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PHYSICAL REVIEW A 88, 012113 (2013)

Computational renormalization scheme for quantum field theories

R. E. Wagner, Q. Su, and R. Grobe
Intense Laser Physics Theory Unit and Department of Physics, Illinois State University, Normal, Illinois 61790-4560, USA

(Received 11 March 2013; published 15 July 2013)

We propose an alternative technique for numerically renormalizing quantum field theories based on their
Hamiltonian formulation. This method is nonperturbative in nature and, therefore, exact to all orders. It does
not require any correlation functions or Feynman diagrams. We illustrate this method for a model Yukawa-like
theory describing the interaction of electrons and positrons with model photons in one spatial dimension. We
show that, after mass renormalization of the fermionic and bosonic single-particle states, all other states in the
Fock space have finite energies, which are independent of the momentum cutoff.

DOI: 10.1103/PhysRevA.88.012113 PACS number(s): 03.65.−w

I. INTRODUCTION

The studies of quantum electrodynamical systems usually
rely on perturbative expansions of the S matrix and Green’s
functions in order to make the problem tractable [1–9].
S-matrix-based treatments have the drawback that they cannot
provide any space- or time-resolved information concerning
the dynamics inside the interaction zone. On the other
hand, space-time resolved, ab initio studies of quantum-field-
theoretical systems may help to shed light on many problems
that require a field-theoretical treatment. In contrast to the
traditional asymptotic in-out formalism [10,11] of the S-
matrix-based approaches, these ab initio simulations are based
on the quantum-field-theoretical Hamiltonian and describe the
time evolution of an initial state inside the interaction zone. The
time-evolved state is then used to compute various observables
such as expectation values or spatial, momentum, or energy
densities or their correlations. These simulations have already
been proven to be useful in the understanding of some quantum
systems [12], including the role of force-mediating bosons
for interfermionic forces [13], the dynamical impact of mass
dressing [14], or time-resolved studies of the absorption of
photons by electrons in model Compton scattering systems
[15].

Nonperturbative, ab initio numerical simulations have been
undertaken based on both scalar field theory with φ2 or φ4 in-
teractions [16] and Yukawa-like fermion-boson systems [17].
However, the field theories in these prior studies did not have
any ultraviolet singularities and the required renormalization
was finite, either due to low dimensionality or the lack of
an antifermion in the case of Yukawa theory. In order to move
beyond such model systems and develop numerical techniques
for more complex systems such as full QED, as a first step
it is necessary to find a new renormalization technique that
can be applied directly to the Hamiltonian instead of the
S-matrix.

In this paper we demonstrate such a renormalization
technique and illustrate it for a Yukawa-like model system
representing the interaction of electrons and positrons with
model photons (e.g., spinless bosons with finite mass). The
energy spectrum of the original Hamiltonian does not converge
as the largest momentum in the system or the length of the
numerical box are increased. In the traditional renormaliza-
tion [18–25] framework based on perturbation theory [26],
divergences can be removed order-by-order only by adding

diverging counterterms to the corresponding Lagrangian [27],
but our nonpertubative Hamiltonian approach allows us to
renormalize the spectrum to all orders.

We introduce here a computational method that can remove
any divergence from the spectrum by calculating the diverging
bare mass parameters in the Hamiltonian directly, such that
the resulting spectrum becomes independent of the maximum
momentum or the physical size of the numerical box. By
repeatedly diagonalizing the Hamiltonian, this algorithm
iteratively updates the bare parameters of the Hamiltonian
until the correct physical energies of the single-particle states
are achieved. These bare parameters are functions of the
maximum momentum and the numerical box size and depend,
of course, on the desired values of the physical mass and
the given coupling constant. We show that once the correct
bare parameters have been found for the single-particle states,
other multiparticle states are automatically convergent and
divergence-free. In this way, the time evolution of any initial
state and the properties of all multiparticle states then can be
studied without any further approximation or constraint.

To illustrate this technique for a concrete example, we use
a Yukawa theory with the usual electrons and positrons as well
as a theory with neutral Majorana fermions [28]. Previous
numerical simulations of Yukawa theory were based on a
version of the theory that did not contain positrons; however,
the work presented here differs in that electron-positron pair
creation processes are allowed in the present paper, while in
previous work fermions could only radiate or absorb photons
and the number of fermions was conserved.

This paper is organized as follows. In Sec. II we briefly
review the derivation of the two Hamiltonian model systems
from their Lagrangain densities. In Sec. III we show how the
Hilbert space can be truncated to allow for a computational
analysis and discuss a numerical method for space- and
time-resolved studies of a quantum field theory. In Sec. IV
we analyze the divergence of the energy spectrum before
mass renormalization in the perturbative and nonperturbative
regimes. In Sec. V we introduce the proposed iterative numeri-
cal renormalization algorithm and apply it to the single-particle
energies in the perturbative regime. In Sec. VI we demonstrate
that the technique can also remove the divergences for all states
in the spectrum, even in the strong-coupling, nonperturbative
regime, as shown in Sec. VII. Finally, in Sec. VIII we conclude
with a summary, a critical discussion, and an outlook on future
work.
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II. THE FIELD-THEORETICAL MODEL HAMILTONIANS

The first model system we consider is the Yukawa fermion-
boson system with a real scalar field φ and a Dirac electron-
positron field operator ψD . The Lagrangian density for this
system is given by

LD = cψ̄D(x) (iγ μ∂μ − M) ψD(x) + 1/2 ∂μφ(x) ∂μφ(x)

−1/2(mc)2 φ(x)2 − λc3/2 ψ̄D(x) ψD(x) φ(x), (2.1)

where M and m are the bare mass parameters for the electron
and photon, respectively, and ψ̄D = ψ

†
Dγ 0. From now on we

use atomic units. Because we restrict our attention to only one
spatial dimension, we may choose to examine only a single
spin direction of the electron and positron. In this way we only
need a two-component spinor to represent the fermions. This
allows us to choose gamma matrices γ 0 = σ 3 and γ 1 = σ 1,
while the derivative is given by ∂μ = (1/c ∂t , ∂z). The (model)
photon and electron-positron field operator can be expanded
in terms of the usual momentum mode operators as

φ(x) =
∫

dk c (4πωk)−1/2 (ak eikx + a
†
ke

−ikx), (2.2a)

ψD(x) =
∫

dp (2π )−1/2 (bp up eipx + d†
p vp e−ipx). (2.2b)

Here ak and a
†
k are the creation and annihilation operators for

the boson; bp and b
†
p are the creation and annihilation operators

for the electron; dp and d
†
p are the corresponding positron

operators; ωk is the energy of a model photon with momentum
k, ωk = √

(m2c4 + c2k2); Ep is the energy of an electron
with momentum p, Ep = √

(M2c4 + c2p2); and up and vp

are the positive and negative energy solutions, respectively,
to the Dirac equation, where up takes the form up = (1 +
{pc/[Mc2 + E(p)]}2)−1/2 (1, pc/[Mc2 + E(p)])T . Here and
throughout this paper, boson momentum modes will be
denoted by k and fermion momentum modes by p.

The Hamiltonian for this system, written in terms of the
creation and annihilation operators, is then given by

HD =
∫

dp Ep b†pbp +
∫

dp Ep d†
pdp

+
∫

dk ωk a
†
kak + VD, (2.3a)

VD = λ c5/2
∫

dp

∫
dk (16 π3 ωk)−1/2 [ūp+kup b

†
p+k

× bp (ak + a
†
−k) + ūp+kv−p b

†
p+k d

†
−p (ak + a

†
−k)

+ v̄−pup+k bp+k d−p (a−k + a
†
k) + v̄pvp+k d

†
p+k dp

× (ak + a
†
−k)], (2.3b)

where ūp = u
†
p γ 0 and similarly for v̄p.

In addition to the standard Yukawa theory with a real scalar
and a Dirac spinor field, we will also investigate below a
Yukawa-type theory with Majorana fermions. The Majorana
condition imposes a kind of reality on the fermion field which,
similarly to a real scalar boson, makes the Majorana fermion its
own antiparticle. The Lagrangian density for a Yukawa system

with a Majorana fermion is given by

LM = 1/2 c ψ̄M (x) (iγ μ∂μ− M) ψM (x) +1/2 ∂μφ(x) ∂μφ(x)

− 1/2(mc)2 φ(x)2 − 1/2 λ c3/2 ψ̄M (x) ψM (x) φ(x).

(2.4)

The factor of 1
2 on the fermion kinetic terms is necessary to

give the Majorana fermion the correct energy, since the field
operator has only half as many degress of freedom, while the
factor of 1

2 in the interaction term ensures that the fermion-
boson coupling has the proper strength, as will become clear
when the Hamiltonian is written in terms of the mode operators
below. The boson field φ is the same in the Majorana theory
as it is for the standard Yukawa theory [see Eq. (2.2a)], while
the fermion field now only contains one kind of creation or
annihilation operator,

ψM (x) =
∫

dp (2π )−1/2 (fp up eipx + f †
p vp e−ipx), (2.5)

where f
†
p and fp are the creation and annihilation operators

for the Majorana fermion. The Majorana Hamiltonian, when
expressed in terms of the creation and annihilation operators,
is

HM =
∫

dp Ep f †
p fp +

∫
dk ωk a

†
kak + VM, (2.6a)

VM = λ c5/2
∫

dp

∫
dk (16 π3 ωk)−1/2 [ūp+kup f

†
p+k fp

× (ak + a
†
−k) + 1/2 ūp+kv−pf

†
p+k f

†
−p (ak + a

†
−k)

+1/2 v̄−pup+k fp+k f−p (a−k + a
†
k)]. (2.6b)

As seen here, the Majorana Hamiltonian is nearly the
same as the Yukawa theory with Dirac fermions, except for
the obvious absence of antiparticle terms, the replacement
of antiparticle creation and annihilation operators with their
counterpart, and the appearance of a factor of 1/2 on the pair
creation f

†
p+kf

†
−p(ak + a

†
−k) and annihilation fp+kf−p(a−k +

a
†
k) terms. The choice of this factor of 1/2 is necessary in

order to ensure that the interaction term for the radiation or
absorption of a boson by the fermion in Eq. (2.6b), ūp+kup

f
†
p+k fp (ak + a

†
−k), has the same strength as the equivalent

term for the Dirac fermion in Eq. (2.3b).

III. NUMERICAL CONSIDERATIONS FOR THE
HILBERT SPACE

In order to study the time evolution of quantum-field-
theoretical systems, we need to compute the quantum-field-
theory state |
(t)〉 from a given initial state |
(0)〉. The time
evolution follows a Schrödinger-like differential equation,
i ∂/∂t |
(t)〉 = H |
(t)〉, where the Hamiltonian H is either
HD for the Yukawa theory with electrons and positrons or
HM for Majorana fermions. This can be accomplished by
numerically diagonalizing the Hamiltonian and finding the
energy eigenstates and eigenenergies. Once these eigenstates
are identified, it is straightforward to decompose the initial
state |
(0)〉 into its eigenstate components (whose time
evolution is simple) and then reconstruct the state |
(t)〉 at
any time t .

012113-2
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In order to diagonalize the Hamiltonians Eqs. (2.3) and
(2.6), the particles’ momenta must first be discretized by
placing the system within a finite box of length L and imposing
periodic boundary conditions [29]. Furthermore, the fermion’s
momentum mode is limited to lie below an integer cutoff
Pmax, |p/�p| < Pmax, where p is the momentum of the
fermion and �p is the gap between the discretized momentum
modes, �p = 2π/L. Likewise, the boson momentum modes
are constrained by |k/�p| < Pmax. From now on we denote
the largest available momentum as � ≡ Pmax�p.

The eigenenergies of the Hamiltonian do not converge as
Pmax approaches infinity. This momentum cutoff, which must
be introduced to make the Fock space finite dimensional so
the problem becomes numerically tractable, also serves as a
cutoff to regulate otherwise divergent integrals. The focus of
the renormalization program, presented below, is to ensure
that the (renormalized) Hamiltonian correctly predicts the
physically measurable observables (electron, positron, and
boson masses), which should no longer depend on the cutoff
Pmax.

Even when the momentum is discretized and the particles’
momenta are restricted to lie below some cutoff, the Fock
space is still infinite dimensional because an infinite number
of bosons can occupy any given momentum mode. In order
to rectify this, and also in order to keep the Fock space small
enough to fall within the constraints imposed by computer
memory, the total number of bosons in each Fock space state
is limited to at most Nb. Likewise, the number of fermion
pairs is limited to at most Nfp; here, “fermion pairs” refers
to electron-positron pairs in the case of Dirac fermions and
fermion-fermion pairs for the Majorana theory.

The diagonalization of the Hamiltonian is made easier by
the fact that the Yukawa theory has a number of symmetries
that limit which states can couple to other states. Since the
total momentum is conserved, states with different momenta
cannot couple to one another in the Hamiltonian, which
makes the Hamiltonian block diagonal. Each momentum
block therefore can be diagonalized independently of the
other blocks. Furthermore, as the total charge is conserved
in the Yukawa theory for Dirac fermions, the fermion number
NL, defined as the number of electrons minus the number
of positrons, is conserved. Thus, each state only couples
to other states where the difference between the number of
electrons and positrons is identical, which similarly makes
the Hamiltonian block diagonal. In the Majorana theory, there
is no conserved fermion number; however, fermions can be
created or destroyed only in pairs, and, thus, states with an
odd number of fermions cannot couple to states with an even
number of fermions in the Majorana theory.

In order to obtain numerically converged data, we have
used up to 9000 Fock space states in a single momentum
block in the Hamiltonian. It should be noted that a theory
with Majorana fermions is more numerically tractable than
the Yukawa theory with Dirac fermions because the number of
Fock space states is substantially reduced, especially for states
with large numbers of fermions. This difference in the number
of states between the two kinds of fermions exists because
Majorana fermions are indistinguishable while electrons are
distinguishable from positrons. Quantum states with Majorana
fermions therefore are divided by larger combinatorical factors

to avoid overcounting of identical particles. For instance,
for Pmax = 10, the total number of states with zero total
momentum which contain four Majorana fermions is only
218, while the total number of states with two Dirac fermions
and two Dirac antifermions is 1462. The smaller number of
states in the Majorana theory makes it possible to explore
parameter regimes which are inaccessible in the Dirac theory
due to memory constraints; in particular, in the Majorana
theory we are able to explore higher-momentum cutoffs,
the nonperturbative coupling regime, and multiparticle states
where the number of states in the Dirac theory was too large
for present computational capabilities.

IV. ULTRAVIOLET DIVERGENCE OF THE ENERGY
SPECTRUM FOR FIXED BARE MASSES m AND M

The traditional perturbative methods can be used to esti-
mate the type of divergences we could expect for our two
Hamiltonians. Power-counting arguments [11] suggest that the
superficial degree of divergence for the boson propagator in
a Yukawa theory is logarithmically divergent in one spatial
dimension, while other diagrams are superficially convergent.
Indeed, the one-loop Feynman diagram for the boson prop-
agator diverges, while the one-loop diagram for the fermion
propagator remains finite. Mass renormalization of the boson
therefore is necessary in order to render the theory finite, and
although the fermion propagator does not diverge at lowest
order, the fermion mass will still need a finite renormalization,
since the fermion’s dressing from the boson will still cause a
mass shift and the physical mass of the fermion will differ by
the bare mass parameter by a finite amount, which must be
renormalized in order to make the physical mass match the
experimentally determined physical mass.

It is important to note that although Feynman diagrams
can be used to determine the divergent portion of the integral,
they are not sufficient for our purposes as we must also know
the finite portion of the renormalization. Various means of
regulating and renormalizing a divergent integral can differ
from one another by a finite quantity, and this finite difference
can depend in particular on shifts in the integration variable
when a cutoff regulator is applied. Furthermore, Feynman
diagrams can only be used to renormalize a theory order-by-
order in perturbation theory, while here we need to develop
a numerical technique that is nonperturbative in nature.
Nevertheless, such Feynman diagram-based analyses can be
useful for setting expectations of the kinds of divergences that
exist in the Yukawa theory in the nonperturbative regime of
small coupling.

The energy of the Yukawa vacuum, defined as the eigenstate
of lowest energy, is not zero, and is, in fact, a negative divergent
number with � and L. This vacuum energy depends on both
Pmax and L and does not converge in either limit, Pmax →
∞ or L → ∞. There are two reasons for this divergence.
First, the perturbative momentum integrals for vacuum bubbles
consisting of one boson and two fermions (more specifically
an electron and positron in the Dirac case) do not converge.
Second, for a box size L that is much larger than the Compton
wavelength of the particles, the vacuum’s energy becomes
proportional to L, and so the energy diverges in the limit
L → ∞.
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FIG. 1. The rest energy as a function of the cutoff � for fixed bare masses (m = M = 1). Also plotted is a logarithmic fit to the boson curve
and a constant fit to the fermionic curve. In (a), Pmax varies from 5 (leftmost data points) to 14 (rightmost data points), In (b), Pmax varies from
5 (leftmost) to 17 (rightmost) (λ = 0.1 and L = 0.05. For boson curves, Nb = 2 and Nfp = 1, while for fermion curves Nb = 1 and Nfp = 1).

If the vacuum energy itself is not studied, we can subtract
a diverging number from the Hamiltonian such that its energy
becomes zero. Loosely speaking, since all physical particles
are created “on top of” the underlying vacuum state, all single-
and multiparticle states contain the same divergent vacuum
energy, and so this energy can be subtracted out from all states
in the energy spectrum. Effectively, this means that we must
replace the Hamiltonian H by H – Evac, where Evac is the
divergent vacuum energy. This procedure of subtracting the
vacuum energy from all states has been performed throughout
all results in this paper, and, thus, when discussing the energy
of a particular Fock space state what is meant is the energy of
the state above the vacuum energy. As discussed earlier, for the
numerical methods presented here the momentum integrals are
automatically regulated by a cutoff at a maximum momentum
� = Pmax �p, where �p = 2π/L and L is the length of the
box.

After the Dirac Hamiltonian HD or the Majorana Hamilto-
nian HM have been diagonalized, it is necessary to locate the
states describing a single physical particle within the set of
eigenstates so their energies can be determined. As discussed
in Sec. II, the Fock space of the Yukawa theory breaks up
into separate, noncoupled sectors that can be parametrized
by two quantities, the total momentum and the number of
fermions and antifermions. In the Dirac theory, the state
consisting of a single physical boson at rest must have zero total
momentum, Ptot = 0, and since fermions can only be created
in fermion-antifermion pairs, the fermion number NL = 0 as
well for the physical boson state, where NL is the number of
fermions minus the number of antifermions. The lowest-lying
energy state with Ptot = 0 and NL = 0 is, of course, the
physical vacuum, defined as the state of lowest energy, while
the state of a single physical boson will be the second lowest
state in this block of states, assuming that the interaction is not
so strong as to bring multiparticle bound states down below
the energy of single-particle states. Likewise, a single physical
fermion at rest has Ptot = 0 and NL = 1, and since the vacuum
has NL = 0 the single physical fermion state will be the lowest
energy level of the Ptot = 0, NL = 1 sector of the Hamiltonian,
again assuming that the single-particle state has less energy
than other bound states.

Similiarly, the eigenstates of the Majorana theory that
correspond to the single physical boson and single physical
fermion states can be found by analyzing the spectrum
of eigenenergies. For the Majorana theory, there are no
antifermions, and states with NL odd, where NL is now just
the number of fermions, decouple from states with NL even.
The vacuum of the Majorana Yukawa theory will be found in
the sector of the Hamiltonian with momentum Ptot = 0, NL

even, where it will be the state with lowest energy, and the
second lowest energy state in this sector will be the state of
a single physical boson at rest. Finally, the state of a single
physical fermion at rest can be identified as the lowest energy
state in the sector of the Majorana Hamiltonian with Ptot = 0
and NL odd.

In Fig. 1 the energy of the boson and fermion at rest is
examined as a function of the maximum momentum � by
keeping the bare masses m and M fixed. The coupling λ = 0.1
is in the perturbative regime.

As expected, for the relatively small, perturbative coupling
of λ = 0.1 in the figure, the energy of the boson diverges
in a logarithmic manner, while the fermion energy remains
nearly constant for both Dirac and Majorana fermions. The
continuous fitted curves are given by m = 1.0071–0.0015 ln�

and m = 1.0036–0.000 75 ln� for the photon in the Dirac and
Majorana theory, respectively. Because the coupling in this
regime is very weak, expanding the Hilbert space to allow more
particles has a negligible effect on these fits, and studies of this
issue have shown that increasing Nb and Nfp cause the change
in the mass (the difference between the mass m and unity) to
vary by much less than 1%. A much more significant source
of error is the relatively large box size, L = 0.05. Studies
using perturbation theory, for which very large box lengths are
possible, suggest that the difference between the unperturbed
and perturbed eigenenergies can vary by as much as 5% as
the box size is increased from L = 0.05 to an infinite box,
L → ∞.

Figure 2 examines single-particle energies for the higher,
nonperturbative coupling of λ = 0.7 in the Majorana theory.
For small Pmax at this value of λ, it is possible to increase
the number of particles included in the Hilbert space Nb and
Nfp, and these investigations indicate that the eigenenergies
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FIG. 2. The effective physical mass of the state for the lowest nonzero momentum for fixed bare masses (m = M = 1). (a) The dashed
lines are perturbative approximations, showing that higher-order effects are significant at λ = 0.7. (b) Computed effective physical mass as a
function of the cutoff momentum in the nonperturbative regime λ = 0.7 [L = 0.01. In (a), Pmax = 3, while in (b) Pmax varies from 1 (leftmost)
to 5 (rightmost). Nb = 3 and Nfp = 2 for bosonic curves and Nb = 2 and Nfp = 2 for fermionic curves].

are numerically stable at the 2% level for the parameters
used in the figure. Since the nonperturbative regime requires
larger Hilbert spaces, a smaller Pmax must be chosen due to
computational limitations, and along with a smaller Pmax a
smaller box length L must also be used. For L = 0.01, used
in the figure, the box length is only slightly longer than the
Compton wavelength, and for these short length scales the
system is no longer Lorentz invariant. However, our results
have suggested that this lack of Lorentz invariance only shows
up in the energy of a particle at rest, as ωk = √

(m2c4 + c2k2)
and Ep = √

(M2c4 + c2p2) turn out to fit all states except p =
0 (fermions) and k = 0 (bosons). Thus, for the nonperturbative
regime we have chosen to define the mass by using the state
with p = 1 (or k = 1), mphys ≡ √

(ω2
1/c

4 − �p2/c2), and
Mphys ≡ √

(E2
1/c

4 − �p2/c2).

V. THE COMPUTATIONAL RENORMALIZATION
SCHEME IN THE PERTURBATIVE REGIME

The ultraviolet divergences of the eigenvalues make the
two Hamiltonians in their present forms useless and must
be removed by a suitable renormalization program. Since the
Yukawa theory in one spatial dimension is a renormalizable
theory, only a finite number of bare parameters need to
be computed to make every quantity divergence free. Here, we
propose to renormalize the energies of the electron and boson
at rest, which is equivalent to renormalizing their mass to the
physically observed mass. Finally, we have to test whether the
remaining physical quantities in the theory have become free
of any divergences as well.

It is worth pointing out that there are two distinct notions
of convergence which must be carefully distinguished from
one another in this case. First, there is the issue of whether
a theory is renormalizable at all or whether some divergence
prevents the theory from being made finite at all. This issue is
a currently unresolved issue for numerical work on quantum
field theories, as there is the possibility that a very subtle
divergence ruins renormalizability of the theory, but that the
numerical accuracy is insufficient to resolve this divergence.

The other kind of convergence which must be considered here
is simple numerical convergence of the result. Of course, only
if a theory is already known to be renormalizable, such as the
Yukawa theory examined here, does it make sense to begin
examining the theory numerically and to seek numerically
converged results.

The Dirac Yukawa theory states b
†
p |0〉 and a

†
k |0〉, where

|0〉 is the bare vacuum satisfying bp|0〉 = ak|0〉 = 0, repre-
sent virtual, nonphysical particle states that are not energy
eigenstates of the fully coupled Hamiltonian HD [Eqs. (2.3)].
Likewise, the Majorana theory states f

†
p |0〉 and a

†
k |0〉 are

also not stable under the time evolution of HM [Eqs. (2.6)].
Since a true physical (and stable) particle, which one would
observe isolated from any other particles in a laboratory,
does not change as a function of time, the Fock space
states corresponding to a single physical particle (either
fermion or boson) particle must be eigenstates of the
Hamiltonians.

Here we must specify stable physical particle because in
the Yukawa theory it is possible to construct unstable bosons;
if the physical boson’s mass is twice or more of the fermion’s
physical mass, then the boson can decay into two fermions.
However, as long as we stay outside of this parameter regime,
the physical boson is a stable particle and must be an eigenstate
of the Hamiltonian.

Once the eigenstates corresponding to the single physical
boson and fermion at rest have been identified, the energies
of these states do not match the experimentally observed
energies of these states, which are given by mphysc

2 for the
photon and Mphysc

2 for the electron, where mphys and Mphys

are the corresponding physical masses, respectively. For our
model system here we arbitrarily require them to take the
specific values mphys = Mphys = 1. In order to obtain the
correct physical energy, the bare mass parameters m and M

must be adjusted to the proper value to yield the required
physical masses. Here the photon’s and electron’s bare mass
parameters must be chosen as functions of the momentum
cutoff � = Pmax �p. In fact, we show below that both of them
have to be chosen to diverge as � → ∞. The goal of the
renormalization scheme is, for any given value of the cutoff
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FIG. 3. Difference in energies �E between Enum and the corresponding required physical energy
√

(mphys
2 c4 + c2 p2) for the first five

energy eigenvalues. The energies Enum obtained after the numerical renormalization scheme (based on m∞ and M∞) are the open markers. The
original (unrenormalized) energies (based on our choice m1 = M1 = 1) are the closed markers. (a) The boson in the Dirac theory, (b) the Dirac
electron, (c) the boson in the Majorana theory, and (d) the Majorana fermion. [Parameters are the required masses mphys = Mphys = 1, λ = 0.1,
and L = 0.05. For bosonic curves, Nb = 2, and Np = 1, while for fermionic curves Nb = 1 and Nfp = 1. Pmax ranges from 5 (leftmost) to 14
(rightmost)].

�, to find the m(�) and M(�) which yield mphys = Mphys = 1
and then, once this is accomplished, to verify that other states
in the spectrum have become � independent as well.

We have carried out the numerical renormalization program
using an iterative approach. The initial “guess” for the bare
mass parameters are just taken to be the physical masses,
m0 = mphys, M0 = Mphys. From these initial values, closer
approximations to the correct bare parameters will be found
iteratively, m1 and M1, m2 and M2, and so on. The photon’s
mass is updated, first, by using Newton’s method: The physical
mass of the photon is regarded as a function of the bare mass
parameter, mphys = f (m), with all other parameters of the
theory held constant, and then Newton’s method is used to
iteratively find the zeros of the function f(m) – mphys. A single
iteration of Newton’s method is applied to the photon’s bare
mass to update it from m0 to m1. Since the photon and electron
mass renormalizations are interdependent, the physical mass
of the electron is calculated using a photon bare mass of m1 and
an electron bare mass of M0, and from this an application of
Newton’s method similar to the one above is performed on the
electron, yielding an updated electron mass M1. The process
can be repeated to calculate m2 and M2 from m1 and M1,
and so on, as many times as necessary to achieve converged
results. The final (optimum) bare parameters that lead to the
correct physical masses (mphys and Mphys) are denoted by m∞
and M∞, respectively.

In Fig. 3 we show the successful outcome of this iterative
method applied to both the Dirac and Majorana Yukawa
theories for a range of � values. Graphed in the figure is
the difference in energy �E between the numerical energy
eigenvalue Enum of various one-particle states, calculated using
the numerical methods discussed in Sec. II, and the desired
physical energy

√
(mphys

2 c4 + c2 p2) before (m = M = 1,
filled symbol) and after (m = m∞, M = M∞, open symbols)
the iterative renormalization,

�E = Enum(p,m∞,M∞; �) − √(
mphys

2 c4 + c2 p2
)
. (5.1)

Since the renormalization procedure is set up to ensure that
the energy of a physical particle at rest, p = 0, becomes
equal to mphysc

2 for the boson and Mphysc
2 for the fermion,

it is guaranteed that �E will be 0 for the zero-momentum
mode p = 0 (circles). Fortunately, the other modes have also
obtained negligable �E in comparison to the original energies.
This indicates that the divergence has been successfully
removed for all states in the single physical particle sector
of the Fock space.

We have tried to fit the numerically obtained bare pa-
rameters as a function of � and found that for the Dirac
theory

m(�) = 0.9929 + 0.0033 ln �, (5.2a)

M(�) = 1.0014, (5.2b)
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For bosonic curves, Nb = 3, and Nfp = 1, while for fermionic curves
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while for the Majorana theory

m(�) = 0.9964 + 0.00075 ln �, (5.2c)

M(�) = 1.0014. (5.2d)

These bare parameters lead to mphys = Mphys = 1 for λ =
0.1 and L = 0.05.

VI. COMPUTATIONAL RENORMALIZATION
OF CORRELATED TWO-PARTICLE ENERGIES

IN THE PERTURBATIVE LIMIT

To complete the verification of the renormalization pro-
gram, it is also necessary to show that the multiparticle states
have also become divergence-free, which has been done in
Fig. 4. Due to the large number of Fock space states involved,
only the Majorana theory has been examined in Fig. 4. In
the figure, we have graphed again the difference in energy
�E between the numerically calculated energy and the lowest
energy of the state for two free (noninteracting) particles

and zero total momentum. For the two-boson state, two free
particles with zero momentum have a total energy of 2mphysc

2,
while for two free fermions with zero momentum, the total
energy is 2

√
(Mphys

2c4 + c2�p2), since Pauli exclusion forces
one fermion to take p = �p and the other p = −�p if the total
momentum is to be zero. As seen in the figure, the energies of
the zero-momentum two-particle states have also become free
of divergences and independent of the cutoff �.

It should be noted that in our system the two physical
particles can interact, and this may lead one to worry that
a two-particle system might require also a divergent bare
coupling constant λ. However, in a single spatial dimension,
power-counting arguments suggest that the interaction vertex
is superficially convergent. This means that, although the
true physical coupling between the fermion and boson differs
from the parameter λ that appears in the Hamiltonian, this
shift is finite and an infinite renormalization is not necessary.
Thus, the two-particle states in Fig. 4 can also be rendered
divergence-free with only a mass renormalization with no need
for an infinite bare coupling constant renormalization as well.

While, according to Fig. 4, it appears that the two-boson
system has no noticeable interaction energy as �E is close to
zero, the two-fermion system appears to have a smaller energy
than the two free particles, suggesting an attractive interaction.
Fortunately this energy is finite and does not depend on the
cutoff �.

VII. SINGLE-PARTICLE ENERGIES IN THE
NONPERTURBATIVE REGIME

The numerical renormalization procedure discussed here
is fundamentally nonperturbative and differs from the usual
order-by-order renormalization procedure. Figure 5 examines
this method in the strong-coupling regime beyond lowest
order in perturbation theory. Because the strong-coupling
regime requires a larger number of Fock space states in order
to converge, only the Majorana theory has been analyzed in
this regime, as it has a smaller number of Fock space states
due to the indistinguishability of the fermions as already
mentioned above.

-0.06

-0.04

-0.02

0

0.02

1000 2000 3000

ΔE/c2

  Λ     

Majorana boson λ=0.7

k/Δk

4

2
3

1

0
-0.15

-0.1

-0.05

0

1000 2000 3000

ΔE/c2

  Λ     

Majorana boson λ=0.7

p/Δp

42 31

0

FIG. 5. Difference in energies �E between the numerically calculated energy eigenvalue and the physical energy
√
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2 c4 + c2 p2)

in the nonperturbative regime. Renormalized energies are open markers and unrenormalized energies are closed markers. (a) The boson in the
Majorana theory, while (b) is the Majorana fermion. [Parameters are mphys = Mphys = 1, bare mass m = M = 1 for unrenormalized energies,
λ = 0.7, and L = 0.01. For bosonic curves, Nb = 3, and Nfp = 2, while for fermionic curves Nb = 2 and Nfp = 2. Pmax ranges from 1 (leftmost)
to 5 (rightmost)].
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For the boson, shown in Fig. 5(a), the renormalized
single-particle energies of all of the nonzero momentum
modes are quite close to their required physical values, in
comparison to the unrenormalized energies. Furthermore,
while the unrenormalized energy for each of the momentum
modes depends on the cutoff �, the renormalized boson
has become � independent, except for the k = 0 mode,
showing that the infinities have been removed successfully
for the nonzero momenta. We should note that, in this
nonperturbative parameter regime, we have chosen to perform
the renormalization procedure on bosons and fermions with
momentum p = 1 (or k = 1), since the zero-momentum states
are affected by the non-Lorentz invariance, as discussed
prior to Fig. 2. Due to this lack of Lorentz invariance in
the zero-momentum states, the renormalization of k = 0 is
very poor in Fig. 5(a); this, however, is due to limitations
of computational resources which prevented us from using
larger box sizes L in this parameter regime, and not with
any intrinsic problems with this renormalization scheme. The
fermion, in Fig. 5(b), shows very similar results; the p = 0
mode encounters Lorentz invariance problems, but all of the
other states in the theory are renormalized to their correct
energies.

VIII. DISCUSSION AND OUTLOOK

In summary, we have proposed a new purely numerical
method to remove any ultraviolet divergences from the energy
eigenspectrum of a quantum field theoretical system. It is
based on the Hamiltonian formulation of the system and used
iterative techniques based on the repeated diagonalization to
compute the (formally) diverging bare parameters that lead
to the correct required physical quantities. The numerical
solutions to quantum field theories presented here promise
to provide a new tool for studying nonperturbative effects in
quantum field theory, along with the additional advantage of
being able to observe space- and time-resolved dynamics of
field-theoretical systems. First steps have already been taken
in this direction, and here we have shown that it is possible to
incorporate renormalization techniques into these numerical
solutions, a necessary step towards solving more complex
theories such as QED that contain divergences that must be
removed.

This new approach has several advantages but also dis-
advantages compared to the traditional approach. It does not
rely on any perturbative expansions of complicated Green’s
functions, propagators, autocorrelation functions or Feynman
diagrams and is, therefore, conceptually much easier to im-
plement. However, the principal bottleneck of this brute-force
method is the limitation due to computer memory. It requires
new and more efficient Hilbert space truncation schemes to be
applicable to more general three-dimensional systems such as
full QED. The present work just serves as a proof of concept
and we used a simplified version of the Yukawa theory in one
spatial dimension with Dirac fermions and also with Majorana
fermions.

There are, of course, a number of similarities between
the numerical methods presented here and lattice gauge
theories, and in particular, both regulate divergent integrals

by placing the system on a grid which has a natural cutoff
to the momentum modes. However, it must be noted that,
while lattice gauge theory techniques are most useful for
asymptotically free theories, our methods are equally useful for
nonasymptotically free theories, such as QED. Furthermore,
since the methods used here are based on diagonalization of a
Hamiltonian, the eigenstates are recovered in addition to the
eigenenergies, whereas one usually only obtains eigenenergies
from lattice gauge theory techniques.

In the present study we have computed the energy
eigenvalues by a direct numerical diagonalization of the
Hamiltonian matrix. However, there are other methods (e.g.,
based on variational principles or imaginary time integration
techniques) that could be explored to provide similar spectral
information that is required in our method for renormalization.
In the present approach we have used the eigenstates of
the interaction-free part of the Hamiltonian as basis states.
However, depending on the type of interaction more efficient
(partly dressed) basis states can be identified.

In the interesting nonperturbative regime, many mathe-
matical properties of renormalizable Hamiltonian matrices
are not very well understood. For example, it is not known
how the structure of the corresponding eigenvectors of the
Hamiltonian is affected by the mass renormalization. These
eigenvectors could become delocalized with respect to the
basis of interaction-free states. This is an important issue in
order to use spectral methods to compute the time evolution of
arbitrary initial states. We should also note that nonperturbative
techniques that permit us to examine whether a finite number
of free parameters are sufficient to renormalize a Hamiltonian
matrix are difficult to find.

As has been pointed out in the literature [30], many works
deal with the question of the single-particle spectrum on
an approximate level. It therefore is important to examine
whether these approximations are fully consistent with the
basic requirements of quantum field theory. For example,
approximations to the spectral function, which is proportional
to the imaginary part of the full retarded two-point correlation
function, have to be analyzed very carefully for bosonic as
well as fermionic quantum fields. In a recent work [31,32] it
was shown that the requirement of causality (expressed as the
vanishing anti- or commutators of field operators for spacelike
separations) leads to mathematically rigorous constraints for
the resummed propagators in high-temperature gauge theory
[30,33].

In the model system examined here based on Dirac
and also Majorana fermions, it is well known that the
anticommutator of free as well as interacting field operators
vanish for spacelike separations, which should imply that the
corresponding Fourier transform of the spectral function into
coordinate space in the continous limit should also vanish in
this domain. However, in our work we are dealing exclusively
with a finite Hilbert space, for which the generalization of the
Lorentz invariance for a finite grid system is nontrivial in a
mathematically rigorous way.

Furthermore, a distinction between causal and noncausal
locality is much more complicated than in the continous limit.
In fact, many interesting and fundamental question of quantum
field theory on infinite Hilbert spaces are still open [3,30].
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APPENDIX

In this Appendix we compare the computational renor-
malization method with four different approaches. The first
three are well established, but each of them has the drawback
that it can be applied only in the perturbative weak-coupling
limit, while higher-order terms are increasingly complicated.
As there are numerous descriptions available in the literature,
we just briefly summarize the four approaches below and apply
them only to the Dirac model system for λ = 0.1. To have
concrete numbers for a comparison below, for a box length
L = 0.05 and momentum cutoff �= 1380 our bare parameters
were computed as mb = 1.0034 and Mb = 1.0014 in order to
produce mphys = 1 and Mphys = 1 for the perturbative coupling
λ = 0.1. Because the photon’s bare mass is divergent at first
order, there could be an ambiguity when comparing different
renormalization methods directly, since different methods may
use different definitions of the regulation parameter �. Since
the fermion’s mass correction is finite at lowest order in
perturbation theory, this ambiguity does not occur, and so
we use the correction to the fermion mass below in order to
compare various renormalization methods.

1. Spectral analysis based on bare Rayleigh-Schrödinger
perturbation theory in λ

Conceptually, most similar to our approach would be to
find the analytical expressions for the eigenenergies based on
the usual perturbation theory [34] in λ. The resulting two
expressions for the fermionic and bosonic single-particle rest
energies as a function of Mb, mb, λ, and � are then set equal
to their required values Mphysc

2 and mphysc
2, respectively. The

resulting two coupled transcendental equations would then be
solved (perturbatively) for a given cutoff momentum � in
order to find the unknown parameters of the two bare masses
Mb and mb.

If we denote the unperturbed energy associated with the
(bare) unperturbed state |α〉 with Eα , then for states that
satisfy 〈α|V |α〉 = 0, the second-order eigenvalues take the
general form Eα(λ) = Eα + 〈α|α〉−1

∫
dβ |〈β|V |α〉|2/(Eα −

Eβ). The integration extends over all unperturbed states |β〉
that can contribute to the integral. The normalization factor
〈α|α〉−1 is often omitted in the literature but is important for
the continuous system as the single- and multiparticle states
have different units and, therefore, different normalization
properties. For systems with discrete spectra, however, all
states can be normalized identically to the Kronecker δ and
〈α|α〉−1 is always equal to 1.

More specifically, if we apply this technique to our system,
the energy of a single fermion state with no momentum |α〉 =
|p = 0〉 has energy E1(λ = 0.1) = 18 639 when the bare mass
Mb is chosen to be 1. After the vacuum energy’s contribution
E0(λ = 0.1) = 〈0|V |0〉 = − 113 has been subtracted out, this
implies that the mass of the particle is (E1 − E0)/c2 = 0.9986,
somewhat less than the desired value of Mphys = 1. At these
small, perturbative parameters, one could guess that the bare
mass should be chosen to be Mb = 1.0014, which will give
a perturbative energy that corresponds to the correct physical
mass Mphys = 1. This agrees perfectly with the numerical
results above.

2. Two-point correlation function Feynman approach

This method is based on the observation that for any
interacting quantum-field-theoretical system the Fourier trans-
formed time-ordered two-point correlation function of the
Heisenberg field operator φ(x,t) = φ(X) in the physical
vacuum state |Vac〉 has a single isolated pole if the square of the
four-momentum P is equal to the physical mass of the particle.∫

dX exp(iPX) 〈Vac|T {φ(x,t)φ(x = 0,t = 0)}|Vac〉

= Z f (P )/
(
P 2 − Mphys

2c2
) + · · · . (A1)

This correlation function is a central quantity in the field-based
approach to relativistic quantum mechanics advocated in
most textbooks [35–37]. Here the residue f (P ) depends on
whether the particle is a fermion [f (P ) = i(γ μpμ + Mc)]
or a boson [f (P ) = i] and Z is the so-called “wave function
normalization constant.” In the special case of an interaction
free system, we would find Z = 1.

Using Wick rotation and perturbative Feyman diagrams,
one can find the corresponding expression for the left-hand
side of Eq. (A1). We then choose Mb and mb appropriately
to guarantee that the poles of these expressions match the
required ones given by the right-hand side of Eq. (A1). This
step introduces the required values of Mphysc

2 and mphysc
2.

More specifically, if we apply this technique to our system,
we obtain for the lowest order loop correction to the fermion
two-point function, defined as −i�loop(p),

−i �loop(p) = λ2/(4π ) (−γμpμ/(M2c2) ln(m/M) + 1/[mc2√(4M2 − m2)][2Mc + γμpμ(2M2 − m2)/M2]

×{tan−1[−m/
√

(4M2 − m2)] − tan−1[(2M2 − m2)/
√

(4M2−m2)/m]}). (A2)

The left-hand side of Eq. (A1) works out to be i/[γμpμ − Mc − �loop(p)], accurate to lowest order in perturbation theory in
λ, while the right-hand side can be rewritten as iZ/(γμpμ − Mphysc) for fermions. Equation (A1) can then be rewritten as

Z[γμpμ − Mc − �loop(p)] = (γμpμ − Mphysc). (A3)
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The wave function renormalization term Z can be found be equating terms that contain γμpμ. The result, accurate to lowest
order, is

Z = 1 + λ2/(4π )
(−1/

(
Mphys

2c2
)

ln(mphys/Mphys) + (
2Mphys

2 − mphys
2
)/[

mphysc
2Mphys

2√(
4Mphys

2 − mphys
2
)]

×{
tan−1

[−mphys/
√(

4Mphys
2 − mphys

2
)] − tan−1

[(
2Mphys

2 − mphys
2
)/√(

4Mphys
2 − mphys

2
)
/mphys

]})
. (A4)

Here the bare masses m and M have been simply replaced
by the physical masses mphys and Mphys, because these masses
differ only by terms proportional to λ2, and the entire term they
appear in is already of that order. Equating the momentum-
independent terms in Eq. (A3) then gives an equation for
the bare mass M , which can be found to lowest order in
perturbation theory to be

M = Mphys + λ2/(4πc)
(
1/(Mphysc) ln(mphys/Mphys)

+√(
4Mphys

2 − mphys
2
)/

(mphysMphysc)

×{
tan−1

[−mphys/
√(

4Mphys
2 − mphys

2
)]

− tan−1
[(

2Mphys
2 − mphys

2
)/√(

4Mphys
2 − mphys

2
)
/mphys

]})
.

(A5)

For the required parameters (λ = 0.1 and mphys = Mphys =
1), the bare mass of the fermion works out to be M = 1.0014,
again in agreement with the numerical result above.

3. Renormalized perturbation theory based on counterterms

In this approach, one tries to incorporate from the very
beginning the required physical parameters and also physical
operators into the original Hamiltonian H (μb, Ob). To shorten
our notation, the symbol μb represents all bare parameters
(m and M for our specific models) and Ob represents the
group of all field operators (φb and ψb for our Hamiltonians).
In order to include these quantities it is necessary to assume
that the bare field operator Ob is simply a multiple of the
physical (often called “renormalized”) field operator, Ob =

Z1/2 Ophys. This important assumption allows us to eliminate
Ob entirely from H , but at the same time introduces a new
unknown parameter Z into the approach. Its numerical value
is determined by the residue (numerator) of the terms on the
right-hand side of Eq. (A1). After this necessary rescaling, the
original Hamiltonian can then be rewritten in the form

H (μb,Ob, λ) = H (μphys,Ophys, λ)

+C(μb,μphys,Ophys, Z, λ). (A6)

These counterterms C(μb, μphys, Ophys, Z, λ) typically diverge
in � to permit the entire Hamiltonian to lead to a finite
spectrum. Furthermore, due to the different way of splitting
up the various terms in H , a new set of Feynman rules can
be constructed. These renormalized Feynman rules are then
used to simplify perturbatively the expression for the two-point
autocorrelation function shown in Eq. (A1).

If we apply this technique for our case, we find that the
lowest-order correction to the two point function is −i �(p) =
− i �loop(p) + i γμpμ δz − i δm c, where δz and δm are the
coefficients of the wave function renormalization and mass
counterterms, respectively, and now �loop(p) must be evalu-
ated using the physical masses mphys and Mphys. Because we
are using counterterms, the mass appearing in the Feynman di-
agram propagators is now Mphys, so instead of Eq. (A3) we get

γμpμ − Mphysc − �(p) = (γμpμ − Mphysc). (A7)

The renormalization condition simply means that �(p)
must vanish. Equating terms proportional to γμpμ gives an
equation for δz, which is similar to Eq. (A4),

δz = λ2/(4π )
(−1/

(
Mphys

2c2
)

ln(mphys/Mphys) + (
2Mphys

2 − mphys
2
)/[

mphysc
2Mphys

2√(
4Mphys

2 − mphys
2
)]

× {
tan−1

[−mphys/
√(

4Mphys
2 − mphys

2
)] − tan−1

[(
2Mphys

2 − mphys
2
)/√(

4Mphys
2 − mphys

2
)
/mphys

]})
. (A8)

Equating terms which are independent of the momentum then gives

δm = λ2/(4πc)
(
1/(Mphysc) ln(mphys/Mphys) + √(

4Mphys
2 − mphys

2
)/

(mphysMphysc)

× {
tan−1

[−mphys/
√(

4Mphys
2 − mphys

2
)] − tan−1

[(
2Mphys

2 − mphys
2
)/√(

4Mphys
2 − mphys

2
)
/mphys

]})
. (A9)

Comparison of Eqs (A8) and (A9) with (A4) and (A5) then
shows that this result is identical to the result of Sec. II.

4. Stefanovich renormalization approach based on zero
self-scattering conditions

For completeness we should also briefly mention that
there is a fourth method for renormalization which has been

proposed recently by Stefanovich [38–40]. Similarly to the
renormalized perturbation theory approach, the starting point
here is the interaction-free part of the original Hamiltonian,
where each bare parameter or operator has been replaced
from the very beginning by its physical counterpart, H =
H0(μphys, Ophys, λ). The goal is then to add appropriate
additional interaction terms �i ciVi to the Hamiltonian, such
that the corresponding S-matrix in all perturbative orders
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remains cluster separable, relativistic invariant, the physical
masses of the particles are preserved and that it satisfies
the so-called “no-self scattering” requirements. Here, no-self-
scattering means that the S matrix carries the vacuum and
the single-particle states into themselves, 〈0| S |0〉 = 1 and

〈q ′| S |q〉 = δ(q − q ′), where the state |q〉 is given by |q〉 ≡
â†(q)|0〉 and |0〉 denotes the vacuum state. The unknown ex-
pansion coefficients ci are usually determined perturbatively.
For a concrete application of this alternative method to a model
potential, see Ref. [41].
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