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High bat mortality at wind energy facilities is a widely cited conservation issue, 

but the population-level impacts are not understood. In Illinois, the main species affected 

are migratory tree bats like the Hoary (Lasiurus cinereus) and Eastern Red (Lasiurus 

borealis).This research used deuterium isotope analysis of hair combined with 

ecological niche modeling (GARP: Genetic Algorithm for Rule-set Prediction) in a 

novel way to map the geographic extents of Hoary and Eastern Red bat specimens 

salvaged at a single central Illinois wind facility from 2008-2010. Hair was chosen after 

determining that the claw is currently a problematic tissue due to a lack of knowledge 

about bats’ claw growth rates. Hair samples from different sample sites on the body 

were not significantly different from each other, and there was no significant variation 

among hair samples from the same body sample site.  

The proportions of isotopic extents of both bats’ summer ranges revealed that the 

salvaged specimens came from areas that cover more than 50% of their summer ranges



 
 
 

 

(hence, many populations). When males’ and females’ isotope extents were overlapped, 

Hoary bats had less than 50% overlapping of the sexes while Eastern Red bats had over 

50%. Relationships among the salvage years and months were also examined. The 

percentage of overlap among specimen salvage years suggests that these bats utilize 

their complete range every summer. When each salvage month was examined, there was 

no evidence of a correlation between month of arrival at the wind facility and their 

summer geographic extent. This study shows the importance of specimens salvaged 

from wind facilities for studying both the population-level impacts of wind farm 

facilities and bat migratory biology.
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Introduction 

Mortality of Bats in Wind Facilities 

Wind energy is viewed as an eco-friendly alternative energy source. Commercial 

facilities use turbines that are typically 60-100 meters high, with spinning blades up to 

50 meters long (Altringham 2011) that rotate up to 180 miles per hour at the tips (Cohn 

2008). However, negative ecological impacts of such facilities have become evident. 

Jain et al. (2010) concluded that wind facilities in agricultural fields in the Midwest can 

kill an estimated 4.45-7.14 bats per turbine per year. In Canada and the United States, 

migratory tree bats suffered significantly more fatalities than other species of bats. The 

Eastern Red (Lasiurus cinereus) and Hoary (Lasiurus borealis) bats comprised 20.0-

60.9% and 9.0-88.1% of fatalities, respectively, at each wind facility studied across the 

contiguous United States (Arnett et al. 2007). However, it is difficult to achieve an 

accurate estimate of total bat mortality in wind facilities across the continent due to 

differences in survey methods and a lack of representative sampling of all facilities 

across the country (Huso and Dalthrop 2014).  

There is evidence (Winhold et al. 2008) that the Eastern Red bat is showing 

signs of decline. In a paired netting survey in southern Lower Michigan that took place 

in 1978-1979 and then again in 2004-2006, they reported overall a 52-85% decline in 

netting captures per night. Some possible causes of this decline include habitat loss and 

fragmentation, effects from pesticides, and their tendency to be killed in high numbers 

at wind facilities (Winhold et al. 2008). This could have severe population impacts 

because bats tend to reproduce slowly and be long lived (Fleming and Eby 2003). Slow 

reproduction and long life spans in animals are often traits of species that take a longer 
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time to recover from unnaturally high mortality events.  

Bat Population Impacts  

Bat populations can have an incredible impact on their ecosystems through the control 

of insect populations. A single Little Brown bat (Myotis lucifugus), smaller (12 g) than 

the Eastern Red (16 g) and Hoary bats (36 g), can eat 4-8 g of insects each night 

(Hofmann 2008). A colony of 150 Big Brown bats (Eptesicus fuscus) (26 g) can eat an 

estimated 1.3 million insect pests each year (Boyles et al. 2011). Two studies conducted 

in the Neotropics used exclusion methods to assess both bird and bat predation 

importance. In Panama, it was found that bats had a greater effect on arthropod 

populations than birds. Without bats, arthropod populations increased by 84% 

(Williams-Guillén et al. 2008). In Mexico, a similar pattern was seen with 84% 

reduction in arthropods due to bats and only 58% reduction due to birds (Kalka et al. 

2008).  

This potentially has significant influence not only on the ecosystem but also on 

the agricultural economy. For example, it is estimated that bats save U.S. agriculture 

$22.9 billion per year through decreasing insect pest populations, lowering the cost of 

pesticide use (Boyles et al. 2011). With their impact on ecosystems and economies, the 

loss of bat populations is a phenomenon that needs to be further understood. Although 

the Eastern Red and Hoary species are not listed as species of concern by the IUCN 

Red List  (Arroyo-Cabrales et al. 2008, Gonzalez and Arroyo-Cabrales 2008 ), in 

Illinois these bats are killed regularly by wind turbines with the highest mortality 

occurring during their autumn migrations (Arnett et al. 2007). 
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Hoary Bat (Lasiurus cinereus) 

The Hoary bat is a species found throughout Illinois (Hofmann 2008), and its range 

encompasses the U.S. and large portions of Canada (Cryan 2003). Although they are 

considered long-distance migrants, they can be found throughout most of their range all 

year, albeit with changes in densities among the regions. Cryan (2003) used museum 

specimens and live captures to map monthly distributions of Hoary bats throughout the 

continental U.S. and southern parts of Canada. In the winter, many are found 

throughout the southern U.S. During their spring migrations, they move northward to 

their summer ranges. From June to August, they can be found throughout the Midwest, 

western states, and southern Canada with a lesser number in the northeastern U.S. 

Throughout Illinois during this time, there is a high density of females with some males 

as well. As they migrate in the fall, they move southward back into their wintering 

grounds (Cryan 2003). There are reports that some individuals stay north and hibernate, 

but migrations of large groups occur in pulses, with waves of bats migrating through an 

area in intervals (Shump and Shump 1982a). It is during these fall months that they 

mate and females store sperm over the winter (Whitaker Jr. and Mumford 2009).  

 In their summer range, Hoary bat females give birth in roosts along forest 

edges, including areas near human habitations (Fleming and Eby 2003). Willis and 

Brigham (2005) found that when females have pups, they tend to choose roosts that are 

below 1,200 meters in elevation and are abundant in white spruce trees (Picea glauca). 

They also found that the directional orientation, forest density and canopy cover were 

all important factors for maternity roost site selection. They suggested that these factors 

provide a safe environment with a stable microclimate for pup rearing (Willis and 
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Brigham 2005). In an Arkansas study, Perry and Thill (2007) found two maternity 

roosts in shortleaf pines (Pinus echinata) while other male and female roosts were 

found in white (Quercus alba) and post (Quercus stellate) oaks. All the roosting trees 

were taller and had a larger diameter and canopy than surrounding trees.  

Eastern Red Bat (Lasiurus borealis) 

The Eastern Red bat is found throughout the central and eastern U.S. and southern 

Canada (Shump and Shump 1982b) and is common throughout Illinois (Hofmann 

2008). They roost in edge habitats along streams, fields and even in suburban areas 

(Shump and Shump 1982b). They roost primarily in hardwoods like oaks (Quercus), 

hickories (Carya), and poplars (Populus) even when conifers are available (O’Keefe et 

al. 2009), and they prefer more mature trees with diameters greater than 30 cm (Mager 

and Nelson 2001).  

According to Cryan (2003), Eastern Red bats are most commonly found in the 

eastern and southeastern states during the winter months of December through 

February. In the spring, they move northward and westward up to the Midwest and 

Canada. In Illinois during the summer months, both males and females are found in 

high densities. There is evidence that suggests the sexes separate at a more local scale 

according to temperature and elevation differences (Cryan 2003). Males tend to stay in 

the higher, cooler elevations, while females choose areas of warmer temperatures and 

lower elevations. It is believed that these differences are attributed to the dissimilar 

physiological demands of males and females during times of rearing young (Ford et al. 

2002). In autumn, they migrate back towards the eastern and southeastern states (Cryan 

2003) and mate during the months of August and September (Hofmann 2008) along the 
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migration routes (Britzke et al. 2009). 

Migration 

In North America, the Hoary and Eastern Red bats travel over 1,000 km between 

seasonal roosting regions. These migratory bats develop fat deposits but, unlike birds, 

this fat is used for both migration and winter torpor, and they typically cannot store 

enough fat for the entire journey. Stopovers are critical for rest and for feeding to 

reconstitute enough fat for overwintering by replenishing what is lost in migration 

(Racey and Entwistle 2003), but the energy required during migratory movement can 

be reduced during stopovers by the use of short-term torpor (McGuire et al. 2012). It is 

reported that bats are almost completely nocturnal during their migrations, and their 

stopovers must be frequent so they can rest during the day. According to their study of 

Silver-haired bats (Lasionycteris noctivagans), another long-distance migratory tree 

bat, their times at stopover sites were typically just one day and feeding occurred at the 

sites upon arrival or just before departure (McGuire et al. 2012).  

Population Estimation 

Estimating populations of any bat species can be problematic for various reasons. For 

example, the Eastern Red and Hoary bats are largely solitary for much of the year, even 

during the pupping season when many other species form large maternity colonies. It is 

this solitary behavior that makes censuses of these two species particularly difficult 

(Whitaker Jr. and Mumford 2009). Banding studies have been attempted in bats, but 

recapture rates of banded individuals are extremely rare, making the amount of 

information gathered considerably less than the effort and cost involved. Radio 

transmitters have also been attempted, but models light enough to be carried by bats 
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without disrupting their behaviors or putting them at risk do not have enough range for 

migratory species (Cryan et al. 2004). All of these factors add to the difficulty of 

estimating population size and fluctuation throughout the seasons of migratory bats, 

and why the use of deuterium ratio analysis as a tool to track migratory animals is so 

appealing for bats, especially when coupled with the large sample sizes available from 

wind turbine mortality 

Deuterium Analysis 

Deuterium is a heavy isotope of hydrogen and, although it has the same atomic number, 

its chemical behavior is slightly different due to physical properties related to its 

heavier atomic mass (Ben-David and Flaherty 2012). Deuterium falls as precipitation in 

patterns due to temperature-driven forces related to latitude and elevation (Bowen et al. 

2005). In the Northern Hemisphere, as latitude or elevation increase, less deuterium is 

incorporated into the precipitation, leading to depletion and a more negative 

deuterium:hydrogen ratio (δD) signature (Ben-David and Flaherty 2012).  

The δD is conserved throughout trophic levels and is incorporated into tissues 

during their syntheses. Feathers, hair and claws are all keratinized tissues and are 

metabolically inert after formation, allowing the isotopic signature of the non-

exchangeable hydrogen to remain for long time periods after the initial deposition in the 

tissue (Fraser et al. 2010). Some of the hydrogen remains exchangeable with the 

atmosphere (Wassenaar and Hobson 2006); therefore, before analysis, samples and 

standards are allowed to equilibrate with the air for several weeks. During analysis, 

standards are used to calibrate a relationship between exchangeable and non-

exchangeable hydrogen allowing for the reporting of only non-exchangeable hydrogen 
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in the samples. Standards are also used as a measure of precision during analysis. An 

accepted range of deviation among standards is no more than ±2‰ (C. Macdonald, 

University of Wyoming Isotope Laboratory, pers. comm. 2014). If the standard 

deviation of the standards is higher, then the reliability of the samples is decreased. 

Deuterium can be used in migratory studies if the organism moves between sites 

of different isotope ratios. It can then provide a way to reconstruct their movements 

through time (Bowen et al. 2005). However, keratin deuterium (δDk) does not reflect 

deuterium levels of precipitation (δDp) at a one-to-one ratio. Due to fractionation in the 

food web, δDk typically is more depleted than δDp (Fraser et al. 2010).  

There are two types of fractionation, equilibrium and kinetic. Equilibrium 

fractionation is due to differences in chemical reactions because heavier isotopes create 

stronger bonds. Kinetic fractionation is the more pronounced type and occurs when a 

molecule changes phase or undergoes a non-reversible reaction like evaporation, 

diffusion, or enzymatic reactions. The term fractionation is now restricted to describe 

changes in a single event, such as a single enzymatic reaction. The differences among 

δDp and δDk is called discrimination because there are multiple and unknown processes 

that lead to the differences (Ben-David and Flaherty 2012). Even with this 

phenomenon, the use of hydrogen isotopes has been effective for many wildlife 

forensic studies (Bowen et al. 2005). One of the ways this discrimination can be 

compensated for is through the use of regression equations to convert δDk to δDp, which 

can then be mapped on a deuterium precipitation isoscape, a map of isotopic changes 

across a geographic area.  
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Deuterium Use in Migration Studies 

Many researchers have utilized δDk in feathers and other tissues to track migrating 

birds to their seasonal geographic origins  (Mazerolle et al. 2005, Wunder et al. 2005, 

Rocque et al. 2006, Hobson et al. 2007, Langin et al. 2007, Fraser et al. 2008, De 

Ruyck et al. 2013). It has also been increasing in popularity as a method to track 

migration and distribution patterns of bats (Britzke et al. 2009, Fraser et al. 2010, Fraser 

et al. 2012, Ossa et al. 2012, Popa-Lisseanu et al. 2012, Sullivan et al. 2012).   

Cryan et al. (2004) sampled 265 Hoary bats that were captured from across 

North America from 1894 to 2002. These were examined to determine their molting 

period. The bats within the molting period were sampled, their deuterium ratios of bat 

hair (δDh) and the δDp were correlated using the samples’ geographic locations, and this 

data were used to create a regression model that correlated δDh with δDp, δDp = 

δDh+24.81/0.7884. This technique was also used more recently by Ossa et al. (2012). 

They used six non-migratory species and sampled in a similar way to Cryan et al. 

(2004). They had mixed correlations between δDh and δDp with some exhibiting a 

positive correlation, and some with none or a negative correlation. Even with these 

differences, they derived one regression equation from the six species (δDp = 

35.7+0.66*δDh) that had significant predictive power. They discussed several possible 

explanations for the mixed results, notably small sample size, high variability in δDp 

within a sampling location, using annual δDp instead of the δDp for the molting months, 

and/or the bats being more prone to migration movements than believed. Fraser et al. 

(2012) used North American museum specimens showing molt  to conduct deuterium 

ratio analysis of Tri-colored bats (Perimyotis subflavus) and to determine their molting 



10 
 

period. They derived quadratic regression equations linking δDh and δDp for males   

(δDh =-0.036* δDp
2
-1.789* δDp-45.607) and females (δDh =-0.034* δDp

2
-1.606* δDp-

40.375) separately. They concluded that there were significant correlations between 

δDh and δDp and a correlation with latitude of collection site. They also found evidence 

of latitudinal migration by some of the specimens which was a significant finding for 

this species that was once thought to strictly be a short-distance regional migrant. 

Ossa et al. (2012) used museum specimens of six non-migratory African 

species, to determine correlations between δDh and δDp, and then used this correlation 

to determine migratory movements of the Straw-colored bat (Eidolon helvum). Even on 

the African continent, which is comparatively homogeneous in isotope ratios, they were 

able to detect migratory movements and found that using hydrogen isotopes had a high 

predictive power for geographic assignment. Popa-Lisseanu et al. (2012) sampled from 

five species of sedentary bats in Europe and also concluded that there were significant 

positive correlations between δDh and δDp for all five species. Sullivan et al. (2012) 

used the technique of isotope analysis of hair to understand movement patterns of bats 

to hibernacula and to estimate the connectivity of different habitats used by hibernating 

bats throughout the year.  

Fraser et al. (2010) used both hair and claw tissue to understand the altitudinal 

migration of five species of Neotropical bats of varying diets. However, seasonal shifts 

in δDp, unknown molting times and differences in diets made interpretation difficult. 

Britzke et al. (2009) looked at the long-distance migrating (>500 km) Eastern Red bat 

(Lasiurus borealis), along with three regional migrating species which only move 100-

500km, and found a correlation between latitude and δDh. However, they suggested that 
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there can be high variation and that pooling across species, sex and age classes should 

be avoided. They also suggested that diet may cause variation in δDh within a location. 

If bats feed primarily over different habitats, such as over an aquatic versus terrestrial 

ecosystem, they may have different ratios (Britzke et al. 2009).  

The use of deuterium in migratory studies is based on some important 

assumptions. One is that there is a clear relationship between the δDp and δD in the 

analyzed tissue. This assumption has been supported for bat hair (Cryan et al. 2004, 

Fraser et al. 2012, Ossa et al. 2012, Popa-Lisseanu et al. 2012, Sullivan et al. 2012). 

Secondly, that there is little variation in δDk among individuals at a given site. Britzke 

et al. (2009) replicated 10% of the samples and found that the duplicate varied no more 

than ±4‰ from its sample. Although this may seem like a large variation, Wassenaar 

and Hobson (2006) found that even in samples of the same feather taken from chickens 

fed a homogeneous diet, there was a range of δDk values of ±3‰.  

Molting Studies and Tissue Analyses 

Since deuterium is incorporated into hair during growth, knowledge of molting patterns 

is very important. Cryan et al. (2004) suggested that the molt for the Hoary bat is 

between June and August based on examination of when the δDh was most like the δDp 

of the location of specimen collection. A three month molt period is a wide range of 

time and could be problematic if the bats are migrating during the latter part of the 

summer. There is also some debate about molt and what affects its timing. Studies done 

by Constantine (1957, 1958) on Mormoops megalophylla senicula (Family 

Mormoopidae), Tadarida brasiliensis (Family Molossidae) and Myotis velifer (Family 

Vespertilionidae) found the patterns of each of these bats’ molting. The different areas 
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of the bats’ bodies molt in a very similar pattern, with only a few minor differences in 

the shape of each area in molt. It begins along the sides and progresses into the scapular 

area and rump then further inward onto the dorsal surface. The ventral surface molts 

differently, starting on the chin, legs and neck. It then moves along the sides and 

towards the posterior end. Because molting patterns across different families are the 

same in overall pattern and have only minor differences, I assume that the molting 

pattern of Myotis velifer (within the same family as Eastern Red and Hoary bats) is the 

same for my two study species. Bats molt once a year, but males typically molt earlier 

than females (Constantine 1957); there is evidence that reproductive females delay 

molting until their young are weaned (Cryan et al. 2004).  

In previous δD studies using bat hair, sampling was done from the scapular 

region (Cryan et al. 2004, Britzke et al. 2009, Fraser et al. 2010). According to 

Constantine’s molting diagrams (1957, 1958), that area is one of the last to molt. If the 

bat migrates during molt there could be areas of the body that contain hair from the 

previous year, and it is uncertain if these bats exhibit philopatry. In Britzke et al. 

(2009), they mention that sampling before and during the yearly molt might have 

influenced their results. It could also be problematic if they are migrating during their 

molt. Different sections of the bats would have varying δDh, and sampling an area 

grown during autumn migration could skew the geographic placement away from their 

summer range.  

Using claws as a sample instead of hair is a method that would eliminate the 

issue of molting period. Fraser et al. (2008) found that claws in Neotropical warblers 

had a change in δD of -0.4‰ per day. They concluded that it would take 16-17 weeks 
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for the claw tip to reflect the δD of the local habitat. If this change rate in δD is 

comparable to bats, then the deuterium in the claw tips of bats salvaged in the autumn 

would show the δD of the summer roosting areas.  Fraser et al. (2010) further studied 

Neotropical bats and found differences between claw tips and hair deuterium ratios. If 

bat claw growth is similar to other mammalian claw growth, then the keratinized tissue 

grows outward and forward in layers from the epidermal germinal matrix. The claw can 

be divided into two layers. The subunguis is a soft keratin that forms the ventral side 

and the unguis is a harder keratin that forms the dorsal portion. Once at the tip of the 

claw, both layers are present (Ethier et al. 2010). 

 

Research Initiatives 

The focus of this research is to determine the geographic extent of the source 

populations of bats killed in autumn at a central Illinois wind facility and whether the 

mortality is affecting a small versus a large portion of the bats’ summer ranges. Such 

information is critical for future studies assessing how much additive mortality these 

populations can sustain. I investigated differences in hair and claw tissues by first 

determining  if there are significant differences in δDk 1) among hair from different 

body areas and 2) between hair and claw tissues. The results of this study then 

determined the tissue type and sampling procedure of the remaining bats to examine 1) 

the geographic extents of source populations, 2) overlap of those geographic extents 

between males and females, and 3) yearly and monthly differences in extents. 
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CHAPTER II 

DEUTERIUM RATIO DIFFERENCES IN BAT HAIR AND CLAW TISSUES 
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Introduction 

Deuterium is a heavy isotope of hydrogen, and its chemical behavior is slightly 

different from hydrogen due to physical properties related to the heavier atomic mass 

(Ben-David and Flaherty 2012). It falls in precipitation as a ratio with hydrogen (δDp). 

Deuterium is conserved throughout trophic levels and when consumed is incorporated 

into tissues during their syntheses. Keratinized tissues are metabolically inert after 

formation, allowing isotope information of the non-exchangeable hydrogen to remain 

for long periods of time after the initial deposition in the tissue (Fraser et al. 2010). 

During analysis, standards are used to calibrate a relationship between exchangeable 

and non-exchangeable hydrogen allowing for the reporting of only non-exchangeable 

hydrogen in the samples. Standards are also used as a measure of precision during 

analysis. An accepted range of deviation among standards is no more than ±2‰ (C. 

Macdonald, University of Wyoming Isotope Laboratory, pers. comm. 2014). 

Since deuterium is incorporated into the hair during growth, knowledge of 

molting patterns is very important. Cryan et al. (2004) suggested that the molt for the 

Hoary bat is between June and August. A three month molt period is a wide range of 

time and could be problematic when sampling hair for deuterium analysis if the bats are 

migrating during the latter part of the summer. Constantine (1957, 1958) studied the 

molting patterns of Mormoops megalophylla senicula (Family Mormoopidae), 

Tadarida brasiliensis (Family Molossidae) and Myotis velifer (Family 

Vespertilionidae). He found that their molting pattern begins along the sides and 

progresses into the scapular site and rump then further inward onto the dorsal surface. 

Therefore, because molting patterns across different families are similar, I assume that 
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the molting pattern of Myotis velifer, which is in the same family as the Eastern Red 

and Hoary bats, is the same for those species. Bats molt once a year, and the newly 

molted hair reflects the location in which it was grown. Males typically molt earlier 

than females (Constantine 1957), and there is evidence that females delay molting until 

their young are weaned (Cryan et al. 2004). 

In previous δD studies using bat hair (δDh), sampling was done from the 

scapular site (Cryan et al. 2004, Britzke et al. 2009, Fraser et al. 2010). According to 

Constantine’s molting diagrams (1957, 1958), that site is one of the last to molt. A 

sample from an unmolted site would include deuterium ratios of the previous year, and 

it is uncertain if these bats exhibit philopatry. If the bat migrates during molt, it could 

also cause different sections of the bats to have varying δDh, and sampling a site grown 

during migration could skew the geographic placement away from the summer range.  

Using claw tissue is a way to remove the uncertainty of molting time and 

pattern. Fraser et al. (2008) found that claws in Neotropical warblers had a change in 

δD of -0.4‰ per day. This information led to the conclusion that it would take 16-17 

weeks for the claw tip to reflect the δD of the local habitat (Fraser et al. 2008). If this 

change rate in δD is comparable to bats, then the deuterium in the claw tips of bats 

salvaged in the autumn would show the δD of the summer roosting areas. Fraser et al. 

(2010) further studied Neotropical bats and found differences in claw tips and hair 

deuterium ratios. If bat claw growth is similar to other mammalian claw growth, then 

the keratinized tissue grows outward and forward in layers from the epidermal germinal 

matrix. This growth pattern allows for a sampling of a continuous time frame of 

deuterium deposits instead of hair which only shows the δD at one point of time. The 
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claw can be divided into two layers. However, the claw consists of more than one tissue 

type. The subunguis is a soft keratin that forms the ventral side, and the unguis is a 

harder keratin that forms the dorsal portion. Once at the tip of the claw, both layers are 

present (Ethier et al. 2010). 

In this study, I investigated differences in hair and claw tissues by first 

determining  if there are significant differences in δD 1) among hair from different 

body sites, and 2) between hair and claw tissues. The results of this study determined 

the tissue type and sampling procedure of the remaining bats for the other studies. 

 

Methods 

Hair Sampling 

115 Eastern Red and 74 Hoary bats were salvaged at a central Illinois wind farm in the 

fall of 2008, 2009, and 2010 and stored in a -80°C freezer. I used dissecting scissors to 

take 1cm
2
 hair samples from the interscapular, dorsal rump, and right dorsolateral site 

from 10 adult female Hoary bats and 9 adult and 1 subadult females from the Eastern 

Red bats. I cut as close to the skin as possible, and the scissors were cleaned between 

each sampling in methanol. There is evidence that females molt later than males 

(Constantine 1957, Cryan et al. 2004). If the results show no significant difference in 

the hair samples, then it can be infered that there are no significant differences in hair 

samples from among the hair sites on males. When sampling, there were some 

specimens where the right side was not in good condition or there was not enough hair 

to complete the sample. When this occurred, samples were taken from the left 

dorsolateral side as molting pattern shows symmetry in the molting of the sides 
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(Constantine 1957, 1958). The hair was placed in individually labeled aluminum foil 

packets while awaiting cleaning.  

Claw Sampling  

Claw samples were taken for analysis from the same specimens using dissecting 

scissors that were cleaned with methanol between each sampling. The same foot was 

used for each bat, and claws were sampled systematically starting from the most lateral 

toe. Claws were removed at the third joint of the toe and placed in individually marked 

aluminum foil packets. In the four cases where the claw was lost during sampling, the 

next toe was sampled and recorded. For Hoary bats, the claws were large enough that 

two claw tips could be added together for the appropriate weight. However, in Eastern 

Red bats the claws were too small and so a larger portion of the claw was used. For 

this, the section of the claw not covered by an ungual skin fold was taken for analysis 

because the sections of the claw further back contain bone tissue. To understand 

differences between tips and this larger section and differences among toes, two more 

claws were sampled from the Hoary bats and the entire portion of the claw not covered 

by the ungual skin fold was analyzed.  

Isotope Analysis 

Hair and claw samples were cleaned in-house in a 2:1 chloroform:methanol solution to 

remove surface oils. Wet samples were then dried at 50°F to prevent any preferential 

volatilization of the lighter isotope-containing compounds. They were then weighed 

and packaged into pressed silver capsules. These procedures followed instructions from 

the Colorado Plateau Isotope Laboratory of Northern Arizona University and the 

University of Wyoming Stable Isotope Laboratory. Each hair sample was randomly 
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split into two samples during encapsulation, creating duplicates to test the precision of 

analysis. The claw tips of the first two Hoary bat claws, which are composed of only 

keratinized tissue, were combined into one sample in order to reach the necessary 

sampling weight needed for analysis. The two Eastern Red bat claws were much 

smaller than those of the Hoary bats, and needed to be combined to accomplish the 

weight threshold. These samples were analyzed by the Colorado Plateau Isotope 

Laboratory of Northern Arizona University. That lab uses a Thermo-Electron 

temperature conversion elemental analyzer (TC/EA). They used Keratin-SC Lot SJ 

(powdered), CBS (Caribou hoof, powdered), and KHS (Kudo horn, powdered) as 

standards for their analysis. Due to subsequent equipment downtime at the Arizona lab, 

the remaining Hoary claws and hair samples were analyzed by the University of 

Wyoming Stable Isotope Laboratory. That lab also uses a TC/EA, but uses different 

standards, to wit, USGS 42 and 43, UWSIF33 (Turkey), and UWSIF34 (Chicken). The 

equipment at both labs required the same preparation and similar sample weights for 

analysis. 

Statistics 

The resulting δDk values were organized as a randomized complete block design to test 

for differences among tissues (hair vs. claw), differences in claw segments, and body 

sites of hair on the bats. They were analyzed in SAS 9.3 (SAS institute 2008) using a 

mixed model ANOVA with a Tukey adjustment to correct for multiple pairwise 

comparisons. This, however, did not answer the question of whether there is significant 

variation between the duplicates of hair samples from the same site on the bat itself. A 

nested ANOVA design was used to compare the duplicate samples within each site of a 
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bat and determine if there was significant variation among duplicate samples.  

 

Results 

Hoary Bats 

Table 1 shows the results for the hair and claw samples taken from the 10 adult female 

Hoary bats. Claw refers to the entire part of the claw that is not covered by an ungual 

skin fold. The claw tip is the end segment that contains only keratinized tissues. The 

standard deviations from the University of Wyoming are within the limits of ±2‰, a 

standard held by the laboratories, to ensure reliable analysis. One out of three of the 

standards from Northern Arizona University had a standard deviation slightly higher 

(2.7) than this ±2‰ threshold once during the analysis. 

The Hoary bat samples showed no significant differences when hair from the 

dorsolateral site was compared to the rump (P=0.6109), the dorsolateral site was 

compared to the interscapular (P=0.9964), or when the rump was compared to the 

interscapular (P=0.3950). There were also no differences among dorsolateral 

(P=0.9920), rump (P=0.8860), or interscapular (P=0.9356) hair when compared to 

claw. There was a significant difference between the claw and the claw tip (P=0.0136). 

This claw to claw tip difference is reflected also in an ANOVA (Table 4). There was a 

significant difference between two hair sample sites when compared to claw tip, the 

dorsolateral (P=0.0025) and the interscapular (P=0.0009). The rump was not 

significantly different from the claw tips (P=0.0869) (Table 2). The nested ANOVA 

found no significant variation among hair samples within each site of the bat (F(3,27) 

=1.00, P=0.4093) and no significant variation among sites on a bat (F(2,27) =1.30, 
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P=0.2967) (Table 3).  

Eastern Red Bats  

Table 5 shows the δD for the tissues sampled from the female Eastern Red bats. These 

were analyzed in the same manner as the aforementioned Hoary bats. There was no 

significant variation between samples of the dorsolateral and rump (P=0.0532), the 

dorsolateral and interscapular (P=0.9989), or the rump and interscapular (P=0.0724). 

There were also no significant differences when comparing hair site to claw; 

dorsolateral (P=0.2542), rump (P=0.8502), or interscapular (P=0.3188) (Table 6). The 

nested ANOVA for variation between samples within sites found no variation between 

samples of the same site (F(2,27) =0.56, P=0.6441), but did find a marginally significant 

variation among sample sites on the bats (F(2,27) =3.65, P=0.0469) (Table 7).  

 

Discussion 

Hoary and Eastern Red bats showed a similar pattern in differences of the δD of the 

hair and claw samples. The lack of difference among the body sites in the analyses 

suggests that they are finished with molting before migrating in early autumn, and that 

any part of the body is suitable for the remainder of the study. I therefore concluded 

that the sites of the body from which to sample hair are not significantly different in 

either species. 

The δD for the claw tip of the Hoary bats was consistently more depleted than 

the δD for the larger claw segment. There are three possible explanations for this 

pattern. First, the two types of samples contain different tissues. The claw tip is strictly 

keratinized tissue, while the larger claw segment additionally contains epithelial and 
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blood tissues associated with the terminal matrix. These have faster turnover rates, and 

that may introduce more local δDp into the sample resulting in a less depleted, hence 

less negative, result. The second possibility is that because the claw grows in both an 

inner-to-outer and back-to-front pattern, the tip is composed of older tissue. This may 

mean that the tip is referencing more northern latitudes. However, it has also been 

suggested that the tip may be interpreted as showing the wintering range (Burba 2013). 

This conflicting interpretation is due to not knowing the true growth rates of claws in 

bats, but also the fact that isotope ratios shift throughout the year. Many of the areas in 

the south where Hoary bats overwinter are depleted in δDp (Bowen and Revenaugh 

2003, Bowen et al. 2005), and this signal could be incorrectly interrupted as a northern 

latitude in the summer. Without knowledge of claw growth rates in bats, it is not 

possible to know which is correct. A third possibility is that since the tip and claw were 

analyzed at different laboratories, differences in analytical equipment may have led to 

some of the variation in δD. Considering that the two laboratories used the same types 

of analytical machines, used the same preparation protocols, and required the same 

sample weight for analysis, it is unlikely that the significant differences between claw 

tip and claw are due to the different lab analyses.  

When hair and claws were examined together, there was also a pattern. There 

was no significant difference between the hair of the interscapular and dorsolateral sites 

and the larger claw segments, but there was a significant difference between those body 

sites and the claw tip. This supports the findings of Fraser et al. (2010) in Neotropical 

bats. Although the rump was not significantly different from the claw tip, it was 

marginal. This could show a tendency for the rump site to be slightly more negative 
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than the other sites of the bat and, because the claw tips were the most negative, they 

are more similar. However, because there was no difference among the hair sample 

sites, this small lack of difference is not an issue. Because there is a demonstrated 

correlation between δDp and δDk (Cryan et al. 2004, Fraser et al. 2012, Ossa et al. 2012, 

Popa-Lisseanu et al. 2012, Sullivan et al. 2012) and a lack of claw growth rates, I chose 

hair as the most informative tissue for the next phase of this study. Because there are no 

significant differences among the body sites, I chose the rump due to its large area and 

long, dense hair which made for easy sampling and preparation. I took only from this 

site to maintain consistency throughout my sampling procedure.  

 

Conclusions 

Although the claw tips showed a more negative result, I cannot advise their use at this 

time since claw growth rates are unknown and we cannot know when the tip tissues 

were synthesized. It is also unlikely that a larger portion of the claw is of use due to the 

mixture of tissues and tissue turnover rates. As of now, hair is the best sampling tissue 

and site of the body is not a significant factor. There is also little variation within the 

hair of a body sampling site.  
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Table 1: δD (‰) of hair and claw samples taken from 10 adult female Hoary bats. 

(mc139 had no more toes to sample)  

Hoary δD hair δD claw 

Bat Dorsolateral Rump Interscapular Claw 3 Claw 4 Claw Tip 

cr14 -22 -75 -37 -46 -47 -66.9 

kh27 -87 -33 -60 -2 -27 -80.9 

kh3 -71 -73 -31 -37 -52 -87.6 

mc138 -88 -82 -32 -57 -62 -80.8 

mc139 -47 -71 -29 na na -101.6 

mc146 -27 -87 -83 -88 -86 -111.1 

mc73 -24 -49 -33 -60.0 -60 -86.2 

kh2 -53 -58 -56 -33 -32 -79.1 

mc136 -35 -31 -52 -54 -58 -81.2 

mc158 -24 -67 -39 -72 -72 -92.1 

 

Table 2: Random Complete Block Design analysis of intrasample variation of Hoary 

bat body sampling sites. Samples taken from 10 adult females. 

Site Site DF t Value Pr > |t| Adjusted  P 

dorsolateral rump 35 1.43 0.1606 0.6109 

dorsolateral interscapular 35 -0.36 0.7232 0.9964 

dorsolateral claw tip 35 4.03 0.0003 0.0025 

dorsolateral claw 35 0.44 0.6642 0.9920 

rump interscapular 35 -1.79 0.0820 0.3950 

rump claw tip 35 2.63 0.0127 0.0869 

rump claw 35 -0.92 0.3622 0.8860 

interscapular claw tip 35 4.38 0.0001 0.0009 

interscapular claw 35 0.78 0.4425 0.9356 

claw tip claw 35 -3.40 0.0017 0.0136 

 

Table 3: Hoary bat nested ANOVA analysis of intrasample variation of hair samples 

within a sampling site. Samples taken from 10 adult females. 

Source DF F Value Pr > F 

site 2 1.30 0.2967 

sample(site) 3 1.00 0.4093 

Bat 9 0.72 0.6853 

bat*site 18 13.94 <0.0001 

 

Table 4: ANOVA analysis of 10 adult female Hoary bats for differences between 

claws of separate toes and differences among claws and the claw tips. 

Contrast DF F Value Pr > F 

Claw A vs. Claw B 1 0.38 0.5446 

Claws A,B vs. Tip 1 91.76 <.0001 
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Table 5: δD (‰) of hair and claw samples taken from 9 adult female Eastern Red 

bats. (mc30 is a subadult)  

Eastern Red δD hair δD claw 

Bat dorsolateral rump interscapular Claw 

mc53 -40 -29 -36 -53.2 

kh5 -66 -83 -32 -52.9 

mc13 -28 -60 -43 -44.7 

mc144 -23 -102 -58 -62.6 

mc57 -26 -56 -49 -58.1 

mc30 -55 -101 -24 -105.0 

mc42 -57 -56 -25 -58.5 

mc51 -67 -83 -34 -64.2 

mc58 -23 -33 -87 -41.8 

mc67 -58 -83 -68 -71.2 

 

Table 6: Random Complete Block Design analysis of intrasample variation of 9 adult 

female Eastern Red bat body sampling sites. 

Site Site DF t Value Pr > |t| Adjusted P 

dorsolateral rump 27 2.71 0.0116 0.0532 

dorsolateral interscapular 27 0.14 0.8861 0.9989 

dorsolateral claw 27 1.89 0.0690 0.2542 

rump interscapular 27 -2.56 0.0162 0.0724 

rump claw 27 -0.81 0.4263 0.8502 

interscapular claw 27 1.75 0.0915 0.3188 

 

Table 7: Eastern Red bat nested ANOVA analysis of intrasample variation of hair 

samples within a sampling site. Samples taken from 9 adult Eastern Red bats 

Source DF F Value Pr > F 

site 2 3.65 0.0469 

sample(site) 3 0.56 0.6441 

bat 9 0.71 0.6948 

bat*site 18 129.78 <.0001 
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CHAPTER III 

DETERMINATION OF GEOGRAPHIC EXTENTS OF SOURCE POPULATIONS 

OF HOARY (LASIURUS CINEREUS) AND EASTERN RED (LASIURUS BOREALIS) 

BATS KILLED AT A CENTRAL ILLINOIS WIND FACILITY 

 



32 
 

Introduction 

Agricultural fields in the Midwest of the United States can kill an estimated 4.45-7.14 

bats per turbine per year (Jain et al. 2010). The Eastern Red and Hoary bats comprised 

20.0-60.9% and 9.0-88.1% of fatalities at wind facilities, respectively, across the 

contiguous United States (Arnett et al. 2007).  

There is evidence (Winhold et al. 2008) that the Eastern Red bats are showing 

signs of decline. In a paired netting survey that took place in 1978-1979 and then 

again in 2004-2006, they reported overall a 52-85% decline in netting captures per 

night. This has the potential to have significant influence not only on the ecosystem 

but also the agricultural economy. It is estimated that bats can save U.S. agriculture 

$22.9 billion per year through decreasing insect pest populations, reducing the cost of 

pesticide use (Boyles et al. 2011). With their impact on ecosystems and economies, 

the loss of bat populations is a phenomenon that needs to be further understood.   

Estimating populations of bat species can be problematic for various reasons. 

The Eastern Red and Hoary bats are largely solitary for much of the year, even during 

the pupping season when many other species form large maternity colonies. It is this 

solitary behavior that makes censuses of these two species difficult (Whitaker Jr. and 

Mumford 2009). Banding studies have been attempted in bats, but recapture rates of 

banded individuals are extremely rare, making the amount of information gathered 

considerably less than the effort and cost involved. Radio transmitters have also been 

attempted, but models light enough to be carried by bats without disrupting their 

behaviors or putting them at risk do not have enough range for migratory species 

(Cryan et al. 2004). It is these difficulties that make deuterium ratio analysis an 
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enticing method for migration studies of bats, especially when coupled with the large 

sample sizes available from wind turbine mortality.  

Deuterium, a heavy form of hydrogen, can be used in migration studies if the 

organism moves between sites of different deuterium:hydrogen ratios (δD). It can then 

provide a way to reconstruct their movements through time (Bowen et al. 2005). 

Many researchers have utilized deuterium in keratinized tissues (δDk) to track 

migrating birds to their seasonal geographic origins using feathers and other tissues 

(Hobson et al. 2007, Mazerolle et al. 2005, Wunder et al. 2005, Rocque et al. 2006, 

Langin et al. 2007, Fraser et al. 2008, De Ruyck et al. 2013). It has also been 

increasing in popularity as a method to track migration and distribution patterns of 

bats (Britzke et al. 2009, Fraser et al. 2010, Fraser et al. 2012, Ossa et al. 2012, Popa-

Lisseanu et al. 2012, Sullivan et al. 2012).  However, δDk does not reflect deuterium 

levels of precipitation (δDp) at a one-to-one ratio. Due to multiple fractionation events 

in the food web, tissue levels typically are more depleted that precipitation levels 

(Fraser et al. 2010). Even with this phenomenon, the use of deuterium has been 

effective for many wildlife forensic studies (Bowen et al. 2005). One of the ways this 

discrimination can be compensated for is through the use of regression equations that 

convert δDk values to δDp values which can then be mapped onto a deuterium 

precipitation isoscape.  

Cryan et al. (2004) sampled hair from 265 live and museum specimen Hoary 

bats and created a regression model that correlated deuterium in the bats’ hair (δDh) 

with δDp, δDp = δDh+24.81/0.7884. This technique was also used more recently by 

Ossa et al. (2012). They used six non-migratory species and sampled in a similar way 
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to Cryan et al. (2004). They had mixed correlations between δDh and δDp, with some 

exhibiting a positive correlation and some with none or a negative correlation. Even 

with these differences, they derived a regression equation from the six species  

(δDp = 35.7+0.66*δDh) that had a significant slope. They discussed several possible 

explanations for the mixed results, notably small sample size, high variability in δDp 

within a sampling location, using annual δDp instead of the δDp for the molting 

months, and/or the bats being more prone to migration movements than believed. 

Fraser et al. (2012) used museum specimens of Tri-colored bats (Perimyotis 

subflavus), a North American species, to conduct deuterium ratio analysis and to 

determine their molting period. They derived quadratic regression equations linking 

δDh and δDp for males (δDh = -0.036* δDp
2
-1.789* δDp-45.607) and females          

(δDh = -0.034* δDp
2
-1.606* δDp-40.375) separately. Although the equation from Ossa 

et al. (2012) was made using six species, these four different equations suggest that 

the relationship between δDh and δDp might be different for each species.  

              In this study, I examined the geographic extents of specimens killed at a 

single wind facility in central Illinois. The analysis  determined how much of their 

summer range is affected by the mortality and gave insight into the migratory 

behaviors of the Eastern Red and Hoary bats that migrate through central Illinois in 

the autumn. The extents also showed possible areas where multiple bats originated 

and how much of the summer range is overlapped by males and females of the same 

species. These analyses increased the understanding of the migratory behaviors of 

these bats and give insight into mortality patterns and possible effects. To do this, 

deuterium isoscapes were constructed using Isoscapes Modeling, Analysis, and 
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Prediction (http://www.isomap.org), a web-based isotope model building program. 

The bats were mapped onto the isoscape, and the resulting isotope extent maps were 

then refined by using summer range predictions developed by the Genetic Algorithm 

for Rule-set Prediction (GARP), a machine-learning based analytical package for 

ecological niche modeling.  

Isomap.org uses a spatial interpolation method because there are many areas 

around the world where isotopic data is unavailable. Models are created using 

deuterium ratio as the dependent variable and a series of independent variables such 

as latitude, longitude, precipitation and elevation. Depending on the focus of the 

research, some independent variables are more useful than others. The models can 

also be tailored to the study’s temporal and geographic focus by selecting data from 

certain months and years and different parts of the world. As models are created, the 

researcher can explore each one to compare the P-values of model variables and 

residual plots of both the regression and geostatistical models and decide which 

variables are significant to the model and therefore appropriate for their project. These 

models are then used to create the isoscapes (Figure 1). It is also possible, using the 

assignment tool, to assign δD values of tissue samples to geographic origin with their 

statistical uncertainties on the isoscapes. This tool uses Bayes theorem, which was 

used instead of simple regression in migration studies by Wunder et al. (2005) to 

evaluate the probability of sample origin. It uses the isoscape selected by the user and 

the isotopic ratio and standard deviation associated with the sample to map the 

probability of origin (Bowen et al. 2013). The resulting map gives the percent 

probability that the specimen originated from each individual pixel.  
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GARP predicts the geographic extents of organisms and has been highly 

useful for estimating ranges of various vertebrate species (Peterson et al. 2002, 

McNyset 2005, Kostelnick et al. 2007). GARP uses known species occurrence data in 

the form of geographic coordinates and chosen environmental raster data sets to 

predict an ecological niche for a species. Peterson et al. (2002) found that GARP was 

robust in species prediction even when there were a low number of species occurrence 

points to create the model. It works using a process of repeating steps: rule selection, 

evaluation, testing and, based on that rule’s performance, integration or rejection. This 

process is done using a subset of the species’ occurrence data, the training data. A 

second subset is used to test that prediction (Peterson et al 2002). These variables are 

then subjected to a rule-based prediction system of if-then relationships. Each rule is 

tested for its importance in the prediction through a χ
2 

test that looks at the probability 

differences of predicting the presence or absence of the species in question. The 

probability of presence and absence is tested before the rule is applied and after 

application (Stockwell and Peters 1999). The tested occurrence data can then test the 

overall accuracy of the prediction model. GARP performs these rule-based predictions 

for 20 iterations. Following these tests, a “10 best model set” is selected by GARP and 

typically summed to generate a raster grid ranging from 0 (i.e., 0 of 10 models 

predicted presence) to 10 (10 of 10 models predicted presence). 

These two methods, deuterium stable isotope analysis and GARP, have been 

used in the past to answer questions about migration and/or species’ ranges. Using 

isoscapes alone is limited because the longitudinal range of each isotopic extent is 

very wide and is most helpful for limiting latitudinal possibilities. To alleviate this 
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problem, researchers must use other methods to decrease the potential extents. Van 

Wilgenburg and Hobson (2011) combined deuterium with band recovery to assign 

migrant birds to their geographic origins. Hobson et al. (2007) used GIS to combine 

known breeding ranges with deuterium analysis to estimate origins of migrating 

songbirds. Mazerolle et al. (2005) combined band recovery, deuterium, and breeding 

range data to understand migratory movements of White-throated Sparrows. For 

Hoary and Eastern Red bats, the known ranges are generalized and lack seasonal 

detail. There is also a lack of band recovery information due to the difficulty in 

recovering banded bats (Cryan et al. 2004).  GARP has the capabilities of estimating 

ranges for species during specific times of the year. In this study, it is essential that 

the species’ ranges are specific to the summer months when they are molting. 

GARP’s ability to do this decreases the longitudinal range by restricting the isotopic 

assignment to the eastern and western boundaries of the species’ summer ranges. 

Peterson et al. (2002) used GARP to predict distributions of 25 species of Mexican 

birds. Kostelnick et al. (2007) estimated suitable Black-tailed Prairie Dog (Cynomys 

ludovicianus) habitat using GARP, and GARP was used by McNyset (2005) to predict 

distributions of 12 freshwater fish species. The combination of these two model 

methods in this study (GARP and Isomap) is a novel technique that provides a better 

understanding of the bats’ geographic extents than either could provide separately.  
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Methods 

Isoscape Development and Assignment 

I used Isomap.org to develop an interpolated δDp model using latitude and elevation 

as independent variables. This involved data collected from 452 stations throughout 

the Northern Hemisphere from 1960 to 2010, June through August (U.S. National 

Geophysical Data Center 1998, Welker 2000, IAEA/WMO 2011). More years than 

the time period that covered bat sampling (2008-2010) were used in the model 

creation to decrease any bias created by short-term climate variation in those three 

years (Bowen and Revenaugh 2003). Results of Fraser et al. (2012) also supports the 

use of long-term isotope data in building isoscapes for migration studies. Once the 

years of data, independent and dependent variables, and the geographic area were 

selected, I submitted all the variables into the Isomap precipitation modeling program. 

Upon completion, the P-values of each variable and the residuals for both the 

regression and geostatistical models were checked for their significance in the model. 

The model was then used to create the isoscape that was imported into ArcMap 10.2 

(Figure 1).  

GARP Model Development 

I chose the environmental variables for the GARP models based on literature about 

Eastern Red and Hoary bat habitat requirements and on the availability of continent-

wide or global data sets. Detailed information on each data set can be found in Table 

12. The environmental data included 1-km global average monthly precipitation and 

temperature which were generated by interpolating climate data from weather stations 

around the world using a 30 arc-second grid (Hijmans et al 2005). These variables 
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were selected because precipitation and temperature are key factors in determining 

vegetation and insect species of an area. There is also evidence that temperature is an 

important factor in summer area selection by both male and female Eastern Red bats 

(Ford et al. 2002). This data was imported through WorldClim, a free climate data 

website for ecological modeling and GIS (http://www.worldclim.org/). A North 

America 1-km digital elevation model (DEM) (NASA et al. 2010) was also used and 

imported through Data Basin 

(http://databasin.org/datasets/d2198be9d2264de19cb93fe6a380b69c). The last 

environmental data was Global Map-Percent Tree Cover at 1-km resolution, 

developed from the MODIS images from the Terra satellite (ISCGM 2008), and 

imported through the ISCGM Global Map Data Download Service 

(http://www.iscgm.org/gmd/download/ptc.html) (Table 12). Elevation and percent 

tree cover were selected as important variables because Willis and Brigham (2005) 

found that when females have pups, they tend to choose roosts that are below 1,200 

meters in elevation and that the percentage of canopy cover was also an important 

factor for maternity roost site selection (Willis and Brigham 2005).  

Precipitation and temperature were imported into ArcMap10 as separate 

months, and new rasters were created using the raster calculator tool to find the 

average precipitation and temperature of June, July, and August to show the average 

precipitation during the time when the bats are most likely in molt (Cryan et al. 2004). 

Percent tree cover was imported as multiple rasters and mosaicked together to form a 

single data file. A DEM raster file was then imported and clipped using the raster clip 

tool in ArcMap to create a raster that had an extent that only included the continental 
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North America. I then projected all of the environmental rasters into the WGS 1984 

World Mercator projection coordinate system, making sure that the cell size (1 km) 

was the same for each. This projection was chosen because the study area 

encompassed the North American continent, and many of the environmental raster 

files could be easily converted. Although the Mercator projection distorts area, 

because this study focuses on the proportions of areas (Isotope-determined area: 

GARP-predicted area) and not simply on specific areal measurements of a species’ 

range, each raster is distorted the same amount and therefore the distortion had no 

effect on the final results. Once projected, each data file was then clipped to the same 

geographic extent using the DEM raster as a mask, a requirement for GARP.  

To create the training and testing points for the model, specimen occurrence 

data were downloaded from the Mammal Networked Information System 

(MaNIS.org). Only specimen data for Lasiurus borealis borealis (Wieczorek 2001a) 

and Lasiurus cinereus cinereus (Wieczorek 2001b) were used. This prevents any of 

the specimens of the Western Red bat (Lasiurus borealis teliotis), found on the west 

coast of the U.S., or the Hawaiian Hoary bat (Lasiurus cinereus semotus), found only 

in Hawaii, from being part of the GARP model. Separate datasets were created that 

only had these specimens from June, July, and August to develop the summer ranges, 

and any records where sex or coordinates were unknown were removed. The species’ 

files were used to create (x,y) coordinate shapefiles. These files were then projected 

into the same projection as the environmental dataset and the coordinates transformed 

from latitude/longitude coordinates into meters, the coordinate system of the WGS 

1984 World Mercator projection. The Geostatistical toolbar was used to randomly 
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assign points either to be used to create the GARP model or test it later in ArcMap, 

with 80% in training and 20% in testing (Figures 2-3). The rasters and training points 

were then uploaded into GARP, which also randomly splits the occurrence points into 

80% training and 20% testing points for internal model training and testing to insure 

the most statistically sound results. Once the models were completed, each model was 

converted to a raster, and the ten were added together using map algebra (Figures 4-

5). The results displayed the areas where 9-10 of the best 10 models agreed was 

suitable summer habitat. The models were then relabeled to be either unsuitable or 

suitable. Only areas where 9-10 out of the best 10 model set agreed were considered 

suitable. All other areas were labeled unsuitable and not used in later mapping. The 

testing points that were randomly separated from the GARP training points before the 

model were then added. The Extract Values to Points tool was used to determine how 

many occurrence points were within pixels that had been determined to be suitable 

habitat.  

Sampling and Analysis  

Based on the study described in Chapter 2, I took hair samples from the rump.  I 

sampled 27 adult Eastern Red bats (24 males, 2 females, 1 unknown) and 34 adult 

Hoary bats (23 males, 7 females, 4 unknowns). I was selective in my choice of 

salvaged specimens and did not sample those that were highly decayed or had severe 

damage to the body. For many, the amount of decay and drying caused the hair to fall 

off the body. There were also several bats that suffered loss of skin and fur on their 

backs. Both of these factors would have made sampling from the selected region 

difficult and prone to error. I sampled a 1cm
2 

section of hair from each specimen and 
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cleaned, weighed, and packaged it as described in the previous chapter. These were 

then sent to the University of Wyoming Stable Isotope Laboratory for δDh analysis, 

and every third sample was duplicated to ensure precision in the analysis.  

The resulting δDh values were then examined, and the Hoary bat values were 

converted to δDp using the regression equation derived from Cryan et al. (2004): 

δDp=δDh+24.81⁄0.7884. This equation was not used for the Eastern Red bats because 

the studies by Cryan et al. (2004), Ossa et al. (2012), and Fraser et al. (2012) suggest 

that these regression equations might be different for each species. The converted 

Hoary bat ratios and raw Eastern Red bat ratios that were both analyzed with 

duplicates were then analyzed statistically with ANOVA to determine if there were 

significant differences within the samples among the bats (SAS Institute 2008). Raw 

and converted δDh and sample duplicates for Hoary bats are in Tables 8-9. Raw δDh 

and sample duplicates for Eastern Red bats are in Tables 10-11.  

The δDh of these bats and those of the bats from the previous study were then 

mapped individually by the Isomap.org assignment tool. With these, there were a total 

of 11 adult female (2 + 9 from previous study) and 24 adult male Eastern Red bats, 

and 17 adult female (7 + 10 from previous study) and 23 adult male Hoary bats. Each 

assignment map was then imported into ArcMap 10.2 and converted from an ASCII 

file to a raster file. Not all bats were used to create the origin maps. Of the female 

Hoary bats, 3 were not used due to extremely enriched deuterium ratios, a possible 

contamination of the sample, and 1 male adult Hoary was not used in mapping due to 

this same uncertainty. Of the female Eastern Red bats, 1 was excluded due to her 

status of being a subadult and 2 were not used due to extremely enriched δDh. The 
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subadult was not used because there is some evidence of differences in deuterium 

ratios between adults and juveniles in birds (De Ruyck et al. 2013), such as in juvenile 

Merlins (Falco columbarius) which have deuterium ratios placing them far outside the 

breeding range for the species (Wittenberg et al. 2013). For male Eastern Red bats, 7 

samples were not mapped due to extremely enriched δDh (see Appendix for maps of 

all bats not used due to extremely enriched deuterium ratios). A reason for not using 

the bats with the highly enriched δDh is that I could not be certain that contamination 

did not occur with these samples. Although diet affects the δDh and the enriched δDh 

could have been caused by a diet rich in insects from aquatic habitats (Britzke et al. 

2009), I had no certain biological explanation for these enriched samples. The 5 bats 

that had unassigned sexes were not used in mapping because it was suggested by 

Britzke et al. (2009) that combining the sexes should be avoided. Those without an 

assigned sex risked being mapped with the wrong group. Therefore, 14 female Hoary, 

22 male Hoary, 9 female Eastern Red, and 17 male Eastern Red bats were used to 

create the resulting maps (Table 13).    

The maps were then each reclassified so that only the pixels of highest 

probability were given a value of 1 for present; all other pixels were assigned a 0 for 

absent. Reclassified rasters of the same species and sex were then added together in 

the raster calculator, and the resulting isotope prediction maps were then projected 

into the WGS 1984 World Mercator projection so that they would overlay with the 

GARP range models (Figure 6). The GARP maps were reclassified and multiplied by 

the resulting species and sex specific isotope prediction maps. This allowed for pixels 

covered both by the isotope prediction map and GARP map to be distinguished from 
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all other pixels and for the isotope prediction map to be clipped to probable summer 

ranges.  The resulting maps are in Figures 7-10.  

These were then reclassified again so that pixels were either 0 (absent) or 1 

(present) and overlaid onto the GARP models. The proportion of the range affected by 

the wind facility was determined by the proportion of the GARP range covered by the 

isotope geographic extents. This was done by a simple ratio of the number of pixels 

given the assignment of presence in the isotope raster to the number of pixels assigned 

presence in the GARP range raster (Figures 11-14).  I also added the maps of males 

and females together, keeping species separate, to determine the amount of overlap in 

extents between the sexes by the proportion of overlapping pixels:nonoverlapping 

pixels (Figures 15-16). 

 

Results 

Table 8 shows the raw δDh and converted δDh to δDp for the Hoary bat hair samples.  

Table 10 shows the raw δDh for the Eastern Red bat hair samples. The results of these 

analyses had low standard deviation within the standards used by the University of 

Wyoming as follows: USGS42, 0.5; USGS43, 0.4; UWSIF33, 1.0; UWSIF34, 1.0. 

These are all within the ±2‰ range to ensure reliability of the analysis (C. 

Macdonald, University of Wyoming Isotope Laboratory, pers. comm. 2014). When 

duplicates were analyzed, there were significant differences among the samples for 

both the Eastern Red and Hoary bats (Eastern Red: F(1,12)=15.60, P=0.0019; Hoary: 

F(1,7)=14.91, P=0.0062). When the differences were further investigated, the average 

difference in the Hoary bat samples was 0.875 (minimum=0; maximum=2.0). For the 
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Eastern Red bat samples, the average difference was 1.0 (minimum=0; 

maximum=3.0).  

The results of the GARP models can be seen in Figures 4-5. They show the 

resulting best 10 models developed and the resulting predicted summer range for both 

species. In testing the GARP models with the testing points shown in Figures 2 and 3, 

I found that the model accurately predicted the presence of the bats 98.93% of the 

time for Hoary bats and 96.85% of the time for Eastern Red bats. In cases where they 

were not, the specimens occurred within 1-3 pixels of a predicted area.  

The female Hoary bats’ isotope-generated extent covered 73.87% of their 

predicted summer range (Figure 11). The male Hoary bats’ extent covered 64.40% of 

their predicted summer range (Figure 12). Female Eastern Red bats’ extent covered 

54.15% of their predicted summer range (Figure 13), and male Eastern Red bats’ 

extent covered 72.33% of their predicted summer range (Figure 14). Male and female 

Hoary bats overlapped 45.13% of their extents (Figure 15). Male and female Eastern 

Red bats overlapped 63.49% of their extents (Figure 16). The map for female Hoary 

bats showed an area where 6 out of the 13 bats overlapped in their extents (Figure 7). 

Out of the 20 male Hoary bat specimens mapped, 16 bats overlapped in extents 

(Figure 8). In the female Eastern Red bats, there were portions of the map where 4 out 

of the 10 bats mapped overlapped their extents (Figure 9). Out of 19 male bats, 9 

specimens overlapped in their extents (Figure 10).  
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Discussion 

When a subsample of the specimens was analyzed with their duplicates, there was a 

significant difference between them (Hoary F(1,7)=14.91, P=0.0062, Eastern Red 

F(1,12)=15.60, P-0.0019). However, the amount of difference (Hoary, 0.875; Eastern 

Red, 1.0) is within the accepted range of variability expected within biological 

samples due to natural variability within growing tissues. Chickens fed a 

homogeneous diet still had differences within feather samples, and it was determined 

that a variation of ±3‰ was to be expected due to laboratory measurements and 

metabolic effects (Wassenaar and Hobson 2006). Variability within samples is most 

common in tissues like hair, which are difficult to pulverize into a homogeneous 

powder.  

The equation (δDp=δDh+24.81⁄0.7884) for Hoary bats by Cryan et al. (2004), 

used to convert δDh to δDp, was not used for the Eastern Red bats. Ossa et al. (2012) 

did a similar study using 6 species and developed very a different regression equation, 

suggesting that the relationship between δDh and δDp may be species specific. I cannot 

assume that because the Hoary bat and Eastern Red bat are within the same genus that 

they would have the same discrimination of deuterium in their tissues. For this study, 

I did not have enough salvaged specimens during their molting period, and it was 

beyond the scope of this project to gather samples from other collections across the 

country to develop a regression model for the Eastern Red bats. However, this does 

not affect the conclusion regarding the proportion of range or yearly and monthly 

overlap of extents. It only shifts the mapped range north or south depending on 

whether the tissue is more enriched or depleted in deuterium than the precipitation.  
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The success of the GARP models offers support to this method’s use in 

estimating a species occurrence. For the specimens that were not within a predicted 

pixel, they were within 1-3 pixels (that is, 1-3km) of the predicted pixel. This error is 

most likely due to data uncertainty in the environmental dataset and not a function of 

the model itself. Another potential error is that GARP overestimated the range 

possibilities and predicted areas where the species would not be found. Based on both 

possible errors, GARP models are more prone to overestimate than underestimate a 

range. The success of combining isotope analysis through Isomap with GARP 

methods supports their use and their ability to be integrated. The advantage of using 

them together is demonstrated well by the Eastern Red bats. Isotope mapping alone 

created possible geographic extents that covered the entire continent, but when GARP 

was implemented with Isomap, these isotope predicted maps were restricted and the 

geographic extents reflected a more probable extent map. 

The female Hoary bats’ estimated geographic extents cover 73.87% of their 

predicted summer range. It also appears that they are originating north of the wind 

facility, with many of them coming from near the northern boundary of the U.S. and 

southern Canada. Although their range extends into the Rocky Mountains and the 

western coastal states, it is unlikely that they would migrate over the mountains into 

the Midwest, and then south to their wintering areas. More likely, they originated in 

the Midwest or Northeast. There is a large expanse of Canada that was a possible 

geographic extent due to the δDp of the area, and this very northern part of the range 

cannot be ruled out as a possible area of origin.  

The male Hoary bats’ geographic extents show a similar pattern, but with 
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some being potentially local summer residents. Their extents cover 64.40% of their 

predicted range and dip down into the southern Midwest, and it appears that they 

moved northward in the autumn. Another explanation is that this is a result of the 

deuterium isoscape (Figure 1). The location of the wind facility is at the edge of two 

isoclines, and it is possible that even with the more enriched δDh, they could have 

originated just a few kilometers south of the wind facility. It is also possible that the 

enrichment of deuterium in the bats’ hair is derived from their diet. If the bats fed on 

insects from aquatic habitats, their δDh would not correlate as tightly with δDp. 

Evaporation causes water in lakes and similar bodies of water to become more 

deuterium enriched. Insects emerging out of the water would then have a more 

enriched signature (Britzke et al. 2009), and this would be incorporated into the bat’s 

hair, giving it a seemingly more southern origin.  

When the females’ and males’ extents were added together, they overlapped 

by 45.13%. This suggests a separation in male and female summer habitats and 

supports the finding that the males and females of the Hoary bats separate at a 

continental scale during the pup-rearing season (Cryan 2003). Based on his map of 

specimen locations, there is a tendency for more females to be in the northern 

Midwest and Canada, while males are in the western and Midwest regions (Cryan 

2003). However, there is substantial overlap and not a distinct geographic area of 

clear separation.   

The female Eastern Red bats’ isotope extents covered 54.15% of their 

predicted summer range with a likelihood that some may have been local residents 

during the summer. Because there was no conversion of δDh to δDp, the location of 
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the specimens’ extents might not be as reflective of their true extent location as in the 

Hoary bats. It is likely that the Eastern Red bats’ extents are further south because the 

tissues of Hoary bats are more depleted than the precipitation. The map in Figure 8 

shows areas in the northern part of Mexico as possible origins, but this is highly 

unlikely. The mountains in that area often have depleted δDp due to the elevation and 

geological influences on precipitation, and this probably resulted in the inclusion of 

Mexico as a possible origin area.   

Male Eastern Red bats covered 72.33% of their potential summer range. 

However, like the male Hoary bats, they have several individuals which had more 

enriched δDh, and this placed them in the isocline that dips into the southern U.S. 

(Figure 1), but also comes just south of the wind facility. It is also possible that, like 

the Hoary bats, this enriched δDh signature is due to a diet of aquatic insects. Britzke 

et al. (2009) found potential northern movements of Eastern Red bats, but also noted 

that the bats’ diet may have been the influencing factor, if they consume a large 

proportion of aquatic insects (Britzke et al. 2009). The male Eastern Red bats’ 

northern restriction is similar to the females and there is a high possibility that some 

may have been summer residents. As with the female Eastern Red bats, because there 

was no conversion of δDh to δDp, the location of concentration might not be as 

accurate as in the Hoary bats. It is likely that the extent is slightly further south. 

However, this does not affect conclusions about the portion of the range covered.  

When male and female extents were added together, they overlapped 63.49% 

of their extents. This suggests that they are using the same areas during the pup-

rearing season and supports the findings of Cryan (2003) that males and female are 
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dense both in the Midwest and near the Canadian border. They are especially dense in 

the states of Illinois, Iowa, Wisconsin, and Minnesota.  

Maps of all bats that were not mapped due to highly enriched δDh are shown in 

Appendix. Although it is possible that these samples were contaminated during the 

sampling or analysis process, it is also possible that their δDh signature is due to these 

individuals displaying unusual movements, having become wayward in their 

migrations, or having consumed highly enriched prey. However, not adding these bats 

into the mapping process does not change the overall conclusion that the bats killed at 

the wind facility in Illinois are coming from a large expanse of their summer range. It 

would only increase the percent of summer range affected.  

 

Conclusions 

The GARP models’ ability to estimate the occurrence of these bats based on the 

testing points overlapping with predicted pixels suggests that this modeling process is 

highly accurate and has great potential to predict a species’ range. GARP is much 

more likely to overestimate than underestimate a range and therefore predict the 

presence of a species where that species does not occur. For this study, such an error 

makes the maps a more conservative estimate of geographic extents. The success of 

combining isotope analysis, through Isomap, with GARP methods supports their use 

and their ability to be integrated. 

The large portion of the extents of the males and females of both species 

shows that the bats killed at a single central Illinois wind facility are coming from 

across the species’ ranges. This suggests that mortality suffered at this single wind 
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facility might not have strong impacts on local populations by itself. However, if other 

wind facilities developed and developing throughout the Midwest display this pattern 

of widespread source extents, there could be significant cumulative effects of those 

facilities on multiple populations. The male and female overlap of these two species 

also shows an interesting pattern. The Hoary bats did not overlap between the sexes as 

much as the Eastern Red bats. The Eastern Red bats overlapped a larger portion of 

their range, suggesting they occupy similar areas during the pup-rearing.  

This study shows the importance of specimen salvage from these wind 

facilities, a method underutilized in bat biology. Wind facilities offer a means of 

sampling specimens that cannot be easily duplicated but can give insight into many 

different aspects of bat biology, such as migratory timing and pathways, summer 

roosting grounds, wintering grounds, sex separation, and mating. While the desire is 

to reduce such mortality, we should not waste the mortality that does occur. 
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Table 8: The raw and converted δDh for Hoary bat hair. Ratios were converted using 

Cryan et al. (2004) equation δDp=δDh+24.81⁄0.7884.  

Specimen Raw δDh Converted δDh 

mc137 -36 -14 

t136ews7 -46 -27 

t1601 -46 -27 

t0522 -49 -30 

t1365 -49 -30 

mc03 -53 -36 

mc116 -55 -37 

1088 -56 -38 

13915 -55 -38 

t1364 -58 -41 

t2261 -58 -41 

t2264 -57 -41 

t4592 -58 -42 

mc63 -60 -44 

mc114 -61 -46 

mc141 -62 -47 

t13912 -62 -47 

t1607 -62 -47 

t2224 -65 -50 

t2312 -64 -50 

t2313 -65 -50 

mc77 -65 -51 

t1112 -66 -51 

t1638 -66 -51 

mc75 -68 -54 

t1361 -68 -54 

t225102 -69 -55 

t1606 -70 -56 

t16320 -69 -56 

t19617 -76 -64 

cr17 -76 -65 

19392 -77 -66 

t742 -89 -81 

mc65 -102 -97 
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Table 9: Duplicates of selected specimens of Hoary bat hair in Table 8. 

Specimen  Raw δDh Converted δDh 

d-t1364 -58 -41 

d-mc63 -59 -43 

d-mc141 -61 -45 

d-t2312 -65 -51 

d-t1638 -67 -52 

d-t225102 -70 -56 

d-cr17 -76 -64 

d-mc65 -104 -100 
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Table 10: Raw δDh for Eastern Red bat hair.  

Specimen Raw δDh 

mc124 -11 

t25 -12 

cr12 -17 

t23161 -20 

t742 -20 

mc176 -21 

t1603 -22 

mc171 -25 

mc122 -26 

kh4 -28 

t1653 -28 

s10 -29 

mc140 -30 

t2264 -30 

t2261 -31 

t744 -31 

t2261 -32 

t7410 -34 

t1332 -35 

mc145 -36 

mc66 -40 

t741 -42 

mc47 -44 

t0741 -45 

mc33 -46 

t1361 -50 

mc117 -57 
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Table 11: Duplicates of selected specimens of Eastern Red bat hair in Table 10. 

Specimen Raw δDh 

d-t25 -13 

d-cr12 -15 

d-mc176 -21 

d-kh4 -25 

d-mc140 -29 

d-t2261 -31 

d-t1332 -34 

d-t7410 -34 

d-mc145 -35 

d-mc66 -39 

d-mc33 -45 

d-t0741 -45 

d-mc47 -46 

 

Table 12: Details of GARP variable sources including scale and years. 

Variable Year Scale Data Source/Program 

Precipitation 

Deuterium 

Ratio 

1960-2000 13 km IsoMAP 

www.isomap.org 

  
Global 

Average 

Precipitation 

    1950-2000 1 km WorldClim 

www.worldclim.org 

  

Global 

Average 

Temperature 

    1950-2000 1 km WorldClim 

www.worldclim.org 

  

DEM  1 km Data Basin 

http://databasin.org/datasets/ 

d2198be9d2264de19cb93fe6a380b69c 

  

Percent 

Tree Cover 

       2008 1 km ISCGM Global Map Data Download Service 

http://www.iscgm.org/gmd/download/ptc 

.htm1 

  

Species 

Occurrence 

  Mammal Networked Information System 

MaNIS  

http://manisnet.org/ 

 

Table 13: Number of specimens analyzed for δDh and the number of specimens mapped  
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to create geographic extents.  

Species Sex Total Specimens Mapped Specimens 

Hoary Female 17 14 

Hoary Male 23 22 

Eastern Red Female 11 09 

Eastern Red Male 24 17 
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Figure 1: Deuterium of precipitation from 1960-2010 modeled in Isomap.org. Darker 

tones signify more deuterium:hydrogen in precipitation (enriched), and lighter tones 

represent less deuterium:hydrogen in precipitation (depleted).  
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Figure 2: Georeferenced Hoary bat specimen locations used to train and test the GARP 

model. GARP successfully predicted occurrence for 93 out of 94 testing points 

(98.93%).   
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Figure 3: Georeferenced Eastern Red bat specimen locations used to train and test the 

GARP model. GARP successfully predicted occurrence for 154 out of 159 testing 

points (96.85%).   
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A  

 
B 

 
 

Figure 4: GARP Hoary bat best 10 models. A. GARP best 10 models for the summer 

range. B. The reclassified models using areas where 9-10 of the best 10 models agree 

that the area is potential habitat (Present). 
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B  

 
 

Figure 5: GARP Eastern Red bat best 10 models. A. GARP best 10 models for the 

summer range. B. The reclassified models using areas where 9-10 of best 10  

models agree that the area is potential habitat (Present). 

 

 

 



65 
 

A                                                            B 

 
C                                                              D 

 
 

 

Figure 6 A-D: The ArcMap process used for each specimen. A. The isotope  

assignment of a single specimen downloaded from Isomap.org. B. Reclassified single 

specimen assignment. C. Specimens of the same species and sex added together.  

D. Area from C overlaid onto GARP to clip their extents to the bats’ potential summer 

range.  
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Figure 7: The isotope assignment maps of 14 female adult Hoary bats. They are added 

together to show the degree of overlap of their possible geographic extents. Areas that 

are darker have more bats overlapping extents.  
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Figure 8: The isotope assignment maps of 22 male adult Hoary bats. They are added 

together to show the degree of overlap of their possible geographic extents. Areas that  

are darker have more bats overlapping extents. 
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Figure 9: The isotope assignment maps of 9 female adult Eastern Red bats. They are 

added together to show the degree of overlap of their possible geographic extents. 

Areas that are darker have more bats overlapping extents. 
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Figure 10: The isotope assignment maps of 17 male adult Eastern Red bats. They are 

added together to show the degree of overlap of their possible geographic extents. 

Areas that are darker have more overlapping extents. 
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Figure 11: The isotope assignments for female Hoary bats (green) overlaid onto the 

Hoary bat GARP model (blue). The isotope-generated geographic extent covers   

73.87% of the GARP predicted summer range.   
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Figure 12: The isotope assignments for male Hoary bats (green) overlaid onto the 

Hoary bat GARP model (blue). The isotope-generated geographic extent covers 

64.40% of the GARP predicted summer range.   
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Figure 13: The isotope assignments for female Eastern Red bats (green) overlaid onto  

the Eastern Red bat GARP model (blue). The isotope-generated geographic extent 

covers 54.15% of the GARP predicted summer range.   
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Figure 14: The isotope assignments for male Eastern Red bats (green) overlaid onto the 

Eastern Red bat GARP model (blue). The isotope-generated geographic extent covers 

72.33% of the GARP predicted summer range.   
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Figure 15: The 45.13% overlap of geographic extents of male and female Hoary bats.  
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Figure 16: The 63.49% overlap of geographic extents of male and female Eastern Red 

bats. 
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CHAPTER IV 

YEARLY AND MONTHLY VARIATIONS IN GEOGRAPHIC EXTENTS OF 

HOARY (LASIURUS CINEREUS) AND EASTERN RED (LASIURUS BOREALIS) 

BAT SPECIMENS 
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Introduction 

In North America, the Eastern Red and Hoary bats travel over 1,000 km between 

seasonal roosting regions. They migrate at night and require frequent stopover sites to 

rest during the day. They typically stay at these sites just one day, and feed upon arrival 

or just before departure (McGuire et al. 2012). The Hoary bat is a species found 

throughout Illinois (Hofmann 2008), and its range encompasses the U.S. and large 

portions of Canada. Although they are long-distance migrants, they can be found 

throughout most of their range all year, albeit with changes in densities among the 

areas. During the months from June to August, they can be found throughout the 

Midwest and western states and Canada. Throughout Illinois during this time there is a 

high density of females with some males as well (Cryan 2003). As they migrate in the 

autumn, they move southward back into wintering grounds (Cryan 2003); however, 

there are reports that some individuals stay north and hibernate (Shump and Shump 

1982a).  

The Eastern Red bat is found throughout the central and eastern U.S. and 

southern Canada (Shump & Shump 1982b) and is common throughout Illinois 

(Hofmann 2008). According to Cryan (2003), Eastern Red bats are most commonly 

found in the eastern and southeastern states during the winter months of December 

through February. In the spring, they move northward and westward up to the Midwest 

and Canada (Cryan 2003). In Illinois during the summer months, both males and 

females are found in high densities, and in autumn they migrate back towards eastern 

and southeastern states (Cryan 2003). 

Very little is known about the migratory habits of these bats from year to year or 
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how an individual’s summer geographic location affects the timing of their migration. 

Banding studies have been attempted in bats, but recapture rates of banded individuals 

are extremely rare, making the amount of information gathered considerably less than 

the effort and cost involved. Radio transmitters have also been attempted, but models 

light enough to be carried by bats without disrupting their behaviors or putting them at 

risk do not have enough range for migratory species (Cryan et al. 2004). In this study, I 

used deuterium isotope analysis of bats collected from a single wind facility in central 

Illinois in different autumn months (August-October) and from three separate years 

(2008-2010) to understand yearly and monthly patterns in migratory timing and 

patterns.  

 

Methods 

 Mapping of Separate Years 

For this study, the same results from Chapter III were used and separated by year of 

salvage, sex, and species. For female Hoary bats, I had 7 specimens from 2008, 6 

specimens from 2009, and 1 from 2010. I had 8 male Hoary bats from 2008, and 14 

from 2009. For female Eastern Red bats, I had 7 from 2008 and only 2 specimens from 

2010. I had 9 male Eastern Red bats from 2008, 7 from 2009, and 1 from 2010. Each 

sex/species group of a given year was mapped and then reclassified again so that if a 

bat was predicted to originate from that pixel it was given a 1; if not, it was given a 0. 

The two or three maps of different years were then added together (Figures 17-20). I 

then determined the percentage of overlap among years by looking at the ratio of 

overlapping extent pixels to total extent pixels. I also added each year separately to the 
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others to understand the overlap of each year to the next (2008 and 2009, 2008 and 

2010, and 2009 and 2010) and performed the same ratios. 

Mapping of Separate Months 

Specimens’ individual geographic extents from Chapter III were separated by sex, 

species, and month of salvage. Female Hoary bats had 2 specimens from August, 11 

from September, and 1 from October. Male Hoary bats had 4 specimens from August 

and 18 from September. Female Eastern Red bats had 6 from August and 3 from 

September. Male Eastern Red bats had 1 specimen from July, 3 from August, 11 from 

September, and 2 from October. The groups of specimen extents were then added 

together and reclassified with 1 representing specimens’ extent and 0 representing non-

extent. The months were then added together, keeping sex and species separate, to 

show the proportion of overlap among the salvage months (Figures 21-24). Each month 

was then added to the others separately to evaluate month-to-month overlap (August 

and September, September and October, and August and October). I then determined 

the proportion of range overlap by the ratio of overlapping pixels and total number of 

extent pixels.   

 

Results 

Yearly 

For the female Hoary bats, the total extent overlapped by multiple years (two or three 

years) was 61.09% (Figure 17). The percentage of the extent covered by any two years 

(2008 and 2009, 2008 and 2010, or 2009 and 2010) was 60.35%. The percentage of 

area overlapped by all three years together was 0.74%.  In male Hoary bats, there were 
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only samples from 2008 and 2009, and their geographic extents overlapped by 63.84% 

(Figure 18).  Female Eastern Red bats only had specimens from 2008 and 2010, and 

they overlapped their extents by 43.61%, and the two 2010 specimens’ extents were 

completely enclosed in the area for the seven specimens from 2008 (Figure 19). Male 

Eastern Red bats had a total yearly overlap of their extents of 90.94% (Figure 20). Any 

two years overlapped 45.99% of their extents, and all three years overlapped 44.95% of 

their extents.  

Monthly 

The female Hoary bat had specimens from August through October with the most 

collected in September. Areas where any two months (August and September, 

September and October, or August and October) overlapped covered 37.81%, and areas 

where all three months overlapped covered 5.03%. When added together, the total 

monthly overlap was 42.85% (Figure 21). Male Hoary bats were only salvaged in 

August and September. These two months overlapped by 74.91% (Figure 22). Female 

Eastern Red bats were only salvaged in August and September. These two months 

overlapped by 52.59% (Figure 23). Male Eastern Red bats were salvaged from July 

through October. The percentage of area covered by any two months was 40.17%. 

Percentage of area overlapped by any three months was 8.17%, and the percentage of 

area covered by all four months was 43.57%. When these percentages were added 

together, the total monthly overlap for male Eastern Red bat was 91.91% (Figure 24).  
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Discussion 

Yearly 

Hoary bats migrating in the autumn through central Illinois had a large overlap of 

geographic areas throughout the years. This pattern suggests that these bats as a whole 

are not migrating to different areas each year. Male Eastern Red bats showed the same 

pattern of a large portion of their geographic areas overlapping each year. However, 

female Eastern Red bats only overlapped 43.61% of their yearly extent. This is most 

likely a reflection of only having 2 specimens from 2010. Both of those extents, 

however, are completely covered by the specimens’ extents from 2008. So although 

there is only 43.61% overlap between the two, 2008 covers a significantly large area of 

2010. It is likely that with more specimens, we would see a larger area of overlapping 

extents. These results indicate that, as a whole, both the Hoary and Eastern Red bats 

passing through the wind facility do not shift summer regions year to year. Therefore, 

this single wind facility has a constant effect on these areas every year.  

Monthly 

The small area of monthly overlap of the female Hoary bats’ geographic extents 

suggests that each month bats are coming from different areas of the continent. When I 

examined the months layered together in ArcGIS, they did not show a pattern that 

would correlate month of arrival at the wind facility to geographic extent. Bats salvaged 

in September had extents from areas covering the entire female Hoary extent. 

Specimens from August covered two separate areas within the total extent. The October 

specimen’s extent was in between those salvaged in August. Male Hoary bat specimens 

from August and September overlapped large portions of their extents, and there was 
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no north-south pattern between the two months.  

Female Eastern Red bats overlapped a large portion of their extents between 

August and September with no patterns that might correlate location of summer 

geographic extents to time of salvage at the wind facility. Male Eastern Red bats also 

had a large portion of overlap and showed no pattern to the extent overlap. However, 

the bat killed in July originated in the deuterium band that includes the wind facility. It 

is possible that this early kill was a local bat and not a migrating male.  

The lack of overall pattern among months suggests that the bats are moving 

across a variety of distances and yet arriving at the same place in relatively the same 

month. This suggests that the timing of migration is variable and not always correlated 

with geographic location. 

 

Conclusions 

The percentage of overlap among specimen salvage years suggest that these bats utilize 

their complete range every summer and do not select among geographic areas from 

year to year. The variation in degrees of overlap and pattern of geographic extents 

suggest that the bats originating from further north of the wind facility did not always 

begin migration earlier than more southern bats. There are bats that come from very 

different extent locations but arrive in the same month. The lack of pattern in 

proportion of overlap and lack of correlation with geographic extent suggests that there 

is no obvious correlation between month of arrival at the wind facility and the 

geographic extent of summer location. This likely means that the timing of migration is 

variable and not solely dependent on summer location. Although the sample size was 
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variable in the number of specimens each year and month, the data reveals patterns for 

these two species that should be further examined in future studies with larger sample 

sizes. The yearly and monthly analysis also introduces an interesting new area of study 

using deuterium isotope analysis and specimens salvaged from wind facilities.   
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Figure 17: Number of specimen sample years (2008-2010) overlapping extents for 

female Hoary bats. Total percentage of area overlapped by two out of three or all three 

years is 61.09%.  
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Figure 18: Number of specimen sample years (2008 and 2009) overlapping extents for 

male Hoary bats. Overlap in geographic origin is 63.84%.  
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Figure 19: Number of specimen sample years (2008 and 2010) overlapping extents for 

female Eastern Red bats. Overlap in geographic origin is 43.61%.  
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Figure 20: Number of specimen sample years (2008-2010) overlapping extents for male 

Eastern Red bats. Total overlap in geographic origin is 90.94%.  
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Figure 21: Overlap of specimen sample months (August-October) for female Hoary 

bats. Total overlap in geographic origin is 42.85%.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

 
 

Figure 22: Overlap of specimen sample months (August and September) for male 

Hoary bats. Overlap in geographic origin is 74.91%.  
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Figure 23: Overlap of specimen sample months (August and September) for female 

Eastern Red bats. Overlap in geographic origin is 52.59%.  
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Figure 24: Overlap of specimen sample months (July-October) for male Eastern Red 

bats. Total overlap in geographic origin is 91.92%.  
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APPENDIX 

 

GEOGRAPHIC EXTENTS OF BATS NOT USED IN ANALYSIS 
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Figure 25: The three female Hoary bats not included in the analysis. 
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Figure 26: The single male Hoary bat specimen not included in the analysis.  
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Figure 27: The two female Eastern Red bats not included in the analysis.  
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Figure 28: The seven male Eastern Red bats not included in the analysis.  
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