scott (Grade 10, AL}
Group), and Kyle (Grade 10, ALM Group). The figuledow illustrae Trent (Figure67)

and Rick’s (Figure 68attention to symmetry while measuring a curvehaitruler

Figure 67.Trent’s attention to symmetry while measuring aveuwith a rulei

Figure 68.Rick’s attention to symmetry while measuring a euwith ¢ ruler.

Relating Analytical and Intuitive Thinking for Meas uring Curves to the Length LT
Students’ intuitions and analytical strategiesrf@asuring a curve with a rul

were tracked within and across the length LT group§&igure69, the darkest shac

represents the LT group for which an intuition palgtical strategy occurred most oft
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Tasks 9 & 10: Intuitions and Analytical Strategies
Adjusting
Path Point of Tangent Chord
Chord Tangent Intersection Tangency Modified  Curved Unit Curved Unit

Iteration Iteration Iteration Iteration  Circumference Iteration Iteration ~ Compression Attended to
Strategy _ Strategy  Strategy _ Strategy Formula Strategy Strategy Intuition __Symmetry

CLM Group| 3 3 0 Dz 0 0 0
CRM Group| 2
ICPM Group 2
ALM Group 2
Totals 9

2

oM~ N o

4
3
2
9

»N o N o

2
0
0
6

mlo ok

Figure 69.Patterns of intuition and analytical strategy usenieasuring curves with
and across LT groups.

Figure 69shows developmental patterns for analytical stragegntuition, and attentic
to symmetry across LT groups. | describe thesepettbelow, beginning with Tak20.
Table 20

Relating Intuitive and Aalytical Strategies for Measuring autve with aRuler (Tasks 9
and 10) to the Length LOevel Groups

CLM CRM ICPM ALM
Group  Group  Group Grouf

0fH* 0, 0 Y
Chord iteratio 33.33%* 22.22% 22.22% 22.22% 9

3) (2) 2) 2)

: . 66.67% 33.33% 0.00% 0.00%
Tangent iteratio 6

(4) (2) ©) ©)

0 0 0 0
Path intersectio 0.00% 100.00% 0.00% 0.00% 1

(0) 1) ) )

Totals

Adjusting tangenc 28.57% 28.57% 14.29% 28.57%
(2) (2) 1) (@)

0 0 0 o,
Modified circumferenc 0.00% 0.00% 50.00% 50.00% 4

(0) (0) 2) 2)

0.00%  0.00% 100.00% 0.00%
Tangent curved ur 2

) ) @) ©)

0, 0, 0 Y
Chordcurved uni 0.00% 50.00% 0.00% 50.00% 4

() (2) ©) (@)

o 0.00% 33.33% 33.33% 33.33%
Compression intuitic 6

(0) (2) 2) 2)

0.00% 44.44% 33.33% 22.2-
(©) (4) (3) (2)
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* 33.33% of the instances in which the chord iterastrategy was used occurred when
CLM students were measuring a curve with a rulessks 9 and 10).

Patterns in Strategies for Measuring a Curve with eRuler within LT Groups

Within the CLM level group, only the tangent, choadd adjusting point of
tangency analytical strategies were observed fasomng a curve with a ruler. At the
CRM level, the chord, tangent, path intersecti@lsting point of tangency, and chord
curved unit iteration strategies were observedo Alsthis level, the use of the
compression intuition appeared and instances entbin to symmetry occurred. Within
the ICPM and ALM levels, participants used the chiteration and adjusting point of
tangency strategies. At these levels, participalsts made use of the modified
circumference formula, the compression intuitiamj attention to symmetry as they
measured the curves with a ruler. At the ICPM lestldents also used the tangent
curved unit iteration strategy, and ALM level stotieexhibited instances of the chord
curved unit iteration strategy.
Patterns in Strategies for Measuring a Curve with eRuler across LT Groups

The chord iteration and adjusting point of tangeitesation strategies were
approximately evenly distributed across the lendgilevel groups. Use of the
compression intuition, which occurred within theobgation of the chord curved unit and
tangent curved unit iteration strategies, was gvdistributed across the CRM, ICPM,
and ALM groups. The tangent iteration strategy wlaserved in the groups representing
the lowest two LT levels included in the study, @ieM and CRM groups. Most of the
instances of this strategy occurred in the CLM grdhe lowest level group. | observed
the application of the modified circumference fotanstrategy in the two groups
representing the highest two LT levels, the ICPM AbM groups. Instances in which
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students’ responses reflected an attention toytmeretry of the shape of the curve
occurred only within the groups representing theMCRCPM, and ALM levels.

| observed few instances of the analytical straegarticipants used when
measuring curves with standard units, a ruler (§&sé&nd 10). Therefore, | collapsed
codes into the same three thematic categoriestdireasurement with no intuition use,
direct measurement with embedded intuition use jiadidect measurement (see Table
11). Direct measurement includes the chord, tangeath intersection, and adjusting
point of tangency iteration strategies. Direct nneasient with embedded intuition
includes the tangent and chord unit iteration sgiats. Indirect measurement includes
both the modified circumference formula and thergton to symmetry codes. Table 21
shows the interaction between LT groups and tHesmatic categories,
Table 21

Interactions of Thematic Categories for Analyti€atategies for Measuring a Curve with
Standard Units (Tasks 9 and 10)

CLM CRM ICPM ALM Totals
Group Group Group Group
Direct measurement
(analytical strategies 59 13904 30430 ~ 13.43%  17.39%
g it © ™ e @ =
embedded intuition)
Direct measurement
(analytical strategies 0.00% 33.33% 33.33% 33.33% 6
with (0) (2) (2) (2)
embedded intuition)
: 0.00% 30.77% 38.46% 30.77%
Indirect measurement 13

) (4) (5) (4)

* 39.13% of the instances in which a direct measar® strategy without an intuition
was used to measure a curve with a standard ratemred in the CLM level group.
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Patterns of Analytical Strategies for Measuring Cuwes within LT Groups

CLM level participants relied only on direct measuent strategies without the
use of embedded intuitions. Within the CRM levalug, participants most frequently
relied on direct measurement strategies withouteslded intuitions; however, the use of
direct measurement strategies with an embeddetiomand indirect measurement
strategies were also observed. At the ICPM lewattigpants most often used indirect
measurement strategies, but also occasionallydisect measurement strategies with or
without an embedded intuition. The ALM level gromost often exhibited indirect
measurement strategies and direct measuremem@géstvithout an embedded intuition.
In this group, some instances of the use of diresurement strategies with an
embedded intuition were also observed.
Patterns of Analytical Strategies for Measuring Cures across LT Groups

The highest number of instances of the use of dmsasurement strategies
without an embedded intuition occurred within tHeMClevel group. The appearance of
these strategies generally decreased in frequemogsthe LT levels as the levels
increased in sophistication, but remained approtaiyahe same at the ICPM and ALM
levels. The use of direct measurement strategitsami embedded intuition and indirect
measurement strategies occurred only within the CRR®M, and ALM level groups,
and the frequency of the appearance of these giteateras approximately evenly
distributed across these three level groups.

Summary
In the sections below | summarize how studenteiwigach of the four LT level

groups made use of intuitions and analytical sgiatefor rectilinear and curvilinear

200



paths. This is followed by a section in which | ciéise and differentiate students’
intuitive and analytical thinking for rectilineana curvilinear paths across the LT level
groups included in the study.

CLM Level Group

Participants in the CLM level group showed evideofceelying exclusively on
intuitive statements to justify their comparisotfisets of rectilinear or curvilinear paths
by length (Tasks 1, 2, 6A, 7, and 8A). When conmgarectilinear paths, CLM level
participants most frequently exhibited the comglexituition by talking about ordering
the paths by the number of turns or segments. Hewv@hen comparing sets of
curvilinear paths, students in the CLM group mostjfiently evoked the straightness
intuition. Within the CLM level group, participanshiowed evidence of using intuitions
in combination, intuitions in conflict, rejecting antuition, and using rejected intuitions
when ordering rectilinear and curvilinear pathghir lengths.

When measuring curves with a nonstandard unit, Gl participants relied
only on direct measurement strategies (Tasks 3, 8B, and 8B). Students in the CLM
level group most often used the entire nonstandaitg a 4-inch stick, as the unit when
measuring lengths of curves. In addition, partiotpan this group showed evidence of
using units and subunits, by fracturing a nonsteshdait once to fit a partial unit at the
end of the curve. Students in the CLM level grougstoften (correctly) claimed that
their comparison between a nonstandard unit anoheecesulted in an underestimate.
CLM level students most often justified their claimbout over- and underestimates
when comparing a curve to a nonstandard unit usithgr an intuition or discussing their

way of comparing the nonstandard unit and the ciileen measuring curves using
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standard units, a ruler, CLM level students useeetllirect measurement strategies they
had used when comparing a nonstandard unit andva:dtie chord iteration, tangent
iteration, and adjusting point of tangency iteratstrategies.
CRM Level Group

The CRM level group students relied on intuitiveétsments as well as analytical
strategies when comparing sets of rectilinear ovitnear paths by their lengths and
justifying those orderings (Tasks 1, 2, 6A, 7, 8&J. Most often, they ordered
rectilinear paths using the complexity intuitiory, dttending to the number of turns or
segments, and made judgments about the ordersobetirvilinear paths by their
lengths by mentally transforming the paths intosame shape. CRM level participants
used intuitions in combination; however, none @ plarticipants at this level used
intuitions in conflict, rejected an intuition, osed a rejected intuition.

When measuring curves with a nonstandard unit, G&AMdl participants relied on
a direct measurement strategy or a direct measuntestrategy with an embedded
intuition (Tasks 3, 4, 5, 6B, and 8B). For thesk$a students in this group also showed
evidence of applying mental units, mentally transfimg units or segments of a curve,
compensating for curvature by rounding up or dowvadcount for an over- or
underestimate, and fracturing units to make usenaé and subunits for the purpose of
increasing precision. However, they did not yetststently show evidence of
coordinating linear extent with other attributes;ts as curve, by using smaller units to
increase precision around a tighter curve.

CRM level participants claimed to have over- or emnedtimated approximately an

equal number of times when reflecting on their wafysomparing a nonstandard unit to
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a curve. These responses were evenly split beta@eact and incorrect
acknowledgements of over- or underestimates. Wingtifying why they thought they
had over- or underestimated, participants at th&1@®el most often discussed the
analytical strategy they had used for operatinghemonstandard unit. Within the CRM
level group, when measuring curves with standartsunsing a ruler, participants used
four direct measurement strategies they had useth wbmparing a curve and a
nonstandard unit: the chord iteration, tangenatten, path intersection, and adjusting
point of tangency iteration strategies. Also as feivel, when measuring a curve with a
ruler, students exhibited the use of the compressitmition and a direct measurement
strategy with an embedded intuition, the chord edrunit iteration strategy. Participants
in the CRM level group also used strategies to omeasurves with rulers that reflected
attention to symmetry.
ICPM Level Group

Students in the ICPM level group relied on intetstatements as well as
analytical strategies when comparing sets of ieetir or curvilinear paths by their
lengths and justifying those orderings (Tasks BA,7, and 8A). They most frequently
evoked the straightness intuition when defendimgy thrderings of sets of rectilinear or
curvilinear paths by their lengths. When compasats of rectilinear paths (Tasks 1 and
2), IPCM level students showed evidence of usitgiions in combination. However,
when comparing sets of curvilinear paths (Tasks®and 8A), they showed evidence
of using intuitions in combination as well as expecing conflicts in intuition use,

rejecting an intuition, and using a rejected intunt
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Within the ICPM level group, students most oftelfreceon direct measurement
strategies when measuring curves with a nonstandgardTasks 3, 4, 5, 6B, and 8B).
However, for these tasks they also showed evidehasing direct measurement
strategies with an embedded intuition and an ictimeasurement strategy, applying a
modified version of the formula for the circumfecerof a circle. For the tasks involving
curves, the ICPM level participants often mentalnsformed the nonstandard unit or
segments of the curve, fractured the nonstanddtdaumake use of units and subunits,
and showed evidence of coordinating linear extetit other attributes, such as curve, by
using smaller units around a tight curve. Withia t8PM level group, students claimed
to have over- or underestimated when comparinghataadard unit to a curve
approximately the same number of times. Most af¢heaims were either correct or
could not be determined to be either correct conrect, and ICPM level participants
most often defended why they thought they had aweunderestimated using an
intuition. When measuring a curve with a ruler, MCRevel participants exhibited two
direct measurement strategies that were observstidsnts compared a curve and a
nonstandard unit: the chord iteration and adjugpioigt of tangency iteration strategies.
They also exhibited the use of the compressiontiatuand an analytical strategy with
an embedded intuition, the tangent curved uniaiten strategy. In addition, ICPM level
participants exhibited the use of an indirect mea®ent strategy, applying a modified
circumference formula, and attention to symmetrgmwmeasuring a curve with a ruler.
ALM Level Group

Participants at the ALM level, the group represemthe highest level of the

length LT, relied on intuitions and analytical $égies when comparing sets of rectilinear
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or curvilinear paths by their lengths and defendhmese orderings (Tasks 1, 2, 6A, 7, and
8A). The ALM level participants most often evokée compression intuition, by
discussing mentally straightening paths that werd br bending paths that were
straight, or the straightness intuition when conmgarectilinear or curvilinear paths by
their lengths. At this level, students showed ewvgdeof using intuitions in combination
when comparing rectilinear or curvilinear pathswdwger, they showed evidence of
experiencing conflicts among intuitions, rejectargintuition, and using a rejecting
intuition only when comparing rectilinear paths gka 1 and 2).

When measuring curves with a nonstandard unit @38sK, 5, 6B, and 8B),
students at the ALM level relied most often on cdiraeasurement strategies, but they
also showed evidence of using direct measuremeategtes with an embedded intuition
and applying an indirect measurement strategy mgusmodified circumference
formula. Students at the ALM level also compensé&bedurvature by rounding a
measurement up or down to account for an overnderestimate. In addition, ALM
level students also mentally transformed the nowlstad unit or segments of the curve
and showed evidence of coordinating linear extetit another attribute, curvature, by
fracturing nonstandard units around tight curveimtoease precision. When comparing a
curve to a nonstandard unit, participants in thé/Akvel group claimed to have
underestimated or claimed to have neither overunderestimated approximately the
same number of times. These claims were most fretyueither correct or could not be
determined to be correct or incorrect. ALM leveltapants most often justified why
they thought they had over- or underestimated bgudising the analytical strategy they

had used for comparing the straight object, thestesrdard unit, and the curve.
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Within the ALM level group when measuring a curvihwa ruler, participants
used two direct measurement strategies when congparcurve and a straight object: the
chord iteration and adjusting point of tangencyaiten strategies. ALM level
participants also exhibited the compression irdnitind the application of a direct
measurement strategy with an embedded intuitie@nchtiord curved unit iteration
strategy when measuring curves with a ruler. Intaad when measuring curves with a
ruler, students at the ALM level applied an indine@asurement strategy, using a
modified circumference formula, and attended torswatmy.

Summary of Intuitive and Analytical Thinking across LT Level Groups

Parallel to prior research, students used four rygies of intuitions when
comparing rectilinear paths by their lengths: ginéness, complexity, detour, and
compression (Chiu, 1996). When comparing curvilinesghs by the lengths, the
participants of this study exhibited these same foain types of intuitions as well as a
fifth intuition, the curve tightness intuition. Axss all four length LT level groups,
students most often evoked the complexity intuittopattending to the number of
segments or turns in the paths, when orderingliresdr paths by their lengths (Tasks 1
and 2). However, the straightness intuition and m@ssion intuition, which involved
mentally bending paths that were straight or shi@iging paths that were bent, were the
most frequently used intuitions when comparing dunear paths by their lengths (Tasks
6A, 7, and 8A).

The four participants at the CLM level, the grobpttrepresented the lowest LT
level included in the present study, exhibitedhighest frequency of intuition use when

comparing rectilinear paths by their lengths (Taklksd 2). However, the ICPM level
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group exhibited the highest frequency of intuitise when comparing curvilinear paths
by their lengths (Tasks 6A, 7, and 8A). StudenthatCLM, ICPM, and ALM levels
exhibited conflicting intuitions, the rejection af intuition, and the use of a rejected
intuition when comparing rectilinear or curvilingaaths by their lengths (Tasks 1, 2, 6A,
7, and 8A). The use of intuitions in combination domparing sets of rectilinear or
curvilinear paths was observed across all fourtlehd level groups. When comparing
rectilinear or curvilinear paths by their lengtbaly the CLM level group relied solely on
the use of intuitions. Students at the ALM levaraasingly relied on mentally
transforming rectilinear or curvilinear paths i@ same shape for the purpose of
comparing by lengths and were less likely to oreetilinear or curvilinear paths
according to the number of segments or turns thatests at the CLM, CRM, and ICPM
levels.

When measuring curves with a nonstandard unitineldstick (Tasks 3, 4, 5, 6B,
and 8B), students in the lowest LT level group,@é group, used only direct
measurement strategies. By the next level of thgtkeL T, the CRM level, students used
direct measurement strategies as well as direcsuneent strategies with embedded
intuitions. At the ICPM and ALM levels, studentedsdirect measurement strategies
with and without embedded intuitions, as well asnalirect measurement strategy,
applying a modified circumference formula to makg#aam about curve length. The use
of direct measurement strategies (without embeddedions) was at a peak in the CLM
level group, and decreased in frequency of appearaithin each group as the levels

increased in sophistication.
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Participants in the lowest LT level group, the Cigkbup, exhibited the highest
number of instances of using the whole stick asutiiewhen measuring a curve with a
nonstandard unit (Tasks 3, 4, 5, 6A, and 8A). Bliategy decreased across the LT level
groups as the levels increased in sophisticatinrdedts in the CRM level group applied
mental units more often than any other LT levelugron the set of 10 interview tasks.
The fewest instances of fracturing units occurrétiiwthe CLM level and increased
across the LT level groups as the levels becameasimgly sophisticated. Instances of
fracturing units in general increased from the Ctdihe CRM level. More specifically,
the occurrences of fracturing units in the tightest of the curve and fracturing units
along the entire curve increased from the CRM &I@PM level, and remained
approximately constant from the ICPM to the ALMéés/

When reflecting on their comparison between a raovtktrd unit and a curve
(Tasks 3, 4, 5, 6A, and 8A), students within allleVel groups most often claimed their
comparison resulted in an underestimate. CLM lstuigdents most often correctly noted
that their comparison resulted in an over- or uesiémate. The frequency of the
appearance of acknowledgements of a comparison agesiestimate was highest at the
ICPM level, and the instances of claims that a camspn did not results in an over- or
underestimate was highest at the ALM level. Thquency of incorrect claims that a
comparison resulted in an over- or underestimateava maximum for the CRM level
group, and claims that an answer was neither doneancorrect was highest for the
ICPM level group. Across the four length LT levebgps, clear developmental patterns
were not observed in participants’ justificatiorigleeir claims about why they thought

they had over- or underestimated.
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When measuring curves with standard units, a (llasks 9 and 10), | observed
the direct measurement strategies of chord iteratral adjusting point of tangency most
often across the four length LT level groups. Alitemto symmetry, the use of the
compression intuition and indirect measurementeggias with embedded intuitions, the
tangent and chord curved unit iteration strategiese evenly distributed across the

CRM, ICPM, and ALM levels.
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CHAPTER V
CONCLUSIONS AND IMPLICATIONS
Overview

In this study | explored elementary, middle, and sdaoy students’ intuitive and
analytical thinking for rectilinear and curvilingpaths. By examining intuitive and
analytical thinking as developmental phenomena,iat@ndem with concept growth
along a hypothetical learning trajectory (LT) fenfjth measurement (Clements et al., in
press), this study contributed to ongoing convésatin multiple disciplines:
mathematics education, science education, and pgh In this chapter, | will first
compare results involving length measurement, ddrftom the written length LT-based
assessment administered to 82 participants, witin pgsearch in mathematics education
as well as recommendations for the teaching andilegof measurement from
researchers in science education. Next, | willusschow findings speak to psychological
foundations of path length intuitions, and the depment of those intuitions across the
elementary, middle, and secondary years. | wilhttiscuss how these findings compare
to hypothesized concepts and processes outlinget ifour length LT levels included in
the study: Consistent Length Measurer (CLM), CohegRuler Measurer (CRM),
Integrated Conceptual Path Measurer (ICPM), andrAbsLength Measurer (ALM).

Finally, 1 will discuss limitations and examine ifigations for teaching and research.
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Findings Related to Length Measurement

Comparing with the National Assessment of Educaticad Progress (NAEP)

The results related to length measurement are stensiwith results from the
2000 and 1996 NAEP. These findings related to lengtasurement were derived from
the 7-task written length LT-based assessment,hwlias administered to a total of 82
participants from Grades 4, 6, 8, and 10. In tles@nt study, when shown an image of a
paper strip placed along a broken section of a arne asked to determine the length of
the paper strip (Tasks 1 and 2), 23% and 32% oGtlaele 4 students answered correctly
on Tasks 1 and 2, respectively. This is similahtperformance of Grade 4 students
reported for both the 2000 and 1996 NAEP, with 259 22% answering correctly in
2000 and 1996, respectively (Kloosterman et aD42&owder et al., 2004). The Grade 8
participants’ performance on the broken ruler taskth 75% answering correctly on
both Tasks 1 and 2, was better than the performainGeade 8 students reported for both
the 2000 and 1996 NAEP, with 40% and 63%, respegtiVarticipants from Grade 10
in the present study exhibited similar performaocéhe broken ruler tasks, with 72%
and 89% answering correctly for Tasks 1 and 2,aetsely to the Grade 12 students
from the 1996 NAEP, with 83% answering correctlyrthermore, these findings support
the long-standing record established by NAEP, wilobws that students at the
elementary, middle, and secondary levels do nohecimumerical measurement with
the process of unit iteration (Barrett & Cleme2803; Battista, 2006; Clements,
Battista, Sarama, Swaminathan, McMillen, 1997).tTfahey do not understand that a

ruler represents a collection of iterated units.
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Comparing with Prior Research on an LT for Length Measurement

The findings concerning length measurement repdréed address a significant
gap in the literature with respect to the lengthlévels exhibited by a cross-section of
elementary, middle, and secondary level studemist # this study, elementary
children’s thinking and learning for length measneat, as measured by the LT for
length measurement was described (Clements @t @kess). According to Clements et
al., (in press), when exposed to specific instarctiesigned to support students’ concept
growth along the length LT, students in Kindergagpeedominantly exhibited direct and
indirect comparison strategies (LDC and ILC levels)l strategies for measuring by
spanning an object with length units laid end-td-aithout gaps or overlaps (EE level).
By Grade 1 and early on in Grade 2, students nftext exhibited strategies for
measuring by laying length units end-to-end to sgpranbject (EE level) or by repeating
or iterating a length unit (LURR level). By the eodGrade 2 and early on in Grade 3,
students predominantly relied on unit iteration @R level) and increasingly exhibited
an ability to measure straight paths consistentg, equal-length units, understand the
zero point on a ruler, and partition units (CLMé#v Late in Grade 3 and into Grade 4,
students also began to demonstrate some instahapplging an “internal”
measurement tool by mentally iterating internatsiof length or partitioning a length
into equal-length parts and projecting or transtagiven lengths to determine missing
lengths (CRM level). Also Grade 4 students exhibgeme instances of integrating and
comparing sets of units along each section of & &t and constructing smaller units
for the purpose of increasing precision (ICPM lgviel addition, Grade 4 students

exhibited some instances of operating internalljectons of complex paths and
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exhibiting a continuous sense of space (ALM levEhis same trend was also seen by
Clements et al. in Grade 5 participants.

The Grade 4 students in the present study exHiketegth LT levels in ways
similar to results reported by Clements et alpfiess). That is, the Grade 4 participants
mainly exhibited strategies for measuring basedroniteration (LURR level) or an
understanding of the zero point on a ruler (CLMelgwhen resolving broken ruler tasks
(with 50% and 64% using LURR strategies on Taskd & respectively, and 23% and
32% using CLM level strategies on Tasks 1 andsheetively). Grade 4 students
showed some evidence of translating given lengtlietermine missing lengths (CRM
level, with 9% on Task 3) and integrating and cormagsets of units along each section
of a bent path and constructing smaller units ¢todase precision (ICPM level, with 23%
each on Tasks 5 and 6).

The present study extends the work of Clemenras €in press) by describing the
concepts and processes, which define particulatdenf the LT for length measurement,
that students use beyond the elementary yearsildle and secondary school. Results
reported here indicate that most of the Grade @esits in the present study exhibited
strategies for measuring based on the iteratidangfth units (LURR level) or an
understanding of the zero point on a ruler (CLMelgwn the contexts in which those
concepts and processes (or the levels) were reléwah 27% and 41%, respectively on
Task 1 and 32% and 45%, respectively on Task Z.dilade 6 participants translated
given lengths to determine missing lengths (CRMlemore often than Grade 4
participants (with 27% and 9% on Tasks 3 and feaetsvely). Furthermore, the

participants from Grade 6 exhibited more instarafestegrating and comparing sets of
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units along each section of a bent path and caststgusmaller units to increase
precision (ICPM level, with 9% and 50% for Taskarisl 6, respectively) than the Grade
4 participants.

The Grade 8 students most often exhibited stradefeet demonstrated an
understanding of the zero point on a ruler to nesbroken ruler tasks (CLM level, with
75% each on Tasks 1 and 2). Participants in Graalsd8translated given lengths to
determine missing lengths (CRM level, with 75% &0&b6 on Tasks 3 and 4,
respectively) more often than the participants rade 6. Furthermore, the Grade 8
students increasingly integrated and comparedo$etsits along each section of a bent
path and constructed smaller units to increasdagpoec(ICPM level, with 45% and 65%
for Tasks 5 and 6, respectively), and showed sonaeece of operating internally on
collections of units of units as well as collecBarf complex paths and exhibiting a
continuous sense of space (ALM level, with 10% daciasks 5 and 6).

Grade 10 students exhibited a pattern similar ¢oGhade 8 level participants for
relying on strategies that demonstrated an undeistg of the zero point on a ruler to
resolve broken ruler tasks (CLM level, with 72% &%36 for Tasks 1 and 2,
respectively). The Grade 10 participants incredgitrgnslated given lengths to
determine missing lengths (CRM level, with 100% #26 for Tasks 3 and 4,
respectively) and operated internally on collediofunits of units as well as collections
of complex paths and exhibited a continuous sehspaxe (ALM level, with 33% and
44% for Tasks 5 and 6, respectively).

Researchers previously reported observing LURRGIM level thinking

predominantly in Grades 2 and 3 (Clements etrapyess); however, the results of the
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present study suggest that these levels are ds@mrd for students beyond elementary
school and into Grades 6, 8, and 10. Taken togetiese findings suggest that students
continue to progress through the levels of thetlehd beyond their elementary years
into middle and secondary school in a typical etlanal context in the Midwestern
United States.
Comparing with a Learning Progression in Science Edcation

Results reported here concerning length measutembith were derived from
the written length LT-based assessment, are ir&sinib recommendations for the
teaching and learning of measurement articulatedi@arning progression for the
atomic-molecular theory of matter (LP for AMTM) stience education (National
Research Council [NRC], 2007; see also Smith, WKkederson, and Krajcik, 2006). In
the LP for AMTM, it is recommended that, in Kindarten through Grade 2, children
should learn that “good measurements use iteragbadixed unit (including fractional
parts of that unit) to cover the measured spaceptaiety (no gaps)” (NRC, 2007, p.
364). This recommendation spans the LURR and ChMI¢eof the length LT (see Table
1 in Chapter 2). Findings from Tasks 1 and 2 ofwhig&ten length LT-based assessment
in the present study suggest that, at Grade 4l@leof students (50% and 64% for
Tasks 1 and 2, respectively) show evidence of maagshy repeating or iterating a unit,
which is evidence of LURR level thinking. Howevef Grade 4 students (23% and
32% for Tasks 1 and 2, respectively) show eviderigmssessing well-developed ideas
about unit iteration in terms of understandingzbeo point on the ruler and seeing a
ruler as a collection of iterated units, which amsistent with the CLM level. Therefore,

these findings suggest that Smith, Wiser, Anderaad,Krajcik’s (2006)
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recommendation for Kindergarten through Grade 2smeanent is not currently being
met in a typical educational context in the MidveestUnited States.
Addressing Research Question 1

The first research question that framed this saatyressed the intuitions and
analytical strategies that students use when thin&bout rectilinear or curvilinear paths:
What intuitions and analytical strategies do stusleise when comparing sets of
rectilinear or curvilinear paths by length? The d&4d, 6, 8, and 10 participants exhibited
four main intuitions for comparing rectilinear pathy length that were identified in prior
research with Grade 6 students: complexity, conggwasdetour, and straightness (Chiu,
1996). This suggests that these intuitions for patlgth may be extensive beyond the
scope indicated by prior research. Findings froengresent study extend the body of
literature on path length intuition by revealingtistudents operate on five main
intuitions for comparing curvilinear paths by lelngivhich include the four main
intuitions established in the literature and one neuition: the curve tightness intuition.

In the present study, students who used the cighness intuition discussed a
particular curve as being longer than another bee@uvas curved in more or had more
curve. Students who exhibited the curve tightnesstion did not (a) attend to the
straightness of a path, the straightness intuitiongdiscuss a process of straightening or
bending a curve, the compression intuition; (ctuss a path as deviating away from the
destination more than another, the detour intujttor(d) attend to the number of turns or
segments in the paths, the complexity intuitioraflik, the curve tightness intuition was

exhibited by students’ responses that reflectedtt@mtion to the quality of a path as
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being curved and did not fit within any of the atlfi@ur categories of path length
intuition.

The curve tightness intuition may be psychologicghounded in intuitions
discussed in prior research, such as the straightwrecompression intuitions (Chiu,
1996). For example, students who intuitively kndnattthe shortest path is a straight line
may also intuitively know that a path with a slighirve is shorter than a path with a tight
curve. Alternatively, students who intuitively kndlat a coil or string that has been
compressed may also intuitively know that a tigive is more compressed than a curve
that is wide and conclude that the tight curvemger than the wide curve even though
the distance between the endpoints of the wideecisrgreater than the tight curve.
However, despite the potentially common psycholaigicundations with other
intuitions, the curve tightness intuition appeaasd qualitatively different category of
responses within the larger thematic category wiitine thinking (Fischbein, 1987).

Furthermore, the results reported here revealhations that were present in
Grade 6 students’ thinking (Chiu, 1996) were alsgsent in Grade 4 students’ thinking
and persist beyond Grade 6 into Grades 8 and 1€&alvparticipants most often evoked
the complexity intuition by attending to the numbéturns or segments in a particular
path when justifying their claims about the orderaztilinear paths by length. This
finding is consistent with other studies in psydgy that have shown that the
complexity intuition is robust across a wide agegeand across a wide variety of
contexts (e.g., Barrett & Clements, 2003; KossBiak, & Fariello, 1974; Luria, Kinney,

& Weissman, 1967; Pressey, 1974; Thorndyke, 1981).
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Although the tasks involving comparing curvilingeaths were designed to be
parallel to the rectilinear path length comparitsasks, participants most often evoked the
straightness intuition or compression intuitionhnwaurves, which involves mentally
bending paths that are straight or mentally sttaigihg paths that are bent. This suggests
that, although children in Grades 4, 6, 8, and d¥spss some of the same intuitions for
rectilinear and curvilinear paths, the presenceuofe introduced intuitive interference
that is not present when the paths are rectilinear.

Results from the present study also suggest thanwneasuring curves with
standard or nonstandard units, students exhibiy@cel thinking by applying indirect
measurement strategies, such as using a modifieahtierence formula or attending to
symmetry, or direct measurement strategies thatonayay not have an embedded
intuition. Furthermore, students exhibit stratedegsoperating on units when measuring
curves, which provides evidence about how theahle to coordinate linear extent with
other attributes, such as curve (Clements etraprass). In the present study, students
who did not coordinate linear extent with curveibxld strategies of not fracturing units
at all or fracturing a unit once for the purposenafeasing precision. However, students
who had developed the ability to coordinate lin@aent with curve exhibited instances
of fracturing the nonstandard unit in the tightestt of the curve or along the entire
curve.

Addressing Research Question 2

The second research question that guided the deftpcollection, and data

analysis in this study concerns how students’ disetaitive and analytical thinking for

rectilinear and curvilinear path develops acrossd@s 4 through 10: How does students’
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use of intuitive and analytical thinking for painth change or develop across levels of
sophistication for length measurement? The sechelsvy describe conclusions
regarding the developmental patterns observed sierssbset of levels of the LT for
length measurement included in the present stutichnare, in order of increasing
sophistication, the CLM, CRM, ICPM, and ALM levels.

Results indicate that participants at all four knigT levels exhibited the four
main intuitions for rectilinear paths (Chiu, 1926)d five main intuitions for curvilinear
paths, which includes a new intuition, the curghtmness intuition. However, different
length LT level groups exhibited different patteaisntuition use. Specifically, the CLM
group, the lowest length LT level group includedhe present study, relied only on
intuitive statements when comparing rectilineacanvilinear paths by their lengths.
Students at the CRM, ICPM, and ALM levels all ugeditions as well as analytical
strategies when comparing sets of rectilinear ovitnear paths. Participants at the CLM
level most often relied on the complexity intuitjardering rectilinear paths by the
number of segments or turns, and the appearartbésohtuition decreased across LT
level groups as the levels increased in sophigticaln contrast, students at the ALM
level increasingly mentally transformed rectilinearcurvilinear paths into the same
shape, which shows evidence of evoking the comiaregstuition, for the purpose of
comparing the paths by length.

When comparing a curve to a nonstandard unit, Céwll participants relied
exclusively on direct measurement strategies witkowbedded intuitions, exhibited the
highest number of instances of using the whol stsca unit, and showed the fewest

instances of fracturing the nonstandard unit togase precision. Both strategies of
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directly measuring without an embedded intuitiod asing the whole stick decreased
across the LT level groups as the levels increassdphistication. By the CRM level,
students applied direct measurement strategiesowihthout embedded intuitions and
applied mental units more often than any otherdviel group. In addition, CRM level
students increasingly fractured units for the pagpof increasing precision when a full
stick did not fit in the position of the final skizinit. At the ICPM and ALM levels,
students used direct measurement strategies witlittoout embedded intuitions as well
as indirect measurement strategies. Also at thll@rd ALM levels, participants
increasingly fractured units, especially aroundttblktest parts of the curve or around the
entire curve, showing evidence of coordinatingdinextent with other features, which in
this case was curvature.

The results reported here suggest that the taskgled in this study effectively
differentiated students’ thinking at different Iévef the length LT. Furthermore, these
findings are consistent with Fischbein’s theorymifiition (1987), in which he described
intuition as a developmental phenomenon. Parti¢gpaho exhibited different levels of
sophistication, as measured by the LT for lengthsueement, also exhibited different
ways of evoking intuitions in terms of the use &f ifituitions and analytical strategies
overall, (b) each individual intuition, and (c) &tecal strategies with embedded
intuitions.

Furthermore, the results reported here confirm softlee conjectured concepts
and processes outlined at different levels of thg€Clements et al., in press). For
example, it was conjectured that CLM level stud@atssessed integrated counting and

iterating schemes that allow for the concurrematien of a unit and subdivision of the
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unit. This was confirmed as CLM level students ¢gly exhibited instances of operating
with a combination of units and parts of units wine@asuring a curve with a
nonstandard unit. At the CRM level of the LT fondggh measurement, it was
hypothesized that students mentally partition Ieadty projecting a mental unit, a ruler,
or a sequence of units onto an unpartitioned objéus was supported by the results of
the present study; the highest frequency of theagmce of the application of mental
units occurred within the CRM level group. At tii&AIM level of the length LT, it was
conjectured that students would coordinate othexsmes with linear measures, such as
angle, curvature, or time. In the present study |@PM level group exhibited increased
instances of fracturing the unit in the tightest jod the curve and fracturing the unit
along the entire curve, showing evidence of co@tig linear measures with curvature.
Finally, at the ALM level of the length LT, it wéypothesized that students had
developed a continuous sense of length. This waBrowed by the results of the present
study as the participants within the ALM level gpancreasingly relied on mentally
transforming rectilinear or curvilinear paths itih@ same shape for the purpose of
comparing by length.

Table 22 summarizes extensions to the existingdrTeingth measurement
(Clements et al., in press) with respect to inteitatnd analytical thinking for rectilinear
and curvilinear path length. In the following tablleese extensions to the LT are

italicized.
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Table 22

Extending Intuitive and Analytical Thinking for BRdtength to an LT for Length

Measurement

Developmental Progression

Mental Actions on Objects

Consistent Length Measurer (CLM)
Measures straight paths consistently, use
equal-length units, understands the zero
point on the ruler, and can partition units
make use of units and subunits

May not be perturbed by geometric
inconsistencies

Most often orders collections of
rectilinear paths by the number of
turns or segments in the path
Relies on direct measurement
strategies without making use of
intuition when measuring curves
with nonstandard units

2$ntegrates intervals and tick marks

testablish linear quantity

indicating endpoints of intervals to

Integrated counting and iterating scheme
allow for the concurrent iteration of a unit
and subdivision of a unit

Relies exclusively on intuitive
statements to justify orderings of
sets of rectilinear or curvilinear
paths by their lengths

May fracture a unit to make use of
units and subunits for the purpose
of increasing precision, but does
not yet coordinate linear extent wi
other attributes, such as curve

th

Conceptual Ruler Measurer (CRM)

Has an “internal” measurement tool;
mentally iterates internal units of length @
partitions a length into equal-length parts

Projects or translates given lengths to
determine missing lengths

Notices geometric inconsistencies

Most often orders collections of
rectilinear paths by the number of
turns or segments

Occasionally relies on direct
measurement strategies without
making use of intuition when
measuring curves

May rely on analytical strategies
with embedded intuition by menta

transforming units or segments of

Mentally partitions lengths by projecting «
rmental unit, a ruler, or a sequence of uni
onto an unpartitioned object

Increasingly uses multiplicative reasonin
when comparing

Relies on intuitive statements as
well as analytical strategies when
comparing sets of rectilinear or
curvilinear paths by their lengths
and justifying those orderings
Makes judgments about the order
sets of curvilinear paths by their
lengths by mentally transforming
the paths into the same shape

55

[S

of

Fractures a unit to make use of
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curve

May compensate for curvature by
rounding an approximation for the
length of a curve up or down for a
over- or underestimate

Attends to symmetry in path shaps
Does not consistently correctly
acknowledge an over- or
underestimate when approximatin
the length of a curve

units and subunits, and may begirn]
to show evidence of coordinating
linear extent with other attributes,
such as curve, by occasionally
using smaller units to increase
precision around a tighter curve
Applies mental units when
comparing two or more rectilinear
paths or curves by lengths

117

«Q

Integrated Conceptual Path Measurer
(ICPM)

In the context of a fixed perimeter or fixe
path length task, children at the ICPM ley
are able to compensate for changes mag
one side of a figure by adjusting other sig
to maintain the fixed overall length.

Shows well-developed ideas about
precision, such as constructing smaller
units to increase precision

Relies on direct measurement
strategies without making use of
intuition when measuring

When measuring curves, relies on
analytical strategies with embeddg
intuition by mentally transforming
units or segments of a curve
When measuring curves, relies on
indirect measurement strategies,
such as applying a formula or
attending to symmetry

Integrates and compares sets of units alc
jeach section of a bent path; Regards a
group of units as a flexible object, a
€gtring” of units wrapped around the entin
lggerimeter or along the entire path

Copes sub- and superordinate units

Coordinates other measures with linear
measures, such as angle, curve, or time

- Relies on intuitions and analytical
strategies when comparing sets o
rectilinear or curvilinear paths and
justifying those orderings
Fractures a unit to make use of
units and subunits, coordinates
linear extent with other attributes,
such as curve, by using smaller
units to increase precision around
tighter curve

ad

Ng

a

Abstract Length Measurer (ALM)
Synthesizes sets of figures based on
perimeter to formulate and justify a valid
argument; Determines perimeter or path
length, attending to divisions of units
including non-integer values; explains the
subdivision process is potentially unlimite

May rely on direct measurement
strategies without making use of
intuition when measuring curves
When measuring curves, uses

Develops a continuous sense of length

Engages dynamic imagery to coordinate
and operate internally on collections of

2 units of units as well as collections of
2ccomplex paths

Relies on intuitive statements as
well as analytical strategies when
comparing sets of rectilinear or
curvilinear paths by their lengths
2d

analytical strategies with embeddg

and justifying those orderings
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intuitions by mentally transforming - Increasingly relies on mentally
units or segments of a curve transforming rectilinear or

- When measuring curves, relies on curvilinear paths into the same
indirect measurement strategies, shape for the purpose of comparing
such as applying a formula or by length
attending to symmetry

Note: For the complete LT for length measuremeruiding anticipated misconceptions
for each level, see Clements et al. (in press).

As summarized in Table 22 above, participantsldtTalevels exhibited
intuitions for path length; however, the applicatimf analytical strategies and analytical
strategies with embedded intuitions was not obsewithin all levels. These findings do
not suggest that intuition is a less sophisticateghition than analysis. Rather, Table 22
indicates that the application of exclusively itiizé or analytical thinking alone,
observed mainly within the CLM and CRM levels,ass sophisticated than the
application of intuitiveand analytical thinking embedded within a single gyt which
was observed most often at the ICPM and ALM levels.

Furthermore, the findings summarized in Table 2fyest that a hierarchy may
exist for some of the specific intuitions for pédhgth discussed here. In particular, the
peak of the complexity intuition at the CLM levéhé¢ lowest LT level included in the
study) and the pattern of decreasing frequencyhi®complexity intuition as the length
levels increased in sophistication indicates thist the least sophisticated intuition. On
the other hand, the peak of the appearance ofditm@mression intuition at the highest
level included in the present study, the ALM levedtlicates that it may be the most
sophisticated intuition for path length. Clear depenental patterns were not observed
for the detour and straightness intuitions; thiggasts that, unlike the complexity and
compression intuitions, these specific intuitioresymot be hierarchical. A key
implication of this finding is that there existslavelopmental mechanism for describing
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connections between some intuitions for path leagtivell as connections between
intuitive and analytical cognition. In the conclndisections of this chapter | discuss
further implications of the hierarchical structafepath length intuition, which parallels
the length LT, for both teaching and research.

In addition, close examination of analytical stggs for comparing paths, which
were exhibited by students at the CRM, ICPM, and/Akvels, indicates that there may
also exist a hierarchy of comparison strategiebiwithe analytical thinking for path
length. Specifically, direct and indirect compansirategies were observed as some
students superimposed pairs of paths to compagethjiror compared indirectly using a
finger span. Both of these strategies are consistéin the articulation of the observable
behaviors that characterize the Length Comparej [g&¥&! of the length LT (Clements
et al., in press), which is at least four levelbtethe predominant levels of the
participants who exhibited them. According to thedry of Hierarchic Interactionalism
(Clements & Sarama, 2007), LT levels build hieraralty out of previous levels and
concepts and processes of lower levels are notaipad. The CRM, ICPM, and ALM
level participants’ application of these LC-levehtparison strategies indicates that some
students fell back to using levels of thinking thatre lower than their predominant LT
level when resolving the path length comparisokgathis task may have been novel to
them, and this may have contributed to the tendémdyop back to a lower level of
strategy.

The accumulating length comparison strategy, am@thalytical strategy
observed in the present study, was exhibited by CRM, and ALM level participants

as they superimposed pairs of paths, and rotateebtine paths while accumulating the
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length of the first along the second. A belief ttias is a valid strategy for comparing
paths that are bent or curved requires not onlgenstion of length, but also mental
actions and objects to integrate and compare $etsits along each section of a bent
path. This use of the accumulating length compargtmategy is indicated in Table 22
above as fitting into the ICPM level of the lengifh. This suggests that the accumulating
length comparison strategy is a more sophisticstiedegy than superimposing pairs of
paths to compare directly or comparing indirectyng a finger span.

Limitations

Although the present study addressed critical anthhg questions about how
patterns of students’ intuitive and analytical &g along with concept growth in one
content domain, length measurement, it is not wattionitations. One limitation of this
study can be attributed to the inclusion of a wntlength LT-based assessment. By using
a paper-pencil instrument | was able to assesgja &ample of 82 students; however, my
analysis was constrained to the observable stetgyesent in students’ written
responses to the items. At times, a student’s resppwas unclear, and | was not able to
make an inference about his or her level of somaison for length measurement.
Therefore, this instrument provided a limited oppoity to explore and substantiate
claims about students’ conceptions for length mesamsant.

A second limitation, which is a consequence ofdégign of this exploratory
study, concerns the small number of students irclud each grade and LT level.
Because only four students were representativadf Evel, the conclusions about
interactions among intuitive and analytical thirkiior rectilinear and curvilinear paths

with the levels of sophistication of a length L'Btldescribes the growth of conceptual
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and procedural knowledge, indicate that developaigrdtterns may exist. However, a
series of follow-up studies that focus on subsessmilar interview tasks included here,
such as the rectilinear path length comparisorstésiterview 1 Tasks 1 and 2), could
validate the existence of these developmental patigith larger and more diverse
populations of students using statistical inference

Other limitations of the study can be attributedni® methods of participant
selection and the cross-sectional design usedaimige students’ intuitive and analytical
thinking for rectilinear and curvilinear paths adewvelopmental phenomenon. Because
participants at the CLM, CRM, ICPM, and ALM leve&lgre sought from Grades 4, 6, 8,
and 10, all but one of the participants perfornrethe top half of the class on the written
length LT-based assessment. Therefore, the sarhpeioterview participants cannot be
regarded as a representative sample with respéue tiversity in thinking present in
typical Grade 4, 6, 8, and 10 classes in the Midwesddition, because | did not follow
students longitudinally to document shifts in these of intuitions and analytical
strategies as they progressed through the levelspifistication in the length LT, the
findings reported here must be regarded as suggeastdevelopment. These findings
should be validated in a follow-up study that males of a longitudinal methodology.

Finally, inferences about participants’ intuitivedeanalytical thinking for
rectilinear and curvilinear path length were dediviem their observable statements,
gestures, and manipulations of tools during thecttired, task-based interviews. The
validity of these inferences is constrained bydhbality of the tasks and the probing
follow-up questions in the interview protocol. Bff©to ensure valid data included

deriving tasks and pre-planned follow-up questilmnghe interview protocols from prior
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research (Clements et al., in press; Chiu, 1996gG&atti & Rizza, 2004) and refining
those tasks and the interview protocols througbt piork.
Implications for Teaching

An assumption of this study and prior researcimtuntion (Chiu, 1996;
Fischbein, 1987) is that people possess someiontsithat are mathematically
productive and others that are not. Mathematiqaibductive intuitions are those that can
serve as a pedagogical starting point for the tegabf key mathematical concepts. For
example, a combination of the detour and straig#tm@tuitions, that a path that turns and
goes out of the way is longer than a path thatraght, can serve as an intuitive
foundation for the development of thinking abowd thangle inequality (Chiu, 1996).
The use of the complexity intuition, attending he humber of segments or turns, to rank
rectilinear or curvilinear paths by length is amele of an application of an intuition
that is not mathematically productive. In this stuithe use of the complexity intuition
appeared most often at the CLM level, the lowestllef the length LT including in the
present study, and decreased in frequency asngehl&T levels increased in
sophistication. The use of the complexity intuitienen by students operating
predominantly at the highest level of the currenigth LT, the ALM level, suggests that
increased conceptual and procedural knowledgeefgth measurement does not
preclude the evocation of an intuition that is maithematically productive. Therefore,
the findings of this study support recommendatioingrior research (Chiu, 1996) that
instructional experiences should be designed &it siudents’ intuitions and position
them to confront and make sense of those intuitigsg other intuitions and analytical

thinking.
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Findings related to students’ strategies for commgacurves using nonstandard
units (Interview Tasks 3, 4, 5 6B, and 8B) and meag curves with a standard ruler
(Interview Tasks 9 and 10) show that these taske tiee potential to provide an
instructionally fruitful context for addressing nse@ement from both a science
perspective and a mathematical perspective (Oshd®7®). In science, measurement is
a range of numbers; it is a process and a skill fmethe purposes of building models of
reality and subsequently testing the truths ofeéhosdels of reality. In mathematics,
however, measurement is a single number, an ettigytest of truth for measurement
from a mathematical perspective involves the coness of reasoning.

More specifically, the findings reported here suggdgbat measurement tasks
involving determining curve length (Interview Tasks4, 5, 6B, 8B, 9, and 10) have the
potential to address key measurement conceptstiseoun a learning progression in
science education, the LP for AMTM (NRC, 2007; 3mWiser, Anderson, and Krajcik,
2006). According to the LP for AMTM students in @es 3 through 5 should understand
that measurements could be more or less precisthanhthere is always some error in
measurement, and students in Grades 6 throughubdslearn that sources of
measurement error can be examined and quantifiddelpresent study, participants
within and across all four length LT groups exhaliinstances of acknowledging that
they had under- or overestimated the length ofraeciHowever, students within and
across all four length LT groups also made clainas their way of determining the
length of a curve was not an under- or overestinidies suggests that students in Grade
4, 6, 8, and 10 could benefit from an instructicaetivity in which they measure curves

with standard or nonstandard units (Tasks 3, 8B59, and 10), share their strategies for
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measuring the curves, and engage in a follow-upudson about sources contributing to
the error involved with their ways of measuring tueves and how they could increase
or decrease the precision of their measurements.

Furthermore, Osborne (1976) noted that determithiadength of a curve “is a
step beyond most school mathematics” (p. 24) bectiessolution involves limit
processes, or the additivity principle extendedltow for the addition of infinitely many
segments. However, the results reported here itedibat measurement tasks involving
determining the length of a curve (Interview Ta3k4d, 5, 6B, 8B, 9, and 10) have
potential instructional value for eliciting and clisssing measurement from a
mathematical perspective (Osborne, 1976) usingnméiblimit arguments, an approach
that has been recommended for secondary studetits tommon Core State Standards
for Mathematics (Common Core State Standards tvéia2010). In the present study,
when measuring a curve with a nonstandard unitk§as4, 5, 6B, and 8B), participants
exhibited 20 instances of fracturing the nonstathdanit around the entire curve (see
Table 16, Chapter 4). These instances occurred ofitest in Grades 6, 8, and 10. This
suggests that by middle school, in an instructice#ting, students may be ready to use
and make sense of informal limit arguments by dismg processes in which a curve is
represented by increasingly large numbers of setgémecreasing lengths to decrease
the error in measuring and approach a true lenfgtieccurve.

Implications for Future Research

The present study made use of a written length &3eld assessment. Given that

such an instrument could play an important rolenaeting recommendations for

extending and validating LTs (Daro, Mosher, & Caoeag 2011), future research should
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be aimed at refining these assessment items irtloele to develop a reliable and valid
LT-based assessment instrument. Some of the itartfsecassessment included in this
study were less reliable than others in terms séssng the concepts and processes they
were designed to address. For example, betweenB85#%6 of students’ responses
within each of Grades 4, 6, 8, and 10 were codétlasClaim” for Task 5, which was
designed to elicit concepts and processes at tAdi&nd ALM levels of the length LT
(although it was also designed to be accessidéuttents at the CLM and CRM levels).
This suggests that Task 5 may not be a valid taskliciting students’ thinking at the
CLM, CRM, ICPM, and ALM levels. Similarly, Task 7ejded codes of “No Claim” in
most instances, and was not considered as pdre aask-by-task analysis of the
assessment. With a key affordance of the easenoihgtration of paper-pencil
instruments, future research should include iteratiof design cycles that include pilot
and design work aimed at revising these itemspda#ld by administering the revised
items and examining reliability and validity of thevised instrument.

The present study established interactions amdngive and analytical thinking
for path length with concept growth along an LT lEmgth measurement; however, given
the exploratory nature of this study, the chandggluf intuitions and analytical
strategies for children at each of the relevantdvels was not explored. Future studies
should extend this work by examining the (a) pé&ability of intuitive and analytical
thinking for students operating at the levels @f igngth LT included in the present
study: the CLM, CRM, ICPM, and ALM levels, and {hbg types of instructional

interventions that can support changes in studemtstion use. This research should
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also examine the impact of causing change in statierays of using intuitions for path
length on their level of sophistication for lengtieasurement, or vice versa.

Furthermore, future research should emphasizeatieist component of
hierarchic interactionalism, and examine the intaiand analytical thinking for
rectilinear and curvilinear paths for children@wér levels of the length LT that were not
included in the present study. Such a study cdubdvshow intuitions and analytical
strategies might be formed as children transitromfthe initial level of the length LT at
which they recognize length as a quantity, at teiedth Quantity Recognizer level
(LQR), to simultaneously developing levels at whittildren begin to compare objects
by length directly and indirectly, at the Lengthr@marer Level (LC) and develop the
implicit concept that an object can be composeshwdller objects (EE), to the level at
which unit iteration develops (LURR). This studyutshed light on how direct and
indirect comparison for length measurement devalopg with subsequent length
measurement levels over time, which is still annogeestion for researchers in
mathematics education (Battista, 2006; Clemends, & press), and how intuitive and
analytical thinking play a role in that development

Finally, results from the present study suggedtreasurement tasks that involve
determining curve length using nonstandard straigits or standard units, such as a
ruler, have potential instructional value from bathkcientific and mathematical
perspective. Further research is needed to exgilermstructional affordances of such
tasks for eliciting students’ thinking about théerand sources of error in measurement,
as recommended in the LP for AMTM for elementargt anddle school students. In

addition, future studies should investigate whethertasks involving curves in the

232



present study could have instructional value faitelg and supporting students’ use of
informal limit arguments to make sense of measungrinem a mathematical

perspective.
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APPENDIX A

WRITTEN LENGTH LT-BASED ASSESSMENT

Name: Grade:
Teacher: School:
1.

Using the drawing of a part of a ruler as a gundeasure the strip of
paper shown above it. How many inches long isthp?

Write your answer on the line.
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inches
3 4 E‘S 6 7

This is a picture of a rod just below a brokenisecof a ruler. Use this
picture to measure the length of the rod. How lenipe rod?

Write your answer on the line.
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Find the measure of the missing side length.

Write your answer on the line.
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20

40

60 30

start end

Find the length of the total path, from start ta,eshown above.

Write your answer on the line.
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5.
Imagine making an L-shaped path from a string ih&0 cm long.

a. How many different L-shaped paths would you be &bkerm in all?

b. Use the space below to explain how you got youwansand why you
think your answer is correct.
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a. Use the space below to sketalo different rectangles, each having a
perimeter of 2 inches. For each of your rectandgd| the lengths of
all four sides.

b. How manymore rectangles have a perimeter of 2 inches?
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7.

You need to bury a wire in your backyard that catseoints A and C. One
option is to run a 10-foot wire directly from panmh and C, which is
indicated by the solid line in the picture belowngdher option is to run a
wire from point A to C through point B, which isdicated by the dotted
line.

We know that points A and C are 10 feet apart. H@axeno one measured
the length of the path from A to C through poinftBe dotted line).

10 feet

a. How long you think the wire will need to be to connect siA and
C through
B?

b. Use the space below to explain how you got youwan$or parta,
and why you think your answer is correct.

c. How much wire will youbuy so that you can be sure you have enough
to connect points A and C through B?

d. Use the space below to explain how you got youwan$or partc,
and why you think your answer is correct.
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APPENDIX B

INTERVIEW PROTOCOLS
Interview Set 1
Task 1: Simple Rectilinear Bent Path Comparison Tds (Chiu, 1996)

Show the student the three “strings” each printed separate transparency.

—

String 1 String 2 String 3

Stage 1(posing the problemOverlap all three of the “strings” to show thia¢y
connect the same points A and B.

Here are three different ways that points A andBld be connected with string.
(Separate the three “strings” and place them intfod the student in a row.)
Compare Strings 1, 2, and 3 by their lengths.

Nondirective follow-up: (If the student orders the string$gll me about your
order.

Stage 2(minimal heuristic suggestiofi)the student does not immediately
answer, provide the student with a marker and @ak: you move them or use the
marker to write while you think about comparing #tengs by length?

Stage 3(guided use of a heuristic suggestion)
Do you think all of the strings are different lehgtor are any the same length?
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Stage 4(exploratory and metacognitive)

Why is string ____ the shortest?

What is it about string __ that makes you think the shortest?

Why does (the feature of the string described by the stydaake string
_____the shortest?

Why is string ____ the longest?

What is it about string that makes you thtink the longest?

Why does (the feature of the string described by the stydaake string
_____thelongest?

Task 2: Complex Rectilinear Bent Path Comparison Tgk (Chiu, 1996)

Show the student the four “paths” each printed sparate transparency.

Stage 1(posing the problemOverlap all four of the “paths” to show that thadl/
connect “home” to “school.”
Here are four different paths that someone | knometimes takes from home to
school.(Separate the four “paths” and place them in fodrihe student in a row.)
Compare Paths A, B, C, and D by their lengths.

1

0

School

Home

U

Nondirective follow-up: (If the student orders the path§gll me about your
order.

Stage 2(minimal heuristic suggestion)

If the student does not immediately answer, prothagestudent with a marker and
ask,Can you move them or use the marker to write whalethink about putting
the paths in order by their lengths from shortedbngest?
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Stage 3(guided use of a heuristic suggestion)
Do you think all of the paths are different lengtinsare any that are the same
length?

Stage 4(exploratory and metacognitive)

Why is path __ the shortest?

What is it about path _ that makes you think ihe shortest?

Why does (the feature of the path described by the studeae path
_____the shortest?

Why is path longer than path ___ (th2 3% and 2° paths in the student’s
ranking)

What is it about path that makes you thihdriger than path ?
Why does (the feature of the path described by the studeae path
_____thelonger than path ?

Why is path __ the longest?

If the student’s answer is not clesyhat is it about path that makes you
think it is the longest? Why does (the feature of the path described by the
student)make path the longest?

Task 3: Compare Curve to Stick(Clements et al., in press)

Provide the piece of paper with the following imagdour-inch wooden stick,
and a pen.

Stage 1(posing the problem)

Say:Compare the length of this curved péttace finger around the patto this
stick.

Nondirective follow-up: If the student provides a qualitative comparisoa. Gays
the curved path is longer) ask,

how much longer?
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Stage 2(minimal heuristic suggestion)
If the student does not immediately answ&hich one is longer the curved path
or the stick?

Stage 3(quided use of a heuristic suggestion)
Could you use the path and the stick to show merhogh longer? Show me
where the are.

Stage 4(exploratory and metacognitive)

Explain how you thought about comparing the curmpvath to the stick.

Make a record of how you compared the curved pathe stick by drawing to
show how you laid the stick.

Follow up
Is your answer an over- or an under-estimate ferldngth of this curve?

How do you know?
Task 4: Compare Curve to Stick(Clements et al., in press)

Provide the piece of paper with the following imagdour-inch wooden stick,
and a pen.

Stage 1(posing the problem)

Say:Compare the length of this curved péttace finger around the patto this
stick.

Nondirective follow-up: If the student provides a qualitative comparisoa. Gays
the curved path is longer) asigw much longer?

Stage 2(minimal heuristic suggestion)
If the student does not immediately answ&hich one is longer the curved path
or the stick?

Stage 3(guided use of a heuristic suggestion)
Could you use the path and the stick to show merhogh longer? Show me
where the are.
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Stage 4(exploratory and metacognitive)

Explain how you thought about comparing the curnvath to the stick.

Make a record of how you compared the curved pathe stick by drawing to
show how you laid the stick.

Follow up
Is your answer an over- or an under-estimate ferldngth of this curve?

How do you know?
Task 5: Compare Curve to Stick(Clements et al., in press)

Provide the piece of paper with the following imagdour-inch wooden stick,
and a pen.

Stage 1(posing the problem)

Say:Compare the length of this curved péttace finger around the patto this
stick.

Nondirective follow-up: If the student provides a qualitative comparisos Gays
the curved path is longer) asigw much longer?

Stage 2(minimal heuristic suggestion)

If the student does not immediately answ&hich one is longer the curved path
or the stick?

Stage 3(guided use of a heuristic suggestion)

Could you use the path and the stick to show merhogh longer? Show me
where the are.

Stage 4(exploratory and metacognitive)

Explain how you thought about comparing the curpath to the stick.

Make a record of how you compared the curved pathe stick by drawing to
show how you laid the stick.

Follow up
Is your answer an over- or an under-estimate ferldngth of this curve?

How do you know?
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Interview Set 2
Tasks 6A and 6B: Compare Two CurvegClements et al., in press)

Provide the two pieces of paper with each of thiefong curved paths.

Task 6A: Stage 1(posing the problem)
Say:Compare the length of this curfteace finger around curvé) the length of
this curve (trace finger around curve).
Nondirective follow-up: Tell me how you thought about comparing theseesir

Task 6A: Stage 2Aminimal heuristic suggestion)
If the student does not immediately ansvi&w:you think these curves are
different lengths or are they the same length?

Task 6A: Stage 3gquided use of a heuristic suggestion)
Could you point and show me on the curves?

Task 6A: Stage 4(exploratory and metacognitive)

Why is this curve longer than this curve?

If the student’s answer is not cle&lvhat is it about this curve that makes
you think it longer than that curve?

Why does (the feature of the curve described by the studaaie this
curve longer than that curve?

Task 6B: Using the stick to check

Please use this stick to help you chéoiplain how you thought about comparing
the curved path to the stick.

Make a record of how you compared the curved pathe stick by drawing to
show how you laid the stick.

Follow up
Is your answer an over- or an under-estimate ferldngth of this curve?

How do you know?
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Task 7: Compare 3 Curves

Show the student the three “strings” each printed separate transparency.

Here are three different ways that points A andBld be connected with string.
(Separate the three “strings” and place them intfod the student in a row.)
Compare Strings 1, 2, and 3 by their lengths.

A

B

Nondirective follow-up: (If the student orders the string$gll me about your
order.

Stage 2(minimal heuristic suggestion)

If the student does not immediately answer, prothagestudent with a marker and
ask:Can you move them or use the marker to write whulethink about
comparing the strings by length?

Stage 3(guided use of a heuristic suggestion)
Do you think all of the strings are different lehgtor are any the same length?

Stage 4(exploratory and metacognitive)

Why is string ____ the shortest?

What is it about string __ that makes you think the shortest?

Why does (the feature of the string described by the stydaake string
______the shortest?

Why is string ____ the longest?

What is it about string that makes you thtink the longest?

Why does (the feature of the string described by the stydaake string
_____thelongest?

Tasks 8A and 8B: Compare Two CurvegClements et al., in press)

Provide the two pieces of paper each with one @fdtlowing curves.
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Task 8A: Stage 1(posing the problem)

Say:Compare the length of this curfteace finger around curvé) the length of
this curve (trace finger around curve).

Nondirective follow-up: Tell me how you thought about comparing these surve

Stage 2(minimal heuristic suggestion)
If the student does not immediately ansviaw:you think these curves are
different lengths or are they the same length?

Stage 3(quided use of a heuristic suggestion)
Could you point and show me on the curves?

Stage 4(exploratory and metacognitive)

Why is curve ____ the shortest?

If the student’s answer is not clesvhat is it about curve that makes you
think it is the shortest? Why does (the feature of the curve described by the
studentymake curve ____ the shortest?

Task 8B: Using the stick to check

Please use this stick to help you chéoiplain how you thought about comparing
the curved path to the stick.

Make a record of how you compared the curved pathe stick by drawing to
show how you laid the stick.

Please use this stick to help you chdoiplain how you thought about comparing
the curved path to the stick.

Make a record of how you compared the curved pathe stick by drawing to
show how you laid the stick.

Follow up
Is your answer an over- or an under-estimate ferldngth of this curve?

How do you know?

Task 9: Measure the Outline of a Doorway{Grugnetti, Rizza, & Marchini,
2007)

Provide the piece of paper with the following imagestandard ruler, and a pen.
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Stage 1(posing the problem)

Do you know what a blueprint is?

This is a drawing of the outline of a doorway Ik a blueprint, but it has no
measurement®lease measure the outline of this doorway in the most precise
way that you can using this ruler.

Nondirective follow-up: Tell me about your way of measuring the outlinthisf
doorway.

Stage 2(minimal heuristic suggestion)

If the student does not immediately answer &kky do you think someone might
try to get as close to the length of the outlinghed doorway as they can using this
ruler?

Stage 3(guided use of a heuristic suggestion)
Do you think people might use different methodgetovery close to the actual
length of the outline of this doorway?

Stage 4(exploratory and metacognitive)
Explain how you measured it in the most precise. way

Task 10: Measure the Outline of a Rounded DoorwagGrugnetti, Rizza, &
Marchini, 2007)

Provide the piece of paper with the following imagestandard ruler, and a pen.

A
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Stage 1(posing the problem)

Here is another outline of a doorway from a blueprint. Please measure the
outline of this doorway in the most precise way that you can using this ruler.
Nondirective follow-up: Tell me about your way of measuring the outlinthisf
doorway.

Stage 2(minimal heuristic suggestion)

If the student does not immediately answer &kky do you think someone might
try to get as close to the length of the outlinghed doorway as they can using this
ruler?

Stage 3(guided use of a heuristic suggestion)
Do you think people might use different methodgetovery close to the actual
length of the outline of this doorway?

Stage 4(exploratory and metacognitive)
Explain how you measured it in the most precise. way
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APPENDIX C

IMAGES SHOWN DURING INTERVIEWS

String 1
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APPENDIX D

CODING SCHEME

. Thematic Corresponding Observable Behaviors: Statements,
Code Descriptor : )
Category Gestures, or Manipulations of Tools
Straightness Intuition statement: explained that a path was shortest becau
Intuition it was straight (without providing further justifiton)
Detour Intuition Intuition statement: dl_scussed a path as going out of theoway
not being a direct route
Complexity " statement: discussed the number of segments, trns,
" Intuition
Intuition angles of a path
Compression " statement: discussed either straightening or bgndin
" Intuition : .
Intuition paths for the purpose of making comparisons
. statement: discussed a curve as being longer than
Curve Tightness » . ) .
" Intuition  another because it was curved in more or because it
Intuition
had more curve
Combination of N statement: used.more than one intuition (stralgh;me
Intuition  detour, complexity, compression, or curve tighthess

Intuitions

to defend a single claim
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Rejected Intuition

Used a Rejected
Intuition

Indirect Comparison
Using Finger Span

Superimposed Pairs of
Paths to Directly
Compare

Segment Matching
Comparison Strategy

Project to Form Right
Angle

Accumulating Length
Comparison Strategy

Rate Comparison
Strategy

Intuition

Intuition

Analytical
strategy

Analytical
strategy

Analytical
strategy

Analytical
strategy

Analytical
strategy

Analytical
Strategy

statement: rejected conclusion previously
defended using an intuitive statement
(student may reject an intuition by
evoking another intuition, combination of
intuitions, or analytical strategy)

statement: again used an intuition
previously rejected

gesture: placed a finger span across a
segment of one path and then placed the
same finger span across a segment of
another path

gesture: placed one path directly on top of
another for the purpose of directly
comparing by linear extent

gesture: matched segments of one path to
the segments of another path

statement: explained that he or she
compared (rectilinear paths) by imagining
or translating vertical segments
horizontally and horizontal segments
vertically

gesture: superimposed pairs of paths,
rotated one of the paths while
accumulating the length of the first along
the second

statement: discussed traversing paths or
segments of paths at the same rate for the
purpose of comparing
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Imposed Internal Unit Analytical

Strategy

Analytical
Chord Iteration Strategy Strategy: Direct
Measurement

Continuous comparison Analyt.lca_l
. Strategy: Direct

strategy to estimate

Measurement

Tangent Iteration Analyt.|ca_l
Strate Strategy: Direct
9y Measurement

Mixed Unit Iteration Analyt.lcall
Strategy Strategy: Direct
Measurement

Path Intersection Analyt.lcall
: Strategy: Direct

Iteration Strategy

Measurement

Adjusting point of Analytical
tangency iteration Strategy: Direct
strategy Measurement

manipulation of tools: drew
approximately evenly spaced hash marks
for the purpose of directly comparing

manipulation of tools: iterated a stick as a
chord on the interior of the curve when
comparing a curve to a straight object

Gesture or manipulation of tools: moved a
finger or a straight object along a path in a
continuous motion for the purpose of
comparing two or more paths

manipulation of tools: iterated a stick as a
tangent on the exterior of the curve when
comparing a curve to a straight object

manipulation of tools: iterated a stick
sometimes placing it as a chord on the
interior of the curve, sometimes as a
tangent on the exterior of the curve, and
other times placing the stick directly on
the curve when comparing a curve to a
straight object

manipulation of tools: iterated a stick by
attempting to place it directly on the curve
when comparing a curve to a straight
object

manipulation of tools: placed a stick as a
tangent aligned with one end of the curve
and rotated the stick, adjusting the point
of tangency and accumulating the length
of part of the curve along the stick
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Modified circumference Analy.tlcal_
Strategy: Indirect
formula strategy
Measurement
. Analytical
Used the thle Stick Strategy Related
as a Unit .
to Unit
Analytical

Fractured Non-standard
Unit Once at the End of
the Curve

Strategy Related
to Unit: Fractured
Unit

Analytical
Strategy Related
to Unit: Fractured
Unit
Analytical
Strategy Related
to Unit: Fractured

Fractured Non-standard
Unit in the Tightest Part
of the Curve

Fractured Non-standard
Unit Around the Entire
Curve

Unit
) . Analytical
Counted Partial pnlt as Strategy Related
a Whole Unit i
to Unit
Analytical
Compensated for Strategy Related
Curvature i
to Unit

statement: discussed comparing the stick
to the radius of a partial circle-shaped
curve, visually estimated the fraction of a
circle represented by the curve, and
modified and applied the formula for the
circumference of a circle accordingly

manipulation of tools: placed the whole
stick (as a chord, tangent, or directly on
the curve) and used it as a unit to compare
curves rather than fracturing and operating
on partial stick units

manipulation of tools: when a full stick
unit did not fit along the curve at the end,
discussed using a partial stick unit (such
as one half or one third of the stick) to
measure the last segment of the curve

manipulation of tools: operated on partial
stick units in the tightest part of the curve
for the purpose of increasing precision

manipulation of tools: operated on partial
stick units around the entire curve for the
purpose of increasing precision

statement: when only a partial stick unit
would fit at the end of the curve, counted
this (as well as the other stick unit
segments) as a full stick unit

statement: after comparing using another
analytical strategy related to unit, rounded
(or added or subtracted) to this count of
units to account for an over- or
underestimate due to representing a curve
with straight segments
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Applied Benchmark

Applied Conceptual
Standard Unit

Tangent Curved Unit
Iteration Strategy

Chord Curved Unit
Iteration Strategy

Acknowledged
Underestimate

Acknowledged
Overestimate

Claimed Answer was
not an Over- or
Underestimate

Analytical
Strategy Related
to Unit: Applied

Mental Units

Analytical
Strategy Related
to Unit: Applied

Mental Units

Analytical
Strategy with
Embedded
Intuition: Direct

Measurement

Analytical
Strategy with
Embedded
Intuition: Direct

Measurement

Reflection on
Error

Reflection on
Error

Reflection on
Error

statement: discussed thinking about a
previously known measurement when
comparing a curve and a straight object

statement: discussed applying mental
image of a standard unit (a centimeter or
an inch)

manipulation of tools: applied the tangent
iteration strategy, but allowed the stick to
extend beyond the curve; placed a tick
mark to represent the end of this stick unit
by imagining where the curve and the
stick would meet by mentally curving the
stick or mentally straightening part of the
curve

manipulation of tools: applied the chord
iteration strategy, but drew a tick mark
before the point of intersection of the stick
and the curve; the placement of this tick
mark was guided by imagining where the
curve and the stick would meet by
mentally curving the stick or mentally
straightening part of the curve

statement: discussed a comparison
between a curve and a straight object as
involving an underestimate

statement: discussed a comparison
between a curve and a straight object as
involving an overestimate

statement: discussed a comparison
between a curve and a straight object as
involving neither an over- nor
underestimate
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Correct
Acknowledgement of Reflection on
an Over- or Error

Underestimate

Incorrect
Acknowledgement of Reflection on
an Over- or Error

Underestimate

Acknowledgment of an
Over- or Underestimate Reflection on

was Neither Correct nor Error
Incorrect
Attended to S.ymmgtry Analytical
When Measuring with a
Strategy

Ruler

statement and manipulation of tools:
discussed a comparison between a curve
and a straight object as involving an
underestimate after having applied the
chord iteration strategy, or discussed a
comparison between a curve and a straight
object as involving an overestimate after
having applied the tangent iteration
strategy

statement and manipulation of tools:
discussed a comparison between a curve
and a straight object as involving an
underestimate after having applied the
tangent iteration strategy, discussed a
comparison between a curve and a straight
object as involving an overestimate after
having applied the chord iteration
strategy, or claimed not to have over- or
underestimated after having applied the
chord or tangent iteration strategy

Statement and manipulation of tools:
discussed a comparison between a curve
and a straight object as being an over- or
underestimate, or and being neither an
over- nor underestimate, after having
applied a direct measurement analytical
strategy that was not in conflict with their
claim

manipulation of tools: measured only part
of each shape, attending to the symmetry
of the curve, rather than measuring the
entire curve
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