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Critique of the Wigner tunneling speed and a proposed alternative
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In the context of superluminal propagation of wave packets through potential barriers, the tunneling speed is
usually characterized by the Wigner velocity. We propose an alternative speed that takes into account the
interference between the incoming and the reflected waves and leads to a better estimation of arrival time for
a wave packet entering the tunneling region. This arrival time is derived by an extrapolation from inside the
barrier. The analytical theory is based on the stationary phase approximation whose validity is justified by a
comparison with the numerical solution of the time-dependent Dirac equation.
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I. INTRODUCTION

The phenomenon of tunneling, in which a particle a
proaches a repulsive barrier with a height that exceeds
total energy of the particle, is usually used as an exampl
illustrate the different predictions from classical and qua
tum theory. In fact, classical mechanics predicts zero tra
mission while quantum mechanics predicts a nonzero tra
mission and is in agreement with experiments. This effec
extremely important and has been studied widely.

One exciting aspect of the tunneling process is the p
pect of superluminal transmission already recognized in
original study of Wigner in the 1950s@1#. There has been a
large body of theoretical work since then, addressing
issue of superluminality and causality@2–7#. Steinberg,
Kwiat, and Chiao have addressed the realization of supe
minal speeds@3,5#. They used a periodic potential barrier
demonstrate experimentally that superluminal velocities
indeed be obtained, and showed that this result does not
late causality.

The dynamics of quantum-mechanical electron wave t
neling can be mapped to the electrodynamics of evanes
waves. It has been studied recently, both theoretically
experimentally. Experimental data have been obtained for
tunneling of optical pulses in photonic band gaps@8#, in frus-
trated total internal reflection@9,10#, and in dielectric media
@11,12#. Other potential applications of superluminal pul
propagation include instantons in particle physics, and
Josephson effect in semiconductor materials@13#.

Many of the theoretical studies about superluminal wa
propagation are based on the method of stationary phase
proximation. The wave packets, for which this approxim
tion does not apply, have not been investigated. In addit
several all theoretical works relied on the framework of no
relativistic quantum theory based on the Schro¨dinger equa-
tion. It is obvious that such a theory has a potential d
ciency in accurately addressing the question of causality.
the special case of nonrelativistic tunneling, the question
how much time it takes a particle to pass the barrier,
triggered considerable controversial debates to the pre
day.

It is somewhat surprising that most tunneling velocit
defined thus far have to be based on averages over the e
barrier region. The microscopic dynamics under the bar
1050-2947/2001/64~2!/022105~8!/$20.00 64 0221
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has not been investigated directly. By the early 1990s
physics community has largely accepted the existence
time associated with the duration of tunneling, but there
still a lack of consensus with regard to the unique express
for this time scale and on the exact implications of this e
pression@16#. Hauge and Stovneng@14# stated that, with the
exception of two candidates, all expressions for tunnel
times have logical flaws, sufficiently serious that they m
be rejected. The only survivors are the dwell time@15# and
the asymptotic phase time@6,14#, which have complemen
tary weaknesses.

In view of the above weakness, we have recently dev
oped a method@16,17#, which allowed us to address the s
perluminal problem beyond the stationary phase approxi
tion. Our quantum theory was fully relativistic, permitting u
to study the violation of causality. We demonstrated that
perluminality does occur in the theory based on the spa
time resolved solution of the Dirac equation. In fact, w
showed that particles travel with a higher speed in the Di
theory than in the Schro¨dinger theory. Qualitatively the two
theories were similar but the quantitative predictions w
substantially different.

We have defined, for the first time, an instantaneous t
neling velocity that can be calculated for regions both ins
and outside of the barrier@16#. The new velocity led to a
more microscopic understanding of the transmission of
wave packet across the tunneling region. We found that
perluminal velocities may imply the violation of causali
only in the framework of the Schro¨dinger equation. Causality
is not violated in the Dirac theory.

Two important issues that have not been addressed in
previous investigation@16# are the focus of the present pape
We consider first the effect due to the reflected wave pac
which has been neglected up to now. We focus in particu
on how the reflected wave interferes with the incomi
wave. We would like to determine how the interferen
changes and complicates the evaluation of the arrival ti
In this paper we propose to compute the arrival time
extrapolating the instantaneous velocity from the barrier
gion to near the entrance interface. The instantaneous ve
ity in the barrier region turns out to be a smooth function
location, which makes the extrapolation straightforward a
free of ambiguity. We find the computed arrival time ca
differ significantly from what was reported in Wigner’s orig
©2001 The American Physical Society05-1
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nal paper. We also study the significance of relativity due
multiple spinor components versus a single component.

The paper is organized as follows. The model and th
retical method are introduced in Sec. II. Details of the tu
neling dynamics obtained from numerical simulations
presented in Sec. III. The new arrival time has been ca
lated in the stationary phase approximation in Sec. IV
extrapolating the instantaneous tunneling speed from the
rier region. We then compare this tunneling velocity with t
Wigner tunneling speed across the barrier in Sec. V for v
ous relativistic conditions. The paper ends with a summ
and a brief discussion.

II. RELATIVISTIC TUNNELING DYNAMICS

We begin our analysis with an overview of the wav
packet motion. In our calculations an electron is represen
by a relativistic wave packet described by the space-t
dependent Dirac spinor wave functionC(x,t)
5(C1 ,C2 ,C3 ,C4). This wave function is defined on a nu
merical space-time grid. In all of our simulations the spa
axis was typically discretized into at least 65 536 grid poin
which, together with up to 1 500 000 temporal points, led
fully converged results@17#.

The incoming electron wave packet is assumed to take
Gaussian form

C~x,t50!5N exp@2~x2x0!2/~4Dx2!#exp~ ikx!c~k!,
~2.1!

where the spinorc(k) is given by „1,0,ck/(E12c2),0…
and the normalization factor N[$(E12c2)/@2(E
1c2)DxA2p#%1/2 in atomic units. Here the total energyE is
A@c41c2k2#2c2. The central canonical momentumk is re-
lated to the initial speedv via the expressionv
5k/A@c21k2#.

The evolution of the four spinors follows the time
dependent Dirac equation in one spatial dimension:

i ]C/]t52 icax]C/]x1c2bC1W~x!C. ~2.2!

Here,ax andb denote the usual Dirac matrices. The rep
sive potentialW(x) is centered aroundx50 and has an ef-
fective width ofw and a heightW. We have used a variety o
tunneling potentials characterized byW(x)5W exp@
2(2x/w)n#. For large~even! integersn, we recover the rect-
angular barrier for which the energy eigenstates can be fo
analytically and some approximate analytical estimates
be made. The Dirac equation~2.2! has been solved numer
cally using a split-operator algorithm based on fast-Fou
transformation that is accurate up to fifth order in time@17#.

The initial location of the wave packetx0 was chosen far
enough to the left of the barrier so that it does not over
with the space to the right of the barrier at timet50. The
potential heightW was chosen to be 1.5 times the kine
energyE such that we can practically exclude the effect
high-momentum contributions that can simply pass over
barrier without tunneling. The potential heightW was chosen
smaller than 2c2 to avoid the effect of the negative energ
02210
o

-
-
e
-

y
ar-

i-
y

d
e

l
,

e

-

nd
n

r

p

f
e

continuum characteristic of the so-called Klein paradox@17–
19#. This restricts our initial velocities tov,0.94c.

In Fig. 1 we display the wave-function solution of th
time dependent Dirac equation as a function of time a
space. The probability density of the wave packet is given

P~x,t !5(
i 51

4

uC i~x,t !u2, ~2.3!

where C i are the four Dirac spinor components. Figure
shows the injection of a wave packet~its probability density
is plotted fromx,0 toward a potential barrier atx50. After
a complicated interaction of tunneling in the barrier region
reflected and a transmitted part can be clearly identified
the figure. It is worthwhile to mention that interference o
curs just before the barrier where the reflected wave trave
backwards meets with the incident wave. This interferen
will alter the formation of the true peak in the wave packet
it ‘‘enters’’ the barrier; this will be analyzed in more detail i
Sec. III.

III. THE MICROSCOPIC PICTURE
OF THE TIME-RESOLVED TUNNELING PROCESS

The sketch in Fig. 2 displays the spatial-temporal traj
tory associated with the peak of the moving wave pack
The curve before approaching the barrier starts out a
straight line characteristic of a free propagation. When
wave packet approaches the barrier it begins to bend, a
time delay occurs that is caused by the reflection and
interference displayed in Fig. 1. Only a small part of a wa
packet penetrates the barrier. In the direct proximity of
potential, the trajectory bends even more. Eventually it sp
into two lines corresponding to the tunneled and the reflec
parts of the wave packet.

The traditional Wigner tunneling speed for a wave pac
tries to describe the duration of time the particle spends
der the potential barrier. The precise instant in time when
wave packet leaves the right edge of the barrier atx5w/2, is
denoted bytB . It can be unambiguously determined by tra
ing the peak of the transmitted wave packet back in time
x5w/2. Since this emerging wave packet is usually qu

FIG. 1. The time evolution of the probability density of th
relativistic wave packet during the tunneling process.~The param-
eters werex05210 a.u.,Dx51 a.u.,v510 a.u.,w50.1 a.u., and
W51.5E.)
5-2
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CRITIQUE OF THE WIGNER TUNNELING SPEED AND . . . PHYSICAL REVIEW A64 022105
smooth, the determination of its peak may be carried
reliably.

More controversial and much more difficult to determi
is the precise moment in time (tA) when the electron enter
the barrier. This estimation is nontrivial due to the comp
cated interference patterns between the incoming and
flected wave packet. In the traditional approach by Wign
an entry time, denoted bytW , has been associated with th
time when a freely propagating wave packet would strike
edge. This time can be easily obtained by extrapolating
incoming trajectory~dashed line! to the left edge of the bar
rier at x52w/2, as marked by pointW. We should note,
however, that this assumption neglects important effects
to the reflected wave. The interference may even produ
multipeak structure resulting in a significant modification
the arrival time for the incoming wave. In order to make
better estimation of the time spent in the tunneling regi
one has to find a more accurate method to calculate the
rival time.

If there were no barrier present, the electron would ha
arrived atx5w/2, at the time associated with pointC. De-

FIG. 2. The locationx as a function of the temporal-peak tim
The dashed line is associated with a free wave packet in the abs
of any scattering potential. In this approximation, pointW in the
sketch indicates when a free wave packet reaches the left edg
the potential barrier and pointC indicates when it departs from th
tunneling region. The heavy-solid line indicates how an actual
jectory may differ from the Wigner approximation. PointA is the
correct entry point to the barrier and pointB is the emerging point.
PointsB and W are usually used to define the Wigner speed. T
new tunneling speed is defined by pointsA andB, allowing possible
interference between the reflected and the incident waves.
02210
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pending on the choice of the parameters, the pointC can be
either to the left or to the right of pointB, associated with a
Wigner tunneling speedw/(tB2tW) larger or smaller than
the velocity of the incoming wave packet.

Let us now describe an improved arrival time~denoted in
the sketch bytA!, that can differ significantly from the tradi
tional Wigner arrival timetW . This time is based on extrapo
lating the center of the transmitted wave packet back in ti
through the barrier to the left edgex52w/2. We should note
that, in this approach, the interference between the incom
and the reflected wave packets is taken into account.

The wave function in the tunneling region decays a
proximately exponentially as a function of space. This fun
tion is obviously not localized~it does not have a local maxi
mum! if a snapshot of the wave function is taken at a
moment of time. A conventional definition of a velocit
however, relies on how a ‘‘spatial peak’’ of a state has mov
between two snapshots. This scheme faces a challenge in
the potential barrier, where it is not possible to find a spa
peak. To resolve this problem we note that even though
wave function is not spatially localized, the probability de
sity is temporally localizedfor each position inside of the
tunneling region. In other words, as the wave packet tunn
through the barrier, there is a precisely defined time for e
position at which the spatial probability takes its maximu
value. At such an instance, the peak time uniquely spec
‘‘when’’ the particle ‘‘passes’’ the selected point in spac
Using this concept permits us~a! to define an improved ar
rival time tA and therefore an improved average tunneli
speedw/(tB2tA), and ~b! we can even define an instant
neous velocity under the barrier that matches the conv
tional velocity at the right end of the barrier.

Before we compare this new tunneling velocity with th
traditional Wigner speed in Sec. V, let us first derive so
analytical results for the relevant times using the known a
lytical form for the relativistic energy eigenstates for a re
angular potential.

The time tW can be easily obtained by extrapolating t
incoming wave packet in the absence of any reflection:

tW52
c21E

c2k
~w/21x0!. ~3.1!

In the presence of the barrier, the wave packet actu
emerges from the barrier at pointB. Below we will derive an
analytical estimate of this time:

nce

of

-

e

tB5
G

2k2

~11G22!S 11
k2

k2D tanh~kw!2~12G22!kw
c22~W2E!

c2 sech~kw!

11
1

4
~G2G21!2 tanh2~kw!

2
c21E

c2k
~w/21x0!, ~3.2!

where

k[
1

c
Ac42~E1c22W!2 and G[A E~E12c22W!

~E12c2!~W2E!
.

The same stationary phase analysis will also lead to an expression for the correct arrival time
5-3
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tA5
G

2k2

~11G22!S 11
k2

k2 D tanh~kw!2~12G22!kw
c22~W2E!

c2 sech~kw!

11
1

4
~G2G21!2 tanh2~kw!

2
k

k3

c2

c21E

S 11
k2

k2 D tanh~kw!2S 12
k2

c2 Dkw sech~kw!

11F2
c2

E1c2

w

k221G tanh2~kw!

2
c21E

c2k
~w/21x0!. ~3.3!
y
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For our analytical derivation of Eqs.~3.2! and ~3.3!, we
assume that the spatial as well as temporal peaks ma
evaluated by their corresponding expectation values, i.e.xp
5^x& and tp5^t&. These hold as good approximations f
wave packets that are nearly symmetric. The form of
initial state~2.1! corresponds to a particle that is polarized
the direction of motion and we need to use only two spin
components to describe the electron. The temporal p
value tp is a function of the positionx and can be expresse
as a weighted average:

tp[

t1E dtuC1u21t3E dtuC3u2

* dtuC1u21* dtuC3u2 5
t11rt 3

11r
, ~3.4!

where t1 and t3 are the peak times associated with the fi
and third spinor components. Using the stationary phase
proximation, these times can be approximated by

t i[
]a i~x!

]E
, i 51, 3, ~3.5!

where a1 and a3 are phases of the corresponding spin
components of the stationary wave function solution un
the barrier:
02210
be

e
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t
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r
r

a1~x![a r2tan21$G tanh@k~w/22x!#%, ~3.6a!

a3~x!5a r1tan21F 1

G
tanh@k~w/22x!#G ~3.6b!

with

a r5tan21F1

2 S G2
1

G D tanh~kw!G1k~w/21x0!.

~3.6c!

The probability ratior between both spinors, can be e
pressed as

r 5

E dtuC3u2

E dtuC1u2

'
~W2E!

2c22~W2E!

G21tanh2@k~w/22x!#

11G2 tanh2@k~w/22x!#
.

~3.7!

Using formula ~3.5! we can evaluate the times associat
with each spinor component:
t15t r2
G

k2

S 11
k2

k2 D tanh@k~w/22x!#2k~w/22x!
c22~W2E!

c2 sech@k~w/22x!#

11G2 tanh2@k~w/22x!#
~3.8a!

and

t35t r2
G

k2

S 11
k2

k2 D tanh@k~w/22x!#1k~w/22x!
c22~W2E!

c2 sech@k~w/22x!#

G21tanh2@k~w/22x!#
~3.8b!

with the parametert r given by

t r5
G

2k2

~11G22!S 11
k2

k2 D tanh~kw!2~12G22!kw
c22~W2E!

c2 sech~kw!

11
1

4
~G2G21!2 tanh2~kw!

2
c21E

c2k
~w/21x0!. ~3.8c!
5-4



e

d

ti-
th
io
th
nc
ho

th

-

a
ve
im

r.
es
om

on
n
th
fo
n
ad

ted

be

nta-

tra-
er’s

ing

s,
ge
ble
n-

if-
the

may
ave
as

po-
the

of
the

l
th
p-
nl

CRITIQUE OF THE WIGNER TUNNELING SPEED AND . . . PHYSICAL REVIEW A64 022105
Combining these expressions, we obtaintp(x) and the depar-
ture and arrival times become:tB5tp(x5w/2) and tA

5tp(x52w/2) as presented in Eqs.~3.2! and ~3.3!.
To perform the stationary phase analysis we had to m

the requirement that the probabilityP(x,t) is well localized
in the momentum space around a single maximum arounk.
Fortunately, this is fulfilled for most practical cases.

In order to establish the validity of this analytical es
mate, we show in Fig. 3 the quantum trajectory under
barrier calculated from the exact numerical wave funct
solution to the Dirac equation. At each position under
barrier, we have computed that time at which the wave fu
tion takes its largest value. In our calculations, we have c
sen the barrier to extend from2531023 to 531023 a.u.
The wave packet is prepared at timet050 at x0
52100 a.u. and it moves towards the positive part of
space with an initial velocity ofv5100 a.u. This exact curve
is superimposed with the analytical formulatp5tp(x) given
by Eq. ~3.4!. The two curves are practically indistinguish
able. This justifies nicely our two key assumptions~a! to
associate the maximum timetp with its averagêt& to evalu-
ate the contributions of each spinor, and~b! to use the sta-
tionary phase approximation. The third curve~the dashed
line! corresponds to a quantum trajectory; however, it is c
culated only from the first spinor component of the wa
packet. The difference between the curves illustrates the
portance of the third spinor component under the barrie
similar comparison for the transmitted wave packet sugg
that, in contrast to the state under the barrier, the third c
ponent is less important outside the barrier.

In our method, the peak time is a function of the positi
x, even though in Fig. 3, space is arranged vertically a
time horizontally. Such an arrangement leads to a slope
must be interpreted as an instantaneous velocity. In the
lowing sections we will discuss the properties of this insta
taneous velocity and compare its average value to the tr
tional Wigner speed.

FIG. 3. The peak positionxp as a function of the~shifted!
temporal-peak time. The open squares are the exact numerica
lutions and the solid line denotes the prediction according to
analytical formula@Eq. ~3.4!# based on the stationary phase a
proximation. The dashed line is calculated from considering o
the first spinor component of the wave function.~The parameters
werex052100 a.u.,Dx520 a.u.,v5100 a.u.,w50.01 a.u.,
andW51.5E.!
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IV. THE INSTANTANEOUS TUNNELING VELOCITY

In this section we analyze the instantaneous~position de-
pendent! velocity defined as the slope of the curve presen
in Fig. 3:

vT~x![Fdtp

dx G21

. ~4.1!

Considering the first and third spinor components, it can
rewritten as

vT5
11r

t181rt 382r 8~ tp2t3!
, ~4.2!

where the primes denote the spatial derivatives, and

r 85
dr

dx
5k

~G421!sinh@2k~w/22x!#

$G2 cosh2@k~w/22x!#1sinh2@k~w/22x!#%2 .

~4.3!

Instead of presenting the lengthy expression for the insta
neous velocity, let us examine the~simpler! expressions for
regions close to either edge of the barrier.

As shown in Fig. 3, the instantaneous velocityvT is larg-
est atx52w/2 and then decreases with the barrier pene
tion depth. The instantaneous velocity close to the barri
right edge@for k(x2w/2)!1# can be simplified to

vT'F114
c2~G211!

2c22~W2E!~G221!
@k~w/22x!2#Gv free.

~4.4!

Herev free is the velocity of the outgoing~transmitted! wave
packet in free space, which is typically close to the incom
speedv.

It is worth noting that Eq.~4.4! predicts that the velocity
is only a function ofx2w/2 near the edge. In other word
the instantaneous velocity in the proximity of the right ed
does not depend on the width of the barrier. This remarka
fact is illustrated in Fig. 4. We compare the position depe
dent speed for two barriers with lengthw50.01 andw
50.005 a.u. Both barriers have their right edge atx
50.005 a.u. The perfect coincidence of the lines for the d
ferent barrier widths seen here, extends almost through
entire region of the shorter barrier and suggests that one
expect the same universal behavior of the tunneled w
packet, regardless of the total width of the barrier. As long
the incident energy of the packet and the height of the
tential remain the same, the only important parameter is
distance of the peak to the right edge of the barrier.

In contrast, the instantaneous velocity at the left edge
the barrier depends strongly on the barrier width. On
other hand, for barriers@1!k(x2w/2)# it can be approxi-
mated by

vT'
k

G

11G2

11~k/k!2 cosh2@k~w/22x!#, ~4.5!

so-
e
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which diverges strongly with the barrier widthw. This be-
havior can be linked to the Hartmann effect@20#, as we will
discuss in Sec. V.

V. COMPARISON OF THE WIGNER VELOCITY
WITH THE „AVERAGED … INSTANTANEOUS VELOCITY

Let us now compare the Wignerv̄w5w/(tB2tw) and the
average tunneling velocityv̄T5w/(tB2tA). This velocity is
a time average of the instantaneous velocity:v̄T51/(tB

2tA)* tA

tB dt vT@x(t)#. On the other hand, the spatially ave

aged velocity (1/w)*2w/2
w/2 dx vT@x# is different thanv̄T be-

cause the trajectoryxp(t) is a nonlinear function of time.
It can be shown that when the tunneled wave packet is

distorted significantly, the speed can be rewritten as

v̄T5
~11a!w

]~Da1!/]E1a]~Da3!/]E
, ~5.1a!

FIG. 4. The instantaneous velocity as a function of the positi
The thick-solid line is the analytical solution@Eq. ~4.2!#. The thin
line corresponds to numerical simulation. The squares are
numerical predictions for a barrier of widthw50.005 a.u. The
inset illustrates the configuration of the two potentials.~The
parameters werex052100 a.u.,Dx520 a.u., v5100 a.u.,w
50.01 a.u., andw50.005 a.u., andW51.5E.!
ge
e
e

t
t t
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-

02210
ot

where

a[
G4~11tanh2kw!12G2

2~11G2 tanh2kw!
~5.1b!

and Da1,3 is the phase difference between right and l
edges for the first and the third component, respectively:

Da15tan21@G tanh~kw!#, ~5.1c!

Da35tan21F 1

G
tanh~kw!G . ~5.1d!

Similarly we may rewrite the Wigner velocity as

v̄w5
w

]~Daw!/]E
. ~5.2!

HereDaw is the phase difference~which is identical for the
first and the third components! between outgoing and incom
ing waves without considering interference:

Daw5tan21F1

2 S G2
1

G D tanh~kw!G . ~5.3!

The expressions~5.1! may be written explicitly as

v̄T5kw
k2

k S 11
E

c2D

3

11F2
c2

E1c2

V

k221G tanh2~kw!

S 11
k2

k2 D tanh~kw!2kwS 12
k2

c2 D sech~kw!

~5.4a!

and the relativistic Wigner speed is

.

e

v̄w5
wk2

2G

4G21~G221!2 tanh2~kw!

~G211!S 11
k2

k2 D tanh~kw!2~G221!kw
c21E2W

c2 sech~kw!

. ~5.4b!
-

-

e-
The main difference between the Wigner and avera
instantaneous velocity arises from a delay on the incid
edge of the barrier. Figure 5 presents a comparison betw
these two velocities as a function of the barrier widthw.
Because this delay is related to the interference between
incident and reflected components, the temporal peak a
incident edge is formed later than the one of the freely pro
gating packet. This delay makes the averaged instantan
velocity always larger than the Wigner velocity. Another im
portant difference is that the tunneling speedv̄T is always
d
nt
en

he
he
a-
us

larger than the incident velocityv. In the limit of a very thin
barrier, the tunneling speedv̄T becomes identical to the inci
dent velocity

lim
w→0

v̄T5v. ~5.5a!

This agreement makesv̄T a much more physically reason
able speed compared tov̄W . The Wigner velocity is less
‘‘physical’’ as v̄W can be even smaller than the incident v
5-6



s
a

e
e
re

i
rt-
e.
is
v

t

or-
el-

nce
d in
tics
rs

rrier
m
a
ics,

ore
, it
s on
the
on-
he
g,
ant
ets.

otal
ht

ase
re
at

e
the

ela-
ts
they
pen
the

t in
nt
m-

eri-
ork
Y-
rch

’s.

gh

CRITIQUE OF THE WIGNER TUNNELING SPEED AND . . . PHYSICAL REVIEW A64 022105
locity for very thin barriers, as the fast tunneling proce
does not have enough ‘‘space’’ to make up for the delay
the left edge:

lim
w→0

v̄w5
Gk

@11~k/k!21~E2w!/c2#
v. ~5.5b!

It is quite remarkable that in the opposite limit of a wid
barrier (1!kw), both velocities increase linearly with th
width, however, with significantly different slopes, which a
off by a factor of 2:

lim
w→`

v̄T5
~11G2!k2k2

G~k21k2!
w, ~5.6a!

lim
w→`

v̄w5
~11G2!k2k2

2G~k21k2!
w. ~5.6b!

The linear dependence of velocity on the barrier width
well-known from nonrelativistic tunneling such as the Ha
mann effect. It leads to a finite limit for the tunneling tim
This implies that the delay from the Wigner arrival time
the same as the time it takes for the wave packet to tra
across the barrier.

VI. DISCUSSION

In the present paper we discussed the properties of
recently introduced instantaneous velocity@16#, as well as its

FIG. 5. Average tunneling velocities: Wigner velocity~lower
line! and average tunneling velocityv̄T ~upper line! as a function of
the barrier width. Both curves asymptotically approach strai
lines for large widthw. ~The parameters werex052100, Dx
520, v5100 a.u., andW51.5E.!
tt

02210
s
t

s

el

he

connection with the Wigner tunneling speed. We have c
rected the arrival time for a wave packet entering the tunn
ing barrier. This correction has considered the interfere
between the reflected and the incoming waves neglecte
the Wigner theory. We showed that the spatial characteris
of the instantaneous velocity are very similar for barrie
with the same right edge and height regardless of the ba
width. This universality of the speed is quite interesting fro
the point of view of causality. Usually, the velocity of
particle at a given position depends, in classical mechan
on its past trajectory and one could~incorrectly! conjecture
that the tunneling velocity under the barrier should theref
be a function of the distance to the left edge. However
turns out that the instantaneous tunneling speed depend
the distance to the right edge, and not on the location of
left edge. Due to its conserved energy, the particle is c
fined to leave the right edge with a velocity close to t
incoming velocity. The main dynamics of the tunnelin
however, is determined at the left edge by the signific
interferences between incoming and reflected wave pack
The details of this interference, however, depend on the t
width of the potential and therefore the location of the rig
edge.

Most of our analysis was based on the stationary ph
approximation, which is reliable for wave packets that a
nearly symmetric. The analytical formulas were evaluated
proper values of the momentumk. This was possible becaus
the state depends only very weakly on the momentum as
spatial wave-packet spreading was not so important@21,22#.
On the other hand, for wave packets that are prepared r
tively far from the barrier, different momenta componen
can become spatially separated from each other before
reach the barrier location. As a consequence it may hap
that the tunneled peak can leave the barrier even before
incident one hits the barrier. We have also illustrated tha
the relativistic regime, it is important to consider differe
spinor components in computing the arrival time for co
parison with a possible experiment.
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