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Causality and relativistic localization in one-dimensional Hamiltonians
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We compare the relativistic time evolution of an initially localized quantum particle obtained from the
relativistic Schrödinger, the Klein-Gordon and the Dirac equations. By computing the amount of the spatial
probability density that evolves outside the light cone we quantify the amount of causality violation for
the relativistic Schrödinger Hamiltonian. We comment on the relationship between quantum field theoretical
transition amplitudes, commutators of the fields and their bilinear combinations outside the light cone as
indicators of a possible causality violation. We point out the relevance of the relativistic localization problem to
this discussion and comment on ideas about the supposed role of quantum field theory as a vehicle of making a
theory causal by introducing antiparticles.
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I. INTRODUCTION

In classical mechanics two physical events occurring at
(z1,t1) and (z2,t2) can be causal if the interval c2(t1 − t2)2–
(z1 − z2)2 is positive. In this case a light signal would have
enough time to travel from one event to the other. The
Lorentz transformation [ z′

t ′ ] = �[ z

t ] preserves this distance.
If the system is relativistically invariant then the cause
(z′

1,t
′
1) precedes the effect (z′

2,t
′
2) in any frame. For a single-

particle system, the Hamiltonian h(p) = [m2c4 + c2p2]1/2 is
relativistically invariant such that [ p′

h′ ] = �[ p

h ] simplifies to h′

= h(p′). In this case the corresponding velocity dz/dt = dh/dp
= c2p/[m2c4 + c2p2]1/2 is always less than c and causality is
guaranteed.

In quantum mechanics and quantum field theory, however,
the nature of causality is not so clear. In fact, while the quantum
expectation value of the velocity 〈c2p/[m2c4+c2p2]1/2〉 is also
less than c, certain portions of the wave function can actually
evolve faster than the speed of light, despite the Lorentz invari-
ance of h(p). We are not aware of any studies that have exam-
ined quantitatively the amount of this causality violation and
how it depends on the properties of the initial quantum state.

One can find statements in the literature that the causality
violation can be solved in a “miraculous way” [1] by
quantum field theory by introducing antiparticles. In this work
we discuss three Lorentz invariant Hamiltonians, associated
with the relativistic Schrödinger (rS), the Dirac (D), and
the Klein-Gordon (KG) equations as examples for causality
preserving and non-preserving quantum mechanical systems.
We then use the usual framework based on canonical second-
quantization of the fields to construct the three corresponding
quantum field theoretical descriptions. This allows us to
compare the properties of a noncausal but Lorentz invariant
quantum field theory (rS) with two well-known causal theories
(D and KG). In other words, for these free-particle systems the
predictions with regard to causality of the field theoretical
version are identical to the quantum mechanical formulations
and antiparticles are simply redefinitions of the quantum
mechanical negative energy solutions and cannot be arbitrarily
introduced to cure the causality violation of the rS system.

We also point out the special role of a possible lack of
particle localization in coordinate space for single particles and
provide a quantum mechanical interpretation of nonvanishing
quantum field transition amplitudes between two states outside
the light cone. It has been argued that whether particles can
propagate over spacelike intervals does not indicate any causal-
ity violation and that only commutator relationships among the
fields should be considered [1,2]. In quantum field theory, the
action of the Dirac and Klein-Gordon field operator on the
vacuum generates a particle whose (field theoretical) charge
density and associated quantum mechanical charge density for
the same state are not localized (by which we mean that it
has an infinite spatial support). The quantum field theoretical
transition amplitude between two different states can be equiv-
alently expressed as an overlap integral over the two associated
quantum mechanical wave functions. As a result one could take
the point of view that transition amplitudes would provide
information about the lack or presence of causality only if
the quantum mechanical wave functions of the particles were
localized.

The paper is organized as follows: In the second section
we introduce the three quantum Hamiltonians, evolve an
initially localized probability density in time and measure the
amount that has moved outside the light cone as a function
of time. We also show that this amount is transient and that
the largest amount of causality violation can be achieved for
a spatially infinitely narrow state. We provide the formulas
for the associated propagators and show that parts of the
corresponding Green’s function for the positive energy states
are nonzero outside the light cone for each of the three systems.
However, it corresponds to a causality violation only for the rS
system, whereas the D and KG systems are nevertheless causal.
In the third section we second-quantize the system consistent
with the spin-statistics theorem, and compute the quantum field
theoretical transition amplitudes and study the commutation
properties of quantum field theoretical observables. We
show that for the rS system, it is not possible to introduce
antiparticles to cure its causality violation despite its Lorentz
invariance.
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II. QUANTUM MECHANICAL CONSIDERATIONS

To keep our analysis simple, we permit only one spatial
dimension [3,4]. In atomic units (m = 1, h̄ = 1, and the speed
of light c = 137.036), the three Hamiltonians take the form

hrS = [c4 + p2c2]1/2, (2.1a)

hD = cσ1p + σ3c
2, (2.1b)

hKG = (σ3 + iσ2)p2/2 + σ3c
2, (2.1c)

where p ≡ −i∂/∂z is the momentum operator along the
z direction and the usual 2 × 2 Pauli matrices are de-
noted by σ1 ≡ [ 0 1

1 0 ], σ2 ≡ [ 0 −i

i 0 ], and σ3 ≡ [ 1 0
0 −1 ]. While

the relativistic Schrödinger (rS) operator describes the time
evolution of a single wave function, the Dirac (D) and
Klein-Gordon (KG) equations evolve a two-component spinor
φ(z,t) = [ φ1

φ2
]. The Dirac spinor has been reduced from four

to only two components, as we focus on only one spin
direction. We prefer the Feshbach-Villars [5] representation
over the usual second order in time Klein-Gordon equation,
[c−2∂2/∂t2 − ∂2/∂z2 + c2]f (z,t) = 0, as it allows us to com-
pare all three systems within an identical theoretical frame-
work based on Hamiltonians. We also note that each of the
three Hamiltonians is form invariant under the corresponding
Lorentz transformation.

The total “charge” defined here as
∫

dz ρ(z,t) = 1
is conserved for all three Hamiltonians. For the rela-
tivistic Schrödinger Hamiltonian hrS we have ρrS(z,t) ≡
|φ(z,t)|2, for the Dirac system with hD we have ρD(z,t) ≡
φ†φ = |φ1(z,t)|2 + |φ2(z,t)|2, and as the corresponding
Klein-Gordon Hamiltonian hKG [5–7] is pseudo-Hermitian
(h†

KG = σ3hKGσ3), we find ρKG(z,t) ≡ φ†σ3φ = |φ1(z,t)|2 −
|φ2(z,t)|2. All three Hamiltonians have been used in the past
to study several aspects of the quantum relativistic dynamics
including positive and negative energy states [8–11].

A. Space-time evolution of the wave functions

Let us first compute the quantum mechanical time evolution
of a localized state ρ(z,t=0) = θ (δ−z)θ (z+δ)/(2δ) with
an initial spatial width 2δ. More specifically, we choose
the states φrS(z,t=0) = ρ(z)1/2, φD(z,t=0) = φKG(z,t=0) =
[ρ(z)1/2, 0] . In contrast to various other definitions of
localization (“δ-like” densities or L2-integrable), here and
below we call a state “localized” if it has a finite support
in space. We should mention that the φrS state is unique, in
the sense that if we had transformed it to any Lorentz boosted
frame, it would be no longer localized but require an infinite
spatial support. In contrast, the states φD and φKG remain
localized in any frame.

We also point out that for the D and KG systems these
localized states require contributions from energy eigenstates
with positive as well as negative energy. In contrast to the
rS system, for the D and KG systems it is not possible to
construct a spatially localized state based on positive energy
states alone. This relativistic localization problem [12,13] is
a consequence of the incompleteness of the Hilbert space for
positive energy states. Several textbooks have concluded that
therefore the physical electron can no longer be considered
as a point particle as it is spread out over a distance given
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FIG. 1. The final charge densities for Dirac (dot-dash), Klein-
Gordon (dot), and relativistic Schrödinger Hamiltonians. While the
Dirac and Klein-Gordon densities stay within the light cone, the
relativistic Schrödinger density has a portion of weight 1.2% outside
of the light cone. (δ = 0.1/c, T = 0.001 a.u., numerical box length
L = 0.4 a.u. with NDIM = 200 000 grid points.)

by the Compton wavelength [14–17]. This observation will be
relevant for the discussion of causality violation in the quantum
field theoretical description in Sec. III.

In Fig. 1 we show the resulting three densities ρ(z,t) at
time t = T and near one edge of the light cone. We note that
while the Dirac and Klein-Gordon densities maintain the sharp
wave front, the relativistic Schrödinger density has removed
the sharp corner and the density has become delocalized in the
sense that the spatial support domain has become the entire
z axis. In other words, there is some nonzero probability density
that has evolved faster than the speed of light, located in the
spacelike regions z < −δ − ct and δ + ct < z.

The two peaks at each side of the rapidly spreading
distribution are separated by 2δ, which is the spatial width of
the initial density. As the small length scales that characterize
the sharp corners in the initial density can be loosely associated
with large momenta, one could interpret these peaks as the
result of spatially localized high momentum regions that
evolve mainly with the speed of light c.

As a side remark, we note that if we had analyzed the real
and imaginary parts of the time evolved wave function for hrS

instead of the density, we would have found that the violation
of causality is exclusively associated with the imaginary part
of φrS(z,t). The real part maintains its sharp edge and no
portion leaks outside the light cone. This is related to the
initial state chosen real and this property will be confirmed by
our analytical analysis in Sec II B.

In order to determine the time dependence of the total
probability of the particle to be detected outside this light
cone, we have graphed in Fig. 2 the “outside probability,”
defined as N(t,δ) = ∫

dz ρ(z,t), where the integration ranges
from z = δ + ct to z = ∞. We show the time dependence of
this causality violating portion for various initial widths δ. The
probability N(t) grows from zero to a maximum value and then
decreases back to zero suggesting that the causality violation
is a transient effect. While at earlier times some fraction of
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FIG. 2. The amount of probability outside of the light cone (δ
+ ct < z) as a function of time for various initial wave function
widths δ for the relativistic Schrödinger Hamiltonian. (L = 0.4 a.u.,
NDIM = 800 000.)

the total probability manages to propagate faster than c, after
a longer time the front of the light cone z = δ + ct “catches
up” with this portion and even passes it. In other words, this
transient causality violation portion is not able to maintain its
(initially) faster speed and somehow “slows down.”

We have also studied the maximum amount of causality
violation for various widths δ, and found that there is a maxi-
mum at 8.2% in the limit of δ→0. For comparison, we should
mention that under a completely nonrelativistic time evolution
(h = p2/2) and for the state for δ = 0.1/c we would find that
46% of the wave packet evolves (irreversibly) to the right of the
light cone. The same amount can be obtained if we integrate
the corresponding momentum density from p = c to ∞.

The (initially) sharp edges of φrS(z,t=0) at z = ± δ

have permitted a rather straightforward determination of the
amount of causality violation for hrS. In order to examine
whether the casuality violation could be caused by the sharp
edges, we have also analyzed smooth wave functions. For
example, calculations for an initial Gaussian wave packet
(initially centered at z = 0) have indicated as well that the
probability density between the moving light front z(t) = d +
ct and z = ∞ can also temporarily increase as a function
of time for any parameter d that exceeds the Gaussian’s
initial width. Furthermore, this portion associated with the
causality violation is again imaginary. So these findings are
general and the causality violation is not a special property
restricted to only sharply localized initial states. This finding
is also consistent with work by Hegerfeldt [18,19] who showed
analytically that states with exponentially bounded tails violate
causality.

B. Analysis of the quantum mechanical propagators

More general information about the time evolution of
arbitrary initial states for the three Hamiltonians can be
obtained from the corresponding Green’s function G in the
spatial representation [2].

φ(z,t) =
∫

dz′ G(t,z − z′) φ(z′,t=0)

= (2π )−1/2
∫

dp exp[−ih(p)t] exp[ipz]φ(p).
(2.2)

Here φ(p) ≡ (2π )−1/2
∫

dz′ exp[–ipz′] φ(z′,t=0) is the
momentum representation of the initial state and h(p) is
the Hamiltonian where the momentum operator −i∂/∂z is
replaced with the variable p. As the three Hamiltonians of
Eq. (2.1) have identical positive energy spectra, E = (c4 +
c2p2)1/2, the derivations for the corresponding propagator
are very similar. The action of the time evolution operator
exp[–ih(p)t] can be simplified if we introduce the energy
subspace projectors P + and P −. For a given momentum p,
they can be expressed as P + = [1 + h(p)/E]/2 and P − =
[1–h(p)/E]/2. Note that for hrS the second projector P − is
zero and P + = 1. If we insert the unit operator P + + P − after
exp[−ih(p)t], the action of this propagator can be performed in
each energy subspace, using exp[−ih(p)t]P ± = exp[∓iEt]P ±.
Furthermore, we can introduce the time-derivative operator,
P ±exp[∓iEt] = [± i∂/∂t ± h(p)] exp[∓i Et]/[2E]. As an
intermediate result we obtain

φ(z,t) = (2π )−1/2
∫

dp [i∂/∂t + h(p)]

× exp[ipz] {exp[−iEt] − exp[iEt]}/[2E]φ(p).

(2.3)

If we factor the operator [i∂/∂t + h(−i∂/∂z)] out of the
integral and replace the momentum wave function by its
Fourier integral, we obtain the desired form φ(z,t) = ∫

dz′
G(t,z–z′) φ(z′,t=0), where the function g is related to G through
G(t,z–z′) = [i∂/∂t + h(–i∂/∂z)] g(t,z–z′). Here the universal
function g(t,y) is defined as g(t,y) ≡ (4π )−1

∫
dp exp[ipy]

{exp[–iEt]–exp[iEt]}/E. Note that this function is identical for
hD and hKG, while for hrS the second exponential (associated
with negative energy –E) is zero. As in the special case of the
rS system, the actions of i∂/∂t and hrS(–i∂/∂z) on g(t,z–z′)
are identical to each other, and the Green’s function can be
also expressed as GrS(t,y) = (2π )−1

∫
dp exp[ipy] exp[–iEt].

By substituting E = (c4 + c2 p2)1/2 into Eq. (2.3), we can
solve the two integrals for g+ and g− analytically [2,20,21]
(with g+ + g− = g) and obtain for the function that determines
the evolution of states with positive energy:

g+(t,y) = (4π )−1
∫

dp exp[ipy] exp[−iEt]/E

=
{ {−N0[c(c2t2 − y2)1/2] − i J0[c(c2t2 − y2)1/2]}/(4c) if (y2 < c2t2), inside the light cone,

K0[c(y2 − c2t2)1/2]/(2πc) if (c2t2 < y2), outside the light cone, (2.4a)

062106-3



WAGNER, SHIELDS, WARE, SU, AND GROBE PHYSICAL REVIEW A 83, 062106 (2011)

and for the negative-energy subspace:

g−(t,y) = −(4π )−1
∫

dp exp[ipy] exp[iEt]/E

=
{ {N0[c(c2t2 − y2)1/2] − iJ0[c(c2t2 − y2)1/2]}/(4c) if (y2 < c2t2), inside the light cone,

−K0[c(y2 − c2t2)1/2]/(2πc) if (c2t2 < y2), outside the light cone. (2.4b)

Here we use three types of zeroth-order Bessel functions:
J0(x) is the usual Bessel function of the first kind, the Bessel
function of the second kind (Neumann function) is denoted by
N0(x) [= Y0(x)], and K0(x) is the modified Bessel function of
the second kind.

Neither g+ nor g− vanish outside the light cone. However,
this does not necessarily lead to a causality violation. For
example, even for the positive energy portion of the state only,
φ+(z) ≡ P + φ(z), the evolution φ+(z,t) = [i∂/∂t + h]

∫
dz′

g+(t,z − z′) φ+(z′) is fully causal for the D and KG systems,
[i.e., φ+(z,t) = 0 outside the light cone], even though the
function g+(t, y) does not vanish for c2t2 < y2.

Also, it is obvious that the function g(t,y) = g+(t,y)
+g−(t,y) vanishes for c2t2 <y2 and therefore preserves causal-
ity for hD and hKG. This is consistent with the conservation of
the sharp wave fronts shown in Fig. 1. We also see that g+(t,y)
for timelike events is complex, while for noncausal (spacelike)
events it is real, again consistent with the graphs in Fig. 1.

It is sometimes argued that the causality violation for the
specific functional form given by hrS is related to the fact
that this operator is nonlocal and that the Taylor series of the
square root of the momentum operator contains derivatives
of all orders. However, in our opinion, this is not necessarily
a reason for the causality violation. One can show [21–23]
that the time evolution for any Hamiltonian h(p) that is a
continuous and positive function of the momentum operator
will distribute the support of an initially localized state to any
region in space. Therefore an infinite propagation speed is
actually rather universal and not unique to the specific square
root functional form of hrS.

III. QUANTUM FIELD THEORETICAL CONSIDERATIONS

A. Second-quantization of the three Hamiltonians and locality

Quantum field theory permits us to examine causality from
the perspective of using “local” operators. In order to construct
the corresponding field theories for the three quantum Hamil-
tonians h of Eqs. (2.1), we first have to find the corresponding
classical mechanical Lagrange density L(φ,φ̇), such that
the corresponding Euler-Lagrange equations [d/dt(∂/∂φ̇) −
(∂/∂φ)]L(φ,φ̇) = 0 are identical to the required equations
iφ̇(z,t) = hφ(z,t) for each Hamiltonian h. We obtain

L = 	φ̇ + i	 hφ, (3.1)

where we have defined the adjoint (dual) field 	 to be
consistent with the requirement that 	 = ∂L/∂φ̇. The specific
form of this canonical conjugate field follows from the
requirement that the total action

∫∫
dzdt L has to be real. In other

words, we require i	hφ = (i	hφ)† to be valid for each of the
three Hamiltonians. More specifically, for hrS and hD we have

the symmetry hrS
† = hrS and hD

† = hD leading to 	rS = iφ
†
rS

and 	D = iφ
†
D. The Klein-Gordon Hamiltonian, however, is

only generalized Hermitian, hKG
† = σ 3 hKG σ 3, such that the

KG-adjoint operator must take the form 	KG = iφKG
†σ 3.

In order to second-quantize the Lagrange densities, we
replace the classical fields φ and 	 by quantum field operators,
denoted by 
̂ and 	̂, and require them to satisfy either
the equal-time commutators [
̂a(z), 	̂b(z′)]− = iδ(z − z′)δa,b

or the anticommutators [
̂a(z), 	̂b(z′)]+ = iδ(z − z′)δa,b (for
the two spinor components a,b = 1,2). As the quantum
fields have to also satisfy the corresponding equations
i∂
̂(z,t)/∂t = h
̂(z,t), we can expand the field operators as


̂rS(z,t) ≡ (2π )−1/2
∫

dp b̂(p) exp(ipz − iEt),

(3.2a)


̂D(z,t) ≡ (2π )−1/2
∫

dp[b̂(p) u(p) exp(ipz − iEt)

+ d̂†(p) v(−p) exp(−ipz + iEt)], (3.2b)


̂KG(z,t) ≡ (2π )−1/2
∫

dp[â(p) r(p) exp(ipz − iEt)

+ ĉ†(p) w(−p) exp(−ipz + iEt)]. (3.2c)

where we have introduced the fermionic and bosonic creation
and annihilation operators. The functions that follow the
raising and lowering operators in Eqs. (3.2) have to satisfy
the corresponding equations i∂f/∂t = hf.

Furthermore, we also require the total quantum field
theoretical Hamiltonian, defined from the usual Legendre
transformation as Ĥ = ∫

dz(	φ̇ − L) = −i
∫

dz 	̂h 
̂ to be
bounded from below.

For the Hamiltonian hrS and the corresponding field

̂rS(z,t) given by Eq. (3.2a), the creation and annihilation
operators can be chosen to fulfill either the anticommutator
and commutator relationships, [b̂(p), b̂†(p′)]+ = δ(p − p′) or
[b̂(p), b̂†(p′)]− = δ(p − p′). The spectrum of ĤrS would be
positive in any case, ĤrS = ∫

dpE(p)b̂†(p)b̂(p), so there are
two equivalent second-quantization schemes.

Due to the existence of negative energies, however, only
one of the two schemes is appropriate for hD and hKG. The
spectrum of the Hamiltonian ĤD = ∫

dz 
̂
†
DhD
̂D is only

positive if we choose the operators to fulfill the anticom-
mutation rules, [d̂(p), d̂†(p′)]+ = [b̂(p), b̂†(p′)]+ = δ(p −
p′), while the energies of the corresponding Hamiltonian
ĤKG= ∫

dz 
̂
†
KG σ3hKG 
̂KG are only positive if we choose the

operators to fulfill the commutation rules [â(p), â†(p′)]− =
[ĉ(p), ĉ†(p′)]− = δ(p − p′). This connection between the
symmetry of the Hamiltonian h and the relationship for the
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operator products is an equivalent view of the spin-statistics
theorem [24], according to which bosons (fermions) require
commutators (anticommutators). Note that in our case the
information about the spin has not been explicitly used.

The corresponding two-component spinor coefficients in
Eq. (3.2b) for the Dirac system can be chosen as u(p) ≡ Nu{1,
pc/[c2+ E(p)]} and v(p) ≡ Nv{1,pc/[c2 − E(p)]}, where the
real normalization constant can be found to guarantee that �a

ua(p) ua(p) =�a va(p)va(p) = 1 and �a va(p)ua(p) = 0. Using
the expansion of the 2 × 2 unit operator 1 = u(p)⊗u†(p) +
v(p)⊗v†(p) and the Hamiltonian h(p) = E u(p)⊗u†(p) −
E v(p)⊗v†(p), it also follows that the spinor projectors
simplify to u(p)⊗u†(p) = (1 + hD/E)/2 and v(p)⊗v†(p) =
(1−hD/E)/2, which is helpful for some of the algebra
following.

For the KG system the Hamiltonian hKG is not Her-
mitian. As a result we have to distinguish between left-
and right-hand-side eigenvectors of hKG [25]. The right-
hand-side column eigenvectors are r(p) ≡ Nr [1, −p2/(2c2+
p2+ 2E)] and w(p)≡Nw[1, –p2/(2c2 + p2− 2E)], where
the two normalization constants N can be found from the
orthonormality condition with the corresponding left-hand-
side column eigenvectors, rL(p) ≡ Nr

∗[1, p2/(2c2 + p2 +
2E)] and wL(p) ≡ Nw

∗[1, p2/(2c2+p2 − 2E)]. As for a given
momentum p the unit operator can be decomposed as 1 =
r(p)⊗rL

†(p) + w(p)⊗wL
†(p) and the Hamiltonian as h = E

r(p)⊗rL
†(p)–E w(p)⊗ wL

†(p), it also follows that the spinor
projectors simplify again to r(p)⊗rL

†(p) = (1+hKG/E)/2 and
w(p)⊗wL

†(p) =(1 – hKG/E)/2. Note that because of the
symmetry hKG

† = σ 3hKGσ 3 the pairs in this particular dual
set are related by rL = rσ 3 and wL = −wσ 3.

For the special case of neutral bosons, the particles are
identical to their antiparticles and 
̂KG can be simplified by
replacing ĉ† in the second term in Eq. (3.2c) with −iâ†. This
simplification leads to the symmetry between the two spinor
components 
̂

†
1 = 
̂2, which is also fully consistent with the

reality of the solution of the (original) Klein-Gordon wave
equation, which is second order in time.

When expressed as a function of the lowering and raising
operators in momentum space and after omitting the infinite
constant term, we obtain

ĤrS ≡
∫

dpE(p)b̂†(p) b̂(p), (3.3a)

ĤD ≡
∫

dpE(p)[b̂†(p) b̂(p) + d̂†(p)d̂(p)], (3.3b)

ĤKG ≡
∫

dpE(p)[â†(p)â(p) + ĉ†(p)ĉ(p)]. (3.3c)

Before we continue with our discussion on causality, we
should mention that in deriving Eqs. (3.3b) and (3.3c) we
had to use d̂d̂† = δ(0) − d̂†d̂ and ĉĉ† = δ(0) + ĉ†ĉ for equal
momenta. In each case we omitted the resulting infinite energy
term in Ĥ . In the older literature one sometimes finds an
attempt to associate the infinity in ĤD with a filled negative
energy Dirac sea, but the same infinity occurs also for a
bosonic system ĤKG for which one can hardly invoke any
Pauli exclusion principle or any concepts of negative energy
seas.

B. Quantum field theoretical transition amplitudes
and localization

Let us now use the fields in Eqs. (3.2) to calculate the usual
(2 × 2) transition amplitudes A(z,t) for a particle to move from
location z = 0 to location z within time t:

ArS(z,t) ≡ 〈vac| 
̂rS(z,t) ⊗ 
̂
†
rS(z = 0,t = 0) |vac〉

= (i∂/∂t + hrS)g+(t,z), (3.4a)

AD(z,t) ≡ 〈vac| 
̂D(z,t) ⊗ 
̂
†
D(z = 0,t = 0) |vac〉

= (i∂/∂t + hD)g+(t,z), (3.4b)

AKG(z,t) ≡ 〈vac| 
̂KG(z,t) ⊗ 
̂
†
KG(z = 0,t = 0)σ3 |vac〉

= (i∂/∂t + hKG)g+(t,z). (3.4c)

In evaluating these scalar products we have used 〈vac|vac〉
= 1. If we insert the solutions for the field operators into the
scalar products, we find again the same function g+(t,z) that is
related to the quantum mechanical function defined in terms of
the Bessel functions in Eq. (2.4). We note that none of the three
transition amplitudes vanishes outside the light cone, z > ct. It
has been argued [1] that the fact that particles can propagate
over spacelike intervals should not be used to discuss causality.

One could propose an alternative interpretation and argue
that any nonvanishing transition amplitude Aa,a(z,t = 0) would
indeed indicate a causality violation if the states defined as
|a,z〉 ≡ 
̂

†
a(z,t=0)|vac〉 were actually truly localized at z. It

turns out that the reason for the nonvanishing amplitude for
the rS system is actually quite different than that for the D and
KG systems. For example, in this view only the nonvanishing
probability ArS(z,t) indicates an actual causality violation.
For t = 0 we obtain ArS(z,t=0) = δ(z), in other words, the
two states for z = 0 and z 
= 0 do not have any overlap and
are therefore orthogonal to each other. However, within an
infinitesimal amount of time t 
= 0, we have ArS(z,t) 
= 0 for any
z. This nonvanishing overlap with an, in principle, infinitely
distant state is a clear indication of an “instant” spreading and
therefore a signature of causality violation for ĤrS.

On the other hand, the corresponding two transition
amplitudes AD(z,t = 0) and AKG(z,t = 0) are nonzero already
for t = 0 and z 
= 0. In a quantum mechanical interpretation,
this would reflect the (simultaneous) overlap of two spatially
extended quantum mechanical states, and not necessarily any
causality violation, as the corresponding states for z = 0 and
z 
= 0 overlap already for t = 0. It is not surprising that the
two states continue to overlap also for later times t 
= 0, and
therefore ArS(z,t) 
= 0 for any z cannot be used as a criterion
to judge whether causality is violated or not.

However, the spatial extension of the particle associated
with state |a,z=0〉 is a nontrivial topic by itself. If we
calculate the spatial density for this state from the expec-
tation value of the quantum field theoretical charge density
operator Q̂(z) ≡ �b[
̂†

b(z)
̂b(z) − 
̂b(z)
̂†
b(z)]/2, defined as

〈a,z = 0|Q̂(z)|a,z = 0〉 we would find (see the Appendix)
that this density is also not localized. This lack of localization
is consistent with the observation that the scalar product
Aa,b(z,t=0) ≡ 〈a,z|a,z=0〉 does not vanish for z 
= 0. This
suggests that the two nonorthogonal states |a,z=0〉 and |a,z〉
must have some “overlap” as their corresponding (field
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theoretical) charge densities are not localized in two disjoint
regions.

This quantum mechanical perspective is discussed in more
detail in the Appendix. If we compute the corresponding
quantum mechanical wave functions associated with the
states |a,z=0〉 and |a,z〉 one can show that the quantum
field theoretical scalar product is identical to the quantum
mechanical scalar product, which can be expressed as a spatial
integral over the two wave functions. Due to the relativistic
localization problem discussed in Sec. II, these quantum wave
functions are centered around z and have a spatial width pro-
portional to the inverse Compton wavelength 1/c. As a result,
any two delocalized states overlap, which is then consistent
with the nonvanishing scalar product for 〈a,z|a,z = 0〉.

It is interesting to note that while the wave functions
of the states 
̂

†
D(z,t=0)|vac〉 and 
̂

†
KG(z=0, t=0)σ3|vac〉

are extended in coordinate space, the corresponding states
b̂†(p)u†(p)|vac〉 and â†(p)r†L(p)|vac〉 are sharply localized
in momentum space, i.e., 〈p|p′〉 = δ(p – p′) and suggest a
vanishing overlap.

We might note that the nonvanishing width of the wave
function for the electronic state 
̂

†
a(z,t=0)|vac〉 is associated

with the relativistic localization problem according to which
positive as well as negative energy eigenstates are required to
form a state with an infinitely narrow density. It turns out
that the peculiar field theoretical state defined as |a,Z〉 ≡
[
̂†

a(Z) + 
̂a(Z)]|vac〉 would have the required “localization”
property 〈b,Z|a,Z=0〉 = δ(Z)δa,b. As the transition amplitude
vanishes outside the light cone it could be used to measure
causality at later times. We point out that this is a very
peculiar superposition state of an electron with a positron
where both particles share the same coordinate. As for each
of the three Hamiltonians the overlap integral 〈b,Z|a,Z=0〉 =
δ(Z)δa,b vanishes for t = 0, one could argue that the transition
matrix elements 〈a,Z,t|a,Z = 0,t = 0〉 can actually be used to
characterize causality. In fact, if the states are evolved under
ĤrS, this transition amplitude becomes nonzero outside the
light cone, whereas for ĤD and ĤKG it remains zero.

In the literature [1] one finds statements such as “to
really discuss causality, however, we should ask not whether
particles can propagate over spacelike intervals, but whether a
measurement performed at one point can affect a measurement
at another spacelike point.” A possible causality violation
can then be discussed in terms of the commutativity of
the observables. For example, causality should hold if any
measurement of observable A at location z = 0 should not
affect any measurement of observable B at location z. We
therefore require that the expectation value 〈A B〉 factors into
products of single expectation values for any state, 〈A B〉 =
〈A〉 〈B〉. Any two measurements are independent of each other
if the operators commute, [A,B]− = 0.

We would have to test this equality for any pairs
of quantum field theoretical observables. For the rS
system, any observable is represented by a Hermitian
operator and therefore has to be at least a bilinear com-
bination of the field operator 
̂rS and its Hermitian con-
jugate form 
̂

†
rS. In other words, examining just the sim-

ple commutators of the form [
̂rS(z,t), 
̂rS(z=0,t=0)]− or
[
̂†

rS(z,t), 
̂rS(z=0,t=0)]−, or the relationship between the

field and its conjugate at equal times, [
̂rS(0), 
̂†
rS(0)]−, would

not be helpful.
The test whether the quantum field theoretical observables

for (z,t) and (z=0,t=0) commute with each other outside the
light cone is rather straightforward [2] as any commutator
of the general form [AB,CD]− can be rewritten in terms of
anticommutators as A[B,C]+D−[A,C]+BD + CA[B,D]+–
C[A,D]+B or in terms of commutators as
AC[B,D]− + A[B,C]−D + C[A,D]−B + [A,C]−DB. The
first expression is obviously useful for the fermionic D
system, whereas the second expression can be used for the
bosonic rS and KG systems. For simplicity we can assume
that the operators A, B, C, and D represent the field operators
and their adjoints. For the relativistic Schrödinger system we
obtain [
̂rS(z,t), 
̂†

rS(z=0,t=0)]− = GrS(t,z). This shows that
the rS system is also quantum field theoretically noncausal.
It is consistent with the nonvanishing ArS(z,t) for z > ct. For
the Dirac system, we obtain [
̂b(z,t), 
̂†

a(z=0, t=0)]+ =
(i∂/∂t + hD)a,bg(t,z) and similarly for the KG system,
[
̂b(z,t), (
̂†(z=0, t=0)σ3)a]− = (i∂/∂t+hKG)a,bg(t,z).
Both propagators g(z,t) vanish outside the light cone and
therefore suggest that the D and KG systems are causal.

IV. SUMMARY AND DISCUSSION

The main purpose of the present work was twofold. First, it
quantified the amount of causality violation for the rS system
and showed that it is just a transient effect. Secondly, it pointed
out that the discussions of the relativistic localization problem
of quantum mechanics and causality need to be considered
together.

By comparing causal and noncausal quantum field theories
we critically examined various claims about causality. Using
the rS system as an example, we have shown that contrary to
statements in the literature, quantum field theory cannot be
used to “repair” a theory that is already noncausal in quantum
mechanics [26]. We also provide an alternative view and argue
that the quantum field theoretical transition amplitude between
two states at different times can be used to distinguish between
causal and noncausal systems. For this amplitude to serve as
a useful measure, however, it is necessary that the two states
have a vanishing scalar product initially. By defining a quantum
field theoretical state as a superposition of a particle and its
antiparticle, we have shown that this can be accomplished,
permitting us to distinguish consistently between causality
violating and preserving Hamiltonians based on transition
amplitude outside the light cone.

In this context it is important to point out that from a
quantum mechanical perspective, it seems not possible that the
action of the quantum field operator at z on the vacuum state
can generate a particle whose charge, energy and momentum
densities are sharply localized at z, while at the same time any
two states that are localized in two disjoint regions (z 
= z′)
are not orthogonal to each other. In fact, the corresponding
wave functions are spatially extended while at the same time
they contain a δ-function-like singularity that makes these
states non-normalizable. The nonvanishing scalar products are
directly related to the overlap of the corresponding quantum
mechanical wave functions, which have an infinite extension.
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In this context, both the quantum field theoretical and the
associated quantum mechanical charge densities for identical
states (with positive energy) are not localized. A possible dif-
ference between them could be an argument for considering the
Dirac and the Klein-Gordon equations entirely in a quantum
field theoretical context and not as relativistic extensions of
the Schrödinger equation in quantum mechanics.

The usual resolutions to conceptual problems of relativistic
quantum mechanics such as the Zitterbewegung or the Klein
paradox are based on the fact that quantum field theory can
provide the correct interpretation of negative energy states. In
this work, however, the states 
̂†|vac〉 considered here do not
describe any antiparticles and their wave functions contain no
negative energy states.

We also note that it is nontrivial to discuss cause and
effect in the context of an isolated single particle system.
Studies based on these systems can only be used to address
the question whether a particle can evolve faster than the
speed of light. It has been argued that the independence of
two quantum mechanical measurements of spacelike detectors
could be used to analyze causality. This sequence of arguments
requires the corresponding commutators of the fields or
bilinear combinations of them to vanish outside the light cone.
In our view, to study cause and effect, truly interacting particle
systems should be studied. However, these are very difficult if
carried out on a quantum field theoretical level. For a recent
attempt to explore the quantum field theoretical interaction
between two electrons via force intermediating virtual bosons
with temporal resolution see Ref. [27].

In contrast to many physical properties whose invariance
under time evolution follows directly from underlying sym-
metry properties of the Hamiltonian, it seems to us that
causality cannot be directly associated with such a fundamental
symmetry. As the example studied in this work (and tachyons
[28–30] are just another example), Lorentz invariance by
itself is not the fundamental reason that leads to causality.
It is not clear to us which fundamental property makes
some Hamiltonians causal and others non-causal. In fact,
while a classical particle speed under hsR is less than c, the
quantum mechanical wave packet spreading can exceed c.
In this context we would like to point out again the result
derived by Hegerfeldt [22] about the universality of noncausal
Hamiltonians.

ACKNOWLEDGMENTS

We enjoyed several helpful discussions with S. Bowen,
C. C. Gerry, and E. V. Stefanovich. This work has been
supported by the NSF. We also acknowledge support from
the Research Corporation.

APPENDIX

We focus our discussion here on the Dirac case. All
conclusions are similar for the KG system, even though the
derivations are slightly different due to the different commu-
tators. Any quantum field theoretical state |�〉 that describes
an electron can be mapped onto a corresponding quantum
mechanical two-component wave function [31], defined as
ϕa(z) ≡ 〈vac|
̂a(z)|�〉 for a = 1,2. In fact, all field theoretical

scalar products between two states 〈�′|�〉 can be computed
as ordinary scalar products between the corresponding wave
functions:

〈�′|�〉 =
∑

a

∫
dzϕ′

a(z)∗ ϕa(z). (A1)

This equality can be easily proven if we use that in the
single-electron subspace only the positive energy part of

̂, defined as 
̂(+) [and proportional to b̂(p)], is relevant
for the scalar product 〈vac|
̂a(z)|�〉. We therefore have
〈�′|
̂†

a(z)|vac〉〈vac|
̂a(z)|�〉 = 〈�′|
̂(+)†
a (z)
̂(+)

a (z)|�〉 and
the identity operator can be expressed as∑

a

∫
dz 
̂

(+)†
a (z)
̂(+)

a (z) = 1 in this single-electron space.
As a side issue, we remark that therefore field theoretical

observables 〈�|Ô|�〉 can be computed as ordinary scalar
products from the corresponding wave function, 〈�|Ô|�〉 =∑

a

∫
dz ϕ∗

a (z)oqmϕa(z), if a corresponding quantum mechan-
ical operator acting in coordinate space can be found that
fulfills Ô = ∑

a

∫
dz[
̂(+)†

a (z)oqm 
̂(+)
a (z)]. Furthermore, one

can show that if the time dependence of the field theoretical
state is given by i∂ |�〉/∂t = Ĥ |�〉, then the corresponding
quantum wave function fulfills i∂ϕ(z,t)/∂t = hϕ(z,t), where
Ĥ = ∑

a

∫
dz[
̂†

a(z)h
̂a(z)].
Let us now return to the specific quantum field theoretical

state

|a,z〉 ≡ 
̂†
a(z,t=0)|vac〉, (A2)

which can be written as (2π )−1/2
∫

dp b̂†(p)ua(p)
exp(−ipz)|vac〉. We show first that its quantum field
theoretical charge density defined as

ρqf (z′) ≡
∑

b

1
2 〈a,z|[
̂†

b(z′)
̂b(z′) − 
̂b(z′)
̂†
b(z′)]|a,z〉

(A3)

is not localized at z, in other words we have to show ρqf (z′) 
= 0
if z′ 
= z. This can be easily proven:

ρqf (z′) ≡
∑

b

1
2 〈vac|
̂a(z)[
̂†

b(z′)
̂b(z′)

− 
̂b(z′)
̂†
b(z′)]
̂†

a(z)|vac〉. (A4)

If we use the equal time anticommutator relationships
[
̂b(z′), 
̂†

a(z)]+ = 0 for z′ 
= z and [
̂b(z), 
̂a(z′)]+ = 0, we
can exchange some of the operators and obtain

ρqf (z′) ≡
∑

b

1
2 〈vac|
̂a(z)
̂†

a(z)[
†
b(z′)
̂b(z′)

−
b(z′)
̂†
b(z′)]|vac〉. (A5)

As |vac〉 is not an eigenstate of the charge operator with
eigenvalue zero, we obtain ρqf (z′) 
= 0 for z 
= z′. We mention
that in quantum field theory the state |a,z〉 is also not localized
with respect to its energy and momentum densities, defined as∑

b
1
2 〈a,z|{
̂†

b(z′)[hD
̂(z′)]b − [hD
̂(z′)]b 
̂
†
b(z′)}|a,z〉 and∑

b
1
2 〈a,z| {
̂†

b(z′) p
̂b(z′) − [p
̂b(z′)] 
̂
†
b(z′)}|a,z〉, respec-

tively.
Let us now discuss the quantum mechanical wave function

associated with the state |a,z〉. We obtain ϕb(z′; a,z) ≡
〈vac| 
̂b(z′)|a,z〉 = (2π )−1

∫
dp ub(p) exp[ip(z′ − z)] ua(p)
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FIG. 3. The quantum mechanical charge densities associated with
the quantum field theoretical state |a,0〉 ≡ 
̂†

a(0,t=0)|vac〉 for the
Dirac theory.

〈vac|vac〉. If we use the form of the Dirac spinors ua(p), we
find that ϕb(z′;a,z) is spatially extended as well as highly
singular for z = z′.

In the inset in Fig. 3 we have graphed the momentum depen-
dence of the relevant part of the three integrands u1(p)u1(p),

u2(p)u2(p), and u1(p)u2(p). As for large momentum p each of
the two spinor components of u(p) approaches 1

2 , the resulting
wave function is proportional to the δ function ∼δ(z–z′) for
z close to z′. In other words, this peculiar wave function is
not square-integrable, as

∫
dz′[|ϕ1(z′;a,z)|2 + |ϕ2(z′;a,z)|2] =

∞ for a = 1,2. We also note that the corresponding quantum
mechanical charge densities associated with this state for a =
1 and a = 2 are identical:

ρqm(z′) = |ϕ1(z′; a,z)|2 + |ϕ2(z′; a,z)|2. (A6)

Moreover, the graph of each individual contribution (shown
in the figure) is clearly not spatially localized. In fact, it has
a spatial extension of approximately the electron’s Compton
wavelength 1/c = 0.0073 a.u..

We have discussed in Sec. II that in quantum mechanics
it is not possible for any state with positive-only energy
contributions to be perfectly localized. As a result, the overlap
integral between the wave function for the states ϕb(z′;a,z) and
ϕb(z′;a,z=0) can be nonzero, which is then fully consistent
with the nonvanishing quantum field theoretical amplitude
〈a,z1|a,z2〉 for z1 
= z2 at time t = 0.

[1] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum
Field Theory (Westview, Boulder, CO, 1995), p. 14.

[2] J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill, New York, 1965).

[3] J. H. Eberly, Am. J. Phys. 33, 771 (1965).
[4] See also a nice review in Chap. 8 of H. J. Lipkin, Quantum Me-

chanics, New Approaches to Selected Topics (Dover, Mineola,
NY, 2001).

[5] H. Feshbach and F. Villars, Rev. Mod. Phys. 30, 24 (1958).
[6] W. Greiner, Relativistic Quantum Mechanics, 3rd ed. (Springer,

Berlin, 2000).
[7] A. Wachter, Relativistische Quantenmechanik (Springer, Berlin,

2005).
[8] T. Cheng, M. R. Ware, Q. Su, and R. Grobe, Phys. Rev. A 80,

062105 (2009).
[9] M. Ruf, H. Bauke, and C. H. Keitel, J. Comp. Phys. 228, 9092

(2009).
[10] R. E. Wagner, M. R. Ware, Q. Su, and R. Grobe, Phys. Rev. A

81, 024101 (2010).
[11] R. E. Wagner, M. R. Ware, Q. Su, and R. Grobe, Phys. Rev. A

81, 052104 (2010).
[12] T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).
[13] P. Krekora, Q. Su, and R. Grobe, Phys. Rev. Lett. 93, 043004

(2004).
[14] J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley,

Reading, 1967), p. 119.
[15] F. Schwabl, Quantum Mechanics (Springer, Berlin, 2007).

[16] P. Miloni, The Quantum Vacuum (Academic, San Diego, 1994),
p. 323.

[17] P. Strange, Relativistic Quantum Mechanics (Cambridge Uni-
versity Press, New York, 1998), p. 210.

[18] G. C. Hegerfeldt, Phys. Rev. Lett. 54, 2395 (1985).
[19] T. A. Debs and M. L. G. Redhead, Stud. Hist. Philos. Mod. Phys.

34, 61 (2003).
[20] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and

Products (Academic, New York, 1980), Eq. (3.876).
[21] B. Thaller, The Dirac Equation (Springer, Heidelberg, 1992).
[22] G. C. Hegerfeldt and S. N. M. Ruijsenaars, Phys. Rev. D 22, 377

(1980).
[23] S. Wickramasekara and A. Bohm, J. Phys. A 35, L715

(2002).
[24] I. Duck and E. C. G. Sudarshan, Am. J. Phys. 66, 284 (1998).
[25] P. M. Morse and H. Feshbach, Methods of Theoretical Physics,

Vol. 1 (McGraw-Hill, New York, 1953), Sec. 7.
[26] L. I. Plimak and S. T. Stenholm, e-print arXiv:1104.3818 (2011).
[27] R. E. Wagner, M. R. Ware, B. T. Shields, Q. Su, and R. Grobe,

Phys. Rev. Lett. 106, 023601 (2011).
[28] G. Feinberg, Phys. Rev. 159, 1089 (1967).
[29] O. M. P. Bilaniuk and E. C. G. Sudarshan, Phys. Today 22, 43

(1969).
[30] G. A. Benford, D. L. Book, and W. A. Newcomb, Phys. Rev. D

2, 263 (1970).
[31] S. S. Schweber, An Introduction to Relativistic Quantum Field

Theory (Harper and Row, New York, 1962).

062106-8

http://dx.doi.org/10.1119/1.1970982
http://dx.doi.org/10.1103/RevModPhys.30.24
http://dx.doi.org/10.1103/PhysRevA.80.062105
http://dx.doi.org/10.1103/PhysRevA.80.062105
http://dx.doi.org/10.1016/j.jcp.2009.09.012
http://dx.doi.org/10.1016/j.jcp.2009.09.012
http://dx.doi.org/10.1103/PhysRevA.81.024101
http://dx.doi.org/10.1103/PhysRevA.81.024101
http://dx.doi.org/10.1103/PhysRevA.81.052104
http://dx.doi.org/10.1103/PhysRevA.81.052104
http://dx.doi.org/10.1103/RevModPhys.21.400
http://dx.doi.org/10.1103/PhysRevLett.93.043004
http://dx.doi.org/10.1103/PhysRevLett.93.043004
http://dx.doi.org/10.1103/PhysRevLett.54.2395
http://dx.doi.org/10.1016/S1355-2198(02)00081-3
http://dx.doi.org/10.1016/S1355-2198(02)00081-3
http://dx.doi.org/10.1103/PhysRevD.22.377
http://dx.doi.org/10.1103/PhysRevD.22.377
http://dx.doi.org/10.1088/0305-4470/35/47/105
http://dx.doi.org/10.1088/0305-4470/35/47/105
http://dx.doi.org/10.1119/1.18860
http://arXiv.org/abs/arXiv:1104.3818
http://dx.doi.org/10.1103/PhysRevLett.106.023601
http://dx.doi.org/10.1103/PhysRev.159.1089
http://dx.doi.org/10.1063/1.3035574
http://dx.doi.org/10.1063/1.3035574
http://dx.doi.org/10.1103/PhysRevD.2.263
http://dx.doi.org/10.1103/PhysRevD.2.263

