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We have used a microscopic lattice dynamical model to study phonon modes in germanium~Ge! NC with
size varying between 47 to 7289 atoms (diameter;6.8 nm). By separating these atoms into bulk and surface
atoms we have found that surface modes can exist in Ge NC both at low frequencies (,50 cm21) and at high
frequency (;260 cm21). The latter mode is a resonant mode which occurs in the ‘‘pseudogap’’ between the
acoustic and optical phonon branches in bulk Ge. From the low frequency surface modes we have been able to
reconstruct the spheroidal and torsional Lamb modes which have been used to interpret experimental results.
Finally, we found that the Lamb model starts to deviate from the lattice dynamical results for Ge NC with
diameter,4 nm and breaks down for NC smaller than 3 nm.

DOI: 10.1103/PhysRevB.68.193309 PACS number~s!: 68.35.Ja, 63.22.1m, 81.05.Cy, 78.30.2j

Quantum dots~QD’s! and nanocrystals~NC’s! have re-
ceived great attention in recent years both for their funda-
mental science1 and potential applications. In particular,
when the size of NC is decreased the number of atoms lo-
cated on its surface increases proportionally. These atoms are
subject to forces different from those in the interior of the
NC. As a result, their vibrational frequencies differ from
those of the bulk. Furthermore, their interaction with elec-
trons confined in the NC are also expected to be different
from those of the bulk phonon modes. While the Raman
spectra of Ge NC of different sizes have been reported,2,3

there is no breakdown of the Raman modes into those domi-
nated by surface atoms and those dominated by atoms in the
interior. Typically two features attributed to the formation of
the NC have been noted in the experimental spectra. A ‘‘red-
shift’’ of the zone center optical phonon has been attributed
to the quantum confinement effect.3 In the low frequency
range, Raman modes whose frequencyincreaseswith de-
crease in NC size have been reported2,4,5 and were attributed
to distortion modes of a continuum sphere calculated theo-
retically by Lamb.6 Such continuum models are expected to
breakdown for nm size NC. So far microscopic calculation
of the vibration modes and Raman spectra has been reported
in Ge and other NC. However, the theoretical calculations
have not separated the predicted modes into surface and bulk
modes. In this Brief Report, we have analyzed the ‘‘surface’’
characteristics of phonon modes in Ge NC by comparing the
relative vibration-amplitudes squared~or VAS in the rest of
this article! of atoms located near the NC surface with those
in the interior of the NC. We have also been able to relate the
NC phonon modes to the Lamb modes.

The theoretical model that we have used to investigate
phonon modes in Ge NC is the same valence force field
model ~VFFM! that we have developed in recent years to
calculate phonon modes in semiconductor NC~these have
also been referred to as quantum dots or QD’s in our previ-
ous publications; in this paper we will use the two terms
interchangeably! including complex nanostructures, such as
NC’s containing a core of GaAs surrounding by a shell of

AlAs.7–12 In this model, the change in the total energy of a
NC due to the lattice vibration is described in terms of two
bond stretching and bending parameters:C0 and C1 ~as-
sumed to be equal to 47.2 and 0.845 eV,13 respectively, for
Ge!. To simplify the diagonalization of the dynamical matrix,
we classify the vibration modes according to the point group
symmetry of the atoms in the NC~which is tetrahedral orTd
for Ge!. This simplification allows us to study NC whose
vibrational modes are normally too complex to compute nu-
merically. In the present paper we have studied NC’s con-
taining as many as 7289 Ge atoms~a sphere of diameterd
approximately56.8 nm). All the NC are assumed to have a
stress-free surface.

In Fig. 1 we plot the phonon density of states~PDOS!
after a small Lorentzian broadening for five Ge NC’s with
different numbers (N) of atoms. In this paper we shall define
‘‘surface atoms’’ as those atoms containing at least one dan-
gling bond. Atoms with no dangling bonds are defined as
interior or ‘‘body atoms.’’ For the largest NC (N51147) in
Fig. 1 we noticed that there are two relatively sharp peaks
~around 25 and 37 cm21 and high-lighted by arrows! in the
0 – 100 cm21 frequency range of the PDOS. Two similar
peaks are also observable in theN5873 NC at slightly dif-
ferent frequencies. To determine whether a mode involve
mainly surface atoms or body atoms we have adopted the
following approach. We first calculated the vibration-
amplitude-squared~VAS! for each atom in the NC corre-
sponding to a given eigenmode. We then select the atom with
the maximum VAS ~MVAS! and determine whether this
atom is a surface or body atom. This approach is similar to
the inverse partition ratio method described in Refs. 14 and
15. In case of a surface mode the atom with the MVAS will
be a surface atom and, in addition, the value of its MVAS
will be large. Depending on whether this atom is a body or
surface atom its MVAS are plotted separately in Fig. 2 for Ge
NC containing up to 1147 atoms (d;3.7 nm) as a function
of vibrational frequencies. From these plots it is clear that
modes with the lowest frequencies (,50 cm21) involve
relatively larger motion of surface atoms and, therefore, can
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be classified as surface modes. In the frequency range of 50
to 200 cm21 the phonon modes involve both surface and
body atoms so it is not meaningful to classify them as bulk
or surface modes. The modes in the highest frequency range
(.200 cm21) correspond to the optical phonons in bulk Ge
and involve mostly body atoms. The exception is a mode
around 260 cm21 where surface atoms have relatively large
MVAS. This mode is not strong enough to appear as a sharp
peak in the PDOS in Fig. 1. In other words this surface mode
is really aresonantmode. The reason is because there is no
true gap in the PDOS of bulk Ge in this region between the
acoustic and optical branches. Surface atoms in a NC have at
least one dangling bond which tends to weaken their spring
constants. In bulk crystals a weakening of the spring constant
can result in the appearance of ‘‘gap modes’’ if there is a gap
in the PDOS. In bulk Ge there is only a region of low PDOS
or a ‘‘pseudogap’’ as a result of crystal symmetry and hence
only resonant surface modes exist in Ge NC.

So far, low frequency (;10– 20 cm21) Raman modes
have been reported in spherical NC of Ge,2 CdS,4 and CdSSe
~Ref. 5! embedded in glasses. One characteristic of these low
frequency modes is that their frequencies scaleinverselywith

the diameter (d) of the NC. These experimental results have
typically been interpreted in terms of the vibrations of a ho-
mogenous and spherical elastic body under stress-free
boundary conditions first worked out theoretically by Lamb.6

These vibrational modes can be classified as either spheroi-
dal ~pictured as breathing modes of a sphere5! or torsional
~involve twisting of the sphere!. The frequencies of these
modes are quantized and depend on two integers: a branch
numbern and the angular momentuml . For brevity, we shall
denote the Lamb modes withn and l as (n,l ). The torsional
mode frequencies depend on the transverse acoustic phonon
velocity (v t) while the spheroidal mode frequencies depend
on both the longitudinal acoustic phonon velocity (v l) and
v t . In Ge NC withd513 nm Ovsyuket al.2 have observed
two Raman modes with frequencies of 10.2 and 7.3 cm21

which they interpreted as due, respectively, to the spheriodal
and torsional modes of Ge spheres. The frequencies of such
modes~in cm21) calculated according to the Lamb theory
are f s50.7 (v l /dc) ~where c is the speed of light in
vacuum! and f t50.85 (v t /dc), respectively. From the ex-
perimental frequencies, Ovsyuket al.2 determined the ratio
of v l /v t51.67 in Ge. By averaging the acoustic phonon ve-
locities in bulk Ge over several high symmetry directions,
they obtained the values ofv l55.253105 cm/s and v t
53.253105 cm/s leading to a ratio ofv l /v t51.62, in good
agreement with their Raman result.

To extract the frequencies of Lamb modes from our mi-
croscopic calculation for comparison with experiment, we

FIG. 1. Phonon density-of-states of Ge nanocrystals~NC! with
varying number of atoms. The largest NC with 1147 atoms has an
approximate diameter of 3.7 nm. The two vertical arrows indicate
the surface modes that remain visible even as the NC size becomes
larger.

FIG. 2. Surface and body atoms with the maximum-value-of-
amplitude-squared~MVAS! in Ge NC with total number of atoms
N51147, 873, 179, and 47 atoms with their MVAS plotted as a
function of the mode frequency.
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first calculate the displacement pattern for the Lamb modes
with: n50 and different values ofl . To determine their fre-
quencies, we project the atomic displacements of the NC
eigenmodes from our lattice dynamical calculation along the
Lamb mode vectors. After that we sum over the displace-
ment amplitudes projections and then square the sum. In this
calculation we can either include only lattice modes of a
particular symmetry or modes of all symmetries. Although
the Lamb modes are defined for a system with spherical
symmetry, the contributions to a particular Lamb mode are
sometimes dominated by lattice modes of a particular sym-
metry. The results obtained in this way for then50 and l
53 torsional Lamb mode are shown in Fig. 3 for NC with
two different sizes. As can be seen from Fig. 3, thel 53
torsional modes are dominated by theT2 symmetry lattice
modes. The contributions of lattice modes of other symme-
tries are many orders of magnitude smaller than that ofT2
symmetry. We find also that the low frequency regions of the
plots ~with T2 symmetry! in Fig. 3 become dominated by
only one peak asN becomes larger. If we repeat the calcu-
lation for torional modes with different values ofl ~while
keepingn50) we find there is usually a low frequency peak
which dominates the plot but the strength of these lowest
frequency peaks is largest forl 53. Thus the frequency of the

experimentally observed torsional Lamb mode can be attrib-
uted mainly to that of then50 andl 53 mode. Furthermore,
this frequency can be deduced from a plot of the lattice
modes withT2 symmetry, such as those shown in Fig. 3. We
have also performed similar computations for the Lamb
spheroidal modes. In this case the strongest contribution
comes from then50 and l 50 mode. A projection of the
lattice mode onto this Lamb spheroidal mode shows that it is
dominated by lattice modes ofA1 symmetry.

From our calculations described above we have obtained
the variations in the frequencies of the strongest Lamb sphe-
roidal mode~0,0! and torsional mode~0,3! with the size of
the NC ~see open squares and circles and the solid lines
drawn through them in Fig. 4! for comparison with experi-
ment. The crosses in Fig. 4 indicate thed513 nm Ge NC
results of Ovsyuket al.2 From our calculation we predict
that, for d513 nm, the frequencies of the~0,0! spheroidal
and ~0,3! torsional modes are equal to 10.0 and 4.8 cm21,
respectively. The value of the spheroidal mode is in good
agreement with the experimental value. The value of the tor-
sional mode is too small compared with the experimental
value of 7.3 cm21. The reason for this discrepancy is that
our force constants have been chosen to fit the zone-edge
acoustic phonon frequencies.13 We expect that agreement be-
tween theory and experiment will be improved if we choose
a different set of values forC0 andC1 ~equal to and 47.7 and
2.8 eV, respectively! which have been obtained by fitting the
elastic constants.13 The Lamb modes frequencies calculated
with this alternate set of force constants are shown in Fig. 4
as broken lines. From these curves we obtained the Lamb
spheroidal and torsional mode frequencies ford513 nm
spheres to be 10.2 and 8.3 cm21, respectively. We note that

FIG. 3. The square of the sum of the projection of atomic dis-
placements of lattice modes of different symmetries of theTd group
along the eigenvector of then50, l 53 torsional Lamb mode plot-
ted as a function of the lattice mode frequency for nanocrystals of
two different numbers (N) of Ge atoms.

FIG. 4. The NC size dependence of the theoretical frequencies
of the Lamb~0,0! spheroidal and~0,3! torsional modes~open square
and circles, respectively! with the largest strength deduced from
plots similar to those in Fig. 3~using the force constantsC0

547.2 eV andC150.845 eV). The solid lines are least square fits
to the theoretical points. The broken lines were obtained by repeat-
ing the calculation with an alternate set of force constantsC0

547.7 eV andC152.8 eV. The crosses represent the mode fre-
quencies measured by Ovsyuket al. ~Ref. 2! in NC with diameter
of 13 nm.
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the good agreement between theory and experiment is pre-
served for the spheroidal mode while the discrepancy be-
tween theory and experiment for the torsional mode is
greatly reduced.

For NC with N,;800 ~or d,3 nm) we found that the
projection of the lattice modes onto the Lamb modes no
longer produce sharp peaks similar to the Lamb modes.
However, one should not confuse these peaks in the PDOS
with the Lamb modes. While the Lamb mode frequencies
depend on the sphere size, the frequencies of the surface
lattice modes are independent of the NC size and do not
scale as (1/d). This result indicates that the Lamb model is
no longer valid for such small NC but in stead discrete sur-
face lattice modes dominate the low frequency region of the
PDOS.

In summary, we have applied a microscopic VFFM to
investigate theoretically the phonon properties of Ge NC as a
function of their size. We have identified both high frequency

resonant surface mode and low frequency surface modes. In
the larger NC these latter surface modes of specific symme-
try contribute predominantly to the Lamb spheroidal and tor-
sional modes of a continuum sphere. Our calculated Lamb
modes frequencies are in good agreement with available ex-
perimental data in Ge. We also show that the Lamb model
starts to break down for Ge NC with diameter smaller than 4
nm.
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