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Children’s conceptions of length measurement has been the focus of research that 

has built on the work of Piaget and his colleagues to produce developmental accounts for 

the acquisition of conceptual and procedural knowledge. Prior research focused on 

children’s developing conceptions of length measurement for straight or rectilinear paths; 

however, little is known about how these conceptions grow beyond the elementary 

grades. The present study increased the scope of this research beyond elementary grades 

to include middle and secondary level students, exploring the development of students’ 

intuitive and analytical thinking for determining the length of a curved path across a wide 

span of development. Finally, this study extends a hypothetical learning trajectory (LT), 

to include intuitions for path length. 

 I administered a written LT-based length assessment to 82 students in Grades 4, 6, 

8, and 10, which I coded using a length LT. Based on this assessment, I selected four 

participants from each of Grades 4, 6, 8, and 10 as representatives of four levels of the 

LT. I conducted two individual task-based interviews (Goldin, 2000) with each of the 16 



 

participants, which I analyzed using codes from research on path length intuition (Chiu, 

1996) and emergent codes generated through a constant comparative method. I then 

tracked the frequency of each code to explore developmental patterns. 

Results suggest that the tasks included in this study effectively differentiated 

students’ thinking at different LT levels. These findings are consistent with Fischbein’s 

theory of intuition (1987), which describes intuition as a developmental phenomenon. 

Participants who exhibited different levels of sophistication, measured by the length LT, 

exhibited different ways of evoking intuitions in terms of (a) intuitions and analytical 

strategies overall, (b) each individual intuition, and (c) analytical strategies with 

embedded intuitions. Furthermore, findings confirm conjectured concepts and processes 

outlined in the LT.
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CHAPTER 1 

INTRODUCTION AND RATIONALE 

Introduction 
 

Early research on children’s conceptions of length measurement conducted by 

Piaget and his colleagues focused on the development of the logical operations of 

conservation and transitivity and the development of an iterable unit of length through 

subdividing and ordering those subdivisions (Piaget, Inhelder, & Szeminksa, 1960). 

Mathematics educators later extended this work to investigate the development of 

children’s capabilities for concepts and procedures related to unit: unit iteration, tiling or 

structuring with units, relationships among different units, additivity, and understanding 

of the zero point (Lehrer, 2003). However, most of the research on children’s conceptions 

of length measurement has been done within the Piagetian tradition of coupling the study 

of measurement with the study of space (e.g., Barrett & Clements, 2003; Barrett et al., 

2006; Barrett, et al, 2012; Battista, 2006; Clarke, Cheeseman, McDonough, & Clarke, 

2003; Hiebert, 1981; Sarama & Clements, 2009; Steffe & Hirstein, 1976). This work has 

focused mainly on elementary children’s capabilities of measuring lengths of rectilinear 

paths in one- and two-dimensional space (see Figures 1, 2, and 3) and has produced 

developmental accounts for the acquisition of sophistication in conceptual and procedural 

knowledge for length measurement (Battista, 2006; Clarke, Cheeseman, McDonough, & 

Clarke, 2003; Piaget, Inhelder, & Szeminksa, 1960; Sarama & Clements, 2009).
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Figure 1. Comparing lengths of segments that are not on the same line (Battista, 2006; 
Piaget, Inhelder, & Szeminksa, 1960). 
 

 
 

Figure 2. Finding lengths of bent paths and perimeter (Battista, 2006; Piaget, Inhelder, & 
Szeminksa, 1960). 
 

  

Figure 3. Triangle inequality (Barrett et al., 2006) or shortest distance between points. 
 
 Although a strong basis of empirical evidence exists for the developmental 

accounts of young children’s conceptions of length measurement, little is known about 

how these concepts continue to grow beyond the elementary grades to become more 

sophisticated and coherent. Researchers have called for the elaboration of these 

developmental accounts for measurement to middle school students (Daro, Mosher, 

Corcoran, 2011). Moreover, a growing number of researchers are calling for this work to 

further extend the research that was inspired by Piaget and his colleagues (i.e. Battista, 

2006; Sarama & Clements, 2009) by including the investigation of children’s conceptual 

k

l

D

C

B

A

C
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and procedural knowledge related to linear measurement in the context of curved paths 

(Clements et al., in press) as well as intuitions for path length (Chiu, 1996). This study 

seeks to extend the work of Piaget in this manner and to provide an empirical basis for 

expanding developmental accounts into the Middle and High School Levels. 

Extending the Work of Piaget 

Osborne (1976) outlined four problems of length and distance to consider in the 

teaching and learning of measurement: (a) comparing lengths of segments on two 

different lines, (b) measuring lengths of bent paths, (c) finding the shortest distance 

between two points, and (d) determining the length of a curve. Piaget and many 

researchers who extended his work have used tasks of the first three types described by 

Osborne to inform the articulation of developmental accounts of elementary children’s 

conceptions of length measurement (see Figures 1, 2, and 3). 

Osborne (1976) claimed that determining the length of a curve “is a step beyond 

school mathematics” because “the solution depends on limit processes, the additivity 

property, extended to allow for adding an infinite number of segments” (p. 24). However, 

a small body of research (see Clements et al, in press; Grugnetti, Rizza, & Marchini, 

2007) suggests that, before students have access to calculus as a conceptual tool, 

determining the length of a curve is a task that has potential instructional value for 

addressing measurement from a mathematical perspective (Osborne, 1976) using 

informal limit arguments, an approach that has been recommended in the Common Core 

State Standards for Mathematics (Common Core State Standards Initiative, 2010). 

 Before instruction in calculus, the length of a curve could be determined by 

measuring it directly using a string or by a discrete linear approximation. A discrete 
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linear approximation of a continuous curve involves representing the curve as a collection 

of linear segments (Figure 4); the length of the curve can be approximated by adding the 

lengths of the linear segments. 

 

Figure 4. Representing a curve as a collection of linear segments 

 

Figure 5. Increasing the number and decreasing the length of each segment to reduce 
error. 
 
This representation highlights key ideas about the nature of measure: all measurement of 

continuous quantity is an approximation, increasing the number and decreasing the length 

of the segments provides a better representation of the curve and reduces approximation 

error (Figure 5), an approximation can be an overestimate (Figure 6) or an underestimate 

(Figure 5), and approximation error can be reduced by averaging over- and 

underestimates for the length of a curve (Figure 7). 

 

Figure 6. Overestimating the length of a curve. 
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Figure 7. Averaging over- and underestimates using Archimedes’ method (see Traub, 
1984). 
 
The task of determining the length of a curve by approximation provides the potential 

opportunity to investigate children’s thinking about concepts related to unit, such as their 

developing capabilities for coping with units of units (both sub and superordinate units) 

with efficiency and precision, and coordination of other features with linear measures, 

such as curvature (i.e., using smaller units to measure a tighter curve will result in a more 

precise measure). 

 Researchers have mainly carried on the Piagetian tradition of investigating 

children’s developing conceptual and procedural knowledge for length measurement (i.e., 

Battista, 2006; Barrett & Clements, 2003; Clements et al, in press). However, researchers 

in psychology and mathematics education have shown that children, as well as adults, 

also possess intuitive knowledge for path length. For example, several studies by 

mathematics educators (see Barrett & Clements, 2003; Chiu, 1996; Clements, Battista, 

Sarama, & Swaminathan, 1996) and psychologists (e.g., Thordyke, 1981; Kosslyn, Pick 

& Fariello, 1974; Luria, Kinney; & Weissman, 1967; Pressey, 1974) have documented 

the prevalence of the complexity intuition (Chiu, 1996), which is characterized by an 

attention to the number of segments or turns when comparing rectilinear paths. In their 

work, Barrett and Clements (2003) suggested that, at the elementary level, children’s 

developing abstractions for linear measurement, with respect to establishing exact 

correspondence between counting and linear dimensions of paths, interacts with intuitive 
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thinking for path length. However, no prior study has examined how intuitive thinking 

for path length changes or how intuitive thinking for path length interacts with conceptual 

and procedural knowledge for length measurement across a large span of development. 

Purpose of the Study 

 The purpose of this study is to extend the literature on children’s conceptions of 

length measurement in two-dimensional space in three important ways. First, this study 

increases the scope of the body of research on students’ thinking in the context of length 

measurement beyond elementary aged children to include middle and secondary level 

students. Next, this study involves the exploration of the development of students’ 

thinking in the context of approximating the length of a curve (see Figures 4-8) across a 

wide span of development, which has not been addressed in prior studies (see Figures 1, 

2, and 3). Finally, this study seeks to extend existing developmental accounts for the 

learning of length measurement to explore interactions among students’ conceptual and 

procedural knowledge for length measurement with their intuitions for rectilinear and 

curvilinear path length. 

Research Questions 
 

This study seeks to explore elementary, middle, and secondary school level 

students’ intuitive and analytical thinking when comparing rectilinear and curvilinear 

paths in two-dimensional space by length. Specifically, this study examines the intuitions 

and analytical strategies that students at different levels of sophistication for length 

measurement use for path length. The following questions guided task design and 

subsequent analysis: 
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1. What intuitions and analytical strategies do students use when comparing sets of 

rectilinear or curvilinear paths by length? 

2. How does their use of intuitive and analytical thinking for path length change or 

develop across levels of sophistication for length measurement?
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CHAPTER II 

THEORETICAL GROUNDING AND REVIEW OF RELATED LITERATURE  

Theoretical Framework 

 To explore students’ intuitions and analytical strategies for path length and how 

their use of intuitive or analytical thinking for path length changes or develops across 

levels of sophistication for length measurement, I required a theoretical tool that could 

serve two main purposes. First, I needed a theory that would allow me to differentiate 

intuitive thinking from analytical thinking. Second, I needed a theoretical vantage point 

from which to identify students at different levels of sophistication for length 

measurement for the purpose of selecting a sample of students at the same and adjacent 

levels. A single theoretical framework could not meet both of these criteria. However, a 

synthesis of key features of Fischbein’s (1987) theory on intuition and a hypothetical 

learning trajectory (LT) for length measurement (Clements et al., in press) provided a 

theoretical framing that could serve both purposes. I begin this chapter with sections in 

which I describe components of these frameworks, which are most germane to the 

present study and conclude with a review of the related literature that was informed by 

the synthesis of these two theoretical perspectives. 

Fischbein’s Theory on Intuition 

 The most relevant aspect of Fischbein’s (1987) theory on intuition for the present 

study is an operational definition for intuition that allows for distinguishing intuitive 

thinking from analytical thinking or perception. Fischbein defined an intuition as “a 
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primary phenomenon which may be described but which is not reducible to more 

elementary components” (p. ix). He characterized an intuition as having the appearance 

of being a self-evident and self-consistent cognition, much like perceiving a color or 

experiencing an emotion. Fischbein argued that human beings possess a natural and 

almost instinctual belief in the existence of some absolute certitude, which has 

manifested itself throughout the history of mathematics and science. It is this need for 

certitude, “our fundamental need ‘to see’ with our mind, as we see with our eyes” (p. 7), 

that motivates intuitive thought. The sections below elaborate Fischbein’s definition of 

intuition by outlining the properties and classes of intuitions. 

Properties of intuitions. Fischbein (1987) described intuitive knowledge as a 

self-evident, immediate cognition. For example, in the case of path length, one intuitively 

knows that the shortest distance between two points is a straight line (Chiu, 1996; 

Fischbein, 1987). This statement is “accepted as being immediate and self-evident 

without feeling the need for a proof either formal or empirical” (Fischbein, 1987, p. 13). 

Fischbein argued that this self-evident nature leads to three other key properties of 

intuitions: extrapolativeness, coerciveness, and globality. 

 Fischbein (1987) argued that an intuition always exceeds observable facts. An 

intuition, then, is a theory; “it implies an extrapolation beyond the directly accessible 

information” (p. 13). For example, one does not need intuition to see that pairs of 

opposite angles of two intersecting lines are congruent. However, one uses intuition to 

accept the universality of this property.  

 Although intuitions appear to be self-evident and even autonomous, Fischbein 

(1987) noted that they are also robust and are deeply rooted in one’s mental organization. 



  

 10

That is, intuitions are coercive (Fischbein, 1987). They “appear, generally, as absolute, 

unchangeable ones” (p. 14). Altering, eliminating, or controlling an intuition would 

require “a profound, structural transformation in large areas of mental activity” (p. xi). 

Therefore, according to Fischbein, the coersive nature of intuitions contributes to the 

perpetuation of wrong interpretations. For example, when comparing paths by length, 

both children and adults have a propensity to attend to the complexity, such as the 

number of segments or turns in a path, rather than overall length (e.g., Barrett & 

Clements, 2003; Chiu, 1996; Kosslyn, Pick, & Fariello, 1974; Luria, Kinney, & 

Weissman, 1967; Pressey, 1974; Thorndyke, 1981).  

 Fischbein (1987) argued that the globality of an intuition is a consequence of its 

self-evident nature. “A certain statement accepted as self-evident is also accepted 

globally as a structured, meaningful, unitary representation” (p. 14). An intuition, a 

global and synthetic view, is a direct and quick view without preliminary analysis. 

Furthermore, the globality of intuition is revealed by a repeated application of an 

intuition, informed by a recognition that one context is analogous to another. For 

example, the global character of the complexity intuition described above is evinced by 

both an immediate application without preliminary analysis as well as its application 

across multiple tasks and contexts.  

This global property of intuitions serves to distinguish between intuitive and 

analytical thinking. Whereas intuitive thinking is direct and quick without preliminary 

analysis, analytical thinking proceeds in a step-by-step manner, in which one notion is 

connected to the next. For the present study, a student’s response to a task is regarded as 
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intuitive thinking only if it appears to be an immediate, direct, and global solution. A 

response that appears to exhibit step-by-step reasoning is regarded as analytical thinking. 

Classes of intuitions. To further elaborate on his definition of intuition, Fischbein 

(1987) offered two approaches for classifying intuitions, one based on roles or origins. 

The classification system that is based on roles also considers the relationship between an 

intuition and the solution to a particular problem. In this system, intuitions can be 

affirmatory, conjectural, anticipatory, or conclusive. In the case of an affirmatory 

intuition, one affirms or makes a claim. A conjectural intuition is one in which an 

assumption about future events is expressed. Anticipatory and conclusive intuitions 

represent phases in the process of solving a problem. Anticipatory intuitions express a 

preliminary, global view that precedes an analytical solution to a problem. Conclusive 

intuitions summarize in a global, structured vision the solution to a problem that had 

previously been elaborated. For the present study, because students’ claims about 

comparisons among paths by length are being observed, the intuitions subject to 

examination are affirmatory. 

 Fischbein’s (1987) alternative system for classifying intuitions is based on the 

origin of an intuition and distinguishes intuitions as either primary or secondary. Primary 

intuitions are “those cognitive beliefs which develop in individuals independently of any 

systematic instruction as an effect of their personal experience” (p. 64). Secondary 

intuitions, however, are not produced by natural, normal experiences. Secondary 

intuitions are formed when a learned conception is transformed into a belief. For 

example, the claim that the sum of the interior angles of a triangle is 180 degrees, 

regardless of its shape, is not self-evident. It can be proved. Fischbein explained that if 
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one comes to “see directly that the sum must necessarily remain constant (because of 

inner compensation)” (p. 68) one has acquired a new secondary intuition. 

Intuition as a developmental phenomenon. The term “primary intuition” does 

not indicate that an intuition is innate (Fischbein, 1987). Both primary and secondary 

intuitions are learned, and they are both “always the product of an ample and lasting 

practice in some field of activity” (p. 69). Therefore, Fischbein argued, “intuitions are a 

developmental phenomena, and their structure changes as an effect of experience and a 

general intellectual development” (p. 115). A child’s intuition use changes over time. For 

example, classic Piagetian conservation of quantity tasks have been used to show that 

young children intuitively apprehend the number of discrete objects laid in a row based 

on the length of the row rather than a count of the objects (see Piaget and Szeminska, 

1964, p. 99). This apprehension is “intuitive, global, without hesitation, based on 

configurations rather than on operational criteria” (Fischbein, 1987, p. 65). This 

apprehension is a primary intuition. 

 Over time, new intuitions develop “based on the composability and reversibility 

of intellectual operations: intuitions related to conservation capacities, to the notions of 

number and cardinality, to elementary logical and arithmetical operations” (Fischbein, 

1987, p. 65). For example, on Piagetian conservation of quantity tasks, over time children 

begin to attend to the number of discrete objects laid in a row rather the length of the row. 

Although new intellectual operations become available to the child, “the reactions of the 

child remain, nevertheless, global, direct, and his interpretations appear to him as self-

evident” (p. 65). These new intellectual operations become the essential texture of 

intuitive reactions. That is, a child’s response to a task may be based on these intellectual 
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operations, the response may still “display the properties of an intuitive cognition; it 

appears subjectively non-explicitly justified and a priori evident” (p. 65). 

 Fischbein’s (1987) theory on intuition provides an operational definition that 

allows for distinguishing intuitive thinking from analytical thinking; however, it does not 

provide a structure for describing the hierarchic development of children’s conceptions 

for length measurement. A hypothetical learning trajectory (LT) for length measurement 

(Clements et al, in press) addresses this aspect of the present study by providing a means 

for describing how children’s thinking about rectilinear and curvilinear path length 

changes or develops across levels of sophistication for length measurement. An LT has 

three parts: (a) an instructional goal, (b) a likely path for learning through increasingly 

sophisticated levels of thinking, and (c) the instructional tasks that engender the mental 

processes or actions that support children’s growth through those levels (Clements & 

Sarama, 2007). In the present study, the LT for length measurement serves as a tool for 

describing and differentiating children’s responses according to those levels of 

sophistication. 

Hierarchic Interactionalism  

 LTs are a central feature of hierarchic interactionalism (HI), which is a theory of 

cognitive development that is represents a synthesis of empiricism, (neo)nativism, and 

interactionalism (Clements & Sarama, 2007). “Hierarchic” indicates the influence and 

interaction of domain-general and domain-specific cognitive components and the 

interactions of innate competencies, internal resources, and experience. LTs originate 

from a key tenet of HI, which postulates that children progress through domain-specific 

levels of understanding in ways that can be characterized by specific mental objects and 
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actions (i.e., both concept and process) that build hierarchically on previous levels 

(Clements & Sarama, 2007).  

 Clements and Sarama (2007) elaborated HI using 12 tenets. The first of the twelve 

tenets addresses developmental progressions. The next five tenets of HI, domain specific 

progression, hierarchic development, cyclic concretization, co-mutual development of 

concepts and skills, and progressive hierarchization, address the levels of and a child’s 

movement within a developmental progression. Three of the twelve tenets of HI, initial 

bootstraps, different developmental courses, and environment and culture, explain how 

these developmental progressions are guided. Two of the twelve tenets, consistency of 

developmental progressions and instruction and LTs, both address effective instruction 

and developmental progressions. The final tenet of HI, instantiation of LTs, addresses 

some of the limitations and affordances of LTs. 

Of these 12 tenets of HI, five address key assumptions of HI that are relevant to 

the investigation of intuitive and analytical thinking about path length as a developmental 

phenomenon. In the following sections I describe these five relevant tenets as well as 

how they contribute to the framing of the present study 

Developmental progressions. According to the perspective of HI, “knowledge is 

acquired along developmental progressions of thinking” (Clements & Sarama, 2007, p. 

464). These developmental progressions are “consistent with children’s intuitive 

knowledge and patterns of thinking and learning at various levels of development” 

(Clements & Sarama, 2007, p. 464). Hence, each level of development is characterized 

by different concepts and processes. Therefore, based on this tenet, a key assumption of 

the present study is that children who are at different levels within a developmental 
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progression possess different concepts and processes, so they would exhibit different 

intuitions and analytical strategies for rectilinear and curvilinear path length. 

Domain-specific progression. Clements and Sarama (2007) emphasized that 

developmental progressions address specific mathematical topics; therefore, 

developmental progressions must be domain-specific. Knowledge is the “main 

determinant of the thinking within each progression, although hierarchic interactions 

occur at multiple levels within and between topics, as well as general cognitive 

processes” (Clements & Sarama, 2007, p. 464). From the perspective that intuition is a 

cognition (Fischbein, 1987), this tenet of HI supposes that a hierarchic interaction exists 

within and between knowledge for length measurement and intuition for path length. 

Hierarchic development. Development is an “interactive interplay among 

specific components of knowledge and processes” (Clements & Sarama, 2007, p. 464). 

Each level of a developmental progression builds hierarchically out of the concepts and 

processes that constitute the previous levels. These levels are organized according to 

increasing “sophistication, complexity, abstraction, power, and generality” (Clements & 

Sarama, 2007, p. 465). 

The process of learning or development is incremental and gradual. Various types 

of thinking develop in tandem, “but a critical mass of ideas from each level must be 

constructed before thinking characteristic of the subsequent level becomes ascendant in 

the child’s thinking and behavior” (Clements and Sarama, 2007, p. 465). As the child 

moves through developmental progressions, previous levels of thinking are not deleted 

from memory. These levels of thinking become more explicit mental representations, 

which do not erase the earlier representations. In fact, these early representations emerge 
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as fallback strategies under conditions of increased stress, when confronted with more 

complex tasks, or when another process fails (Clements & Sarama, 2007). 

 This tenet of HI indicates that, although a child may be operating predominantly 

at a particular level for length measurement, he or she may exhibit evidence of higher or 

lower levels of thinking. Therefore, within a group of children who are appear to be 

operating at the same length LT level based on their responses to a collection of tasks, 

individual differences may be observed as children cope with more complex tasks. 

Furthermore, this tenet of HI supposes that children, who are operating predominantly at 

the same LT level, may exhibit some individual differences in aspects of length 

measurement outside the current LT, such as intuitions and analytical strategies for 

rectilinear and curvilinear paths. 

Co-mutual development of concepts and skills. Concepts and skills develop in 

constant interaction; concepts and skills encompass symbolic representations, utilization 

competence, and general cognitive skills (Clements & Sarama, 2007). As a child ascends 

through a developmental progression, he or she gradually makes “connections between 

various mathematically relevant concepts and procedures, weaving ever more robust 

understandings that are hierarchical” (p. 465). Therefore, the domain-specific 

developmental progression for length measurement that is reflected in the length LT 

(Clements et al., in press) outlines levels of increasingly sophisticated conceptual and 

procedural knowledge for key length measurement concepts. 

Learning trajectories. A fruitful approach for instruction is based on LTs 

(Clements & Sarama, 2007). “On the basis of the hypothesized specific mental 

constructions (mental actions-on-objects) and patterns of thinking that constitute 
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children’s thinking, curriculum developers design instructional tasks that include external 

objects and actions that mirror the hypothesized mathematical activity of the children as 

closely as possible” (p. 466). 

The most relevant aspect of HI for this study is this operational definition for an 

LT. Based on this definition, the LT for length measurement (Clements et al., in press) 

articulates a developmental progression of increasingly sophisticated thinking for length 

measurement; therefore, it serves as a tool to measure children’s conceptual and 

procedural knowledge for length measurement. In addition, the instructional tasks 

component of the definition of an LT provides an organizing structure for reflecting on 

the role that task play in revealing students’ thinking as well as helping them progress 

through the levels. In the present study, this component lends itself to the reflection about 

the potential role of tasks involving comparing and measuring rectilinear and curvilinear 

paths for eliciting children’s thinking about and possibly construct new and powerful 

understandings about key length measurement concepts.  

A Learning Trajectory for Length Measurement 
 
 The LT for length measurement “describes an important sequence of knowledge 

about quantity, based on a ratio between a unit and the measured object, and other 

measured lengths as ratios” (Barrett, et al, 2012, p. 51). In the following sections I 

summarize the concepts and processes that define the levels of the LT for length 

measurement (Clements et al., in press). Across the first two levels of the length LT, 

children use continuous mental processes as they evaluate continuous extents. At the 

earliest level of the length LT, Length Quantity Recognizer (LQR), children identify 

length (the extent of an object from end-to-end) and distance (the amount of space 



  

 18

between two points) as attributes; however, they do not yet understand length as a 

comparative. The second level, Length Comparer (LC), involves two sub-levels, Length 

Direct Comparer (LDC) and Indirect Length Comparer (ILC). At the LDC sublevel, 

children are able to physically align a pair of objects for the purpose of determining 

which is longer, and children at the ILC sublevel are able to use a third object to compare 

the lengths of two objects. 

 The transition into the third level of the length LT, the End-to-End (EE) level, 

marks a significant conceptual advance over the first two levels because it marks the 

development of the implicit concept that lengths can be composed of repetitions of 

shorter lengths. Students at this level understand that the number of repetitions of shorter 

lengths, or units, that fit along an object describe its length. Students at this level typically 

lay units end-to-end to measure the length of an object. At the Length Unit Relater and 

Repeater (LURR) level, children measure by repeating, or iterating, a unit. They also 

understand that more shorter units or fewer larger units are needed to measure the same 

object and can add two lengths to determine the length of a whole. 

 By the Consistent Length Measurer (CLM) level of the length LT, children are 

able to simultaneously imagine and conceive of an object’s length as a total extent and a 

comparison of units. At this level of the length LT, children see length as a ratio 

comparison between the unit and the object measured. They measure straight paths 

consistently, use equal-length units, understand the zero point on the ruler, and can 

partition units to make use of units and subunits for the purpose of increasing precision. 

However, when determining the length of a bent path, children operating predominantly 

at this level may make rounding errors when measuring each segment and may not equate 
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the sum of the parts of the bent path to the length of the whole. In addition, they may not 

be perturbed with geometric inconsistencies when coping with perimeter tasks. For 

example, when asked to draw a rectangle with a specified perimeter, a child at the CLM 

level may draw a rectangle with opposite sides that are not congruent. Children at this 

level apply multiplicative comparisons in simple situations, but typically rely on additive 

reasoning when making comparisons. 

 By the Conceptual Ruler Measurer (CRM) level of the length LT, children have 

an “internal” measurement tool. That is, they employ explicit strategies to estimate 

lengths reasonably, such as mentally iterating internal units of length or partitioning a 

length into equal-length parts. Children who are operating predominantly at the CRM 

level project or translate given lengths to determine missing lengths. When asked to draw 

a rectangle with a specified perimeter, children at the CRM level notice or are perturbed 

by geometric inconsistencies; they no longer accept rectangles with opposite sides that 

are not congruent. At this level, children increasingly use multiplicative reasoning in 

comparison situations. 

 At the Integrated Conceptual Path Measurer (ICPM) level, children are able to 

integrate and compare sets of units along each section of a bent path. When reflecting on 

the measure of a bent path or the perimeter of a polygon, they regard a group of units as a 

flexible object, a “string” of units wrapped around the entire perimeter or along the entire 

path. Therefore, in the context of a fixed perimeter or fixed path length task, children at 

the ICPM level are able to compensate for changes made to one side of a figure by 

adjusting other sides to maintain the fixed overall length. Although, they can find several 

related cases of polygons with the same perimeter, they may not yet be able to organize 
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and synthesize a set of related polygons based on perimeter to formulate and justify a 

valid argument. At this level, children also begin to coordinate other measures with linear 

measures, such as curve, and show well-developed ideas about precision, such as 

constructing smaller units for the purpose of increasing precision. 

 The highest level of the current length LT is the Abstract Length Measurer 

(ALM) level. At this level, children have developed a continuous sense of length, and 

engage dynamic imagery to coordinate and operate internally on collections of units of 

units as well as collections of complex paths. Within the context of a fixed perimeter or 

path length task, they can synthesize sets of figures based on perimeter to formulate and 

justify a valid argument. Children at this level can coordinate multiplicative and additive 

reasoning in fluent ways and can engage in proportional reasoning about coordinated 

cases of paths for the purpose of reflecting on patterns among cases. 

Summary: Relating Intuition to an LT for Length Mea surement 

 The length LT describes a hierarchical sequence of knowledge about quantity, 

based on a ratio between a unit and a measured object. As children grow along the length 

LT, they develop sophisticated intellectual operations, or mental actions (concepts and 

processes). According to Fischbein’s (1987) theory on intuition, children develop new 

intuitions as an effect of experience as well as the development of new intellectual 

operations; intuition is a developmental phenomenon. Therefore, informed by a synthesis 

of the two theoretical positions discussed in the sections above, this study was designed 

to explore developmental patterns of intuitive and analytical thinking for rectilinear and 

curvilinear path length for children who are operating at different levels of the LT for 

length measurement. 
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Review of the Related Literature 

 The LT for length measurement (Clements et al., in press) describes how children 

“establish rich conceptual knowledge of units of spatial measurement and use that 

knowledge as they measure in complex situations” (Barrett et al., 2011). It is a product of 

a line of research that has followed in the tradition of Piaget and his colleagues (1960). 

This length LT has been refined and revised over time using both cross-sectional (Barrett, 

Clements, Klanderman, Pennisi, Polaki, 2006; Clements et al., 1997) and longitudinal 

approaches (Barrett & Clements, 2003; Barrett et al., 2011; Barrett, et al., 2012; Clements 

et al., in press) and is rooted in prior research on children’s thinking about length 

measurement concepts. 

In the sections below, I first provide an overview of the body of literature from a 

about how children think and learn about length measurement concepts from a hierarchic 

interactionalist perspective (Sarama & Clements, 2009; Sarama, Clements, Barrett, Van 

Dine, & McDonel, 2011). Next, I describe the work of other teams of researchers that 

followed in the Piagetian tradition to produce alternative accounts to how children 

develop sophistication in conceptual and procedural knowledge for length measurement 

(e.g., Battista, 2006; Clarke, Cheeseman, McDonough, & Clarke, 2003). Finally, I 

conclude with a review of studies in mathematics education and psychology that address 

how children use intuitions for path length, and how those intuitions might interact with 

their conceptual and procedural knowledge for length measurement. 

Children’s Thinking about Length Concepts: A Developmental Perspective 

 Researchers in mathematics education have largely focused on children’s thinking 

and learning about conceptual foundations of measurement: establishing a 
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correspondence between a unit and an object to be measured, equal partitioning, the 

relationship between the size and number of units, the need for identical units, the 

iteration of same-size units, the accumulation of distance, and an understanding of the 

zero point on the ruler (Lehrer, 2003; Sarama & Clements, 2009; Stephan & Clements, 

2003). This section focuses on studies in mathematics education that, from a hierarchic 

interactionalist perspective and taken together, suggest that children develop these key 

measurement concepts over time (Clements et al., in press; Sarama & Clements, 2009; 

Sarama, Clements, Barrett, Van Dine, & McDonel, 2011). 

By Grade 2, most children develop an understanding of the inverse relationship 

between the size and number of units (Carpenter & Lewis, 1976; Lehrer, Jenkins, & 

Osana, 1998; Nunes & Bryant, 1996). For example, Nunes and Bryant (1996) found that 

some 5-yr old children and most 7-year old children could reason that two objects that are 

spanned with the same count of units, but different sized units, have a different measure. 

Children in the primary grades exhibit difficulties with unit iteration (Ellis, 

Siegler, & Van Voorhis, 2003; Horvath & Lehrer, 2000; Lehrer, 2003). For example, 

Ellis, Siegler, and Van Voorhis (2003) found a significant age difference in the 

understanding of the concept of unit iteration from Kindergarten to Grade 2. Early on, 

children leave gaps or iterate with overlaps (Horvath & Lehrer, 2000; Lehrer, 2003). 

Researchers have also shown that children exhibit difficulties with a related concept, an 

understanding of the zero point (Lehrer, 2003; Stephan, Bowers, Cobb, & Gravemeijer, 

2004). For example, when using a standard ruler, children often begin measuring from 

the tick mark labeled as “1” on a ruler (Lehrer, 2003). Similarly, when using nonstandard 
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units, such as counting heal-to-toe steps, many students begin their count with their first 

movement (Stephan, Bowers, Cobb, & Gravemeijer, 2004). 

Results from the National Assessment of Educational Progress (NAEP) indicate 

that the difficulties with unit iteration documented by researcher in mathematics 

education may persist beyond the primary grades. For example, when shown an image of 

a paper strip placed along a broken section of a ruler and asked to determine the length of 

the paper strip, 25% and 22% of Grade 4 students answered correctly for 2000 and 1996 

NAEP, respectively (Kloosterman et al., 2004; Sowder et al., 2004). For a similar item, 

40% and 63% of Grade 8 students answered correctly for the 2000 and 1996 NAEP, and 

83% of Grade 12 students answered correctly for the 1996 NAEP. Although children 

exhibited higher percentages of correct responses across the elementary, middle, and 

secondary levels, these findings suggest that connecting numerical measurement with the 

process of unit iteration develops over time (Barrett & Clements, 2003; Battista, 2006; 

Clements, Battista, Sarama, Swaminathan, McMillen, 1997). 

Most researchers in mathematics education have investigated children’s 

developing conceptions for linear measurement in the context of straight or rectilinear 

paths. The task of determining the length of the curve has largely been regarded as a task 

that is beyond the scope of most K – 12 mathematics (Osborne, 1976). However, some 

researchers used the context of determining curve length to examine children’s ability to 

operate on units and subunits and coordinate linear measure with another attribute, curve 

(see Clements et al., in press; Grugnett, Rizza, & Marchini, 2007). Specifically, Clements 

et al. (in press) showed that, when measuring a curve with a nonstandard unit, Grade 5 

students exhibited strategies of fracturing the nonstandard unit to operate on subunits 
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around the entire curve. Grugnetti, Rizza, & Marchini (2007) showed that, in an 

instructional setting, tasks involving approximating the length of a curve elicited 

elementary students’ pre-conceptions of the limit. This suggests that, the task of 

determining the length of a curve could be a potentially fruitful context for investigating 

students’ developing abilities to make sense of and use informal limit arguments by 

discussing processes in which a curve is represented by increasingly large numbers of 

segments of decreasing lengths to decrease the error in measuring and approach a true 

length of the curve. 

Developmental Accounts for the Learning of Length Measurement 

Using a developmental perspective, researchers in mathematics education have 

formulated models that describe how children’s thinking and learning of length 

measurement concepts and procedures develops over time. Beginning with Piagetian 

theory (1960), in the following sections I describe and then compare and contrast these 

different developmental accounts for length measurement. 

Piagetian theory. According to Piagetian theory, “[t]o measure is to take out of a 

whole one element, taken as a unit, and to transpose this unit on the remainder of the 

whole: measurement is therefore a synthesis of sub-division and change of position” 

(Piaget, Inhelder, & Szeminska, 1960, p. 3). Piaget described a developmental account of 

increasing sophistication beginning with perceptual measurement and culminating in 

operational measurement. Perceptual measurement, which is characterized by measuring 

using visual comparisons, “is inexact and merely appoximative, and it is subject to 

illusions or systematic errors (Piaget, Inhelder, & Szeminska, 1960, p. 29).” The process 

of evolution from perceptual measurement to operational measurement is complete when 
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the child is capable of unit iteration, or “the construction of units to measure any distance 

in stepwise movement” (Piaget, Inhelder, & Szeminska, 1960, p. 30) 

Piaget et al. (1960) specified a developmental account for the acquisition of 

increasing sophistication in the understanding of length measurement. This account 

distinguishes between an intuitive and pre-operational or perceptual conception of length 

measure and operational composition. Pre-operational children (Levels I and IIa and sub-

stage IIb) do not yet understand the function of a unit of measure; however, operational 

children (Stages III and IV) conserve length and coordinate between subdivision and 

order of position. The following sections detail Piaget’s account of the development of 

measurement of length. 

 Levels I and IIa. At levels I and IIa, children do not yet conserve due to a lack of 

coordination between subdivision and change of position. That is, children at this level 

either subdivide without correctly applying the unit of measure or apply a change of 

position of the unit of measuring without adequately subdividing. At these stages, 

children have not yet constructed a unit and do not yet have transitivity; they rely mainly 

on visual inspection or motion along a path. 

 Sub-stage IIb. Sub-stage IIb is an intermediate stage. At this stage, conservation 

is “dimly perceived, and children at this level also begin to understanding transitivity in 

common measure, and later, even the role of a measuring unit” (Piaget, Inhelder, & 

Szeminska, 1960, p. 124). Children exhibit growth in terms of coordination, and progress 

toward “the beginnings of a synthesis of subdivision and relations of order and change of 

position” (p. 125). Understanding or sophistication is reached by trial-and-error. 

Understanding of transitivity may be pre-operational or intuitive here. Although children 
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at this stage do not necessarily appreciate the need for exhaustively using same-size units, 

their understanding of a unit of measure increases through the process of trial-and-error.  

 Stage III. Stage III marks the transition to operational measure. At this stage, 

children coordinate subdivision and change of position; therefore, they are able to 

conserve. Within this stage, children at level IIIa exhibit evidence of operational 

transitivity without being able to subdivide a length into equal parts. At level IIIb, 

children have both operational transitivity and the capability of subdividing a length into 

equal parts, which is unit iteration. 

 Stage IV. At stage IV, children are capable of deductive composition. Children at 

this stage may initially engage in reasoning about specific cases using trial and error. 

Eventually, though, children at Stage IV may initially engage in actions that are 

experimental at first, their actions “eventuate in a reversible operational grouping, so 

coordinated as to yield universal generalizations which are deductive and necessary and 

which therefore transcend experience” (Piaget, Inhelder, & Szeminska, 1960, p. 208). 

That is, children at Stage IV are able to generalize from specific cases to form a logical 

deduction. 

 Following in the tradition of Piaget and his colleagues (1960), researchers have 

investigated how children develop sophistication in their thinking about length and 

measure over time (e.g., Barrett & Clements, 2003; Barrett et al., 2006; Battista, 2006; 

Clarke, Cheeseman, McDonough, & Clarke, 2003; Clements et al., 1997; Sarama & 

Clements, 2009). Clarke, Cheeseman, McDonough, and Clarke (2003) and Battista 

(2006) discussed the development of frameworks for the growth of children’s 

conceptions of length for the purpose of informing professional development. In each of 
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these projects, the primary purpose of the framework was to inform formative assessment 

in the classroom. Sarama and Clements (2009) synthesized earlier work (e.g., Barrett & 

Clements, 2003; Barrett et al., 2006; Clements et al., 1997) into the length LT described 

above. 

Early numeracy research project (ENRP) framework. The ENRP was a 

research and professional development project conducted in Australia in which teachers 

utilized a framework consisting of “growth points” in early mathematics learning (Clarke, 

Cheeseman, McDonough, & Clarke, 2003). The framework for length measurement, 

which was also meant to address mass, was informed by available literature (e.g., Brown 

et al., Dickson, Brown, & Gibson, 1984; Pengelly & Rankin, 1985; Wilson & Rowland, 

1993), and used to develop assessment items to match each of the growth points. The 

classroom teachers who participated in the project conducted this assessment in an 

individual interview format with students in their own classrooms. Based on this 

assessment, particular growth points were assigned to the children. The framework for 

length (and mass) measurement consisted of five growth points: 

1. At the first growth point (GP1), children show an awareness of the attribute of 

length and its descriptive language. 

2. By the second growth point (GP2), children compare, order, and match objects by 

their lengths. 

3. Next, at the third growth point (GP3), children appropriately use uniform units. 

That is, children are able to assign number and unit to the measure of length. 

4. Children at the fourth growth point (GP4) choose and use formal units for 

accurately estimating and measuring length. 
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5. By the fifth and final growth point in this framework (GP5), children solve a 

range of problems that involve important concepts and skills that are related to 

length and its measure. 

This growth points framework for length measurement was meant to provide “a sense of 

the typical order in which important understandings and skills develop” (p. 71). 

Cognitively based assessment. In the United States, Battista (2006) designed a 

developmental account of elementary children’s thinking about length measurement 

based on his own empirical work within his Cognitively Based Assessment (CBA) 

project, which was a professional development project. Battista posed a two-part 

hierarchical account for the development of children’s length measurement concepts. 

Each part consists of levels, which describe cognitive plateaus that children reach as 

reasoning about length and measure evolves from “informal, pre-instructional reasoning 

to formal mathematical reasoning about length” (Battista, 2006, p. 141). This framework 

includes a 4-level account of the development of non-measurement reasoning and the 

second characterizes the development of measurement reasoning in 6 levels (Barrett & 

Battista, in progress). According to Battista’s levels of reasoning for length measurement, 

non-measurement reasoning “involves using visual judgments, direct comparisons, 

correspondences between parts, and transformations” (p. 141). Measurement reasoning 

then “involves determining the number of unit lengths that fit end to end along an object, 

with no gaps or overlaps” (Battista, 2006, p. 141). In this framework, non-measurement 

reasoning often emerges before measurement reasoning, but continues to develop even 

after measurement reasoning appears. 
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 CBA and non-measurement reasoning. The account of non-measurement begins 

with N0. Children at this level rely on holistic visual comparisons. At the next level, N1, 

children correctly compare straight paths either using (a) direct comparison by placing 

objects next to each other or (b) indirect comparison by comparing objects using a third 

object. At the N2 level, children manipulate or compare parts of complex paths in a 

systematic way; this level consists of two sublevels. In the first sublevel, students can 

rearrange pieces of paths to make new paths for the purpose of making comparisons. In 

the second sublevel, rather than transform one path into the other, students compare paths 

by matching same length pieces one-by-one in pairs. The second sublevel is a conceptual 

advancement from the first because, at the first sublevel, children rely on visual 

comparisons or manipulations, but at the second level they make inferences about the 

length of the entire path based on comparisons of the pieces of the paths (Battista, 2006). 

At the N3 level, children make property-based transformations. That is, students make 

comparisons by transforming paths in ways that inform inferences based on geometric 

properties of shapes. 

 CBA and measurement reasoning. At the first measurement level, M0, children 

do not connect number to unit iteration. They often recite numbers while continuously 

moving their finger along a path or count dots without recognizing their count as an 

indicator of length. At the M1 level, children attempt to iterate units, but initially do so 

incorrectly because they iterate with gaps, overlaps, or different size units. Eventually, 

they are able to iterate correctly along straight paths. By the M2 level, children iterate 

correctly along all path types (straight, bent, and closed), and at level M3, they can 

operate on these iterations logically (by making inferences) and numerically (by adding, 



  

 30

subtracting, multiplying, and dividing). At the M4 level, children make property-based 

transformations, iterating unit lengths is not necessary because children can operate 

inferentially or numerically on length measurements. At the highest level, M5, children 

can understand and use formulas and variables. Children can understand and apply 

perimeter formulas and use variables in their reasoning about length (without referring to 

specific numbers). 

Learning progressions in science education. Developmental accounts for the 

acquisition of knowledge of length and its measure are of interest to science educators as 

well as mathematics educators. Parallel to the LT construct that contributes to the 

conceptual framing of this study, science educators have outlined learning progressions 

(LPs) as “descriptions of successively more sophisticated ways of thinking about a topic 

that can follow one another as children learn about and investigate a topic over a broad 

span of time (e.g., 6 to 8 years)” (National Research Council [NRC], 2007, p. 214). These 

LPs are critically dependent upon instruction (NRC, 2007). According to an NRC 

Committee on Science Learning (2007), LPs in science are anchored on one end by what 

is known about young children’s reasoning and on the other end by societal expectations 

with respect to what older children should know about science. These progressions “are 

also constrained by research-based conceptual and social analyses of the structure of the 

disciplinary knowledge and practice that is to be learned” (p. 220). 

A well-recognized LP in science education is the LP for the atomic-molecular 

theory of matter (LP for AMTM), which is a core idea in modern science, which was 

developed by Smith, Wiser, Anderson, and Krajcik (2006). The LP for AMTM describes 

a progression of more sophisticated answers to the questions regarding (a) what are 
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things made of and how can one explain their properties, (b) what changes and what stays 

the same when things are transformed, and (c) how we know. Measurement plays an 

important role across all three questions. However, it is critically important for addressing 

the third question because, from this perspective, one learns about the world through 

measurement, modeling, and formulating and making sense of arguments (NRC, 2007, p. 

364; see also Smith, Wiser, Anderson, & Krajcik, 2006). 

 According to Smith, Wiser, Anderson, and Krajcik (2006), measurement is a 

practice that is enabled by scientific knowledge. From this perspective, measurement 

involves ordering and quantifying. Ordering, or comparing along a dimension, involves 

going beyond categorization toward conceptualizing a continuous dimension, such as 

weight, temperature, hardness, or density. Quantifying encompasses measuring 

“important physical magnitudes such as volume, weight, density, and temperature using 

standard or nonstandard units” (Smith, Wiser, Anderson, & Krajcik, 2006, p. 8). The 

process of measuring itself “is a form of mathematical modeling and goes hand in hand 

with developing deeper conceptual understandings of the physical quantities in question” 

(p. 8). Smith et al. noted that many practices enabled by scientific knowledge are not 

limited only to the domain of science; they are the same practices that people use to 

“make sense of the world on everyday terms” (p. 9). 

 Smith, Wiser, Anderson, and Krajcik (2006) outlined three components of this big 

idea that are elaborated throughout the progression from Kindergarten through Grade 8: 

a) Good measurements provide more reliable and useful information about object 

properties than common-sense impressions, b) modeling is concerned with capturing key 
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relations among ideas rather than surface appearance, and c) arguments use reasoning to 

connect ideas and data. 

 In Kindergarten through Grade 2, children learn important conceptual foundations 

of good measurement practices. That is, they learn that “good measurements use 

iterations of a fixed unit (including fractional parts of that unit) to cover the measured 

space completely (no gaps)” (NRC, 2007, p. 364). In Grades 3 through 5, children 

become aware that “measurements can be more or less precise and there is always some 

measurement error” (p. 365). Later, in Grades 6 through 8, children become aware that 

“sources of measurement error can be examined and quantified” and that “we can learn 

about properties of things using indirect measurement” (p. 365). 

A Comparison of Developmental Accounts for Length Measurement 

Table 1 below illustrates the relationships between the developmental accounts 

for children’s conceptions of length measurement according to Piagetian Theory (Piaget, 

Inhelder, & Szeminksa, 1960), ENRP (Clarke, Cheeseman, McDonough, & Clarke, 

2003), CBA (Barrett & Battista, in press), and the length LT (Clements et al, in press) as 

well as the LP for AMTM (Smith, Wiser, Anderson, & Krajcik, 2006).
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Table 1 
 

 

Piagetian 
Theory 

ENRP1 
 

CBA 
LP for 
AMTM Length LT Non-Measurement 

Reasoning 
Measurement 

Reasoning 

Level I and IIa 
subdivides 

without correctly 
applying unit or 
applies change 

of position 
without 

adequately 
subdividing; 

relies on 
inspection or 

motion along a 
path 

GP1 
awareness of 
the attribute 
of length and 
its descriptive 

language 

N0 
relies on holistic 

visual comparisons 

M0 
does not connect 
number to unit 

iteration 

 

LQR 
understands length 

and distance as 
attributes; makes 

perceptual, intuitive 
comparisons 

N1 
straight paths 

N1a 
direct comparison 

LDC  
physically or 

mentally aligns 
objects to compare 

N1b 
indirect comparison 

ILC 
compares lengths of 
two objects using a 
third object; applies 
transitive reasoning 

GP2 
compares, 
orders, and 

matches 
objects by 

length 
GP3 

N2 
manipulates or 

compare parts of 
complex paths in a 

systematic way 
N2.1 

rearrange pieces of 

 
K – 2 

Measurement 
good 

measurements 
use iterations 
of a fixed unit 

EE 
lays units end-to-end 

to measure linear 
extent (not 

necessarily using 
same-sized units); 

the number of these 

A Comparison for Developmental Accounts for Length Measurement 
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appropriately 
uses uniform 
units; assigns 
number and 
unit to the 
measure of 

length 

paths to make new 
paths for the 

purpose of making 
comparisons 

(including 
fractional parts 
of that unit) to 

cover the 
measured 

space 
completely (no 

gaps) 

units that fit 
describes length 

Sub-stage IIb 
may not 

appreciate the 
need for same-

size units; 
understanding of 

unit increases 
through trial-

and-error 

M1 
attempt to iterate 
units, but initially 
do so incorrectly 

because they 
iterate with gaps, 

overlaps, or 
different size 

units; eventually 
iterates correctly 

along straight 
paths 

LURR 
Iterates a single unit; 
begins to appreciate 
the need for same-
size units; relates 

size and number of 
units; adds two 

lengths to obtain a 
whole 

Stage III 
transitions to 
operational 
measure; 

coordinates 
subdivision and 

change of 
position; able to 

conserve 
Sub-stage IIIa 
have operational 

transitivity 
without ability to 

subdivide a 
length into equal 

parts 
Sub-stage IIIb 

have both 
operational 

transitivity and 

N2.2 
makes inferences 

about the length of 
the entire path 

based on 
comparisons of the 
pieces of the paths 

CLM 
Recognizes the need 
for same-size units; 

recognizes the 
length of a bent path 

as the sum of its 
parts; partitions units 

to increase 
precision; may not 

coordinate size 
lengths along 
complex paths 

GP4 
uses formal 

units for 
accurately 
estimating 

and 
measuring 

length 

 

M2 
correct iteration 

on all paths 
M3 

operate on 
iterations by 

making 
inferences and by 

3 – 5 
Measurement 
measurements 
can be more or 
less precise; 

there is always 
measurement 

error 

CRM 
operates with an 

“internal” measuring 
tool; fits smaller 
segments along 
curves to reduce 

overall error 
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the ability to 
subdivide a 

length into equal 
parts, which is 
unit iteration 

adding, 
subtracting, 

multiplying, and 
dividing 

M4 
iterating unit 
lengths is not 

necessary because 
children can 

operate 
inferentially or 
numerically on 

length 
measurements 

Stage IV 
generalize from 
specific cases to 
form a logical 

deduction 

 

ICPM 
Shows well-

developed ideas of 
precision and 

accuracy in selection 
of units; anticipates 
and monitors sets of 

related cases 

N3 
make property-

based 
transformations 

M5 
can understand 

and use formulas 
and variables 

6 – 8 
Measurement 

sources of 
measurement 
error can be 

examined and 
quantified; we 
can learn about 
properties of 
things using 

indirect 
measurement 

ALM 
Engages dynamic 

imagery to 
coordinate and 

operate internally on 
collections of units 

of units and 
collections of entire 
paths; construct and 
argue about derived 
units as a dimension; 

reasons about 
collection of 

measurements over 
time or across cases 
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Length Conservation 
 

 Aside from the Piagetian (Piaget, Inhelder, & Szeminksa, 1960) account of the 

learning of length measurement, the developmental accounts summarized in Table 1 

above all articulate levels of sophistication for conceptual and procedural knowledge for 

length measurement. In Piaget and his colleagues’ work (1960), the role of conservation 

of length, the recognition that length remains invariant under transformation, constrained 

concept growth for length measurement. According to Fischbein’s (1987) theory on 

intuition, the ability or inability to conserve length is an intuitive apprehension. 

Therefore, Piaget’s account of the learning of length measurement also attends to 

intuition as length conservation. 

 In the decades after Piaget and his colleagues (Piaget, Inhelder, & Szeminksa, 

1960) published their findings, researchers in mathematics education (see Carpenter, 

1975; Hiebert, 1981a, 1981b) showed that children’s concept growth for length 

measurement is not constrained by the development of conservation. For example, in his 

work with some length conserving and non-conserving children in Grade 1, Hiebert 

(1981a, 1981b) investigated the effect of instruction on some of the key conceptual 

foundations of length measurement, such as unit iteration and the relationship between 

the size and number of units, on their ability to conserve length. He found that children’s 

ability to iterate units of length had no impact on their ability to conserve; however, 

recognition of the relationship between the size and number of units needed to measure a 

length was related to conservation. 

 Results from research have indicated that there exists a general lack of 

relationship between the conservation of length and understanding of length measurement 
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concepts and procedures (Clements, 1999; Lehrer, 2003). Therefore, for the case of 

length conservation, research has shown that there exists a general lack of relationship 

between intuition for path length and conceptual and procedural understanding of length 

measurement. 

Intuitions for Path Length 

 Researchers have explored students’ intuitions about length in the contexts of 

rectilinear paths (Barrett & Clements, 2003; Chiu, 1996). Chiu (1996) explored sixth 

grade students’ origins, uses, and interactions of students’ intuitions in the context of 

comparing rectilinear paths. In keeping with Fischbein’s (1987) characterization of 

intuition, he defined intuitions as “self-evident notions that are robust, holistic, and 

conceptual” (Chiu, 1996, p. 479). First, intuitions are robust because they are applicable 

in many situations and alternatives are not plausible. Intuitions are holistic because they 

retain meaning only as a whole. Finally, intuitions are conceptual because creating and/ 

or applying an intuition requires conceptualizing beyond just immediate perception. 

 The sixth grade students in Chiu’s (1996) study repeatedly used a limited number 

of intuitions, which originated from their everyday experiences: compression, detour, 

complexity, and straightness. Students who used the compression intuition discussed the 

unfolding or straightening of the path and referred to a path as being longer than it seems 

because it is compressed. The detour intuition appeared as students discussed a path in 

terms of its wandering away from the destination or doing something else instead of 

moving toward it. The complexity intuition emerged as students attended to the number 

of components such as segments or turns when comparing rectilinear paths. Students who 

relied on the straightness intuition chose a particular path as the shortest because it was 



 

 38

straighter than another path without providing justification. Chiu distinguished these four 

intuitions from analytic procedures and complex algorithms. An analytic procedure, such 

as using a ruler to measure each path and comparing the lengths, or applying an “align-

and-compare algorithm” (Chiu, 1996, p. 485), which involves projecting corresponding 

horizontal and vertical segments, are not intuitions. 

 Chiu (1996) posed one rectilinear path length comparison task within each of two 

problem-solving sessions. In the initial session, he first posed the tasks of ranking the 

lengths of three rectilinear paths. For children who did not solve the problem, he provided 

access to a ruler, graph paper, index cards, paper clips, rubber bands, string, scissors, and 

tacks to afford the opportunity for the child to get perceptual feedback. If a child did not 

use the align-and-compare algorithm, he encouraged the child to construct the algorithm 

through the use of guiding questions. He found that every child used at least one 

intuition. Many of the children used a variety of intuitions when comparing and ranking 

rectilinear paths by length; these intuitions supported one another in some instances and 

provided conflicting information in others. Even after being taught an applicable 

algorithm for comparing sets of rectilinear paths by length, they first used their intuitions 

before applying the algorithm. Chiu concluded that middle school students’ intuitions for 

rectilinear paths were sparsely connected and coexisted with standard mathematical 

knowledge, such as the align-and-compare algorithm. 

 Chiu (1996) regarded these intuitions not as misconceptions, but as productive 

knowledge pieces. He suggested that children “may learn more by assessing them with 

more sophisticated criteria, such as range of applicability, ease of use, and coherence with 

other ideas” (p. 500). Many of the children applied a variety of intuitions to solve the 
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problems that Chiu posed; therefore, he argued for instruction that helps children 

“develop tools to coordinate and elaborate them, thereby avoiding indecision and 

capitalizing on learning opportunities” (p. 500). Chiu suggested that children’s intuitions 

for path length serve as an important foundation for mathematical concepts. For example, 

the detour and straightness intuitions are particularly powerful for understanding the 

triangle inequality theorem. Imagining decomposing a triangle into two paths, a straight 

path consisting of a single segment and a bent path consisting of two segments, and 

comparing those paths by length can help children link their path length intuitions to 

formal mathematics. 

 In their work, Barrett and Clements (2003) found evidence of intuitive thinking 

for path length when investigating children’s developing abstractions for linear 

measurement. Over the course of their six-month teaching experiment with four children 

in Grade 4, students were presented a task involving a 24-unit notched straw 

manipulative to make rectangles and triangles that had a perimeter of 24, and drew 

records of the rectangles and triangles they had made with the straw manipulative. When 

asked to respond to a fictitious student who had double counted corner tick marks in a 

drawing of a straw triangle, one of the four students, Alex, said that tick marks at corners 

should be counted twice because “corners count for more.” Alex explained that paths 

with more corners are longer because one must turn more when traversing them. Barrett 

and Clements (2003) noted that Alex’s explanation is evidence of Chiu’s (1996) 

description of intuitive thinking for path length, which is deeply ingrained and based on 

children’s informal experiences. Alex’s response suggests that his developing 

abstractions for linear measurement, with respect to establishing exact correspondence 
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between counting and linear dimensions of paths, interact with his intuitive thinking for 

path length.  

Psychological Foundations of Intuitions for Path Length 

 Studies in mathematics education (i.e., Barrett & Clements, 2003; Chiu, 1996; 

Clements, Battista, Sarama, & Swaminathan, 1996; Mitchelmore, 1997) and psychology 

(i.e., Montello, 1997; Pressey, 1974; Thordyke, 1981;) have explored the psychological 

foundations of intuitions for path length. The complexity intuition (Chiu, 1996), observed 

by an attention to the number of segments or turns when comparing rectilinear paths, has 

been documented by psychologists across several studies. Allen (1981) and Montello 

(1997) documented the “route segment” hypothesis, which they described as people’s 

tendency to provide longer estimates for paths that are partitioned into several separate 

segments. Sadalla and Staplin (1980) observed a “clutter effect” on people’s judgments 

or estimates for path length. In their study, people who crossed several intersections 

estimated length to be longer than people who crossed fewer intersections. Byrne (1979) 

found that people tend to overestimate lengths of routes with a greater number of bends. 

Thorndyke (1981) observed a similar phenomenon. In his study, he concluded that people 

overestimate length of routes with a greater number of intervening points. All of these 

studies suggest that the complexity intuition is robust across a wide age range and across 

a wide variety of contexts (e.g., Thordyke, 1981; Kosslyn, Pick & Fariello, 1974; Luria, 

Kinney; & Weissman, 1967; Pressey, 1974). 
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CHAPTER III 

METHODOLOGY 
 

Introduction 
 

In this chapter, I discuss the design of the qualitative research methodology that 

guided the study. I then describe participant selection and data collection procedures. 

Next, I discuss the design and coding, as well as procedures used for measuring the 

validity of a participant selection instrument, a written length measurement assessment. 

This is followed by a section in which I describe how interview participants were selected 

and interview data were collected. Finally, I explain the design of the interview tasks, 

highlighting the purpose for including each task, the methods used for analyzing 

students’ responses for the interview data, and the procedures used for the frequency 

analysis that informed elaborations to the current hypothetical learning trajectory (LT) for 

length measurement (Clements et al., in press). 

Overview of the Study Design and Procedures 

 The study seeks to relate students’ intuitive and analytical thinking for path length 

to an LT for length measurement (Clements et al., in press). Specifically, this study 

explores the intuitions and analytical strategies that elementary, middle, and secondary 

students use when comparing rectilinear as well as curvilinear paths in two-dimensional 

space by length, which has not been addressed in prior studies. This study is exploratory 

in nature; therefore, I planned it according to a basic qualitative research design 
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(Merriam, 2009) so that I would be able to follow new or unexpected themes present in 

the data. The design of this study makes use of a written length LT-based assessment 

administered to a sample of students and structured, task-based interviews with a subset 

of the sample (Goldin, 2000). The design of this study was informed by methods used in 

previous research that was focused on extending LTs for length (Beck, Eames, Cullen, 

Barrett, Clements, & Sarama, 2014), volume (Kara, 2013), and area measurement 

(Cullen, Miller, Witkowksi-Rumsey, Barrett, & Sarama, 2011). These studies made use 

of a similar methodological organizing structure for extending an LT. Key elements of 

this method of extending an LT include a) designing tasks that reveal student thinking for 

an aspect not addressed in the LT, b) presenting those tasks to a sample of students that 

include some students at the same LT levels and some at adjacent LT levels, c) describing 

and differentiating students’ responses to each task, and d) comparing the strategies of 

students within the same LT level and across adjacent LT levels to inform 

recommendations for extensions to the LT. 

 In the present study, the aspect not addressed in the LT were student’s intuitions 

and analytical strategies for comparing sets of rectilinear or curvilinear paths. I designed 

task-based interviews (Goldin, 2000) to reveal students’ intuitive and analytical thinking 

for rectilinear and curvilinear paths. In addition, I used a written length LT-based 

assessment, which was designed to probe students’ thinking at different levels of the 

length LT so that the level best describing each participant’s conceptual and procedural 

knowledge for length measurement could be identified for the purpose of recruiting a 

sample of students that include some students at the same LT levels and some at adjacent 

LT levels. I coded students’ responses to the written LT-based assessment using the 
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length LT. I described and differentiated students’ responses to the structured, task-based 

interviews (Goldin, 2000) using an existing coding scheme (Chiu, 1996) and a constant 

comparative method (Corbin & Strauss, 2008). I then compared strategies among 

students within the same level and across adjacent levels to inform recommendations for 

extending the length LT with respect to students’ intuitions and analytical strategies for 

rectilinear and curvilinear path length. 

 Because one of the goals of this study is to extend the literature on children’s 

conceptions of length measurement beyond elementary aged children to include middle 

and secondary school students, I recruited participants from Grades 4, 6, 8, and 10 as 

both a convenient and purposeful sample. The written LT-based assessment (Appendix 

A) was administered as part of regular classroom activities to all of the students in each 

grade included in the study for the purpose of probing students’ thinking at different 

levels of the length LT and identifying the level that best described each student’s level 

of sophistication for length measurement. The length LT level placements attributed to 

each of the students in the entire sample informed the selection of a subset of these 

students to participate in two individual, task-based interviews designed to probe 

students’ intuitive and analytical thinking for rectilinear and curvilinear path length. 

Participant Selection and Data Collection Procedures 

Participants and Context for Research 

The sample consisted of 82 consenting students: 22 each in Grades 4 and 6, 20 in 

Grade 8, and 18 in Grade 10. I recruited participants from two different private schools in 

the Midwest, one for pre-K – 8 students and another for pre-K – 12. At the pre-K – 8 

school, I selected participants from two classes each in Grades 4, 6, and 8. I selected the 
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18 consenting Grade 10 participants from the pre-K – 12 school where there were a total 

of 22 Grade 10 students enrolled in Algebra I, Algebra II, and advanced math. 

 The pre-K – 8 school, from which I recruited the students in Grades 4, 6 and 8 

offers an academic program that includes five core subjects: language arts, math, reading, 

science, and social studies. Classes in religion, physical education, art, computers, choral 

music, and instrumental music are also included. 

 The pre-K – 12 school, from which I selected the Grade 10 students is an 

independent liberal arts, college-preparatory school. Students at all levels take six core 

subjects: Bible, history, English, science, math, and foreign language. In addition, 

students in Grades 9 through 12 may elect to take art, music, physical education, or 

technology to supplement the six core subjects. Dual-credit and on-line courses are also 

made available to them. 

Data Collection Procedures 

I administered a participant selection instrument, a written length LT-based 

assessment, to all Grade 4, 6, and 8 students at the pre-K – 8 school and Grade 10 

students at the pre-K – 12 school. I coded assessments for the 82 consenting students 

using the levels of the length LT; these coding procedures and methods for analysis are 

described in the sections below. Based on the results of this assessment, I recruited a 

subset of 16 students, who represented the four grade levels and four length LT levels 

relevant to the present study, to participate in two structured task-based interviews. 

Participant Selection Instrument: Design and Coding 

Prior to the study, I anticipated that most of the students across Grades 4 through 

10 would be operating within the Consistent Length Measurer (CLM), Conceptual Ruler 
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Measurer (CRM), Integrated, Conceptual Path Measurer (ICPM), and Abstract Length 

Measurer (ALM) levels of the length LT. Therefore, I selected items, which were initially 

developed and refined through a process of piloting within NSF-funded projects aimed at 

studying elementary (DRL 0732217) and middle school (DRL 1222944) students’ 

conceptions of spatial measurement, to be accessible to students within the these four 

levels. 

Each assessment task was designed to elicit observable strategies that are 

indicative of particular mental actions and objects that differentiate the levels of the 

established length LT (Clements et al., in press). Some of the tasks included in the written 

LT-based assessment were designed to reveal thinking at a variety of LT levels. For the 

purpose of designing the LT-based assessment for this study, I mapped tasks to the 

highest length LT level of thinking they have been shown to elicit in prior research (DRL 

0732217; DRL 1222944). To provide confidence in the level placement assigned by this 

instrument, I included two items each for the CLM (see Figures 1 and 2) and CRM levels 

(see Figures 3 and 4). Because prior research has documented difficulties with designing 

items that can differentiate students at the highest levels of the length LT (Clements et al., 

in press), I included a set of three items to probe students’ thinking at the ICPM and 

ALM levels (see Figures 5, 6, and 7). The following sections describe my design, the 

purpose of including each task, as well as the methods or procedures that I used to 

analyze students’ responses to the written length LT-based assessment. 

CLM level items. Assessment Tasks 1 and 2 shown in Figures 8 and 9 below 

have been shown to elicit thinking at the EE, LURR, or CLM levels of the length LT 

(Barrett et al., 2012). Therefore, in the present study, I regarded them as CLM-level 



 

items. (Note: The actual length LT

the Grade 4, 6, 8, and 10 classes is included in Appendix A.)

Figure 8. Written LT-based assessment CLM 

Figure 9. Written LT-based ass

The CLM level items shown in Figures 

ability to integrate intervals and endpoints of those intervals

2009). For example, when resolving the misaligned paper strip item in Figure 

who report the length of the misaligned paper strip as 7, the number corresponding to the 

endpoint, have developed the implicit concepts that objects can be composed of smaller 

objects and that a count of those objects can represent a measure o

object. However, they have not yet developed the concept of unit iteration; this is 

consistent with EE-level thinking. Students, who incorrectly count tick marks and report 

the length of the paper strip as 6, have begun to develop the 

tick mark counting strategy is indicative of LURR

resolve this task by counting intervals, correctly counting tick marks at the end of each 

interval, or operating arithmetically on meas
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items. (Note: The actual length LT-based assessment in the form that was administered to 

the Grade 4, 6, 8, and 10 classes is included in Appendix A.)  

based assessment CLM level item, Task 1. 

based assessment CLM level item, Task 2. 

The CLM level items shown in Figures 8 and 9 were designed to investigate students’ 

ability to integrate intervals and endpoints of those intervals (Barrett et al., 2012; Cullen, 

. For example, when resolving the misaligned paper strip item in Figure 

who report the length of the misaligned paper strip as 7, the number corresponding to the 

endpoint, have developed the implicit concepts that objects can be composed of smaller 

objects and that a count of those objects can represent a measure of an attribute of an 

object. However, they have not yet developed the concept of unit iteration; this is 

level thinking. Students, who incorrectly count tick marks and report 

the length of the paper strip as 6, have begun to develop the concept of unit iteration. This 

tick mark counting strategy is indicative of LURR-level thinking. Children who correctly 

resolve this task by counting intervals, correctly counting tick marks at the end of each 

interval, or operating arithmetically on measures (i.e., computing 7 – 2) and answer 5, 

nt in the form that was administered to 

 

 

were designed to investigate students’ 

(Barrett et al., 2012; Cullen, 

. For example, when resolving the misaligned paper strip item in Figure 8, students 

who report the length of the misaligned paper strip as 7, the number corresponding to the 

endpoint, have developed the implicit concepts that objects can be composed of smaller 

f an attribute of an 

object. However, they have not yet developed the concept of unit iteration; this is 

level thinking. Students, who incorrectly count tick marks and report 

concept of unit iteration. This 

level thinking. Children who correctly 

resolve this task by counting intervals, correctly counting tick marks at the end of each 

2) and answer 5, 



 

show that they see a measure as a ratio comparison between an object and a unit, and they 

have a well-developed concept of unit iteratio

thinking. Therefore, I considered 

written length LT-based assessment. Task 2 (Figure 

also probes students’ capabilities for maintaining this integration of intervals and 

endpoints for units, inches, and subo

CRM level items.

shown to indicate whether 

CRM (Clements et al., in press).

Figure 10. Written LT-based assessment 

Figure 11. Written LT-based assessment 
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show that they see a measure as a ratio comparison between an object and a unit, and they 

developed concept of unit iteration. This is consistent with CLM l

considered this item to be a CLM level item when designing the 

based assessment. Task 2 (Figure 9), which involves fractional units, 

also probes students’ capabilities for maintaining this integration of intervals and 

endpoints for units, inches, and subordinate units, quarter inches. 

CRM level items. Assessment Tasks 3 and 4 (Figures 10 and 11) have been 

shown to indicate whether students are at the CRM level of the length LT or are not yet at 

CRM (Clements et al., in press). 

 

based assessment CRM level item, Task 3. 

 

based assessment CRM level item, Task 4. 

show that they see a measure as a ratio comparison between an object and a unit, and they 

n. This is consistent with CLM level 

level item when designing the 

), which involves fractional units, 

also probes students’ capabilities for maintaining this integration of intervals and 

) have been 

level of the length LT or are not yet at 



 

These two tasks were designed to explore students’ capabilities for projecting or 

translating given lengths to determine missing lengths 

context of a rectilinear figure, Task 3

11). A correct numerical response of 9 for Task 3 or 210 for Task 4 indicates that a 

student is capable of projecting or translati

missing lengths, which is consistent with 

indicates that a student is 

ICPM and ALM level items.

14) have been shown to be accessible to children at the CLM, 

levels of the length LT (DRL 0732217

designed to explore students’ ability to find several related cases of polygons with the 

same perimeter and to relate those cases to one another by logical comparison, which is 

ICPM level thinking (Clements et al., in press)

coping efficiently and precisely with subordinate units in the context of fin

cases of polygons with the same perimeter. Part b for both items 5 and 6 also have the 

potential to reveal whether students are aware that subdividing a unit into subunits is a 

process that is potentially unlimited, which is 

Figure 12. Written LT-based assessment 
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These two tasks were designed to explore students’ capabilities for projecting or 

translating given lengths to determine missing lengths (Clements et al., in press) 

context of a rectilinear figure, Task 3 (Figure 10), and a rectilinear path, Task 4

A correct numerical response of 9 for Task 3 or 210 for Task 4 indicates that a 

student is capable of projecting or translating given lengths to determine one or more 

missing lengths, which is consistent with CRM level thinking. An incorrect response 

 not yet at the CRM level. 

ICPM and ALM level items. Assessment Tasks 5, 6, and 7 (Figures 

) have been shown to be accessible to children at the CLM, CRM, ICPM, and 

(DRL 0732217; DRL 1222944). Specifically, Tasks 5 and 6 were 

designed to explore students’ ability to find several related cases of polygons with the 

me perimeter and to relate those cases to one another by logical comparison, which is 

(Clements et al., in press). Task 6 also reveals students’ abilities for 

coping efficiently and precisely with subordinate units in the context of fin

cases of polygons with the same perimeter. Part b for both items 5 and 6 also have the 

potential to reveal whether students are aware that subdividing a unit into subunits is a 

process that is potentially unlimited, which is ALM-level thinking. 

based assessment ICPM and ALM level item, Task 5.

These two tasks were designed to explore students’ capabilities for projecting or 

Clements et al., in press) in the 

, and a rectilinear path, Task 4 (Figure 

A correct numerical response of 9 for Task 3 or 210 for Task 4 indicates that a 

ng given lengths to determine one or more 

level thinking. An incorrect response 

Assessment Tasks 5, 6, and 7 (Figures 12, 13, and 

, ICPM, and ALM 

. Specifically, Tasks 5 and 6 were 

designed to explore students’ ability to find several related cases of polygons with the 

me perimeter and to relate those cases to one another by logical comparison, which is 

students’ abilities for 

coping efficiently and precisely with subordinate units in the context of finding related 

cases of polygons with the same perimeter. Part b for both items 5 and 6 also have the 

potential to reveal whether students are aware that subdividing a unit into subunits is a 

 

level item, Task 5. 



 

Figure 13. Written LT-based assessment 

For Tasks 5 and 6, drawings that reflect geometric inconsistencies, such as a rectangle 

with opposite sides labeled as different lengths, 

coordinate linear extent with geometric properties. This is consistent with 

Students who provide drawings that are

evidence of coordinating a 

that reflect several related cases of paths with the same length or polygons

perimeter, as well as evidence of relating those cases to one another by logical 

comparison, indicate an ability to conceive of a group of units as a flexibly wrapped 

string along the length of a path or perimeter of a polygon

ICPM level (Clements et al., in press)

paths with a fixed length or polygons with a fixed perimeter, including those with non

integer segments or side lengths, to formulate and justify an argu

the potentially unlimited process of subdividing units, exhibit 

et al., in press). 

The final task included on the written length LT

designed to assess students’ ability to coordinate geometric properties, such as angle, 

with linear extent. These mental actions are consistent with 

current LT for length measurement (Clements et al., in press). Task 7 is shown

14 below. 
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based assessment ICPM and ALM level item, Task 6.

Tasks 5 and 6, drawings that reflect geometric inconsistencies, such as a rectangle 

with opposite sides labeled as different lengths, indicate that a student does

coordinate linear extent with geometric properties. This is consistent with 

who provide drawings that are not geometrically inconsistent but

evidence of coordinating a set of comprehensive cases exhibit the CRM level. 

that reflect several related cases of paths with the same length or polygons

as well as evidence of relating those cases to one another by logical 

indicate an ability to conceive of a group of units as a flexibly wrapped 

string along the length of a path or perimeter of a polygon; this is consistent with the 

(Clements et al., in press). Responses that reflected a synthesis of sets of 

paths with a fixed length or polygons with a fixed perimeter, including those with non

integer segments or side lengths, to formulate and justify an argument, while attending to 

the potentially unlimited process of subdividing units, exhibit the ALM level (Clements 

The final task included on the written length LT-based assessment, Task 7, 

designed to assess students’ ability to coordinate geometric properties, such as angle, 

with linear extent. These mental actions are consistent with the highest level of the 

current LT for length measurement (Clements et al., in press). Task 7 is shown

 

 

level item, Task 6. 

Tasks 5 and 6, drawings that reflect geometric inconsistencies, such as a rectangle 

indicate that a student does not yet 

coordinate linear extent with geometric properties. This is consistent with the CLM level. 

but do not show 

level. Responses 

that reflect several related cases of paths with the same length or polygons with the same 

as well as evidence of relating those cases to one another by logical 

indicate an ability to conceive of a group of units as a flexibly wrapped 

stent with the 

sponses that reflected a synthesis of sets of 

paths with a fixed length or polygons with a fixed perimeter, including those with non-

ment, while attending to 

the ALM level (Clements 

based assessment, Task 7, was 

designed to assess students’ ability to coordinate geometric properties, such as angle, 

the highest level of the 

current LT for length measurement (Clements et al., in press). Task 7 is shown in Figure 



 

Figure 14. Written LT-based assessment 

Written Length LT- based 

I coded each student’s response for each of the seven items of the written length 

LT-based assessment using the levels of the length LT, based on the observable strategies 

used to generate a solution. Because the levels of the length LT are described in terms of 

the observable strategies and corresponding mental actions or objects, 

strategies to assign a length LT level claim for each student for each of the seven tasks on 

the assessment instrument. 

consistent with any of the levels of the length LT, as “No Claim.”

I tracked the distribution of the level claims for each task within and across each 

grade. I then compared the d

such as the pair of CLM items
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based assessment ICPM and ALM level item, Task 7.

based Assessment: Task-by-Task Analysis 

ach student’s response for each of the seven items of the written length 

based assessment using the levels of the length LT, based on the observable strategies 

used to generate a solution. Because the levels of the length LT are described in terms of 

e observable strategies and corresponding mental actions or objects, I then used 

strategies to assign a length LT level claim for each student for each of the seven tasks on 

the assessment instrument. I coded students’ observable strategies, which we

consistent with any of the levels of the length LT, as “No Claim.” 

he distribution of the level claims for each task within and across each 

I then compared the distributions of level claims for conceptually congruent tasks, 

the pair of CLM items, Tasks 1 and 2 (Figures 9 and 10), for the purpose of 

 

 

level item, Task 7. 

ach student’s response for each of the seven items of the written length 

based assessment using the levels of the length LT, based on the observable strategies 

used to generate a solution. Because the levels of the length LT are described in terms of 

I then used these 

strategies to assign a length LT level claim for each student for each of the seven tasks on 

tudents’ observable strategies, which were not 

he distribution of the level claims for each task within and across each 

istributions of level claims for conceptually congruent tasks, 

for the purpose of 



 

describing the validity of the items with respect to assessing the mental actions and 

objects associated with the intended length LT level for the grade

I coded students’ responses to Tasks 1 and 2 as EE, LURR, or CLM. 

distribution of levels exhibited by the 82 Grade 4, 6, 8, and 10 students’ responses for 

Tasks 1 and 2 (see Figures 

Figure 15. Distribution of 

Figure 15 shows that the distribution of level placements within each grade is generally 

consistent across Tasks 1 and 2. 

exhibited CLM level thinking on Tasks 1 and 2 inc

from Grades 6 to 8. However, the increase in 

consistent across Grades 8 and 10. Fewer instances of EE level thinking were observed 

on Task 2, the fractional broken ruler task, tha

I coded students’ responses f

CRM or not yet CRM. Figure 

to Tasks 3 and 4 within each of Grades 4, 6,

Figure 16. Distribution of 
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describing the validity of the items with respect to assessing the mental actions and 

objects associated with the intended length LT level for the grades included in the study.

coded students’ responses to Tasks 1 and 2 as EE, LURR, or CLM. 

distribution of levels exhibited by the 82 Grade 4, 6, 8, and 10 students’ responses for 

(see Figures 9 and 10) are shown in Figure 15 below. 

 

. Distribution of length LT levels for Tasks 1 and 2. 

shows that the distribution of level placements within each grade is generally 

consistent across Tasks 1 and 2. The percentage of students within each grade who 

exhibited CLM level thinking on Tasks 1 and 2 increased from Grades 4 to 6 and again 

from Grades 6 to 8. However, the increase in frequency of CLM level thinking remained 

consistent across Grades 8 and 10. Fewer instances of EE level thinking were observed 

on Task 2, the fractional broken ruler task, than on Task 1, the integer broken ruler task.

I coded students’ responses for Tasks 3 and 4 (see Figures 10 and 

. Figure 16 below illustrates the distribution of students’ responses 

to Tasks 3 and 4 within each of Grades 4, 6, 8, and 10. 

 

. Distribution of length LT levels for Tasks 3 and 4. 

describing the validity of the items with respect to assessing the mental actions and 

included in the study. 

coded students’ responses to Tasks 1 and 2 as EE, LURR, or CLM. The 

distribution of levels exhibited by the 82 Grade 4, 6, 8, and 10 students’ responses for 

 

shows that the distribution of level placements within each grade is generally 

he percentage of students within each grade who 

reased from Grades 4 to 6 and again 

CLM level thinking remained 

consistent across Grades 8 and 10. Fewer instances of EE level thinking were observed 

n on Task 1, the integer broken ruler task. 

and 11) as either 

below illustrates the distribution of students’ responses 

 



 

The distribution of “CRM

consistent across Tasks 3 and 4. However, within each grade, fewer students used 

level thinking on Task 4 than on Task 3.  Figure 

instances of CRM level thinking across Grades 4, 6, 8, and 10. That is, at higher grade 

levels, higher percentages of students used 

I coded students’ repsonses on Tasks 5 and 6 as No Claim; CLM; 

ICPM; (ICPM), which indicates some evidence of ICPM level thinking; ICPM; and 

ALM. Figure 17 below shows the distribution of level claims for Tasks 5 and 6 within 

Grades 4, 6, 8, and 10. 

Figure 17. Distribution of 

Between 30 and 45% of students’ responses within each grade were coded as “No Claim” 

for Task 5; whereas, only 6% of students in one single grade level, Grade 10, were coded 

as “No Claim” for Task 6. This suggests that Task 5 may not be a valid task for el

students’ thinking at the CLM, 

5 and 6, instances of the ALM

percentage of occurrences

Grade 4 showed evidence of ICPM level

ICPM” decreased across Grades 4, 6, 8, and 10. Claims of some evidence of ICPM level 

thinking, denoted as “(ICPM)”
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CRM” and “not yet CRM” level thinking within each grade is largely 

consistent across Tasks 3 and 4. However, within each grade, fewer students used 

level thinking on Task 4 than on Task 3.  Figure 16 illustrates a pattern of increased 

level thinking across Grades 4, 6, 8, and 10. That is, at higher grade 

levels, higher percentages of students used CRM level thinking to resolve Tasks 

tudents’ repsonses on Tasks 5 and 6 as No Claim; CLM; 

ICPM; (ICPM), which indicates some evidence of ICPM level thinking; ICPM; and 

below shows the distribution of level claims for Tasks 5 and 6 within 

 

. Distribution of length LT levels for Tasks 5 and 6. 

Between 30 and 45% of students’ responses within each grade were coded as “No Claim” 

for Task 5; whereas, only 6% of students in one single grade level, Grade 10, were coded 

as “No Claim” for Task 6. This suggests that Task 5 may not be a valid task for el

students’ thinking at the CLM, CRM, ICPM, and ALM levels of the length LT. For Tasks 

ALM  level did not emerge until Grades 8 and 10, with a higher 

s in Grade 10. Tasks 5 and 6 showed that children a

evidence of ICPM level thinking. For Task 6, instances of “not yet 

ICPM” decreased across Grades 4, 6, 8, and 10. Claims of some evidence of ICPM level 

thinking, denoted as “(ICPM)” in Figure 17, increased from Grade 4 to 6. 

” level thinking within each grade is largely 

consistent across Tasks 3 and 4. However, within each grade, fewer students used CRM 

illustrates a pattern of increased 

level thinking across Grades 4, 6, 8, and 10. That is, at higher grade 

level thinking to resolve Tasks 3 and 4.  

tudents’ repsonses on Tasks 5 and 6 as No Claim; CLM; CRM; not yet 

ICPM; (ICPM), which indicates some evidence of ICPM level thinking; ICPM; and 

below shows the distribution of level claims for Tasks 5 and 6 within 

 

Between 30 and 45% of students’ responses within each grade were coded as “No Claim” 

for Task 5; whereas, only 6% of students in one single grade level, Grade 10, were coded 

as “No Claim” for Task 6. This suggests that Task 5 may not be a valid task for eliciting 

levels of the length LT. For Tasks 

level did not emerge until Grades 8 and 10, with a higher 

hildren as young as 

. For Task 6, instances of “not yet 

ICPM” decreased across Grades 4, 6, 8, and 10. Claims of some evidence of ICPM level 

increased from Grade 4 to 6. Full placement 



 

at ICPM, denoted as “ICPM” in Figure 

stable across Grades 8 and 10. Instances of 

 I selected Task 7 on the written length LT

reveal students’ thinking at th

to this task yieded codes of “No Claim” in most instances. Therefore, 

this task for further for analysis within and across Grades 4, 6, 8, 

Written Length LT- based 

Based on the collection of seven tasks, which made up the written length LT

based assessment, I made 

participants in the sample (22 students in Grades 4 and 6, 20 

10). I tracked the distribution of aggregate level claims within and across the grade levels 

for the purpose of comparing the performance of each interview participant to their peers.

Figure 18 below illustrates the distribution of these level placements within each grade.

Figure 18. Distribution of predominant length LT levels within each grade.

In Grade 4, all of the students placed in the EE, LURR, and CLM levels of the LT for 

length measurement. Most of the students in Grade 6 exhibited EE, LURR, and CLM 

level thinking, but some students showed evidence of growth into the 

ICPM (5%) levels. In Grade 8, most of the students showed evidence of 

ICPM (50%) level thinking; however, the lowest 20% of the class still operated at the EE 

(5%), LURR (5%), and CLM (10%) levels of the length LT. By Grade 10, none of the 
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at ICPM, denoted as “ICPM” in Figure 16, increased from Grade 6 to 8, and 

stable across Grades 8 and 10. Instances of the ALM level increased from Grade

Task 7 on the written length LT-based assessment (see 

students’ thinking at the ALM level of the length LT; however, students’ responses 

to this task yieded codes of “No Claim” in most instances. Therefore, I did not consider 

further for analysis within and across Grades 4, 6, 8, and 10.

based Assessment: The Distribution of Level Placements

Based on the collection of seven tasks, which made up the written length LT

I made a predominant length LT level claim for each of the 82 

sample (22 students in Grades 4 and 6, 20 in Grade 8, and 18 in Grade 

he distribution of aggregate level claims within and across the grade levels 

for the purpose of comparing the performance of each interview participant to their peers.

below illustrates the distribution of these level placements within each grade.

 

. Distribution of predominant length LT levels within each grade.

In Grade 4, all of the students placed in the EE, LURR, and CLM levels of the LT for 

length measurement. Most of the students in Grade 6 exhibited EE, LURR, and CLM 

level thinking, but some students showed evidence of growth into the CRM

) levels. In Grade 8, most of the students showed evidence of CRM

ICPM (50%) level thinking; however, the lowest 20% of the class still operated at the EE 

(5%), LURR (5%), and CLM (10%) levels of the length LT. By Grade 10, none of the 

, and remained 

level increased from Grades 8 to 10. 

 Figure 14) to 

owever, students’ responses 

I did not consider 

 

lacements 

Based on the collection of seven tasks, which made up the written length LT-

a predominant length LT level claim for each of the 82 

in Grade 8, and 18 in Grade 

he distribution of aggregate level claims within and across the grade levels 

for the purpose of comparing the performance of each interview participant to their peers. 

below illustrates the distribution of these level placements within each grade. 

. Distribution of predominant length LT levels within each grade. 

In Grade 4, all of the students placed in the EE, LURR, and CLM levels of the LT for 

length measurement. Most of the students in Grade 6 exhibited EE, LURR, and CLM 

CRM (27%) and 

CRM (30%) and 

ICPM (50%) level thinking; however, the lowest 20% of the class still operated at the EE 

(5%), LURR (5%), and CLM (10%) levels of the length LT. By Grade 10, none of the 
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students predominantly exhibited EE, LURR, or CLM level thinking on the written 

assessment tasks. Over half of the Grade 10 students placed at the ALM level with the 

rest of the students at the ICPM (22%) and CRM (22%) levels. 

Written LT-based Assessment: Four Length LT Level Groups 

From the sample of 82 students, a subset of 16 participants, who were operating 

predominantly at the CLM, CRM, ICPM, or ALM levels, was selected for two individual 

interviews. Students whose responses on the written length LT-based assessment that 

were clearly identifiable using the length LT, and whose aggregate level claim reflected a 

placement at CLM, CRM, ICPM, or ALM were considered for the interviews. Table 2 

shows each of the 16 interview participant’s predominant LT level placement in relation 

to the distribution of predominant length LT levels within his or her grade (Figure 18). 

Table 2 

Interview Participants’ Length LT Placements Relative to Grade Level Distribution 

Name 
Predominant Length 
LT Level Placement 

Grade 

Length LT 
Placement Relative 
to the Distribution 

of Length LT Levels  
Mia CLM Grade 4 Upper 41% 

Kevin CLM Grade 4 Upper 41% 
Noah CLM Grade 4 Upper 41% 
Jenny CLM Grade 4 Upper 41% 
Trent CRM Grade 6 Upper 32% 
Ned CRM Grade 6 Upper 32% 
Rose CRM Grade 6 Upper 32% 
Lynn CRM Grade 8 Lower 50% 
Grant ICPM Grade 6 Upper 5% 
Rick ICPM Grade 8 Upper 50% 
David ICPM Grade 8 Upper 50% 
Ruth ICPM Grade 8 Upper 50% 
Zane ALM Grade 10 Upper 56% 
Scott ALM Grade 10 Upper 56% 
Marie ALM Grade 10 Upper 56% 
Kyle ALM Grade 10 Upper 56% 
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I sought to evenly represent the four grade levels and the four length LT levels, with two 

girls and two boys within each of the four length LT levels. Because the only ALM level 

placements came from Grade 10 students, I first chose four Grade 10 ALM level 

participants. From there, I chose interview participants to form groupings of two girls and 

two boys operating predominantly at each of the CLM, CRM, and ICPM levels from 

Grades 4, 6, and 8. Because only 41% of Grade 4 students were at the CLM level, 33% of 

Grade 6 students were at the CRM level and above, 50% of Grade 8 students were at the 

ICPM level, and 56% of students were at least at the ALM level, most of the students 

recruited to participate in interviews performed in the top half of their grade on the 

written LT-based assessment (see Figure 18). 

Task-Based Interviews: Task Design 

 Each of the 16 interview participants was interviewed individually on two 

separate occasions through structured, task-based interviews (Goldin, 2000). The 

interviews consisted of a participant (student) and an interviewer interacting in relation to 

the tasks introduced to the student using a scripted protocol (Goldin, 2000), which I 

refined through pilot work. 

A total of 10 tasks were spread across two interviews, with five tasks included in 

each interview. The protocols for each interview are included in Appendix B. The 

duration of each interview varied from 20 to 30 minutes. The time between the two 

interviews for each individual student was less than three weeks. I presented each 

participant with the same tasks across those sessions in the same order. The interviews 

took place in the school building during class time. I asked the Grade 4, 6, 8, and 10 

teachers for the best time to interview the students to minimize interruption of normal 
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classroom activities. Table 3 below summarizes the schedule for interview data 

collection. 

Table 3 
 
Interview Data Collection Schedule 
 

Pseudonym Interview 1 Interview 2 
Mia 10/14/13 1:00 PM 10/21/13 1:00 PM 

Kevin 10/14/13 1:30 PM 10/21/13 1:30 PM 
Noah 10/14/13 2:15 PM 10/21/13 2:15 PM 
Jenny 10/14/13 2:45 PM 10/23/13 2:45 PM 
Lynn 10/15/13 9:15 AM 10/22/13 9:15 AM 
Rose 10/15/13 10:45 AM 10/22/13 10:45 AM 
Trent 10/15/13 1:45 PM 10/22/13 1:45 PM 
Ned 10/16/13 1:45 PM 10/23/13 1:45 PM 

David 10/15/13 12:15 PM 10/22/13 12:15 PM 
Rick 10/16/13 9:15 AM 10/23/13 9:15 AM 
Grant 10/16/13 10:00 AM 10/23/13 10:00 AM 
Ruth 10/16/13 12:15 PM 10/23/13 12:15 PM 
Scott 11/4/13 8:55 AM 11/5/13 8:55 AM 
Zane 11/4/13 9:20 AM 11/5/13 2:30 PM 
Marie 11/4/13 12:50 PM 11/5/13 12:50 PM 
Kyle 11/4/13 1:20 PM 11/5/13 1:20 PM 

 
 Structured, task-based interviews, involve an interviewer and participant(s) 

interacting within one or more scripted, preplanned tasks. The goal in a structured, task-

based interview is to “observe, record, and interpret complex behaviors and patterns in 

behavior, including subjects’ spoken words, interjections, movements, writings, 

drawings, actions on and with external materials, gestures, facial expressions, and so 

forth” (Goldin, 2000, p. 527). Because student thinking, reasoning, cognitive processes, 

internal representations, or knowledge structures cannot be directly observed, the aim of a 

task-based interview is to produce observable outcomes that can inform inferences about 

students’ thinking. The primary purpose for including structured, task-based interviews in 

this study (a total of 32) was to address the research question with respect to exploring 
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the intuitions and analytical strategies that elementary, middle, and secondary school 

students use when comparing rectilinear and curvilinear paths by length. 

 The exploration of student thinking during structured, task-based interviews 

proceeds according to four stages (Goldin, 2000). First, the question is posed and time is 

allowed for the child to respond. The interviewer responds with a nondirective follow-up, 

such as “Please, tell me more about that.” The second stage, in the event that the response 

from the subject is not spontaneous, the interviewer responds with minimal heuristic 

suggestions, such as “Could you show me using some of the materials on the table?” The 

third stage proceeds in the event that the description requested from stage 2 does not 

occur; this stage involves the guided use of a heuristic suggestion, such as “Do you see a 

pattern in the cards?” The fourth and final stage involves questioning that is exploratory 

and metacognitive in nature, such as “Could you explain how you thought about the 

task?” At each stage, the interviewer’s goal is to elicit “a complete, coherent verbal 

reason for each of the child’s responses, and a coherent external representation 

constructed by the child” (Goldin, 2000, p. 523). 

 I selected interview tasks to elicit observable evidence of students’ intuitive and 

analytical thinking for rectilinear and curvilinear paths as statements, gestures, and 

manipulations of tools. To draw out intuitive or analytical thinking, I asked students to 

compare sets of rectilinear paths and curvilinear paths without tools (Tasks 1, 2, 6A, 7, 

and 8A). Because of the scant body of research with respect to students’ thinking about 

curvilinear paths in two-dimensional space, I posed tasks that involved comparing a 

straight object and a curve (Tasks 3, 4, and 5), indirectly comparing two curves using a 

straight object (Tasks 6B and 8B), or measuring curves (Tasks 9 and 10). I posed the 
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same tasks in the same order to all students, and I selected tasks to be accessible to 

students at the CLM, CRM, ICPM, and ALM levels of the LT. Across the tasks, I varied 

the representation of the unit: no tool, a 4-inch stick, or a standard ruler. In addition, I 

varied the paths according to intuitive interference, such as the number of turns, deviation 

from endpoint (Chiu, 1996), and tightness of curve. The design process described above 

yielded four categories of conceptually congruent tasks, which I describe in Table 4 

below. 

Table 4 

Summary of Classes of Conceptually Congruent Interview Tasks 

Task Category Description Order Appearing in Interviews 
 

Comparing sets of rectilinear paths by lengths 
 

Tasks 1 and 2 

 
Comparing sets of curvilinear paths by lengths 

 
Tasks 6A, 7, and 8A 

 
Comparing curves and a straight object 

 
Tasks 3, 4, 5, 6B, and 8B 

 
Measuring a curve with a standard ruler 

 
Tasks 9 and 10 

 
The protocol for each interview in Appendix B contains a complete description of the 

implementation of each task. See Appendix C for images of the actual size that were 

given to students during the interviews. 

Overview of Interview 1 Tasks 

The first interview consisted of two rectilinear bent path comparison tasks, 

Interview Tasks 1 and 2 (Chiu, 1996), and three tasks that involved comparing a curve 

and a straight object, Interview Tasks 3, 4, and 5 (Clements et al., in press). 
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 The purpose of including the two rectilinear bent path comparison tasks (Chiu, 

1996) was to probe students’ intuitive and analytical thinking for comparing sets of 

rectilinear paths. To avoid potential confusion between the distance traveled and path 

length, I contextualized both tasks as comparing the lengths of “strings” or “paths.” 

 

Figure 19. Image of strings shown for Interview 1 Task 1. 

 

Figure 20. Image of paths shown for Interview 1 Task 2. 

The strings for Interview Task 1 and paths for Task 2 (Figures 19 and 20 above) were 

each printed on a separate transparency page. I overlapped all of the transparencies to 

show that the strings or paths connected the same points, designated as “A” and “B” for 

Task 1 and “Home” and “School” for Task 2. I asked students to compare the strings or 

paths by their lengths. I included a series of pre-planned follow-up questions in the 

protocol to probe students’ intuitive and analytical strategies for defending their claims 

about the order of the strings or paths by their lengths. 

 I also included tasks involving comparing a curve and a straight object (Clements 

et al, in press) to probe students’ intuitive and analytical thinking for curves. 

A

B
String 3

A

B
String 2String 1

B

A

School

Home

Path A
School

Home

Path B School

Home

Path C Path D

Home

School
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Figure 21. Image of curve shown for Interview 1 Task 3. 

 

Figure 22. Image of curve shown for Interview 1 Task 4. 

 

Figure 23. Image of curve shown for Interview 1 Task 5. 

For Interview Tasks 3, 4, and 5, I provided students with an image of a curve printed on a 

standard piece of paper, a 4-in. wooden stick, and a pen. I then asked students to compare 

the length of the curved path and the stick. I included a series of pre-planned follow-up 

questions in the interview protocol designed elicit students’ explanations about their ways 

of comparing the curve and the stick, whether they thought they had over- or 

underestimated when comparing, and why they thought they had over- or underestimated. 

Overview of Interview 2 Tasks 

The second interview consisted of curvilinear path comparison tasks, Interview 

Tasks 6A, 7, and 8A, tasks involving comparing two curves using a straight object, 
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Interview Tasks 6B and 8B (Clements et al., in press), and tasks involving measuring a 

curve with a ruler, Interview Tasks 9 and 10 (Grugnetti, Rizza, & Marchini, 2007). 

 The purpose of including the three curvilinear path comparison tasks was to 

extend the literature on path length intuition by probing students’ intuitive and analytical 

thinking for comparing sets of curvilinear paths by their lengths. 

 
Figure 24. Image of curve shown for Interview 2 Tasks 6A and 6B. 

 
 
Figure 25. Image of curve shown for Interview 2 Task 7. 

 
 
Figure 26. Image of curve shown for Interview 2 Tasks 8A and 8B. 

The curves for Tasks 6A and 8A were printed on standard pieces of paper. I asked 

students to compare the curves by their lengths without tools. For Task 7, each curve was 

printed on a separate transparency page. I overlapped the transparencies to show that the 

strings connected the same points, designated as A and B. I included a series of pre-

planned follow-up questions for Tasks 6A, 7, and 8A to probe students’ intuitive and 

analytical thinking while defending their claims about their order of the curves. 

String 3

B

A

B

A

String 2

B

String 1

A
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I included Tasks 6B and 8B to further probe students’ intuitive and analytical 

thinking for curves. After comparing the two curves without tools, I gave students a 4-

inch stick, which is a nonstandard unit, and a pen. I then asked them to use the stick to 

help them check the comparison they had made without tools about the order of the 

curves by their lengths. Similar to the structure of Interview Tasks 3, 4, and 5, I included 

a series of pre-planned follow-up questions to probe students ways of comparing the 

curves and straight object, whether they had over- or underestimated when comparing, 

and why they though they had over- or underestimated. 

I selected Interview Tasks 9 and 10 to probe students’ intuitive and analytical 

thinking for curves when using a standard tool for measuring length, a ruler. To vary the 

representation of the unit as well as to contextualize the image as an outline of a doorway 

on a blueprint, I printed the curves for Tasks 9 and 10 on gridded paper. 

 

Figure 27. Image of curve shown for Interview 2 Task 9. 

 

Figure 28. Image of curve shown for Interview 2 Task 10. 
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I gave students a standard ruler and a pen. I told them that the curve on the paper was the 

outline of a doorway on a blueprint, and asked them to measure the outline of the 

doorway in the most precise possible way. I included a series of pre-planned follow-up 

questions in the protocol for the purpose of probing students’ use of intuitions and 

analytical strategies while measuring the curve using a standard ruler. 

Interview Data Analysis 

 The data in this study were derived from the written length LT-based assessment 

and structured, task-based interviews. In addition to students’ written responses to the 

written length LT-based assessment, sources of data subjected to analysis included 

videotaped records of the task-based interviews and transcripts of these interviews, my 

reflections, and students’ written work generated during the interviews. The sections 

below describe the methods and procedures that I used to analyze the interview data. 

I distinguished intuitions and analytical strategies from each other according to 

the definition and properties of an intuition as outlined by Fischbein (1987). Fischbein 

defined intuition as “a primary phenomenon which may be described but which is not 

reducible to more elementary components” (p. ix). Intuitive statements are ones that 

appear to be immediate, direct, and global. I regarded observable behaviors, including 

statements, gestures, or manipulations of tools, which did not meet Fischbein’s definition 

and properties of intuitions, as evidence of analytical thinking. Because intuitions and 

analytical strategies for comparing sets of rectilinear or curvilinear paths are not 

described in the length LT, I described segments of data in the interviews using a 

combination of codes from prior research on sixth grade students’ intuitions about path 
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length (Chiu, 1996), and emergent codes generated through a constant comparative 

method of analysis (Merriam, 2009). 

 I defined a unit to be the smallest meaningful segment of data within each task for 

each participant. For the purpose of the analysis of this study, a segment of data had to 

meet two criteria to be considered a unit (Lincoln & Guba, 1985). First, the segment must 

reveal information relevant to the study, which means that the segment must reveal the 

student’s intuitive or analytical thinking. Second, the segment must be “the smallest piece 

of information about something that can stand by itself” (p. 345).  

 I selected each task to evoke one or more units. For example, on Interview Task 2 

involving comparing a set of rectilinear paths by length with the follow-up question, 

“Why is Path B the shortest?” a student might have said, “This path is the shortest 

because a straight line is the shortest path between two points.” This response reflects a 

unit and would be assigned one code. For another follow-up question, “Why is Path D the 

longest?” the same student might have said, “This path is the longest because it has a lot 

of turns.” This response reflects another unit and would have been assigned another code. 

The sections below the code development and frequency analysis. 

Code Development Process 

After I conducted the interviews I transcribed them, including descriptions of 

students’ gestures and ways of using the tools while engaging in each of the ten interview 

tasks. I reviewed the transcripts and my post-interview reflections and, for each task for 

each participant, I identified relevant units of data. Through an initial cycle of open 

coding (Corbin & Strauss, 2008), I made comparisons among units of data among 
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participants, and developed codes to identify qualitatively different instances of intuitive 

and analytical thinking that reoccurred with regularity. 

 I then extracted thematic categories from the list of initial codes through axial 

coding (Corbin & Strauss, 2008). I constructed these thematic categories to be (a) 

representative of what is in the data, (b) exhaustive, (c) mutually exclusive, and (d) 

conceptually congruent (Merriam, 2009). For example, I categorized codes as either 

pertaining to an intuition or an analytical strategy. Within each of these broad categories 

of intuitive and analytical thinking, I developed codes to describe and differentiate 

different types of intuitive and analytical thinking for four groups of similar tasks (see 

Table 4 above): comparing sets of rectilinear paths by their lengths (Tasks 1 and 2), sets 

of curvilinear paths by their lengths (Tasks 6A, 7, and 8A), curves and a straight object 

(Tasks 3, 4, 5, 6B, and 8B), and measuring a curve with a standard ruler (Tasks 9 and 10). 

This process yielded a total of 39 codes that I used to describe participants’ 

statements, gestures, or tool manipulations. I grouped codes into four thematic categories: 

intuitions, with eight codes; analytical strategies, with 23 codes; analytical strategies with 

embedded intuitions, with two codes; and descriptors for students’ reflections on error, 

with six codes. After I developed codes inductively in this initial round of open and axial 

coding for each of the four types of tasks, I deductively applied the coding scheme to all 

units of data in a second round of coding. See Appendix D for a comprehensive list of the 

codes, organized by thematic category. 

Frequency Analysis 

I simultaneously reviewed video records and transcripts to identify units in all 32 

interviews. I then color-coded and labeled transcripts using the coding scheme I 



 

developed for the study. Figure 

Interview 1 transcript for Task 2 for one participant, Mia.

Figure 29. Illustration of color coding and labeling of relevant units of data.

After I coded and labeled each

data to a frequency analysi

using spreadsheet software

relevant units of data for each interview participant for Task 2.

Figure 30. Example of tracking 

Next, I tracked the frequency of each code for each participant across 

similar tasks (see Table 4

2), comparing sets of curvilinear paths with no tools (Tasks 6A, 7, and 8A), comparing 

curves and straight objects (Tasks 3, 4, 5, 6B, and 8B), and measuring curves with a 
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developed for the study. Figure 29 shows the color coding and labeling of part of the 

view 1 transcript for Task 2 for one participant, Mia.  

. Illustration of color coding and labeling of relevant units of data.

I coded and labeled each of the 32 interview transcripts, I then subjected 

to a frequency analysis. I tracked the frequency of each code per student and 

using spreadsheet software. Figure 30 illustrates the tracking of the codes 

relevant units of data for each interview participant for Task 2. 

. Example of tracking coded data for each interview participant for Task 2.

the frequency of each code for each participant across the 

4): comparing sets of rectilinear paths with no tools (Tasks 1 and 

f curvilinear paths with no tools (Tasks 6A, 7, and 8A), comparing 

curves and straight objects (Tasks 3, 4, 5, 6B, and 8B), and measuring curves with a 

shows the color coding and labeling of part of the 

 

. Illustration of color coding and labeling of relevant units of data. 

I then subjected the coded 

h code per student and per task 
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coded data for each interview participant for Task 2. 

the four groups of 

: comparing sets of rectilinear paths with no tools (Tasks 1 and 

f curvilinear paths with no tools (Tasks 6A, 7, and 8A), comparing 

curves and straight objects (Tasks 3, 4, 5, 6B, and 8B), and measuring curves with a 



 

standard ruler (Tasks 9 and 10).

of the codes for each participant within a group 

Figure 31. Example of tracking coded data for each interview participant for a group of 
similar tasks (Tasks 1 and 2).
 
After I tracked codes for each participant for groups of similar

frequency of each code for groups of students who represented 

Figure 32 below illustrates this tracking of coded data within and across 

participants who represented particular length LT levels for 

(Tasks 1 and 2). 

Figure 32. Example of tracking coded data within and across participants representing 
specific length LT levels.
 
Finally, I examined developmental patterns across 

represented particular length LT levels 

Table 4). Findings from this frequency analysis informed the elaboration of the four 

levels of the length LT that 

levels.
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standard ruler (Tasks 9 and 10). Figure 31 below illustrates the tracking of the 

for each participant within a group of similar tasks (Tasks 1 and 2).

Example of tracking coded data for each interview participant for a group of 
similar tasks (Tasks 1 and 2). 

codes for each participant for groups of similar tasks, I tracked 

frequency of each code for groups of students who represented the length LT levels. 

below illustrates this tracking of coded data within and across a group of 

participants who represented particular length LT levels for a group of similar tasks 

Example of tracking coded data within and across participants representing 
specific length LT levels. 

evelopmental patterns across these groups of participants who 

represented particular length LT levels for each of the four groups of similar tasks

. Findings from this frequency analysis informed the elaboration of the four 

levels of the length LT that I addressed in this study: the CLM, CRM, ICPM, and 

below illustrates the tracking of the frequency 

(Tasks 1 and 2). 

 

Example of tracking coded data for each interview participant for a group of 

I tracked the 

the length LT levels. 

a group of 

oup of similar tasks 

 

Example of tracking coded data within and across participants representing 

of participants who 

for each of the four groups of similar tasks (see 

. Findings from this frequency analysis informed the elaboration of the four 

, ICPM, and ALM 
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CHAPTER IV 

RESULTS AND DISCUSSSION 

This chapter describes results pertaining to length measurement, as well as results 

related to students’ intuitive and analytical strategies for comparing rectilinear and 

curvilinear paths. In the first section, I characterize participants’ level of sophistication 

for length measurement, as measured by a written assessment based on a hypothetical 

learning trajectory (LT) for length measurement (Clements et al, in press). Following this 

are sections in which I (a) describe and differentiate the intuitive and analytical strategies 

for rectilinear and curvilinear paths that I observed across 16 interview participants, and 

(b) compare students’ responses within and across adjacent LT levels to relate students’ 

intuitive and analytical strategies for rectilinear and curvilinear paths to the LT for length 

measurement. 

Length Measurement 

The sections below describe results of the length LT-based assessment for the 16 

students who were selected to participate in two individual interviews. Specifically, the 

following sections illustrate how the length LT was used to analyze students’ responses 

to each of the items on the assessment and categorize them into LT groups that represent 

four levels: Consistent Length Measurer (CLM), Conceptual Ruler Measurer (CRM), 

Integrated, Conceptual Path Measurer (ICPM), and Abstract Length Measurer (ALM).
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CLM Level Group 

The CLM level group represents the lowest level of the length LT included in the 

individual task-based interviews. This group consists of four Grade 4 students, Jenny, 

Mia, Noah, and Kevin, who exhibited predominantly CLM-level thinking and provided 

similar responses on the seven tasks on the written assessment. The following sections 

include descriptions of their responses to each of the assessment tasks, and the analysis of 

these responses using the length LT. 

 CLM level tasks. Jenny, Mia, and Noah correctly answered both of the broken 

ruler tasks, Tasks 1 and 2 (see Figures 9 and 10, Chapter 3). Their ability to answer both 

of these tasks correctly, including the task involving fractions, suggests that they could 

see a ruler as a collection of iterated units and understand the zero point on the ruler, 

which are concepts that are consistent with the CLM level of the length LT. Therefore, 

their responses on these tasks suggest that they are operating at least at the CLM level. 

 Kevin incorrectly answered “6 in” for Task 1. This suggests that he may have 

been counting tick marks, which is an LURR level strategy. He then correctly answered 

“3 ½ in” for Task 2. Kevin’s correct numerical response on Task 2 indicates that he was 

at least beginning to develop the CLM concepts of seeing a ruler as a collection of 

iterated units and understanding the zero point on the ruler. 

 CRM level tasks. All of the students in the CLM level group, Jenny, Noah, Mia, 

and Kevin, gave incorrect responses to both of the CRM level tasks, Tasks 3 and 4 (see 

Figures 11 and 12, Chapter 3). For Task 3, Jenny answered 10 cm Kevin answered 6 cm, 

Mia answered 7 cm, and Noah answered 11 cm. Each of these responses is only 2 cm off 

from the correct answer of 9 cm for the length of the missing side; however, none of the 
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students used the CRM level strategy of projecting or translating a given length to 

determine a missing length. 

On Task 4, none of the students in the CLM level group provided a correct 

numerical response of 210; Jenny incorrectly answered 200, Noah and Kevin both 

answered 180, and Mia answered 150. Kevin included some addition, written vertically 

along the side: “60 + 40 + 20 + 30 + 30 = 180.” This suggests that he added the labeled 

segments (60, 20, 40, and 30), and estimated the length of only one of the unlabeled 

segments as 30. Mia included the calculation 20 + 40 + 30 + 60 = 150, written vertically. 

This indicates that she added only the labeled segments of the path on Task 4 and did not 

attend to the missing measures. Jenny, Kevin, Mia, and Noah’s incorrect responses to 

Tasks 3 and 4 suggest that they did not project or translate the given lengths in the 

diagrams to determine the missing lengths, which is a strategy that children who have 

developed CRM level concepts and processes would apply to these tasks. Therefore, their 

responses on Tasks 3 and 4 indicate that they are not yet at the CRM level. 

 ICPM and ALM level tasks. Jenny, Kevin, and Noah gave similar responses for 

the ICPM and ALM level tasks (see Figures 13, 14, and 15, Chapter 3). For Task 5a, 

which asked how many different L-shaped paths they could make with a string that is 10 

cm long, and 5b, which asked them to explain how they got their answer and why they 

think it is correct. Jenny answered five and wrote; “I (tried to) made each turn one cm 

long, so if it takes two turns for one L-shape then I have five. (10 � 2 � 5).” Kevin 

answered eight and drew eight L-shaped paths, each with the side lengths labeled as five. 

He wrote, “You have to flip and swith [sic] to get them.” Noah answered 4 and explained 

how he got his answer by writing, “you could form a square.” Jenny, Kevin, and Noah’s 
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responses indicate that they were not able to anticipate and monitor sets of related cases 

of L-shaped bent paths, which involves mental actions that are consistent with ICPM 

level thinking. This suggests that either they misunderstood the question, or they do not 

yet possess ICPM level concepts and processes. 

 Within this group, Mia provided a unique response. On Tasks 5a and 5b, she 

wrote that she could form “15” L-shaped paths with the string, “because I keped [sic] 

making one side shorter and the other longer and I made 15 that could worked [sic] and 

then I ran out of string.” She included the following drawing of 15 L-shaped paths in a 

line across the page (Figure 33) 

 

Figure 33. Mia’s set of 15 L-shaped paths made with 10 cm of string. 

The first path on the left had a tall vertical side and a short horizontal side. As Mia drew 

the paths across the paper, the vertical side became shorter and the horizontal side 

became longer until the final path was nearly a horizontal line. She labeled the vertical 

sides of the two leftmost paths as 9 cm and 9 ½ cm. She labeled the horizontal side of one 

of these paths as ½ cm; however, it was not clear for which path this label was intended. 

She did not label the side lengths of any of the other L-shaped paths she had drawn. On 

this task, Mia showed that she was able to think about, at least in a qualitative way, 

coordinating a series of changes in a systematic way across multiple figures. When this 

coordination also involves the association of space and number, it is consistent with the 

ALM level of the length LT. Therefore, Mia’s response on this task suggests that she may 

be developing ICPM and ALM concepts. 
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On Task 6a, Noah (Figure 34) and Kevin (Figure 35) gave similar responses. 

Although their rectangles did not reflect geometric inconsistencies, neither drew 

rectangles with a perimeter of 2 inches. 

 

Figure 34. Noah’s rectangles. 

 

Figure 35. Kevin’s rectangles. 

Noah and Kevin’s responses suggest that they are not yet able to determine side lengths 

from perimeter, at least when the situation requires them to fracture the unit. This 

indicates that they have not developed the ability to accurately operate on multiple units 

and collections of units or on subunits, which is ICPM level thinking.  

 Jenny (Figure 36) and Mia (Figure 37) exhibited similar ways of thinking on Task 

6a. Both Jenny and Mia drew figures that had a perimeter of 2 inches. 

 

Figure 36. Jenny’s triangles. 
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Figure 37. Mia’s rectangles. 

Rather than sketching rectangles, Jenny sketched two different triangles that both had a 

perimeter of 2 inches. She labeled the side lengths as 1 in., ¾ in., and ¼ in. for one 

triangle and 1 in., ½ in., and ½ in. for the second triangle. In Mia’s sketch, one rectangle 

had a perimeter of 2 inches (the ½ inch by ½ inch rectangle), and another had a perimeter 

of approximately 2 inches (the 1 cm by 1 inch rectangle). Although both of Jenny’s 

triangles violate the triangle inequality, her and Mia’s responses here show that they 

could think about determining side lengths from perimeter even in the case when the 

situation requires her to fracture the unit. This suggests that they may be developing the 

ability to operate on multiple units and collections of units or on subunits, which is ICPM 

level thinking.  

 For Task 6b, all four students provided similar responses. Jenny answered three, 

Kevin answered zero, Mia answered five, and Noah answered that two more rectangles 

would have a perimeter of 2 inches. This suggests that none of the students in this group 

have developed a continuous sense of length, which develops later at the ALM level of 

the length LT.  

 All of the students in the CLM level group provided correct responses for Tasks 

7a, b, c, and d by not violating the triangle inequality. Kevin, Mia, and Noah’s written 

work indicated that they used similar strategies for these tasks. In Task 7a, when asked 
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how long the wire would need to be to connect points A and C through B, Kevin 

answered “14 feet” without making any marks on the diagram or showing any work on 

the page. On Task 7b, he explained how he got his answer by drawing a triangle with the 

vertices labeled as A, B, and C like the one provided on the page. He labeled the segment 

from A to C as 10 and the segment from B to C as 21. His labeling of ��				 as 21 in Task 

7b is inconsistent with his response of “14 feet” on Task 7a; however, he provided no 

explanation about his thinking. Mia answered “12 feet.” On the diagram, she labeled 
�				 

as five and ��				 as seven. She also drew a segment connecting point B with approximately 

the middle of 
�				. For Task 7b, she explained “I put my fingers on the B and moved them 

to the 10 feet line it was in the middle or 5 so that was that anser [sic]”. Then I put my 

fingers on the five and moved them to the other line 7.” Noah answered “25 ft.” without 

writing any calculations or making any marks on the diagram. For Task 7b, he wrote “B 

+ C = 15” without offering an explanation of why he thought the sum of the lengths of 

these segments should be 15. 

 On Task 7c, when asked how much wire he would buy so that he could be sure to 

have enough to connect points A and C through B, Kevin answered that he would buy 

“20 feet.” He explained his thinking on Task 7d writing, “It is beter [sic] to have more in 

case you mis mesuer [sic] or brake some.” Mia explained that she would buy “15 feet” of 

wire because “I think there should be extra in case I got the wrong number.” Noah 

explained that he would buy “30 ft.” of wire because “A + B + C = 30 ft.” 

 Kevin, Mia, and Noah’s responses to the parts of Task 7 are plausible. That is, 

they did not violate the triangle inequality. However, the context of the problem or the 

inclusion of the diagram on the page may have helped them answer correctly without 
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engaging the concepts and processes described in the levels of the length LT. Therefore, I 

made no level claim for them for Task 7. 

 Jenny (Figure 38) provided a unique response within this group for Task 7. On 

Task 7a, Jenny answered “12 ½ ft.” 

 

Figure 38. Jenny’s partitioning. 

She made tick marks on 
�				 to partition 
�				 into 10 segments. She labeled ��				 as 8, but 

she did not make tick marks on either ��				 or 
�				. Jenny vertically wrote 4 ½ + 8 ½ = 12 

½, presumably because she thought that 
�				 was 4 ½. 

 For Task 7b, she explained, “A to C was ten ft, so I found out how long one foot 

is. Then I used it on A to B to C.” This suggests that Jenny partitioned 
�				 to find a unit 

that she could iterate, either physically with her fingers or mentally on ��				 and 
�				, to 

determine the length of the bent path from A to C through point B. For Task 7c, Jenny 

said that she would buy “14 ft” of wire to be sure that she had enough to connect points A 

and C through B. On 7C, she explained “I got 14 ft so I would have 1 ½ inches extra.” 

Jenny’s ability to partition a 10-unit segment into 10 same-size pieces to create a unit and 

then operate on that unit to measure is evidence that she may be developing an internal 

measurement tool, which is consistent with the CRM level of the length LT. 

 CLM level group summary. Overall, on this assessment, Jenny, Kevin, Mia, and 

Noah all showed evidence that they were operating predominantly at the CLM level of 
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the length LT. Kevin showed that he was still reverting back to LURR level strategies by 

counting tick marks on one of the broken ruler tasks. Two students, Jenny and Mia 

showed evidence that they were developing some of the concepts and processes 

consistent with higher levels of the length LT than the CLM level. Specifically, Jenny’s 

responses indicated that she might have been beginning to develop some of the concepts 

and processes at the CRM level, and Mia showed evidence of ICPM level thinking. 

CRM Level Group 

The CRM level group consists of three Grade 6 students, Trent, Ned, and Rose, 

and one Grade 8 student, Lynn, who exhibited predominantly CRM-level thinking and 

responded in similar ways to the set of seven tasks on the written assessment. The 

sections below describe their responses to the assessment tasks, and the coding of these 

responses using the levels of the length LT. 

 CLM level tasks. Ned and Trent both provided the same correct numerical 

answers to the CLM level tasks, Tasks 1 and 2. They both correctly answered “5 in,” for 

Task 1 and “3 ½ in.” for Task 2. Their ability to correctly resolve these broken ruler 

tasks, indicates that they have an understanding of the zero point and see a ruler as a 

collection of iterated units. This suggests that both Ned and Trent were operating at least 

at the CLM level of the length LT. 

 Rose and Lynn responded in similar ways to these broken ruler tasks. They both 

incorrectly answered “6 in.” for Task 1. Lynn explained her answer by writing, “Because 

the one on the rule is not shown. Therefore you are going to subtract 1 inch from your 

answer.” This suggests that they counted tick marks or have a misconception about the 

zero point on the ruler, which consistent with the LURR level of the length LT. Lynn 
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went on to correctly answer “3 ½ inches” for the second broken ruler task; however, Rose 

incorrectly answered “4 in” for Task 2. Rose, drew loops to connect the numbered tick 

marks on the image of the broken ruler and drew a circle around the interval between the 

tick mark corresponding to 6 ¾ and the tick mark labeled as 7. This suggests that both 

Lynn and Rose are at least beginning to develop the CLM level concepts of 

understanding the zero point on the ruler and seeing the ruler as a collection of iterated 

units. Therefore, Lynn and Rose’s performance on Tasks 1 and 2 suggest that they were 

operating within the LURR and CLM levels of the length LT. 

 CRM level tasks. For Task 3, Ned, Rose, Trent, and Lynn all correctly answered 

“9 cm.” Ned and Rose, included no markings on the page, but Trent and Lynn also 

included the calculation 22 – 13 = 9, written vertically. Although all of the students in 

this group correctly answered Task 3, all of them gave incorrect responses for Task 4. On 

this task, Ned, Rose, and Lynn all answered 150. Ned included no calculations, but Rose 

and Lynn each included a calculation on the side of her paper, which indicated that they 

added only the labeled segments of the path and did not attend to the missing measures 

(For example, Rose included the calculations: 60 + 20 = 80, 40 + 30 = 70, and 80 + 70 = 

150, written vertically). Trent incorrectly answered “220” and included no calculations. 

Therefore, it is not clear whether he applied that same strategy to Tasks 3 and 4, making 

computational error on Task 4, or if he estimated the lengths of the unlabeled segments. 

 Ned, Rose, Trent, and Lynn’s inconsistent responses on Tasks 3 and 4 suggest 

that they can project or translate given lengths to determine missing lengths in some 

situations (such as Task 3), which is a strategy that a child who has developed CRM level 
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concepts and processes would apply to these tasks. Therefore, their responses on Tasks 3 

and 4 indicate that they were beginning to develop CRM level thinking. 

 ICPM and ALM level tasks. On Task 5, Ned, Rose, Lynn, and Trent exhibited 

similar ways of thinking. Ned answered that he could form two different L-shaped paths 

from a string that is 10 cm long. He defended his answer by writing “I think 2 because it 

may require a lot of bending the string.” Rose responded that she could form four and 

explained how she got her answer writing, “I don’t know what the question is asking so I 

thought of turning the ‘L’ so I turn it (Rose drew an L-shaped path and then three 

additional versions of it rotated at 90, 180, and 270 degrees) and I got 4 paths.” This 

suggests that Rose only attended to the orientation of the L-shaped path and did not 

attend to creating L-shaped paths of varying side lengths. Lynn wrote that she could form 

five, “Because there is only so much space for so little of Ls. If this is the L. You can 

form them out or down.” She drew a single L-shaped path with two horizontal rays 

projecting out of the vertical segment and two more vertical rays projecting out of the 

horizontal segment. Trent drew a single bent path with six segments, labeling the 

segments of the path as 1 cm, 2, cm, 1 cm, 4 cm, 1 cm, and 1 cm. He also wrote that he 

would be able to form five and explained his thinking by writing, “I think my answer is 

correct because if you add 1 + 2 + 1 + 4 + 1 + 1 you would get 10 and I made 5 L’s”.  

Ned, Rose, Lynn, and Trent’s responses to Tasks 5a and 5b suggest that they 

misunderstood the question, or they did not yet possess the concepts and processes at the 

ICPM level of the length LT. 

 On Task 6a, Ned, Lynn, Trent, and Rose all provided similar responses. Ned and 

Lynn both drew two squares, both with all four sides labeled as ½ in. Rose drew a ¾ in 



 

 79

by ¼ in rectangle and a ½ in by ¾ in rectangle. Trent drew two rectangles, both with 

perpendicular adjacent sides labeled as ¾ in by ¼ in. There were no geometric 

inconsistencies in their sketches, but each student produced only one rectangle that had a 

perimeter of 2 inches. Therefore, Ned, Lynn, Trent, and Rose are able to think about 

determining side lengths from perimeter even in the case when the situation requires 

them to fracture the unit. This suggests that they may be developing the ability to operate 

on multiple units and collections of units or on subunits, which is consistent with ICPM 

level thinking. 

 For Task 6b, Ned and Rose both said three more rectangles would have a 

perimeter of 2 inches. Lynn said there would be only one more, and Trent answered that 

there would be zero more. This indicates that Ned, Rose, Lynn, and Trent do not yet have 

a continuous sense of length, which develops later at the ALM level of the length LT. 

 For Task 7, Ned, Rose, Trent and Lynn all provided similar correct responses; 

they did not violate the triangle inequality. Both Ned and Rose said that it might take 13 

feet of wire to connect points A and C through B. Trent answered 12 feet, and Lynn 

answered 14 feet. Ned and Trent both wrote about estimating when explaining their 

thinking for Task 7b. Ned wrote, “I used my fingers to make a path to the line AC to 

guess how long that would be then I added both numbers.” Trent defended his answer of 

12 feet by writing, “Because if I estimated correctly ��				 should be about 8 ft and 
�				 

should be about 4 ft and 8 + 4 = 12.” 

 Rose and Lynn gave similar explanations of how they got their answers in Task 

7b. Rose explained, “I got my answer from using my fingers to go from point to point 

then compared it to the line that is ‘ten ft’ and guessed how long, added the dotted lines 
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and got my answer. I think it’s correct because it seems reasonable.” Lynn wrote that she 

thought the wire would need to be 14 feet long because “If you take your fingers and go 

from point A to point C it’s 10 ft. If you keep your fingers that far apart and go a little 

over point B, that’ll be 10 ft. It looks to me that from the top of point B to the point of C 

is 9 ft. from A to the top of B is 5 ft. If you take your fingers and keep that and connect it 

with the 10 ft, it’s 5 (half-way) 9 + 5 = 14.” Presumably, Lynn and Rose each measured 

the distance between points A and B by spanning the gap from her thumb to her index 

finger and checked to see if that span fit the gap from points A to C and A to B. 

Therefore, both Lynn and Rose made an indirect comparison between each of 
�				 and ��				 

to 
�				. 

 On Task 7c, Both Ned and Rose explained that they would buy 15 feet of wire to 

make sure they would have enough to connect points A and C through B.  Ned defended 

his answer by explaining, “I think this is correct because because [sic] I’m making sure I 

have enough wire to get from A to C through B” on Task 7d. Rose explained her thinking 

by writing, “How I got it is I rounded 13 and why I think it’s correct is because you could 

cut the wire to 13 feet if you had 14 and if maybe it was 13.5 you needed, you would 

have it.” 

Trent and Lynn provided responses that suggested they interpreted the question to 

mean that they would need enough wire to connect points A and C through B, and then 

back from point C to point A again, forming the entire triangle with wire. Trent explained 

that he would buy “25 feet of wire and defended his answer by explaining, “I think my 

answer is correct Because 10 + 12 = 22 and if you want to be sure you have enough wire 

I’d at most get 25 ft of wire.” Lynn explained that she would buy 30 feet of wire because 
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“If point B is also 10 ft then we’ll need an extra 10 ft. But we don’t know so if point B is 

over 20 ft I'll have enough instead of being short a couple feet of wire.”  

 Ned, Rose, Trent, and Lynn provided plausible responses to all of the parts of 

Task 7. Meaning they did not violate the triangle inequality and they all talked about 

buying extra wire to make sure they would have more than enough to connect points A 

and B through C. However, like the students in the CLM level group, their articulation of 

their thinking does reflect the concepts and processes that are described in the levels of 

the length LT. Therefore, I made no level claim for them for Task 7. 

 CRM level group summary. Overall, on this assessment, Lynn and Rose’s 

responses indicate that they are still falling back to use LURR level and CLM level 

thinking on broken ruler tasks. Ned and Trent’s performance on this assessment indicate 

that they are still reaching back to use CLM level thinking on tasks in which the level is 

relevant. However, all four students also showed that they could operate predominantly 

using CRM level strategies on tasks that require CRM level thinking. In addition, they all 

showed that they might be beginning to develop some of the concepts and processes at 

the ICPM level. Therefore, the level that best characterizes the concepts and processes 

that Lynn, Rose, Ned, and Trent exhibited on the written length LT-based assessment is 

the CRM level. 

ICPM Level Group 

The ICPM level group is comprised of one Grade 6 student, Grant, and three 

Grade 8 students, David, Rick, and Ruth. All of the ICPM level students used 

predominantly ICPM level strategies and provided similar responses to the seven tasks on 
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the written assessment. The following sections include descriptions of their responses and 

the coding of these responses using the length LT levels. 

 CLM level tasks. All of the students in the ICPM level group, Grant, David, 

Rick, and Ruth provided similar responses to the broken ruler tasks, Tasks 1 and 2. They 

all correctly answered “5 inches” for Task 1. Grant, David, and Rick included no 

markings on the page, but Ruth included the calculation 7 – 2 = 5, written vertically. For 

Task 2, Grant and David correctly answered and 3 ½ inches; however, Rick and Ruth 

both provided incorrect responses of 3 ¼ inches. Rick did not include any work or 

explanation, but Ruth included the calculation 6 ¾ - 3 ¼ = 3 ¼, again written vertically. 

Rick and Ruth’s incorrect answers both reflect a likely computational error, rather than a 

misconception about the ruler. Therefore, Grant, David, Rick, and Ruth’s responses to the 

Tasks 1 and 2 indicate that they see a ruler as a collection of iterated units and have an 

understanding of the zero point on the ruler, which are both CLM level concepts. 

Therefore, their responses to these tasks provide evidence that they were operating at 

least at the CLM level. 

 CRM level tasks. All four students in the ICPM level group correctly answered 

both of the tasks designed to elicit CRM level thinking, Tasks 3 and 4. On Task 3, Grant, 

David, Rick, and Ruth all answered 9 cm. Grant, David, and Rick did not make any 

markings on the page, but Ruth included the calculation 22 – 13 = 9, written vertically. 

For Task 4, all four students answered 210. Again, Grant and Rick did not show any 

work on the page or offer any explanation of their thinking. David included the 

calculation 60 + 20 + 40 + 30 + 60 = 210 and Ruth wrote 120 + 90 = 210; both 

calculations were written vertically. Grant, David, Rick, and Ruth’s responses on these 



 

 

tasks indicate that they can project or translate the given lengths to determine missing 

lengths, which is a strategy that a child who is at least at the 

solve these tasks. Therefore, their responses on 

CRM level strategies to solve tasks for which the level is pertinent.

 ICPM and ALM level tasks.

similar responses. Grant and David both answered that they could form five L

paths with the 10-cm string. Grant wrote

9 cm + 1 cm, or 8 cm + 2 cm, or 7 cm + 3 cm, or 6 cm + 4 cm, or 5 cm + 5 cm.” Along 

the side of the paper, David wrote five pairs of numbers: 1 and 9, 2 and 8, 3 and 7, 4 and

6, and 5 and 5, and he explained his thinking by writing “I think it would be correct 

because there are five ways you can make ten and even if you put it facing a different 

way it would still be the same.” Ruth (Figure 

and she drew a set of ten paths in a line from left to right.

Figure 39. Ruth’s set of r

The leftmost path was a vertical line, which she labeled as 10. Next, she drew an L

shaped path with side lengths labeled as 9 and 1. 

shaped paths with side lengths labeled as 8 and 2, 7 and 3, 6 and 4, 5 and 5, 4 and 6, 3 

and 7, 2 and 8, and then 1 and 9. She explained her thinking by writing “As you can see 

above, there can be different lengths for eac

case ‘1.’ You could also do things from different angles (here she drew rotated L
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indicate that they can project or translate the given lengths to determine missing 

lengths, which is a strategy that a child who is at least at the CRM level would use to 

solve these tasks. Therefore, their responses on Tasks 3 and 4 indicate that they 

level strategies to solve tasks for which the level is pertinent. 

ICPM and ALM level tasks. On Task 5, Grant, David, and Ruth all provided 

similar responses. Grant and David both answered that they could form five L

string. Grant wrote, “You could have an L by having a string that is 

9 cm + 1 cm, or 8 cm + 2 cm, or 7 cm + 3 cm, or 6 cm + 4 cm, or 5 cm + 5 cm.” Along 

the side of the paper, David wrote five pairs of numbers: 1 and 9, 2 and 8, 3 and 7, 4 and

6, and 5 and 5, and he explained his thinking by writing “I think it would be correct 

because there are five ways you can make ten and even if you put it facing a different 

way it would still be the same.” Ruth (Figure 39) answered that he could form 40 p

and she drew a set of ten paths in a line from left to right. 

related L-shaped paths. 

The leftmost path was a vertical line, which she labeled as 10. Next, she drew an L

shaped path with side lengths labeled as 9 and 1. This was followed by eight more L

shaped paths with side lengths labeled as 8 and 2, 7 and 3, 6 and 4, 5 and 5, 4 and 6, 3 

and 7, 2 and 8, and then 1 and 9. She explained her thinking by writing “As you can see 

above, there can be different lengths for each side making 9. Also, how about the lower 

case ‘1.’ You could also do things from different angles (here she drew rotated L

indicate that they can project or translate the given lengths to determine missing 

level would use to 

that they could use 

5, Grant, David, and Ruth all provided 

similar responses. Grant and David both answered that they could form five L-shaped 

, “You could have an L by having a string that is 

9 cm + 1 cm, or 8 cm + 2 cm, or 7 cm + 3 cm, or 6 cm + 4 cm, or 5 cm + 5 cm.” Along 

the side of the paper, David wrote five pairs of numbers: 1 and 9, 2 and 8, 3 and 7, 4 and 

6, and 5 and 5, and he explained his thinking by writing “I think it would be correct 

because there are five ways you can make ten and even if you put it facing a different 

) answered that he could form 40 paths, 

 

The leftmost path was a vertical line, which she labeled as 10. Next, she drew an L-

This was followed by eight more L-

shaped paths with side lengths labeled as 8 and 2, 7 and 3, 6 and 4, 5 and 5, 4 and 6, 3 

and 7, 2 and 8, and then 1 and 9. She explained her thinking by writing “As you can see 

h side making 9. Also, how about the lower 

case ‘1.’ You could also do things from different angles (here she drew rotated L-shaped 
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paths). If you do all this, you can get up to 40 different paths.” On this task, Grant, David, 

and Ruth found several related cases of bent paths with the same length and relate those 

cases to one another to provide evidence that they thought about an underlying pattern. 

This thinking is consistent with the ICPM level of the length LT; therefore, their 

responses to this task suggest that they were operating at the ICPM level. 

 Rick’s response to Task 5 was unique within the ICPM level group. He answered 

that he could form an infinite number of different L-shaped paths, and he explained his 

thinking by writing, “The long side could be 5.00000…1 cm or something like that. It 

could be a million 0’s.” Rick did not show evidence of reasoning about several related 

cases of bent paths with the same length and relating those cases to one another to 

provide evidence that he thought about an underlying pattern here, which is ICPM level 

thinking. However, he showed a growing awareness of a potential infinite number of 

cases and a continuous sense of length, which develops at the ALM level of the length 

LT. Therefore, Rick’s response to Task 5 suggests that he could have been operating at 

least at the ICPM level. 

 On Task 6a, Grant, David, Rick, and Ruth all provided similar responses. Grant 

drew two triangles that both had a perimeter of 2 inches: one with side lengths labeled as 

½ in, ½ in, and 1 in and another with side lengths labeled as ¾ in by ¾ in by ½ in. David 

drew a 0.6 by 0.4 rectangle and a square with all four sides labeled as 0.5. Rick drew a 

0.75 by 0.25 rectangle and a 0.1 in by 0.9 in rectangle. Ruth drew a square with all four 

sides labeled as ½ and a ¾ by ¼ rectangle. Grant drew triangles rather than rectangles; 

however, he, along with the other three students in the ICPM level group, drew figures 

that had a perimeter of two inches. Furthermore, other than one of Grant’s triangles, 
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which violated the triangle inequality, none of the student’s sketches had geometric 

inconsistencies. Their responses to this task suggests that they were able to think about 

determining side lengths from perimeter even in this situation that required them to 

operate on fractional units. This indicates that Grant, David, Rick, and Ruth had the 

ability to operate on multiple units and collections of units or on subunits, which is ICPM 

level thinking. 

 On Task 6b, when asked David answered that three more rectangles would have a 

perimeter of two inches. This suggests that David did not yet developed a continuous 

sense of length, which appears later at the ALM level of the length LT. Grant did not 

provide a response to Task 6b. 

 Rick and Ruth provided similar responses to Task 6b. Rick answered that there 

would be an “infinite” amount of more rectangles that would have a perimeter of two 

inches. Ruth answered “If you do it in fractions like above, the number is pretty much 

infinite.” She also included the expression ∞� 2, written vertically. Presumably, she 

subtracted two from infinity to account for the two rectangles she had drawn as her 

response to Task 6a. This provides evidence that Rick and Ruth have a continuous sense 

of length, which is consistent with the ALM level of the length LT. Rick and Ruth’s 

performance on this task suggests that they were capable of using ICPM level strategies, 

and that they were beginning to develop ALM level thinking. 

 For Task 7, Grant, David, Rick, and Ruth all exhibited similar ways of thinking; 

none of these students provided responses to Task 7 that violated the triangle inequality. 

Grant and Ruth both answered that they would need 15 feet of wire to connect points A 

and C through B. Grant explained his thinking in Task 7b writing, “You have to add a 
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little bit because you are going a little off the straight path, so I added a bit.” Ruth wrote, 

“If you image [sic] put the two dotted lines together to make one huge line, and put it 

next to the solid line, it would be bigger. But most likely not twice as big.” This suggests 

that Grant understands, at least intuitively, that a straight line is the shortest distance 

between two points, and Ruth relied on a strategy of mentally straightening the bent path 

to compare it to the straight segment. 

 David and Rick both answered that they would need 14 feet. David explained his 

thinking when answering Task 7b writing, “because if ab2 + bc2 = ac2, so those two lines 

have to equal 10 feet and 82 = 64 + 52 = 25 is 99 so if you add a little bit and then round 

up you get 14 ft.” Rick wrote, “I did pathagren therom [sic] so 8 + 6 = 14.” Although 

David and Rick’s responses here show that they did not violate the triangle inequality, 

their application of the Pythagorean theorem is overgeneralized to a non-right triangle 

case. 

 All of the students in the ICPM level group provided similar responses to Tasks 

7c and 7d. They all said they would be 20 feet of wire to make sure they would have 

enough to connect points A and C through B. Grant explained “You want to make sure 

you have enough so you should buy a little extra.” David explained that he would buy 20 

“because that way you can have extra if its [sic] longer than you think it is.” Rick 

defended his answer by explaining, “Double the wire will be more than enough,” and 

Ruth justified her answer of 20 “just in case your estimate is not really 20 feet. So, 

always go more than you think you need to be safe.” Although Grant, David, Rick, and 

Ruth reasonably answered Task 7, their strategies of mentally straightening the bent path, 

applying an intuition that a straight line is the shortest distance between two points, and 
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overgeneralizing the Pythagorean theorem do not reflect concepts and processes within 

the levels of the length LT. Therefore, I made no level claim for Task 7. 

 ICPM level group summary. Throughout this assessment, Grant, David, Rick, 

and Ruth’s responses indicate that they used CLM and CRM level strategies for 

situations in which those levels were appropriate, Tasks 1 through 4. For tasks designed 

to elicit thinking at higher LT levels, they all operated predominantly using ICPM level 

strategies. Therefore, based on this assessment, I placed all four of these students at the 

ICPM level. Ruth and Rick also showed that they might have been beginning to develop 

some of the concepts and processes consistent with the ALM level of the length LT.  

ALM Level Group 

The ALM level group consists of four Grade 10 students: Marie, Kyle, Scott, and 

Zane. Each of these four students showed consistent evidence of ALM level strategy use 

and answered in similar ways to the written assessment tasks. The sections below 

describe their answers and coding of their answers according the length LT. 

 CLM level tasks. All four students in the ALM level group provided correct 

numerical responses to the broken ruler tasks, which were designed to elicit thinking at 

the CLM level, Tasks 1 and 2. Scott, Marie, Kyle, and Zane all correctly answered five 

inches for Task 1 and 3.5 in for Task 2. Their correct responses to these tasks indicate 

that each of these students sees a ruler as a collection of iterated units and understands the 

zero point on the ruler, which is evidence of CLM level thinking. Therefore, Scott, Marie, 

Kyle, and Zane used CLM level thinking to resolve tasks that required CLM level 

concepts and processes. 
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CRM level tasks. All four students in this group also correctly answered both 

tasks designed to elicit CRM level thinking, Tasks 3 and 4. Kyle, Scott, Marie, and Zane 

correctly answered 9 cm on Task 3 and 210 on Task 4. Scott, Kyle, and Marie included 

no explanations or work for Task 3. Zane included the calculation 22 – 13 = 9, written 

vertically. For Task 4, Scott, Kyle, and Zane wrote no markings on the page, and Marie 

included the calculations 20 + 40 + 30 = 90 and 90 + 60 + 60 = 210. These four students’ 

correct responses to Tasks 3 and 4 suggest that they could project or translate the given 

lengths to determine missing lengths, which is a strategy that a CRM level student could 

apply on these tasks. Therefore, Kyle, Scott, Marie, and Zane’s responses to Tasks 3 and 

4 indicate that they could use CRM level thinking in contexts in which the level is 

relevant. 

 ICPM and ALM level tasks. On Tasks 5a and 5b, Kyle and Scott provided 

similar responses. Kyle answered that he could form an “infinite” number of L-shaped 

paths from a string that is 10 cm long. Scott said that he could form “Any number. 

Infinite.” Kyle explained his answer by writing, “There are so many answers for just have 

the string like so (he drew a picture of one L-shaped path without labeling the lengths of 

the sides) because if you adjust it by the smallest degree, the length of both sides would 

be different than before.” Kyle’s response does not suggest that he was reasoning about 

several related sets of paths with the same length, which would have provided evidence 

that he is operating at the ICPM level of the length LT. However, he did exhibit a 

continuous sense of length, which develops at the ALM level. Therefore, Kyle’s response 

to this task indicates that he may have been developing ALM level concepts and 

processes. 
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 Scott defended his answer by writing, “You can have any length for each of the 

sides of the 90° angle..[sic]” He included sketches of three paths (Figure 40). 

 

Figure 40. Scott’s sequence of L-shaped paths. 

The leftmost path had a vertical segment labeled 9 and a horizontal segment labeled 1. 

The next path had a vertical segment labeled 9.1 and a horizontal segment labeled .9, and 

the rightmost path had a vertical segment labeled 9.001 and a horizontal segment labeled 

.999. Scott’s sequence of three paths suggests that he was reasoning about several related 

sets of paths here with the same length, and relating those cases to one another to provide 

evidence that he was thinking of an underlying pattern, which suggests that he is 

operating at the ICPM level of the length LT. Furthermore, his willingness to suggest that 

there are infinitely many cases indicates that he has a continuous sense of length, which is 

evidence of ALM level thinking. Therefore, Scott’s response to this task indicates that 

had concepts and processes that are consistent with the ICPM and ALM levels. 

 Marie and Zane provided similar responses to Task 5. On Task 5a, Zane 

explained that he could form “10 (19 if you count the upside down L’s).” Zane defended 

his answer of 10 (or 19 when counting the “upside down L’s”) by writing, “Knowing the 

properties of string I know it probably is really hard to form an L shape that has legs 

smaller than around 5 mm each. Therefore, one L uses 1 cm of string, but if you count the 

upside down L’s formed by your regular L’s, you will get 19 full L’s because the upside 

down ones don’t form a complete L at the end.” Zane’s response to this task suggests that 
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he may have misunderstood the question. Therefore, I made no level claim for him on 

this task. 

 Marie answered that he could form “9” different L-shaped paths from a string that 

is 10 cm long. Along the side of the paper, Marie drew a sequence of nine L-shaped 

paths. The leftmost path had a short side labeled as 1 cm and a long side labeled as 9. The 

following paths were similarly labeled as 2 and 8, 3 and 7, 4 and 6, 5 and 5, 6 and 4, 7 

and 3, 8 and 2, and 9 and 1. For Task 5b, she explained, “Because you could make an L 

shape path with 9 cm and 1 cm, 8 cm & 2 cm, 7 cm & 3 cm, 6 cm & 4 cm, 5 cm & 5 cm 

and then do the reverse.” Marie’s response to this task suggests that, like Scott in the 

ALM level group, she was able to find several related cases of bent paths with the same 

length and relate those cases to one another to indicate that she was thinking about an 

underlying pattern. This thinking is consistent with the ICPM level. 

 On Task 6a, Kyle, Scott, Marie, and Zane all gave similar answers. When asked 

to draw two rectangles that had a perimeter of two inches, Kyle drew a 0.3 by 0.7 inch 

rectangle and a 0.2 by 0.8 inch rectangle. Scott drew a 0.1 by 0.4 inch rectangle and a 

square with all four sides labeled 0.25 inches. Marie drew a square with all four sides 

labeled as ½ in and a ¾ in by ¼ in rectangle. Zane drew a square with all four sides 

labeled as .5 in and a .75 in by .25 in rectangle. There were no geometric inconsistencies 

in their sketches, and each of these four students correctly sketched rectangles that had a 

perimeter of two inches. This indicates that Kyle, Scott, Marie, and Zane could determine 

side lengths from perimeter, even when the task required them to operate on fractional 

units. Therefore, they had the ability to operate on multiple units and collections of units 

or on subunits, which is ICPM level thinking. 
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 On Task 6b, Kyle, Marie, and Zane provided similar answers. Kyle said that an 

“infinite (the length of the decimals could keep expanding)” number of additional 

rectangles could be made that would have a perimeter of two inches. Marie answered “an 

infinite amount if using decimals & fractions.” Zane answered “Infinite. For example, 

one side could go all the way down to the sides of an atom, but the other two sides can 

still add up to 2 inches.” Along the side, he provided the following example: .0000001 + 

.000001 + .999999 + .999999 = 2 in, written vertically. This indicates that Kyle, Zane, 

and Marie have a continuous sense of length, which is consistent with the ALM level of 

the length LT. Their performance on this task suggests that they are capable of using 

ICPM level strategies, and that they also possess concepts and processes at the ALM 

level. Scott answered, “Any number.” His response to this task is vague and unclear; 

therefore, I made no level claim for Scott for Task 6b. 

 For Task 7a, Kyle answered, “about 13 ft.” He explained his thinking when 

answering Task 7b writing, “I moved line ��				 into 
�				 and it only appeared to be   of 

line 
�				 (6 in). Then I pictured line 
�				 coming and connecting to line ��				, which I still 

have placed inside of line 
�				, and the collective length of line 
�				 and ��				 appeared to be 

close to 13 ft.” Kyle’s response suggests that he mentally straightened the bent path from 

A to C through B and compared it to the straight path, which he knew was 10 units. 

 Scott and Marie provided responses for Tasks 7a and b. Like Kyle, Scott also 

answered, “13 ft.,” which he defended by writing, “I estimated (then drew a smiley 

face)…an educated guess.” Marie gave an answer of “about 18 ft. more than 15 but less 

than 20.” She explained her thinking when answering Task 7b writing, “10 will be 

enough to get from C to B but not enough to get back from B to A and 20 feet would be 

6
10
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too long.” Scott and Marie’s explanations for Task 7b suggest that they relied on 

estimation to determine their responses for Task 7a. 

 Kyle, Scott, and Marie responded to 7a with plausible answers for the length of 

wire needed to connect points A and C through B. However, Kyle’s strategy of mentally 

straightening the bent path to compare its length to the straight segment, and Scott and 

Marie’s strategy of estimating do not reflect concepts and processes within the levels of 

the length LT. Therefore, I made no level claim for these three students for this task. 

 Within this ALM level group, Zane used a unique strategy on Task 7. For Task 7a 

he answered, “11.95 feet,” which he explained by writing, “I used my finger to draw a 

straight line between A to C through B then broke the 10 feet line into fifths (setting two 

feet) giving me a basic 2 foot estimated measurement to guess my new line” (Figure 41). 

 

Figure 41. Zane’s partitioning. 

This suggests that Zane partitioned the segment labeled as 10 to construct a composite 

unit of 2, which he then operated on, either mentally or physically, to measure the 

unknown side lengths. Zane’s response here indicates that he possessed an internal 

measurement tool, which develops at the CRM level of the length LT. 

 Kyle, Scott, Marie, and Zane all answered in similar ways on Tasks 7c and d. On 

Task 7c, when asked how much wire he would need to connect A and C through B, Kyle 

answered “14 ft (unless they have a better price for 15 ft).” Marie explained that she 
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would buy “20 ft.” Zane explained that he would buy “12.5 ft.” Scott said that he would 

“Buy more than the exact amount (he again drew a smiley face) to be sure…”. When 

answering Task 7d, Kyle defended his answer by explaining, “I want to buy a little bit 

extra in case my estimation was too short, although I feel that I wasn’t off by much.” 

Marie explained, “cause ten feet would cover a little more than enough to get from C to B 

but not enough to get from B to A.” Zane wrote, “It’s good to be sure, and I could leave a 

little room for a guess. To be honest I just put down a number close to my guess.” When 

articulating why he thought his answer was correct, Scott responded, “I still have no 

idea.” Although all of their numerical responses for Task 7c are plausible, meaning they 

did not violate the triangle inequality, their responses to Tasks 7c and 7d do not reflect 

the mental actions that characterize the levels of the length LT. Therefore, I made no 

level claim for the students in the ALM level group for these tasks. 

 ALM level group summary. Kyle, Scott, Marie, and Zane’s responses indicate 

that they reached back to use CLM and CRM level thinking to resolve tasks pertaining to 

those levels (Tasks 1 through 4). However, they all also showed that they could operate 

predominantly using ICPM level strategies on tasks that require ICPM level thinking. 

Marie showed evidence that she may be beginning to develop some of the concepts and 

processes at the ALM level. Kyle, Scott, and Zane provided evidence that they could 

operate predominantly using ICPM or ALM level strategies on tasks that require concepts 

and processes from the highest levels of the length LT. 

Summary of Length LT Groups 

Participants in each of the four length LT level groups exhibited the same 

predominant level of thinking; however, there was still some variability in participants’ 



 

 

strategy use within the groups. For example, in the CLM level group, Mia showed 

evidence that she was beginning to develop concepts and processes that are consistent 

with the ICPM level, Kevin used LURR level strategies, and Jenny exhibited CRM level 

thinking. However, all of the students within the CLM level group operated primarily at 

the CLM level.  

Figure 42. Participant LT level placements.

Figure 42 depicts the variability along with the predominant level observed for each 

participant within each length LT level group. In Figure 

particular student’s main l

I observed in the student’s work on the written LT

press). 

In this section, I established four groups anchored in the LT for length 

measurement as level representatives for the CLM, CRM, ICPM, and ALM levels 

(Clements et al., in press). In the following sections, I describe these level 

representatives’ responses to tasks involving aspects of length measurement outside the 

LT to inform recommendations for

below I describe and differentiate students’ responses, both within and across length LT 

level groups, to four different categories of conceptually congruent tasks: (a) comparing 

sets of rectilinear paths by their lengths without tools, (b) comparing sets of curvilinear 
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paths by their lengths without tools, (c) comparing curves and a straight object (a 

nonstandard unit), and (d) measuring a curve with a standard ruler.  

Rectilinear Paths: Intuitions and Analytical Strategies 

I posed two tasks (Tasks 1 and 2 in Interview 1) for the purpose of eliciting 

students’ intuitions (Chiu, 1996) and analytical strategies for comparing sets of rectilinear 

paths. In the next two sections I illustrate the intuitions and analytical strategies that the 

16 interview participants used. These are followed by a section in which I describe 

individual differences with respect to how students used these intuitions and analytical 

strategies for path length to justify arguments when making comparisons among 

rectilinear paths. In the final section, I relate intuition and analytical strategy use for path 

length to the LT for length measurement. 

Four Intuitions for Rectilinear Paths 

Four qualitatively different intuitions for rectilinear paths were used by the 16 

interview participants across Tasks 1 and 2 during the study: straightness, detour, 

complexity, and compression (Chiu, 1996). Each of these intuitions was identified using 

Fischbein’s (1987) definition of an intuition as “a primary phenomenon which may be 

described but which is not reducible to more elementary components” (p. ix). A student’s 

statement was considered to be an intuition if it was consistent with properties of 

intuitions as described by Fischbein. That is, a response was coded as an intuition if it 

appeared to be an immediate, direct, and global solution to the task. In the following 

sections, I illustrate how students used each of these intuitions to defend their claims 

about their ordering of sets of rectilinear “strings” or “paths” by their lengths for Tasks 1 

and 2 (see Figures 43 and 44 below), beginning with the straightness intuition. 
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Figure 43. Image of strings shown for interview Task 1. 

 

Figure 44. Image of strings shown for interview Task 2. 

Straightness. When asked to compare Strings 1, 2, and 3 by their lengths, Jenny 

(Grade 4, CLM Group) ordered them from shortest to longest as String 2, 3, and then 1. 

When asked why she thought String 2 was the shortest, she defended her claim using an 

intuition: 

Interviewer: Can you tell me why you think String 2 is the shortest? 

Jenny: um...because it's in a straight line and the other ones...um...are going 

around longer (traced finger around turns in Strings 1 and 3) so they're longer 

because they need more string. 

Interviewer: OK. What is it about being a straight line that makes it the shortest? 

Jenny: Because you...because...cuz it just goes straight and the other ones need 

more string. 

Jenny’s response reflects the use of the straightness intuition. It is an intuition because it 

is an immediate, direct, and global approach to ordering the three strings by their lengths. 

It is immediate because she provided her response quickly without superimposing the 
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transparencies on which the different strings were printed or attempting to measure first 

using an improvised tool, such as her finger. Jenny’s response is direct and global 

because it appears to be self-evident to her. Evidence of the global characteristic of the 

straightness intuition can be derived from Jenny’s and the other participants’ repeated use 

of the straightness intuition when defending their orderings of rectilinear “paths” or 

“strings” by their lengths. 

When comparing Paths A, B, C, and D for Task 2 (Figure 44) by their lengths, 

Ned (Grade 6, CRM Group) used the straightness intuition when describing his ordering 

saying, “I think Path C is the shortest because it almost goes directly from home to 

school, but it takes a little bit of a turn and then goes to it.” Like Jenny’s response, Ned’s 

explanation reflects an immediate, direct, and global approach to ordering the three 

strings by their lengths. Although none of the paths included in Task 2 were perfect 

diagonal lines like String 2 for Task 1, Ned used the straightness intuition to defend his 

selection of the path with the longest diagonal segment as the straightest path from the 

starting point to the destination. 

Detour. Students who used the detour intuition discussed a path as going out of 

the way or being the least direct. Marie (Grade 10, ALM Group), for example, used the 

detour intuition to explain why Path B was the longest for Task 2 (Figure 44): 

Interviewer: OK. And why is Path B the longest? 

Marie: Probably because it goes completely like around (traced along Path B with 

her fingers) that it might be the longest. 

Interviewer: So, what is it about the way Path B looks that makes you think it's 

the longest? 
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Marie: It's the least direct. 
 
Marie’s response here is an intuition because it is immediate, direct, and global approach. 

That is, she answered quickly, it appeared to be self-evident to her, and Marie and the 

other participants in the study repeatedly used the detour intuition to defend their 

orderings of the “paths” or “strings” in Tasks 1 and 2 by their lengths. 

Complexity. Students who defended their orderings using the complexity 

intuition discussed the number of a certain feature of the “string” or “path,” such as the 

number of turns, segments, or angles. For example, Kevin (Grade 4, CLM Group) used 

the complexity intuition to defend why he thought String 3 was the longest for Task 1 

(Figure 43): 

Interviewer: Why is String 3 over here the longest? 

Kevin: Because it’s like a whole bunch of strings, cuz it’s like do-do-do-do 

(motioning through the turn with his finger) and it takes up more of the paper. 

Interviewer: OK. So, why does having a whole bunch of strings like this...a whole 

bunch of strings...why does that make a string long? 

Kevin: because it's like got all those...like because it's got so many turns, and so 

it's like so long. 

Kevin’s response is an intuition because it is an immediate, direct, and global approach. It 

was given without further justification or elaboration, and it was repeatedly used in 

multiple rectilinear path length comparison situations throughout the study.   

Compression. Students who used the compression intuition discussed either 

straightening “strings” or “paths: that were bent or bending “strings” or “paths” that were 

straight. For example, Kyle (Grade 10, ALM Group) used the compression intuition to 



 

 99

defend why String 1 was the longest in his ordering of the strings in Task 1 from shortest 

to longest as String 2, String, 3 and String 1: 

Interviewer: Why is String 1 the longest? 

Kyle: Um...I imagined putting this...the first line A (tracing along the vertical 

segment of String 1) into the a line looking like String 2, and then adding line B 

(tracing along the horizontal segment of String 1) to line A, and then it looks...it 

appears to be longer than String 3. And I did the same thing for String 3. 

Rose (Grade 6, CRM Group) also used the compression intuition for Task 2; however, 

her application of this intuition was different from Kyle’s because she used it to defend 

why she thought Path C was the shortest: 

Interviewer: So, can I ask you why you think this one’s (pointed to Path C) the 

shortest? 

Rose: Because…um…it’s like, I could pull it down like this (indicating 

straightening out the path to form a single vertical segment), it would still be 

shorter than this because it would be kind of curvy like this (pointed to Path B). 

Kyle and Rose’s explanations here are consistent with the compression intuition because 

they talked about how the paths would compare if they straightened them out. In the 

following section I illustrate how multiple participants used this intuition, as well as the 

other three main intuitions, throughout the study. 

Interactions Among Intuitions for Comparing Rectili near Paths 

Individual students exhibited interactions in their use of these four main types of 

intuitions in two different ways, combinations and conflicts. Some students applied 

intuitions in combination when defending their claims about their ordering of a particular 
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set of rectilinear paths. In those situations, students used multiple intuitions to defend a 

single claim. Some students experienced conflicts in their intuition use. That is, they may 

have defended their claim about the ordering of a set of rectilinear paths through the use 

of one intuition, and then subsequently used a different intuition to justify a claim that the 

ordering of the paths should be different. The following sections illustrate how the 16 

interview participants used intuitions in conflict or combination to support their claims 

about the order of the rectilinear paths (Tasks 1 and 2) by length. 

 Complexity and straightness in combination. Students used a combination of 

the complexity and straightness intuitions in combination a total of eight times across 

Tasks 1 and 2. For example, Ned (Grade 6, CLM Group) used the complexity and 

straightness intuitions in combination during Task 2 to defend why he thought Path C 

was the shortest saying, “Because it only has one turn and it almost goes straight to 

school.” Ned’s comment that Path C “only has one turn” is indicates that he was 

attending to the number of turns, or complexity, of the path. Because he followed this 

comment with “and it almost goes straight to school” indicates that he was also attending 

to the directness, or straightness, of Path C. Therefore, Ned’s response here indicates that 

he used both complexity and straightness intuitions to defend his placement of Path C as 

the shortest in the set. 

Complexity and detour in combination. There were six instances of the use of 

the complexity and detour intuitions used in combination for Tasks 1 and 2. For example, 

Noah (Grade 4, CLM Group) used the complexity and detour intuitions to justify why he 

thought String 1 was the longest. He initially explained that String 1 is the longest 

because “this one goes down (tracing his finger down the vertical segment of String 1) 
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and then that way (tracing his finger along the horizontal segment of String 1).” That is, 

Noah initially used the detour intuition. However, when asked another probing question, 

he relied on a combination of intuitions: 

Interviewer: Alright. What is it about going down and then that way (tracing 

finger along String 1) that makes String 1 the longest? 

Noah: cuz um...you would have a right angle here, and if you took a ruler, this 

one would be long (spanning fingers across the vertical segment of String 1) and 

that one would be long (spanning fingers along the horizontal segment of String 

1)...um...and it doesn't have like a bunch of right angles like this one (pointing to 

String 3) does. 

Noah’s initial attention to the lengths of the vertical and horizontal segments as making 

String 1 long suggests that he used the detour intuition. His follow-up statement about the 

“bunch of right angles” of String 3 is evidence that he also used the complexity intuition 

to justify his claim that String 1 was the longest. 

Complexity and compression in combination. I observed one instance of the 

complexity and compression intuitions being used in combination across Tasks 1 and 2. 

For example, Kyle (Grade 10, ICPM Group) used the complexity and compression 

intuitions as a combination to defend his claim that Path D was the longest for Task 2: 

Interviewer: OK. And why is Path D the longest? 

Kyle: All of the separate lines adding them together (pointing to Path D), 

especially the last two lines that are much longer than they should 

be…but...uh...putting all of these lines (off camera pointing to Path D) and 
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straightening them out into one direction, it would just go farther than how I think 

Path A would go. 

Kyle’s initial attention to “all of the separate lines” is an indication that he initially was 

relying on the number of a specific feature of the paths, the number of line segments. 

This is evidence that he was initially using the complexity intuition. His next statements 

about “adding lines together” and “straightening them out into one direction” suggests 

that he was also thinking about straightening the paths, which is consistent with the 

compression intuition. Therefore, he used the complexity and compression intuitions in 

combination to defend a single claim about Path D being the longest in the set of 

rectilinear paths for Task 2. 

Detour and straightness in combination. Nine instances of the use of the 

combination of the detour and straightness intuitions were observed in students’ 

responses to Tasks 1 and 2. For example, Scott (Grade 10, ALM Group) used the detour 

and straightness intuitions as a combination to defend his claim that Path D was the 

longest for Task 2: 

Interviewer: OK. And why is Path D the longest? 

Scott: I think the length of D's short turns could be just one straight line or 

diagonal, and...hmmm...because if you make a right triangle with those it would 

be (traces finger as a diagonal from the beginning of one horizontal segment to 

the end of a vertical segment on path D)...the same as the...hmmm... 

Interviewer: So are you imagining making a right triangle...will you show me 

what you're imagining with the triangle? 
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Scott: Like a right triangle the hypotenuse would be a shorter way...to get from A 

to B (traces finger as a hypotenuse from the beginning of the first horizontal 

segment of Path D at home to the end of the first vertical segment of path D) 

than...(traced finger along the first horizontal segment of path D and the first 

vertical segment of path D). 

Scott’s initial response was to make a diagonal line with all of the short turns in Path D. 

He then quickly switched from talking about making a diagonal to making a right angle 

with all of the segments of Path D. When asked to show what he was imagining with the 

triangle, Scott talked about the hypotenuse of the triangle being a short way to get from 

one point to another. This is consistent with the straightness intuition. His comparison of 

the short, straight hypotenuse way of getting from one point to another as being shorter 

than going between the same two points in an L-shaped path suggests that he was also 

using the detour intuition to defend his claim. Interestingly, Scott’s mention of the 

hypotenuse of a triangle as being a shorter length than the sum of the legs of the triangle 

suggests that Scott’s intuitive thinking for path length is integrated with his mathematical 

reasoning about right triangles. 

Three intuitions in combination. One student used three intuitions to defend a 

claim. Rick (Grade 8, ICPM Group) used the complexity, detour, and straightness 

intuitions to explain why String 3 was shorter than String 1: 

Interviewer: OK. Why is this one (pointing to String 3) shorter than this one 

(pointing to String 1)? 

Rick: Um...because it (pointing to String 3) doesn't go like one long way all the 

way (traces an L-shape path on the String 3 transparency in the same shape as 



 

 104

String 1) it just goes like (traces along the segments of String 3) all the way...it 

goes like...it's like this (pointing to String 2). It's diagonal, but it's just a little bit 

longer because it goes out and down and out and down. 

Rick’s statement that String 3 doesn’t go “like one long way all the way” while tracing 

the L-shape of String 2 with his finger indicates that he initially used the detour intuition. 

His follow-up comment about String 3 going “…like this (pointing to String 2). It’s 

diagonal,” suggests that he relied on the straightness intuition to support his argument 

that String 3 is straighter than String 1, so String 3 must be shorter than String 1. His final 

statement about String 3 being “just a little bit longer [than String 2] because it goes out 

and down and out and down” suggests that he used the complexity intuition to justify his 

claim that String 3 is only approximately straight, which makes it shorter than String 1, 

but not as short as String 2. 

 Compression and detour in combination. One student, Marie (Grade 10, ALM 

Group) used the compression and detour intuitions as a combination to defend a claim. 

Her responses also indicate that she experienced conflicts in the claims she made based 

on intuitions. The section below describes Marie’s use of intuitions in combination and 

conflict. 

 Conflicting intuitions.  Marie (Grade 10, ALM Group) exhibited conflicting 

intuitions when resolving Task 1. She had initially ordered the strings from shortest to 

longest as String 2, 1, and 3 when she re-examined her ordering using intuitive thinking: 

Marie: I’m just stuck between these two on which one’s the longest (pointed to 

Strings 1 and 3). 

Interviewer: OK. Well, tell me what you’re thinking about. 
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Marie: Because this one like has more like stopping and starting points (pointed to 

String 3). It doesn’t go like as direct as like this one is obviously the most direct 

(pointed to String 2). But…um…and then this one only has like one other 

stopping point (traced around String 1). But I’m like trying to like imagine them 

bent out, and I’m not sure. This one might actually be the longest (pointed to 

String 1). 

Marie first used the complexity and straightness intuitions as a combination. She first 

mentioned the complexity intuition to make a statement about the “stopping and starting 

points” for String 3. She then used the straightness intuition when describing String 2 as 

“obviously the most direct.” Next, Marie exhibited the compression intuition when she 

talked about “trying to like imagine them bent out.” This compression intuition seemed to 

inform her conclusion that String 1 must be the longest and overruled her initial 

conclusion that String 3 was the longest based on the complexity intuition. 

 Although Marie rejected her conclusion based on the complexity intuition, when 

she evoked the compression intuition on Task 1, she applied the rejected complexity 

intuition again in Task 2. She initially ordered the paths from left to right (from shortest 

to longest) as Paths C, A, D, and B: 

Marie: I think that's pretty much it. 

Interviewer: That's pretty much it? 

Marie: um...these two might switch (pointed to Paths A and D). I'm just not sure. 

Interviewer: Which two? 

Marie: These two middle ones (pointed to Paths A and D). 

Interviewer: OK. Tell me what you're thinking about those two middle ones. 
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Marie: Um...that this one (pointed to Path A) has like less like starting and 

stopping points like going around (pointed to Path D), but it (pointed to path A) 

also has like longer stretches so when lengthened out, it might end up actually 

being longer than this (pointed to Path D). 

Marie used the complexity intuition when she compared Paths A and D by the number of 

“starting and stopping points.” Her next statement about the longer stretches of Path A 

are consistent with the detour intuition, which was in conflict with the claim she had just 

defended using the complexity intuition. Therefore, the complexity and detour intuitions 

were in conflict in this statement. She then evoked the compression intuition by talking 

about lengthening the paths out, in order to resolve this conflict between the complexity 

and detour intuitions. By doing so, Marie was able to reason about the size and number of 

segments in a path. She then changed her ordering of the paths as Path C, D, A, and B. 

Although the detour intuition alone (or even in tandem with the complexity intuition) was 

not convincing enough for Marie to make a decision about the order of Paths A and D, 

she used it again to defend why Path B was the longest.  

Re-using rejected intuitions. Some students who experienced conflicting 

intuitions, and rejected one intuition in favor of another, later re-used a rejected intuition 

to defend a subsequent claim. Mia (Grade 4, CLM Group) did this on four separate 

instances. For example, when asked to compare Strings 1, 2, and 3 by their lengths she 

said: 

Mia: um...well…these two are probably about the same length (pointed to Strings 

1 and 3) because you could just make these straight (pointed to the first two 

segments of String 3) and then they would probably be about the same as this 



 

 107

(pointed to String 1)...and if you made this one (pointed to String 1) bumpy it 

would probably be the same as this (pointed to String 3). 

Mia’s discussion of making String 1 straight or String 3 bumpy for the purpose of 

comparing them indicates that she used the compression intuition to defend her claim that 

the two strings were the same length. However, when asked to put the strings in order, 

she ordered them as String 2, 1, and 3. When asked about her order, she experienced a 

conflict in her intuitions: 

Interviewer: Is this one the longest (pointing to String 3)? 

Mia: I think...no. 

Interviewer: No? Because why? 

Mia: Because...(She switched the order of Strings 1 and 3 to reflect an ordering of 

String 2, String 3, and String 1 from left to right)...it is longer to get from here to 

here (traced finger along the two segments of String 1) than it is to get from here 

to here (traced finger along segments of String 3). 

Interviewer: Oh, I see. So, a minute ago you said that these are the same (pointed 

to Strings 1 and 3). Are they the same? 

Mia: No. 

Interviewer: Or are they different? 

Mia: They are different. This one is longer (pointed to String 1). 

Mia initially engaged with the task by operating on the compression intuition to defend 

her claim that Strings 1 and 3 were the same by length. However, she later evoked the 

detour intuition when tracing and explaining, “it is longer to get from here to here (traced 

finger along the two segments of String 1) than it is to get from here to here (traces finger 
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along segments of String 3.” These intuitions conflicted and she rejected the conclusion 

that she had reached by using the compression intuition. That is, the detour intuition was 

predominant in her thinking here. 

Although she rejected the compression intuition in favor of the detour intuition in 

this instance, she continued using both of those same intuitions when responding to 

further questions about her ordering of the strings: 

Interviewer: OK. What is it about String 2 that makes you think it’s the shortest? 

Mia: cuz it’s…um…just straight (pointed to String 2) and this one’s bumpy 

(pointed to String 3) so then if this one (pointed to String 3) was straight then it 

would be a lot longer than this one (pointed to String 2). 

Here, Mia defended her claim that String 2 is the shortest by using a combination of 

intuitions, straightness and compression. She initially operated on the straightness 

intuition when claiming that String 2 is just straight. She then elaborated and offered 

further justification by operating on the compression intuition, which she had previously 

rejected, when explaining that if String 3 were to be made straight, it would be “a lot 

longer” than String 2. She continued using the straightness, compression, and detour 

intuitions to address questions about her order of the paths: 

Interviewer: OK. um...why is String 1 the longest? 

Mia: cuz...um...it takes a lot longer to go down to a corner (traced along the 

vertical segment of String 1) and then over there (traced along the horizontal 

segment of String 1) than it does to just go straight through the middle (traced a 

finger over String 2). 

Interviewer: What is it about String 1 that makes you think it's the longest? 
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Mia: cuz...um...if you put both of these strings (pointing to both the vertical and 

horizontal segments of String 1) in a straight line, then it would be pretty long. 

Interviewer: OK. 

Mia: probably a lot longer than this one (points to string three) and obviously this 

one (pointed to String 2) ‘cuz it's already straight. 

Mia initially defended her claim that String 1 was the longest using a combination of 

intuitions, detour and straightness. She used the detour intuition first when she talked 

about how much longer it would take to go down to a corner (along the vertical segment) 

and then over (along the horizontal segment). She then evoked the straightness intuition 

by saying it takes longer and tracing String 1 than it does to just go straight along string 

two. When asked a clarifying question about what it is about String 1 that made her think 

it was the longest, she used the compression intuition. Although she had previously used 

the detour intuition to reject her initial determination (that Strings 1 and 3 were the same 

length) derived from the compression intuition, she used the detour and compression 

intuitions, with the straightness intuition to support her claim that String 1 is the longest. 

For Task 2, Mia used all four intuitions, including intuitions in combination in 

some instances, as she defended her ordering of the Paths from shortest to longest by 

their lengths as Path C, A, D, and B. She also experienced conflicting intuitions and used 

rejected intuitions when defending her claim that Path B was the longest:  

Interviewer: OK. Let's see. Why is Path B the longest? 

Mia: Um...cuz it has to go...um...really far down and then it has to go far over 

there. 
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Interviewer: OK. Why does going far down and far over there make Path B the 

longest? 

Mia: mmmm...hmmm...hmmm.... 

Interviewer: Can you explain it? Can you explain why going down far and going 

over far makes a path longer...makes a path long? 

Mia: hmmm...actually I think this one (pointed to Path D) is longer than that one 

(pointed to Path B and switched Paths B and D, so the ordering was Path C, A, B, 

D) 

Interviewer: Oh. OK. Can you tell me why you switched your order? 

Mia: Because I think that if you put this one (traced along the horizontal segment 

of Path B) there (rotated end-to-end with the vertical segment of Path B, forming 

a single straight line), it would be about like this long or this big (indicated on the 

table where this single straight line would end up) as this one would be, if you 

stretched it out like that (pointed to Path D). 

Interviewer: OK. Alright. So, was there something about one of these paths 

looked that made you switch the order? 

Mia: um…this one (pointed to Path D) was all bumpy which meant it...took up 

more string, and this one was less bumpy and just straight (pointed to Path B). 

Mia initially defended her claim that Path B was the longest by using the detour intuition 

saying that Path B is longest because it goes “really far down and then it has to go far 

over there.” When probed about why this feature of Path B makes it the longest, she 

exhibited conflicting intuitions. That is, she switched her ordering of the paths from 

CADB to CABD and explained that she switched because she imagined stretching the 
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paths out, which indicates that she operated on the compression intuition. In this 

situation, the compression intuition was the predominant intuition over the detour 

intuition in Mia’s thinking, despite the fact that she had previously used the detour 

intuition to reject a conclusion derived from the compression intuition in Task 1. When 

further pressed what it was about the paths that made her switch the order, she talked 

about how Path D was bumpy and therefore took up more string than Path B; this 

explanation was based on the complexity intuition. 

Analytical Strategy Use for Rectilinear Paths 

Twenty-three instances of analytical strategy use were exhibited by seven of the 

16 interview participants when they compared sets of rectilinear paths. Six of these seven 

students who used analytical strategies also used the four intuitions described in the 

sections above to defend their orderings of the rectilinear “strings” or “paths” by their 

lengths. Only one student, Lynn (Grade 8, CRM Group) relied solely on analytical 

strategies to justify her claims when comparing the rectilinear “strings” or “paths” by 

their lengths. The 23 instances of analytical strategy use consisted of three types of 

physical comparison strategies and one strategy that involved projecting or translating 

segments of paths either vertically or horizontally. In the sections below I illustrate each 

of these four analytical strategies and describe how participants used them. 

Indirect comparison using finger span. Students who used this indirect 

comparison strategy placed a finger span across a segment of one path and then placed 

the same finger span across a segment of another path. For example, Scott used the 

“indirect comparison using finger span” strategy on Task 2 after using the fist 

straightness intuition to defend his claim that Path C was the shortest, and then 
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experiencing a conflict between the complexity and compression intuitions to justify his 

ordering of Path B as longer than Path A. When asked specifically about what he was 

thinking about Paths A and B, he said: 

Hmmm…this one’s probably about the same length (spanned fingers across the 

vertical segments closest to school on both Paths A and C) so I would think this 

would be longer (traced finger along the first four segments of Path A) than that 

(pointed to the diagonal segment of Path C). 

Scott’s strategy of spanning his fingers across the vertical segments that were closest to 

the point labeled as “school” on both Paths A and C does not meet the definition of being 

an intuition. It is not an immediate, direct, and global solution. It is a solution derived 

from comparing parts of the paths indirectly, using a finger span. 

The indirect comparison strategy using a finger span was observed a total of two 

times by two students, Rose (Grade 6, CRM Group) and Scott (Grade 10, ALM Group). 

Both Rose and Scott used this analytical strategy along with intuitions. Scott went on to 

use additional comparison and projection strategies to justify his claims about the order 

of the paths for Task 2. 

Superimposed pairs of rectilinear paths to compare directly. Students who 

used this analytical strategy placed one transparency containing a “string” or “path” 

directly on top of another transparency containing a different “string” or “path.” For 

example, Zane (Grade 10, ALM Group) used the analytical strategy of superimposing 

pairs of paths to compare the paths directly after being initially asked to compare the 

paths in Task 2 by their lengths. He superimposed Path A onto Path C. He then switched 

the positions of Path A and C, so the paths were then ordered as CBAD. Next, he 
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switched the position of Paths B and A, so the paths were ordered as CABD. He again 

superimposed Path B onto Path D and said, “Got it.” 

This direct comparison strategy involving superimposing pairs of rectilinear 

“strings” or “paths” was observed a total of nine times by six participants: Trent (Grade 

6, CRM Group), Lynn (Grade 8, CRM Group), Rick (Grade 8, ICPM Group), Ruth 

(Grade 8, ICPM Group), Zane (Grade 10, ALM Group), Scott (Grade 10, ALM Group). 

Aside from Lynn, who used analytical strategies only throughout Tasks 1 and 2, the other 

five of these participants used this superimposition strategy along with intuitions to 

justify their claims about the ordering of the “strings” or “paths” by their lengths. Of 

these five, Rick was the only student who did not also use at least one other analytical 

strategy on Tasks 1 and 2.  

Segment matching comparison strategy. Students who used the “segment 

matching comparison strategy” purposefully matched the segments of one “path” or 

“string” to the segments of another “path” or “string” when superimposing pairs of 

strings or paths to directly compare. For example, when initially asked to compare 

Strings 1, 2, and 3 by their lengths for Task 1, Trent (Grade 6, CRM Group) 

superimposed the transparency of String 3 onto the transparency of String 2 and then took 

them apart. He then placed each segment of String 1 over String 2 to compare directly 

and then took them apart again. He said, “OK. I found it.” When asked what he found, he 

explained that he thought string three was the longest and string two was the shortest. 

Participants used the segment matching comparison strategy a total of six times 

by three students: Trent (Grade 6, CRM Group), Lynn (Grade 8, CRM Group), and Ruth 
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(Grade 8, ICPM Group). Both Trent and Ruth also used this analytical strategy along 

with intuitions, and other analytical strategies for Ruth. 

Project to form right angle. Students who used the “project to form right angle” 

analytical strategy indicated that they compared rectilinear paths by imagining translating 

vertical segments horizontally (left and right) or horizontal segments vertically (up and 

down) to form a single right angle. For example, after using a combination of intuitions 

(straightness and detour) to justify why String 2 was the shortest, Ruth (Grade 8, ICPM 

Group) used the “project to form right angle” strategy when asked why she thought 

String 1 was the longest: 

Ruth: Cuz, for the middle one I kind of visually do it, whereas if I take this line, 

this line, this line (pointed to horizontal segments of String 3) and make it like a 

straight line over here (traced finger across the transparency for String 3 to 

indicate how long the three horizontal segments of String 3 would be if they were 

one segment.) 

Interviewer: mm-hmmm 

Ruth: It would be the same as...like this one (traced finger along the horizontal 

segment of String 1)…and then if it's like these three (traced finger along three 

vertical segments of String 3). 

Interviewer: OK 

Ruth: Oh! OK...so...OK OK OK. 

Interviewer: You can draw. You can write more on here if you want to. Do you 

want to write what you were imagining on there? 
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Ruth: So this one here (touched the marker at the end of the second horizontal 

segment of String 3 and then projected it end-to-end with the first horizontal 

segment) and this one (touched the marker at the end of the third horizontal 

segment of String 3 and then projected it end-to-end with the projected second 

horizontal segment of String 3)…and I was thinking these three (swept marker 

over each of the three vertical segments of String 3)...I'm confused now because it 

looks like they're the exact same length (looked at Strings 1 and 3). 

Interviewer: OK. Tell me what you were doing with these three (pointed to each 

of the three vertical segments of String 3). 

Ruth: And I would move these (touched the first vertical segment of String 3 with 

the marker) back over here, (placed marker at the end of the horizontal line 

representing the three projected horizontal segments and drew the first vertical 

segment perpendicular to this segment) so then this would go down here. This 

would go down here (touched the marker to the second vertical segment and then 

projected it end-to-end with the projected first vertical segment of String 3; this 

new segment touched the third vertical segment of String 3) and that would the 

exact same length. 

After Ruth applied the project to form right angle strategy here to justify her claim that 

String 1 was the longest, she changed the ordering of the paths that she had initially 

defended using a combination of the straightness and detour intuitions. That is, her 

application of this analytical strategy created a conflict between the combination of 

intuitions she had used and this analytical strategy. This conflict led her to reject a claim 

she had initially defended using the combination of intuitions. Three different participants 



 

 

used the project to form right angle analytical strategy a total of six times: Ruth (Grade 8, 

ICPM Group), Zane (Grade 10, ALM Group), and Scott (Grade 10, ALM Group). Each 

student who used this analytical strategy a

strategies to defend their claims about the order of a set of rectilinear paths.

Relating Intuition 

 I tracked patterns of use of the four main intuitions, combinations of intuitions, 

analytical strategies, rejecting intuitions, and using rejected intuitions when comparing 

sets of rectilinear paths (Tasks 1 and 2) within and across the four length LT leve

Figure 45 illustrates the frequency of the appearance of intuition and analytical strategy 

codes relevant to Tasks 1 and 2.

Figure 45. Patterns of intuition and analytical strategy use for comparing rectilinear paths 
within and across LT groups
 
In Figure 45, within each column, the darkest shade indicates the LT group with the 

highest frequency of an intuition or analytical strategy code. The lightest shade indicates 

the LT group with the lowest frequency of an intuition or analytical strategy

45 illustrates developmental patterns within and across LT groups for the use of the four 

main types of intuitions and overall analytical strategy and intuition use. In the sections 

below I describe these patterns, beginning with T
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the project to form right angle analytical strategy a total of six times: Ruth (Grade 8, 

ICPM Group), Zane (Grade 10, ALM Group), and Scott (Grade 10, ALM Group). Each 

student who used this analytical strategy also used other intuitions and analytical 

strategies to defend their claims about the order of a set of rectilinear paths.

Intuition for Rectilinear Paths to the Levels of the Length LT

I tracked patterns of use of the four main intuitions, combinations of intuitions, 

analytical strategies, rejecting intuitions, and using rejected intuitions when comparing 

sets of rectilinear paths (Tasks 1 and 2) within and across the four length LT leve

illustrates the frequency of the appearance of intuition and analytical strategy 

codes relevant to Tasks 1 and 2. 

. Patterns of intuition and analytical strategy use for comparing rectilinear paths 
within and across LT groups. 

, within each column, the darkest shade indicates the LT group with the 

highest frequency of an intuition or analytical strategy code. The lightest shade indicates 

the LT group with the lowest frequency of an intuition or analytical strategy

illustrates developmental patterns within and across LT groups for the use of the four 

main types of intuitions and overall analytical strategy and intuition use. In the sections 

below I describe these patterns, beginning with Table 5. 

the project to form right angle analytical strategy a total of six times: Ruth (Grade 8, 

ICPM Group), Zane (Grade 10, ALM Group), and Scott (Grade 10, ALM Group). Each 

lso used other intuitions and analytical 

strategies to defend their claims about the order of a set of rectilinear paths. 

Levels of the Length LT 

I tracked patterns of use of the four main intuitions, combinations of intuitions, 

analytical strategies, rejecting intuitions, and using rejected intuitions when comparing 

sets of rectilinear paths (Tasks 1 and 2) within and across the four length LT level groups. 

illustrates the frequency of the appearance of intuition and analytical strategy 

 

. Patterns of intuition and analytical strategy use for comparing rectilinear paths 

, within each column, the darkest shade indicates the LT group with the 

highest frequency of an intuition or analytical strategy code. The lightest shade indicates 

the LT group with the lowest frequency of an intuition or analytical strategy code. Figure 

illustrates developmental patterns within and across LT groups for the use of the four 

main types of intuitions and overall analytical strategy and intuition use. In the sections 
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Table 5 
 
Distribution of Each Intuition for Comparing Rectilinear Paths across Length LT Level 
Groups (Tasks 1 and 2) 
 

 CLM Group CRM Group ICPM Group ALM Group Totals 
 

Straightness 
 

28.57%* 
(12) 

16.67% 
(7) 

28.57% 
(12) 

26.19% 
(11) 

42 

 
Complexity 

 

36.54% 
(19) 

28.85% 
(15) 

19.23% 
(10) 

15.38% 
(8) 

52 

 
Detour 

 

32.36% 
(10) 

19.35% 
(6) 

22.58% 
(7) 

25.81% 
(8) 

31 

 
Compression 

 

33.33% 
(6) 

11.11% 
(2) 

0.00% 
(0) 

55.56% 
(10) 

18 

 
Totals 

 

32.98% 
(47) 

20.98% 
(30) 

20.28% 
(29) 

25.87% 
(37) 

143 

* 28.57% of the instances in which the straightness intuition was observed occurred with 
the participants who were classified as members of the CLM group. 
 
Patterns of Intuition Use within LT Groups for Rectilinear Paths 

I observed a total of 143 instances of intuition use in the 16 main participants 

responses to Tasks 1 and 2, which both involved comparing sets of rectilinear paths. For 

these two tasks, participants evoked the complexity intuition more often overall than any 

of the other three main types of path length intuitions observed during the study. This was 

followed by straightness, then detour, and finally the compression intuition. I observed 

this same overall trend for the frequency of the appearance of each of the four main 

intuitions for the CLM and CRM level groups. However, the participants in the ICPM 

and ALM level group exhibited a different pattern of intuition use. In the ALM and 

ICPM level groups, participants used the straightness intuition most often. This was 
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followed by complexity, detour, and compression for the ICPM group, and compression, 

complexity, and detour for the ALM level group. 

Patterns of Intuition Use across LT Groups for Rectilinear Paths 

The complexity intuition was used most often by students in the CLM level 

group, with 19 instances, and decreased across the length LT groups as the level of 

sophistication increased. The detour intuition was used most often by the CLM group, 

and the use of this intuition was approximately evenly distributed across the CRM, 

ICPM, and ALM level group, The straightness intuition was used most often by the CLM 

group, and the compression intuition was used most often by the ALM group. 

 Students in the CLM level group, the lowest level of the LT for length 

measurement that was included in the present study, exhibited the highest number of 

instances of intuition use, for a total of 47. This group was followed by the ALM level 

group, the highest level of the length LT included in the study, for a total of 37. The 

CRM and ICPM level groups both exhibited approximately the same number of instances 

of intuition use, with 30 and 29 respectively. This suggests that there exist developmental 

patterns in intuition use across the levels of the length LT. Specifically, the types of 

intuition, as well as the frequency of use of intuition, changes across the levels of 

sophistication for length measurement. 

Intuitive and Analytical Thinking in Combination an d Conflict 

 Participants used intuitive and analytical thinking in combination and conflict 

when ordering rectilinear paths by length (Tasks 1 and 2). Table 6 illustrates the 

frequency with which these events occurred throughout Tasks 1 and 2. 
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Table 6 

Distribution of Intuitions Used in Combination, Conflict, and in Tandem with Analytical 
Thinking for Comparing Rectilinear Paths (Tasks 1 and 2) across Length LT Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Overall 
Totals 

 
Conflicting Intuitions 

 

33.33%* 
(2) 

0.00% 
(0) 

0.00% 
(0) 

66.66% 
(4) 

6 

 
Combination of Intuitions 

 

22.22% 
(6) 

22.22% 
(6) 

25.93% 
(7) 

29.63% 
(8) 

27 

Rejected an Intuition 

 
50.00% 

 (2) 
 

0.00% 
(0) 

0.00% 
(0) 

50.00% 
(2) 

4 

Rejected Intuition Use 

 
66.66% 

(4) 
 

0.00% 
(0) 

0.00% 
(0) 

33.33% 
(2) 

6 

 
With Analytical Strategies 

 

0.00% 
(0) 

42.86% 
(6) 

14.29% 
(2) 

42.86% 
(6) 

14 

* 33.33% of the instances in which a conflict in intuition use was observed occurred with 
the participants who were classified as members of the CLM level group. 
 
Intuitive and Analytical Thinking in Combination an d Conflict within LT Groups 

Participants in the CLM level group showed evidence of using intuitions in 

combination, experiencing conflicts among intuitions that lead to the rejection of an 

intuition, and also later used rejected intuitions. CLM level participants showed no 

evidence of using analytical strategies with intuitions when comparing rectilinear paths 

by their lengths. CRM and ICPM level participants used intuitions in combination and 

with analytical strategies. Participant at the ALM level showed evidence of using 

intuitions in combination, with analytical strategies, experienced conflicts among 

intuitions that lead to the rejection of an intuition, and also used rejected intuitions. 
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Intuitive and Analytical Thinking in Combination an d Conflict across LT Groups 

Only students in the lowest and highest LT level groups, the CLM and ALM 

levels, exhibited evidence of experiencing conflicting intuitions on Tasks 1 and 2. These 

six instances of conflicting intuitions appeared in the responses of three students: Mia 

(Grade 4, CLM Group), Scott (Grade 10, ALM Group), and Marie (Grade 10, ALM 

Group). The instances of intuitions used in combination appeared almost evenly across 

the four length LT level groups. None of the students in the CLM level group, the lowest 

LT level group included in the study, used analytical strategies with intuitions to resolve 

Tasks 1 or 2. The students in this LT level group relied solely on intuition to justify their 

claims about their orderings of rectilinear paths by length. Analytical strategy use in 

tandem with intuitions appeared most often at the CRM and ALM levels (6 instances) 

and dropped off for the level between those levels, ICPM (2 instances). Instances of 

students rejecting intuitions and using rejected intuitions appeared only within the highest 

and lowest LT level groups included in the study, the CLM and ALM groups. Although 

the instances of rejecting a claim based on an intuition were evenly dispersed across these 

two level groups (two instances in each of the CLM and ALM groups), students in the 

CLM level group exhibited evidence of returning to use rejected intuitions more often 

than students in the ALM level groups. 

 Instances of intuition use occurred within each of the four length LT level groups 

for the tasks involving comparing rectilinear paths (Tasks 1 and 2). However, not all of 

the length LT level groups showed evidence of using analytical thinking when making 

such comparisons. Table 7 below illustrates the distribution of intuitive and analytical 

thinking across the four length LT level groups for Tasks 1 and 2. 



 

 121

Table 7 

Distribution of Intuition and Analytical Strategy Use for Rectilinear Paths (Tasks 1 and 
2) across Length LT Level Groups 
 

 CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals 

 
Intuitions 

 

32.87%* 
(47) 

20.98% 
(30) 

20.28% 
(29) 

25.87% 
(37) 

143 

 
Analytical Strategies 

 

0.00% 
(0) 

43.48% 
(10) 

30.43% 
(6) 

26.09% 
(6) 

23 

* 32.87% of the instances in which an intuition was observed for Tasks 1 and 2 occurred 
with the participants who were classified as members of the CLM level group (for a total 
of 47 instances). 
 
Patterns of Intuition and Analytical Strategy Use within LT Groups 

Within each LT level group, instances of intuitive thinking were more frequent 

than analytical thinking when comparing sets of rectilinear paths by lengths without 

tools. At the CLM level, students relied only on intuitions to defend their orderings of 

rectilinear paths by their lengths. At each of the subsequent levels, the CRM, ICPM, and 

ALM levels, students used both intuitions and analytical strategies to defend their claims 

about the order of rectilinear paths by their lengths. 

Patterns of Intuition and Analytical Strategy Use across LT Groups 

Table 7 indicates that, at the lowest level of the length LT included, the CLM 

level, students used the highest percentage of intuitions, with 32.87%. The highest 

percentage of analytical strategy use occurred within the group representing the next 

level, the CRM level, with 43.48%. This level group also exhibited one of the smallest 

percentages of intuition use, with 20.98%. Analytical strategy use then decreased as the 

length LT levels increased, with 30.43% for the ICPM group and 26.09% for the ALM 

group. Intuition use remained approximately the same from the CRM level group to the 



 

 

ICPM level group, with 20.28%; however, there was an increase in intuition use for the 

ALM level group, with 25.87%.

This suggests an interaction between intuitive and analytical thin

comparing sets of rectilinear paths with the levels of the length LT. This interaction is 

illustrated in Figure 46, where the blue bar represents the percentage of units of data 

within each LT group that were coded as intuitive, and the red bar re

percentage of units of data that were coded as analytical.

Figure 46. Interaction between intuitive and analytical strategy use within each LT level 
group. 
 
Figure 46 indicates that, early on in the development of conceptual and procedural 

knowledge for length measurement, at the CLM level, students used only intuitive 

statements to defend claims about the order of rectilinear paths by length. Students at the 

subsequent level of conceptual and procedural knowledge for length measurement, the 

CRM level, used newly acquired analytical strategies to justify their claims about the 
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ICPM level group, with 20.28%; however, there was an increase in intuition use for the 

ALM level group, with 25.87%. 

This suggests an interaction between intuitive and analytical thinking for 

comparing sets of rectilinear paths with the levels of the length LT. This interaction is 

, where the blue bar represents the percentage of units of data 

within each LT group that were coded as intuitive, and the red bar represents the 

percentage of units of data that were coded as analytical. 

Interaction between intuitive and analytical strategy use within each LT level 

indicates that, early on in the development of conceptual and procedural 

nowledge for length measurement, at the CLM level, students used only intuitive 

statements to defend claims about the order of rectilinear paths by length. Students at the 

subsequent level of conceptual and procedural knowledge for length measurement, the 

CRM level, used newly acquired analytical strategies to justify their claims about the 
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lengths of rectilinear paths. Across the CRM, ICPM, and ALM levels, the ratio of 

intuition to analytical strategy use increases. 

Curvilinear Paths: Intuitions and Analytical Strategies 

 I posed tasks involving curves to elicit students’ intuitions and analytical 

strategies when comparing a pair or set of curves without tools (Task 6A, 7, and 8A), 

comparing a curve and a straight object (Tasks 3, 4, and 5), a pair of curves with a 

straight object (Tasks 6B and 8B), or measuring a curve with a ruler. In the first section 

below I describe the intuitions and analytical strategies that students used when 

comparing a pair or a set of curvilinear paths. This is followed by a section in which I 

describe relationships between intuition use and conceptual and procedural knowledge 

for length measurement, as measured by the LT for length measurement. 

For Tasks 6A, 7, and 8A (Figures 47, 48, and 49) I asked students to compare a 

pair or set of curves without tools.  

 
 
Figure 47. Image of a pair of curvilinear paths for interview Tasks 6A and 6B. 

 
 
Figure 48. Image of a pair of curvilinear paths for interview Task 7. 

 
 
Figure 49. Image of a pair of curvilinear paths for interview Tasks 8A and 8B. 
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Five Intuitions for Curvilinear Paths 

The 16 interview participants’ responses to tasks involving ordering pairs or sets 

of curvilinear paths by their lengths without the use of tools (Tasks 6A, 7, and 8A) 

reflected five main intuitions. I observed four of these five intuitions in their responses as 

they compared rectilinear paths by their lengths (Tasks 1 and 2 in the sections above), as 

well as in prior research (Chiu, 1996). These are the straightness, complexity, detour, and 

compression intuitions. One new intuition, called the curve tightness intuition here, 

emerged as students attended to curve when telling about their ordering or answering 

clarifying questions about why a particular path was shortest or longest. In the following 

section I describe how the 16 interview participants used these five intuitions. 

Straightness. As with the rectilinear paths, students who used the straightness 

intuition when defending their claims about the order of curvilinear paths by their lengths 

(Tasks 6A, 7, and 8A) attended to the straightness of a particular path, without providing 

further justification. For example, Kevin (Grade 4, CLM Group) used the straightness 

intuition when asked why the wider curve for Task 8A (see Figure 49) was the shortest. 

He said, “Because it's...it look...um...um...because it's more of a straight line than this one 

(pointed to the tighter curve).” Participants in each of the four length LT level groups 

reflected the straightness intuition in their responses across Tasks 6A, 7, and 8A. 

Detour. Consistent with the use of this intuition for comparing sets of rectilinear 

paths (Tasks 1 and 2), students who used the detour intuition when defending their claims 

about the order of curvilinear paths (Tasks 6A, 7, and 8B) discussed a particular path as 

going out of the way or not being a direct route. For example, when asked to tell about 

his ordering of the three strings by their lengths for Task 7 (see Figure 48), Rick (Grade 
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8, ICPM Group) said, “I was thinking this is the longest (pointed to String 1) because you 

have to go all the way around.” I observed the detour intuition in students’ responses 

across all four length LT level groups; however, it only appeared in students’ responses 

to Task 7. 

Complexity. Similar to some of the responses observed as students compared 

rectilinear paths (Tasks 1 and 2), students who used the complexity intuition to defend 

their claims about the ordering of curvilinear paths (Tasks 6A, 7, and 8A) attended to the 

number of turns of a particular path. For example, Grant (Grade 6, ICPM Group) used the 

complexity intuition when defending his claim that String 3 was the longest for Task 7: 

Interviewer: OK. And why is string three the longest? 

Grant: Because it like zig-zags all over and zig-zagging takes, like, extra time. 

Interviewer: OK. So, why does zig-zagging make it longer? 

Grant: Because you're like...you're like going all over the place instead of like 

straight from one point to another. 

Grant’s response reflects his attention to the number of zig-zags in a path, as well as his 

belief that zig-zags add time and length to a path. His response illustrates the complexity 

intuition as applied to a set of curvilinear paths and a potential reason that people develop 

the complexity intuition, an interference of distance traveled versus the time it would take 

to travel that distance. For Task 7, Strings 1 and 3 are the same length. However, to 

traverse String 3 as a path in reality, one would need to slow down to make the turn, thus 

adding more time to the trip without adding length. Like the detour intuition, the 

complexity intuition was reflected in the responses of students in all four length LT level 
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groups, but I observed it as they defended their claims about their orderings of the three 

curvilinear paths only for Task 7. 

Compression. As with the sets of rectilinear paths (Tasks 1 and 2), students who 

used the compression intuition to justify their claims about the order of pairs or sets or 

curvilinear paths (Tasks 6A, 7, and 8A) discussed either straightening curves or bending 

curves for the purpose of making comparisons. For example, Scott (Grade 10, ALM 

Group) used the compression intuition to defend why he thought the wider curve was 

shorter for Task 8A saying, “just how I imagined if you...if it were a string you could just 

pull it (gestured to the wider curve with his fingers as if to pull the ends straight.)” The 

compression intuition was observed in students’ responses for Tasks 6A, 7, and 8A and 

across all four length LT level groups. 

Curve tightness. Students who used the curve tightness intuition discussed one 

curve as being longer than another because it was curved in more or had more curve. 

When asked how he thought about comparing the two curves for Task 6A, David (Grade 

8, ICPM Group) said: 

I saw this one (pointed to the spiral curve) was more curved than this one (pointed 

to the curve with the straight segment). So, I was gonna see if...like...how close 

they are in length this way (gestured with his hands in a back and forth horizontal 

direction), and if this one (pointed to the spiral curve) was like the same size as 

this one (pointed to the curve with the straight segment), this one would be longer 

(pointed to the spiral curve) because it's curved in more. This one's slightly longer 

(pointed to the curve with the straight segment), but I still think that one's longer 

(pointed to the spiral curve). 
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David’s response here is qualitatively different from the other four intuitions. He did not 

attend to the straightness of a path (the straightness intuition), or discuss straightening or 

bending one of the curves (the compression intuition). David also did not discuss one 

path as deviating away from the destination more than another (the detour intuition) or 

attend to the number of turns or bends in a path (the complexity intuition). Although his 

response here did not fit with the description of any of the four previously mentioned 

intuitions, his response is consistent with the properties of intuitions as described by 

Fischbein (1987). That is, it is a statement that is immediate, direct, and global. It was 

given without further justification or elaboration. This response from David is an 

illustrative example of the curve tightness intuition, which was repeatedly used in 

multiple curvilinear path length comparison situations (Tasks 6A, 7, and 8A) and by 

interview participants in each of the four length LT level groups throughout the study. 

Analytical Strategy Use for Curvilinear Paths 

Twenty-two instances of analytical strategy use were observed in the responses of 

nine of the interview participants as they made comparisons among curvilinear paths 

(Tasks 6A, 7, and 8A). Five of these nine students, Scott (Grade 10, ALM Group), Trent 

(Grade 6, CRM Group), Zane (Grade 10, ALM Group), Kyle (Grade 10, ALM Group), 

and Rose (Grade 6, ALM Group) each used only analytical strategies, without also using 

an intuition, to defend their order of the curvilinear paths for one of these tasks. Four 

students Lynn (Grade 8, CRM Group), Ruth (Grade 8, ICPM Group), Scott (Grade 10, 

ALM Group), and Kyle (Grade 10, ALM Group) used multiple analytical strategies 

across these tasks. One student, Lynn, used only analytical strategies on all of these tasks. 
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The following sections illustrate how participants used five different analytical strategies 

as they defended their orderings of sets of curvilinear paths for Tasks 6A, 7, and 8A. 

Superimposed pairs of curvilinear paths to compare directly. Students who 

used this strategy placed one curve on top of the other for the purpose of directly 

comparing the strings. This strategy does not meet the definition of an intuition as an 

immediate, direct, and global approach because it involves a physical, direct comparison. 

Kyle (Grade 10, ALM Group) used this analytical strategy when comparing the tight 

curve and the wide curve for Task 7 (Figure 49). When initially asked to compare the set 

of three curvilinear “strings” by their lengths, Kyle placed the String 1 transparency on 

top of the String 2 transparency with points A and B lined up. Next, he placed the String 

2 transparency on top of the String 3 transparency, again with points A and B lined up. 

He said, “String 2 is definitely the smallest because when I put it on top of 1 of…each of 

the other strings...(trailed off).” Although Kyle did not articulate how superimposing the 

strings informed his answer, the fact that he did suggests that he did not use an intuition. 

A total of 14 instances of the analytical strategy of superimposing pairs of 

curvilinear paths to compare sets of curvilinear paths directly (Tasks 6A, 7, and 8A) were 

observed in seven participants’ responses: Rose (Grade 6, CRM Group), Lynn (Grade 8, 

CRM Group), David (Grade 8, ICPM Group), Ruth (Grade 8, ICPM Group), Zane (Grade 

10, ALM Group), Scott (Grade 10, ALM Group), and Kyle (Grade 10, ALM Group). Six 

of these seven participants who used this strategy, did so more than once. Once student, 

Ruth (Grade 8, ICPM Group) used this strategy on each of Tasks 6A, 7, and 8A. 

Indirect comparison using finger span. Students exhibited the strategy of 

indirectly comparing using finger span by placing a finger span, or space pinched 
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between fingers, on two or more curves. For example, Trent (Grade 6, CRM Group) used 

this strategy when he was asked to compare the partial circle-shaped curves for Task 8A 

without any tools. He placed one hand in an L-shape on each side of the tighter curve, 

with his thumbs touching. Next, he placed his hands in the same formation on top of the 

wider curve. He said, “I think this one is longer (pointed to the tight curve).” Kyle’s 

application of the indirect comparison using a finger span strategy was in his placement 

of a hand in a L-shape on each side of the tighter curve. 

A total of three instances of the analytical strategy of indirect comparison using a 

finger span were observed in three student’s responses: Trent (Grade 6, CRM Group), 

Scott (Grade 10, ALM Group), and Kyle (Grade 10, ALM Group). These instances were 

observed on Tasks 6A and 8A. 

Accumulating length comparison strategy. Students who used the accumulating 

length strategy superimposed a pair of curvilinear paths and rotated one of the paths, 

while accumulating the length of the first on a second path. Lynn (Grade 8, CRM Group) 

used this strategy when comparing the three strings by their lengths. She placed the 

String 1 transparency on top of the String 2 transparency, positioning String 2 as a 

tangent to String 1 and aligning them according to points A and B. Next, Lynn made a 

tick mark on String 1 at the point at which String 2 appeared to deviate from the curve. 

She then rotated String 1 on top of String 2, repositioning String 1 at a new point of 

tangency on String 2. Lynn again made a tick mark where String 2 appeared to deviate 

from the curve. This suggests that Lynn physically, by making tick marks, transformed 

one path into the same shape as another to compare them directly. Lynn repeated this 

procedure of adjusting the point of tangency, making tick marks to keep track, and 
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accumulating the length of String 2 along String 1. She also applied this strategy for 

comparing Strings 1 and 3. She then ordered the strings from shortest to longest as String 

2, 1, and 3. 

I observed three instances of the accumulating length comparison strategy in three 

participants’ responses: Lynn (Grade 8, CRM Group), Ruth (Grade 8, ICPM Group), and 

Scott (Grade 10, ALM Group). I observed all of the instances of this strategy on Task 7. 

Rate comparison strategy. I observed one instance of the rate comparison 

strategy in one student’s response to Task 7: Ruth (Grade 8, ICPM Group). She first 

superimposed the three “strings” to directly compare them. She then traced along the path 

of String 2 with a marker onto the String 1 transparency, and traced along String 1 on the 

String 2 transparency. Next, she placed String 3 onto String 1, aligned according to points 

A and B and traced the shape of Strings 1 and 2 on the String 3 transparency. She ordered 

the strings from shortest to longest as Strings 2, 3, and 1. While superimposing the 

strings, Ruth drew some marks (see Figure 50): 

Interviewer: I saw you making some marks on here (pointed to String 3) and then 

making some marks on there (pointed to the path of String 1 traced on the String 3 

transparency). 

Ruth: I was...what I was doing is...I was kind of listening to it a little, and then 

look at it and...so that much right there (traced along a piece of String 3)...I tried 

to imitate that along...like right there (traced along a little piece of String 1 to 

show how part of String 3 mapped to String 1). 

Here, Ruth’s “listening” to “that much right there” (while tracing along a piece of String 

3) and imitating “that much right there” (while tracing along a piece of String 1) suggests 



 

 

that she may have been attempting to traverse segments of the two paths while 

maintaining the same rate. That is, 

each string at the same rate as an attribute by which she could compare the curvilinear 

“strings.” 

Imposed internal unit.

imposing an internal unit 

Task 7: Ruth (Grade 8, ICPM Group). While using the rate comparison strategy, Ruth 

made marks on the String 1, 2, and 3 transparencies, which suggests that she also applied 

an internal unit while comparing the curvilinear paths by their lengths for Task 7. The 

following figure (Figure 5

curvilinear paths by their lengths:

 
Figure 50. Ruth’s application of an internal unit for 

Ruth: So, what my thing would be was this amount right here would be equal to 

this amount right here (again, pointing to a segment of String 3 and showing how 

it mapped to a segment of String 1) and then I took a little bit from here and right 

there. So the little marks I made...like...to kind of chop it up a little bit. And, right 

here, this was 10 little tiny marks. And I tried to make sure my marks we

same as much as possible

Interviewer: OK. 
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that she may have been attempting to traverse segments of the two paths while 

maintaining the same rate. That is, she compared the time it took to traverse a length on 

each string at the same rate as an attribute by which she could compare the curvilinear 

Imposed internal unit. I observed one instance of the analytical strategy of 

imposing an internal unit when comparing curvilinear paths in one student’s response for 

Task 7: Ruth (Grade 8, ICPM Group). While using the rate comparison strategy, Ruth 

made marks on the String 1, 2, and 3 transparencies, which suggests that she also applied 

le comparing the curvilinear paths by their lengths for Task 7. The 

50) illustrates the tick marks the Ruth made while comparing the 

curvilinear paths by their lengths: 
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e. So the little marks I made...like...to kind of chop it up a little bit. And, right 

here, this was 10 little tiny marks. And I tried to make sure my marks we
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that she may have been attempting to traverse segments of the two paths while 

she compared the time it took to traverse a length on 

each string at the same rate as an attribute by which she could compare the curvilinear 

I observed one instance of the analytical strategy of 

when comparing curvilinear paths in one student’s response for 

Task 7: Ruth (Grade 8, ICPM Group). While using the rate comparison strategy, Ruth 

made marks on the String 1, 2, and 3 transparencies, which suggests that she also applied 

le comparing the curvilinear paths by their lengths for Task 7. The 
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e. So the little marks I made...like...to kind of chop it up a little bit. And, right 

here, this was 10 little tiny marks. And I tried to make sure my marks were the 
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Ruth: I have doubt, but...I'm pretty sure that this is correct. 

Interviewer: OK. So, this was 10 tiny marks within here (pointed to the segment 

of String 1 labeled as 10)? 

Ruth: Yes. 

Interviewer: OK. Got it. How did you know how big to make the marks? Cuz you 

made tiny marks on here (pointed to String 3)? 

Ruth: Yeah. 

Interviewer: OK. 

Ruth: So, I did one right there, one right there...(showed how she made tiny marks 

on String 3)...they were roughly about this long...(then made marks along String 

1). 

Interviewer: That's where they are? 

Ruth: yeah. 

Interviewer: Got it. 

Ruth: I don't know if that's exactly ten, but, yeah. 

Ruth’s partitioning of segments of Strings 1 and 3 each with tiny marks, which created 

same-size intervals on each “string,” suggests that she applied an internal unit for the 

purpose of comparing the curvilinear paths. 

Two of the analytical strategies that I observed as students compared curvilinear 

paths (Tasks 6A, 7, and 8A), I observed as students compared rectilinear paths by their 

lengths (Tasks 1 and 2): superimposed pairs of curvilinear paths to compare directly and 

indirect comparison using finger span. 
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Interactions Among Intuitions for Comparing Curvili near Paths 

I observed the same two types of interactions among intuitions for students’ 

comparisons of rectilinear (Tasks 1 and 2) and curvilinear paths (Tasks 6A, 7, and 8A): 

intuitions in combination and conflict. While comparing curvilinear paths, students used 

intuitions in combination with other intuitions. However, all of the instances of intuitions 

in conflict that I observed as students compared the curvilinear paths, occurred as 

conflicts with analytical strategies or with conceptual and procedural knowledge for 

length measurement. The sections below I describe how the students used intuitions in 

combination with other intuitions, and how they experienced conflicts between intuitive 

and analytical thinking for path length. 

Complexity and straightness in combination. Participants exhibited the 

complexity and straightness intuitions in combination five times in five different 

students’ responses for Task 7 when comparing sets of curvilinear paths. For example, 

Kevin (Grade 4, CLM Group) ordered the three “strings” from shortest to longest as 

String 2, 1, and 3. He used the complexity and straightness intuitions in combination to 

explain why String 3 was the longest saying, “It's got to curve more so it goes out and 

then it's gotta keep on going out instead of going straight it's got like it goes out and that 

makes it a lot longer (tracing the shape of String 3 on the table).” Kevin’s attention to the 

String 3 as one that has to “keep on going out” is consistent with the complexity intuition. 

He elaborated by saying, “instead of going straight,” which is evidence that he also 

evoked the straightness intuition to defend the same claim; therefore, he used the 

complexity and straightness intuitions in combination. 
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Complexity and detour in combination. Three participants used the complexity 

and detour intuitions in combination three times as they justified their orderings of 

curvilinear paths. David (Grade 8, ICPM Group) ordered the “strings” for Task 7 as 

String 2, 3, and 1. When asked why String 1 is shorter than String 3 he said, “Because, 

even though it goes further away from them, it only takes one turn there and back (traced 

around String 1) and String 3 goes back and forth.” David’s attention to the String 1 

going “further away from them” shows that he evoked the detour intuition. He elaborated 

by evoking the complexity intuition by talking about String 3 as going “back and forth.” 

Therefore, David used two intuitions, complexity and detour, in combination. 

Complexity and compression in combination. I observed one instance of the 

complexity and compression intuitions in combination when a student defended a claim 

about the order of the set of curvilinear paths for Task 7. Kyle (Grade 10, ALM Group) 

ordered the “strings” from shortest to longest as String 2, 1, and 3. He then used the 

complexity and compression intuitions in combination to defend his claim that String 3 

was the longest: 

Interviewer: OK...And why is String 3 the longest? 

Kyle: Um...because it goes around and keeps on curving and curving until it gets 

to the point, and...um...with String 1, I...um...noticed that there would have been 

enough for...enough to cover A and B (traced from A to B on the String 1 

transparency)... 

Interviewer: mm-hmm 

Kyle: ...and going straight line out from A and straight line out from B and 

then...uh...there would be a shorter amount...it would about go up to here (pointed 
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on the table to indicate where String 1 would end up if he were to straighten it and 

make it go through point B) with the excess part of the line, but with this (pointed 

to String 3) there would probably...I'm just kind of estimating that there would 

be...it would go out farther (pointed to the table to indicate where String 3 would 

end up if he were to straighten it and make it go past point B to show that it would 

go out further than String 1). 

Kyle’s initial attention to String 3 as one that “goes around and keeps on curving and 

curving” shows that he first evoked the complexity intuition. He then elaborated by 

discussing and indicating how far both Strings 1 and 3 would stretch if they were 

straightened out, which suggests that he also used the compression intuition. Kyle used 

both intuitions to justify the same claim; therefore, he used two intuitions in combination. 

Kyle’s response here to Task 7 was the only instance of the use of the complexity and 

compression intuitions used in combination to defend the ordering of curvilinear paths. 

Compression and straightness in combination. Four different participants used 

the compression and straightness intuitions in combination five times as they compared 

sets of curvilinear paths for Tasks 6A and 7. For example, Rick (Grade 8, ICPM Group) 

used the compression and straightness intuitions in combination to defend his claim that 

the spiral curve was longer than the curve with the straight segment for Task 6A (see 

Figure 47). When asked why he thought the spiral curve was longer he said, “Um...I don't 

know. It coils around more than this one (pointed to the string with the straight segment), 

which is just more straight (traced finger around the curve with the straight segment). 

This one seems (pointed to the spiral curve) longer because it...I don't know...just seems 

longer that way (traced finger around the spiral curve).” Rick’s initial claim that the spiral 
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curve “coils around more than” the curve with the straight segment is evidence that he 

initially evoked the compression intuition to defend his claim. He then elaborated by 

talking about the string with the straight segment as one that “is just more straight,” 

which shows that he used the straightness intuition to defend the same claim. His use of 

the compression and straightness intuitions to defend the same claim that the spiral curve 

is longer for Task 6A suggests that he used the two intuitions in combination. 

Compression and detour in combination. I observed one instance of the 

combination of the compression and detour intuitions in a student’s justification for the 

ordering of the set of curvilinear paths for Task 7. Marie (Grade 10, ALM Group) 

ordered the “strings” from shortest to longest as String 2, 3, and 1. When asked to explain 

why String 1 is longer than String 3 she said, “I think cuz it goes so far around (traced 

around String 1), where this one (pointed to String 3) has little places where it goes 

around, but I think if we stretched them out, this one would still be shorter (pointed to 

String 3).” Marie’s initial claim about String 1 as going “so far around” shows that she 

first used the detour intuition to explain why String 1 is long. Her next claim about 

stretching the strings out for the purpose of comparing shows that she also used the 

compression intuition to defend the same claim. She used the detour and compression 

intuitions to justify the same claim; therefore, she used them in combination. 

Detour and straightness in combination. I observed two instances of the 

combination of the detour and straightness intuitions in two students’ responses as they 

compared the set of curvilinear paths for Task 7. For example, when initially asked to 

compare the three “strings” by their lengths Ruth (Grade 8, ICPM Group) said, “I know 

String 2 is shortest because it's the straightest path to go there, and this one goes all the 
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way around (traced finger around String 1).” Ruth’s statement about String 2 being the 

shortest because it is the straightest shows that she first evoked the straightness intuition 

to defend her ordering. She then turned to String 1, which she said “goes all the way 

around.” This suggests that she also operated on the detour intuition to defend the same 

claim. Therefore, Ruth used detour and straightness in combination. 

Curve tightness and straightness in combination. One student’s response 

reflected the combination of the curve tightness and straightness intuitions when 

defending the ordering of a set of curvilinear paths. Noah (Grade 4, CLM Group) used 

this combination of intuitions to justify his ordering of the set of three curvilinear 

“strings” by their lengths for Task 7. He provided an ordering of the “strings” from 

shortest to longest as String 3, 1 and 2. I then asked a series of follow-up questions to 

probe Noah’s thinking with respect to why he thought String 3 was the shortest and 

String 2 was the longest: 

Noah: Because there's all these curves (trailed off). 

Interviewer: OK. What is it about all those curves that makes you think it's the 

shortest? 

Noah: Um... 

Interviewer: Or, what is it about...why do curves make a string short? 

Noah: Um...because...um...um...like the curves make it shorter because...um...if 

you were measuring it from just like a straight line like String 2, um...it would be 

the easiest to walk cuz it would just be one straight solid line. 

Noah’s attention to curves making a “string” shorter because walking a straight line 

would be easier to walk than a curve is evidence that he evoked the curve tightness 
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intuition. Because his thinking about why a straight solid line segment that connects two 

points is shorter than a curved line segment that connects the same two points was 

unclear, I asked further clarifying questions: 

Interviewer: OK. So, can you tell me again why you think the curves make the 

path short or make the string short? 

Noah: Because...um...if you had to walk it you would have to make all of the 

curves...like walk them 

Interviewer: OK. And that makes the path...makes the string shorter? 

Noah: mm-hmm 

Interviewer: OK. Why is String 2 the longest? 

Noah: Because it's just one straight solid line and there's no curves, so you can 

just walk it straight. 

Noah’s explanation that String 2 is “just one straight solid line” indicates that he used the 

straightness intuition. He elaborated by saying “and there’s no curve,” which indicates 

that he also evoked the curve tightness intuition in combination with the straightness 

intuition to defend his claim that String 2 is the longest. Noah’s response to Task 7 was 

the only instance of the combination of the curve tightness and straightness intuition. 

Conflicting Intuitions 

Only two instances of intuitions in conflict were observed as students compared 

the set of curvilinear paths for Task 7. For this task, one student, Noah (Grade 4, CLM 

Group) experienced a conflict between a combination of intuitions and an important unit 

concept for length measurement. Another student, Ruth (Grade 8, ICPM Group) 
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experienced a conflict between an intuition and an analytical strategy. The sections below 

illustrate Noah and Ruth’s intuitions for curvilinear paths in conflict. 

 Conflict between intuitions in combination and a unit concept. Noah (Grade 4, 

CLM Group) experienced a conflict between a combination of the straightness and curve 

tightness intuitions and a key unit concept for measurement. Noah initially evoked the 

curve tightness and straightness intuitions in combination to defend his ordering of the 

three “strings” for Task 7 as String 3, 1, and 2. None of the other participants claimed that 

String 2, the straight string, was the longest. His explanation that String 2 is the longest 

because it is “just one straight solid line and there's no curves, so you can just walk it 

straight” was unclear. Therefore, I broke the interview protocol to further probe his 

intuitive thinking about the lengths of this set of curvilinear “strings” by asking him to 

imagine comparing them by the length of wire, yarn, or number of steps it would take to 

span each of the paths: 

Interviewer: Alright. Which one of these strings, if they were paths, which one 

would take the most steps? 

Noah: Probably String 3 (pointed to String 3). 

Interviewer: OK. Which would take the fewest steps? 

Noah: Probably String 2 (pointed to String 2). 

Interviewer: OK. And if you really were to...have you ever heard the story about 

Hansel and Gretel?  

Noah: yeah 

Interviewer: What do you remember about the story? 

Noah: They left a trail... 
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Interviewer: Trail that's exactly what I was thinking about. Of what? 

Noah: I forgot. 

Interviewer: Candy or something. They left a trail. Wouldn't it be fun if it were 

candy? Maybe I'm just hungry for candy. I don't remember if it was candy. What 

if you were walking each of these paths from A to B and you were leaving a trail 

of like wire behind you or yarn, which one would take the most yarn? 

Noah: String 3. 

Interviewer: OK. Which one would take the least amount of yarn? 

Noah: String 2. 

Interviewer: OK. So, I'm going to ask, I promise this is the last time, which string 

is longest? 

Noah: String 2. 

Interviewer: OK. Which string is shortest? 

Noah: String 3. 

When Noah initially thought about the set of curvilinear paths as strings, he ordered them 

from shortest to longest as String 3, 1, and 2. However, when I asked him to think of 

them as if they were wire, yarn, or the number of steps that it would take to span each of 

the paths, he changed his order (from shortest to longest) as String 2, 1, and 3. After this, 

once again he claimed that String 2 was the longest and String 3 was the shortest. That is, 

Noah was willing to change his ordering from Strings 3, 1, 2 to Strings 2, 1, 3 as I 

changed the context from curved “strings” to compare to curved “paths” to traverse and 

compare by the number of steps walked or the amount of wire or yarn left behind. 
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When thinking about Strings 1, 2, and 3 as “paths” to traverse, Noah was willing 

to say that String 2 would be “easiest to walk,” String 3 would take the most steps, and 

insistence that String 2 was the longest. This suggests that he may have attended to 

number of steps he thought would be needed to walk each path without thinking those 

steps needed to be the same size to give a valid comparison. Specifically, I interpreted his 

response to my questions to indicate that he may have thought that a person would have 

to take a large number of small steps to walk a path with many turns (String 3), but one 

could take a small number of large steps to walk a straight path (String 2). Although 

Noah’s intuitive thinking about the “strings” using the straightness and curve tightness 

intuitions conflicted with his thinking about the same objects as spanned by wire or yarn, 

or even unitized by steps, both ideas seemed to coexist as part of Noah’s intuitive and 

conceptual knowledge for length measurement. 

 Conflict between an intuition and an analytical strategy. Ruth (Grade 8, ICPM 

Group) experienced a conflict between an intuition and an analytical strategy for 

comparing the set of curvilinear paths in Task 7. She initially ordered the “strings” as 

String 2, 1, and 3. She then superimposed String 3 onto String 1, aligning them according 

to points A and B. Ruth then said: 

I know String 2 is shortest because it's the shortest path to go there and this one is 

all the way around (traced finger around String 1) and this one kinda is longer 

because (traced finger around string three) it goes straight there but then it takes 

like extra path, where this is just straight (traced finger again along String 2), so I 

know this is the shortest one. The thing is deciding between String 1 and String 

2...wait String 1 and String 3. From first glance, it looks like they are the same 
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because, like, if you visually do it, and you take this out (gestured with figures as 

though to re-shape String 3 to make it the same shape as String 1) to make it a 

circle like this one (traced along String 1) it looks like it would be the same. But 

then, at the same time, I think it could be a little bit different. I wanna go 

with...(superimposed String 3 onto String 1 and rotated String 3 along String 1, 

accumulating the length of String 1 onto String 3).  

Ruth evoked the compression intuition when she showed how she would “visually do it” 

by gesturing with her fingers how she was imagining re-shaping String 3 to make it the 

same shape as String 1. Using the compression intuition, she concluded “at first glance” 

that Strings 1 and 3 were the same. She then applied an analytical strategy of 

superimposing String 3 onto String 1, aligning the two strings according to points A and 

B. After comparing the strings directly by rotating String 3 along String 1 and 

accumulating the length of String 1 onto String 3, Ruth experienced a conflict with her 

initial conclusion that Strings 1 and 3 were the same length, which was derived from the 

compression intuition. Based on her conclusion from applying the analytical strategy, she 

changed her order of the curved “strings” from shortest to longest as String 2, 3, and 1. 

That is, Ruth rejected her conclusion derived from the compression intuition in favor of 

her conclusion derived from an analytical strategy, superimposing the strings to directly 

compare them. Ruth used the rejected compression intuition again when comparing two 

curves for Task 8A. 

Relating Intuitions for Curvilinear Paths to the Levels of the Length LT 

 I tracked the developmental patterns for the five main intuitions, combinations of 

intuitions, analytical strategies, and rejected intuitions for comparing curves (Tasks 6A, 
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intuitions and analytical strategies used. In each column, the darkest shade indicates the 

highest frequency and the lightest shade shows the 
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Figure 51 depicts the patterns for intuitive and analytical thinking for comparing curves 

within and across the groups. 
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7, and 8A) within and across LT level groups. Figure 51 shows the frequency of 

intuitions and analytical strategies used. In each column, the darkest shade indicates the 

and the lightest shade shows the lowest frequency of an 

. Patterns of intuition and analytical strategy use for comparing curvilinear 
paths within and across LT groups. 

depicts the patterns for intuitive and analytical thinking for comparing curves 

within and across the groups. Next, I describe the nature of these patterns,

tasks involving comparing curves without tools in Table 

ntuition for Comparing Curvilinear Paths (Tasks 6A, 7, and 8A) 
ength LT Level Groups 

CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals

Straightness 
32.26%* 

(10) 
16.13% 

(5) 
35.48% 

(11) 
16.13% 

(5) 

Complexity 
25.00% 

(4) 
18.75% 

(3) 
50.00% 

(8) 
6.25% 

(1) 

30.00% 
(3) 

10.00% 
(1) 

40.00% 
(4) 

20.00% 
(2) 

Compression 
22.58% 

(7) 
35.48% 

(11) 
16.13% 

(5) 
25.81% 

(8) 

Curve Tightness 
33.33% 

(3) 
11.11% 

(1) 
44.44% 

(4) 
11.11% 

(1) 

27.84% 
(27) 

21.65% 
(21) 

32.99% 
(32) 

17.53% 
(17) 

shows the frequency of 

intuitions and analytical strategies used. In each column, the darkest shade indicates the 

lowest frequency of an intuition.  

 

and analytical strategy use for comparing curvilinear 

depicts the patterns for intuitive and analytical thinking for comparing curves 

I describe the nature of these patterns, beginning with 

in Table 8 below. 

Comparing Curvilinear Paths (Tasks 6A, 7, and 8A) 

Totals 

31 

16 

10 

31 

9 

97 
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* 32.26% of the instances in which the straightness intuition was observed over Tasks 
6A, 7, and 8A occurred with the participants in the CLM group. 
 
Patterns of Intuition Use within LT Groups for Curv ilinear Paths 

I observed 97 instances of intuition use in the 16 interview participants’ responses 

to curvilinear path comparison tasks (Tasks 6A, 7, and 8A). For these tasks, participants 

evoked the straightness and compression more often than any other intuition. This was 

followed by complexity, then detour, and finally the curve tightness intuition. For the 

CLM group, I observed the straightness intuition most often; this was followed by 

compression, complexity, and the same number of instances of detour and curve 

tightness. Participants in the CRM group used the compression intuition most often, 

followed by straightness, complexity, and one instance each of detour and curve 

tightness. In the ICPM group, the most frequently used intuition was straightness, which 

was followed by complexity, compression, the same number of occurrences of detour and 

curve tightness. The ALM group used the compression intuition most often, followed by 

straightness, detour, and one instance each of complexity and curve tightness. 

Patterns of Intuition Use across LT Groups for Curvilinear Paths 

The CRM and ALM groups exhibited almost the same pattern of intuition use as 

was observed with the entire sample. The CLM and ICPM groups exhibited patterns of 

intuition use that were similar to each other, but different from the entire sample. Both 

the CLM and ICPM groups exhibited the straightness intuition most often. This was 

followed by the complexity and compression intuitions (in reverse order for CLM) and 

then the same number of instances of the detour and curve tightness intuitions. The 

straightness, complexity, detour, compression, and curve tightness intuitions were used 
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most often in the ICPM group. The compression intuition was used most often at the 

CRM level. The ICPM group exhibited the highest frequency of intuition use. 

Intuitions for Curves in Combination, Conflict, and with Analytical thinking 

 As was the case when participants compared rectilinear paths by their lengths 

(Tasks 1 and 2), when comparing curvilinear paths by their lengths (Tasks 6A, 7, and 

8A), participants sometimes used analytical strategies or intuitions in combination. Some 

responses also suggested a conflict between conclusions drawn from intuitions and those 

drawn from analytical strategies, whereas other responses indicated that intuitions were 

used with analytical strategies. Table 9 shows how intuitions were used in combination, 

conflict, and with analytical strategies for comparing curves. 

Table 9 

Intuitions in Combination, Conflict, and in Tandem with Analytical Thinking (Tasks 6A, 
7, and 8A) across Length LT Level Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Overall 
Totals 

 
Conflicting Intuitions 

 

50.00% 
(1) 

0.00% 
(0) 

50.00% 
(1) 

0.00% 
(0) 

2 

 
Combination of Intuitions 

 

 
27.78% 

(5) 

 
16.67% 

(3) 

 
38.89% 

(7) 

 
16.67% 

(3) 
18 

Rejected an Intuition 

 
0.00% 

(0) 
 

0.00% 
(0) 

100.00% 
(1) 

0.00% 
(0) 

0 

Rejected Intuition Use 

 
0.00% 

(0) 
 

0.00% 
(0) 

100.00% 
(1) 

0.00% 
(0) 

0 

With Analytical Strategies 
 

0.00% 
(0) 

 
10% 
(1) 

 
50.00% 

(5) 

 
40.00% 

(4) 
10 

* 50.00% of the instances in which a conflict in intuition use was observed when 
comparing curvilinear paths (Tasks 6A, 7, and 8A) occurred with CLM level participants. 
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Intuitive and Analytical Thinking in Combination an d Conflict within LT Groups 

Participants in the CLM group showed evidence of using intuitions in 

combination and experiencing a conflict among intuitions, but showed no evidence of 

rejecting intuitions, using a rejected intuition, or using an intuition with an analytical 

strategy. CRM and ALM level participants used intuitions in combination and with 

analytical strategies. At the ICPM level, participants showed evidence of using intuitions 

in combination, with analytical strategies, experienced conflicts among intuitions that 

lead to the rejection of an intuition, and used rejected intuitions. 

Intuitive and Analytical Thinking in Combination an d Conflict across LT Groups 

One student each in the CLM and ICPM level groups exhibited conflicting 

intuitions when comparing curves for Tasks 6A, 7, and 8A: Noah (Grade 4, CLM Group) 

and Ruth (Grade 8, ICPM Group). The instances of combinations of intuitions appeared 

most often in the ICPM level group, which was immediately followed by the CLM group 

and the CRM and ALM groups. I observed one instance of rejecting a claim made based 

on an intuition, the compression intuition, at the ICPM level by Ruth (Grade 8). She was 

the only student who later went on to use this rejected intuition when comparing a 

different pair of curves. Intuitions used with analytical strategies appeared most often at 

the ICPM and ALM levels, with five and four instances, respectively. One instance of 

using intuitions and analytical strategies to compare curves appeared in the CRM group. 

The use of intuitions when comparing curves (Tasks 6A, 7, and 8A) occurred 

within each length LT level group. However, only some of the LT groups evoked 

analytical thinking when comparing curves. Table 10 below illustrates the distribution of 

intuitive and analytical thinking across the LT groups for Tasks 6A, 7, and 8A. 
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Table 10 

Intuition and Analytical Strategy use for Comparing Curvilinear Paths (Tasks 6A, 7, and 
8A) across Length LT Level Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Total 

 
Intuitions 

 

27.84%* 
(27) 

21.65% 
(21) 

32.99% 
(32) 

17.53% 
(17) 

97 

 
Analytical Strategies 

 

0.00% 
(0) 

27.27% 
(6) 

36.36% 
(8) 

36.36% 
(8) 

22 

* 27.84% of the instances in which an intuition was used when comparing curvilinear 
paths (Tasks 6A, 7, and 8A) occurred with the participants who were in the CLM group. 
 
Patterns of Intuition and Analytical Strategy Use within LT Groups 

In each LT level group, the intuitions were used more often analytical strategies 

when comparing curves without tools (Tasks 6A, 7, and 8A). At CLM level, participants 

only showed evidence of using intuitions to defend their orderings of curvilinear paths by 

length. Intuition use dropped slightly for the subsequent length LT level group. At the 

CRM, ICPM, and ALM levels, participants used both intuitions and analytical strategies. 

Patterns of Intuition and Analytical Strategy Use across LT Groups 

Table 10 shows that, the highest percentage of intuition strategy use occurred at 

the ICPM level, with 32.99%. Intuition use was at a minimum at the highest level, the 

ALM group, with 17.53%. Analytical strategy use increased from the CRM level group, 

at 27.27%, to the ICPM level group at 36.36%. This level of analytical strategy use was 

maintained at the highest level with the ALM level group. These results suggest that there 

exists an interaction between intuitive and analytical thinking for comparing sets of 

curvilinear paths with conceptual and procedural knowledge for length measurement, as 

measured by the length LT. At the lowest length LT level that was included in the study, 



 

 

the CLM level, students relied only on intuitions to justify orderings of curvilinear paths 

by their lengths. Students at the subsequent levels of the length LT, the CRM and I

levels, used analytical strategies along with intuitive statements, with approximately the 

same ratio of intuitions to analytical strategies, to defend their claims when comparing 

curvilinear paths by their lengths. By the highest level, the ALM level,

intuitions to analytical strategies decreased. The nature of this interaction is illustrated in 

Figure 52. In this figure, the blue bar indicates the percentage of the units of data 

occurring within each length LT level group, which I coded 

indicates the percentage of those units of data, which I coded as analytical strategies.

Figure 52. Interaction between intuitive and analytical strategy use for comparing 
curvilinear paths (Tasks 6A, 7, 8A) within each LT 
 
Comparing Curves and

I posed five tasks (Tasks 3, 4, 5, 6B, and 8B) to probe students’ intuitive and 

analytical thinking for curvilinear paths by asking them to compare a curve and a 

object. In the following sections I describe the intuitions and analytical strategies that 
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the CLM level, students relied only on intuitions to justify orderings of curvilinear paths 

by their lengths. Students at the subsequent levels of the length LT, the CRM and I

levels, used analytical strategies along with intuitive statements, with approximately the 

same ratio of intuitions to analytical strategies, to defend their claims when comparing 

curvilinear paths by their lengths. By the highest level, the ALM level, the ratio of 

intuitions to analytical strategies decreased. The nature of this interaction is illustrated in 

. In this figure, the blue bar indicates the percentage of the units of data 

occurring within each length LT level group, which I coded as intuitions, and the red bar 

indicates the percentage of those units of data, which I coded as analytical strategies.

. Interaction between intuitive and analytical strategy use for comparing 
curvilinear paths (Tasks 6A, 7, 8A) within each LT level group. 

 
Curves and Straight Objects: Intuitions and Analytical Strategies

I posed five tasks (Tasks 3, 4, 5, 6B, and 8B) to probe students’ intuitive and 

analytical thinking for curvilinear paths by asking them to compare a curve and a 

object. In the following sections I describe the intuitions and analytical strategies that 

100%

78% 80%

68%

0%

22% 20%

CLM Group CRM Group ICPM Group ALM Group

LT Level Groups

Percentage of Intuition Use within LT Level Groups

Percentage of Analytical Strategy Use within LT Level Groups

the CLM level, students relied only on intuitions to justify orderings of curvilinear paths 

by their lengths. Students at the subsequent levels of the length LT, the CRM and ICPM 

levels, used analytical strategies along with intuitive statements, with approximately the 

same ratio of intuitions to analytical strategies, to defend their claims when comparing 

the ratio of 

intuitions to analytical strategies decreased. The nature of this interaction is illustrated in 

. In this figure, the blue bar indicates the percentage of the units of data 

as intuitions, and the red bar 

indicates the percentage of those units of data, which I coded as analytical strategies. 

 

. Interaction between intuitive and analytical strategy use for comparing 

Straight Objects: Intuitions and Analytical Strategies 

I posed five tasks (Tasks 3, 4, 5, 6B, and 8B) to probe students’ intuitive and 

analytical thinking for curvilinear paths by asking them to compare a curve and a straight 

object. In the following sections I describe the intuitions and analytical strategies that 

68%

32%

ALM Group

Percentage of Analytical Strategy Use within LT Level Groups
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students used to make these comparisons and reflect on the error in their comparisons of 

curves and straight objects. The first section describes the analytical strategies that 

students used to compare a curvilinear path to a straight object (Tasks 3, 4, and 5) or to 

indirectly compare two curvilinear paths using a straight object (Tasks 6B and 8B). Next, 

I illustrate how students used intuitive thinking when making such comparisons and 

reflecting on the error involved with their ways of comparing. Finally, I relate all of the 

intuitions and analytical strategies that students used when comparing curvilinear paths 

with straight objects to the levels of the LT for length measurement. 

Analytical Strategies for Comparing Curvilinear Paths to Straight Objects 

I observed analytical strategies as students compared a curve and a straight object 

(Tasks 3, 4, and 5) or indirectly compared two curves with a straight object (Tasks 6B 

and 8B). Figures 53, 54, and 55 illustrate the curves for Tasks 3, 4, and 5. 

 

Figure 53. Image of curve shown for interview Task 3. 

 

Figure 54. Image of curve shown for interview Task 4. 



 

 

Figure 55. Image of curve shown for interview Task 

See Figures 47 and 49 for the images of the curves shown to students for Tasks 6B and 

8B. In the following sections I describe how students used analytical strategies for 

comparing curves and straight objects 

Chord iteration strategy.

strategy across Tasks 3, 4, 5, 6B, and 8B. Trent (Grade 6, CRM Group) used the chord 

iteration strategy when using a straight stick to compare two partial circle

indirectly for Task 8B. For example, when measuring the tighter curve, he placed the 

stick as a chord aligned with one 

that was closest to the curve. Next, 

with this tick mark; he again traced along the edge of the stick closest to the curve. 

repeated this procedure for a third 

same strategy to compare the stick to

perfectly inside the curve (see Figure 

Figure 56. Trent’s chord iteration strategy for indirectly comparing two curves.
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Image of curve shown for interview Task 5. 

for the images of the curves shown to students for Tasks 6B and 

8B. In the following sections I describe how students used analytical strategies for 

comparing curves and straight objects (Tasks 3, 4, 5, 6B, and 8B). 

strategy. There were 51 occurrences of the chord iteration 

strategy across Tasks 3, 4, 5, 6B, and 8B. Trent (Grade 6, CRM Group) used the chord 

iteration strategy when using a straight stick to compare two partial circle

8B. For example, when measuring the tighter curve, he placed the 

as a chord aligned with one end of the curve and traced along the edge of the stick 

that was closest to the curve. Next, Trent repositioned the stick as a chord and aligned 

e again traced along the edge of the stick closest to the curve. 

repeated this procedure for a third full stick unit and one partial stick unit. 

to compare the stick to the tighter curve; however, three stick units 

ectly inside the curve (see Figure 56 below). 

 

. Trent’s chord iteration strategy for indirectly comparing two curves.

for the images of the curves shown to students for Tasks 6B and 

8B. In the following sections I describe how students used analytical strategies for 

There were 51 occurrences of the chord iteration 

strategy across Tasks 3, 4, 5, 6B, and 8B. Trent (Grade 6, CRM Group) used the chord 

iteration strategy when using a straight stick to compare two partial circle-shaped curves 

8B. For example, when measuring the tighter curve, he placed the 

traced along the edge of the stick 

repositioned the stick as a chord and aligned 

e again traced along the edge of the stick closest to the curve. He 

and one partial stick unit. He used the 

; however, three stick units fit 

 

. Trent’s chord iteration strategy for indirectly comparing two curves. 
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Continuous comparison strategy to estimate. The continuous comparison 

strategy was used by students to estimate a total of four times for Tasks 3, 4, 5, 6B, and 

8B. For example, Mia (Grade 4, CLM Group) used the continuous comparison strategy to 

initially estimate the length of the spiral-shaped curve for Task 4. She placed the stick as 

a chord on the inside of the curve aligned with one end of the curve and then iterated the 

stick three times without using a finger or drawing a mark to keep track. Mia then moved 

the stick in a continuous motion for the final stick unit iteration. Mia’s movement of the 

stick in a continuous motion suggests that she was using a continuous strategy for 

comparing by estimating rather than spanning the curve with stick units. 

Tangent iteration strategy. Fourteen instances of the tangent iteration strategy 

appeared in students’ responses to Tasks 3, 4, 5, 6B, and 8B. After initially using the 

continuous comparison strategy to estimate, Mia (Grade 4, CLM Group) used the tangent 

iteration strategy to compare the stick to the spiral-shaped curve for Task 4. She placed 

the stick as a tangent, aligned with one end of the curve. Next, Mia traced along the edge 

of the stick furthest away from the curve. She repositioned the stick, again placing it as a 

tangent along the outside of the curve and aligned with the segment representing her 

previous placement of the stick. She applied this strategy to the entire curve (Figure 57). 

 

Figure 57. Mia’s tangent iteration strategy for comparing a curve and a straight object. 
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Mixed unit iteration strategy. Eight instances of the mixed unit iteration strategy 

were observed in students’ responses to Tasks 3, 4, 5, 6B, and 8B. Kevin (Grade 4, CLM 

Group) used a mixed unit iteration strategy when comparing a straight object to a partial 

circle-shaped curve for Task 3. He aligned the stick with one endpoint of the curve and 

iterated it around the curve, sometimes laying the stick as a chord and sometimes laying 

the stick directly on the curve. He said that the curve was three sticks longer than the 

stick. 

Path intersection iteration strategy. The path intersection iteration strategy was 

observed in three responses for Tasks 3, 4, 5, 6B, and 8B. David (Grade 8, ICPM Group) 

used this strategy when comparing a stick to an S-shaped curve for Task 5. David placed 

the stick on the curve, aligned with one endpoint of the curve. He then repositioned the 

stick to the opposite end of the curve, again placing it on the curve aligned with one 

endpoint of the curve. He then drew three stick-sized rectangles on the curve to represent 

how he had either physically or mentally placed the stick on top of the curved path. 

Adjusting point of tangency iteration strategy. There were 11 occurrences of 

the adjusting point of tangency iteration strategy across Tasks 3, 4, 5, 6B, and 8B. For 

example, Ruth (Grade 8, CRM Group) used the adjusting point of tangency iteration 

strategy to compare a stick to a partial circle-shaped path for Task 3. She placed the stick 

as a tangent aligned with one endpoint of the curve, and she rotated the stick while 

changing the point of tangency and accumulating the length of a segment of the curve 

along the stick. Ruth then drew a tick mark where the end of the stick touched the curve. 

Next, she repositioned the stick, aligning one end of the stick with this tick mark and 

again applied the strategy of rotating the stick while changing the point of tangency and 
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accumulating the length of a segment of the curve along the stick. She repeated this 

procedure for a total of four full stick units and one partial stick unit. She wrote "about 

four and one third" on the page. 

Modified circumference formula strategy. I observed five instances of applying 

an algorithmic approach, a modified circumference formula, in students’ responses to 

Tasks 3, 4, 5, 6B, and 8B. Two students, David (Grade 8, ICPM Group) and Zane (Grade 

10, ALM Group) used this strategy in their responses to Tasks 3, 4, and 8B. For example, 

on Task 3 Zane placed the stick on the interior of the curve positioned as a radius. He 

said the curve “is two thirds the circumference of the whole...if it was a whole circle.” He 

then said the length of the curve would be “two thirds two pi R,” where “R” is the length 

of the stick. 

Analytical Strategies Related to Unit 

I observed different analytical strategies related to the ways in which students 

operated on the nonstandard unit, the 4-inch stick, when comparing a curve and a straight 

object (Tasks 3, 4, and 5) or indirectly comparing two curves with a straight object 

(Tasks 6B and 8B). 

Used the whole stick as a unit. Participants applied the strategy of using the 

whole stick as a unit when comparing a curve and a straight object (a stick) a total of 75 

times over Tasks 3, 4, 5, 6B, and 8B. Marie (Grade 10, ALM Group) used this strategy 

when indirectly comparing two rectilinear paths with a straight object (a stick) for Task 

6B. For the spiral-shaped curve, she placed the stick as a chord, aligned with one end of 

the curve. Marie traced along the edge of the stick closest to the curve, and then she 

repositioned the stick as a chord, placing it at the intersection of the line segment 
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representing the previous chord stick unit and the curve. As she used the stick to compare 

the two curves indirectly, she applied this chord stick unit iteration strategy, using the 

whole stick as a unit, for a total of four stick units. 

Fractured non-standard unit once at the endpoint of the curve. Students 

fractured the non-standard unit, the stick, when another full stick unit did not fit along the 

curve at the end, 31 times for Tasks 3, 4, 5, 6B, and 8B. For example, Marie (Grade 10, 

ALM Group) also applied this strategy when using the stick to measure the spiral-shaped 

curve during Task 3 (described in the previous paragraph). After applying the fourth full 

stick unit, part of the curve extended beyond the end of the stick. Rather than ignoring 

this remaining segment of curve, Marie quantified it by fracturing the stick unit, saying 

the curve “has about four and then...like...another like probably three fourths” stick units. 

Fractured non-standard unit in the tightest part of the curve. I observed the 

strategy of increasing precision by fracturing the non-standard unit, the stick, in the 

tightest part of the curve 12 times in students’ responses to Tasks 3, 4,5, 6B, and 8B. 

Rose (Grade 6, CRM Group) used this strategy when measuring the spiral-shaped curve 

for Task 4. She began comparing the curve to the straight object (the stick) by placing 

half of the stick as a chord inside the tightest part of the curve. She drew a tick mark on 

the curve to represent the end of half of the stick. Rose then traced along the edge of the 

stick closest to the curve and re-positioned the stick by rotating it so that most of the 

second half was a chord inside the curve. Next, she made a tick mark to represent the end 

of this portion of the stick and traced the along the edge that was closest to the curve. She 

re-positioned the stick a third time by rotating it so that the small remaining portion was 

aligned as a chord and made a tick mark to represent the end of this remaining piece. 



 

 

Next, Rose traced along this small remaining portion 

closest to the curve. She continue

iterating full stick units. For

fit. She labeled the third tick mark as 

as three, the sixth tick mark as four, 

mark as two thirds (see Figure 

Figure 58. Rose’s fracturing of the nonstandard unit in the tightest part of the curve.

Fractured non-standard unit around the entire curve.

in which students increased precision by fracturing the nonstandard unit, the stick, around 

the entire curve across Tasks 3, 4, 5, 6B, and 8B. Rick (Grade 8, ICPM Group) used this 

strategy when comparing the partial circle

Task 3. He aligned the stick 

stick to hang over the curve

finger to keep track of where 

the end of the stick at his finger mark each time

about comparing the curved path to the stick he said, 

since if I went like that (showed placing the entire stick as a chord) it'd be more curved so 
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along this small remaining portion of the stick along the edge that 

continued measuring the rest of the spiral-shaped curve by 

iterating full stick units. For the final iteration, only slightly more than half of the stick 

third tick mark as one, the fourth tick mark as two, the 

sixth tick mark as four, the seventh tick mark as five, and the

two thirds (see Figure 58 below). 

 

. Rose’s fracturing of the nonstandard unit in the tightest part of the curve.

standard unit around the entire curve. I observed 20 instances 

in which students increased precision by fracturing the nonstandard unit, the stick, around 

the entire curve across Tasks 3, 4, 5, 6B, and 8B. Rick (Grade 8, ICPM Group) used this 

strategy when comparing the partial circle-shaped curve to a straight object (a stick) for 

the stick to one end of the curve, placing it as a chord. He 

stick to hang over the curve, effectively using only half of the stick as a unit. He 

finger to keep track of where the stick intersected the curve and iterated the stick, placing 

at his finger mark each time. When asked to explain how he thought 

about comparing the curved path to the stick he said, “I would start at the end, and then 

t like that (showed placing the entire stick as a chord) it'd be more curved so 

along the edge that was 

shaped curve by 

an half of the stick 

the fifth tick mark 

seventh tick mark as five, and the eighth tick 

. Rose’s fracturing of the nonstandard unit in the tightest part of the curve. 

I observed 20 instances 

in which students increased precision by fracturing the nonstandard unit, the stick, around 

the entire curve across Tasks 3, 4, 5, 6B, and 8B. Rick (Grade 8, ICPM Group) used this 

urve to a straight object (a stick) for 

to one end of the curve, placing it as a chord. He allowed the 

ly half of the stick as a unit. He placed a 

the stick intersected the curve and iterated the stick, placing 

. When asked to explain how he thought 

“I would start at the end, and then 

t like that (showed placing the entire stick as a chord) it'd be more curved so 
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it wouldn't be as long, so I just did halfway (showed by placing half of the stick as a 

chord). And then I'd do half and half (demonstrated how he iterated the half-stick around 

the inside of the curve as a chord) and then there's eight halves so four.” Rick exhibited 

the fractured non-standard unit around the entire curve strategy here by operating on half-

stick units as he compared the curve and a stick. I interpreted the observable strategies of 

fracturing the nonstandard unit in the tightest part of the curve (see Rose’s drawing in 

Figure 58) and fracturing the non-standard unit around the entire curve (see Rick’s the 

preceding discussion of Rick) as evidence of coordinating linear extent with another 

attribute, curve. 

Counted a partial unit as a whole. I observed two instances of counting a partial 

unit as a whole in students’ responses to Tasks 3, 4, 5, 6B, and 8B. Kevin (Grade 4, CLM 

Group) applied this strategy after using the chord iteration strategy to compare the spiral-

shaped curve to the straight object (the stick) for Task 4. He made a record of how he 

compared the curved path to the stick by first aligning the stick to one end of the curve, 

placing it as a chord and tracing the edge of the stick closest to the curve. He then 

repositioned the stick, aligning the endpoint of the stick to the intersection of the curve 

and the line segment representing the position of the first chord stick unit. He repeated 

this process drawing five full chord stick units; however only a partial stick fit for the 

final stick unit (see Figure 59 below). 

Kevin showed how many stick units longer the curve was by pointing and 

counting the segments in his drawing, “One (pointed to the second segment), two 

(pointed to the third segment), three (pointed to the fourth segment); four (pointed to the 



 

 

fifth segment), five (point

segment as a whole. 

Figure 59. Kevin’s counting of a partial unit as a whole.

Compensated for curvature.

by compensating for curvature a total of 10 times for Tasks 3, 4, 5, 6B, and 8B. Marie 

(Grade 10, ALM Group) used this strategy when comparin

straight object (the stick) for Task 4. She compared the stick to the curve by applying the 

chord iteration strategy and fracturing the 

curve (see Figure 60 below).

Figure 60. Marie’s comparison of a curve and a straight object for Interview Task 4
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fifth segment), five (pointed to the partial sixth segment).” He counted the final partial 

 

nting of a partial unit as a whole. 

Compensated for curvature. Students applied a strategy of increasing precision 

by compensating for curvature a total of 10 times for Tasks 3, 4, 5, 6B, and 8B. Marie 

(Grade 10, ALM Group) used this strategy when comparing the spiral-shaped curve to a 

straight object (the stick) for Task 4. She compared the stick to the curve by applying the 

chord iteration strategy and fracturing the non-standard unit in the tightest part of the

below). 

 

Marie’s comparison of a curve and a straight object for Interview Task 4

.” He counted the final partial 

Students applied a strategy of increasing precision 

by compensating for curvature a total of 10 times for Tasks 3, 4, 5, 6B, and 8B. Marie 

shaped curve to a 

straight object (the stick) for Task 4. She compared the stick to the curve by applying the 

in the tightest part of the 

Marie’s comparison of a curve and a straight object for Interview Task 4 
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After measuring Marie said, “OK. So, I when I measured it I got like six and three 

quarters it looks like. But, again, since it would be pulled up I guess it would be around 

seven or eight to cover. It would be a little bit more since the curves like here would pull 

a little bit more in some spots than others.” Marie rounded the number of stick units 

needed to span the length of the curve from six and three quarters, which she obtained by 

directly measuring the curve, to seven or eight. That is, she compensated for curvature. 

Applied benchmark. I observed two instances of applying a benchmark 

measurement across Tasks 3, 4, 5, 6B, and 8B. Trent (Grade 6, CRM Group) applied this 

benchmark strategy when comparing the partial circle-shaped curve and a straight object 

(the stick) for Task 3. He first placed the stick at the eight and a half inch side of the 

paper. Next, he drew a tick mark to represent the end of the stick and iterated the stick, 

aligning the end of the stick with this tick mark and drawing another tick mark at the end 

of the stick to keep track of the position of this second stick unit. When asked what he 

was thinking he said, “an average sheet of computer paper's about eight and a half inches 

long, so this took about two...two times it would be about four and a half inches.” 

Although Trent’s calculation of half of eight and a half as four and a half was incorrect, 

he remembered the length of a standard piece of paper in inches and used this 

information to determine the length of the stick in inches. For him, the length of the short 

side of a standard sheet of computer paper as eight and a half inches was a benchmark. 

Applied conceptual standard unit. The strategy of comparing a straight object 

to a curve by applying a conceptual standard unit was observed five times in students’ 

responses to Tasks 3, 4, 5, 6B, and 8B. David (Grade 8, ICPM Group) applied a 
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conceptual standard unit, a mental image of an inch, when comparing the partial circle-

shaped curve to a straight object (a stick) for Task 8B: 

David: This is roughly like, three inches...and...um...this is like probably the 

radius of this (pointed to the curve). 

Interviewer: Can you show me how you thought about that? 

David: How I thought about how this was the radius? 

Interviewer: Yeah. 

David: Cuz if you put that there (placed the stick as a radius again) that's like 

almost half-way from one end of the circle to the other. And then if you would be 

finding the...um...how long this is (pointed to the curve), which would be like the 

circumference of it minus that (pointed to the missing part of the circle), which is 

like a third of it. Um...So you would just find the circumference of the circle and 

divided it by three. 

David then calculated the length of the partial circle-shaped curve in inches. 

Intuitions Embedded in Analytical Strategies 

Two distinct strategies for comparing a curve and a straight object or using a 

straight object to compare two curves indirectly involved an intuition, the compression 

intuition, embedded in an analytical strategy. These strategies are related to either the 

chord iteration strategy or the tangent iteration strategy. 

Tangent curved unit iteration strategy. Participants used the tangent curved 

unit iteration strategy a total of four times throughout Tasks 3, 4, 5, 6B, and 8B. Ned 

(Grade 6, CRM Group) exhibited the tangent curved unit iteration strategy when 

comparing a spiral-shaped curve and a stick for Task 6B. He first placed the stick on the 



 

 160

outside of the curve as a tangent aligned with one end of the curve. Next, Ned drew a tick 

mark at the end of this first stick unit interval and realigned the stick with this tick mark, 

placing it again as a tangent. He then drew a second tick mark to indicate the end of this 

second stick unit interval. For the third and fourth iterations of the stick along the tightest 

part of the curve, he placed the stick as a tangent, aligned with the tick mark representing 

the end of the previous stick unit interval and allowed the stick to extend beyond the 

curve. He then drew a tick mark further along the curve than the point at which the stick 

departed from the curve. A small part of the curve was still extending beyond the fourth 

iteration. Ned placed part of the stick along this small part of the curve and wrote four 

and one third sticks. He then explained how he thought about using the stick to help him 

check saying, “I laid the stick by trying to line it up as...at about as straight as it can go 

(laid the stick as a tangent on the outside of the spiral-shaped curve) against the line and 

then...I figured out since it was curving, I would try to straighten it out and then figure 

out about where it would be if it was straight.” Ned’s explanation of “figure out about 

where it would be if it was straight” indicates that he was imagining mentally 

straightening parts of the curve, at least for the third and fourth tangent stick unit 

iterations. This suggests that he evoked the compression intuition while using an 

analytical strategy of directly comparing a stick as a tangent to a curvilinear path. 

 Other students used a slightly different version of the tangent curved unit iteration 

strategy. One such example is Grant’s (Grade 6, ICPM Group) strategy for comparing a 

partial circle-shaped curve to a straight object for Task 3. He initially placed the stick on 

the outside of the curve, aligned with one endpoint. Although the stick extended far 

beyond the point at which it intersected the curve, he drew a tick mark to represent the 
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end of the stick on the curve. He then repositioned the stick, again placing it as a tangent 

on the outside of the curve and aligned to the tick mark he had just drawn. Grant again 

allowed the stick to extend beyond the curve, and he again made a tick mark on the curve 

beyond where the stick intersected the curve. He repeated this strategy all the way around 

the curve; the curve extended a small amount beyond the final iteration of the stick. He 

said it was “Probably like just over four sticks.” 

 When asked to explain how he thought about comparing the curved path to the 

stick Grant said, “I just like put the stick where it was (again placed the stick as a tangent 

aligned with one endpoint of the curve, allowing the stick to extend beyond the point at 

which it intersected the curve) and I just guessed where it would be if the stick curved.” 

Grant’s discussion of imagining the stick as curved to guide the placement of his tick 

marks suggests that he used the compression intuition while applying an analytical 

strategy of directly measuring the curve with tangent stick units. Although Ned and Grant 

both applied this tangent curved unit iteration strategy, Ned thought about mentally 

straightening segments of the curve to match the straight unit and Grant thought about 

mentally curving the unit to match the curve. 

Chord curved unit iteration strategy. Fifteen instances of the chord curved unit 

iteration strategy appeared in students’ responses to Tasks 3, 4, 5, 6B, and 8B. Kyle 

(Grade 10, ICPM Group) used the chord curved unit iteration strategy when comparing 

an S-shaped curve and a straight object in Task 5. He initially placed the stick along one 

end of the S-shaped curve and drew a tick mark on the curve just before the end of the 

stick. He then iterated the stick, again placing it as a chord and aligning it with this tick 

mark. Kyle once again drew a tick mark just before the end of the stick. He continued this 
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process of iterating the stick and drawing tick marks just before the end of the stick the 

entire way around the S-shaped curve. When asked how he thought about comparing the 

length of the stick to the length of the curved path Kyle said: 

I…had to take into account that...um...when I put the stick up the curved parts of 

the line I would end up having to straighten the line out and I would do it with my 

pen to see how...to make sure that the amount of curved line that I chose would 

come out to be closest to the length of the stick…so I would just flatten that out 

and it would come out to here (placed stick as a chord in the position of the 

second stick unit). 

Kyle’s explanation about flattening out the curve to match the straight unit suggests that 

he mentally straightened parts of the curve. This is evidence that he evoked the 

compression intuition as he applied an analytical strategy of directly measuring the length 

of the curve in chord stick units. Therefore, the curved chord unit iteration strategy is 

another example of an intuition embedded in an analytical strategy. 

 Other students used a different version of the chord curved unit iteration strategy. 

For example, Rose (Grade 6, CRM Group) compared the stick to the spiral-shaped 

curved path (Task 6B) by exhibiting a strategy similar to the chord iteration strategy. She 

placed the stick as a chord aligned with one end of the spiral curve and traced along the 

edge of the stick closest to the curve. She repositioned the stick at the intersection of the 

segment representing the initial position of the stick and the curve and again traced along 

the stick. She repeated this process for four full stick units and one partial stick unit in the 

tightest part of the curve. When asked how she thought about comparing the curve to the 

stick she explained, “I imagined if the stick...kind of...was bent. If it were like jello or 
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something I could bend it and then it would fit to there (indicated on the curve how the 

segment representing the third stick unit would fit along the curve), and then if I could 

move this, it would stretch out and might do that (traced finger around the piece of the 

curve spanned by the chord representing the third stick unit).” 

Rose’s explanation of imagining the stick as bent suggests that she mentally 

curved the stick, which is evidence that she evoked the compression intuition. Her 

application of the stick as a unit placed as a chord along the curve did not appear to be 

influenced by her application of the compression intuition. However, her explanation 

suggests that the compression intuition was present in her thinking as she applied the 

analytical chord iteration strategy. Therefore, this is another instance of an intuition, the 

compression intuition, embedded in an analytical strategy. 

Intuitions Used when Comparing Curvilinear Paths to Straight Objects 

I observed three of the five intuitions students used to compare curves (Tasks 6A, 

7, and 8A) as students compared a curve and a straight object (Tasks 3, 4, and 5) or 

indirectly compared two curves with a straight object (Tasks 6B and 8B): the 

compression, straightness, and curve tightness intuitions. Forty-nine responses reflected 

the use of compression, and 44 of these instances included an analytical strategy. 

The compression intuition was used with seven of the analytical strategies 

observed as students compared curvilinear paths with a straight object (Tasks 3, 4, 5, 6B, 

and 8B). I observed this intuition most often with the chord iteration and chord curved 

unit iteration strategies. The straightness intuition occurred only with the chord and 

tangent iteration strategies. Participants used the curve tightness intuition only with the 

chord iteration and mixed unit iteration strategies. Only the straightness intuition 



 

 164

appeared without an analytical strategy (five instances) when comparing a curvilinear 

path to a straight object. Table 11 shows how students used intuitions with analytical 

strategies. 

Table 11 

Intuitions Used with Analytical Strategies When Comparing a Curve to a Straight Object 
(Tasks 3, 4, 5, 6B, and 8B) 
 
 

Compression Straightness 
Curve 

Tightness 
Analytical without 

Intuition 
 

Chord Iteration 
 

38.78% 
(19) 

71.43% 
(5) 

80% 
(4) 

16 

 
Continuous 
Comparison  

6.12% 
(3) 

0.00% 
(0) 

0.00% 
(0) 

0 

 
Tangent Iteration 

 

10.20% 
(5) 

28.57% 
(2) 

0.00% 
(0) 

5 

 
Tangent Curved  

 

4.08% 
(2) 

0.00% 
(0) 

0.00% 
(0) 

2 

 
Chord Curved  

 

22.45% 
(11) 

0.00% 
(0) 

0.00% 
(0) 

0 

 
Mixed Unit Iteration 

 

6.12% 
(3) 

0.00% 
(0) 

20% 
(1) 

3 

 
Path Intersection  

 

2.04% 
(1) 

0.00% 
(0)  

0.00% 
(0) 

1 

 
Adjusting Tangency 

 

0.00% 
(0) 

0.00% 
(0) 

0.00% 
(0) 

8 

 
Modified Formula 

 

0.00% 
(0) 

0.00% 
(0) 

0.00% 
(0) 

5 

 
Intuition without 

analytical  
 

10.20% 
(5) 

0.00% 
(0) 

0.00% 
(0) 

0 

Totals 49 7 5 40 
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* 38.78% of the instances in which the compression intuition was used with an analytical 
strategy occurred when the chord iteration strategy was used (Tasks 3, 4, 5, 6B, and 8B). 
 
I did not observe the continuous comparison or the chord curved unit analytical strategies 

without an intuition. Furthermore, participants did not use the adjusting point of tangency 

and modified circumference formula strategies with an intuition. 

Reflecting on Error 

For each of the tasks involving comparing curvilinear paths to a straight object 

(Tasks 3, 4, 5, 6B, and 8B), after making a quantitative comparison, I further probed 

students’ intuitive and analytical thinking about curves by asking whether they thought 

they had over- or underestimated and how they knew they had over- or underestimated. 

Across these five tasks, the 16 interview participants answered that they had 

underestimated 36 times, overestimated 22 times, and claimed that an answer was neither 

an over- or underestimate 12 times. Table 12 illustrates the interaction between students’ 

claims about over- or underestimating and the analytical iteration strategies they used to 

compare a straight object to a curve. 

I categorized combinations of these codes related to students’ claims about over- 

or underestimating as correct or incorrect. Two strategies, the chord iteration strategy and 

the tangent iteration strategy, provided either a clear over- or underestimate. Therefore, a 

student who used the chord iteration strategy and claimed his or her answer was an 

overestimate or said he or she did not over- or underestimate was coded as “incorrect 

acknowledgement of over- or underestimate.” Another student who used the same chord 

iteration strategy, but claimed his or her answer was an underestimate was coded as 

“correct acknowledgement of over- or underestimate.” Some strategies, such as the path 

intersection iteration strategy in which students attempted to control error by placing the 
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straight object directly on the curve, did not provide clear over- or underestimates. 

Therefore, the combination of this strategy with an acknowledgement of an over- or 

underestimate or a claim that an answer was neither an over- nor an underestimate was 

considered to be neither correct nor incorrect. In Table 12, correct responses are indicated 

as green, incorrect responses are indicated as red, and responses that could not be clearly 

identified as correct or incorrect are indicated with grey shading. 

Table 12 

Interaction Between Iteration Strategies and Statements about Over- or Underestimating 
when Comparing a Straight Object and a Curve (Tasks 3, 4, 5, 6B, and 8B) 
 

 
Acknowledged 
Underestimate 

Acknowledged 
Overestimate 

Claimed answer not an 
under- or overestimate 

 
Chord Iteration  

 
25 6 3 

 
Continuous Comparison 

 
1 1 0 

 
Tangent Iteration  

 
3 5 1 

 
Tangent Curved  

 
0 4 0 

 
Chord Curved  

 
4 3 2 

 
Mixed Unit  

 
1 3 1 

 
Path Intersection  

2 1 0 

 
Adjusting Tangency  

 
2 2 4 

 
Circumference Formula 

 
0 0 2 
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Students’ Justifications when Reflecting on Error 

After students’ claims about whether they had over- or underestimated were 

analyzed for correctness for Tasks 3, 4, 5, 6B, and 8B, their justifications regarding why 

they thought they had over- or underestimated were analyzed in terms of the intuitions 

and analytical strategies for curvilinear paths as described in the sections above. 

Specifically, I coded students’ responses according to the five main intuitions for 

comparing curvilinear paths, the analytical strategies for comparing curves and straight 

objects, and the analytical strategies related to unit. This analysis focused on the 43 

responses that could be clearly defined as correct or incorrect, or those that were 

associated with the chord and tangent unit iteration strategies. 

 Participants justified their claims regarding why they thought they had over- or 

underestimated using an intuition or a combination of intuitions on 18 instances, by 

discussing an analytical strategy for comparing curves to straight objects on 19 instances, 

and by discussing an analytical strategy related to unit on 10 occasions. In the following 

sections I illustrate how students used each intuitive or analytical strategy to justify why 

they thought they had over- or underestimated when comparing a curve and a straight 

object for Tasks 3, 4, 5, 6B, and 8B. 

 Using intuitions to justify claims to reflect on error.  Students exhibited seven 

instances of the straightness intuition, 18 instances of the compression intuition, and 2 

instances of the curve tightness intuition when justifying their claims about over- or 

underestimating when comparing a curve to a straight object. Seven of these instances of 

intuition use occurred as intuitions used in combination. Mia (Grade 4, CLM Group) used 

an intuition when reflecting on her way of comparing a straight object to a curve by 
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iterating the stick around the inside of two partial circle-shaped curves as chords, using 

the whole stick as the unit, for Task 8B. She said the tighter curve was four stick units 

long and the wider curve was three stick units long. However, she used an intuition to 

defend claims about both curves being the same length and about overestimating when 

comparing. She said, “hmmm...Cuz if you curve this one in more (gestured as if to bend 

the wider curve into the same shape as the tighter curve) then it would look like this one 

(pointed to the tighter curve).” 

Although Mia had measured the tighter curve as four stick units and the wider 

curve as three stick units, she justified her response by evoking the compression intuition 

by mentally bending the wider curve into the same shape as the tighter curve. Her 

conclusion that both curves were the same length, based on the compression intuition, 

was incorrect. Therefore, I further probed Mia’s thinking about why she thought the 

curves were the same length, even after determining they were different by directly 

measuring each curve with the stick: 

Interviewer: OK. And did the stick help you know for sure that they were the 

same? 

Mia: (picked up the stick) A little bit. 

Interviewer: A little bit? How so? 

Mia: Because this one (pointed to the tighter curve) has four (pointed to the 

middle of each of the four chord segments representing the length of the tighter 

curve)…and this one just has three (pointed to the wider curve)…but this one is 

off (pointed to an error segment created by her drawing of chord stick units on the 
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tighter curve), so I think that they would still be about the same (pointed to both 

curves). 

Mia’s response suggests that she thought that more of the larger error segments on the 

tighter curve meant that her answer of four stick units was an overestimate. When asked 

what she would say to convince someone that the curves were the same length she said, 

“I think that they're the same because this line isn't very exact I think it would be...there 

would be a lot of lack in there (pointed to an error segment on the tighter curve)...like not 

very exactly on it, not exactly right…I think if it was exactly on it, there would be less 

than four.” Mia’s use of compression when reflecting on the error involved with 

comparing a curve and a straight object, or the indirect comparison of two curves with a 

straight object in the case of this particular task, lead her to conclude incorrectly that she 

had overestimated when using the chord iteration strategy.  

Jenny (Grade 4, CLM Group) used an intuition when discussing her comparison 

between a straight object to a curve for Task 3. She used the chord iteration strategy, 

using the whole stick as the unit, and answered that the curve was four times longer than 

the stick. When asked whether she thought the length of the curve was more or less than 

four, she explained that it was more “because it’s curved (traced around the curve with 

her finger).” Jenny’s response reflects an intuition about the curve as being longer than its 

representation of the curve as four chord stick unit segments, which is consistent with the 

compression intuition. Unlike Mia, Jenny’s application of the compression intuition when 

reflecting on the error involved with comparing a straight object and a curve resulted in a 

correct response. 
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 Analytical strategies for comparing to reflect on error.  After Jenny used the 

compression intuition to defend her claim that her comparison between the curve and the 

straight object for Task 3 involved an underestimate, she also attended to the analytical 

strategy that she had used to make the comparison. She elaborated on her statements 

about the length of the curve as being more than the four chord stick units she had 

measured because it was curved by saying, “and...um...I did this (placed the stick inside 

the curve as a chord and aligned with one endpoint of the curve).” Therefore, Jenny 

correctly attended to her strategy of comparing the curve and the stick by iterating the 

stick around the curve as a chord as a source of error, resulting in an underestimate. 

 Like Jenny, when Kevin (Grade 4, CLM Group) reflected on whether he had 

over- or underestimated for Task 6B when comparing a curve and a straight object, he 

also attended to his analytical strategy of iterating the whole stick as a chord. When asked 

if he had over- or underestimated, he said he thought he got it “exactly right.” Kevin 

defended this claim by explaining, “Because I tried to line up like the stick almost 

perfectly on the line and it pretty much turned out like that all the time.” Although he had 

underestimated when comparing the straight object to the curve by representing the curve 

in chord stick units, he reasoned that his analytical strategy for comparing the straight 

object to the curve resulted in him lining the stick up perfectly to the line and giving an 

exactly right comparison. Although Kevin used the same kind of reasoning that Jenny did 

when reflecting on error, attending to the analytical strategy for comparing a curve and a 

straight object, his conclusion was incorrect. 

Analytical strategies for operating on units to reflect on error. Some students 

attended to the analytical strategies they used for operating on units (such as mentally 
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curving units, mentally straightening parts of the curve, accuracy of fracturing units, or 

the alignment of the final stick unit and the end of the curve) to reflect on the error in 

their comparisons between a straight object and a curve. For example, after using the 

tangent iteration strategy to compare a straight object and a curve for Task 4, Lynn 

(Grade 8, CRM Group) correctly stated that she thought her comparison involved an 

overestimate. She explained her reasoning by attending to her accuracy in partitioning a 

stick unit into thirds saying, “Slightly over, because my fifth ended here (pointed the 

endpoint of the stick as it was placed the fifth stick unit position)…and that does not look 

like two thirds. Two thirds would be like there (spanned fingers to surround the 

remaining part of the curve not covered by the fifth iteration) so I think it's a little over.” 

Lynn’s claim about overestimating the length of the curve using the tangent iteration 

strategy was correct; however, she only attended to her operations on units to defend this 

claim. 

Trent (Grade 6, CRM Group) also attended to his analytical strategy of operating 

on units when discussing the error of his comparison between a straight object and a 

curve for Task 3. After using the chord iteration strategy, he claimed that his comparison 

between the straight object and the curve yielded an overestimate “because this was a 

little bit longer than the curve (placed the stick in the fourth stick unit position to 

illustrate that the stick extended beyond the end of the curve).” Like Lynn, Trent attended 

to his operations on units to defend a claim about the error involved with his comparison 

of the straight object and the curve. However, the claim Trent was defending, that he had 

overestimated using the chord iteration strategy, was incorrect. 
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 Using multiple justifications. Six different students justified their claims using 

either a combination of two analytical strategies (one related to comparing curves to 

straight objects and one related to unit) or an intuition and an analytical strategy (either 

an analytical strategy related to comparing curves to straight objects or one related to 

unit). Jenny (Grade 4, CLM Group), described above, explained why she thought her 

comparison between a straight object and a stick for Task 3 was an underestimate using 

both an intuition and the analytical strategy she used to compare the straight object to the 

curve. Like Jenny, Trent (Grade 6, CRM Group), Grant (Grade 6, ICPM Group), and 

Marie (Grade 10, ALM Group) exhibited one instance of using both an intuition with a 

discussion about the analytical strategy used to compare a straight object to a curve when 

defending a claim about whether a comparison resulted in an over- or underestimate. 

 Rick (Grade 8, ICPM Group) justified why he thought his comparison of a curve 

and a straight object for Task 6B was an underestimate by using a combination of two 

analytical strategies: one related to his way of comparing a curve to a straight object and 

another related to his way of operating on the unit. After using the chord iteration strategy 

to compare he said, “I think I underestimated this one (pointed to the curve with the 

straight segment) more than this one (pointed to the spiral curve) because this one is 

like…this has more curve to it (points to the tightest part of the curve with the straight 

segment) I wasn't dead on the line...And I didn't even get all the way to the end either…” 

His discussion about not being “dead on the line” indicates that he was reflecting on the 

fact that he used an analytical strategy of comparing the straight object to the curve by 

representing the straight object as chord stick units on the curve, resulting in an 

underestimate. Rick elaborated by also mentioning his operations on units. He noted that 
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he “didn’t even get all the way to the end either,” indicating an attention to the curve 

extending beyond the final chord stick unit. Rick’s claim about underestimating when 

comparing the straight object and the curve was correct. 

 Kevin (Grade 4, CLM Group) defended his claim that his comparison of a curve 

to a straight object for Task 8B was an overestimate using an intuition and an analytical 

strategy related to his way of comparing the curve to the straight object. He used the 

chord iteration strategy to compare the straight object to each curve. When asked whether 

he thought he had over- or underestimated when comparing he said, “I think I 

overestimated a little, because this one it goes off a little (pointed to the end of the wider 

curve where the third stick unit extended beyond the curve), and this one when it was 

going here it was more of just like a straight line (pointed to the first stick unit for the 

tighter curve). The stick can't like curve into a line like a circle.” Kevin’s discussion of 

curving the stick indicates that he evoked the compression intuition. He also discussed his 

operations on units; he attended to a stick unit extending beyond the curve to defend his 

claim that he overestimated. Kevin evoked both an intuition and an analytical strategy, 

but his claim that he overestimated when using the chord iteration strategy was incorrect. 

Relating Correctness and Students’ Justifications when Reflecting on Error 

Table 13 illustrates the interaction between the correctness of a claim about over- 

or underestimating and the use of intuitions, analytical strategies for comparing curves 

and straight objects, and analytical strategies related to unit for justifying claims. 
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Table 13 

Interaction Between Correctness and Students’ Justifications when Reflecting on Error 
When Comparing a Curve to a Straight Object (Tasks 3, 4, 5, 6B, and 8B) 
 

 
Use of an 
Intuition 

Analytical strategy 
for comparing  

Analytical 
strategy for 

units 

Correct acknowledgement 
of an over- or underestimate 

 
77.78%* 

(14) 
 

84.21% 
(16) 

40.00% 
(4) 

Incorrect acknowledgement 
of an over- or underestimate 

 
22.22% 

(4) 
 

15.79% 
(3) 

60.00% 
(6) 

Totals 18 19 10 
* 77.78% of the instances in which an intuition was used to defend whether a comparison 
between a curve and a straight object was an over- or an underestimate were correct. 
 
Students’ discussions about whether a comparison between a curve and a straight object 

was an over- or an underestimate that involved either an intuition or a discussion about 

the analytical strategy used to make the comparison yielded a correct answer in most 

instances, with 77.78% and 84.21% respectively. However, when students attended to the 

analytical strategy used to operate on units, such as a partitioning of units or the 

alignment of the final stick unit iteration and the end of the curve, their answer was 

correct only 40% of the time. 

Relating Intuitions and Analytical Strategies for Curvilinear Paths to the Length LT 

I tracked patterns in intuition and analytical strategy use for comparing a 

nonstandard unit and a curve (Tasks 3, 4, 5, 6B, and 8B) within and across the LT groups. 

I differentiated and categorized analytical strategies and intuitions for comparing and 

analytical strategies related to unit according to their appearance within and across the LT 

groups to explore developmental patterns. In the sections below I describe these 



 

 

developmental patterns with respect to the use of intuitions and analytical strategies for 

comparing as well as the 

units. 

Figures 61 and 62

for comparing a straight object and a curve. In each column, the darkest shade

indicates the LT level group 

shows the LT level group with the lowest frequency of a particular intuition or analytical 

strategy. 

 
Figure 61. Patterns of analytical strategy use for compa
within and across LT groups.
 

Figure 62. Patterns of intuition use for comparing straight objects and curves within and 
across LT groups. 
 
I describe the developmental 

included in the present study, which are 

below beginning with Table 
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developmental patterns with respect to the use of intuitions and analytical strategies for 

g as well as the participants’ use of analytical strategies related to operating on 

2 illustrate the frequency of each intuition and analytical strategy 

for comparing a straight object and a curve. In each column, the darkest shade

group with the highest frequency and the lightest shade of blue 

shows the LT level group with the lowest frequency of a particular intuition or analytical 

Patterns of analytical strategy use for comparing straight objects and curves 
within and across LT groups. 

Patterns of intuition use for comparing straight objects and curves within and 

developmental patterns within and across the four length LT level groups 

included in the present study, which are depicted in Figures 61 and 62, in the sections 

beginning with Table 14. 

developmental patterns with respect to the use of intuitions and analytical strategies for 

use of analytical strategies related to operating on 

illustrate the frequency of each intuition and analytical strategy 

for comparing a straight object and a curve. In each column, the darkest shade of blue 

with the highest frequency and the lightest shade of blue 

shows the LT level group with the lowest frequency of a particular intuition or analytical 

 

ring straight objects and curves 

 

Patterns of intuition use for comparing straight objects and curves within and 

LT level groups 

in the sections 
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Table 14 

Distribution of Analytical Strategies for Comparing Curves and Straight Objects (Tasks 
3, 4, 5, 6B, and 8B) within and across Length LT Level Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals 

 
Chord iteration 

 

39.22%* 
(20) 

23.53% 
(12) 

17.65% 
(9) 

19.61% 
(10) 

51 

 
Continuous 
comparison 

 

50.00% 
(2) 

0.00% 
(0) 

50.00% 
(2) 

0.00% 
(0) 

4 

 
Tangent iteration 

 

21.43% 
(3) 

28.57% 
(4) 

14.29% 
(2) 

35.71% 
(5) 

14 

 
Mixed unit iteration 

 

25.00% 
(2) 

62.50% 
(5) 

0.00% 
(0) 

12.50% 
(1) 

8 

 
Path intersection 

iteration 
 

66.67% 
(2) 

0.00% 
(0) 

33.33% 
(1) 

0.00% 
(0) 

3 

 
Adjusting tangency 

 

0.00% 
(0) 

9.10% 
(1) 

63.63% 
(7) 

27.27% 
(3) 

11 

 
Tangent curved unit 

 

0.00% 
(0) 

25.00% 
(1) 

75.00% 
(3) 

0.00% 
(0) 

4 

 
Chord curved unit 

 

0.00% 
(0) 

40.00% 
(6) 

13.33% 
(2) 

46.67% 
(7) 

15 

 
Modified formula 

 

0.00% 
(0) 

0.00% 
(0) 

40.00% 
(2) 

60.00% 
(3) 

5 

* 39.22% of the instances in which the chord iteration strategy was used occurred when 
CLM students compared a straight object and a curve for a total of 20 instances. 
 
Patterns of Analytical Strategy Use within LT Groups 

Participants within each length LT level group used the chord iteration strategy 

most often. For the CLM group, this was followed by the use of four additional analytical 

strategies: the continuous comparison and tangent, mixed unit, and the path intersection 
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iteration strategies. Within the CRM group, this was followed by three more analytical 

strategies: mixed unit, tangent, adjusting point of tangency iteration strategies. At the 

CRM level, students used two analytical strategies with embedded intuitions: chord 

curved unit and tangent curved unit iteration strategies. The group of ICPM level 

participants used all but one of the analytical strategies observed for comparing a curve 

and a straight object, the mixed unit iteration strategy. The students in the ALM level 

group used all of the analytical strategies except the path intersection and tangent curved 

unit iteration strategies. 

Patterns of Analytical Strategy Use across LT Groups 

I observed the chord iteration strategy most often in the CLM level participants’ 

responses, and the use of this strategy generally decreased as the levels of the LT for 

length measurement increased in sophistication. Few instances occurred for most 

analytical strategies for comparing a curve and a straight object shown in Table 14. 

Therefore, I organized codes according to three thematic categories. The direct 

measurement category includes the continuous comparison and chord, tangent, mixed 

unit, path intersection, and adjusting point of tangency iteration strategies. The direct 

measurement with embedded intuition use strategies include the tangent curved unit and 

chord curved unit iteration strategies. The indirect measurement category consists of the 

modified circumference formula strategy. In Table 15, I describe the interaction of the 

thematic categories for the analytical strategies observed in the present study within and 

across groups. 
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Table 15 

Interaction of Thematic Categories for Analytical Strategies for Comparing Curves and 
Straight Objects (Tasks 3, 4, 5, 6B, and 8B) within and across Length LT Level Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals 

Direct measurement: 
analytical without 

embedded intuition 

 
31.78%* 

(29) 
 

24.18% 
(22) 

23.08% 
(21) 

21.88% 
(19) 

91 

Direct measurement: 
analytical with 

embedded intuition 

 
0.00% 

(0) 
 

36.84% 
(7) 

26.32% 
(5) 

36.84% 
(7) 

19 

Indirect measurement 

 
0.00% 

(0) 
 

0.00% 
(0) 

40% 
(2) 

60% 
(3) 

 
5 

* 31.78% of the instances in which a direct measurement strategy was observed as 
students compared a straight object to a curve occurred in the CLM level group. 
 
Patterns in Thematic Categories of Analytical Strategy Use within LT Groups 

Within the CLM level group, only direct measurement analytical strategies 

without embedded intuitions were used. At the CRM level, students used only direct 

measurement strategies, with or without embedded intuitions. For the ICPM and ALM 

level groups, I observed direct measurement strategies with or without embedded 

intuitions and a strategy for indirect measurement (applying a modified circumference 

formula). 

Patterns in Thematic Categories of Analytical Strategy Use across LT Groups 

Table 15 shows that the analytical direct measurement strategies were used most 

often by students in the CLM group, the lowest group, and decreased across the groups as 

the levels increased in sophistication. Analytical direct measurement strategies with 

embedded intuitions were not observed in the CLM group and were almost evenly 



 

 

distributed across the CRM, ICPM, and ALM groups. The indirect measurement strategy, 

a modified circumference formula, was observed only in the ICPM and ALM groups.

I tracked patterns of analytical strategy use related to unit when comparing 

straight objects and curves (Tasks 3, 4, 5, 6B, and 8B) within and across the groups 

representing CLM, CRM, ICPM, and ALM levels of the length LT. The number of 

instances of each analytical str

object is shown in Figure 

shade indicates the LT level with the highest frequency of a specific analytical strategy, 

and white indicates the LT level with the lowest frequency of a specific analytical 

strategy related to unit. 

Figure 63. Patterns of analytical strategy use related to unit for comparing straight objects 
and curves within and across LT groups.
 
Figure 63 shows developmental patterns for analytical strategy use related to unit across 

LT groups. To explore developmental patterns in analytical strategy use related to unit 

across the LT levels, codes related to conceptually congruent themes concerning the 

analytical strategies related to unit (Tasks 3, 4, 5, 6B, and 8B) were collapsed. Codes 

describing strategies for fracturing units (fractured nonstandard unit once at the endpoint 

of the curve, fractured nonstandard unit in the tightest part of the curve, and fractured 

nonstandard unit around the entire curve), mentally transforming the unit or the curve 

(mentally curved unit and mentally straightened curve segments), and the application of 

mental units (applied benchmark and applied conceptual standard unit) were collapsed
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distributed across the CRM, ICPM, and ALM groups. The indirect measurement strategy, 

a modified circumference formula, was observed only in the ICPM and ALM groups.

erns of analytical strategy use related to unit when comparing 

straight objects and curves (Tasks 3, 4, 5, 6B, and 8B) within and across the groups 

representing CLM, CRM, ICPM, and ALM levels of the length LT. The number of 

instances of each analytical strategy related to unit for comparing a curve and a straight 

object is shown in Figure 63 below. In this figure, within each of the columns, the darkest 

shade indicates the LT level with the highest frequency of a specific analytical strategy, 

cates the LT level with the lowest frequency of a specific analytical 

Patterns of analytical strategy use related to unit for comparing straight objects 
and curves within and across LT groups. 

mental patterns for analytical strategy use related to unit across 

LT groups. To explore developmental patterns in analytical strategy use related to unit 

across the LT levels, codes related to conceptually congruent themes concerning the 

gies related to unit (Tasks 3, 4, 5, 6B, and 8B) were collapsed. Codes 

describing strategies for fracturing units (fractured nonstandard unit once at the endpoint 

of the curve, fractured nonstandard unit in the tightest part of the curve, and fractured 

standard unit around the entire curve), mentally transforming the unit or the curve 

(mentally curved unit and mentally straightened curve segments), and the application of 

mental units (applied benchmark and applied conceptual standard unit) were collapsed

distributed across the CRM, ICPM, and ALM groups. The indirect measurement strategy, 

a modified circumference formula, was observed only in the ICPM and ALM groups. 

erns of analytical strategy use related to unit when comparing 

straight objects and curves (Tasks 3, 4, 5, 6B, and 8B) within and across the groups 

representing CLM, CRM, ICPM, and ALM levels of the length LT. The number of 

ategy related to unit for comparing a curve and a straight 

below. In this figure, within each of the columns, the darkest 

shade indicates the LT level with the highest frequency of a specific analytical strategy, 

cates the LT level with the lowest frequency of a specific analytical 

 

Patterns of analytical strategy use related to unit for comparing straight objects 

mental patterns for analytical strategy use related to unit across 

LT groups. To explore developmental patterns in analytical strategy use related to unit 

across the LT levels, codes related to conceptually congruent themes concerning the 

gies related to unit (Tasks 3, 4, 5, 6B, and 8B) were collapsed. Codes 

describing strategies for fracturing units (fractured nonstandard unit once at the endpoint 

of the curve, fractured nonstandard unit in the tightest part of the curve, and fractured 

standard unit around the entire curve), mentally transforming the unit or the curve 

(mentally curved unit and mentally straightened curve segments), and the application of 

mental units (applied benchmark and applied conceptual standard unit) were collapsed. 
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Analytical strategies mentally curved straight unit and mentally straightened curve 

segments occurred with the chord curved and tangent curved unit strategies. Table 16 

shows how the distribution of these collapsed codes relate to the LT levels. 

Table 16 

Distribution of Conceptually Congruent Analytical Strategies Related to Unit (Tasks 3, 4, 
5, 6B, and 8B) across Length LT Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals 

 
Used the whole stick as a unit 
 

33.33%* 
(25) 

30.67% 
(23) 

18.67% 
(14) 

17.33% 
(13) 

75 

 
Fractured unit 
 

15.87% 
(10) 

26.99% 
(17) 

30.16% 
(19) 

26.99% 
(17) 

63 

 
Fractured unit once  

 

22.58% 
(7) 

32.36% 
(10) 

19.35% 
(6) 

25.81% 
(8) 

31 

 
Fractured unit in 
tightest part of curve 
 

8.33% 
(1) 

16.67% 
(2) 

41.67% 
(5) 

33.33% 
(4) 

12 

 
Fractured unit along 
entire curve 
 

10.00% 
(2) 

25.00% 
(5) 

40.00% 
(8) 

25.00% 
(5) 

20 

 
Counted partial unit as whole 
 

50.00% 
(1) 

50.00% 
(1) 

0.00% 
(0) 

0.00% 
(0) 

2 

 
Compensated for curvature 
 

0.00% 
(0) 

40.00% 
(4) 

0.00% 
(0) 

60.00% 
(6) 

10 

 
Applied mental units 
 

0.00% 
(0) 

85.71% 
(6) 

14.29% 
(1) 

0.00% 
(0) 

7 

 
Mentally transformed the unit 
or curve 
 

0.00% 
(0) 

35.29% 
(6) 

23.53% 
(4) 

41.18% 
(7) 

12 

* 33.33% of the instances in which the whole stick was used as a unit were observed in 
students from the CLM group when comparing a curve and a straight object. 
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Patterns of Analytical Strategy Use Related to Unit within LT Level Groups 

Within the CLM level group, the strategy of using the whole stick as a unit was 

observed most often. This was followed by instances of fracturing the unit once, and one 

instance each of fracturing the unit in the tightest part of the curve and counting a partial 

unit as a whole unit. CRM level students also exhibited the strategy of using the whole 

stick as the unit most often. This was followed by instances of fracturing the unit once, 

applying mental units, and mentally transforming the unit or curve. Few instances of 

fracturing the unit in the tightest part of the curve or along the entire curve, counting a 

partial unit as a whole, and compensating for curvature were also observed in the CRM 

level group. For the ICPM and ALM level participants, instances of fracturing units 

occurred more often than instances of using the whole stick as the unit. At both of these 

levels, several instances each of fracturing the unit once, fracturing the unit in the tightest 

part of the curve, and fracturing the unit along the entire curve were all observed. Within 

the ICPM level, participants used the strategy of applying the whole stick as a unit and 

mentally transforming the unit or curve; however, only one instance of applying mental 

units was observed. At the ALM level, instances of using the whole stick as the unit, 

compensating for curvature, and mentally transforming the unit or curve occurred. 

Patterns of Analytical Strategy Use Related to Unit across LT Level Groups 

Table 16 indicates that the instances of the analytical strategy of using the whole 

stick as the unit occurred most often within the lowest level group included in the study, 

the CLM level group, with 25 occurrences. The table also illustrates a trend of decreasing 

instances of using the whole stick as the unit as the level groups increased in 

sophistication, across the CRM, ICPM, and ALM levels. Overall, the fewest instances of 



 

 

fracturing units occurred within the CLM group, and there exists an overall trend of 

increasing instances of fracturing units as the level groups increase in sophistication. 

Within the CLM and CRM level groups, participants mainly fractured units when a 

whole unit could not fit at the end of the curve. By the ICPM and ALM levels, 

participants exhibited more instances of fracturing units in the tightest part of the curve 

and along the entire curve. I interpreted this observable strategy of fracturing units in the 

tightest part of the curve or along the entire curve as evidence of coordinating 

extent with curve. Therefore, this suggests that, by the ICPM level, students were able to 

coordinate linear extent with curve. Counting partial units as whole units occurred only at 

the CLM and CRM groups, whereas the application of mental units an

transforming the curve or the unit occurred only within the CRM, ICPM, and ALM level 

groups. The strategy of comparing a curve and a straight object by applying mental units 

(either a benchmark or a conceptual standard unit) occurred most often 

Reflecting on Error 

I tracked students’ statements about the error involved in their comparisons 

between a straight object and a curve (Tasks 3, 4, 5, 6B, and 8B) within and across the 

LT groups. Patterns in the ways participants reflecte

Figure 64. In this figure, the darkest shade indicates the LT level group with the highest 

frequency of a particular code related to students’ reflections on the error involved.

Figure 64. Patterns of students’ 
comparisons between straight objects and curves within and across LT groups.
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fracturing units occurred within the CLM group, and there exists an overall trend of 

creasing instances of fracturing units as the level groups increase in sophistication. 

Within the CLM and CRM level groups, participants mainly fractured units when a 

whole unit could not fit at the end of the curve. By the ICPM and ALM levels, 

s exhibited more instances of fracturing units in the tightest part of the curve 

and along the entire curve. I interpreted this observable strategy of fracturing units in the 

tightest part of the curve or along the entire curve as evidence of coordinating 

extent with curve. Therefore, this suggests that, by the ICPM level, students were able to 

coordinate linear extent with curve. Counting partial units as whole units occurred only at 

the CLM and CRM groups, whereas the application of mental units and mentally 

transforming the curve or the unit occurred only within the CRM, ICPM, and ALM level 

groups. The strategy of comparing a curve and a straight object by applying mental units 

(either a benchmark or a conceptual standard unit) occurred most often at the CRM level.

I tracked students’ statements about the error involved in their comparisons 

between a straight object and a curve (Tasks 3, 4, 5, 6B, and 8B) within and across the 

LT groups. Patterns in the ways participants reflected on error involved are illustrated in 

. In this figure, the darkest shade indicates the LT level group with the highest 

frequency of a particular code related to students’ reflections on the error involved.

 

Patterns of students’ statements regarding the error involved in their 
comparisons between straight objects and curves within and across LT groups.
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transforming the curve or the unit occurred only within the CRM, ICPM, and ALM level 
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statements regarding the error involved in their 
comparisons between straight objects and curves within and across LT groups. 
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Figure 64 illustrates developmental patterns for whether students thought they had over- 

or underestimated and whether their statements about over- or underestimating were 

correct. In the sections below I describe these patterns, starting with Table 17, which 

illustrates the interaction between LT groups and claims about over- and underestimating. 

Table 17 

Distribution of Claims of Over- and Underestimates When Reflecting on Error (Tasks 3, 
4, 5, 6B, and 8B) across Length LT Level Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals 

Acknowledged 
Underestimate 

 
36.11%* 

(13) 
 

19.44% 
(7) 

25.00% 
(9) 

19.44% 
(7) 

36 

Acknowledged 
Overestimate 

 
27.27% 

(6) 
 

27.27% 
(6) 

31.82% 
(7) 

13.64% 
(3) 

22 

Claimed answer was not an 
under- or overestimate 

 
8.33% 

(1) 
 

16.67% 
(2) 

25.00% 
(3) 

50.00% 
(6) 

12 

Totals 

 
28.57% 

(20) 
 

21.43% 
(15) 

27.42% 
(19) 

22.86% 
(16) 

70 

* 36.11% of the instances in which a student acknowledged an underestimate when 
comparing a straight object and a curve occurred in the CLM group. 
 
Patterns in Claims of Over- and Underestimates within LT Level Groups 

In each LT group, participants claimed they underestimated most often. This was 

followed by acknowledgements of overestimates and claims that a comparison was 

neither an over- nor an underestimate. This same distribution was observed in the CLM, 

CRM, and ICPM groups. However, for ALM, claims that a comparison did not involve 

an over- or underestimate occurred more often than acknowledgements of overestimates. 
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Patterns in Claims of Over- and Underestimates across LT Level Groups 

Table 18 shows that acknowledgements of underestimates when comparing a 

straight object and a curve occurred most often in the CLM level group. I observed 

acknowledgements of overestimates with approximately the same frequency across the 

CLM, CRM, and ICPM level groups; however, such claims decreased for the ALM level 

group. The number of claims that an answer was neither an over- nor underestimate was 

at a minimum for the CLM level and increased in frequency as the LT level groups 

increased in sophistication. 

 Based on strategies for comparing, a claim that a comparison resulted in an over- 

or underestimate or neither an over- nor underestimate may have been correct or 

incorrect. Table 18 illustrates the interaction between the correctness and the levels of the 

LT for length measurement. 

Table 18 
 
Distribution of Correctness for Claims of Over- and Underestimates When Reflecting on 
Error (Tasks 3, 4, 5, 6B, and 8B) across Length LT Level Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals 

Incorrectly acknowledged 
over- or underestimate 

 
13.04%* 

(3) 
 

31.25% 
(5) 

12.5% 
(2) 

8.33% 
(2) 

12 

Correctly acknowledge 
over- or underestimate 

 
60.89% 

(14) 
 

31.25% 
(5) 

31.25% 
(5) 

50.00% 
(6) 

30 

Acknowledgement of over- 
or underestimate was 

neither correct nor incorrect 

 
26.09% 

(6) 
 

37.5% 
(6) 

56.25% 
(9) 

33.33% 
(4) 

25 

Totals 23 16 16 12 67 
* CLM students’ discussions about comparing a straight object and a curve resulted in an 
incorrect acknowledgement of an over- or underestimate 13.04% of the time. 
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Patterns in Correctness when Reflecting on Error within LT Groups 

Participants in the CLM and ALM level groups discussed their comparisons 

between a straight object and a curve by correctly citing an over- or underestimate most 

often. For both of these LT level groups, this was followed by claims that an over- or 

underestimate was neither correct nor incorrect and incorrectly acknowledging an over- 

or underestimate. For the CRM and ICPM level groups, participants’ acknowledgements 

of over- or underestimates were neither correct nor incorrect most often. This was 

followed by correct acknowledgements of over- or underestimates. Within the CRM 

group, these correct statements occurred with the same frequency as incorrect statements 

about over- or underestimates. At the ICPM level, incorrect statements about over- or 

underestimates occurred least often. 

Patterns in Correctness when Reflecting on Error across LT Groups 

Participants in the CLM level group exhibited the highest frequency of 

acknowledgements of over- or underestimates. The highest number of instances of 

acknowledgements of over- or underestimates that could not be considered as correct or 

incorrect occurred within the ICPM level group. The largest number of instances of 

incorrectly acknowledging an over- or underestimate was observed at the CRM level. 

The frequency of instances within each category in Table 18 was evenly distributed for 

the CRM level group. 

 I tracked students’ justifications for why they thought they had over- or 

underestimated when comparing a curve to a straight object within and across the four 

length LT level groups. Table 19 illustrates the distribution of students’ justifications 

across the LT level groups. 
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Table 19 

Distribution of Intuitions and Analytical Strategies for Reflecting on Error (Tasks 3, 4, 5, 
6B, and 8B) across Length LT Level Groups 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals 

Intuition 

 
40.00%* 

(8) 
 

25.00% 
(2) 

60.00% 
(6) 

22.22% 
(2) 

18 

Analytical strategy for 
comparing a straight 

object and curve 

 
40.00%* 

(8) 
 

12.50% 
(1) 

20.00% 
(2) 

66.67% 
(6) 

19 

Analytical strategy for unit 
operation 

 
10.00% 

(2) 
 

62.50% 
(5) 

20.00% 
(2) 

11.11% 
(1) 

10 

Totals 20 8 10 9 47 
* CLM level students’ discussions about the error when comparing a straight object and a 
curve reflected the use of an intuition for 40% of the responses given by CLM level 
students. 
 
Intuition and Analytical Strategy Use for Reflecting on Error within LT Groups  

Table 19 indicates that CLM level participants relied on justifying their claim by 

discussing analytical strategies they had used to compare a straight object and a curve or 

intuitions, with the same frequency. At the CRM level, students relied most often on 

justifying claims by discussing the analytical strategies used to operate on units, such as 

fracturing units. Within the ICPM level group, students most often relied on intuitions. At 

the highest level, the ALM level, participants most often discussed their analytical 

strategies for comparing a straight object and a curve. 

Intuition and Analytical Strategy Use for Reflecting on Error across LT Groups 

Clear developmental patterns were not observed in participants’ justifications of 

claims about why they had over- or underestimated. The use of intuition occurred most 
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often at the CLM and ICPM levels. Attention to analytical strategies for comparing a 

straight object and a curve occurred most often at the CLM and ALM levels. 

Justifications involving a discussion of analytical strategies for operating on units 

occurred most often at the CRM level, and were approximately evenly distributed across 

the CLM, ICPM, and ALM levels. 

Analytical and Intuitive Thinking for Measuring Cur ves 

Two tasks were posed for the purpose of probing students’ intuitive and analytical 

strategies for measuring curvilinear paths, Tasks 9 and 10 (Figures 65 and 66 below, 

respectively). For Tasks 9 and 10 students were provided with an image of a curvilinear 

path printed on gridded paper, which they were told represents the outline of a fancy 

doorway on a blueprint. They were then given a standard ruler and asked to measure the 

outline of the fancy doorway in the most precise possible way. 

 

Figure 65. Measuring a curvilinear path, interview Task 9. 

 

Figure 66. Measuring a curvilinear path, interview Task 10. 
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I coded students’ responses with respect to the intuitive thinking exhibited in their 

discussions of how they measured the doorway and their analytical thinking indicated by 

their strategies for measuring the curves with the ruler. 

Analytical Strategies for Measuring a Curve with a Ruler 

Five of the seven analytical strategies that were observed when students compared 

a straight object to a curve (Tasks 3, 4, 5, 6B, and 8B) were also observed when students 

measured a curve with a ruler: chord iteration strategy, tangent iteration strategy, path 

intersection iteration strategy, adjusting point of tangency iteration strategy, and the 

modified circumference iteration strategy. 

 Chord iteration strategy. As was observed when students compared a straight 

object and a curve (Tasks 3, 4, 5, 6B, and 8B), students who used the chord iteration 

strategy when measuring a curve with a ruler placed a standard unit (an inch or 

centimeters), fraction of a standard unit (a quarter or half inch), or composition of 

standard units (2, 3, or 10 centimeters or 2 inches) as a chord on the interior of the curve. 

Nine instances of this strategy were observed in five different students’ responses to 

Tasks 9 and 10: Mia (Grade 4, CLM Group), Kevin (Grade 4, CLM Group), Trent (Grade 

6, CRM Group), Rick (Grade 8, ICPM Group), and Marie (Grade 10, ALM Group). For 

example, Trent used the chord iteration strategy to measure the partial circle curve for 

Task 10 (see Figure 66). He first partitioned the curve into two halves. Then Trent 

aligned the ruler to the leftmost endpoint of the curve. Next, he used the interval on the 

ruler from 0 to 1 as a chord and traced along the edge of the ruler closest to the curve to 

create a 1-inch chord segment. Trent repositioned the ruler with the zero point aligned to 

the intersection of the first inch segment and the curve and again used the interval from 0 
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to 1 as a chord to guide the placement of the second chord inch segment. He repeated this 

procedure around half of the curve, creating seven 1-inch chord segments, with the end of 

the seventh segment meeting the vertical line he had drawn to partition the curve into two 

halves. He said, “OK. One, two, three, four, five, six, seven” and wrote 7 x 2 = 14. He 

then said the length of the curve was “around 14 inches.” 

 Tangent iteration strategy. Similar to a strategy observed when students 

compared a straight object and a curve (Tasks 3, 4, 5, 6B, and 8B), students used the 

tangent iteration strategy to measure a curve with a ruler. There were six instances of the 

tangent iteration strategy reflected in four students’ responses to Tasks 9 and 10: Noah 

(Grade 4, CLM Group), Jenny (Grade 4, CLM Group), Trent (Grade 6, CRM Group), and 

Lynn (Grade 8, CRM Group). For example, Jenny used this strategy when measuring the 

partial circle curve with the ruler for Task 10 (Figure 66). She initially placed the ruler as 

a tangent on the outside of the curve aligned with one endpoint. Jenny then used the tick 

mark on the ruler that was labeled as 1 to guide her drawing of a tick mark on the curve. 

Next, she repositioned the ruler as a tangent and aligned with the tick mark she had 

drawn and again used the tick mark on the ruler labeled as 1 to guide the placement of 

another tick mark on the curve. She continued this process of positioning the ruler as a 

tangent and applying the interval from 0 to 1 on the ruler to guide her drawing of the next 

tick mark on the curve. She said the curve was 14 inches. 

Path intersection iteration strategy. The path intersection strategy, which was 

also observed when students compared a straight object to a curve, was reflected in one 

students’ response for measuring a curve with a ruler. Lynn (Grade 8, ICPM Group) used 

this strategy when measuring the outline of the doorway for Task 9 (see Figure 66). Lynn 
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first correctly measured one of the straight segments and labeled it as 4 inches. Next, she 

realigned the ruler so that the tick mark labeled as 1 inch was aligned with a tick mark 

she drew at the end of the straight segment she had just measured. She placed the ruler 

directly on this curved segment, drew a tick mark on it, and labeled this section as one 

inch. She continued this process of realigning the ruler and placing a portion of the ruler 

direction on the curve, drawing a tick mark, and labeling the section with ½, 1 or 1 ½ 

inches. When asked how she thought about measuring the curve with the ruler Lynn said: 

Lynn: When I went here (placed the ruler along one of the straight segments), I 

went as straight as possible. And then here I just tried to go straight around 

(indicated with her ruler on the curved segments, presumably to show that she 

used the largest possible interval on the ruler that she could match to a curved 

portion on a curved segment). 

Interviewer: So, you found parts that were straight? 
 
Lynn: Yeah. 

Adjusting point of tangency iteration strategy. Students who used the adjusting 

point of tangency iteration strategy placed the ruler as a tangent to the curve and rotated 

the ruler, adjusting the point of tangency and accumulating the length of the curve along 

the ruler. This strategy was also observed when students compared a straight object to a 

curve (Tasks 3, 4, 5, 6B, and 8B). Four students exhibited a total of seven instances of 

this strategy when measuring a curve with a ruler (Tasks 9 and 10): Mia (Grade 4, CLM 

Group), (Grade 6, CRM Group), Ruth (Grade 8, ICPM Group), and Scott (Grade 10, 

ALM Group). 
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Mia (Grade 4, CLM Group) used the adjusting point of tangency iteration strategy 

to measure the curve for Task 9 (Figure 66). Using the centimeter side, she aligned the 

ruler along one of the straight segments and labeled it as 10. Mia then realigned the ruler 

to the intersection of the straight segment and the first curved segment. Next, she rotated 

the ruler around to the intersection of the first curved segment and the second curved 

segment, adjusting the point of tangency and accumulating the length of the first curved 

segment on the ruler. She wrote “7” next to the first curved segment. Mia repeated this 

process of realigning the ruler with the intersection of the previous curved segment and 

the next curved segment to be measured, rotating the ruler around the outside of the 

curved segment, accumulating the length of the curved segment on the ruler, and writing 

the length above the segment. She then added all of the straight and curved segments that 

she had measured as 10 + 10 + 7 + 7 + 6 + 6 + 5 = 51. 

Modified circumference formula strategy. I observed the modified 

circumference formula in students’ responses to tasks involving the comparison of a 

curve to a straight object (Tasks 3, 4, 5, 6B, and 8B) as well as tasks involving the 

measurement of a curve with a ruler (Tasks 9 and 10). Students who applied a modified 

circumference formula strategy used the formula for the circumference of a circle in their 

solutions. Three instances of this strategy were observed as students measured a curve 

with a ruler: David (Grade 8, ICPM Group), Zane (Grade 10, ALM Group), and Scott 

(Grade 10, ALM Group).  

David (Grade 8, ICPM Group) applied a modified circumference formula when 

measuring the partial circle curve for Task 10 (Figure 66). He placed the ruler vertically 

across the rounded doorway and drew a vertical line. He then drew a horizontal line, 
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which intersected the vertical line in the center of the partial circle curve. Next, he drew 

two segments from the intersection of the vertical and horizontal lines to each endpoint of 

the partial circle curve. He multiplied 6.28 by 15 to get an answer of 94.2 and then 

divided 94.2 by 3 to get 31.4. Finally, he subtracted 31.4 from 94.2 to get 62.8, which he 

wrote and circled. When asked how he thought about measuring the curve he said, “...I 

found the circumference of it because it's a circle…and then I divided it by three because 

that is roughly one third of it (spanned finger across the open part of the circle).” 

Intuition embedded in analytical strategies for measuring a curve with a 

ruler. In addition to the analytical strategies discussed in the section above, I observed 

the same two types of intuitions embedded in analytical strategies that I saw in students’ 

responses for tasks involving the comparison of a straight object and curve (Tasks 3, 4, 5, 

6B, and 8B) and using rulers to measure curves (Tasks 9 and 10). These strategies were 

the tangent curved unit iteration strategy and the chord curved unit iteration strategy. 

Similar to the application of these strategies to comparisons between a straight object and 

a curve, students either mentally straightened parts of the curve to match a section of the 

ruler (such as an inch or a centimeter) or mentally curved a segment of the ruler to match 

a part of the curve. 

The mental straightening of part of the curve or mental curving of part of the ruler 

is an illustration of the application of the compression intuition that has been described 

elsewhere. Therefore, the compression intuition is embedded in both the tangent curved 

unit and chord curved unit strategies. The compression intuition was the only intuition 

observed in students’ responses to Tasks 9 and 10. This intuition was only observed as 
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the mental straightening of parts of curves or mental curving of part of the ruler, as part 

of these strategies as students used a ruler to measure a curve (for Tasks 9 and 10). 

Tangent curved unit iteration strategy. Students who used the tangent curved 

unit iteration strategy placed the ruler on the outside of the curve as a tangent and then 

mentally curved part of the ruler to match a section of the curve or mentally straightened 

part of the curve to match the ruler. Two instances of this strategy were observed in one 

student’s responses to Tasks 9 and 10, Grant (Grade 6, ICPM Group). For example, when 

measuring the partial circle curve with the ruler for Task 10 (Figure 66), Grant placed the 

ruler as a tangent to the curve with the zero point of the ruler aligned to one endpoint. He 

then drew a tick mark on the curve and labeled it as “3.” Next, he realigned the ruler to 

this tick mark placing it as a tangent and drew another tick mark, which he labeled as “6.” 

He then continued this process around the curve, partitioning the curve into 3-centimeter 

segments. When asked about his method for measuring the curve in the most precise way 

that he could, he said: 

Grant: Um…I imagined if the ruler was curved and I marked like every three 

centimeters. 

Interviewer: OK. Could you show me like how you did it, say from here to here 

(traced finger around the segment of the curve between his tick marks labeled as 3 

and 6)? 

Grant: I just like put it here (aligned the zero point of the ruler to the tick mark 

labeled as 3) and like, if it was curved, it would probably go like, right there 

(showed where the tick mark labeled as 3 on the ruler would intersect with the 

curve if the ruler was curved). 
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Interviewer: OK. I think I see it. So, why did you decide three centimeters?  

Grant: Uh...cuz it was quicker than two. 

Interviewer: I see. And why not four? 

Grant: Uh...because four would like...it would be harder to like guess if it was 

curved with this. It would be like longer measurements so it would be harder to 

guess where it would be if it was curved. 

For each instance in which Grant applied the tangent curved unit iteration strategy when 

measuring a curve with a ruler, he applied the compression intuition by mentally curving 

the unit, which was a composite of 3 centimeters in this case. 

Chord curved unit iteration strategy. Students who applied the chord curved 

unit iteration strategy placed the ruler on the inside of the curve as a chord. They then 

applied the compression intuition by either mentally curving part of the ruler to match the 

curve or mentally straightening part of the curve to match the ruler. I observed four 

instances of this strategy in two students’ responses as they measured a curve with a 

ruler: Ned (Grade 6, CRM Group) and Kyle (Grade 10, ALM Group). 

For example, Kyle applied the chord curved unit iteration strategy when 

measuring the partial circle curve with the ruler for Task 10 (Figure 66). He placed the 

interval from 0 to 1 on the ruler as a chord on the inside of the curve and aligned with one 

of the endpoints. He then drew a tick mark on the curve, realigned the interval from 0 to 1 

on the ruler as a chord on the inside of the curve, and then drew another tick mark. He 

continued applying the interval from 0 to 1 as a chord around the curve and said:  

Kyle: I found that all together, if you were to straighten the whole thing out, it 

would be 14.25 inches. 
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Interviewer: OK. Now, tell me a little bit about how you decided to make these 

marks right here (pointed to the tick marks on the curve) 

Kyle: Um...since I was using inches and it's not that much of a far distance 

apart...and, also, in that amount of space the curve isn't too far going out, I ended 

up...um...starting at 1 and then ending right about there (pointed to a mark near 

the zero point). So, I went about a tenth away from the end of the inch.  

Interviewer: So, how did you decide to...to stop at sort of this...after this first 

interval (pointed to the point on the ruler just before the zero point that Kyle had 

previously indicated) why didn't you go up a second one? 

Kyle: Um...well, from here to there (pointed to his first inch unit on the curve) it's 

hardly curving at all, so to straighten it out would just be like going... 

Interviewer: a very minimal amount... 

Kyle: Yeah. 

Both Ned and Kyle applied compression intuition within the chord curved unit iteration 

strategy by mentally straightening parts of the curve for Tasks 9 and 10. 

Attending to symmetry when measuring a curve with a ruler. As students 

measured the curves with a ruler for Tasks 9 and 10, some students’ strategies suggested 

that they recognized symmetry in the shape of the curve (Figures 66 and 67). These 

students measured only parts of each shape, such as only the curved segments on the left-

hand side of the “doorway” for Task 9 or half of the partial circle shaped curve for Task 

10, rather than directly measuring the entire curve. There were nine instances in which 

students’ strategies for measuring a curve with a ruler reflected an attention to symmetry: 

Ned (Grade 6, CRM Group), Rose (Grade 6, CRM Group), Trent (Grade 6, CRM Group), 



 

 

Rick (Grade 8, ICPM Group), Ruth (Grade 8, ICPM Group), Scott (Grade 10, ALM 

Group), and Kyle (Grade 10, ALM Group). The figures below illustrat

and Rick’s (Figure 68) attention to symmetry while measuring a curve with a ruler.

Figure 67. Trent’s attention to symmetry while measuring a curve with a ruler.

Figure 68. Rick’s attention to symmetry while measuring a curve with a

Relating Analytical and Intuitive Thinking for Meas uring Curves to the Length LT

Students’ intuitions and analytical strategies for measuring a curve with a ruler 

were tracked within and across the length LT groups. In Figure 

represents the LT group for which an intuition or analytical strategy occurred most often.
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Rick (Grade 8, ICPM Group), Ruth (Grade 8, ICPM Group), Scott (Grade 10, ALM 

Group), and Kyle (Grade 10, ALM Group). The figures below illustrate Trent (Figure 

) attention to symmetry while measuring a curve with a ruler.

 

Trent’s attention to symmetry while measuring a curve with a ruler.

 

Rick’s attention to symmetry while measuring a curve with a 

Relating Analytical and Intuitive Thinking for Meas uring Curves to the Length LT

Students’ intuitions and analytical strategies for measuring a curve with a ruler 

were tracked within and across the length LT groups. In Figure 69, the darkest shade 

represents the LT group for which an intuition or analytical strategy occurred most often.

Rick (Grade 8, ICPM Group), Ruth (Grade 8, ICPM Group), Scott (Grade 10, ALM 

e Trent (Figure 67) 

) attention to symmetry while measuring a curve with a ruler. 

Trent’s attention to symmetry while measuring a curve with a ruler. 

ruler. 
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Students’ intuitions and analytical strategies for measuring a curve with a ruler 

, the darkest shade 

represents the LT group for which an intuition or analytical strategy occurred most often. 



 

 

Figure 69. Patterns of intuition and analytical strategy use for measuring curves within 
and across LT groups. 
 
Figure 69 shows developmental patterns for analytical strategies, intuition, and attention 

to symmetry across LT groups. I describe these patterns below, beginning with Table 

Table 20 
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Patterns of intuition and analytical strategy use for measuring curves within 

shows developmental patterns for analytical strategies, intuition, and attention 

to symmetry across LT groups. I describe these patterns below, beginning with Table 

nalytical Strategies for Measuring a Curve with a 
 Level Groups 

CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM
Group

Chord iteration 
33.33%* 

(3) 
22.22% 

(2) 
22.22% 

(2) 
22.22%

Tangent iteration 
66.67% 

(4) 
33.33% 

(2) 
0.00% 

(0) 
0.00%

Path intersection  
0.00% 

(0) 
100.00% 

(1) 
0.00% 

(0) 
0.00%

Adjusting tangency 
28.57% 

(2) 
28.57% 

(2) 
14.29% 

(1) 
28.57%

Modified circumference 
0.00% 

(0) 
0.00% 

(0) 
50.00% 

(2) 
50.00%

Tangent curved unit 
0.00% 

(0) 
0.00% 

(0) 
100.00% 

(2) 
0.00%

curved unit 
0.00% 

(0) 
50.00% 

(2) 
0.00% 

(0) 
50.00%

Compression intuition 
0.00% 

(0) 
33.33% 

(2) 
33.33% 

(2) 
33.33%

Attended to symmetry 
0.00% 

(0) 
44.44% 

(4) 
33.33% 

(3) 
22.22

 

Patterns of intuition and analytical strategy use for measuring curves within 

shows developmental patterns for analytical strategies, intuition, and attention 

to symmetry across LT groups. I describe these patterns below, beginning with Table 20. 

urve with a Ruler (Tasks 9 

ALM  
Group 

Totals 

22.22% 
(2) 

9 

0.00% 
(0) 

6 

0.00% 
(0) 

1 

28.57% 
(2) 

7 

50.00% 
(2) 

4 

0.00% 
(0) 

2 

50.00% 
(2) 

4 

33.33% 
(2) 

6 

22.22 
(2) 

9 
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* 33.33% of the instances in which the chord iteration strategy was used occurred when 
CLM students were measuring a curve with a ruler (Tasks 9 and 10). 
 
Patterns in Strategies for Measuring a Curve with a Ruler within LT Groups 

Within the CLM level group, only the tangent, chord, and adjusting point of 

tangency analytical strategies were observed for measuring a curve with a ruler. At the 

CRM level, the chord, tangent, path intersection, adjusting point of tangency, and chord 

curved unit iteration strategies were observed. Also at this level, the use of the 

compression intuition appeared and instances of attention to symmetry occurred. Within 

the ICPM and ALM levels, participants used the chord iteration and adjusting point of 

tangency strategies. At these levels, participants also made use of the modified 

circumference formula, the compression intuition, and attention to symmetry as they 

measured the curves with a ruler. At the ICPM level, students also used the tangent 

curved unit iteration strategy, and ALM level students exhibited instances of the chord 

curved unit iteration strategy. 

Patterns in Strategies for Measuring a Curve with a Ruler across LT Groups 

The chord iteration and adjusting point of tangency iteration strategies were 

approximately evenly distributed across the length LT level groups. Use of the 

compression intuition, which occurred within the application of the chord curved unit and 

tangent curved unit iteration strategies, was evenly distributed across the CRM, ICPM, 

and ALM groups. The tangent iteration strategy was observed in the groups representing 

the lowest two LT levels included in the study, the CLM and CRM groups. Most of the 

instances of this strategy occurred in the CLM group, the lowest level group. I observed 

the application of the modified circumference formula strategy in the two groups 

representing the highest two LT levels, the ICPM and ALM groups. Instances in which 
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students’ responses reflected an attention to the symmetry of the shape of the curve 

occurred only within the groups representing the CRM, ICPM, and ALM levels. 

I observed few instances of the analytical strategies participants used when 

measuring curves with standard units, a ruler (Tasks 9 and 10). Therefore, I collapsed 

codes into the same three thematic categories: direct measurement with no intuition use, 

direct measurement with embedded intuition use, and indirect measurement (see Table 

11). Direct measurement includes the chord, tangent, path intersection, and adjusting 

point of tangency iteration strategies. Direct measurement with embedded intuition 

includes the tangent and chord unit iteration strategies. Indirect measurement includes 

both the modified circumference formula and the attention to symmetry codes. Table 21 

shows the interaction between LT groups and these thematic categories, 

Table 21 

Interactions of Thematic Categories for Analytical Strategies for Measuring a Curve with 
Standard Units (Tasks 9 and 10) 
 

 
CLM 
Group 

CRM 
Group 

ICPM 
Group 

ALM 
Group 

Totals 

Direct measurement 
(analytical strategies 

without 
embedded intuition) 

 

 
39.13%* 

(9) 
 

30.43% 
(7) 

13.43% 
(3) 

17.39% 
(4) 

23 

Direct measurement 
(analytical strategies 

with 
embedded intuition) 

 
0.00% 

(0) 
 

33.33% 
(2) 

33.33% 
(2) 

33.33% 
(2) 

6 

Indirect measurement 

 
0.00% 

(0) 
 

30.77% 
(4) 

38.46% 
(5) 

30.77% 
(4) 

13 

* 39.13% of the instances in which a direct measurement strategy without an intuition 
was used to measure a curve with a standard ruler occurred in the CLM level group. 
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Patterns of Analytical Strategies for Measuring Curves within LT Groups 

CLM level participants relied only on direct measurement strategies without the 

use of embedded intuitions. Within the CRM level group, participants most frequently 

relied on direct measurement strategies without embedded intuitions; however, the use of 

direct measurement strategies with an embedded intuition and indirect measurement 

strategies were also observed. At the ICPM level, participants most often used indirect 

measurement strategies, but also occasionally used direct measurement strategies with or 

without an embedded intuition. The ALM level group most often exhibited indirect 

measurement strategies and direct measurement strategies without an embedded intuition. 

In this group, some instances of the use of direct measurement strategies with an 

embedded intuition were also observed. 

Patterns of Analytical Strategies for Measuring Curves across LT Groups 

The highest number of instances of the use of direct measurement strategies 

without an embedded intuition occurred within the CLM level group. The appearance of 

these strategies generally decreased in frequency across the LT levels as the levels 

increased in sophistication, but remained approximately the same at the ICPM and ALM 

levels. The use of direct measurement strategies with an embedded intuition and indirect 

measurement strategies occurred only within the CRM, ICPM, and ALM level groups, 

and the frequency of the appearance of these strategies was approximately evenly 

distributed across these three level groups.  

Summary 

 In the sections below I summarize how students within each of the four LT level 

groups made use of intuitions and analytical strategies for rectilinear and curvilinear 
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paths. This is followed by a section in which I describe and differentiate students’ 

intuitive and analytical thinking for rectilinear and curvilinear paths across the LT level 

groups included in the study. 

CLM Level Group 

Participants in the CLM level group showed evidence of relying exclusively on 

intuitive statements to justify their comparisons of sets of rectilinear or curvilinear paths 

by length (Tasks 1, 2, 6A, 7, and 8A). When comparing rectilinear paths, CLM level 

participants most frequently exhibited the complexity intuition by talking about ordering 

the paths by the number of turns or segments. However, when comparing sets of 

curvilinear paths, students in the CLM group most frequently evoked the straightness 

intuition. Within the CLM level group, participants showed evidence of using intuitions 

in combination, intuitions in conflict, rejecting an intuition, and using rejected intuitions 

when ordering rectilinear and curvilinear paths by their lengths. 

When measuring curves with a nonstandard unit, CLM level participants relied 

only on direct measurement strategies (Tasks 3, 4, 5, 6B, and 8B). Students in the CLM 

level group most often used the entire nonstandard unit, a 4-inch stick, as the unit when 

measuring lengths of curves. In addition, participants in this group showed evidence of 

using units and subunits, by fracturing a nonstandard unit once to fit a partial unit at the 

end of the curve. Students in the CLM level group most often (correctly) claimed that 

their comparison between a nonstandard unit and a curve resulted in an underestimate. 

CLM level students most often justified their claims about over- and underestimates 

when comparing a curve to a nonstandard unit using either an intuition or discussing their 

way of comparing the nonstandard unit and the curve. When measuring curves using 
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standard units, a ruler, CLM level students used three direct measurement strategies they 

had used when comparing a nonstandard unit and a curve: the chord iteration, tangent 

iteration, and adjusting point of tangency iteration strategies. 

CRM Level Group 

The CRM level group students relied on intuitive statements as well as analytical 

strategies when comparing sets of rectilinear or curvilinear paths by their lengths and 

justifying those orderings (Tasks 1, 2, 6A, 7, and 8A). Most often, they ordered 

rectilinear paths using the complexity intuition, by attending to the number of turns or 

segments, and made judgments about the order of sets of curvilinear paths by their 

lengths by mentally transforming the paths into the same shape. CRM level participants 

used intuitions in combination; however, none of the participants at this level used 

intuitions in conflict, rejected an intuition, or used a rejected intuition. 

When measuring curves with a nonstandard unit, CRM level participants relied on 

a direct measurement strategy or a direct measurement strategy with an embedded 

intuition (Tasks 3, 4, 5, 6B, and 8B). For these tasks, students in this group also showed 

evidence of applying mental units, mentally transforming units or segments of a curve, 

compensating for curvature by rounding up or down to account for an over- or 

underestimate, and fracturing units to make use of units and subunits for the purpose of 

increasing precision. However, they did not yet consistently show evidence of 

coordinating linear extent with other attributes, such as curve, by using smaller units to 

increase precision around a tighter curve. 

CRM level participants claimed to have over- or underestimated approximately an 

equal number of times when reflecting on their ways of comparing a nonstandard unit to 
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a curve. These responses were evenly split between correct and incorrect 

acknowledgements of over- or underestimates. When justifying why they thought they 

had over- or underestimated, participants at the CRM level most often discussed the 

analytical strategy they had used for operating on the nonstandard unit. Within the CRM 

level group, when measuring curves with standard units, using a ruler, participants used 

four direct measurement strategies they had used when comparing a curve and a 

nonstandard unit: the chord iteration, tangent iteration, path intersection, and adjusting 

point of tangency iteration strategies. Also at this level, when measuring a curve with a 

ruler, students exhibited the use of the compression intuition and a direct measurement 

strategy with an embedded intuition, the chord curved unit iteration strategy. Participants 

in the CRM level group also used strategies to measure curves with rulers that reflected 

attention to symmetry. 

ICPM Level Group 

Students in the ICPM level group relied on intuitive statements as well as 

analytical strategies when comparing sets of rectilinear or curvilinear paths by their 

lengths and justifying those orderings (Tasks 1, 2, 6A, 7, and 8A). They most frequently 

evoked the straightness intuition when defending their orderings of sets of rectilinear or 

curvilinear paths by their lengths. When comparing sets of rectilinear paths (Tasks 1 and 

2), IPCM level students showed evidence of using intuitions in combination. However, 

when comparing sets of curvilinear paths (Tasks 6A, 7, and 8A), they showed evidence 

of using intuitions in combination as well as experiencing conflicts in intuition use, 

rejecting an intuition, and using a rejected intuition. 
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Within the ICPM level group, students most often relied on direct measurement 

strategies when measuring curves with a nonstandard unit (Tasks 3, 4, 5, 6B, and 8B). 

However, for these tasks they also showed evidence of using direct measurement 

strategies with an embedded intuition and an indirect measurement strategy, applying a 

modified version of the formula for the circumference of a circle. For the tasks involving 

curves, the ICPM level participants often mentally transformed the nonstandard unit or 

segments of the curve, fractured the nonstandard unit to make use of units and subunits, 

and showed evidence of coordinating linear extent with other attributes, such as curve, by 

using smaller units around a tight curve. Within the ICPM level group, students claimed 

to have over- or underestimated when comparing a nonstandard unit to a curve 

approximately the same number of times. Most of these claims were either correct or 

could not be determined to be either correct or incorrect, and ICPM level participants 

most often defended why they thought they had over- or underestimated using an 

intuition. When measuring a curve with a ruler, ICPM level participants exhibited two 

direct measurement strategies that were observed as students compared a curve and a 

nonstandard unit: the chord iteration and adjusting point of tangency iteration strategies. 

They also exhibited the use of the compression intuition and an analytical strategy with 

an embedded intuition, the tangent curved unit iteration strategy. In addition, ICPM level 

participants exhibited the use of an indirect measurement strategy, applying a modified 

circumference formula, and attention to symmetry when measuring a curve with a ruler. 

ALM Level Group 

Participants at the ALM level, the group representing the highest level of the 

length LT, relied on intuitions and analytical strategies when comparing sets of rectilinear 
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or curvilinear paths by their lengths and defending those orderings (Tasks 1, 2, 6A, 7, and 

8A). The ALM level participants most often evoked the compression intuition, by 

discussing mentally straightening paths that were bent or bending paths that were 

straight, or the straightness intuition when comparing rectilinear or curvilinear paths by 

their lengths. At this level, students showed evidence of using intuitions in combination 

when comparing rectilinear or curvilinear paths. However, they showed evidence of 

experiencing conflicts among intuitions, rejecting an intuition, and using a rejecting 

intuition only when comparing rectilinear paths (Tasks 1 and 2).  

When measuring curves with a nonstandard unit (Tasks 3, 4, 5, 6B, and 8B), 

students at the ALM level relied most often on direct measurement strategies, but they 

also showed evidence of using direct measurement strategies with an embedded intuition 

and applying an indirect measurement strategy by using a modified circumference 

formula. Students at the ALM level also compensated for curvature by rounding a 

measurement up or down to account for an over- or underestimate. In addition, ALM 

level students also mentally transformed the nonstandard unit or segments of the curve 

and showed evidence of coordinating linear extent with another attribute, curvature, by 

fracturing nonstandard units around tight curves to increase precision. When comparing a 

curve to a nonstandard unit, participants in the ALM level group claimed to have 

underestimated or claimed to have neither over- nor underestimated approximately the 

same number of times. These claims were most frequently either correct or could not be 

determined to be correct or incorrect. ALM level participants most often justified why 

they thought they had over- or underestimated by discussing the analytical strategy they 

had used for comparing the straight object, the nonstandard unit, and the curve. 
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Within the ALM level group when measuring a curve with a ruler, participants 

used two direct measurement strategies when comparing a curve and a straight object: the 

chord iteration and adjusting point of tangency iteration strategies. ALM level 

participants also exhibited the compression intuition and the application of a direct 

measurement strategy with an embedded intuition: the chord curved unit iteration 

strategy when measuring curves with a ruler. In addition, when measuring curves with a 

ruler, students at the ALM level applied an indirect measurement strategy, using a 

modified circumference formula, and attended to symmetry. 

Summary of Intuitive and Analytical Thinking across LT Level Groups 
 

Parallel to prior research, students used four main types of intuitions when 

comparing rectilinear paths by their lengths: straightness, complexity, detour, and 

compression (Chiu, 1996). When comparing curvilinear paths by the lengths, the 

participants of this study exhibited these same four main types of intuitions as well as a 

fifth intuition, the curve tightness intuition. Across all four length LT level groups, 

students most often evoked the complexity intuition, by attending to the number of 

segments or turns in the paths, when ordering rectilinear paths by their lengths (Tasks 1 

and 2). However, the straightness intuition and compression intuition, which involved 

mentally bending paths that were straight or straightening paths that were bent, were the 

most frequently used intuitions when comparing curvilinear paths by their lengths (Tasks 

6A, 7, and 8A). 

The four participants at the CLM level, the group that represented the lowest LT 

level included in the present study, exhibited the highest frequency of intuition use when 

comparing rectilinear paths by their lengths (Tasks 1 and 2). However, the ICPM level 
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group exhibited the highest frequency of intuition use when comparing curvilinear paths 

by their lengths (Tasks 6A, 7, and 8A). Students at the CLM, ICPM, and ALM levels 

exhibited conflicting intuitions, the rejection of an intuition, and the use of a rejected 

intuition when comparing rectilinear or curvilinear paths by their lengths (Tasks 1, 2, 6A, 

7, and 8A). The use of intuitions in combination for comparing sets of rectilinear or 

curvilinear paths was observed across all four length LT level groups. When comparing 

rectilinear or curvilinear paths by their lengths, only the CLM level group relied solely on 

the use of intuitions. Students at the ALM level increasingly relied on mentally 

transforming rectilinear or curvilinear paths into the same shape for the purpose of 

comparing by lengths and were less likely to order rectilinear or curvilinear paths 

according to the number of segments or turns than students at the CLM, CRM, and ICPM 

levels. 

When measuring curves with a nonstandard unit, a 4-inch stick (Tasks 3, 4, 5, 6B, 

and 8B), students in the lowest LT level group, the CLM group, used only direct 

measurement strategies. By the next level of the length LT, the CRM level, students used 

direct measurement strategies as well as direct measurement strategies with embedded 

intuitions. At the ICPM and ALM levels, students used direct measurement strategies 

with and without embedded intuitions, as well as an indirect measurement strategy, 

applying a modified circumference formula to make a claim about curve length. The use 

of direct measurement strategies (without embedded intuitions) was at a peak in the CLM 

level group, and decreased in frequency of appearance within each group as the levels 

increased in sophistication. 
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Participants in the lowest LT level group, the CLM group, exhibited the highest 

number of instances of using the whole stick as the unit when measuring a curve with a 

nonstandard unit (Tasks 3, 4, 5, 6A, and 8A). This strategy decreased across the LT level 

groups as the levels increased in sophistication. Students in the CRM level group applied 

mental units more often than any other LT level group on the set of 10 interview tasks. 

The fewest instances of fracturing units occurred within the CLM level and increased 

across the LT level groups as the levels became increasingly sophisticated. Instances of 

fracturing units in general increased from the CLM to the CRM level. More specifically, 

the occurrences of fracturing units in the tightest part of the curve and fracturing units 

along the entire curve increased from the CRM to the ICPM level, and remained 

approximately constant from the ICPM to the ALM levels. 

When reflecting on their comparison between a nonstandard unit and a curve 

(Tasks 3, 4, 5, 6A, and 8A), students within all LT level groups most often claimed their 

comparison resulted in an underestimate. CLM level students most often correctly noted 

that their comparison resulted in an over- or underestimate. The frequency of the 

appearance of acknowledgements of a comparison as an overestimate was highest at the 

ICPM level, and the instances of claims that a comparison did not results in an over- or 

underestimate was highest at the ALM level. The frequency of incorrect claims that a 

comparison resulted in an over- or underestimate was at a maximum for the CRM level 

group, and claims that an answer was neither correct nor incorrect was highest for the 

ICPM level group. Across the four length LT level groups, clear developmental patterns 

were not observed in participants’ justifications of their claims about why they thought 

they had over- or underestimated. 
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When measuring curves with standard units, a ruler (Tasks 9 and 10), I observed 

the direct measurement strategies of chord iteration and adjusting point of tangency most 

often across the four length LT level groups. Attention to symmetry, the use of the 

compression intuition and indirect measurement strategies with embedded intuitions, the 

tangent and chord curved unit iteration strategies, were evenly distributed across the 

CRM, ICPM, and ALM levels.
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CHAPTER V 

CONCLUSIONS AND IMPLICATIONS 

Overview 

 In this study I explored elementary, middle, and secondary students’ intuitive and 

analytical thinking for rectilinear and curvilinear paths. By examining intuitive and 

analytical thinking as developmental phenomena, and in tandem with concept growth 

along a hypothetical learning trajectory (LT) for length measurement (Clements et al., in 

press), this study contributed to ongoing conversations in multiple disciplines: 

mathematics education, science education, and psychology. In this chapter, I will first 

compare results involving length measurement, derived from the written length LT-based 

assessment administered to 82 participants, with prior research in mathematics education 

as well as recommendations for the teaching and learning of measurement from 

researchers in science education. Next, I will discuss how findings speak to psychological 

foundations of path length intuitions, and the development of those intuitions across the 

elementary, middle, and secondary years. I will then discuss how these findings compare 

to hypothesized concepts and processes outlined in the four length LT levels included in 

the study: Consistent Length Measurer (CLM), Conceptual Ruler Measurer (CRM), 

Integrated Conceptual Path Measurer (ICPM), and Abstract Length Measurer (ALM). 

Finally, I will discuss limitations and examine implications for teaching and research.
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Findings Related to Length Measurement 

Comparing with the National Assessment of Educational Progress (NAEP) 

The results related to length measurement are consistent with results from the 

2000 and 1996 NAEP. These findings related to length measurement were derived from 

the 7-task written length LT-based assessment, which was administered to a total of 82 

participants from Grades 4, 6, 8, and 10. In the present study, when shown an image of a 

paper strip placed along a broken section of a ruler and asked to determine the length of 

the paper strip (Tasks 1 and 2), 23% and 32% of the Grade 4 students answered correctly 

on Tasks 1 and 2, respectively. This is similar to the performance of Grade 4 students 

reported for both the 2000 and 1996 NAEP, with 25% and 22% answering correctly in 

2000 and 1996, respectively (Kloosterman et al., 2004; Sowder et al., 2004). The Grade 8 

participants’ performance on the broken ruler tasks, with 75% answering correctly on 

both Tasks 1 and 2, was better than the performance of Grade 8 students reported for both 

the 2000 and 1996 NAEP, with 40% and 63%, respectively. Participants from Grade 10 

in the present study exhibited similar performance on the broken ruler tasks, with 72% 

and 89% answering correctly for Tasks 1 and 2, respectively to the Grade 12 students 

from the 1996 NAEP, with 83% answering correctly. Furthermore, these findings support 

the long-standing record established by NAEP, which shows that students at the 

elementary, middle, and secondary levels do not connect numerical measurement with 

the process of unit iteration (Barrett & Clements, 2003; Battista, 2006; Clements, 

Battista, Sarama, Swaminathan, McMillen, 1997). That is, they do not understand that a 

ruler represents a collection of iterated units. 
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Comparing with Prior Research on an LT for Length Measurement 

The findings concerning length measurement reported here address a significant 

gap in the literature with respect to the length LT levels exhibited by a cross-section of 

elementary, middle, and secondary level students. Prior to this study, elementary 

children’s thinking and learning for length measurement, as measured by the LT for 

length measurement was described (Clements et al., in press). According to Clements et 

al., (in press), when exposed to specific instruction designed to support students’ concept 

growth along the length LT, students in Kindergarten predominantly exhibited direct and 

indirect comparison strategies (LDC and ILC levels) and strategies for measuring by 

spanning an object with length units laid end-to-end without gaps or overlaps (EE level). 

By Grade 1 and early on in Grade 2, students most often exhibited strategies for 

measuring by laying length units end-to-end to span an object (EE level) or by repeating 

or iterating a length unit (LURR level). By the end of Grade 2 and early on in Grade 3, 

students predominantly relied on unit iteration (LURR level) and increasingly exhibited 

an ability to measure straight paths consistently, use equal-length units, understand the 

zero point on a ruler, and partition units (CLM level). Late in Grade 3 and into Grade 4, 

students also began to demonstrate some instances of applying an “internal” 

measurement tool by mentally iterating internal units of length or partitioning a length 

into equal-length parts and projecting or translating given lengths to determine missing 

lengths (CRM level). Also Grade 4 students exhibited some instances of integrating and 

comparing sets of units along each section of a bent path and constructing smaller units 

for the purpose of increasing precision (ICPM level). In addition, Grade 4 students 

exhibited some instances of operating internally collections of complex paths and 
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exhibiting a continuous sense of space (ALM level). This same trend was also seen by 

Clements et al. in Grade 5 participants. 

 The Grade 4 students in the present study exhibited length LT levels in ways 

similar to results reported by Clements et al. (in press). That is, the Grade 4 participants 

mainly exhibited strategies for measuring based on unit iteration (LURR level) or an 

understanding of the zero point on a ruler (CLM level) when resolving broken ruler tasks 

(with 50% and 64% using LURR strategies on Task 1 and 2, respectively, and 23% and 

32% using CLM level strategies on Tasks 1 and 2, respectively). Grade 4 students 

showed some evidence of translating given lengths to determine missing lengths (CRM 

level, with 9% on Task 3) and integrating and comparing sets of units along each section 

of a bent path and constructing smaller units to increase precision (ICPM level, with 23% 

each on Tasks 5 and 6). 

 The present study extends the work of Clements et al. (in press) by describing the 

concepts and processes, which define particular levels of the LT for length measurement, 

that students use beyond the elementary years into middle and secondary school. Results 

reported here indicate that most of the Grade 6 students in the present study exhibited 

strategies for measuring based on the iteration of length units (LURR level) or an 

understanding of the zero point on a ruler (CLM level) in the contexts in which those 

concepts and processes (or the levels) were relevant (with 27% and 41%, respectively on 

Task 1 and 32% and 45%, respectively on Task 2). The Grade 6 participants translated 

given lengths to determine missing lengths (CRM level) more often than Grade 4 

participants (with 27% and 9% on Tasks 3 and 4, respectively). Furthermore, the 

participants from Grade 6 exhibited more instances of integrating and comparing sets of 
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units along each section of a bent path and constructing smaller units to increase 

precision (ICPM level, with 9% and 50% for Tasks 5 and 6, respectively) than the Grade 

4 participants. 

The Grade 8 students most often exhibited strategies that demonstrated an 

understanding of the zero point on a ruler to resolve broken ruler tasks (CLM level, with 

75% each on Tasks 1 and 2). Participants in Grade 8 also translated given lengths to 

determine missing lengths (CRM level, with 75% and 50% on Tasks 3 and 4, 

respectively) more often than the participants in Grade 6. Furthermore, the Grade 8 

students increasingly integrated and compared sets of units along each section of a bent 

path and constructed smaller units to increase precision (ICPM level, with 45% and 65% 

for Tasks 5 and 6, respectively), and showed some evidence of operating internally on 

collections of units of units as well as collections of complex paths and exhibiting a 

continuous sense of space (ALM level, with 10% each for Tasks 5 and 6). 

Grade 10 students exhibited a pattern similar to the Grade 8 level participants for 

relying on strategies that demonstrated an understanding of the zero point on a ruler to 

resolve broken ruler tasks (CLM level, with 72% and 89% for Tasks 1 and 2, 

respectively). The Grade 10 participants increasingly translated given lengths to 

determine missing lengths (CRM level, with 100% and 72% for Tasks 3 and 4, 

respectively) and operated internally on collections of units of units as well as collections 

of complex paths and exhibited a continuous sense of space (ALM level, with 33% and 

44% for Tasks 5 and 6, respectively). 

Researchers previously reported observing LURR and CLM level thinking 

predominantly in Grades 2 and 3 (Clements et al., in press); however, the results of the 



 

 215

present study suggest that these levels are also relevant for students beyond elementary 

school and into Grades 6, 8, and 10. Taken together, these findings suggest that students 

continue to progress through the levels of the length LT beyond their elementary years 

into middle and secondary school in a typical educational context in the Midwestern 

United States. 

Comparing with a Learning Progression in Science Education 

 Results reported here concerning length measurement, which were derived from 

the written length LT-based assessment, are in contrast to recommendations for the 

teaching and learning of measurement articulated in a learning progression for the 

atomic-molecular theory of matter (LP for AMTM) in science education (National 

Research Council [NRC], 2007; see also Smith, Wiser, Anderson, and Krajcik, 2006). In 

the LP for AMTM, it is recommended that, in Kindergarten through Grade 2, children 

should learn that “good measurements use iterations of a fixed unit (including fractional 

parts of that unit) to cover the measured space completely (no gaps)” (NRC, 2007, p. 

364). This recommendation spans the LURR and CLM levels of the length LT (see Table 

1 in Chapter 2). Findings from Tasks 1 and 2 of the written length LT-based assessment 

in the present study suggest that, at Grade 4 over half of students (50% and 64% for 

Tasks 1 and 2, respectively) show evidence of measuring by repeating or iterating a unit, 

which is evidence of LURR level thinking. However few Grade 4 students (23% and 

32% for Tasks 1 and 2, respectively) show evidence of possessing well-developed ideas 

about unit iteration in terms of understanding the zero point on the ruler and seeing a 

ruler as a collection of iterated units, which is consistent with the CLM level. Therefore, 

these findings suggest that Smith, Wiser, Anderson, and Krajcik’s (2006) 
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recommendation for Kindergarten through Grade 2 measurement is not currently being 

met in a typical educational context in the Midwestern United States. 

Addressing Research Question 1 

The first research question that framed this study addressed the intuitions and 

analytical strategies that students use when thinking about rectilinear or curvilinear paths: 

What intuitions and analytical strategies do students use when comparing sets of 

rectilinear or curvilinear paths by length? The Grade 4, 6, 8, and 10 participants exhibited 

four main intuitions for comparing rectilinear paths by length that were identified in prior 

research with Grade 6 students: complexity, compression, detour, and straightness (Chiu, 

1996). This suggests that these intuitions for path length may be extensive beyond the 

scope indicated by prior research. Findings from the present study extend the body of 

literature on path length intuition by revealing that students operate on five main 

intuitions for comparing curvilinear paths by length, which include the four main 

intuitions established in the literature and one new intuition: the curve tightness intuition. 

In the present study, students who used the curve tightness intuition discussed a 

particular curve as being longer than another because it was curved in more or had more 

curve. Students who exhibited the curve tightness intuition did not (a) attend to the 

straightness of a path, the straightness intuition; (b) discuss a process of straightening or 

bending a curve, the compression intuition; (c) discuss a path as deviating away from the 

destination more than another, the detour intuition; or (d) attend to the number of turns or 

segments in the paths, the complexity intuition. That is, the curve tightness intuition was 

exhibited by students’ responses that reflected an attention to the quality of a path as 
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being curved and did not fit within any of the other four categories of path length 

intuition. 

The curve tightness intuition may be psychologically grounded in intuitions 

discussed in prior research, such as the straightness or compression intuitions (Chiu, 

1996). For example, students who intuitively know that the shortest path is a straight line 

may also intuitively know that a path with a slight curve is shorter than a path with a tight 

curve. Alternatively, students who intuitively know that a coil or string that has been 

compressed may also intuitively know that a tight curve is more compressed than a curve 

that is wide and conclude that the tight curve is longer than the wide curve even though 

the distance between the endpoints of the wide curve is greater than the tight curve. 

However, despite the potentially common psychological foundations with other 

intuitions, the curve tightness intuition appeared as a qualitatively different category of 

responses within the larger thematic category of intuitive thinking (Fischbein, 1987). 

Furthermore, the results reported here reveal that intuitions that were present in 

Grade 6 students’ thinking (Chiu, 1996) were also present in Grade 4 students’ thinking 

and persist beyond Grade 6 into Grades 8 and 10. Overall, participants most often evoked 

the complexity intuition by attending to the number of turns or segments in a particular 

path when justifying their claims about the order of rectilinear paths by length. This 

finding is consistent with other studies in psychology that have shown that the 

complexity intuition is robust across a wide age range and across a wide variety of 

contexts (e.g., Barrett & Clements, 2003; Kosslyn, Pick, & Fariello, 1974; Luria, Kinney, 

& Weissman, 1967; Pressey, 1974; Thorndyke, 1981). 
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Although the tasks involving comparing curvilinear paths were designed to be 

parallel to the rectilinear path length comparison tasks, participants most often evoked the 

straightness intuition or compression intuition with curves, which involves mentally 

bending paths that are straight or mentally straightening paths that are bent. This suggests 

that, although children in Grades 4, 6, 8, and 10 possess some of the same intuitions for 

rectilinear and curvilinear paths, the presence of curve introduced intuitive interference 

that is not present when the paths are rectilinear. 

Results from the present study also suggest that, when measuring curves with 

standard or nonstandard units, students exhibit analytical thinking by applying indirect 

measurement strategies, such as using a modified circumference formula or attending to 

symmetry, or direct measurement strategies that may or may not have an embedded 

intuition. Furthermore, students exhibit strategies for operating on units when measuring 

curves, which provides evidence about how they are able to coordinate linear extent with 

other attributes, such as curve (Clements et al., in press). In the present study, students 

who did not coordinate linear extent with curve exhibited strategies of not fracturing units 

at all or fracturing a unit once for the purpose of increasing precision. However, students 

who had developed the ability to coordinate linear extent with curve exhibited instances 

of fracturing the nonstandard unit in the tightest part of the curve or along the entire 

curve. 

Addressing Research Question 2 

The second research question that guided the design, data collection, and data 

analysis in this study concerns how students’ use of intuitive and analytical thinking for 

rectilinear and curvilinear path develops across Grades 4 through 10: How does students’ 
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use of intuitive and analytical thinking for path length change or develop across levels of 

sophistication for length measurement? The sections below describe conclusions 

regarding the developmental patterns observed across a subset of levels of the LT for 

length measurement included in the present study, which are, in order of increasing 

sophistication, the CLM, CRM, ICPM, and ALM levels. 

Results indicate that participants at all four length LT levels exhibited the four 

main intuitions for rectilinear paths (Chiu, 1996) and five main intuitions for curvilinear 

paths, which includes a new intuition, the curve tightness intuition. However, different 

length LT level groups exhibited different patterns of intuition use. Specifically, the CLM 

group, the lowest length LT level group included in the present study, relied only on 

intuitive statements when comparing rectilinear or curvilinear paths by their lengths. 

Students at the CRM, ICPM, and ALM levels all used intuitions as well as analytical 

strategies when comparing sets of rectilinear or curvilinear paths. Participants at the CLM 

level most often relied on the complexity intuition, ordering rectilinear paths by the 

number of segments or turns, and the appearance of this intuition decreased across LT 

level groups as the levels increased in sophistication. In contrast, students at the ALM 

level increasingly mentally transformed rectilinear or curvilinear paths into the same 

shape, which shows evidence of evoking the compression intuition, for the purpose of 

comparing the paths by length. 

When comparing a curve to a nonstandard unit, CLM level participants relied 

exclusively on direct measurement strategies without embedded intuitions, exhibited the 

highest number of instances of using the whole stick as a unit, and showed the fewest 

instances of fracturing the nonstandard unit to increase precision. Both strategies of 
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directly measuring without an embedded intuition and using the whole stick decreased 

across the LT level groups as the levels increased in sophistication. By the CRM level, 

students applied direct measurement strategies with or without embedded intuitions and 

applied mental units more often than any other LT level group. In addition, CRM level 

students increasingly fractured units for the purpose of increasing precision when a full 

stick did not fit in the position of the final stick unit. At the ICPM and ALM levels, 

students used direct measurement strategies with or without embedded intuitions as well 

as indirect measurement strategies. Also at the ICPM and ALM levels, participants 

increasingly fractured units, especially around the tightest parts of the curve or around the 

entire curve, showing evidence of coordinating linear extent with other features, which in 

this case was curvature. 

The results reported here suggest that the tasks included in this study effectively 

differentiated students’ thinking at different levels of the length LT. Furthermore, these 

findings are consistent with Fischbein’s theory of intuition (1987), in which he described 

intuition as a developmental phenomenon. Participants who exhibited different levels of 

sophistication, as measured by the LT for length measurement, also exhibited different 

ways of evoking intuitions in terms of the use of (a) intuitions and analytical strategies 

overall, (b) each individual intuition, and (c) analytical strategies with embedded 

intuitions. 

Furthermore, the results reported here confirm some of the conjectured concepts 

and processes outlined at different levels of the LT (Clements et al., in press). For 

example, it was conjectured that CLM level students possessed integrated counting and 

iterating schemes that allow for the concurrent iteration of a unit and subdivision of the 
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unit. This was confirmed as CLM level students typically exhibited instances of operating 

with a combination of units and parts of units when measuring a curve with a 

nonstandard unit. At the CRM level of the LT for length measurement, it was 

hypothesized that students mentally partition lengths by projecting a mental unit, a ruler, 

or a sequence of units onto an unpartitioned object. This was supported by the results of 

the present study; the highest frequency of the appearance of the application of mental 

units occurred within the CRM level group. At the ICPM level of the length LT, it was 

conjectured that students would coordinate other measures with linear measures, such as 

angle, curvature, or time. In the present study, the ICPM level group exhibited increased 

instances of fracturing the unit in the tightest part of the curve and fracturing the unit 

along the entire curve, showing evidence of coordinating linear measures with curvature. 

Finally, at the ALM level of the length LT, it was hypothesized that students had 

developed a continuous sense of length. This was confirmed by the results of the present 

study as the participants within the ALM level group increasingly relied on mentally 

transforming rectilinear or curvilinear paths into the same shape for the purpose of 

comparing by length. 

Table 22 summarizes extensions to the existing LT for length measurement 

(Clements et al., in press) with respect to intuitive and analytical thinking for rectilinear 

and curvilinear path length. In the following table, these extensions to the LT are 

italicized. 
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Table 22 

Extending Intuitive and Analytical Thinking for Path Length to an LT for Length 
Measurement 
 

 
Developmental Progression 

 

 
Mental Actions on Objects 

Consistent Length Measurer (CLM) 
Measures straight paths consistently, uses 
equal-length units, understands the zero 
point on the ruler, and can partition units to 
make use of units and subunits  
 
May not be perturbed by geometric 
inconsistencies 
 

- Most often orders collections of 
rectilinear paths by the number of 
turns or segments in the path 

- Relies on direct measurement 
strategies without making use of 
intuition when measuring curves 
with nonstandard units 

 

 
Integrates intervals and tick marks 
indicating endpoints of intervals to 
establish linear quantity 
 
Integrated counting and iterating schemes 
allow for the concurrent iteration of a unit 
and subdivision of a unit  
 

- Relies exclusively on intuitive 
statements to justify orderings of 
sets of rectilinear or curvilinear 
paths by their lengths 

- May fracture a unit to make use of 
units and subunits for the purpose 
of increasing precision, but does 
not yet coordinate linear extent with 
other attributes, such as curve 

Conceptual Ruler Measurer (CRM) 
Has an “internal” measurement tool; 
mentally iterates internal units of length or 
partitions a length into equal-length parts 
 
Projects or translates given lengths to 
determine missing lengths 
 
Notices geometric inconsistencies 

 
- Most often orders collections of 

rectilinear paths by the number of 
turns or segments 

- Occasionally relies on direct 
measurement strategies without 
making use of intuition when 
measuring curves 

- May rely on analytical strategies 
with embedded intuition by mentally 
transforming units or segments of a 

 
Mentally partitions lengths by projecting a 
mental unit, a ruler, or a sequence of units 
onto an unpartitioned object 
 
Increasingly uses multiplicative reasoning 
when comparing 
 
 
 

- Relies on intuitive statements as 
well as analytical strategies when 
comparing sets of rectilinear or 
curvilinear paths by their lengths 
and justifying those orderings 

- Makes judgments about the order of 
sets of curvilinear paths by their 
lengths by mentally transforming 
the paths into the same shape 

- Fractures a unit to make use of 
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curve 
- May compensate for curvature by 

rounding an approximation for the 
length of a curve up or down for an 
over- or underestimate 

- Attends to symmetry in path shape 
- Does not consistently correctly 

acknowledge an over- or 
underestimate when approximating 
the length of a curve 

units and subunits, and may begin 
to show evidence of coordinating 
linear extent with other attributes, 
such as curve, by occasionally 
using smaller units to increase 
precision around a tighter curve 

- Applies mental units when 
comparing two or more rectilinear 
paths or curves by lengths 

Integrated Conceptual Path Measurer 
(ICPM) 
In the context of a fixed perimeter or fixed 
path length task, children at the ICPM level 
are able to compensate for changes made to 
one side of a figure by adjusting other sides 
to maintain the fixed overall length. 
 
Shows well-developed ideas about 
precision, such as constructing smaller 
units to increase precision 
 

- Relies on direct measurement 
strategies without making use of 
intuition when measuring  

- When measuring curves, relies on 
analytical strategies with embedded 
intuition by mentally transforming 
units or segments of a curve 

- When measuring curves, relies on 
indirect measurement strategies, 
such as applying a formula or 
attending to symmetry 

 
Integrates and compares sets of units along 
each section of a bent path; Regards a 
group of units as a flexible object, a 
“string” of units wrapped around the entire 
perimeter or along the entire path 
 
Copes sub- and superordinate units 
 
Coordinates other measures with linear 
measures, such as angle, curve, or time 
 

- Relies on intuitions and analytical 
strategies when comparing sets of 
rectilinear or curvilinear paths and 
justifying those orderings 

- Fractures a unit to make use of 
units and subunits, coordinates 
linear extent with other attributes, 
such as curve, by using smaller 
units to increase precision around a 
tighter curve 

Abstract Length Measurer (ALM) 
Synthesizes sets of figures based on 
perimeter to formulate and justify a valid 
argument; Determines perimeter or path 
length, attending to divisions of units 
including non-integer values; explains the 
subdivision process is potentially unlimited 
 

- May rely on direct measurement 
strategies without making use of 
intuition when measuring curves 

- When measuring curves, uses 
analytical strategies with embedded 

 
Develops a continuous sense of length 
 
Engages dynamic imagery to coordinate 
and operate internally on collections of 
units of units as well as collections of 
complex paths 
 

- Relies on intuitive statements as 
well as analytical strategies when 
comparing sets of rectilinear or 
curvilinear paths by their lengths 
and justifying those orderings 
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intuitions by mentally transforming 
units or segments of a curve 

- When measuring curves, relies on 
indirect measurement strategies, 
such as applying a formula or 
attending to symmetry 

- Increasingly relies on mentally 
transforming rectilinear or 
curvilinear paths into the same 
shape for the purpose of comparing 
by length  

 
Note: For the complete LT for length measurement, including anticipated misconceptions 
for each level, see Clements et al. (in press). 
 

As summarized in Table 22 above, participants at all LT levels exhibited 

intuitions for path length; however, the application of analytical strategies and analytical 

strategies with embedded intuitions was not observed within all levels. These findings do 

not suggest that intuition is a less sophisticated cognition than analysis. Rather, Table 22 

indicates that the application of exclusively intuitive or analytical thinking alone, 

observed mainly within the CLM and CRM levels, is less sophisticated than the 

application of intuitive and analytical thinking embedded within a single strategy, which 

was observed most often at the ICPM and ALM levels. 

Furthermore, the findings summarized in Table 22 suggest that a hierarchy may 

exist for some of the specific intuitions for path length discussed here. In particular, the 

peak of the complexity intuition at the CLM level (the lowest LT level included in the 

study) and the pattern of decreasing frequency for the complexity intuition as the length 

levels increased in sophistication indicates that it is the least sophisticated intuition. On 

the other hand, the peak of the appearance of the compression intuition at the highest 

level included in the present study, the ALM level, indicates that it may be the most 

sophisticated intuition for path length. Clear developmental patterns were not observed 

for the detour and straightness intuitions; this suggests that, unlike the complexity and 

compression intuitions, these specific intuitions may not be hierarchical. A key 

implication of this finding is that there exists a developmental mechanism for describing 
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connections between some intuitions for path length as well as connections between 

intuitive and analytical cognition. In the concluding sections of this chapter I discuss 

further implications of the hierarchical structure of path length intuition, which parallels 

the length LT, for both teaching and research.  

In addition, close examination of analytical strategies for comparing paths, which 

were exhibited by students at the CRM, ICPM, and ALM levels, indicates that there may 

also exist a hierarchy of comparison strategies within the analytical thinking for path 

length. Specifically, direct and indirect comparison strategies were observed as some 

students superimposed pairs of paths to compare directly or compared indirectly using a 

finger span. Both of these strategies are consistent with the articulation of the observable 

behaviors that characterize the Length Comparer (LC) level of the length LT (Clements 

et al., in press), which is at least four levels below the predominant levels of the 

participants who exhibited them. According to the theory of Hierarchic Interactionalism 

(Clements & Sarama, 2007), LT levels build hierarchically out of previous levels and 

concepts and processes of lower levels are not abandoned. The CRM, ICPM, and ALM 

level participants’ application of these LC-level comparison strategies indicates that some 

students fell back to using levels of thinking that were lower than their predominant LT 

level when resolving the path length comparison tasks; this task may have been novel to 

them, and this may have contributed to the tendency to drop back to a lower level of 

strategy. 

The accumulating length comparison strategy, another analytical strategy 

observed in the present study, was exhibited by CRM, ICPM, and ALM level participants 

as they superimposed pairs of paths, and rotated one of the paths while accumulating the 
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length of the first along the second. A belief that this is a valid strategy for comparing 

paths that are bent or curved requires not only conservation of length, but also mental 

actions and objects to integrate and compare sets of units along each section of a bent 

path. This use of the accumulating length comparison strategy is indicated in Table 22 

above as fitting into the ICPM level of the length LT. This suggests that the accumulating 

length comparison strategy is a more sophisticated strategy than superimposing pairs of 

paths to compare directly or comparing indirectly using a finger span. 

Limitations 

Although the present study addressed critical outstanding questions about how 

patterns of students’ intuitive and analytical thinking along with concept growth in one 

content domain, length measurement, it is not without limitations. One limitation of this 

study can be attributed to the inclusion of a written length LT-based assessment. By using 

a paper-pencil instrument I was able to assess a large sample of 82 students; however, my 

analysis was constrained to the observable strategies present in students’ written 

responses to the items. At times, a student’s response was unclear, and I was not able to 

make an inference about his or her level of sophistication for length measurement. 

Therefore, this instrument provided a limited opportunity to explore and substantiate 

claims about students’ conceptions for length measurement. 

A second limitation, which is a consequence of the design of this exploratory 

study, concerns the small number of students included in each grade and LT level. 

Because only four students were representative of each level, the conclusions about 

interactions among intuitive and analytical thinking for rectilinear and curvilinear paths 

with the levels of sophistication of a length LT that describes the growth of conceptual 
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and procedural knowledge, indicate that developmental patterns may exist. However, a 

series of follow-up studies that focus on subsets of similar interview tasks included here, 

such as the rectilinear path length comparison tasks (Interview 1 Tasks 1 and 2), could 

validate the existence of these developmental patterns with larger and more diverse 

populations of students using statistical inference. 

Other limitations of the study can be attributed to the methods of participant 

selection and the cross-sectional design used to examine students’ intuitive and analytical 

thinking for rectilinear and curvilinear paths as a developmental phenomenon. Because 

participants at the CLM, CRM, ICPM, and ALM levels were sought from Grades 4, 6, 8, 

and 10, all but one of the participants performed in the top half of the class on the written 

length LT-based assessment. Therefore, the sample of 16 interview participants cannot be 

regarded as a representative sample with respect to the diversity in thinking present in 

typical Grade 4, 6, 8, and 10 classes in the Midwest. In addition, because I did not follow 

students longitudinally to document shifts in their use of intuitions and analytical 

strategies as they progressed through the levels of sophistication in the length LT, the 

findings reported here must be regarded as suggestive of development. These findings 

should be validated in a follow-up study that makes use of a longitudinal methodology. 

Finally, inferences about participants’ intuitive and analytical thinking for 

rectilinear and curvilinear path length were derived from their observable statements, 

gestures, and manipulations of tools during the structured, task-based interviews. The 

validity of these inferences is constrained by the quality of the tasks and the probing 

follow-up questions in the interview protocol. Efforts to ensure valid data included 

deriving tasks and pre-planned follow-up questions for the interview protocols from prior 
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research (Clements et al., in press; Chiu, 1996; Grugnetti & Rizza, 2004) and refining 

those tasks and the interview protocols through pilot work. 

Implications for Teaching 

 An assumption of this study and prior research on intuition (Chiu, 1996; 

Fischbein, 1987) is that people possess some intuitions that are mathematically 

productive and others that are not. Mathematically productive intuitions are those that can 

serve as a pedagogical starting point for the teaching of key mathematical concepts. For 

example, a combination of the detour and straightness intuitions, that a path that turns and 

goes out of the way is longer than a path that is straight, can serve as an intuitive 

foundation for the development of thinking about the triangle inequality (Chiu, 1996). 

The use of the complexity intuition, attending to the number of segments or turns, to rank 

rectilinear or curvilinear paths by length is an example of an application of an intuition 

that is not mathematically productive. In this study, the use of the complexity intuition 

appeared most often at the CLM level, the lowest level of the length LT including in the 

present study, and decreased in frequency as the length LT levels increased in 

sophistication. The use of the complexity intuition, even by students operating 

predominantly at the highest level of the current length LT, the ALM level, suggests that 

increased conceptual and procedural knowledge for length measurement does not 

preclude the evocation of an intuition that is not mathematically productive. Therefore, 

the findings of this study support recommendations of prior research (Chiu, 1996) that 

instructional experiences should be designed to elicit students’ intuitions and position 

them to confront and make sense of those intuitions using other intuitions and analytical 

thinking. 
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Findings related to students’ strategies for comparing curves using nonstandard 

units (Interview Tasks 3, 4, 5 6B, and 8B) and measuring curves with a standard ruler 

(Interview Tasks 9 and 10) show that these tasks have the potential to provide an 

instructionally fruitful context for addressing measurement from both a science 

perspective and a mathematical perspective (Osborne, 1976). In science, measurement is 

a range of numbers; it is a process and a skill used for the purposes of building models of 

reality and subsequently testing the truths of those models of reality. In mathematics, 

however, measurement is a single number, an entity; the test of truth for measurement 

from a mathematical perspective involves the correctness of reasoning. 

More specifically, the findings reported here suggest that measurement tasks 

involving determining curve length (Interview Tasks 3, 4, 5, 6B, 8B, 9, and 10) have the 

potential to address key measurement concepts as outlined in a learning progression in 

science education, the LP for AMTM (NRC, 2007; Smith, Wiser, Anderson, and Krajcik, 

2006). According to the LP for AMTM students in Grades 3 through 5 should understand 

that measurements could be more or less precise and that there is always some error in 

measurement, and students in Grades 6 through 8 should learn that sources of 

measurement error can be examined and quantified. In the present study, participants 

within and across all four length LT groups exhibited instances of acknowledging that 

they had under- or overestimated the length of a curve. However, students within and 

across all four length LT groups also made claims that their way of determining the 

length of a curve was not an under- or overestimate. This suggests that students in Grade 

4, 6, 8, and 10 could benefit from an instructional activity in which they measure curves 

with standard or nonstandard units (Tasks 3, 4, 5, 6B, 9, and 10), share their strategies for 
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measuring the curves, and engage in a follow-up discussion about sources contributing to 

the error involved with their ways of measuring the curves and how they could increase 

or decrease the precision of their measurements. 

Furthermore, Osborne (1976) noted that determining the length of a curve “is a 

step beyond most school mathematics” (p. 24) because the solution involves limit 

processes, or the additivity principle extended to allow for the addition of infinitely many 

segments. However, the results reported here indicate that measurement tasks involving 

determining the length of a curve (Interview Tasks 3, 4, 5, 6B, 8B, 9, and 10) have 

potential instructional value for eliciting and discussing measurement from a 

mathematical perspective (Osborne, 1976) using informal limit arguments, an approach 

that has been recommended for secondary students in the Common Core State Standards 

for Mathematics (Common Core State Standards Initiative, 2010). In the present study, 

when measuring a curve with a nonstandard unit (Tasks 3, 4, 5, 6B, and 8B), participants 

exhibited 20 instances of fracturing the nonstandard unit around the entire curve (see 

Table 16, Chapter 4). These instances occurred most often in Grades 6, 8, and 10. This 

suggests that by middle school, in an instructional setting, students may be ready to use 

and make sense of informal limit arguments by discussing processes in which a curve is 

represented by increasingly large numbers of segments of decreasing lengths to decrease 

the error in measuring and approach a true length of the curve. 

Implications for Future Research 

The present study made use of a written length LT-based assessment. Given that 

such an instrument could play an important role in meeting recommendations for 

extending and validating LTs (Daro, Mosher, & Corcoran, 2011), future research should 
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be aimed at refining these assessment items included here to develop a reliable and valid 

LT-based assessment instrument. Some of the items on the assessment included in this 

study were less reliable than others in terms of assessing the concepts and processes they 

were designed to address. For example, between 30 and 45% of students’ responses 

within each of Grades 4, 6, 8, and 10 were coded as “No Claim” for Task 5, which was 

designed to elicit concepts and processes at the ICPM and ALM levels of the length LT 

(although it was also designed to be accessible to students at the CLM and CRM levels). 

This suggests that Task 5 may not be a valid task for eliciting students’ thinking at the 

CLM, CRM, ICPM, and ALM levels. Similarly, Task 7 yielded codes of “No Claim” in 

most instances, and was not considered as part of the task-by-task analysis of the 

assessment. With a key affordance of the ease of administration of paper-pencil 

instruments, future research should include iterations of design cycles that include pilot 

and design work aimed at revising these items, followed by administering the revised 

items and examining reliability and validity of the revised instrument. 

The present study established interactions among intuitive and analytical thinking 

for path length with concept growth along an LT for length measurement; however, given 

the exploratory nature of this study, the changeability of intuitions and analytical 

strategies for children at each of the relevant LT levels was not explored. Future studies 

should extend this work by examining the (a) perturbability of intuitive and analytical 

thinking for students operating at the levels of the length LT included in the present 

study: the CLM, CRM, ICPM, and ALM levels, and (b) the types of instructional 

interventions that can support changes in students’ intuition use. This research should 
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also examine the impact of causing change in students’ ways of using intuitions for path 

length on their level of sophistication for length measurement, or vice versa.  

Furthermore, future research should emphasize the nativist component of 

hierarchic interactionalism, and examine the intuitive and analytical thinking for 

rectilinear and curvilinear paths for children at lower levels of the length LT that were not 

included in the present study. Such a study could show how intuitions and analytical 

strategies might be formed as children transition from the initial level of the length LT at 

which they recognize length as a quantity, at the Length Quantity Recognizer level 

(LQR), to simultaneously developing levels at which children begin to compare objects 

by length directly and indirectly, at the Length Comparer Level (LC) and develop the 

implicit concept that an object can be composed of smaller objects (EE), to the level at 

which unit iteration develops (LURR). This study could shed light on how direct and 

indirect comparison for length measurement develop along with subsequent length 

measurement levels over time, which is still an open question for researchers in 

mathematics education (Battista, 2006; Clements et al, in press), and how intuitive and 

analytical thinking play a role in that development. 

Finally, results from the present study suggest that measurement tasks that involve 

determining curve length using nonstandard straight units or standard units, such as a 

ruler, have potential instructional value from both a scientific and mathematical 

perspective. Further research is needed to explore the instructional affordances of such 

tasks for eliciting students’ thinking about the role and sources of error in measurement, 

as recommended in the LP for AMTM for elementary and middle school students. In 

addition, future studies should investigate whether the tasks involving curves in the 
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present study could have instructional value for eliciting and supporting students’ use of 

informal limit arguments to make sense of measurement from a mathematical 

perspective.
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APPENDIX A 
 

WRITTEN LENGTH LT-BASED ASSESSMENT 
 
Name: __________________  Grade: _________________ 
Teacher: ________________  School: _________________ 
 

1.  
 
 
 

 
 

Using the drawing of a part of a ruler as a guide, measure the strip of 
paper shown above it.  How many inches long is the strip? 

 
Write your answer on the line. 
 
 
 
 

_____________________ 
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2.  
 

 
 
This is a picture of a rod just below a broken section of a ruler. Use this 
picture to measure the length of the rod. How long is the rod? 
 
Write your answer on the line. 
 
 
 

_____________________ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

inches

76543
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3.  

 
 
 

 Find the measure of the missing side length. 
 
Write your answer on the line. 
 
 
 
 

_____________________ 
 
 
 
 
 
 
 
 
 

?

2 cm

13 cm

17 cm

22 cm

15 cm
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4.  
 

 
 

Find the length of the total path, from start to end, shown above. 
 
Write your answer on the line. 
 
 
 
 

_____________________ 
  

30

40

20

60

endstart
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5.  
 
Imagine making an L-shaped path from a string that is 10 cm long. 
 

a. How many different L-shaped paths would you be able to form in all? 
 
 
 

b. Use the space below to explain how you got your answer and why you 
think your answer is correct. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  244

6.  
 

a. Use the space below to sketch two different rectangles, each having a 
perimeter of 2 inches. For each of your rectangles, label the lengths of 
all four sides. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b. How many more rectangles have a perimeter of 2 inches? 
_____________ 
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7.  
 
You need to bury a wire in your backyard that connects points A and C. One 
option is to run a 10-foot wire directly from points A and C, which is 
indicated by the solid line in the picture below. Another option is to run a 
wire from point A to C through point B, which is indicated by the dotted 
line. 
 
We know that points A and C are 10 feet apart. However, no one measured 
the length of the path from A to C through point B (the dotted line).  

 

 
 

a. How long you think the wire will need to be to connect points A and 
C through 
B?____________________________________________________ 

 
b. Use the space below to explain how you got your answer for part a, 

and why you think your answer is correct. 
 
 
 

c. How much wire will you buy so that you can be sure you have enough 
to connect points A and C through B? 
________________________________ 

 
d. Use the space below to explain how you got your answer for part c, 

and why you think your answer is correct.

C

B

A
10 feet
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APPENDIX B 
 

INTERVIEW PROTOCOLS 
 

Interview Set 1 
 

Task 1: Simple Rectilinear Bent Path Comparison Task (Chiu, 1996) 
 

Show the student the three “strings” each printed on a separate transparency. 
 

 
 

Stage 1 (posing the problem): Overlap all three of the “strings” to show that they 
connect the same points A and B. 

 
 
Here are three different ways that points A and B could be connected with string. 
(Separate the three “strings” and place them in front of the student in a row.) 
Compare Strings 1, 2, and 3 by their lengths. 
Nondirective follow-up: (If the student orders the strings.) Tell me about your 
order. 
 
 Stage 2 (minimal heuristic suggestion) If the student does not immediately 
answer, provide the student with a marker and ask: Can you move them or use the 
marker to write while you think about comparing the strings by length? 
 
Stage 3 (guided use of a heuristic suggestion) 
Do you think all of the strings are different lengths or are any the same length?

A

B
String 3

A

B
String 2String 1

B

A

A

B
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Stage 4 (exploratory and metacognitive) 
Why is string ____ the shortest? 
What is it about string ____ that makes you think it is the shortest? 
Why does ______ (the feature of the string described by the student) make string 
____ the shortest? 
Why is string ____ the longest? 
What is it about string _____ that makes you think it is the longest? 
Why does ______ (the feature of the string described by the student) make string 
____ the longest? 
 
Task 2: Complex Rectilinear Bent Path Comparison Task (Chiu, 1996) 
 
Show the student the four “paths” each printed on a separate transparency. 
 

 
 
 

Stage 1 (posing the problem): Overlap all four of the “paths” to show that they all 
connect “home” to “school.” 
Here are four different paths that someone I know sometimes takes from home to 
school. (Separate the four “paths” and place them in front of the student in a row.) 
Compare Paths A, B, C, and D by their lengths. 
 

   
 

Nondirective follow-up: (If the student orders the paths.) Tell me about your 
order. 
 
Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer, provide the student with a marker and 
ask, Can you move them or use the marker to write while you think about putting 
the paths in order by their lengths from shortest to longest? 

School

Home

Path A
School

Home

Path B School

Home

Path C Path D

Home

School

School

Home
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Stage 3 (guided use of a heuristic suggestion) 
Do you think all of the paths are different lengths or are any that are the same 
length? 
 
Stage 4 (exploratory and metacognitive) 
Why is path ____ the shortest? 
What is it about path ____ that makes you think it is the shortest? 
Why does ______ (the feature of the path described by the student) make path 
____ the shortest? 
Why is path _____ longer than path _____? (the 3rd and 2nd paths in the student’s 
ranking) 
What is it about path _____ that makes you think it longer than path _____? 
Why does ______ (the feature of the path described by the student) make path 
____ the longer than path _____? 
Why is path ____ the longest? 
If the student’s answer is not clear: What is it about path _____ that makes you 
think it is the longest? Why does ______ (the feature of the path described by the 
student) make path ____ the longest? 
 
Task 3: Compare Curve to Stick (Clements et al., in press) 
 
Provide the piece of paper with the following image, a four-inch wooden stick, 
and a pen. 
 

 
 
Stage 1 (posing the problem) 
Say: Compare the length of this curved path (trace finger around the path) to this 
stick. 
Nondirective follow-up: If the student provides a qualitative comparison (i.e. says 
the curved path is longer) ask, 
how much longer? 
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Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer: Which one is longer the curved path 
or the stick? 
 
Stage 3 (guided use of a heuristic suggestion) 
Could you use the path and the stick to show me how much longer? Show me 
where the _____ are. 
 
Stage 4 (exploratory and metacognitive) 
Explain how you thought about comparing the curved path to the stick. 
Make a record of how you compared the curved path to the stick by drawing to 
show how you laid the stick. 
 
Follow up 
Is your answer an over- or an under-estimate for the length of this curve? 
How do you know? 
 
Task 4: Compare Curve to Stick (Clements et al., in press) 
 
Provide the piece of paper with the following image, a four-inch wooden stick, 
and a pen. 
 

 
 
Stage 1 (posing the problem) 
Say: Compare the length of this curved path (trace finger around the path) to this 
stick. 
Nondirective follow-up: If the student provides a qualitative comparison (i.e. says 
the curved path is longer) ask, how much longer? 
 
Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer: Which one is longer the curved path 
or the stick? 
 
Stage 3 (guided use of a heuristic suggestion) 
Could you use the path and the stick to show me how much longer? Show me 
where the _____ are. 
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Stage 4 (exploratory and metacognitive) 
Explain how you thought about comparing the curved path to the stick. 
Make a record of how you compared the curved path to the stick by drawing to 
show how you laid the stick. 
 
Follow up 
Is your answer an over- or an under-estimate for the length of this curve? 
How do you know? 
 
Task 5: Compare Curve to Stick (Clements et al., in press) 
 
Provide the piece of paper with the following image, a four-inch wooden stick, 
and a pen. 

 
Stage 1 (posing the problem) 
Say: Compare the length of this curved path (trace finger around the path) to this 
stick. 
Nondirective follow-up: If the student provides a qualitative comparison (i.e. says 
the curved path is longer) ask, how much longer? 
 
Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer: Which one is longer the curved path 
or the stick? 
Stage 3 (guided use of a heuristic suggestion) 
Could you use the path and the stick to show me how much longer? Show me 
where the _____ are. 
 
Stage 4 (exploratory and metacognitive) 
Explain how you thought about comparing the curved path to the stick. 
Make a record of how you compared the curved path to the stick by drawing to 
show how you laid the stick. 
 
Follow up 
Is your answer an over- or an under-estimate for the length of this curve? 
How do you know? 
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Interview Set 2 
 

Tasks 6A and 6B: Compare Two Curves (Clements et al., in press) 
 
Provide the two pieces of paper with each of the following curved paths. 
 

 
Task 6A: Stage 1 (posing the problem) 
Say: Compare the length of this curve (trace finger around curve) to the length of 
this curve (trace finger around curve). 
Nondirective follow-up: Tell me how you thought about comparing these curves 
 
Task 6A: Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer: Do you think these curves are 
different lengths or are they the same length?  
 
Task 6A: Stage 3 (guided use of a heuristic suggestion) 
Could you point and show me on the curves?  
 
Task 6A: Stage 4 (exploratory and metacognitive) 
Why is this curve longer than this curve? 
If the student’s answer is not clear: What is it about this curve _____ that makes 
you think it longer than that curve? 
Why does ______ (the feature of the curve described by the student) make this 
curve longer than that curve? 
 
Task 6B: Using the stick to check 
Please use this stick to help you check. Explain how you thought about comparing 
the curved path to the stick. 
Make a record of how you compared the curved path to the stick by drawing to 
show how you laid the stick. 
 
Follow up 
Is your answer an over- or an under-estimate for the length of this curve? 
How do you know? 
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Task 7: Compare 3 Curves 
 
Show the student the three “strings” each printed on a separate transparency. 

 
 

Here are three different ways that points A and B could be connected with string. 
(Separate the three “strings” and place them in front of the student in a row.) 
Compare Strings 1, 2, and 3 by their lengths. 

 
Nondirective follow-up: (If the student orders the strings.) Tell me about your 
order. 
 
Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer, provide the student with a marker and 
ask: Can you move them or use the marker to write while you think about 
comparing the strings by length? 
 
Stage 3 (guided use of a heuristic suggestion) 
Do you think all of the strings are different lengths or are any the same length? 
 
Stage 4 (exploratory and metacognitive) 
Why is string ____ the shortest? 
What is it about string ____ that makes you think it is the shortest? 
Why does ______ (the feature of the string described by the student) make string 
____ the shortest? 
Why is string ____ the longest? 
What is it about string _____ that makes you think it is the longest? 
Why does ______ (the feature of the string described by the student) make string 
____ the longest? 
 
Tasks 8A and 8B: Compare Two Curves (Clements et al., in press) 
 
Provide the two pieces of paper each with one of the following curves. 
 

String 3

B

A

B

A

String 2

B

String 1

A

B

A
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Task 8A: Stage 1 (posing the problem) 
Say: Compare the length of this curve (trace finger around curve) to the length of 
this curve (trace finger around curve). 
Nondirective follow-up: Tell me how you thought about comparing these curves 
 
Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer: Do you think these curves are 
different lengths or are they the same length? 
 
Stage 3 (guided use of a heuristic suggestion) 
Could you point and show me on the curves?  
 
Stage 4 (exploratory and metacognitive) 
Why is curve ____ the shortest? 
If the student’s answer is not clear: What is it about curve ____ that makes you 
think it is the shortest? Why does ______ (the feature of the curve described by the 
student) make curve ____ the shortest? 
 
Task 8B: Using the stick to check 
Please use this stick to help you check. Explain how you thought about comparing 
the curved path to the stick. 
Make a record of how you compared the curved path to the stick by drawing to 
show how you laid the stick. 
Please use this stick to help you check. Explain how you thought about comparing 
the curved path to the stick. 
Make a record of how you compared the curved path to the stick by drawing to 
show how you laid the stick. 
 
Follow up 
Is your answer an over- or an under-estimate for the length of this curve? 
How do you know? 

 
Task 9: Measure the Outline of a Doorway (Grugnetti, Rizza, & Marchini, 
2007) 
 
Provide the piece of paper with the following image, a standard ruler, and a pen. 
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Stage 1 (posing the problem) 
Do you know what a blueprint is? 
This is a drawing of the outline of a doorway like on a blueprint, but it has no 
measurements. Please measure the outline of this doorway in the most precise 

way that you can using this ruler. 

 
Nondirective follow-up: Tell me about your way of measuring the outline of this 
doorway.  
 
Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer ask, How do you think someone might 
try to get as close to the length of the outline of this doorway as they can using this 
ruler? 
 
Stage 3 (guided use of a heuristic suggestion) 
Do you think people might use different methods to get very close to the actual 
length of the outline of this doorway? 
 
Stage 4 (exploratory and metacognitive) 
Explain how you measured it in the most precise way. 
 
Task 10: Measure the Outline of a Rounded Doorway (Grugnetti, Rizza, & 
Marchini, 2007) 

 
Provide the piece of paper with the following image, a standard ruler, and a pen. 
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Stage 1 (posing the problem) 
Here is another outline of a doorway from a blueprint. Please measure the 

outline of this doorway in the most precise way that you can using this ruler. 
Nondirective follow-up: Tell me about your way of measuring the outline of this 
doorway.  
 
Stage 2 (minimal heuristic suggestion) 
If the student does not immediately answer ask, How do you think someone might 
try to get as close to the length of the outline of this doorway as they can using this 
ruler? 
 
Stage 3 (guided use of a heuristic suggestion) 
Do you think people might use different methods to get very close to the actual 
length of the outline of this doorway? 
 
Stage 4 (exploratory and metacognitive) 
Explain how you measured it in the most precise way.
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APPENDIX C 

IMAGES SHOWN DURING INTERVIEWS 

String 1
B

A
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String 2
B

A
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String 3
B

A
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Home
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Home

School
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Home
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A

String 1

B
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String 2

A

B
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A

B

String 3
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APPENDIX D 

CODING SCHEME 

Code Descriptor 
Thematic 
Category 

Corresponding Observable Behaviors: Statements, 
Gestures, or Manipulations of Tools 

Straightness 
Intuition 

Intuition 

 
statement: explained that a path was shortest because 
it was straight (without providing further justification) 
 

Detour Intuition Intuition 

 
statement: discussed a path as going out of the way or 
not being a direct route 
 

Complexity 
Intuition 

Intuition 

 
statement: discussed the number of segments, turns, or 
angles of a path 
 

Compression 
Intuition 

Intuition 

 
statement: discussed either straightening or bending 
paths for the purpose of making comparisons 
 

Curve Tightness 
Intuition 

Intuition 

 
statement: discussed a curve as being longer than 
another because it was curved in more or because it 
had more curve 
 

Combination of 
Intuitions 

Intuition 

 
statement: used more than one intuition (straightness, 
detour, complexity, compression, or curve tightness) 
to defend a single claim 
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Rejected Intuition Intuition 

 
statement: rejected conclusion previously 
defended using an intuitive statement 
(student may reject an intuition by 
evoking another intuition, combination of 
intuitions, or analytical strategy) 
 

Used a Rejected 
Intuition 

Intuition 

 
statement: again used an intuition 
previously rejected 
 

Indirect Comparison 
Using Finger Span 

Analytical 
strategy 

 
gesture: placed a finger span across a 
segment of one path and then placed the 
same finger span across a segment of 
another path 
 

Superimposed Pairs of 
Paths to Directly 

Compare 

Analytical 
strategy 

 
gesture: placed one path directly on top of 
another for the purpose of directly 
comparing by linear extent 
 

Segment Matching 
Comparison Strategy 

Analytical 
strategy 

 
gesture: matched segments of one path to 
the segments of another path 
 

Project to Form Right 
Angle 

Analytical 
strategy 

 
statement: explained that he or she 
compared (rectilinear paths) by imagining 
or translating vertical segments 
horizontally and horizontal segments 
vertically 
 

Accumulating Length 
Comparison Strategy 

Analytical 
strategy 

 
gesture: superimposed pairs of paths, 
rotated one of the paths while 
accumulating the length of the first along 
the second 
 

Rate Comparison 
Strategy 

Analytical 
Strategy 

 
statement: discussed traversing paths or 
segments of paths at the same rate for the 
purpose of comparing 
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Imposed Internal Unit 
Analytical 
Strategy 

 
manipulation of tools: drew 
approximately evenly spaced hash marks 
for the purpose of directly comparing 
 

Chord Iteration Strategy 
Analytical 

Strategy: Direct 
Measurement 

 
manipulation of tools: iterated a stick as a 
chord on the interior of the curve when 
comparing a curve to a straight object 
 

Continuous comparison 
strategy to estimate 

Analytical 
Strategy: Direct 
Measurement 

 
Gesture or manipulation of tools: moved a 
finger or a straight object along a path in a 
continuous motion for the purpose of 
comparing two or more paths 
 

Tangent Iteration 
Strategy 

Analytical 
Strategy: Direct 
Measurement 

 
manipulation of tools: iterated a stick as a 
tangent on the exterior of the curve when 
comparing a curve to a straight object 
 

Mixed Unit Iteration 
Strategy 

Analytical 
Strategy: Direct 
Measurement 

 
manipulation of tools: iterated a stick 
sometimes placing it as a chord on the 
interior of the curve, sometimes as a 
tangent on the exterior of the curve, and 
other times placing the stick directly on 
the curve when comparing a curve to a 
straight object 
 

Path Intersection 
Iteration Strategy 

Analytical 
Strategy: Direct 
Measurement 

 
manipulation of tools: iterated a stick by 
attempting to place it directly on the curve 
when comparing a curve to a straight 
object 
 

Adjusting point of 
tangency iteration 

strategy 

Analytical 
Strategy: Direct 
Measurement 

 
manipulation of tools: placed a stick as a 
tangent aligned with one end of the curve 
and rotated the stick, adjusting the point 
of tangency and accumulating the length 
of part of the curve along the stick 
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Modified circumference 
formula strategy 

Analytical 
Strategy: Indirect 

Measurement 

 
statement: discussed comparing the stick 
to the radius of a partial circle-shaped 
curve, visually estimated the fraction of a 
circle represented by the curve, and 
modified and applied the formula for the 
circumference of a circle accordingly 
 

Used the Whole Stick 
as a Unit 

Analytical 
Strategy Related 

to Unit 

 
manipulation of tools: placed the whole 
stick (as a chord, tangent, or directly on 
the curve) and used it as a unit to compare 
curves rather than fracturing and operating 
on partial stick units 
 

Fractured Non-standard 
Unit Once at the End of 

the Curve 

Analytical 
Strategy Related 
to Unit: Fractured 

Unit 

 
manipulation of tools: when a full stick 
unit did not fit along the curve at the end, 
discussed using a partial stick unit (such 
as one half or one third of the stick) to 
measure the last segment of the curve 
 

Fractured Non-standard 
Unit in the Tightest Part 

of the Curve 

Analytical 
Strategy Related 
to Unit: Fractured 

Unit 

manipulation of tools: operated on partial 
stick units in the tightest part of the curve 
for the purpose of increasing precision 

Fractured Non-standard 
Unit Around the Entire 

Curve 

Analytical 
Strategy Related 
to Unit: Fractured 

Unit 

manipulation of tools: operated on partial 
stick units around the entire curve for the 
purpose of increasing precision 

Counted Partial Unit as 
a Whole Unit 

Analytical 
Strategy Related 

to Unit 

 
statement: when only a partial stick unit 
would fit at the end of the curve, counted 
this (as well as the other stick unit 
segments) as a full stick unit 
 

Compensated for 
Curvature 

Analytical 
Strategy Related 

to Unit 

 
statement: after comparing using another 
analytical strategy related to unit, rounded 
(or added or subtracted) to this count of 
units to account for an over- or 
underestimate due to representing a curve 
with straight segments 
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Applied Benchmark 

Analytical 
Strategy Related 
to Unit: Applied 

Mental Units 

statement: discussed thinking about a 
previously known measurement when 
comparing a curve and a straight object 

Applied Conceptual 
Standard Unit 

Analytical 
Strategy Related 
to Unit: Applied 

Mental Units 

statement: discussed applying mental 
image of a standard unit (a centimeter or 
an inch) 

Tangent Curved Unit 
Iteration Strategy 

Analytical 
Strategy with 
Embedded 

Intuition: Direct 
Measurement 

 
manipulation of tools: applied the tangent 
iteration strategy, but allowed the stick to 
extend beyond the curve; placed a tick 
mark to represent the end of this stick unit 
by imagining where the curve and the 
stick would meet by mentally curving the 
stick or mentally straightening part of the 
curve 
 

Chord Curved Unit 
Iteration Strategy 

Analytical 
Strategy with 
Embedded 

Intuition: Direct 
Measurement 

 
manipulation of tools: applied the chord 
iteration strategy, but drew a tick mark 
before the point of intersection of the stick 
and the curve; the placement of this tick 
mark was guided by imagining where the 
curve and the stick would meet by 
mentally curving the stick or mentally 
straightening part of the curve 

Acknowledged 
Underestimate 

Reflection on 
Error 

 
statement: discussed a comparison 
between a curve and a straight object as 
involving an underestimate 
 

Acknowledged 
Overestimate 

Reflection on 
Error 

 
statement: discussed a comparison 
between a curve and a straight object as 
involving an overestimate 
 

Claimed Answer was 
not an Over- or 
Underestimate 

Reflection on 
Error 

 
statement: discussed a comparison 
between a curve and a straight object as 
involving neither an over- nor 
underestimate 
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Correct 
Acknowledgement of 

an Over- or 
Underestimate 

Reflection on 
Error 

 
statement and manipulation of tools: 
discussed a comparison between a curve 
and a straight object as involving an 
underestimate after having applied the 
chord iteration strategy, or discussed a 
comparison between a curve and a straight 
object as involving an overestimate after 
having applied the tangent iteration 
strategy 
 

Incorrect 
Acknowledgement of 

an Over- or 
Underestimate 

Reflection on 
Error 

 
statement and manipulation of tools: 
discussed a comparison between a curve 
and a straight object as involving an 
underestimate after having applied the 
tangent iteration strategy, discussed a 
comparison between a curve and a straight 
object as involving an overestimate after 
having applied the chord iteration 
strategy, or claimed not to have over- or 
underestimated after having applied the 
chord or tangent iteration strategy 
 

Acknowledgment of an 
Over- or Underestimate 
was Neither Correct nor 

Incorrect 

Reflection on 
Error 

 
Statement and manipulation of tools: 
discussed a comparison between a curve 
and a straight object as being an over- or 
underestimate, or and being neither an 
over- nor underestimate, after having 
applied a direct measurement analytical 
strategy that was not in conflict with their 
claim 
 

Attended to Symmetry 
When Measuring with a 

Ruler 

Analytical 
Strategy 

 
manipulation of tools: measured only part 
of each shape, attending to the symmetry 
of the curve, rather than measuring the 
entire curve 
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