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Transitions into the negative-energy Dirac continuum
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We compare the predictions of the single-particle Dirac equation with quantum field theory for an electron
subjected to a space and time dependent field. We demonstrate analytically and numerically that a transition
into the negative-energy subspace predicted by the single-particle Dirac equation is directly associated with the
degree of suppression of pair-production as described by quantum field theory. We show that the portion of the
mathematical wave function that populates the negative-energy states corresponds to the difference between
the positron spatial density for systems with and without an electron initially present.
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The Dirac equation is the theoretical foundation for thelead to the(incorrecy conjecture that the amount of down-
relativistic interactions between atoms and intense laseward transition in the single-particle framework is propor-
fields. Its numerical and analytical solutiofts-5] permitted  tional to the amount of positrons created. To the best of our
the discovery of a wide variety of relativistic phenomena.knowledge, despite the progress made in removing miscon-
With the exception of numerical studies of the electron-ceptions about the hole theory, the question about any physi-
positron pair productior{6] in heavy-ion collisions, most ca| significance of the permitted downward transition has
investigations used the Dirac equation in its single-particlqemained up to today. It is the purpose of this Brief Report to
framework. In other words, this equation was solved for o that there is in fact a physical process that may be de-
specific single-particle initial state for which the Dirac equa-gqiiped quantitatively by these downward transitions.
tion [7] predicted its unitarynorm conserving evolution. The understanding of how quantum field theory can be

The single-particle approach applies to only those ProcesSqrad to predict the space-time evolution of particles has also
for which the fields are either short, weak, or slowly varying led recently to the resolution of the Klein paradd®). It has

enough such that the production of pairs can be neglected. lso helped to remove the conceptual problem of the

In order to extend these studies to novel phenomena fo . o St
which the number of particles is not conserved, such as thgchrodinger<Zitterbewegund11] which is merely a math-

case of pair production processes, quantum field theory mu§matical signature of the single-particle Dirac equation and
be applied. The conceptual problem which we will address ifl0€s not correspond to any real physical motion. Also in
this work is whether one can find any physical process thaglirect contrast to claims in many textbooks, there is no limi-
can be described by a transition from a positive to a negativétion in principle to the localization length of an electron
energy state obtained from the mathematical solution of théll].
(not second quantizgdsingle-particle Dirac equation, or  In order to better understand the significance of the down-
should one simply discard these mathematical solutions award transitions, let us first briefly review its formulation.
unphysical? In the early days of relativistic quantum me-The Dirac equation that governs the evolution of the single-
chanics it was believed that these possible transitions werearticle (four-componentwave functiong(x,t) is given by
unphysical. But because they nevertheless occurred math#]
ematically, one tried to introduce additional constraints to g 4(x,t) = {ca - [p — €A(X,1)] + BC2 + eV(X, 1)} p(x, ).
prohibit these transitions. One should mention that there
have been some attempts to redefine the position operator in (1)
order to avoid conceptual problems associated with negativelere ¢ is the speed of light, and and 8 denote the % 4
energy states. However, the corresponding Newton-Wignebirac matricegin atomic unitg. This equation permits us to
position operatof8] predicts superluminal spreading behav- compute the wave function uniquely from any arbitrary ini-
ior and therefore violates causality]. tial state ¢(x,t=0). Let us assume that at the initial time,
Another clever postulate assumed that all states witthoth external fields described by and V are not strong

negative energies are “occupied” from the very beginningenough to create pairs. We can define a complete basis in
and that the Pauli principle would forbid the unexplainableterms of the energy eigenstates that fulfill

downward transitions. Thiad hocfix to what was regarded _ 2 _

as a major challenge at that time led to the introduction oi{ca [P -eA(t=0)]+ Be”+ eMx, 1= 0)}Wp (%)

the hole theory. An upward transition was interpreted as the = Ep.(yWp,(m(X), )

creation of a hole in the negative continuum which was as-

sociated with the occurrence of a positively charged particlewhere the subscrigi(n) denotes whether the energy is posi-
Only years later quantum field theory reexamined the holdive or negative. For the special cagdx,t=0)=0 and

theory by providing the appropriate interpretation of theV(x,t=0)=0 we have the field-free :;pectruﬁnpzc2 and

negative Dirac continuum as the charge conjugated states &,<-c?. This restriction, however, is not necessary in our

positrons with positive energy®]. This interpretation could discussion. As a side remark we might note that the charge
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conjugated negative-energy eigenstM(x) are(positive
energy solutions of the Dirac Hamiltonian for which the
chargee is replaced by e corresponding to a positrdi9]. 20 4 o (x0F
Let us assume that our initial state is a superposition of ¥
states with positive energjp(t=0))=2,C,|p). As this state
consists of positive energies only, one could interpret this as 15
the state of an electron. If we evolve this state in time as
V(x,t) andA(x,t) are switched on, it is unavoidable that in

10 1 -0.004

addition to transitions between positive-energy states
negative-energy states may also become populated. Accord- o (0
ing to the single-particle Dirac equatio(l), its norm- 5 ; -0.002
conserving time evolution is described by

- 0 . : : 0

|¢(t)> - 2pcpzn<n| U(t)|p>|n> + 2pcpzpl< p1| U(t)|p>| pl> 0.1 005 0 0.1
= [¢-(1) +|b:(1)), 3 x[a0]

o ) FIG. 1. Positive and negative energy parts of the solution of the
where X, denotes the summatiofintegration over all  gjngle-particle Dirac equation at time=5x 107 a.u. for a static
states with positivgnegativg energy. In general, each matrix electric field given by the potentiaM(x,t)=Vx8(W+x) (W
element needs to be evaluated numerically by-x)6(t). (Vo=500a?,W=0.166 a.u.
applying the time-ordered unitary propagatod(t)
=T[exp(-i [fdt'{ca-[p—eA(x,t")]+ Bc?+eV(x,t)})] to
each possible state. Note that the single-particle scalar pro
uct (---) contains the summation over the four spinor com- * -
ponents as well as the integration over the spatial coordinate. i,gt\if(x,t) ={ca-[p-eA(xt)]+Bc*+ eV, )W (x 1),
Initially we have (p|U(t=0)|p’)= &, and(n|U(t=0)|p)=0, 2)
but as time evolves transitions into lower energy states are (
unavoidable agn|U(t)|p) becomes nonzero and-_(t)) is  which is different from Eq(1) due to theoperatorcharacter.
populated. Its correspondinzg norm is given by This equation is solved for the initial field,

(- ()] d_())=2 |2 ,.Co{n|U(t)|p)|?>, whereas the norm of P S At

|p(1)) is always copnspervec(,¢>(t)|¢(t)>:1 according to the W= 0)=2phy(t= OWp(x) + 2ndy(t= OWo(x), (5)

unitary character ob(t). whereb, andd] are the usual electron annihilation and pos-
Let us now illustrate the downward transition numerically itron creation operators, respectively. When inserted into the

and assume that the coefficierfg are such that the initial operator Dirac equation we obtain the solution

state is spatially a Gaussian with widsh To keep the dis- ~ ~ .

cussion simple, we evolve the initial stdi&(t=0)) under a W(x,t) = Zpby(H)Wp(X) +2ndl(t)Wn(x), (6Q)

static electric field given by the potenti®(x,t)=Vxo(W

+x) 0(W-X) 6(t), whered(- - -) denotes the Heaviside unit-step ~ R R

function and 2V is the spatial width of the region in which  b,(t) =X /b, (t = 0)(p|U(t)[p") +En/d;,(t= 0){plu(t)|n’),

the field is nonzero. For simplicity we choo¥¢> ¢ such (6b)

that the electron experiences a spatially constant electric

dIlzirac equation has to be solved for the electron-positron field

where

field. N e ,
In Fig. 1 we show the spatial density of the positive en- dn(t) =Zpbp(t= OnUB)[p") +Zpdy, (t = 0XA[U®)]").
ergy part, defined as |¢.(x,t)[2= (X, 1) (X,1) (60)

=3il¢V(x,1)|2 after an interaction time oft=1/(100c2)
(=5%X107 a.u). Here 3; denotes the summation over the
four spinor components. Its norm is given gx ¢, (x,t)|?

The full set of time-dependent expansion coefficients
(p1|U(1)|p) and(n|U(t)|p) is the building block for quantum

=0.999 83. As the time evolution is unitary, the missing partfleld theory. Using th,e operator SOIUt.'q'G) We can now.
occupies the lower energy states and we show their spatigfmStrUCt the electrf) ns spatlAaI probability density according
representation as well, which is given by_(x,H2 with a 10 p(X,)=(¥(t=0)[¥ ™ (x,n) ¥ (x,1)|¥(t=0)), where the
norm of 0.000 17. superscript{+) denotes the positive frequency part. The cor-
Quantum field theory will show us that there is a physicalre@sponding positron density as a function of its coordiryate
process that can be described by the mathematical solutide obtained via p(y,t)=<\If(t=0)||\IIZ(+)(y,t)\If(c+)(y,t)||\I’(t
¢-(x,t). To make contact with the above discussion, let us=0)), where the subscript denotes the charge conjugated
now study the interaction of an electron, initially given by field.
the state¢(t=0))=2,C,|p), with a combination of external We compute the positron density for two different initial
fieldsA(x,t) andV(x,t) that are strong enough to create pairsconditions, the pair-creation process from vacuum, for which
from the vacuum. In quantum field theory the following |W(t=0))=|0) denotes the vacuum state and the same pro-

054101-2



BRIEF REPORTS PHYSICAL REVIEW A7Q, 054101(2004)

cess in which an electron is initially present. In the latter —/V—
case,|¥(t=0)) corresponds to a state in which a electron ®
occupies initially the single-particle state$a(t=0)) 0.006 -
:EpCp|p). Inserting the general quantum field theoretical so- 0.004 ]
lution in the expectation values, we obtain for the positron . (y.tivac)
densities in these two cases 0.002 ] p-E
ply,t;vad) = (O ¥y, ) ¥ (y,1)0) @ © : . .
=33 (U PWh(Y) 2, @ o
— =+ (+ = (+ 0.006 A
p(y,tie) = (I, Wy, 6)
0.004
=33 (U ) pYWi(y)[?
0.002 ] xOF
= [2pCpE (U [PIWr(Y) . (8) ¢ 0l
The spatial integral over the two densities is the total prob- 02 -0.1 0 0.1
ability to find a positron. For the system initially in vacuum, (b) y [au.]

it amounts tofdyp(y, t;va=3,3,[n[U(t)|p)|, which is the

same as the sum over all occupation numbers according to FIG. 2. (a) The spatial density for the positropsy,t;vac cre-

s (O||aT(t)a (t)||0) ated by the supercritical field at timte=5x 1077 a.u. The second
ot ) line is the supercritical potential(y,t)=Voy8(W+y)8(W-y). (b)

. . ; . . The spatial density of the positrgiiy,t;e”) that was created by the
we find that they differ precisely by the density associate ame potential, however with an initial electron present. The other

With the m_athen_]atical Waye functiog obtained from the curve is the spatial density associated with the negative energy so-
single-particle Dirac equation lution |#_(y,t)|? providing the missing portion(V,=500a2,W
p(y,t:€) = p(y.t;vad = ¢y, p(y.1). (99 =0.166 a..

This equation proves the main message of this paper. The

creation of a positron is only possible if it is created with itsthe two densities are identicap(y,t;vac=p(y,t;e). For

twin partner, the electron. The initial electron, however, hagomparison we graph on the same scale the density associ-
occupied already some positive energy staﬁE§Cp|p>] ated with the negat_ive energy portion of the mathematical
which the newly created electron would like to populate. Thewave function solutiorjé_(x,1)[?. As can be seen from the
Pauli principle which is built into quantum field theory due two graphs, this “mathematical” density is precisely the
to the anticommutation relationships between the fermionidnissing part in the density(y,t;e”) compared to the density

operators,[by, ,by,1,.=0 and [E)pl,Bgz]J,:éplpz, restricts the wn;out ?nyl|n|t|gltelectrsm(lyc/i,t;va?. hat i the redime of
occupation numbers o be at most 1. s a final point we should mention that in the regime o

In addition to the Pauli principle, Eq9) shows that the short times for which the probability of creation of more than

. : : : : .one pair is negligible one can even compute the correspond-
ingle-particl lution i with th wnward transi- . .
single-particle solution associated e do ard trans ng two-particle 4< 4 and three-particle % 4 X 4 wave func-

tion into the lower energy state has a direct and quantitativ ons for the pair-oroduction brocess for the two initial con-
physical interpretation. The spatial distribution |gf (x,t)|? o pair-p pro o i
. . . . . ditions. In contrast to the effective densitipghat describe
(displayed in Fig. 1is a quantitative measure for the impact : . ) . .
all pairs, these wave functions contain all information about

of the initial electron on the pair production process. At ead}he phases, spins as well as entanglenjéf} between the

time and for each locatiow it corresponds precisely to the : : .
amount of pair-production suppression due to the initial elec_partmles. The 1664) spin component twgthreg —particle

R . wave functions are obtained via
tron. In other words, as the initial electron evolves it blocks

Comparing the two expressiotig) and (8) with Eq. (3)

out the generation of the positron at spatial locatigrec- o t-e7) = (0T P (5, DT (56 YT (v D)l b2
Cordlng t0|¢_(y,t)|2 3(X11X21y: le ) < || (X1! ) (XZI ) c (yv )||¢> N
To illustrate our analytical conclusion, we display the cor- =32, 202, S (PU(0)poXpo|U(1) | pa)

responding densities in Fig. 2. These densities were obtained

via a large scale numerical simulation of the quantum field X[Cp1<n|u(t)|p3>

theoretical operator equation on a space-time grid to com- — Co (NU®)|py) TWo(X)) ® W, (Xo)
pute all possible matrix elements bf(t). In Fig. 2a) we Ps _ P P2
show a snap shot of the positron’s spatial dengity,t;vac) ® CW,(y)/\2, (10

together with the potentiaV(x) responsible for creating the

particle. In Fig. Zb) we display the positron’s density g _y v t-vad = (0™ (x. ) ¥ (v.1)l0

p(y,t;e") for the case with an initial electron. This distribu- 2%y, Va0 = (O x Wy, bl >*

tion grows in time but it has a spatial hole closeys0 == 3% {20, (U (1) ny) (p[U D)) W,(X)
indicating the suppression of pair production in this region cW (11)
where the electron was initially located. Outside this region ® nl(y)'
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In the short-time limit, we can expand the time evolutionfore valid only for short times. Integrating E(L2) over the
matrix elements tdJ(t)=1-iH(t/2)t leading to the simplifi- y coordinate we obtain (P5(t)|D4(t))=(D,(t)|Dy(t))
cations (py|U(t)|pp)= Spyp,~ i(pu/H(t/2)[p)t, (UMDY —(p_(t)| p_(1)).

= 8,0, ~ N[ H(t/2)|nx)t and (p|U(D)[n)=-i(p[H(t/2)[n)t. In In closing, we should mention that the quantum field
this short-time limit the two solutions simplify and fulfill for theory presented here relies on the strong field approxima-
each positron coordinatg tion [13] and does not include any fermionic interaction such
as the Coulombic attraction between the electron and the
fjdxldxz|q)3(xl,xz,y,t)|2 positron. To include the photons as quantized particle to

model all interactions, however, is presently far beyond the
range of computational feasibility.
= f dX{D,(x,y,[* = Sy, p-(y,0) (12)
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