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Effects of relativity on the time-resolved tunneling of electron wave packets
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We solve numerically the time-dependent Dirac equation for a quantum wave packet tunneling through a
potential barrier. We analyze the spatial probability distribution of the transmitted wave packet in the context
of the possibility of effectively superluminal peak and front velocities of the electron during tunneling. Both
the Dirac and Schdinger theories predict superluminal tunneling speeds. However, in contrast to the Dirac
theory the Schidinger equation allows a possible violation of causality. Based on an analysis of the tunneling
process in full temporal and spatial resolution, we introduce an instantaneous tunneling speed that can be
computed inside the potential barrier.

DOI: 10.1103/PhysRevA.63.032107 PACS nuniber03.65.Pm

I. INTRODUCTION Larmor-clock transmission times for single and double rect-

angular barriers. In some special cases the problem of

The phenomenon of tunneling in which a quantum-guantum-mechanical tunneling can be mapped onto the fully
mechanical particle can penetrate a repulsive barrier with felativistic problem of evanescent electromagnetic radiation
height that exceeds the total energy of the particle is count4—7 . L .
terintuitive. Any explanation or intuition for this process O the special case of nonrelativistic tunneling, the ques-

based on classical mechanics fails. At the same time, thidon of how much time it takes a particle to pass the barrier

effect is extremely important and has been studied widelyhas triggered considerable controversial debate to the present

The Josephson effect in high-speed semicondudtfsg ~ 9ay- Even though by 1993 the community had largely ac-
decay in nuclear physics, and instantons in high—energ&e_ptEd the fac_:t that there_actually is a time scale associated
physics are just a few examples. In the early 1930s it wadvith th_e duration of tunnel_lng, there is st|II_ a lack of consen-
already recognized that there was no appreciable tempor@f_s with regard to the existence of a unique expression for
delay in the transmission of wave packets through barrierd)iS time scale and on the exact implications of this expres-
[2]. Wigner discussed the possibility that a particle can efSion[8l- In fact, Hauge and Stovnerig] stated that with the

fectively travel faster than the speed of light when passing*Ception of two candidates all expressions for tunneling
through the barrier. Chiao and co-workers have more retmes have logical flaws sufficiently serious that they must be

cently addressed the realization of superluminal speeds in gi€cted. The only two survivors are the dwell tifi] and
more systematic way. They used a periodic potential barrief€ @Symptotic phase tin}8,9], which have complementary
to demonstrate experimentally that superluminal velocitiedVe@knesses.

can indeed be obtained, and showed that this result does not N this article, we stay away from most of the controver-
violate causality. sial issues and focus on investigating the effect of relativity

In this article we intend to address the following ques-O" the tunneling process. Our model system is an electron

tions: Can one trust the predictions of a nonrelativistic theonfNat tunnels through a one-dimensional repulsive barrier. The
at all if superluminal effects are being investigated? Howtime evolution of this system is given by the solution of the

accurate are these predictions? Does the relativistic quantufirac equation

theory predict superluminal speeds? Does a fully relativistic i 9V /IT= —ica,dW/ox+c2 BV +W(X)V, (1.1

treatment of tunneling increase or reduce the tunneling prob-

ability? Does the existence of superluminal velocities implywhere the repulsive potential/(x) is centered arounck

the violation of Einstein’s causality when they are computed=0 and has an effective width ofv and a heightw,.

in the framework of the Schdinger equation? Can causality In order to check the generality of our results we have

be restored in the Dirac theory? Can one define a physicalsed a variety of different tunneling potentiald/(x)

quantity that describes the time evolution of a wave packet W, exd —(2x/w)"]. For large even integens we recover

inside the barrier which reduces to the regular peak velocitghe rectangular barrier for which the energy eigenstates can

when calculated from a wave packet that is outside the babe found analytically and also some approximate analytical

rier? Due to its lacking a counterpart in classical mechanicsestimates can be derived. Hesig and 8 denote the X4

it is not obvious how to apply any intuition to relativistic Dirac matrices. The time-dependent solution of the spinor

guantum-mechanical tunneling and to predict any answers twave functionV (x,T)=[V,,V,,V3,¥,] can be obtained

these questions. A full Dirac theory calculation seems nechumerically on a space-time grid using a split-operator algo-

essary. rithm based on fast Fourier transformation that is accurate up
Quite remarkably, despite the large amount of literaturgto fifth order in time[11]. In all of our simulations, the

on nonrelativistic tunneling, we are aware of only two worksspatial axis was discretized into at least 65536 grid points

[3] that have addressed some of these questions. Leavens amtlich together with up to 1500000 temporal points led to

Aers [3] used the stationary-state approach to analyzdully converged results.
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As an incoming electron wave packet we used the statemitting some analytical investigations based on the phase of
the complex transmission amplitude. Below we will test this
W (x,T=0)=Nexd — (x—Xo)%/(4Ax?)JexplikoX) (o), approximation and compare it with the exact numerical so-
(1.2 |ution of the time-dependent Dirac and Sotirmer equa-
tions.
where 2the spinor y(ko) is given by [1,0,0eke/ For the special case af— in the mentioned model
(E0+22° )] an(g the nolgnallzanon factorN=[(Eo  potential we recover the rectangular barrier, for which the
+2¢?)/(2(Eq+c?)Axy2m) ]2 Here the total energf, complex transmission amplitude can be derived fully analyti-
=[c*+ czkoz]—cz. The central canonical momentuy is cally as|t(k,w,W,)|exfia(kw,W,)], where
related to the initial speed, via vo=ko/\[c?+ks2]. We
should mention that, instead of a Gaussian distribution in KWW exd —ikw]
position space, we could have equally well chosen a Gauss- "W, Wo) = . . ,
ian in momentum space, which in the nonrelativistic limit costisew) +i[ (1~ T?*)/2T Jsinh(xw)

vo<<c would yield the same state as E{d..2). The initial 2.1
location of the wave packed, was chosen far enough to the 1-T2

left of the barrier that the total spatial probability for positive a(k,w,Wy) = —kw— tan ! oT tani KW)},
values ofx was negligible at timer=0. The total energy 2.2

Eo=[c*+c%k,2]—c? in our case will be consistently cho-

sen smaller thaiV,. The potential heightV, was also cho- and where
sen smaller than & to avoid the effect of the negative-

energy continuum as characteristic of the so-called Klein
paradox[11-13. This will restrict our initial velocities to

09<0.94 (=129a.u.). The potential height/, was cho-

sen to be 1.5 times the kinetic enerBy such that we can FE\/E(E+2C2—W0)/(E+ 202)(W0—E).
essentially exclude the effect of high-momentum contribu-

tions that can simply pass over the barrier without tunnelingComparing the tunneling probability(k,w, W)|? obtained
Please note that the predictions of the corresponding Schrérom Eq. (2.1) with its nonrelativistic limit(calculated from
dinger equation can be obtained quite conveniently in ousettingc—c) we find that relativity reduces the tunneling
numerical simulations by increasing the “parametar’to  efficiency but increases the effective tunneling speed as we
infinity [14]. will see below; a result that might be counterintuitive.

The most direct way to “measure” the electron’s speed In the stationary-phase approximation discussed below,
inside the barrier would be to compare its “position” at the center of the transmitted wave packefT)); at time T
various times during the tunneling. However, the wave funccan be calculated from
tions are essentially delocalized during the scattering event

1
K= Je*—(E+c?—W,)? and

i it i i _ da(k dE(k
anc_i_prewous def|n|t|0n_s of effective average tunnell_ng ve (X(T))=Xo— (k) i ( )| T 2.3
locities under the barrier were based on extrapolating the dk ‘ dk |k
information from the positive or negative spatial delay of the P P

scattered wave packets outside the tunneling region. After @here the energyE(k)=\[c?+c2kZ]—c?, and the right-
discussion of these effective velocities and a critical analysig,gnd side has to be evaluated at the momerityifior which
of their regime of validity, we will propose in the last section ¢ product of the absolute value of the momentum ampli-

an instantaneous tunneling spegd that can _be calculated @jjqe andt| takes its maximum value. After some algebra we
rectly from the wave packet inside the barrier. It turns outgypiain

that the dynamics can be roughly divided up into two re-

gimes depending on the relative magnitude of the initial spa- da(k) c2k
tial width in the Gaussian wave packax and the barrier — dk =wW-— > T
width w. We will discuss them separately below. 2(E+c?)[1+[(1-T?)?/4r?]tantf(xw)]
W, (1
Il. THE RELATIVISTIC MODIFICATION OF THE X > F+F tanh kw) E(WW—E)
WIGNER TUNNELING SPEED (Wo )
A. Spatially broad wave packets: Ax>w 1 w ( 1 F)
+ +—|=—
With the exception of an overall amplitude reduction the (E—W,+2¢?)(E+2¢?) k\I
wave packet does not get significantly distorted as it tunnels
through the barrier for the cagkex>w. In this regime the 7 (Wo—E)
center of mass for the transmitted wave padkiemoted in X sech(xw)| 1- o2 , (2.4

the following by (x);) agrees approximately with the peak
value of the spatial probability density. For the nonrelativis-

2
tic case this regime has been studied very intensively as the dE(k) __¢ k _ (2.5
stationary-phase approximation is qualitatively reliable, per- dk  Jc*+c%kK?
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Equation(2.4) predicts that the distanceda(k)/dk| ko is v, lau] -
always smaller tham; in other words, the tunneling process 1 Dirac g
cannot advance the packet by more than the width of the 2007 /2/ £
potential. Only if the tunneling were to happen instanta- e
neously could we obtain a spatial shift with its maximum IOOM z
valuew. This is consistent with the condition of the validity - Schrodinger 2
of the stationary-phase approximation, which requires that Y/ RNy ¥ R— o(:
the momentum scale on which the phaa¢k) varies Twlau] '
(=al[da(k)/dk]) should be larger than the momentum
width of the Gaussian wave packik. FIG. 1. Comparison of the relativistic and nonrelativistic predic-

The parameter 1/(®x) = Ak is the momentum width ac- tions for the tunneling speed defined in E2.7). The solid lines are
cording to the Heisenberg uncertainty relation. Ak is the predictions from the approximate analytical relativistic and non-
smaller than the momentum scale on whi¢k) vari.es ie relativistic theories. The open circles and crosses are obtained from

. the exact spatial probability densities calculated from the Schro
Al.(<|t|/[d|t(k)|/dk]’ then the central velocity of the trans- dinger and FI)Dirac gquationsy. The parameters wegre — 100 a.u.
mitted wave packet, denoted hy=(¥|ca,|¥,), agrees AX=20a.U.,00=1002.U.T=2 a.u.. andN=1.5,.
with that of the initial wave packety,~v,, such that the ’ ’ ’
distance between the peaks of the transmitted packet and one o _ o
that propagated without any barrier is just given(byT)), ~ Stress that the “speedy. is just a defined quantity similar to
—(xXO(T))= — da(k)/dK| , whereky=v¢/ /_2_1—UO/C2. the concept of a tunnelmg time.” It is by no means cI_ear.
The fact that the propa(igation velocities on the two side%Nhether the propagation of the peak through the barrier is
X ) I i icall hysical pi i ib-
of the barrier can be differenv(>v,) [15] has been noted eally a microscopically correct physical picture in describ

lier for th lativisti Becals)| al X ing the center-of-mass motion as it tunnels through the bar-
earlier for the rt10n_re ﬁ‘ 'V'S.t'l: (t:r?se. eli:a 5&) avtvays """ Yier. We will comment on this question in more detail in Sec.
creases monotonicaily Witk the smaller momentum com- , pere we plot the “speed” defined in Eq2.7) in Fig. 1

ponen'ts in the wave packet are agenuated Tore during thaes function of the barrier widttv. The graphs turns out to be
tunneling, such that the emerging “truncated” wave packet . -

has hiah i This effect has b dqwte helpful in many respects.

as nigher average momentum. IS €flect nas been dex m o of all, we should mention that the markers

scribed in the literature as an effective electron acceleratioeorrespond to the exact wave-packet solutions to the

[8,16]. For the case Wh%‘fp is significantly larger thamo, e dependent Schdinger (circles and Dirac (crosses

the distance(x(T)),—~ (x™(T)) between the peaks of the oqations. For the Dirac case we have computed the
tgnneleq andbarrien free—waye packet increases as a func'quantum-mechanical spatial probability densig(x,T)

tion of time. In order to provide a more unambiguous Com_—2f=1|‘1’i(X,T)|2, where the summation extends over the

parispn, the tunneled wave packet .Cc.".“d be compared With f%ur spinor components. For each barrier widthwe have
special free-wa\_/e_ Pa?k_e.t whose initial momentum <”!rm:)“'evolved the initial wave packet in time and then measured
tudes were multiplied initially by the transmission amplitude

It(k)|, in order to compensate for the attenuated IOW_the distanceD between the maxima of the tunneled and

force-free wave packets which was then converted into the
momentum components and to have the same average veloecT—

) . . : fective speed . according to Eq(2.7). In each case the
gitl\;\;eaesntrt]ﬁcetu;:;l;?(??; k_e&ig)g_')s ) Cg;zagz?rg;ggnﬂsginc&ak position differed by less than 13 from the center of

time and is equal to mass of the packet. So the transmitted state is quite symmet-
ric for these parameters. The agreement between the exact
_ (0 _ numerical data and the analytical prediction shows that the
D=(x(T))—(X(T))= da(k)/dK|y;. (2.6 stationary-phase approximation leading to E23) is reli-
able in the relativistic and nonrelativistic cases for these pa-
rameters.
Second, having established the validity of the approxima-
n in Eqg. (2.3, we point out the difference between the
relativistic and nonrelativistic tunneling speeds. For our ini-
W tial velocity of vg=100a.u. the nonrelativistic tunneling
Ve=o———— speedv, turns out to be 20% smaller than the relativistic
T—=(Ty+T2) speed. This result is a little surprising as one typically ex-
w pects that smaller velocities are associated with relativistic
= , corrections such as the nonlinear mass increase. In fact our
T+ (W/2+Xo) v o+ [WI2—(X(T)) 1/{v(T)) result is in contrast to that of Leavens and A&83$, who
2.7 reported a reduction of the tunneling speed due to relativity
for the case of a double-rectangular potential.
where Ti=(—wW/2—Xg)/vg and To=[{(X(T)) Relativistic as well as nonrelativistic theories consistently
—w/2]/{v(T)); correspond to the time intervals spent out- predict that for a sufficiently large barrier widtw>0.023
side the potential region w/2<x<w/2. If vg=v, this defi- and 0.038 a.u., respectivglyhe effective tunneling speed
nition reduces tw.=vow/(w— D). At this point we should can exceed the speed of light and become superluminal. In

Clearly, without any ambiguity, this parametercan be cal-
culated directly from the wave packet. To associatefec-
tive average tunneling velocity across the potential with this;tio
distanceD, we define a quantity . as
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v, [a.u.] P
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FIG. 2. The same graph as in Fig. 1 but on a larger scale of x [au]

width w to show the breakdown of the analytical predictions for

w>Ax. Same parameters as in Fig. 1, But=4 a.u.. FIG. 3. The final spatial probability obtained from the solution

of the Dirac and Schiinger equations. The thick line is the light-
cone probability as defined in the text. The parameters wgre

fact, for a large barrier widttw, the tunneling velocity ¢ — 100au AxX=1au. p.—136.411au. and—8.027 08 a.u
- U., - U, Upo— . u., — O. U.

given in Eq.(2.7) simplifies because the spatial delay takes

the form predictions of the analytical curves become less reliable. In
fact, as we will demonstrate in Sec. Il B, the definition of the
c?kW,I' spatial delay based on the peak value becomes meaningless.
- Let us finish this section with a comment on the relation
2 2 _
(1+THE(E+CT)(Wo—E) of superluminal speeds and the possible violation of Ein-

E(W,—E) stein’s causality. We agree with the work of Chiao and co-
0 . (2.8)  workers, who point out that superluminal tunneling speeds
(E+2¢?)(E+2¢%— W) are just a pulse-reshaping effect and therefore do not neces-

sarily violate Einstein’s causality. Other works8] have ar-

In the nonrelativistic case this phenomenon is called thgued that causality is not violated, because of the strong
Hartman effect[17], when D(c—«)=w—+2/(W,—E), attenuation suffered by the transmitted signal. The special
andv—v oW (Wy—E)/2 increases linearly with. theory of relativity could be violated if the total spatial prob-

Third, the two graphs fow=0 are different from the ability of the tunneled packet to find the particle to the right
initial velocity v, as one could have conjectured. In fact, theof positionx, i.e., [dx|¥(x,T)|?, were larger than the cor-
regime of small barrier widths is characterized by tunnelingresponding probability for a fictitious wave packet that has
velocities smaller tham,. In other words, the center of the moved with the speed of light, i.e., [ dx|W¥(x—cT,T
tunneled wave packet falls behind the force-free one in this=0)|2. The latter is defined by a wave packet that has been
case, associated with a negative distaDc@ this regime. shifted from its initial position by the amounf, whereT is

The stationary-phase approximation allows in general formgain the total time. Due to the relativistic suppression of
determination of the locationx, of a function |¥(x)] spatial spreading first discussed[1t9,20, the width of this
=|[dk C(k)exdig(kX)] at which it takes its maximum “light-cone” packet is identical to its initial widthAx. A
value. This peak value, is obtained from the condition nonrelativistic theory, however, does not take this relativistic
d¢(k,xp)/dk=0, where the derivative is evaluated where effect into account, and the wave front of a Salinger state
the (rea) function C(k) peaksk=k,. By Taylor expanding with a relatively large initial speed close tocan actually
the phasep as well asC(k) aroundk, one can see that a exceed the integrated light-cone probability due to spreading,
breakdown of this approximation is associated with nonzer@nd therefore violate causality.
third-order derivatives irC(k) or ¢. In the context of our We demonstrate this violation of causality in Fig. 3 where
situation, the functioil€ (k) corresponds to the product of the we have evolved the same initial state withg
energy state amplitude and the absolute value of the trans=136.411a.u. andix=1 for T=8.027 08 a.u. using the
mission coefficient andp(k,x), which is defined asy(k) Dirac and the Schidinger theories. The thick line shows the
+k(x—Xo)—E(K)T. If we decrease the initial spatial width light-cone probability. The sufficient condition for a viola-
of the wave packeAx, Ak increases and the functia®(k) ~ tion of causality, [;dXW(x,T)|?>>[;dx|¥(x—cT,T
becomes more asymmetric, and an increasing third-order de=0)|?, leads to x>1001.5a.u. for the(nonrelativisti¢
rivative d3C(k)/dk® will lead to a breakdown of the Schralinger wave packe¥ (x,T). Clearly, causality is vio-
stationary-phase approximation. Equivalently, this breakiated in the regiorx>1001.5 a.u. for the nonrelativistic wave
down can also be caused by an increase of the barrier widipacket. On the other hand, the corresponding time-evolved
w, leading to an increase of the third-order derivativewave function obtained from the Dirac equation is located
d3p(k)/dk3. entirely to the left of the light front and we have

In order to demonstrate this breakdown of the stationary{dx|¥ (x,T)|?<[;dx| W (x—cT,T=0)|> for the entire
phase approximation for larger barrier widths, we show inspatial domain. The latter result can even be shown analyti-
Fig. 2 similar graphs as in Fig. 1 but on a larger scale for thecally [14]; the integral kernel associated with the free time
barrier width. We see that in the regime in which the barrierDirac evolution operator vanishes outside the light cone,
width w approaches the spatial width of the initial state  therefore preventing any acausal behavior. In other words, if
(which was chosen to b&x=4 a.u. in this simulationthe  a spinor has a compact support in a finite domain of raxius
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T=0.05
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1072 1072—
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: ; 1 _T=0.025
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4 TI=0.075
0 /v\ :
1’ LN B L At S L B B SR BN |
P(X)E -0.04 0 0.04
10° E T=0.1 a.u. X [a.u.]
B FIG. 5. The spatial probability density displayed in the spatial
10 region near and inside the barrier at various tiriieis a.u. Same
E parameters as in Fig. 4.
107 &
N space-time picture this could be interpreted as a kind of tun-
0 8 neling resonance. In fact, even the reflected density need not

x lau] be describable by a simple spatial Gaussian. After the wave

q packet has tunneled through the barrier, its time evolution is
described by that of a free particle whose center increases
gnearly in time independent of the spatial and temporal in-
terference oscillations.

FIG. 4. The spatial probability densif(x) before, during, an
after scattering off a square potential barrier at tirfies0, 0.05,
and 0.1 a.u. The vertical dashed line indicates the location of th
potential atx=0. The parameters werg=—5 a.u.,Ax=0.5a.u.,

vo=100a.u.,w=0.05a.u., andVy=1.5,.
Ill. TIME-RESOLVED TUNNELING UNDER THE

then at timeT the state vanishes outside a domain of radius POTENTIAL BARRIER

x+cT, which, of course, is not true for the Scdinger In this section we will analyze the tunneling process from
equation. a microscopic point of view. In Figure 4 we present snap-
To summarize, if tunneling is treated within the frame- shots of the spatial probability of the electron at initial, in-
work of the Dirac theory, causality cannot be violated intermediate, and late times. As the initial wave packet was
principle. This agrees with the conclusiph8,21] that the  prepared to the left of the barrier, the probability density in
peak amplitude of the pulse emerging from the barrier ishe region—w/2<x<w/2 vanishes until the front edge of
always lower than the amplitude that the pulse would have ahe incoming wave packet enters the barrier. Then the den-
the same instant of time if it were just propagating atith-  sity grows and after the tunneling process it reduces back to
out attenuation. zero. Clearly, at each time the density inside the barrier de-
creases monotonically as a functionxpfas shown in Fig. 5.
This stresses the point we made earlier that it is not trivial to
trace directly the peak motion under the barrier. The almost
As we have demonstrated in Fig. 2, if the spatial widthparallel lines in the logarithmic plot for the region under the
Ax is of the same order as the width of the potential barrietbarrier indicate the exponential spatial decay. If these lines
w, the stationary-phase approximation becomes unreliablerere actually precisely parallel, then the tunneling process
and one does not have the additional benefit of analyticatould take place instantaneously in principle. The details of
approximations. In this regime the momentum scale orthe incoming wave packet at= —w/2 could then be instan-
which the complex phase of the transmission amplitude vartaneously transmitted and copied over to the transmitted por-
ies, a/(da/dk), is larger than the momentum width of the tion at x=w/2. On the other hand, we have shown in the
wave packet. As a result, each momentum amplitude has revious section that the tunneling process does not happen
quite different complex phase and the superposition of thénstantaneously and requires a finite time associated with ef-
momentum states does not lead to a simple Gaussian-shapkedtive sub- or superluminal speeds.
spatial probability distribution as in the initial state. In fact, As a side remark we should mention that, in contrast to
the spatial density of the transmitted pulse can be multithe stationary solutions of the Schlinger equation whose
peaked with peak sizes varying as a function of time. In aderivatives ak= +w/2 are continuous, the Dirac equation in

B. Spatially narrow wave packets: Ax<w
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principle permits its stationary solution to have a discontinu- 0.015
ous derivative at the interfaces. Our time-dependent calcula-
tions, however, suggest that the wave-packet solution is ac-
; — 0.005 _ : w/2

tually smooth at these boundaries. 5 |

To investigate the mechanism of the tunneling in more = /b"‘rfer
detail, we have defined a quantity that will provide us with -0.005 L w2
additional insight. For a given location we have computed , , ,
numerically from our time-dependent wave function solution 10000 1.0001 1.0002

that specific time(which we denote byT,) at which the Ty fan]

spatial probability densitf(x,T) takes its maximum value: FIG. 6. The locatiorx as a function of the temporal-peak time.

4 4 The dashed line corresponds to the graph associated with a free
maxz |\I’i(X,T)|2=E |‘I’i(X,Tp)|2- (3.1) wave packet in the absgn_ce of any _scatterlng potentl_al. The open
i=1 i=1 circles denote the prediction according to the analytical formula

based on the stationary-phase approximafigg. (3.4)]. The pa-

Inside the barrier the wave function is certainly not spatiallyrameters werex,=—100a.u., Ax=20a.u., vo=100a.u., w
localized, as it always takes its spatial maximum at the left=0.01, andw,=1.55,.
edgex=w/2, but it istemporally localizedguch that the peak
time Ty(x) can be unambiguously defined and calculate
under the barrier as well. Before the wave packet arrives
the boundary, T<(—Xo—W/2)/vg, the functionTy(x) is
given by the linear dependendg,(x) = (X—Xg)/v, for x<
—w/2, if the wave-packet spreading is not significant
[19,20. Here the inverse value of the slope is the incoming 1
velocity vy . UT=T=—"~ a0

In Fig. 6 we display the locatior as a function of this dTp00/dx
temporal peak timég3.1) around and inside the barrier. For which is a continuous function of the locationand whose
comparison we have indicated by the straight line the resulvalue can be read off the graph.
obtained from a wave packet without any tunneling barrier, For the special case of the square-well potential, the ana-
x©O(T)=v,T+x,. There are two striking observations. lytical form of the stationary states inside the potential is

First, due to the details of the scattering process at the lektnown and it is possible within the framework of the
edge of the barrier and the resulting interference of the instationary-phase approximation to derive analytical formulas
coming and reflected wave packets, the peak time for théor this instantaneous tunneling velocity as a function of the
tunneling case is actually different from that of the corre-distance:

0sponding force-free wave packet>at —w/2. For our cho-
en parameters, it turns out that this arrival time is actually
arger than that associated with the free electron.
A second observation is about the region inside the bar-
rier. We can define amstantaneougunneling speea as

(3.2

1lpr=dTy(x)/dx
kWoI'B; sech[ k(x—w/2)]{1— T2 tantf[ x(x—w/2)]}

2{1+ % tanif[ k(x—w/2)]}?

. I'B, sech[ x(x—w/2) [{1+'? tantf[ k(x—w/2)]— 2k(1+T'?)(x—w/2)tanq k(x—w/2)]}

x{1+T 2 tankf[ k(x—w/2)]}? ; 33
where
B,= ! + 1
E(Wo—E)  (E—W,y+2c2)(E+2¢?)
and
B,— _1+(W0—E) |

and whereT , is given by
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. :\/1+k2/cz<w_x )_ﬂ 1+E Wo(I' "1+ T")B, tanh kw) +2w(I' "1 —T")B, sec(xw)
P k 2 ) k|72 A{1+[(1-T2)2/4T'2] tankR(rew)}

. Wl kB tanH k(x—w/2) ]+ 2I'B,(x— w/2)sech[ k(x—w/2)]

2k{1+T?tantf[ k(x—w/2)]} o

To test the validity of the analytical formul@.4), we have delayed compared to the arrival time of a force-free wave
superimposed on the curve in Fig. 6 the predictions accordpacket (r(L°)=0,999 9500 a.u.). Figure 6 also shows that the
ing to this formula(circles for the Schrdinger theory, and tunneled portion reaches the right edgew/2 at a time
the agreement is astonishing. Tr=1.0001068 a.u. As a result, the time the electron has
We should note that all analytical formulas derived in thisspent under the barrier is onljg— T, =0.000076 3 a.u.,
section are based only on the first spinor component of th@hich is shorter than the corresponding tirig” —T{)
wave function. In the previous sections we have shown that W/vo=0.0001a.u. of the force-free electron. This time
this approximation works quite well for predicting the wave \ou1d amount to an average tunneling spee@pfw/(Tg
function outside the barrier region. However, inside the bar-_ T,)=131a.u. This average velocify is much larger than
rier the other spinor components are more important and thg,q effective tunneling spead, calculated above in Sec. II.
agreement between the exact peak time computed from afi,is huge differencébetween 64.5 and 131 alus due to
spinor components of the Dirac solution and its analyticakpe gelay of the wave function already present on the left
approximatior{Eq. (3.4)] is only qualitative and not as good eqge of the barrier before the electron enters the potential.
as in the nonrelativistic case. We observed that, if the peakpq speeding up of the particle under the barfissociated
time was computed only from the'first spi_nor component of i 7-=131a.u) is compensated by the slowing down be-
the exact Dirac state, the analytical estimate of B4  tore entering the barrier, so that the effective speed that takes
(based on the first spinpproduces a relative error of 1ess )4t mechanisms into account amounts to a net value of 64.5

3
than 10 %_' ) ) ) . _a.u. We will present a more detailed discussion of the general
Let us finish with a quick comparison of the effective properties ofv; elsewhere.

tunneling speed. based on the spatial delay after the tun-
neling event with the instantaneous spegdintroduced in

Eq. (3.2. As an example, for the parameters discussed in the
previous section(xo=—100a.u.,vy=100a.u) we found This work was initiated by helpful discussions with M. V.
that the spatial delay waB®=—5.5x10 3a.u. for a wave Fedorov during his visit to Normal. We also acknowledge
packet that was associated with a temporal deldy  discussions with W. Becker, M. Do S. D. Hassani, G. H.
=—5.5x10 °a.u. Using Eq(2.7) we associated this delay Rutherford, and H. Wanare, and numerical assistance by R.
with an effective average tunneling speedugi=64.5a.u. E. Wagner and P. J. Peverly. This work was supported by the
For these parameters, the graph in Fig. 6 shows that thRSF under Grant No. PHY-9970490. We also acknowledge
center of the wave packet formed from the incoming andsupport from the Research Corporation for Cottrell Science
reflected waves reaches the left edge at the time Awards and ISU for URGs. The numerical work was per-
=1.0000305 a.u., which due to the interference is alreadyormed at NCSA.
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