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Electric-field-induced relativistic Larmor-frequency reduction
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Using the numerical solution to the time-dependent Dirac equation we show that the effect of relativity on
the usual Larmor period for an electron in a magnetic field can be enhanced drastically if a suitably scaled and
aligned static electric field is added to the interaction. This electric field does not change the electron’s speed
but leads to an elliptical spin precession due to relativity. This spin precession is accompanied by a position-
dependent spin distribution.
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I. INTRODUCTION

Relativistic effects have traditionally been investigated
atomic physics with respect to their impact on corrections
energy levels and transition matrix elements. Due to
availability of laser sources with very high intensity@1#, re-
cent interest has grown to also investigate those relativ
effects that arise due to the large speed atomic electrons
gain in such laser fields@2–4#. The theoretical analysis o
relativistic phenomena in quantum systems relies on s
tions to the Dirac equation for which analytical and nonp
turbative approaches are very difficult to obtain. Howev
originally started in computations for heavy-ion collisio
@5–7#, numerical techniques to the time-dependent Di
equation for simplified situations have been develop
@8–18#. These numerical solutions are quite beneficial a
have opened the door to explorations of dynamic relativi
phenomena in quantum-mechanical systems. In this work
study the effect of relativity on the time evolution of the sp
for an electron wave packet in static magnetic and elec
fields.

In previous works we have simulated on a computer
electron that is accelerated in a static electric field and
served that the spin component that is perpendicular to
velocity is reduced. This contraction is different compared
the usual length Lorentz contraction, which occurs in
direction parallel to the velocity. As a consequence of t
kinetic relativistic mechanism the perpendicular spin com
nent in the front of the wave packet is smaller than the co
ponent associated with the slower trailing end, as spati
resolved spin distributions for a single quantum state h
revealed@14,15#. We should note that for this situation th
external field does not couple directly to the spin, and due
the kinematic~which means reversible! character of this ef-
fect, the spin returns to is original value when the elect
comes back to rest.

A nonkinematic and irreversible relativistic effect, how
ever, can be observed for the same setup in the time ev
tion of the spatial width of the wave packet. It turns out th
the spreading rate of the wave packet can be severely
duced if the wave packet attains a relativistic velocity. Due
the intrinsic coupling of the three spatial dimensions, ev
the spreading rate along the two spatial directions that
perpendicular to the propagation direction is suppress
This relativistic effect first introduced in@16–18# is associ-
1050-2947/2002/66~1!/013405~6!/$20.00 66 0134
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ated with a relativistic reduction of the velocity dispersio
and leads to a spatially narrower electron wave packet e
after the electron has been decelerated back to rest.

In addition to these spin and spatial contraction pheno
ena the time dilation effect can be observed for an elect
that is injected into a static magnetic field. The center of
wave packet performs the well-known circular motion on
time scale given by the relativistic cyclotron period. Und
the assumption that we can neglect effects that are ex
sively associated with negative-energy states such as
Zitterbewegung, one finds that the product of the spin and t
velocity operator is a constant of motion. In other words,
angle between the spin and the velocity remains constant
a result, the spin performs a precession motion around
magnetic-field lines with the same Larmor period. The co
ponent of the spin that is parallel to the magnetic field
mains constant at its Lorentz contracted value, whereas
other component rotates around a circle. The radius of
circle depends on the projection of the initial spin onto t
initial velocity: if the projection is zero the Larmor radius
1/~2g! ~in atomic units!, whereg is the~dimensionless! rela-
tivity factor defined asg[1/A@12(v/c)2#. On the other
hand if the projection is maximum, the radius is1

2 a.u.
The next question we will address is whether there

any footprints of the Lorentz contraction with regard to t
spin. Does relativity induce transitions among the spin sta
that can be measured when the electron returns back to
In Fig. 1 we have sketched a possible setup for a comp
simulation. An electron wave packet initially located at re
at aroundx50 with spin valuê Sy(t50)&50.5 a.u. is accel-
erated along thex direction by a constant electric field. As
consequence, the spin will be contracted to the value^Sy(t

FIG. 1. Sketch of the setup permitting the observation of a re
tivistic spin precession motion.
©2002 The American Physical Society05-1
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KREKORA, SU, AND GROBE PHYSICAL REVIEW A66, 013405 ~2002!
5t1)&51/(2g) when it enters a zone of static magnetic fie
aligned along thez direction. Let us assume that the veloci
of the electron has been tuned in such a way that the elec
stays exactly a quarter of the Larmor period inside
magnetic-field zone. As a result, the spin initially along thy
direction is rotated into thex direction. When the electron
leaves the magnetic-field zone atx5x2 , a constant electric
field decelerates the electron back to rest. The question
might ask is whether the initially contracted spin att5t1 is
rotated into a spin along thex direction that is equally con
tracted. If this conjecture were true, the expectation value
the spin when the electron returns to rest would be sma
than 0.5 a.u., as the deceleration was along a direction
allel to the spin and therefore was not able to ‘‘undo’’ t
Lorentz contraction and we would have a manifestation of
irreversible effect.

There are two levels at which this conjecture can
proven to be incorrect. The first wrong assumption is that
electron’s spin would evolve along a circle. In fact, the c
rect spin trajectory is that of an ellipse, whose semimin
axis is perpendicular to the direction of the initial veloci
and its semimajor axis is equal to12 a.u. In addition, the
above analysis also neglected the fact that the center-of-m
motion is coupled to the magnetic field and, as a con
quence, the electron would actually be rotated away from
x axis. This means that this setup in its present form is
appropriate to display the conjectured elliptical spin prec
sion. In order to verify whether the spin precession can
tually take place along an ellipse, we need to ‘‘force’’ th
electron to maintain its course along thex direction. In other
words, we have to couple the electron to an additional ex
nal field, which forces the electron to take a quasistrai
path along thex axis.

It is the purpose of this paper to demonstrate in anab
initio computer simulation that an elliptical precession m
tion is indeed possible if we allow for an additional an
suitably tuned electric field acting along they direction,
which can cancel the Lorentz force due to the magnetic fi
acting on the center of mass. This additional electric fi
couples only relativistically to the spin.

II. ELLIPTICAL SPIN PRECESSION

The interaction of a relativistic electron with an extern
field is described by the Dirac equation@19,20# in atomic
units,

i ]C/]t52 ica•“C1a•AC1c2bC, ~2.1!

wherea, b are the usual Dirac matrices. The vector poten
A(r ,t) is the sum of two parts, one modeling the static el
tric field with amplitudeEy along they direction, and the
other part corresponding to the static homogeneous mag
field of strengthBz along thez direction:

A~r ,t !5cEytey1Bzxey . ~2.2!

The initial state is a Gaussian,
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C~r ,t50!5N exp@2~x2x0!2/~4Dx2!2~y2y0!2/~4Dy2!

2~z2z0!2/~4Dz2!#exp~ ik0•r !c~k0!, ~2.3!

which has a velocityvx along thex direction to represent the
state after its acceleration atx5x1 with the momentum vec-
tor k0[gvxex . The spinorC(k0) has been chosen to b
@1,1,ck0 /(E012c2),ck0 /(E012c2)#/2 or @1,i ,ick0 /(E0
12c2),ck0 /(E012c2)#/2 to represent a spin state aligne
along thex or y direction, respectively, andN is the normal-
ization factor, withE0[Ac41c2k0

22c2. In a previous work
@10# we have described the details of the computer algorit
that permits us to solve the time-dependent Dirac equa
on a space-time grid. This algorithm is based on a sp
operator scheme that requires a repeated application o
fast Fourier transformation to the Dirac state. We sho
mention that in order to obtain sufficiently accurate and c
verged data, the spatialx and y axes had to be discretize
into 10243256 intervals and the time step for the tempo
advancement of the Dirac equation required up to 360
steps per Larmor period.

As mentioned in the Introduction, the center-of-mass m
tion of the electron wave packet can be effectively ‘‘deco
pled’’ from the interaction with the magnetic field if th
strength and alignment of the static electric field is chos
appropriately with respect to the initial velocity. In fact, for
classical point particle with an initial velocityvx along thex
direction, an electric field along they direction, and ampli-
tudeEy5vx V will exactly cancel the Lorentz force assoc
ated with the magnetic fieldBz along thez direction, where
V[Bz /c. As a result, a point particle would travel with
constant speed along thex direction. This arrangement i
used in the Wien filter for beam alignment to control a
select particles that have a certain speed to charge ratio

How good is this scheme to force an extended quan
wave packet along a straight path? The Heisenberg un
tainty in the velocity of the wave packet is approximate
given by Dv51/(2Dx); in other words, a typical range o
the velocity components of the wave packet is@2Dv
1vx ,Dv1vx#. The interaction time with the magnetic fiel
is on the order of the Larmor timeTr52pg/V. The time
which a point particle with velocityDv1vx would require to
perform a full precession in the presence of theEy field can
be estimated as 2p c/(VDv). In other words, if the velocity
width is small enough and the wave packet is sufficien
monoenergetic, the deviation of the straight line motion
negligible for the time scales considered here.

Let us now present our results. The initial velocityvx at
x5x1 was chosen to be equal tovx554.8 a.u. corresponding
to 40% of the speed of light and a value of the relativ
factor g[1/A@12(v/c)2#51.1918, the scaled magnet
field V510 a.u., andEy5548 a.u. For simplicity, we star
here with an initially noncontracted spin aligned along thex
direction.

In Fig. 2 we present the time evolution of the expectati
value of the spin variablêS& obtained from the time-
dependent wave function,̂S&[^C(r ,t)uSuC(r ,t)&, where
S[(Sx ,Sy ,Sz) represents the three 434 spin matrices, and
the scalar product̂̄ u¯& involves the spatial integration a
5-2
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well as the summation of the four spinor components. Fig
2~a! shows the dynamics in the (Sx ,Sy) plane. The ellipse is
apparent, its semiminor axis is 0.457 a.u., which agr
within 0.25% to the value of 1/(2g)50.458 a.u. For com-
parison, the dashed line in the figure represents the u
nonrelativistic circular precession motion. The time evo
tion of the spin is resolved in Fig. 2~b!. The period of the
motion can be directly taken from the graph as 0.7511 a
which agrees with the numerical value ofT[2pg2/V up to
an error of only 0.75%. This period exceeds the nonrela
istic Larmor period 2p/V by 19.1%, and it is 9.5% large
than the relativistic Larmor period 2pg/V for the circular
precession.

Some approximate but analytical estimates for the am
tude as well as the unusual period can be derived if we tra
form our coordinate system into the rest frame with regard
the center of mass. The transformation of the lab electric
magnetic field into the effective ones for the rest frame yie
in general@21#,

Er5g~E2b3B!2g2/~11g!b~b•E!, ~2.4a!

Br5g~B1b3E!2g2/~11g!b~b•B!, ~2.4b!

whereb5vx /cex , E5Eyey and B5BZez . Due to the spe-
cific choice of the orientation and size of the electric fie
(Ey5vxBz /cey), the effective magnetic field in the res

FIG. 2. The time evolution of the average spin^S& ~in atomic
units! for a relativistic electron in combined electric and magne
fields. ~a! Parametric plot in the (Sx ,Sy) plane.~b! Sx , Sy as func-
tions of time. The dashed lines present the prediction of the non
ativistic dynamics. The dots and circles are the numerical solut
to the time-dependent Dirac equation. The analytical form
~2.7! matches the numerical data well (Dx5Dy51 a.u., vx

554.9 a.u.,vy50, V510 a.u., andEy5548 a.u.).
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frame amounts toBr5B/g, whereasEr vanishes entirely.
Due to the absence of the electric field in the rest frame,
dynamics of the spin operator in the rest frame timet r can be
simply obtained from the solution to

d

dtr
Sr5Sr3Br /c. ~2.5!

Returning to the lab frame, the spin matrices need to
transformed with the Lorentz boost matrixL, defined as@19#

L5exp@~v/2!ax#

5cosh
c

2 3
1 0 0 tanh

v

2

0 1 tanh
v

2
0

0 tanh
v

2
1 0

tanh
v

2
0 0 1

4 ~2.6!

with

ax[F 0 sx

sx 0 G ,
wheresx[@1 0

0 1# andv[a tanh(vx /c).
We transform back to the lab time according tot5gt r and

calculate the expectation values from the operator solut
In order to obtain simple analytical expressions we had
assume that the expectation value of the product of the
operator and a nontrivial velocity function can be factorize
We obtain the expression for the time evolution of the ell
tical spin precession:

^Sx~ t !&5^Sx~0!&cos~V/g2t !2^Sy~0!&sin~V/g2t !g,
~2.7a!

^Sy~ t !&5^Sx~0!&sin~V/g2t !/g1^Sy~0!&cos~V/g2t !,
~2.7b!

^Sz~ t !&5^Sz~0!&. ~2.7c!

In order to examine the validity of this approximate formu
its prediction has been superimposed on the exact nume
data obtained from the wave packet presented in Fig. 2.
simple analytical estimate seems to be quite valid for th
parameters. In fact, the two corresponding graphs are pr
cally indistinguishable for each spin component. This agr
ment is remarkable in view of the fact that the spatial ext
sion and the velocity dispersion of the wave packet w
neglected in the analytical derivation. We should note that
the best of our knowledge, this is the first example of
relativistic time scale in a quantum system that depends q
dratically on the velocity factorg and not just linearly.
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III. SPATIAL DENSITY DISTRIBUTION DURING THE
ELLIPTICAL SPIN PRECESSION

Following the analysis of the spin dynamics, let us no
investigate the space-time development of the spatial w
packet for the same setup. As discussed, despite the pres
of the magnetic field, the center-of-mass motion is eff
tively decoupled from the field and the wave packet evol
with a constant speed. The spatial width of the packet, h
ever, shows some interesting features that we will anal
next. In Fig. 3 we display the time dependence of the wid
of the wave packetDx(t)[A@^x2&2^x&2# andDy(t) during
the first cycle. The expected wave packet spreading is c
pletely suppressed and replaced by a nearly periodic t
evolution. After 1

4 of the relativistic Larmor period the ini
tially spherical wave packet has deformed into a cigar sha
distribution, the widthDx along the propagation direction i
reduced by almost 90%, whereas the transverse widthDy
has grown from its initial valueDy(t50)51 to 1.48 a.u.
This periodic breathing pattern@22# is reminiscent of the way
the electron was originally introduced into the magne
field. The response of a spatially extended wave packet
static magnetic field depends on whether the electron tra
into the magnetic field or whether the magnetic field w
turned on as a function of time. In either case the elect
experiences in its rest frame a short electric field which
affect its motion. Due to the gauge choice of the vector
tential A5Bzxey in Eq. ~2.2!, the magnetic field turn-on ef
fect is associated with an electric-field pulse which can
stantly alter the velocity distribution of the wave packet.
fact, the corresponding electric-fieldd pulse creates a
strongly correlated dependence of the velocity compon
and the respective position. The initial velocity along thex
direction is unaffected, as thex component of theE-field
pulse is zero; however, the velocity along they direction is
changed by thex-position-dependent amountVx. In other
words, electrons within the wave packet that are located
the positivex axis have the amountvy(t50)5Vx added to
their original value that is associated with the Heisenb
uncertainty. For weak magnetic fields this additional bo
velocity is negligible, however, for the size of the magne
fields discussed in our situation, this effect can be quite

FIG. 3. The time evolution of the spatial widthsDx andDy for
a wave packet~in atomic units!. The circles mark the numerica
data points and solid lines present the prediction of the approxim
analytical formula~3.1! ~same parameters as in Fig. 2!.
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portant. As the result of these strongly position correla
velocities the dynamics of the wave-packet width shows
breathing patterns displayed in Fig. 3.

Following a similar procedure which led to Eq.~2.7!
above, one can also derive some approximate analytical
pressions for these breathing patterns by first analyzing
effect in the electron’s rest frame using the effective fields
Eq. ~2.4!. Again, neglecting any impact of the negativ
energy eigenstates, the Heisenberg equations of motion
the position operator can be solved for an electron in
effective magnetic field. This solution can be used to a
proximate the time evolution of the spatial variance in o
quantum state. If we Lorentz transform the results back i
the lab frame we obtain

Dx2~ t !5Dx2 cos2~V/g2t !11/@2V2Dy2#@12cos~V/g2t !#2

11/@2V2Dx2g2#sin2~V/g2t !,

Dy2~ t !5Dy21g2Dx2 sin2~V/g2t !

1g2/@2V2Dy2#sin2~V/g2t !

11/@2V2Dx2#@12cos~V/g2t !#,

Dz2~ t !5Dz2. ~3.1!

The prediction according to these equations is super
posed in Fig. 3 by the circles. The agreement is actually q
good in view of the fact that the analytical derivation w
based on several approximations. A discrepancy with the
act numerical data could be associated with the approxi
tion to use the effective fields according to Eq.~2.4! for the
entire wave packet as well as the factorization assump
when computing the expectation values. The fields are o
exact for the center-of-mass motion. Second, we have
glected relatively for the position operator solution in the r
frame. The latter approximation was necessary to simp
the analytical calculation of the expectation values for
variances.

Let us conclude this section with a comment about a
merical simplification with respect to the dimensionality
the problem. All aspects of the motion along the spatiaz
direction are basically decoupled from the dynamics, wh
simplifies the numerical solution of the Dirac equation s
nificantly. On the other hand, our numerical simulations
dicate that a further reduction of the dynamics to only o
spatial dimension~x direction! has almost no impact on th
~three-dimensional! spin datâ S(t)& presented in Fig. 2, and
even the graph forDx(t) shown in Fig. 3 is very closely
reproduced by a one-dimensional calculation. If one is o
interested in the spatial variable along thex direction, this
feature can lead to significant numerical reduction in C
time. In fact, the data presented in Fig. 3 took 40 CPU d
on an Origin 2000 cluster of supercomputers for the simu
tion in all dimensions.

IV. SPATIAL SPIN DISTRIBUTION

Interesting relativistic effects can also be observed in
spatial spin distribution. In previous works@14,15# we have

te
5-4
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ELECTRIC-FIELD-INDUCED RELATIVISTIC LARMOR- . . . PHYSICAL REVIEW A 66, 013405 ~2002!
defined a position-dependent spin density, which allows
to distinguish between different values of the spin within
single quantum state. These densities can be defined as

S~r ,t ![C†~r ,t !SC~r ,t !/@C†~r ,t !C~r ,t !#, ~4.1!

whereS[(Sx ,Sy ,Sz) consists of the usual 434 spin matri-
ces.S(r ,t) is the average value of the spin one would me
sure if the electron were detected at timet and locationr .
Please note that the reference to the word ‘‘average’’ is u
in a quantum statistical sense; any individual measurem
of course, leads to6 1

2 a.u. From this definition it follows
that ^S(t)&5^C†(r ,t)uSuC(r ,t)&5*dr S(r ,t)P(r ,t), where
P(r ,t)[C†(r ,t)C(r ,t) is the spatial probability density
given by the sum of the four squared spinor component
the wave function. In the absence of any relativistic effec
the spin density would remain position independent in a s
tially homogeneous magnetic field.

In Fig. 4 we show the corresponding spin densities
various times for our case. As the wave packet moves al
thex axis, we display the values of the spin density only ov
a spatial region of total length 4Dx(t) that is centered at the
position of the packet at that time. To better guide the e
the circles displayed in the figure represent the expecta
values of the spin as shown in Fig. 2.

The spin density of the initial state is nearly flat. In oth
words, one would measure the same spin value indepen
of the position of the detector. The minor corrections to
perfectly flat distribution are associated with the fact that i
not possible for a spatially finite wave packet to be in
exact spin eigenstate.

The development of the spin density into one with a no
uniform distribution can be understood qualitatively. As
example, after a time oft50.15T the front portion of the

FIG. 4. Snapshots of the spatial spin densitiesSx(x,t) and
Sy(x,t) of the electron’s wave packet~in atomic units! as it travels
along thex axis for times that are1

20 of the relativistic Larmor
periodT apart~same parameters as in Fig. 2!.
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wave packet has a lower spin value^Sx& as the trailing edge.
In the discussion in Sec. III we have seen that due to
magnetic-field turn-on effect, the initial wave packet h
position-dependent velocities along they direction each of
which leads to a circular motion in the rest frame. After
short time this effect leads to a reduced~increased! speedvx
of the front ~trailing! part of the wave packet. This effec
leads to an effectively less contracted magnetic field for
front than for the back, and the spin componentSx in the
front requires a shorter Larmor period than the trailing par
that instant in time. As a result, the front spin evolves ahe
of the back spin and the densitySx(x,t) monotonically de-
creases withx. The same argument explains why the dens
for Sy(x,t) is tilted in the other direction at that time. I
might be interesting to note that both spin distributio
Sx(x,t) andSy(x,t) do not return to their precise initial dis
tribution after a Larmor period. This is expected becau
even the time evolutions of the spin expectation values
not strictly periodic due to relativity for a wave packet wi
a finite spatial extension.

V. SUMMARY AND CONCLUSION

Using the numerical solution of the time-dependent Dir
equation for an electron in suitably tuned and aligned co
bined electric and magnetic fields, it is shown that the s
precession can take place along an elliptical trajectory du
relativistic effects. We derived approximate analytical e
pressions for the time evolution of the spin expectation va
that match well with the numerical data obtained from t
wave-function solution. It turns out that, due to the prese
of the static electric field, the impact of relativity can b
enhanced significantly. The Larmor frequency is 2pg2/V
and not 2pg/V as one could expect from a simulation of th
usual circular relativistic precession motion in a magne
field alone. In contrast to the spatial dynamics, the elec
field can only partially cancel the magnetic field for the sp
dynamics. This increase of the Larmor period by a factor
g enables the measurement of relativistic effects at eff
tively lower electron speeds. Another relativistic effect c
be observed in the position-dependent spin density, which
contrast to the flat nonrelativistic distribution, changes
shape as a function of time in a quasiperiodic fashion.

The present work is part of a sequence of projects aim
at identifying relativistic effects in a quantum system that
not have a direct counterpart in a corresponding theory ba
on classical mechanics. We began this specific study with
hope of finding a suitable experimental setup in which
nonreversible effect of relativity on the spin motion could
detected. However, as it turns out, the relativistically induc
spin transitions that are associated with the Lorentz cont
tion do not have their manifestation when the electron
decelerated back to nonrelativistic speeds. Possibly othe
teractions can be used to obtain a more irreversible impac
relativity on the quantum-mechanical laser-atom interacti
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