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Velocity half-sphere model for multiple scattering in a semi-infinite medium
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We show how the velocity half-sphere model [S. Menon, Q. Su, and R. Grobe, Phys. Rev. E 72, 041910
(2005)] recently introduced to predict the propagation of light for an infinite turbid medium can be extended to
account for the emission of multiply scattered light for a geometry with a planar boundary. A comparison with
exact solutions obtained from Monte Carlo simulations suggests that this approach can improve the predictions
of the usual diffusion theory for both isotropic and highly forward scattering media with reflecting interfaces.
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I. INTRODUCTION

The diffusion theory has become a powerful tool in pre-
dicting many phenomena in various branches of science. In
astrophysics it describes electromagnetic radiation patterns
from stars and galaxies, in nuclear physics it models the
emission of neutrons from radioactive materials [1,2], and in
statistical mechanics it models Brownian motion. The for-
malism can be obtained as an approximation to the radiative
transfer equation by assuming that the photons (or particles)
evolve nearly isotropically throughout the medium [3]. The
diffusion model is also widely used to model the scattering
of light in biological materials, which is important for recent
medical imaging applications [4—6]. This particular interest
was fueled by the observation that light in the 600—900 nm
wavelength range can propagate up to 10 cm [7-9] without
significant attenuation in soft tissues.

Unfortunately, to describe the scattering accurately near
the source [10-12] in highly forward scattering media such
as biological materials, a direct application of the traditional
diffusion theory is problematic as the required isotropy can-
not be satisfied. It is especially unreliable close to a physical
boundary [13,14], such as an interface between two media
with different optical characteristics. As a consequence, sev-
eral imaging schemes based on this theory become unreli-
able, as the inverse problem required for imaging is highly
nonlinear and any error in the description of light near a
boundary can affect the final outcome significantly. One pos-
sible solution would be to obtain full solutions to the radia-
tive transfer equation. Unfortunately, there are only few situ-
ations for which this equation can be solved exactly [1] and
in most cases one has to rely on computational approaches
such as CPU time consuming Monte Carlo techniques [15].

The diffusion model has several specific problems associ-
ated with physical boundaries. First, as the diffusion theory
requires a spherical harmonics expansion of the irradiance
with a finite number of terms, the exact boundary condition
cannot be imposed and one has to rely on an approximate set
of conditions [14,16-21]. Three different types are often
used including the zero boundary condition, the partial cur-
rent condition, and the extrapolated boundary condition
[16,17]. Second, the extrapolated boundary condition solu-
tion, which is the only real improvement to the diffusion
solution, is based on an exact solution to the Milne problem
[22] for an isotropically scattering semi-infinite medium with
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infinite extension along the transverse direction. This correc-
tion has limited usage in bio-optical imaging because of the
highly forward scattering nature of tissuelike media and the
presence of transverse effects often unavoidable in realistic
laboratory setups. Also, as we will show below, this ad hoc
empirical correction violates even the norm conservation
condition for sources with finite strength. Third, in cases
where the interface is index mismatched, the resulting
boundary conditions due to reflection cannot be taken ad-
equately into account by the usual diffusion model.

Thus it is desirable to improve the diffusion model for
imaging based on surface measurements [13,14]. In a recent
work [23], we have extended the traditional diffusion theory
by distinguishing between the irradiance in the forward and
backward directions at each point in space. This so called
velocity half-sphere (VHS) model led to a new effective
source for the diffusion equation that can better represent an
anisotropic light source. Its predictions differ significantly
from the traditional diffusion theory for short source-detector
spacings. For an infinite medium without any boundaries, we
derived an analytical solution for the two lowest-order veloc-
ity moments of the irradiance and referred to an investigation
of the boundary effects in a follow-up paper.

In this work, we will show how the VHS model can pro-
vide new solutions to the radiative transfer equation to de-
scribe the emission from reflecting and nonreflecting bound-
aries. We will show how the problems listed above can be
corrected with this approach. Though, in principle, this ap-
proach can be applied to other geometries, we will focus in
this work on a semi-infinite turbid medium with a planar
boundary.

The paper is organized as follows. In Sec. II we discuss
the general problem of imposing exact boundary conditions
on a system in which the irradiance is approximated by an
expansion in the velocity moments of only finite order. In
Sec. III we briefly review the various choices with regard to
the boundary conditions for the standard diffusion model. In
Sec. IV we outline how these conditions can be improved for
the velocity-half sphere model leading to more accurate ana-
lytical solutions. In Sec. V we compare the analytical solu-
tions from Secs. III and IV with Monte Carlo solutions ob-
tained for the radiative transfer equation. In Sec. VI we
conclude with a brief discussion.
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II. THE MODEL SYSTEM

The interaction of light with a highly scattering medium
can be modeled macroscopically by the radiative transfer
(Boltzmann) equation. In the steady state the phase-space
irradiance function I(r,()) satisfies

(Q-V+ upI(r,Q) = p, f Q' p(Q - QNI(r, Q)

+[g,.0(cos 6)

+q_0(= cos 6)]5(x) 8y) z - z,)/2,
(2.1)

where )= (sin 6 cos ¢,sin #sin ¢,cos #) is a normalized
velocity vector for photons with polar angles (6, ¢), u, (©,)
is the scattering (absorption) coefficient and ur= u,+ u,.
The scattering phase function p({2-()’) determines the scat-
tering properties of the medium extending into the half-space
z>0. We assume that a point source is located at z=z, inside
the medium and ¢, and ¢_ are parameters that can take the
values between 0 and 1 to model isotropically or anisotrop-
ically emitted light. Note that we have separated the source
into positive (g,=1, ¢g_=0) and negative (¢,=0, g_=1) ve-
locity hemispheres with respect to the z axis using the Heavi-
side unit step function @(x) defined as O (x)=(1+|x|/x)/2.
For example, a perfectly isotropic point source is given by
(q,=1/2, g_=1/2).

To solve Eq. (2.1) an infinite number of boundary condi-
tions needs to be satisfied. We need to know I(x,y,z=0,()
for all ) with either cos >0 or cos #<0 [23]. For example,
if the velocity vector () were discretized into 360 angles, the
Boltzmann equation (2.1) would represent a set of 360
coupled first-order partial differential equations whose solu-
tion is uniquely specified by knowing each of these 360
functions at each point on an infinite open surface. In case of
a closed surface, we only need to know the irradiance for
either the incoming or outgoing direction relative to the
closed surface. This is equivalent to knowing 180 functions
of r at each point on the closed surface. Equivalently, in
principle, by successively eliminating higher-order moments,
we could replace these 360 first-order differential equations
by a single equation of 360th order for the lowest moment,
the fluence, ®(r)=[dQI(r,Q)). This equation for ®(r)
would require the knowledge of 180 constraints with regard
to its derivatives at a closed surface. The problem we are
faced with in the traditional diffusion approximation is that
once we have truncated the order of this differential equation
to only second order, the many boundary conditions in the
original problem would overdetermine a possible solution for
the fluence. In order to obtain a unique solution for the trun-
cated differential equation, we have the arbitrary choice of
deciding which of these original 180 boundary conditions the
fluence has to satisfy.

II1. THE DIFFUSION MODEL

The usual diffusion model is based on the expansion
Li(r,Q)=[D,(r)+3Q-J,(r)]/4m, and assumes that the most
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dominant contribution in I(r,()) is the energy density or
fluence  (zeroth  velocity = moment)  defined  as
®,(r)=[dQL,(r,Q) followed by the vector flux (current
density) J,(r)=[fdQQI,(r,Q). The diffusion equation is
(see Appendix A)

(V2 = &®)®y(r) = (= g/D + 3¢0:/2) 8x) 8(y) 8(z - z,),

(3.1)
where D=1/[3(u;—gm,)] is the diffusion constant, o’
= u,/D and d,=d/dz. The source terms consists of the iso-
tropic part g=g¢g,+¢_ and the anisotropic part gx=qg,—q_.
The parameter g is the average cosine of the scattering angle
g=[dQ (Q-Q') p(Q-Q') and has the range -1 <g<1. In
essence, the diffusion model approximates the scattering
phase function by p(Q-Q')=[1+3g(Q-Q’)]/4, which is
often referred to as the Eddington phase function. This phase
function is unreliable for highly forward scattering media as
it is positive only for the range -—1/3 <g<<1/3. In Appendix
A, we give the general solutions to Eq. (3.1) for ®,(r) and
J(r) containing expansion coefficients that are determined
by the particular choice of the boundary condition.

A. Exact boundary conditions

In the presence of an interface, the boundary conditions
relate a photon in the direction )’ to a reflected photon in
the direction () by a reflection probability R({,Q)’), which
can be modeled as a function of ) and Q' [14]. In other
words, I,(p,z=0,Q) O(cos O)=_R(Q,Q") I,(p,z=0,Q")
dQ)', where the integral [_ extends over velocity directions
with cos #" <0 and p= (x*>+y?)"2. This relation represents
an infinite number of conditions for all values of € in the
range 0<@<m/2. In general, conditions for the moments
can be obtained from this relationship by integrating it with
respect to d() and () d€). The resulting equations have only
the trivial solution ®,(p,z=0)=J,,(p,2=0)=J,.(p,2=0)=0.
This problem is clearly seen for the special case of a nonre-
flecting interface R({2,Q')=0, where the condition requires
I(p,z=0,0)=[D4(p,z=0)+3Q-J4(p,z=0)]/(47)=0 for all
Q with 0<#<m/2. As this equality has to be true for a
continuous set of values for (1, the only way to fulfill these
conditions is  ®,(p,z=0)=J4,(p,2=0)=J(p,2=0)=0.
Among these three conditions only ®,(p,z=0)=0 and
3.®,(r)=0 are independent (due to Fick’s law as described
in Appendix A), but they are unphysical because they imply
that there are no photons near the surface z=0. Furthermore,
both conditions cannot even be imposed simultaneously on
Eq. (3.1) as only one boundary condition on a closed surface
is required to solve the Helmholtz equation uniquely. In other
words, the exact boundary conditions cannot be fulfilled for
the diffusion model and we have to resort to approximations.
In fact, this conclusion raises a more fundamental question:
Is it at all possible to impose the exact boundary conditions
on any finite expansion of I(r,{)? We will address this in-
teresting question in Sec. IV, where despite the finiteness of a
new expansion of I(r,()), surprisingly, the exact boundary
conditions can be satisfied for special cases.
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B. Approximate partial current (PB) and extrapolated (EB)
boundary conditions

There are infinitely many approximate boundary condi-
tions that can be imposed on the diffusion equation and only
a comparison with the solution of the Boltzmann equation
can serve as a yardstick to judge the appropriateness of each
particular choice. In Appendix A we discuss various choices
and for brevity, we summarize here just the two final expres-
sions. In Sec. V we will discuss their numerical predictions.
If there is reflection at the boundary due to an index of re-
fraction mismatch, we can define a reflection coefficient as
ri ==[[,dQ cos OL,(r,Q)]/[[_dQ cos OI,(r,Q)]. The rea-
son for subscript 11 will be clear when we discuss the VHS
model in Sec. IV.

In the presence of a reflecting boundary, the partial
current  boundary condition (PB) is given by
(1-2Dyd,)®yp(x,y,z=0)=0, where y=(1+r;)/(1=ry)
[16—19]. It leads to the solution

D 4p(r) = y(g + 36]AD5z/2)f d\NJo(\p)
0

Xexp[— ay(z+z) /[ 7(1 + 2Dy, )] - (g/D
+3qad./2)exp(- afr + z,e.|)/(47D|r + z,e.|) + (¢/D
). (3.2)

The extrapolated boundary condition (EB) involves
changing 2Dy with 2.131Dy in Eq. (3.2) and the approxima-
tion (1-2.131yDa)® 4(r) =D p(x,y,z-2.131yD)=0. 1t
leads to the solution

—3qad./2)exp(— a|r — z,e.|)/(47D|r - z e,

@ (1) = = (g/D + 3qad,/2)exp[— afr + (z;
+4.262yD)e.|V[47Dlr + (z, + 4.262yD)e.|] + (¢/D
)(4mDlr - ze|)  (3.3)

—3gad./2)exp(- alr -z,

often used [20-22] as an improvement over Eq. (3.2). It
should be kept in mind that the derivation [22] of the EB
correction factor 2.131 for the position of the extrapolated
boundary assumed isotropic scattering (g=0), while tissue-
like media are highly forward scattering (g=0.8 to 0.99). In
general, the location of an extrapolated boundary varies for
media with different scattering parameters and can only be
obtained numerically [14]. As this correction is based on a
steady state analysis there is also no evidence that this Milne
problem based correction is sufficient for temporal [20] and
frequency modulated sources.

The EB approach has an additional problem with regard
to the conservation of norm for a source of finite strength.
The conservation condition does not exist for the Milne
problem as it describes an infinitely extended source. How-
ever, for a point source of unit strength, and for u,=0 and
r11=0, the total flux of light coming out from a surface en-
closing the medium is [drV -J(r)=—[dxdyJ (p,z=0)=1, re-
flecting the conservation of the number of particles. If, how-
ever, we calculate the flux of light escaping at z=0, we
obtain [dxdy[_dQ(-cos 0)I;z(p,z=0,0)=1.0324. The rea-
son for this violation of norm conservation is that, due to the
extrapolation assumption, there is an (unphysical) flux that
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enters the medium with strength [dxdy[,dQ cos 61 ;:(p,z
=0,0)=0.0324. The correction of 2.131D assumes implic-
itly a finite reflection at the boundary (even for an index
matched medium) and therefore (unphysically) overestimates
the output flux to guarantee that the net flux can fulfill
Jdxdy [ dQ) cos 601,(p,z=0,Q)=1 at z=0.

IV. THE VELOCITY HALF-SPHERE (VHS) MODEL

In Ref. [23] we introduced the velocity half-sphere model
where the total irradiance was separated into two portions
Ir,Q)=1(r,Q)O(cos O)+I1_(r,Q)O(-cos §) We denote
the irradiance in the range 0<6<7/2 by I,(r,() and for
7/2< < by I_(r,Q). Consistent with this separation and
the doubling of the resulting phase-space variables, this ap-
proach leads to four (instead to two) velocity moments
®,(r)=[.dOI(r,Q) and J.(r)<[.dOQU(r,Q). If we as-
sume that the half-sphere irradiances I,(r,{)) and I_(r,{})
are linear in ), we obtain the expansions

L(r,Q) = [2®.(r) F 3J..(0)//7+3Q - {J.(r)

+[3J.,(r) F 2D, (r)]e }/(2m). (4.1)

Note that this expansion is different from a double-P; ap-
proximation, which is based on half-range Legendre polyno-
mials [2]. The double-P; approximation is very complicated
in the presence of transverse effects and the physical inter-
pretation of various moments is not straightforward. Both of
these problems do not exist for the above expansion, which
is based on the assumption that 7,(r,()) are linear in (). Let
us now use the expansion (4.1) to derive the corresponding
equations for the four moments J,(r) and ®,(r) from the
Boltzmann equation. It turns out that the set of moments
defined as P(r)=d,(r)+D_(r), PA(r)=D, (r)-D_(r),
Jr)=J,(r)+J_(r), and Ja(r)=J,.(r)=J_(r) leads to sim-
pler equations. Furthermore, ®(r) and J(r) provide a direct
comparison with the usual diffusion model.

The equations for J(r) and J,(r) can be obtained by in-
serting the expansion Eq. (4.1) into the transport equation
(2.1) with the Eddington phase function. The resulting equa-
tions for I,(r,{)) are

(Q-V+ pup)l(r,Q) = u[P(r) +3g€2 - J(r) )/ (4m)

+q.0(x) 8(y) 8z — z)/(2).

(4.2)
The right hand side can be obtained using the identity
Q-Q'=cos Gcos & +sin Osin 6 cos(¢p—¢’). Integrating Eq.
(4.2) over the velocity half-sphere [.d() leads to V-J.(r)=
— P (r) + [ P(r)/2+£38J.(r)/4]+¢(r)/2. If we add and
subtract these two equations from each other we obtain the
two scalar equations

V- J@r) = - w,P(r) +qo(x)y) 8z —z,)  (4.3a)

V- Ja(r) = — g ®a(r) + 38, (1)/12 + 5 6(x) 8(y) 8z - 2,).
(4.3b)

The derivation of the corresponding two vector equations
for ® and ®, is more complicated and a careful inspection
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of the terms on the left-hand side of Eq. (4.2) shows there are
odd and even power terms of sin § and cos 6. These terms
are independent of each other as one can see by integrating
Eq. (4.2) with respect to [,.dQQP,(cos 6), where P, is the
fifth or higher odd-order Legendre polynomial [23]. The re-
sulting equations are given by

V[Zq)i(l‘) + 3Jtz(r)] == 3/1’T{J1(r)
+[3/..(r) F 2D (r)]e.}/2

+3u,eJ(r). (4.4)

By subtracting and adding these two equations from each
other we obtain J, (r)=®(r)/2-9,Y(r)/(6uz), where Y(r)
=2d,(r)-3J,(r). Using these expressions we can write
equations for J and J, as

J(r)==DV[P(r) +9,Y(r)/ ur] + 3DurY(r)e,
(4.5a)

Ja(r) = =2V Y(r)/Bur) +[3.Y(r)/(2ur) + P(r)/2]e,.
(4.5b)

Note that the first equation is a generalized version of Fick’s
law. It contains J, also on the right hand side and thus should
be seen as a differential equation for J.. Equation (4.5b),
however, represents J, in terms of @, ®,, and J.. By substi-
tuting JA(r) and J (r) from Egs. (4.5) into (4.3b) we obtain

(V2= 3uD)Y(r) = = 3u7q28x) 8(y) 8z — 2,)/2.

Equation (4.6) is crucial as its solution Y(r) is related to the
difference between ®,(r) and J (r). The source term on the
right hand side is zero if the source in the Boltzmann equa-
tion is isotropic. The main difference between diffusion
theory and the VHS model is the quantity Y(r). The tradi-
tional diffusion theory predicts a vanishing Y(r), because
2@, (r)=3J.(r) and thus it is an important measure. Apply-
ing the gradient operator V on Eq. (4.5a) and substituting in
Eq. (4.3a) we also arrive at the usual diffusion equation
given by

(4.6)

(V2= a?)®(r) = (- /D + 3 d./2) 8(x) 8(y) 8z - z,).
(4.7)

As shown in Ref. [23] the VHS model is more accurate in
infinite media than the diffusion model for anisotropic
sources due to the doubling of the phase space variables. In
order to focus on how the VHS model can also describe
physical interfaces more accurately, we purposely restrict our
discussion here to the special case of sources, for which both
theories predict identical fluence for an infinite medium.

Note that Egs. (4.6) and (4.7) form a set of two second-
order partial differential equations, which can be solved
uniquely if ®(r) and Y(r) are specified on a boundary. The
half fluxes J.(r) and half fluences ®_(r) are related to P(r)
and Y(r) through the relations (4.5) and the definition of
Y(r), ie., ®a(r)=3J,(r)/2+Y(r)/2. Using these relations
and some rearrangements, the following expressions for the
half fluxes and fluences are obtained:
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Jo(r) = (£1 -2D3,)®(r)/4 - [6D(5-

= 3u7) £ 2 JY(0)/(1241), (4.82)

T, () = = DIJ®(r) + [0, £ 2/(3D) 1Y (1) ur}/2, (4.8b)

®,(r) = (2 7 3D3,)D(r)/4 F [3D(3: - 3p7) + 1Y (1)/(4pa7)
= +£3J,.(0)2+[D(r) + (9. £2up) Y(r)/ ur)/8. (4.8¢)
Generally, either 7,(r,{)) or I_(r,{)) is given as a boundary
condition on a closed surface, thus at least three of the above
six quantities are known at an interface or a boundary per-
mitting a solution of Egs. (4.6) and (4.7).
A. General solution for the VHS model

The general solution for ®(r) and Y(r) can be obtained
using the Hankel transformations

O(r) = J‘” dANA NI (Ap)exp(— ay2)/ (47D ey )
0

+ f dANNJo(Np)(q/D — 3qxd./12)exp(— ez
0

-z)/(47e), (4.9a)

Y(r) = f dANBYM(\p)exp(— 1,2)/(2)
0

+3qak7 j dNNTo(Npexp(= my|z = z,)/(8Tay),
0

(4.9b)

where J,(--) is the nth order Bessel function and u,
= ()\2+3,u,§). The corresponding solution for the trans-
formed half-fluxes and half-fluences are

D, (r)= f‘” dAMNNTy(A\p){A, (2 £ 3y )exp(— a\2)/ (327D vy )
0

+q(2 £3Da,Si(z))exp(— ay|z — z,)/(327Day)

+3q[2Si(z) £ 3DayJexp(— aylz — z,])/(32m)

+ (= 3D\ + py) By exp(— u,2)/ (87D pur)

F 3gaA(3DN + Dexp(— m |z — 2,[)/(327my )}
(4.10a)

J..(r) = f dMNNTo(\p){Ay(£1 + 2D e, )exp(— ayz)/
0

(167D ay) + q[+1 + 2D, Si(z) lexp(— a2
—z)/(167Day) + 3qA(£Si(z) + 2D ay )exp(— ay |z
—2,)/(327) + (= DA £ 1, /6) By exp(— unz)/
(4mDpur) + ga[— 6DN* £ 1y Si(z)Jexp(— |z

- 5)/(32mwy)}, (4.10b)
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Jtp(r) = f d)\)\le()\P)({A)\ exp(- ay2) + g
0

+3gaDa,Si(2)/2]exp(- ay|z — 7))}/ (8 )
+ (= Dy £2/3)B), exp(= u\2)/(4mpr)
+3Dga[— 3D u,Si(z) £ 2]

Xexp(= mlz = z)/(167wy)) . (4.10c)

where Si(z) =[20(z—z,)— 1] is the sign function. In contrast
to the solution of the diffusion theory, we have double the
amount of parameters available to find the solution for the
appropriate boundary condition. There are two sets of expan-
sion coefficients A, and B, which can be obtained from two
boundary conditions at the interface z=0. Among the six
half-sphere variables given in Eq. (4.8) if any two are know
at the interface, then we can find A, and B, uniquely. This
additional degree of freedom suggests that the VHS model
should be much better suited for describing the light distri-
bution close to physical interfaces but it comes with a trade
off that double the number of boundary conditions are re-
quired as compared to the usual diffusion model.

B. Exact boundary conditions for VHS model

The exact boundary conditions are given by I,(p,z
=0,0)=_R(Q,0")_(p,z=0,0Q")dQ)’, which can be further
integrated to give three general relations of the type
Jio(p,2=0)==r}J_(p,2=0)+1r,®_(p,2=0) +r13/_,(p,2=0),
D, (p,z=0)==11J_(p,2=0)+1rnP_(p,2=0)+r23/_,(p,2=0)
and Jip(p2=0)==13J_(p,2=0)+73,P_(p,2=0)
+733J_,(p,2=0). We now have three conditions and two un-
known sets of coefficients A, and B, in the general solutions
(4.10). Thus the problem is still over determined, however,
there are special cases for which one of the three boundary
conditions is redundant. In those situations we can impose
the boundary conditions exactly. For example, when
R(Q,Q")=0, apparently the boundary conditions are
Ji(p,2=0)=J,,(p,2=0)=D®,(p,z=0)=0. If the medium
scatters isotropically (g=0), the condition J,,(p,z=0)=0 is
redundant because it follows directly from Eq. (4.8¢c) if
®,(p,z=0)=0 and J,.(p,z=0)=0. Thus only two conditions
are required permitting a unique determination of the coeffi-
cients A, and B,. We denote these exact boundary condition
solutions with a superscript 0, i.e., ®©(r), and Y (r), and
the coefficients for an isotropic source are given by

A)\(O) =— (ILL)\ + a)\)exp(_ a)\zs)/('u'}\ - a)‘)

=—[1+2a\(uy + a)/B s’ — @) ]exp(- ayz,),
(4.11a)

B\ == 3ur” exp(= anz, (1 = ) (s = 2p7)].
(4.11b)
The integral relations in Eq. (4.9) determine ®(r) and Y(r),

and the half-moments can be obtained from Eq. (4.10). The
expression for the fluence can be further simplified to
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dO(r) =~ f dNNJo(Npexp[— ay(z +2,)](ur
0

+ a)[27DB s — a?)] - exp(— ar

) +exp(— a|r - z,e.|)/(47D|r
(4.12)

+2z.e.|)/(47D|r + ze,
- Zsez|)'

Note that in spite of the finitude of the expansion of I(r,(}),
we have successfully imposed the exact boundary conditions
of the Boltzmann equations. This is an additional advantage
of the VHS model over the usual expansion in terms of full
range spherical harmonics where this cannot be achieved.
Unfortunately, the above result predicts an unphysical nega-
tive fluence at the boundary z=0 for the special case when
3ur> «. Interestingly, the reason for this disappointing re-
sult is the boundary condition ®,(p,z=0)=0, which as we
show in Appendix B, can be associated with a discontinuity
at z=0. Note that ry, is the ratio of densities ®,(p,z
=0)/®_(p,z=0) when r,; and ry; are zero. Unlike r;, even
for an index-matched medium we do not expect r,, to be
zero at the interface between two media with different scat-
tering properties. Unfortunately, the exact functional form of
R(Q,Q’) is not know and only approximate forms can be
assumed, for example, using Fresnel relations which only
considers flux information and not the irradiance I(r,()).

Nonetheless, the problem of discontinuity in ®,(p,z=0)
can be avoided by imposing the boundary condition at z
=0"* which is slightly inside the medium. This problem does
not arise for the diffusion model because it does not treat
half-fluences ®@_(r). However, if we evaluate the half-fluence
for the special case of an isotropic source (g,=1/2), w,=0
and a nonreflecting interface at z=0, the diffusion model
predicts 27 [ pdp [ dQ1,(p,z=0,)=0.25 and not zero. If we
use this value as a boundary condition for the VHS model,
we obtain exactly the same result as the diffusion model.
Thus if the exact boundary value for ®,(p,z=0") is known,
the VHS model could provide significant improvements over
the diffusion model. Unfortunately a limitation of the VHS
model is that this value may not be know in advance and has
to be obtained from prior experimental measurements
slightly inside the surface z=0 or from the Monte Carlo
(MC) simulations. The half-fluence can be measured using
different opening angles of a detector. For example, if a point
detector is oriented along the negative z direction and has a
opening angle of @, then the light measured
is [¢d(cos 6)[57d¢p cos OL,(r,Q)=2®,(r)(sin*a+cos’a—1)
+J,,(r)(4-3sina—4cos’a), where we have used expansion
(4.1) for I,(r,€). Using detectors with two different opening
angles both J,(r) and ®,(r) can be measured at every loca-
tion.

C. Approximate boundary conditions for VHS model

The functional form of R({),{)’) is in general unknown
and has to be obtained experimentally or using the funda-
mental Maxwell equations.

Specular reflection. A specular reflection occurs when the
angle between incident ()’ — ) and reflected () light is 26
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for 6’ —m< 6., otherwise the reflection is zero. Thus for ¢’
—m<86,, R(Q,Q")=r(cos,n,ny)é(—cosd’ —cosh) (¢’ — ),
where n and n, are the refractive indices of the regions z
>0 and z<<0, respectively, and r(cosf,n,ng) is the Fresnel
coefficient for unpolarized light reflecting from an interface
[24]. After integrating over ()’ the boundary condition re-
duces to

1.(p,z=0,Q) =r(cos 6,n,ny)[2(2 — 3 cos O)P_(p,z=0)
+6(1 —2cos 0)J_.(p,z=0) + 3 cos ¢J_.(p,z=0)
+3sin ¢J_y(p,z=0))/(27m), for 6<6,,

I+(p’Z:09Q):O9 (4'13)

Further integration with respect to [,dQ and [,QdQ leads
to the first set of boundary conditions J . (p,z=0)
=—rJ_(p,2=0)+r,®_(p,z=0) and d,(p,z=0)
=-ryJ_(p,2=0)+7r,P_(p,z=0).

If the interface is a rough surface such that the incident
light can be uniformly reflected in all directions we can
model this type of reflection as R({),Q')=p/2, where p is
the fraction of light which is reflected. In these cases we have
L(p,z=0,Q0)=p®_(p,z=0)/27m and the second set of
boundary conditions is ®,(p,z=0)=pP_(p,z=0) and
J.(p,z=0)=p®P_(p,z=0)/2. These two sets of boundary
conditions above cannot be taken accurately into account in
the diffusion model. In fact, the diffusion model is always
solved for the boundary condition J, (p,z=0)=-rJ_.(p,z
=0). For the VHS model, different solutions are possible
depending on the type of reflection from the interface.

In the following, we provide solution to the VHS model
by assuming that we know r;;=-J,.(p,z=0)/J_(p,z=0) and
®,(p,z=0%). The former boundary condition which, ap-
proximately represent a specularly reflecting boundary, pro-
vides a fair comparison between the VHS and diffusion
model. The second condition is fairly general and applicable
irrespective of the type of reflection at the interface. Note
that we have chosen to impose the boundary condition for
half-fluence slightly inside the medium z=0* and not at z
=0 due to the discontinuity problem as discussed in the pre-
vious section and in Appendix B. With these boundary con-
ditions and the coefficients A, and B, are

Ay ={-[X,(1 -2Dya)) - X,(2-3Da)) (g — 3gaDa,/2)
Xexp(— ayz,) = 8Dayf/yXs + gaDay X,
Xexp(— mz) X (1 + 2D yay) — X5(2 + 3Day)) ],
(4.14)

for 6= 6,.

B\, ={(3 - 4y)(q — 3qsDay/2)exp(— ayz,) + 4f\(1 + 2D ya)
— qalBus(1+2Dyay) + uy(2 + 3Day) — 3DN*(3
= 4)Jexp(= mrz,) /(4 )HX (1 +2Dyay) = X5(2
+3Day)], (4.14b)

where X] = (—3D)\2/,LLT), X2 = /*L}\/(?,MT) -2D 'y}\z/MT and f)\
=2m[pdpJo(Np)P,(p,z=0"). These expressions have a
complicated dependence on A and the solutions for ®d(r) and
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Y(r) have to be obtained by numerical integration. We dis-
cuss next the special case for which the variables are inte-
grated over the entire xy plane, corresponding to taking the
limit A=0. This simplifies Eq. (4.14) to

Ao=1{-[(1-2Dya) - (2 - 3Da)\3](g - 3qsDl2)
Xexp(— az,) — 8Daf,/ \’E +gaDa exp(- \"E/.LTZS)}/[(I
+2Dya) - (2 +3Da)\3], (4.152)

By={(3-4v)(q - 3gsDal2)exp(- az,) + 4fy(1 + 2D ya)
- qA[VE(l +2Dya) + (2 + 3Da)lexp(~ V/g,u,Tzs)/4}/[(1
+2Dya) - (2 +3Da)\3]. (4.15b)

The integrated  half-fluxes F.(z)
=2mx[(J..(r)pdp are given by

denoted by

F.(z) =Ay(x1+2Da)exp(- az)/(8Da) + g[+1
+2DaSi(z)Jexp(— alz — z,])/(8Da) + 3gA[£Si(z)
+2Dalexp(- alz - z,|)/16 + \EBX

Xexp(— py2)/12 = g5Si(z)exp(= 3uqlz - z)/16.
(4.16)

V. NUMERICAL RESULTS AND COMPARISON WITH
MONTE CARLO SIMULATIONS

We have performed numerical simulations for various pa-
rameters to compare the traditional PB and EB diffusion
theory with the VHS model. The MC simulation, represents
the exact solution to the radiative transfer equation (2.1) in-
volving up to 10% photons, each of which performed a ran-
dom walk with a random distance / distributed according to
P(l)=exp(—u,l)/ u, and with a random scattering angle ()
distributed according to the scattering phase function
Pu(Q-Q)=(1-g»)/[4m{1+g>-2gQ0'}**]. The Boltz-
mann half-fluxes, denoted by J.z(r,?), are time dependent
and were obtained for a pulsed light source that emitted pho-
tons at time #=0. In order to obtain the corresponding steady
state fluxes from a time-dependent simulation, the resulting
photon flux was integrated over a sufficiently large time T
according to J.z(r)=[ld7 J.5(r,T—17). For a fair compari-
son with the extrapolated correction of 2.131 [see Eq. (3.3)],
which is derived in the absence of transverse effects, we
compute the total z component of the net flux crossing the xy
plane at z=0, i.e., F.3(z) =27[pdpJ.5(r)-e.. These quanti-
ties are compared with the diffusion theory prediction for
half fluxes evaluated as 2 pdp[_dQ) cos 61,(r,Q) for the
PB and EB conditions. In the numerical analysis below we
measure the length in units of ,ugl and set the speed of light
c=1.

Let us start the discussion with the case most frequently
studied in the literature characterized by an isotropic source,
(corresponding to g,=¢_=1/2) and no reflection at the
boundary z=0 and vanishing absorption. The simulations
show a difference between the PB solution and the MC simu-
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FIG. 1. The integrated flux along the negative z direction for
VHS, PB, and EB solutions, compared with the MC simulation for
a perfectly index-matched interface. The medium scatters isotropi-
cally g=0 and without absorption u,=0. The anisotropic source
(g+=1, g_=0) is located at zu,=1. For the VHS model the addi-
tional boundary condition is f;,=0.295.

lations even at large distances. The EB solution, however, is
in good agreement with the MC simulation, because the ex-
trapolated correction of 2.131 is obtained [2] specifically for
a medium with r;=0, u,=0, and g=0. Unlike the diffusion
theory, the VHS model requires an additional boundary con-
dition for ®,(p,z=0%). This value determines the integrated
half-fluence, defined as

fo= Zﬂf pdp® . (p,z=0%). (5.1)

0

Since this value is not known in advance, we used MC pre-
dictions of half-fluence, 27 [pdp®,(r), to estimate f,. To
obtain the MC value for half-fluence we set the detector
opening angles at 77/2 and /3 and both integrated half-flux
27 fypdpJ,.(r) and half-fluence were measured. Based on
the MC data for half-fluence in the region 0 to 0.5, differ-
ent values were tried for f;, to find a suitable fit. It should be
noted that we are using the exact data to find an approximate
value of ®,(r) based on the expansion (4.1). For the PB
model this quantity can be obtained from the diffusive irra-
diance via 2w [;pdp[_dQ1,(z=0,p,0)=0.25 (in units of
number of photons per unit length), whereas the EB predicts
0.2664. If we choose the boundary condition f,=0.258 for
VHS, we find excellent agreement between EB, VHS, and
MC solutions. This value was obtained from MC simulations
for integrated half-fluence at z=0.11u,. At the boundary the
MC, VHS, and PB solutions predict the net flux crossing the
interface z=0 as unity as a result of the conservation condi-
tion whereas the EB solution predicts a value 1.0324. We
discuss next the result for the same medium with an aniso-
tropic source for which the improvement of the VHS ap-
proach over the EB or PB diffusion approach is more signifi-
cant.

In Fig.1 we graph the net flux in the negative z direction
for a nonabsorbing (u,=0) and isotropic scattering (g=0)
medium without any specular reflection (r;;=0) at the
boundary. The anisotropic source (g,=1, g_=0) is located at
zm =1 and emits the light into the positive z direction. Here
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FIG. 2. The integrated flux in the negative z direction for the
VHS, PB, and EB models, compared with the MC simulations for a
medium with zero reflection r;;=0 and absorption w,=0.001u, and
f0=0.23. The isotropic source (q,=1/2, g_=1/2) is located at zu,
=1.

and in all the following graphs, we compare the PB (dotted
line), the EB (dashed lines), and the VHS theory (continuous
line) with the Monte Carlo data (circles). The VHS data were
obtained for the boundary condition f,=0.295, a value dif-
ferent from 0.125 as predicted by the PB diffusion model.
For small values of z the consequences from the norm con-
servation problem for EB are evident. In the region zu,> 1
we note a significant difference between the MC and PB
solution. This difference remains the same even for z— % as
the medium is lossless. The graph for EB shows the im-
provement due to the correction factor of 2.131 for large z.
This agreement between the EB and MC data is not surpris-
ing because we examine xy plane integrated quantities where
transverse effects are averaged out. However, any measure-
ment using small finite size detectors could reduce the range
of validity of the EB solution. The effect of the source an-
isotropy is seen near the source where the VHS model can
predict the smooth exponential decrease to the asymptotic
value more reliably than any diffusion model.

Next, let us compare the three solutions in the presence of
small absorption w,=0.001u, (similar to a tissuelike me-
dium) on a larger spatial scale. From now on we will use an
isotropic source (¢,=1/2, q_=1/2). Figure 2 shows the in-
tegrated flux for isotropic (g=0) as well as highly forward
(g=0.9) scattering media and zero reflection (r;;=0). For the
larger value of g we replaced the Eddington phase function
by the 5-Eddington phase function [10] in the VHS model.
This amounts essentially to replacing u, by u(1-g?) and g
by g/(1+g). Such a correction does not make any difference
for the two diffusion models. All three approaches agree very
well with the MC data. The agreement for g=0 deteriorates
slightly with increasing anisotropy. While the PB and VHS
model remain in good agreement with the MC simulations,
the EB data consistently overestimate the MC predictions.
This is expected as the correction factor 2.131 was obtained
for the case of g=0.

Let us now examine the impact of a specular reflection
from a mirror at the interface at z=0. As introduced in Sec.
III, the amount of reflection is determined by the parameter
r11, which for simplicity was chosen to be independent of the
incoming angle. However, the angles of reflection and inci-
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F_(z)

FIG. 3. The impact of a reflecting interface at z=0, r{;=0.25.
Total flux in the negative z direction for the VHS, PB, and EB
models, compared with the MC simulation. For the VHS model we
chose f,=0.9 (g=0) and f,=0.73 (g=0.9). (Same source and me-
dium parameters as in Fig. 2.)

dence was always set to be equal. In Fig. 3 the reflection
coefficient at the interface is r;;=25%. In the g=0 case both
PB and EB underestimate the net flux, whereas for g=0.9,
the two diffusion theories overestimate it significantly. In
both case the VHS model is in good agreement with the MC
data.

In Fig. 4 we examine a larger index of refraction mis-
match with 50% reflection (r;;=0.5). While the same con-
clusions hold, the diffusion theories seem to be even less
reliable for these high reflecting interfaces whereas the VHS
model is sufficiently accurate except in regions close to the
source. In this particular region the VHS model could be
improved further [11,12] by including the unscattered (bal-
listic) light into the description.

A more quantitative error analysis of the net flux at the
interface at z=0 is displayed in Table I, where we compute
the percentage error relative to the exact solution obtained
from the MC simulations for the three models. The table
indicates that the VHS model is always better than the PB
solution at the surface and thus it seems ideal for a surface
scanning based imaging. The predictions of the EB solution
are erratic; for certain parameters they are better while for
others they are worst than the PB solution.

FIG. 4. Same quantities as Fig. 3, however, r{;=0.5. For the
VHS model we chose f,=2.05 (g=0) and f,=1.73 (g=0.9). (Same
source and medium parameters as in Fig. 2.)
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TABLE 1. The percentage error in the net output flux for various
models at the interface at z=0 when compared to the exact solution
obtained from the MC simulations for a medium with pu,
=0.001 .

Percentage error in output flux at z=0

r1]=0.25 r1|=0.5()
g=0 g=0.9 g=0 g=09
VHS 0.86% 2.2% 0.2% 3.85%
PB 4.0% 4.2% 9.4% 11.34%
EB 7.83% 1.9% 13.6% 10.5%

VI. DISCUSSION

We have extended the velocity half-sphere (VHS) model
for infinite media to handle also systems with finite size and
reflecting interfaces. There are two major improvements ob-
tained from this approach. First, in contrast to the traditional
diffusion equation one does not require any extrapolated
boundary condition. The diffusion theory relies on extrapo-
lation procedures to determine the location of these bound-
aries. These depend on various scattering parameters making
this concept less practical for media with position dependent
scattering and absorption coefficients. It is also inaccurate for
highly forward scattering media because the usual phase
function in the diffusion theory cannot be corrected by the
6-Eddington form as in the VHS model. The regions close to
anisotropic sources cannot be modeled and the extrapolation
procedure leads to a serious problem with regard to the con-
servation of the photon half flux. Second, the VHS model
can incorporate the effect of highly reflecting interfaces
much more accurately than the diffusion approaches, poten-
tially opening up new avenues to develop imaging schemes
using mirrors [25].

A limitation of the present work is that we provide VHS
solution in terms of half-fluence ®,(p,z=0%) which is gen-
erally not know in advance. On the other hand, an advantage
of the boundary conditions used in this work is that the so-
lutions are fairly general and should be applicable to a wide
variety of interfaces. In special cases, when nonzero specular
reflection is considered an approximate reflection function,
R(€Q,Q') can be obtained from Fresnel relations. A solution
can be obtained which only requires the knowledge of matrix
elements ryy, 7y, 7y, and r,,. In future work, we plan to
compare such a solution with MC simulation and study the
different impact of specular and nonspecular reflecting inter-
faces.

Apart from applications in medical diagnostics and imag-
ing, this model can be used in other areas such as nuclear
engineering, atmospheric physics, oceanography [26], and
seismic wave detection [27,28], where the radiative transfer
theory is used extensively to describe boundary effects.
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APPENDIX A

Here we derive the solutions (3.2) and (3.3) for the diffu-
sion equation. The two moments ®,(r)= [dQI,(r,)) and
J (r)=[dQQI,(r,Q) are insufficient to describe the dynam-
ics near a boundary where the light distribution is highly
anisotropic. The diffusion equation is obtained by integrating
Eq. (2.1) over fd€) and over [Qd(). As a result the continu-
ity equation V-J,(r)=—u,P,(r)+qdx)d(y)S5z-z,), and
Fick’s Law  V®u(r)/3=—(ur—gm)Ja(r) +e.q,0(x)d(y) &z
—z,)/2, can be obtained, respectively, where e, is the unit
vector along the z axis. These two coupled equations can be
reduced to the standard diffusion equation for the fluence
®,(r) as given in Eq. (3.1). We give here more a detailed
derivation and discussion how various boundary conditions
are implemented into the diffusion model. The usual diffu-
sion equation (3.1) has the general (nondiverging) solution
for ®,(r) given by the sum of the homogenous and a special
solution

D,(r) = J dNANTo(Np)exp[— ay(z + z) J/(4mDeyy)
0

+ f ANNTo(Ap){g/D = 3gd.2}
0

Xexp(— ay|z — z,|)/(47ay), (A1)

where Jy(Ap) is the zeroth order Bessel function, p
=(x*+y?) and a@,=(?+\?). For an isotropic point
source (ga=0) the special solution simplifies to the best
known form ®,(r)=exp(-a|r-ze.|)/(4mD|r-z.e.|). Since
some of the boundary conditions discussed in the text in-
volve the flux, we also give here its general form J,(r)
=Jgp(r)e,+J . (r)e,=—D(d,e,+d.e.)P,(r)

+3De,gr8(x)8(y) 8(z—2z,)/2 which follows from Fick’s law

Japlr) = j ANANYT (NpJexpl— ay (2 +z) /(4 ay)
0

+ j d\\*J(\p)(q — 3Dqxd,/2)
0

Xexp(= ay|z - z))/(47ay), (A2a)
Jg(r) = J( :O ANANTo(\p)exp[— ay(z +2,) V/(4m)
- J : ANo(\p)(gd, e, = 3Dargal2)
Xexp(— aylz — z,|)/(4). (A2b)

As we show below depending on the choice of the bound-
ary condition, the set of expansion coefficients A, can be
determined. The above solutions can be used to study both
isotropic and certain types of anisotropic sources, but they
are usually studied in the context of an isotropic source.
However, light ejected from a fiber is anisotropic and can be
modeled better as a half-source (¢,=1, g_=0). Such a cor-
rection can be significant when the source is close to the
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boundary and measurements are made near this boundary.
Below we briefly review the three most commonly used
boundary conditions.

Zero boundary condition. The easiest boundary condition
®,(x,y,z=0)=0, is often used to model experimental data
[29]. This solution (denoted with an additional subscript 0) is
characterized by  expansion  coefficients A,o=—(g
—3Dayq,/?2), for which the integral over A can be performed
analytically leading to

@ (1) == (/D +3qx3./2)exp(- a|r + z,e.|)/(4afr + z,e.|)
+(q/D = 3qxd.12)exp(— alr — z,e.|)/(4mfr — z;e.]).
(A3)

The first term of this equation can be associated with the
fluence of an imaginary antisource (photon sink) located at
r=(0,0,-z,), similar to the inclusion of image charges in the
corresponding electrostatics problems.

Partial current boundary condition. If there is no reflec-
tion at the boundary, the partial current condition assumes
that the average incoming flux is equal to zero at z=0, i.e.,
J.dQ cos 601,(r,Q)=0. This condition would be sufficient if
1,(r,Q) were always positive as required by the definition of
the irradiance. However, the truncated expansion of 7,(r,{})
does not automatically guarantee a positive irradiance
and thus the solution based on this condition is still
bound to certain limitations. In the presence of
reflection, defined via  the  coefficient r; =
—[J.dQ cos 61,(r,Q)]/[[_dQ cos 0,(r,Q)], this condition
leads to (1-2Dvyd,)P,p(x,y,z=0)=0, where y=(I
+ry)/(1=r;), and can be satisfied if the expansion coeffi-
cients take the form A,,=-(1-2Dya))(g—3gxDa,/2)/(1
+2Dya,). After some simplifications we arrive at the follow-
ing solution for fluence [Eq. (3.2)]:

D 4p(r) =Yg + 3‘]AD’9Z/2)f dA\NJo(\p)exp[— ay(z
0

+2) /[ 7(1 + 2D yay)] - (g/D + 3gad./2)exp(- alr
- z,e.|)/(47D|r + z.e,|) + (/D — 3q5d./2)exp(- a|r
-z )/(47D|r - ze|). (A4)

Extrapolated boundary condition. The PB condition (1
—2Dvd,)® p(x,y,z=0)=0, can be viewed as the first two
terms of the Taylor expansion of ®(x,y,z—2yD) around z,
thus we can write (1-2yD3,)P p(r) =P p(x,y,z=27yD).
Consequently, if D is sufficiently small, we can approximate
the partial current condition as @ p(x,y,—2yD)=0. Thus the
fluence can be set equal to zero at an extrapolated plane at
z=-27yD. For a highly scattering medium (small D) with
negligible reflection from the boundary (y— 1), the predic-
tions of partial current condition and the extrapolated condi-
tion are similar [17]. By comparing this condition with the
Milne problem the extrapolated boundary for an index
matched medium (y=1) can be shifted from z=-2D to z=
—-2.131D [22]. We will denote this type of solution with an
additional subscript E and the expansion coefficients are
given by A, p=—exp(-a,4.262yD) leading to Eq. (3.3)
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D (r) = = (/D + 3qad12)exp[- alr + (z,
+4.262yD)e.|J/[47D|r + (z,+ 4.262yD)e_|] + (¢/D

—3gad./2)exp(- afr — z,e.|)/(47D|r - z,e.|).  (AS)

APPENDIX B

In this appendix we show that the Milne problem predicts
a discontinuity in ®,(p,z) at the medium’s boundary, i.e.,
3. P, (p,z) = as z—0. The Milne problem is characterized
by a semi-infinite medium (z=0) and an infinitely extended
source located at the plane z=z, such that the transverse ef-
fects can be neglected. Since the jump in ®,(p,z) is not
affected by absorption we assume wu,=0. A formal solution
for the radiance is given by [22]

1,(z,cos 6) =f ®(z")exp[(z' = z)/cos 6]/(2 cos O)dz’
0

+ 0O(z - z,)exp{(z, — z)/cos G}/(2 cos 6),
0<cosb=1, (B1)

I (z,cos ) =— J‘”’ D(z")expl(z' — z)/cos O]/(2 cos H)dz’

— 0O(z,— z)expl(z, — z)/cos G]/(2 cos 6)
—1<cos <0, (B2)

where z is here a dimensionless length measured in the units
of 1/u,. If the source is located at infinity the source term is
zero and the density ®(z) satisfies the integral equation
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<I>(z)=f dz’q)(z')f dy exp(=|z' —z|y)ly. (B3)
0 1

Integrating both equations (B1) and (B2) with respect to
cos 6 and differentiating with respect to z we obtain

9.®,(z) = <I>(z)f dyl/(2y) - fz ®(z")exp[- (z—z")/[2(z
1 0

-z')]dz’, (B4)

3, P_(z) == P(z) f dyl(2y) + f D(z")exp[- (z" = 2))/[2(z'
1 z

—z)]dz’. (B3)

If we assume that the total fluence d(z) is nonzero at the
boundary z=0 then the second term in Eq. (B4) is negligible
in the limit z—0 and we obtain J,®_(z) — . This conclu-
sion for the Milne problem can be extended to other situa-
tions involving plane boundaries.

This discontinuity in ®_(r) leads to a discontinuity in
I(r,Q) at the boundary as well [2] because of the definition
O, (r)=[,dOU(r,Q) If I(r,Q) is discontinuous at the
boundary then it must contain a term proportional to
O(z)8(cos 6) [otherwise the operator -V will give rise to
&(z) which is not present on the right-hand side of Eq. (2.1)]
which cannot be expressed by a linear expansion in €} given
by Eq. (4.1). This problem of discontinuity in ®,(r) can be
avoided by imposing the boundary condition slightly inside
the medium at z=0% instead of z=0.
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