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Critique of the Wigner tunneling speed and a proposed alternative
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In the context of superluminal propagation of wave packets through potential barriers, the tunneling speed is
usually characterized by the Wigner velocity. We propose an alternative speed that takes into account the
interference between the incoming and the reflected waves and leads to a better estimation of arrival time for
a wave packet entering the tunneling region. This arrival time is derived by an extrapolation from inside the
barrier. The analytical theory is based on the stationary phase approximation whose validity is justified by a
comparison with the numerical solution of the time-dependent Dirac equation.
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I. INTRODUCTION has not been investigated directly. By the early 1990s the
physics community has largely accepted the existence of a
The phenomenon of tunneling, in which a particle ap-time associated with the duration of tunneling, but there is
proaches a repulsive barrier with a height that exceeds thgtill a lack of consensus with regard to the unique expression
total energy of the particle, is usually used as an example téor this time scale and on the exact implications of this ex-
illustrate the different predictions from classical and quan-pression16]. Hauge and Stovner|d 4] stated that, with the
tum theory. In fact, classical mechanics predicts zero transexception of two candidates, all expressions for tunneling
mission while quantum mechanics predicts a nonzero trangimes have logical flaws, sufficiently serious that they must
mission and is in agreement with experiments. This effect ide rejected. The only survivors are the dwell tifd®] and
extremely important and has been studied widely. the asymptotic phase time,14], which have complemen-
One exciting aspect of the tunneling process is the prostary weaknesses.
pect of superluminal transmission already recognized in the In view of the above weakness, we have recently devel-
original study of Wigner in the 19504 ]. There has been a oped a method16,17), which allowed us to address the su-
large body of theoretical work since then, addressing theerluminal problem beyond the stationary phase approxima-
issue of superluminality and causalif)f2—7]. Steinberg, tion. Our quantum theory was fully relativistic, permitting us
Kwiat, and Chiao have addressed the realization of superluo study the violation of causality. We demonstrated that su-
minal speed$3,5]. They used a periodic potential barrier to perluminality does occur in the theory based on the space-
demonstrate experimentally that superluminal velocities catime resolved solution of the Dirac equation. In fact, we
indeed be obtained, and showed that this result does not vighowed that particles travel with a higher speed in the Dirac
late causality. theory than in the Schdinger theory. Qualitatively the two
The dynamics of quantum-mechanical electron wave tuntheories were similar but the quantitative predictions were
neling can be mapped to the electrodynamics of evanesceatbstantially different.
waves. It has been studied recently, both theoretically and We have defined, for the first time, an instantaneous tun-
experimentally. Experimental data have been obtained for theeling velocity that can be calculated for regions both inside
tunneling of optical pulses in photonic band gé®k in frus-  and outside of the barrigrl6]. The new velocity led to a
trated total internal reflectiofd,10], and in dielectric media more microscopic understanding of the transmission of the
[11,17. Other potential applications of superluminal pulsewave packet across the tunneling region. We found that su-
propagation include instantons in particle physics, and th@erluminal velocities may imply the violation of causality
Josephson effect in semiconductor materjaf3). only in the framework of the Schdinger equation. Causality
Many of the theoretical studies about superluminal wavds not violated in the Dirac theory.
propagation are based on the method of stationary phase ap- Two important issues that have not been addressed in the
proximation. The wave packets, for which this approxima-previous investigatiofl6] are the focus of the present paper.
tion does not apply, have not been investigated. In additionyWe consider first the effect due to the reflected wave packet,
several all theoretical works relied on the framework of non-which has been neglected up to now. We focus in particular
relativistic quantum theory based on the Sclinger equa- on how the reflected wave interferes with the incoming
tion. It is obvious that such a theory has a potential defiwave. We would like to determine how the interference
ciency in accurately addressing the question of causality. Facthanges and complicates the evaluation of the arrival time.
the special case of nonrelativistic tunneling, the question ofn this paper we propose to compute the arrival time by
how much time it takes a particle to pass the barrier, hagxtrapolating the instantaneous velocity from the barrier re-
triggered considerable controversial debates to the presegton to near the entrance interface. The instantaneous veloc-
day. ity in the barrier region turns out to be a smooth function of
It is somewhat surprising that most tunneling velocitieslocation, which makes the extrapolation straightforward and
defined thus far have to be based on averages over the entiree of ambiguity. We find the computed arrival time can
barrier region. The microscopic dynamics under the barriediffer significantly from what was reported in Wigner’s origi-
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nal paper. We also study the significance of relativity due to
multiple spinor components versus a single component.

The paper is organized as follows. The model and theo-
retical method are introduced in Sec. Il. Details of the tun-
neling dynamics obtained from numerical simulations are
presented in Sec. Ill. The new arrival time has been calcu-
lated in the stationary phase approximation in Sec. IV by
extrapolating the instantaneous tunneling speed from the bar 4
rier region. We then compare this tunneling velocity with the
Wigner tunneling speed across the barrier in Sec. V for vari-
ous relativistic conditions. The paper ends with a summary
and a brief discussion.
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FIG. 1. The time evolution of the probability density of the
relativistic wave packet during the tunneling proce3$e param-
Il. RELATIVISTIC TUNNELING DYNAMICS eters wereg=—10 a.u.,Ax=1 a.u.,v=10 a.u.,w=0.1 a.u., and

. . . . W=1.5E.
We begin our analysis with an overview of the wave- )

packet motion. In our calculations an electron is represented .. . .

b A . . _—continuum characteristic of the so-called Klein parafibx—

y a relativistic wave packet described by the space—umel . . . .

dependent Dirac spinor wave functionW(x,t) 9]. Th!s restricts our initial velocities to.<0.94c. _

— (¥, W, W, W,). This wave function is defined on é nu- In Fig. 1 we display the wave-function solution of the
Lr2r 3 A time dependent Dirac equation as a function of time and

merical space-time grid. In all of our simulations the spatial o : L
axis was typically discretized into at least 65 536 grid points,Space' The probability density of the wave packetis given by

which, together with up to 1 500 000 temporal points, led to 4
fully converged result§17]. _ . 2

The incoming electron wave packet is assumed to take the P .Zl Wi D[% 23
Gaussian form

_ where ¥; are the four Dirac spinor components. Figure 1

W (x,t=0)=N exf — (x—Xo)*/(4Ax%) Jexp(ikx) ¢(k), shows the injection of a wave packés probability density
(2.1) is plotted fromx<0 toward a potential barrier at=0. After
) L ) a complicated interaction of tunneling in the barrier region, a
where the spinory(k) is given by (1,Opk/(E+220 ).0)  reflected and a transmitted part can be clearly identified in
and2 the ng;mahzatu_)n factor N={(E+2¢9)/[2(E  the figure. It is worthwhile to mention that interference oc-
+c?)Axy27]}*2in atomic units. Here the total ener@yis  cyrs just before the barrier where the reflected wave traveling
J[c*+c?k?]—c?. The central canonical momentukis re-  phackwards meets with the incident wave. This interference
lated to the initial speedv via the expressionv il alter the formation of the true peak in the wave packet as
=k/\[cZ+K?]. it “enters” the barrier; this will be analyzed in more detail in
The evolution of the four spinors follows the time- Sec. IIl.

dependent Dirac equation in one spatial dimension:

Ill. THE MICROSCOPIC PICTURE

. _ 2
Ll ICa W/ ox+ oY+ WO 2.2 OF THE TIME-RESOLVED TUNNELING PROCESS

Here, a, and 8 denote the usual Dirac matrices. The repul- The sketch in Fig. 2 displays the spatial-temporal trajec-
sive potentialW(x) is centered around=0 and has an ef- tory associated with the peak of the moving wave packet.
fective width ofw and a heightV. We have used a variety of The curve before approaching the barrier starts out as a
tunneling potentials characterized byV(x)=Wexd  straight line characteristic of a free propagation. When the
—(2x/w)"]. For large(even integersn, we recover the rect- wave packet approaches the barrier it begins to bend, and a
angular barrier for which the energy eigenstates can be fountime delay occurs that is caused by the reflection and the
analytically and some approximate analytical estimates caimterference displayed in Fig. 1. Only a small part of a wave
be made. The Dirac equatid@.2) has been solved numeri- packet penetrates the barrier. In the direct proximity of the
cally using a split-operator algorithm based on fast-Fouriepotential, the trajectory bends even more. Eventually it splits
transformation that is accurate up to fifth order in tipd&]. into two lines corresponding to the tunneled and the reflected
The initial location of the wave packat, was chosen far parts of the wave packet.
enough to the left of the barrier so that it does not overlap The traditional Wigner tunneling speed for a wave packet
with the space to the right of the barrier at titre 0. The  tries to describe the duration of time the particle spends un-
potential heightw was chosen to be 1.5 times the kinetic der the potential barrier. The precise instant in time when the
energyE such that we can practically exclude the effect ofwave packet leaves the right edge of the barriet=aiv/2, is
high-momentum contributions that can simply pass over thelenoted bytg . It can be unambiguously determined by trac-
barrier without tunneling. The potential heightwas chosen ing the peak of the transmitted wave packet back in time to
smaller than 22 to avoid the effect of the negative energy x=w/2. Since this emerging wave packet is usually quite
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pending on the choice of the parameters, the pGican be

either to the left or to the right of poir®, associated with a
Wigner tunneling speeev/(tg—ty,) larger or smaller than
the velocity of the incoming wave packet.

Let us now describe an improved arrival tifdeenoted in
the sketch byt,), that can differ significantly from the tradi-
tional Wigner arrival time, . This time is based on extrapo-
lating the center of the transmitted wave packet back in time
through the barrier to the left edge= —w/2. We should note
that, in this approach, the interference between the incoming
and the reflected wave packets is taken into account.

The wave function in the tunneling region decays ap-
proximately exponentially as a function of space. This func-
FIG. 2. The locatiorx as a function of the temporal-peak time. tion is obviously not localizedit does not have a local maxi-
The dashed line is associated with a free wave packet in the abseneum) if a snapshot of the wave function is taken at any

of any scattering potential. In this approximation, poiitin the ~ moment of time. A conventional definition of a velocity,
sketch indicates when a free wave packet reaches the left edge hbwever, relies on how a “spatial peak” of a state has moved
the potential barrier and poif indicates when it departs from the between two snapshots. This scheme faces a challenge inside
tunneling region. The heavy-solid line indicates how an actual trathe potential barrier, where it is not possible to find a spatial
jectory may differ from the Wigner approximation. Poifitis the  peak. To resolve this problem we note that even though the
correct entry point to the barrier and polts the emerging point. wave function is not spatially localized, the probability den-
PointsB and W are usually used to define the Wigner speed. Thesjty s temporally localizedfor each position inside of the
new tunneling speed is defined by poiAtandB, allowing possible  tnneling region. In other words, as the wave packet tunnels
interference between the reflected and the incident waves. through the barrier, there is a precisely defined time for each
position at which the spatial probability takes its maximum
smooth, the determination of its peak may be carried ouvalue. At such an instance, the peak time uniquely specifies
reliably. “when” the particle “passes” the selected point in space.

More controversial and much more difficult to determine Using this concept permits ug) to define an improved ar-
is the precise moment in time,) when the electron enters rival time t, and therefore an improved average tunneling
the barrier. This estimation is nontrivial due to the compli-speedw/(tz—t,), and(b) we can even define an instanta-
cated interference patterns between the incoming and réeous velocity under the barrier that matches the conven-
flected wave packet. In the traditional approach by Wignertional velocity at the right end of the barrier.
an entry time, denoted bty,, has been associated with the ~ Before we compare this new tunneling velocity with the
time when a freely propagating wave packet would strike thdraditional Wigner speed in Sec. V, let us first derive some
edge. This time can be easily obtained by extrapolating th@nalytical results for the relevant times using the known ana-
incoming trajectory(dashed lingto the left edge of the bar- Iytical form for the relativistic energy eigenstates for a rect-
rier at x=—w/2, as marked by pointV. We should note, angular potential.
however, that this assumption neglects important effects due The timet,, can be easily obtained by extrapolating the
to the reflected wave. The interference may even produce i#coming wave packet in the absence of any reflection:
multipeak structure resulting in a significant modification of
the arrival time for the incoming wave. In order to make a

2

better estimation of the time spent in the tunneling region, tw="— c’k (W/2+Xo). 3.1
one has to find a more accurate method to calculate the ar-
rival time. In the presence of the barrier, the wave packet actually

If there were no barrier present, the electron would haveemerges from the barrier at poiit Below we will derive an
arrived atx=w/2, at the time associated with poiGt De-  analytical estimate of this time:

k? c>—(W-E)
r (1+T72) 1+ tanhxw)—(1—F*2)KwTsech1KW) &2

tB:Z_KZ 1 - C2k (W/2+X0), (32)
1+Z(F—F*1)2tanh’-(l<w)

where

E(E+2c°—W)
(E+2c¢?)(W-E)’

1
K= Ve*—(E+c*-W)? and I'= \/
The same stationary phase analysis will also lead to an expression for the correct arrival time
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K? c®—(W-E
1+ 17

(1+T72?) tanr(Kw)—(1—F‘2)KW—C2—)secthw)

r
2.2

l+%(F—F’1)2tanh’-(Kw)

K2
tant(xw)—(l—gz

2
K
K 2 (1+F KW secli kw) 24 E

+ m K7_ tantt( kw)
|
For our analytical derivation of Eq$3.2) and (3.3), we a(x)=a,—tan YT tani «(W/2—x)]}, (3.68

assume that the spatial as well as temporal peaks may be
evaluated by their corresponding expectation values,xg€.,

=(x) andt,=(t). These hold as good approximations for as(X)=a,+tan Etanr[x(wlz—x)] (3.6b
wave packets that are nearly symmetric. The form of the r
initial state(2.1) corresponds to a particle that is polarized in
the direction of motion and we need to use only two spinomwith
components to describe the electron. The temporal peak
valuet, is a function of the positiox and can be expressed 1 1
as a weighted average: a,=tan ! E(F_ T tanh kw) | +k(w/2+Xg).
(3.60
tlf dt|W1|2+t3f dt| w52 trty
t= FAUW, P [ WaZ - dir (3.4  The probability ratior between both spinors, can be ex-
pressed as
wheret; andt; are the peak times associated with the first
and third spinor components. Using the stationary phase ap-
proximation, these times can be approximated by f dt| W2 (W—E) T2+ tant[ k(W/2—x)]
r= ~ .
. 2¢c°—(W—E) 1+TI?tanif[ x(w/2—x)]
tizao;'éx), i=1,3, (3.5 f d|w,|?

(3.7
where «; and a3 are phases of the corresponding spinor
components of the stationary wave function solution undetJsing formula(3.5 we can evaluate the times associated

the barrier: with each spinor component:
K? c2—(W-E)
r 1+ i@ tanH k(W/2—Xx)]— k(W/2—X) Tsecrﬁ k(W/2—X)]
L=t—2 T+ T2 t@anf k(Wi2—x)] (3.83
and
K2 c’—(W-E)
I 1+ W2 tanH k(W/2—x) ]+ k(wW/2—X) Tsecﬂjx(W/Z—x)]
=t =2 T2+ tant] x(Wi2—x)] (3.89
with the parametet, given by
-2 K2 _2 CZ_(W_ E)
I (1+T 9| 1+ W2 tanh kw)—(1-T )KwTsechw) P4+ E
tr:ﬁ - Czk (W/2+ Xo). (38@

1+ %(F_Fil)ztanﬁ(KW)
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A r T IV. THE INSTANTANEOUS TUNNELING VELOCITY
_ r ] In this section we analyze the instantaneusition de-
5 2 3 ] pendenk velocity defined as the slope of the curve presented
o of ] in Fig. 3:
= C t sol
_- ooo exact solution -1
2L R dt
e [ — analyt. theory ] vr(X)= d_p (4.2)
4L -+« 1*! spinor comp only ] X
0 L R Considering the first and third spinor components, it can be
t -x/v [10*5 auw] rewritten as
p
- ] ) 1+r
FIG. 3. The peak positiorx, as a function of the(shifted V= p - , (4.2
temporal-peak time. The open squares are the exact numerical so- ty+rtg—r (tp_t3)

lutions and the solid line denotes the prediction according to the

analytical formula[Eqg. (3.4)] based on the stationary phase ap-\here the primes denote the spatial derivatives, and

proximation. The dashed line is calculated from considering only

the first spinor component of the wave functigithe parameters

werexo,=—100 a.u.,Ax=20 a.u.,v=100 a.u.,w=0.01 a.u., ,dr (F*=1)sinH 2k(wW/2—x)]

andW=1.5€.) Foax {T"2 cosH[ k(w/2— x) ]+ sintf[ k(w/2—x)]}%"
4.3

. . . Instead of presenting the lengthy expression for the instanta-
Combining thgse expressions, We_Ob‘q"@() and the depar- neous velocity, let us examine tiigimplen expressions for
ture and arrival times becomeg=t,(x=w/2) and ta  regions close to either edge of the barrier.
=tp(x=—w/2) as presented in Eqe3.2) and (3.3). As shown in Fig. 3, the instantaneous veloaityis larg-

To perform the stationary phase analysis we had to megis; atx= —w/2 and then decreases with the barrier penetra-

the requirement that the probabiliB(x,t) is well localized  tion depth. The instantaneous velocity close to the barrier's
in the momentum space around a single maximum aréund right edge[for x(x—w/2)<1] can be simplified to

Fortunately, this is fulfilled for most practical cases.
In order to establish the validity of this analytical esti-

2172
mate, we show in Fig. 3 the quantum trajectory under the ;. ~|1+4 . c (T +1)2 [K(le_x)z]}vfree-
barrier calculated from the exact numerical wave function 2¢*—(W-E)(I'"~1)
solution to the Dirac equation. At each position under the (4.4

barrier, we have computed that time at which the wave func-
tion takes its largest value. In our calculations, we have choHerevy., is the velocity of the outgoingtransmitted wave
sen the barrier to extend from5x107% to 5x10 %a.u.  packet in free space, which is typically close to the incoming
The wave packet is prepared at timg=0 at X, speedv.
=—100a.u. and it moves towards the positive part of the It is worth noting that Eq(4.4) predicts that the velocity
space with an initial velocity of =100 a.u. This exact curve is only a function ofx—w/2 near the edge. In other words,
is superimposed with the analytical formujg=t,(x) given  the instantaneous velocity in the proximity of the right edge
by Eg. (3.4). The two curves are practically indistinguish- does not depend on the width of the barrier. This remarkable
able. This justifies nicely our two key assumptiof@ to  fact is illustrated in Fig. 4. We compare the position depen-
associate the maximum tintg with its average(t) to evalu- ~ dent speed for two barriers with length=0.01 andw
ate the contributions of each spinor, afll to use the sta- =0.005a.u. Both barriers have their right edge at
tionary phase approximation. The third cur(the dashed =0.005a.u. The perfect coincidence of the lines for the dif-
line) corresponds to a quantum trajectory; however, it is calferent barrier widths seen here, extends almost through the
culated only from the first spinor component of the waveentire region of the shorter barrier and suggests that one may
packet. The difference between the curves illustrates the imexpect the same universal behavior of the tunneled wave
portance of the third spinor component under the barrier. Abacket, regardless of the total width of the barrier. As long as
similar comparison for the transmitted wave packet suggeste incident energy of the packet and the height of the po-
that, in contrast to the state under the barrier, the third comtential remain the same, the only important parameter is the
ponent is less important outside the barrier. distance of the peak to the right edge of the barrier.

In our method, the peak time is a function of the position In contrast, the instantaneous velocity at the left edge of
X, even though in Fig. 3, space is arranged vertically andhe barrier depends strongly on the barrier width. On the
time horizontally. Such an arrangement leads to a slope thatther hand, for barriersl<«(x—w/2)] it can be approxi-
must be interpreted as an instantaneous velocity. In the folnated by
lowing sections we will discuss the properties of this instan-
taneous velocity and compare its average value to the tradi- K 14172 4.5

tional Wigner speed. UTZT 1+ (xik)2 cositl k(wi2—x)],
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400 — i i i i L L A L where

350 w=0.01 a.u. |
= v_for w=0.01 B I'*(1+tantf kw) + 212 5 1h
g, 30 0008 ) a= 2(1+TI?tantfkw) (5.1
>E-‘ 250 | | T
2 200 analytical ] and Aa;, 3 is the phase difference between right and left
8 ok Sau_ ¥, for w=0.005 | edges for the first and the third component, respectively:
] i ™
” ook Aay=tan T tanh xw)], (5.19

50 P ) T BT L

-0.004 -0002 0 0.002  0.004 41
position [a.u.] Aaz=tan Ftant{ KW) |. (5.10

FIG. 4. The instantaneous velocity as a function of the position.S
The thick-solid line is the analytical solutidiEq. (4.2)]. The thin
line corresponds to numerical simulation. The squares are the

imilarly we may rewrite the Wigner velocity as

numerical predictions for a barrier of widthv=0.005a.u. The Ty :L_ (5.2
inset illustrates the configuration of the two potentia(She " d(Aay)9E

parameters werg,=—100 a.u.,Ax=20 a.u.,v=100 a.u.,w

=0.01 a.u., andv=0.005 a.u., andW=1.5E.) Here A a,, is the phase differenc@vhich is identical for the

first and the third componentbetween outgoing and incom-
which diverges strongly with the barrier width. This be-  ing waves without considering interference:
havior can be linked to the Hartmann effé20], as we will

discuss in Sec. V. 1 1
Aa,=tan ! 5 F_f tanh( kw) |. (5.3
V. COMPARISON OF THE WIGNER VELOCITY
WITH THE (AVERAGED) INSTANTANEOUS VELOCITY The expression&s.1) may be written explicitly as
Let us now compare the Wigner,=w/(tg—t,,) and the 2
average tunneling velocityr=w/(tg—t,). This velocity is o= KWK_ 1+ —
a time average of the instantaneous velocity;=1/(tg k c
—tA)f:idth[x(t)]. On the other hand, the spatially aver- 2
aged velocity (W) "2, dxv{[x] is different thanvT be- I+ 257221 tankf(xw)
cause the trajectory,(t) is a nonlinear function of time. X 2 2
It can be shown that when the tunneled wave packet is not ( 1+ — |tanh kw) — Kw( 1— —|sectixw)
distorted significantly, the speed can be rewritten as K ¢
5.4
_ (1+a)w - (643
UT™9(Aa,)ldE+ad(Aaz)dE’ G139 Jnd the relativistic Wigner speed is
|
_wk? AT+ (T'?—1)? tankf( kw) 5 4b
fwTRr 2 CZ+E-W ©4h
(T'2+1)| 1+ 2 tanh kw) — (I'?— 1)KW—C2—sechw)

The main difference between the Wigner and averagethrger than the incident velocity. In the limit of a very thin
instantaneous velocity arises from a delay on the incidenbarrier, the tunneling spead- becomes identical to the inci-
edge of the barrier. Figure 5 presents a comparison betweelent velocity
these two velocities as a function of the barrier width
Because this delay is related to the interference between the limvr=v. (5.53
incident and reflected components, the temporal peak at the w—0
incident edge is formed later than the one of the freely propa-
gating packet. This delay makes the averaged instantaneolifis agreement makas; a much more physically reason-
velocity always larger than the Wigner velocity. Another im- able speed compared #oy. The Wigner velocity is less
portant difference is that the tunneling spaedis always “physical” as vy, can be even smaller than the incident ve-
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200 ———— —T — connection with the Wigner tunneling speed. We have cor-
| rected the arrival time for a wave packet entering the tunnel-
ing barrier. This correction has considered the interference
between the reflected and the incoming waves neglected in
the Wigner theory. We showed that the spatial characteristics
of the instantaneous velocity are very similar for barriers
with the same right edge and height regardless of the barrier
width. This universality of the speed is quite interesting from
the point of view of causality. Usually, the velocity of a

velocity [a.u.]

Wigner . . . . . .
50 I R E A S particle at a given position depends, in classical mechanics,
0.002 0.004 0.006 0.008 001 0.012 on its past trajectory and one couliehcorrectly) conjecture
width w [a.u.] that the tunneling velocity under the barrier should therefore

be a function of the distance to the left edge. However, it
FIG. 5. Average tunneling velocities: Wigner velocifiower  turns out that the instantaneous tunneling speed depends on
line) and average tunneling velocity: (upper ling as a function of  the distance to the right edge, and not on the location of the
t_he barrier width._ Both curves asymptotically approach straightift edge. Due to its conserved energy, the particle is con-
lines for large widthw. (The parameters werg&,=—100, AX  fined to leave the right edge with a velocity close to the
=20,v=100a.u., andV=1.5%.) incoming velocity. The main dynamics of the tunneling,
however, is determined at the left edge by the significant

locity for very thin barriers, as the fast tunneling proCess’nterferences between incoming and reflected wave packets
does not have enough “space” to make up for the delay 9 P '

the left edge: he details of this interference, however, depend on the total
' width of the potential and therefore the location of the right
o | % edge.
VIVITOUW:[1+(K/k)2+(E—w)/cz] v. (5.5b Most of our analysis was based on the stationary phase

approximation, which is reliable for wave packets that are
nearly symmetric. The analytical formulas were evaluated at
proper values of the momentuknThis was possible because
the state depends only very weakly on the momentum as the

It is quite remarkable that in the opposite limit of a wide
barrier (1<«w), both velocities increase linearly with the
width, however, with significantly different slopes, which are

) spatial wave-packet spreading was not so impoiftah22.
off by a factor of 2: On the other hand, for wave packets that are prepared rela-
(14T 2)k2x2 tively far from the barrier, different momenta components
lim ?T=mw, (5.68  can become spatially separated from each other before they
W—

reach the barrier location. As a consequence it may happen
2K that the tunneled peak can leave the barrier even before the
lim o :(1+ )k W, (5.6b incident one hits the barrier. We have also illustrated that in
W 2T (kK + k?) the relativistic regime, it is important to consider different
spinor components in computing the arrival time for com-
The linear dependence of velocity on the barrier width isparison with a possible experiment.
well-known from nonrelativistic tunneling such as the Hart-
mann effect. It leads to a finite limit for the tunneling time.
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