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Research Article

Vignon Oussa
Sampling and interpolation on some nilpotent Lie groups

Abstract: Let N be a non-commutative, simply connected, connected, two-step nilpotent Lie group with
Lie algebra n such that n =a® b e}, [a,b] C 3, the algebras a, b, ; are abelian, a = R-span{X,, X,,..., X},
and b = R-span{Y},Y,,...,Y,}. Also, we assume that det[[X,Y;]],; ;s is @ non-vanishing homogeneous
polynomial in the unknowns Z,,...,Z,_,; where {Z,,...,Z,_,,} is a basis for the center of the Lie algebra.
Using well-known facts from time-frequency analysis, we provide some precise sufficient conditions for the
existence of sampling spaces with the interpolation property, with respect to some discrete subset of N. The
result obtained in this work can be seen as a direct application of time-frequency analysis to the theory of
nilpotent Lie groups. Several explicit examples are computed. This work is a generalization of recent results
obtained for the Heisenberg group by Currey and Mayeli in [3].
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1 Introduction

Let N be a locally compact group, and let T be a discrete subset of N. Let H be a left-invariant closed subspace
of L?(N) consisting of continuous functions. We call H a sampling space ([4, Section 2.6]) with respect to T
(or T-sampling space) if the following properties hold.

(1) The restriction mapping Ry : H — I*(T), Ry f = (f (y))yer is an isometry.

(2) There exists a vector § € H such that for any vector f € H, we have the following expansion:

f) =Y fSyx)

yer
with convergence in the norm of H.
The vector S is called a sinc-type function, and if R; is surjective, we say that the sampling space H has the
interpolation property.
The simplest example of a sampling space with interpolation property over a nilpotent Lie group is
provided by the well-known Whittaker, Shannon, Kotel’'nikov Theorem (see [4, Example 2.52]) which we recall
here. Let C(R) be the vector space of complex-valued continuous functions on the real line, and let

H={f e L*(R)nC(R) : supp f < [-0.5,0.5]},

where f — f is the Fourier transform of f and is defined as f(&) = J]R f(x)e ™ dx whenever f € L'(R).
Then H is a sampling space which has the interpolation property with associated sinc-type function

sin 7rx if +0,
S(x) — X X
1 ifx =0.

To the best of our knowledge, the first example of a sampling space with interpolation property on a non-
commutative nilpotent Lie group, using the Plancherel transform was defined over the three-dimensional
Heisenberg Lie group. This example is due to a remarkable result of Currey and Mayeli [3]. The specific
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definition of bandlimited spaces by the Plancherel transform used in [3], was taken from [4, Chapter 6],
where a very precise characterization of sampling spaces over the Heisenberg group was provided. Moreover,
sampling spaces using a similar definition of bandlimitation were studied in [6] and [7] for a class of nilpotent
Lie groups which contains the Heisenberg Lie groups. This class of groups was first introduced by the author
in [6]. However, nothing was said about the interpolation property of the sampling spaces described in [6].
In fact, the question of existence of sampling spaces with interpolation property on some non-commutative
nilpotent Lie groups is a challenging problem which is the central focus of this paper.

Let N be a simply connected, connected, two-step nilpotent Lie group with Lie algebra n of dimension »
satisfying the following conditions.

Condition 1.1. Assume thatn = a®b®3, where [a, b] € 3a, b, 3 are abelian algebras such that, ford > 1,n > 2d,
a = R-span{X;, X,,..., X },

b = R-span{Y,,Y,,...,Y,},
3 =R-span{Z,,Z,,..., Z, 4}

and
[Xle] [XlaYz] [X1>Yd]
[XZ) Yl] [sz Yz] [XzaYd]
det . . . (1.1
(Xa Y1l [Xp Yol oo [Xg Yyl
is a non-vanishing homogeneous polynomial in the unknowns Z,, ..., Z,_,,.

We remark that the entries of the matrix [[X;, Y;]],; ;<4 are linear combinations of a basis of the commutator
ideal of [n,n] which can be taken to be a subset of {Z,,Z,,...,Z,_,;}. The object described in (1.1) is then
obtained by formally computing the determinant in the unknowns Z,, ..., Z,_,;. Also, given a Lie algebra n
which satisfies all assumptions in Condition 1.1, it is worth mentioning that since we require n — 2d to be
positive, we have dim 3 = n — 2d > 1 and n must necessarily be non-abelian.

One very appealing fact about these groups is the following. The infinite-dimensional irreducible
representations of any group satisfying the conditions given above are related to the well-known Schrédinger
representations [6, 7]. Thus, the advantage of working with this class of groups is that we are able to exploit
well-known theorems from time-frequency analysis.

Let N be a nilpotent Lie group satisfying Condition 1.1. We deal with the existence of left-invariant
subspaces of L?(N) which are sampling spaces which have the interpolation property. More precisely, we
investigate conditions under which sampling provides an orthonormal basis which is generated by shifting
a single function. The work presented here provides a natural generalization of recent results obtained for
the Heisenberg group in [3]. We offer precise and explicit sufficient conditions for sampling spaces, which
also have the interpolation property with respect to some discrete set ' ¢ N.

We organize this paper as follows. The second section deals with some preliminary results which can be
found in [2, 6, 7]. In the third section, we introduce a natural notion of bandlimitation for the class of groups
considered, and we state the main results (Theorem 3.2 and Theorem 3.3) of the paper. In the fourth section,
we prove results related to sampling and frames for the class of groups considered here. The results obtained
in the fourth section are crucial for the proofs of Theorem 3.2 and Theorem 3.3 which are provided in the last
section. Finally, explicit examples are computed.

2 Preliminaries

Let us start by setting up some notation. In this paper, all representations are strongly continuous and unitary,
unless we state otherwise. All sets are measurable, and given two equivalent unitary representations = and 7,
we write 7 = 7. We also use the same notation for isomorphic Hilbert spaces. The characteristic function of
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a set Eis written as yg, and the cardinal number of a set I is denoted by card(I). Further, V* stands for the dual
vector space of a vector space of V. Let v be a vector in R”. Then v" stands for the transpose of the vector v.
The Fourier transform of a suitable function f defined over a commutative domain is written as f, and the
conjugate of a complex number z is denoted z. The general linear group of R” is denoted GL,,(R). Let v, w be
two vectors in some Hilbert space. We write v L w to denote that the vectors are orthogonal to each other with
respect to the inner product which the given Hilbert space is endowed with.

Now, we will provide a short introduction to the theory of direct integrals which is also nicely exposed
in [4, Section 3.3]. Let {H,},. 4 be a family of separable Hilbert spaces indexed by a set A. Let 4 be a measure
defined in A. We define the direct integral of this family of Hilbert spaces with respect to u as the space which
consists of functions f defined on the parameter space A such that f(«) is an element of H, for each « € A,
and

[ 1@, dute) < o

A
with some additional measurability conditions which we will clarify. A family of separable Hilbert spaces
{H,}4ca indexed by a Borel set A is called a field of Hilbert spaces over A. Next, a map

fiA—> U H, suchthat f(«) € H,

a€A
is called a vector field on A. A measurable field of Hilbert spaces over the indexing set A is a field of Hilbert
spaces {H,},c4 together with a countable set {e;}; of vector fields such that
(i) the functions « (ej(a), ex(a))py are measurable for all j, k,
(ii) the linear span of {e;(«)}, is dense in H, for each « € A.

The direct integral of the spaces H, with respect to the measure y is denoted by

TH‘,‘ dp(x)
A

and is the space of measurable vector fields f on A such that

[ V@i, dut < .

A

The inner product for this Hilbert space is naturally obtained as follows. For f, g € jj H, du(a),

(f.9) = [ (@, gl duteo.
A
This theory of direct integrals will play an important role in the definition of bandlimited spaces in our work.
Let N be a non-commutative connected, simply connected nilpotent Lie group with Lie algebra n over
the reals with some additional assumptions described in Condition 1.1.
Notice that if n is the three-dimensional Heisenberg Lie algebra which is spanned by vectors X, Y, Z such
that [X, Y] = Z, then we may define

a=RX, b=RY and j;=RZ

Although this is trivial, we make the following observation: det[X, Y] = Z is a non-vanishing homogeneous
polynomial in the variable Z. Therefore, the class of groups satisfying the conditions described above con-
tains groups which can be seen as some generalization of the Heisenberg Lie groups. Let

B ={T,,Ty...,T,}

be a basis for the Lie algebra n. We say that B is a strong Malcev basis (see [2, p.10]) if and only if for each
1 < j < ntherealspanof{T},T,,...,T;}isanideal of n. For the class of groups considered in this work, in order
to obtain a strong Malcev basis, it suffices to define Z, = T} if 1 <k <n-2d. Next,ifn-2d+1<k<n-d,
then k =n—2d + j for some j € {1,2,...,d} and Ty, = Y;. Finally, if n—d + 1 <k <n, then k=n-d + j for
j€{1,2,...,d} and in this case Tj = X;. Fixing such a strong Malcev basis of the Lie algebra n, a typical
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element of the Lie group N is written as follows:
n-2d d d
exp( Z Zka> exp(z kak> exp(Z kak>.
k=1 k=1 k=1
n-2d
exp( ]RZk)
k=1

is the center of the Lie group N and the subgroup

n-2d d
exp( z ]RZk)exp< ]RYk>

k=1 k=1

The subgroup

is a maximal normal abelian subgroup of N. Moreover, N is a step-two nilpotent Lie group since the
commutator ideal [n,n] is central. Let us now collect some additional basic facts about groups satisfying
Condition 1.1.

Proposition 2.1. Let N be a nilpotent Lie group satisfying the conditions given above. There is a finite dimen-
sional faithful representation of N in GL(n + 1, R) for n > 3.

Proof. Clearlyifn < 3, then n must be abelian. Thus, we must assume thatn > 3. First, letn, = adbe(30[n, n])
and n, = [n,n] € 3 such that n = n, ® n,. Let « be a positive real number. Next, we define an element A, in
the outer derivation of n acting by a diagonalizable action such that [A,,U] = In(«)U for all U € n, and
[A,, Z] = 2In(«)Z for all Z € n,. Using the Jacobi identity, it is fairly easy to see that indeed A, defines
a derivation. Next, we consider the linear adjoint representation of g = n ® RA, ad : g — gl(g) and we define
G = exp(ad(g)) which is a subgroup of GL(g). Fixing a strong Malcev basis for the Lie algebra n, the adjoint
representation of G acting on the vector space g is a faithful representation. Thus, G = exp(ad(g)) is a Lie
subgroup of GL(g) = GL(n + 1, R). Since N is isomorphic to exp(ad(n @ {0})), it follows that exp(ad(n ® {0})) is
an isomorphic copy of the Lie group N inside GL(n + 1, R). O

Next, in order to make this paper self-contained, we will revisit the Plancherel theory for the class of groups
considered in this paper. We start by fixing a strong Malcev basis for the Lie algebra of n. The exponential
function takes the Lebesgue measure on n to a left Haar measure on N (see [2, Theorem 1.2.10]). Since N
is a nilpotent Lie group, according to the orbit method (see [2]) all irreducible representations of N are
parametrized by the coadjoint orbit of N in n*, and it is possible to construct a smooth cross-section X in
a Zariski open subset Q of n* which is dense and N-invariant such that = meets every coadjoint orbit in Q
at exactly one point. Let P be the Plancherel transform on L?(N) and let F be the Fourier transform defined
on L*(N) n L'(N) by
W) = [ Fomm dn
N

where {mr) : A € X} parametrizes up to a null set the unitary dual of N. In fact, the set X can be chosen such that
foreach A € %, the corresponding irreducible representation , is realized as acting in the Hilbert space L* (RY)
where d is half of the dimension of the coadjoint orbit of A. Next, it is well known that

P IA(N) — J 2R ® LX(RY) du(d)
z

such that the Plancherel transform is the extension of the Fourier transform to L?(N) inducing the equality
1f 1720 = J IPCHMNE s dud).
z

We recall that || - |45 denotes the Hilbert-Schmidt norm on L*(R?) ® L*(R%) and that the Hilbert space tensor
product LX(R?) ® L*(RY) is defined as the space of bounded linear operators T : LX(R%) — L*(R%) such that

2
ITllscs = D ITeel7z e
kel
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where (e, )., is an orthonormal basis of L*(R?). Given arbitrary S, T € L*(R?) ® L*(R?), the inner product of
the operators S and T is

(S, T>g.f5 = z (Sek, Tek>L2(]Rd)'
kel

Also, it is useful to observe that the inner product of arbitrary rank-one operators in LX(RY) ® L*(RY) is given
by
UV, W Y)gs = (U W) r2rey (Vs ¥) 12 (R

Let A be a linear functional in n*. Put

Ak = A,(Zk)
Treating the A, as unknowns, we define
/\[Xle] /\[Xde]
B(A) = : .. : (21)
AMXg Yl - AlXy Yyl
which is a square matrix of order d. The entries in B(1) are linear combinations of the unknowns A,,...,4,_,;.
Computing the determinant of the matrix B(A), we obtain a polynomial in the unknowns A,,...,4,_,,.
Thus, det[[X;, Y]] <; j<q is @ non-vanishing homogeneous polynomial in the unknowns Z,,...,Z,_,, if and

only if det B(1) is non-vanishing homogeneous polynomial in the unknowns A,,...,A,_,;. Therefore, if the
assumptions of Conditions 1.1 are met, then for A € n*, det(B(1)) is a non-vanishing polynomials in the
unknowns A,,...,A,_,;.

Proposition 2.2. Letn be a Lie algebra over R satisfying Condition 1.1 and let L be the left regular representation
of the group N.
o The unitary dual of N is parametrized by the smooth manifold

T={den :det(BA) # 0, A(X,) =+ = M(X,) = MY,) = -+ = A(Y,,) = 0}

which is naturally identified with a Zariski open subset of 3*.
o Let dA be the Lebesgue measure on X. The Plancherel measure for the group N is supported on X and is
equal to
du()) = |det(B(A))|dA. (2.2

«  The unitary dual of N which we denote by N is up to a null set equal to {rr, : A € =} where each representa-
tion m, is realized as acting in L*(R?) such that

n-2d 2d
ﬂ,\<exp< Z z,Zi>)f(t) = MMEE ziZi)f(t),

i=1
d
7T,\<exp Zini)>f(t) _ 2B £y

i=1

d

f

nA<exp( x,~X,~>) (t) = f(t-x),
i=1

where y = (y;,..., y)", and x = (xy,...,x,).

o We have
53]

L=PoLoP = J'n)L ® Lps gty du(1)
)

and 1} gay IS the identity operator on L*(R?). Moreover for A € 3, we have

PUL)P)A) = my(x) ° (PH)(A).

The results in the proposition above are some facts, which are well known in the theory of harmonic analysis
of nilpotent Lie groups. See [6], where we specialized to the class of groups considered here. For general
nilpotent Lie groups, we refer the interested reader to [2, Section 4.3] which contains a complete presentation
of the Plancherel theory of nilpotent Lie groups.
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We will now provide a few examples of Lie groups satisfying Condition 1.1.

Example 2.3. Let N be a nilpotent Lie group with Lie algebra n spanned by the strong Malcev basis Z,, Z,,
Y,,Y,, X, X, with non-trivial Lie brackets

[Xp Yl] = Z]» [sz Y]] = _Zzy
[Xl, Yz] = Zzy [Xzs Yz] = Z]-

Clearly, N satisfies all properties described in Condition 1.1 and

Z Z
det([[X,-, Yj]]]gi,jgz) = det [_Zl ZZ] = Z? + Z;.
2 1

Applying Proposition 2.1, we define the monomorphism  : N — GL,(RR) such that for
p =exp(z,Z,) exp(z,Z,) exp(y,Y;) exp(»,Y,) exp(x, X ) exp(x,X,),

the image of p under the representation  is the following matrix:

X, X -n Y, 27
X, X —Y, N 2z

1 0
0 1

00 1 0 0 0 y
00 0 1 0 0
00 0 0 1 0 x
00 0 0 0 1 x
00 0 0 0 0 1

Next, referring to Proposition 2.2, the Plancherel measure is supported on the manifold
T={len" 1 MZ)’ +MZ,)" #0, MY;) =0, MX;) =0for1<j<3}
and the Plancherel measure is |12 + A3| dA,d), where 1, = A(Z,).

The following example exhausts all elements in the class of groups considered in this paper.

Example 2.4. Fix two natural numbers n and d such that n—2d > 0. Let M be a matrix of order d with
entriesinRZ, & --- @ RZ,_,; such that det(M) is a non-vanishing homogeneous polynomial in the unknowns
Z1,Zy, > Zyq-Nowleta = R-span{X;,..., X tand b = R-span{Y,..., Y} suchthat [X;,Y;] = M; ;and M; ;
is the entry of M located at the intersection of the i-th row and j-th column. The Lie algebra

n=adobe(RZ, &---eRZ,_,,)
satisfies all properties given in Condition 1.1.
Now, we define
[y =exp(ZY, +---+ ZYy), Ty=exp(ZX,+ - +ZX,), T,=exp(ZZ,+---+7ZZ, ;)

and
I'=T,T,I, cN. (23

Then T is a discrete subset of N which is not generally a subgroup of N.

3 Overview of main results

In this section, we will present an overview of the main results. In order to do so, we will need a few important
definitions.



DE GRUYTER V. Oussa, Sampling and interpolation on some nilpotent Lie groups =—— 261

Definition 3.1. We say a function f € L*(N) is bandlimited if its Plancherel transform is supported on
a bounded measurable subset of X. Fix a measurable field of unit vectors e ={e,},.; where e, € L*(R%).
We say a Hilbert space is a multiplicity-free left-invariant subspace of L*(N) if

D

H(e) = ?‘I(J L*(RY) @ e, d,u()t)).
z

We observe here that the Hilbert space P(H(e)) is naturally identified with L*(Z x RY). Next, we define
E={) €3 :|det B(A)| # 0 and |det B(1)| < 1}. (ER))

It is easy to see that E is the intersection of a Zariski open subset of 3* and a closed subset of 3*. Also, E is not
bounded in general and E is necessarily a set of positive Lebesgue measure on 3*. In order to develop a theory
of bandlimitation, we will need to consider some bounded subset of E.
For any given bounded set A c X, we define the corresponding multiplicity-free, bandlimited, left-
invariant Hilbert subspace H(e, A) as follows:
2]
H(e, A) = ?‘I(I L*(RY) ® e,lldetB()L)IdA). 3.2)

A

To be more precise, for any ¢ € H(e, A), there exists a measurable field of vectors {wf} AeAs wf e L*(RY), such
that
wf ®e, ifAdeA,

Po(A) =
A {0 ifA ¢ A

Let ¢ € H(e, A) and define the linear map W, H(e, A) — L*(N) such that W¢1//(x) = (y, L(x)¢). It is easy to
see that the space W¢(H(e, A)) is a subspace of L?(N) which consists of continuous functions.
Let:: R"2¥ — ;* be a map defined by

n—2d

s = Y MZg
k=1

where {Z; : 1 < k < n - 2d} is the dual basis of 3* which is associated to {Z, : 1 < k < n — 2d} which is a fixed
basis for the central ideal 3. Clearly, « is a measurable bijection. Identifying R">? with 3* via the map 1, we
slightly abuse notation when we say 3* = R" 2%, In order to make a simpler presentation, we will adopt this
abuse of notation for the remainder of the paper. Now, let C ¢ 3* = R" " be a bounded set such that

{eZHi(k,/\)XC(/\) ke Zn—Zd}

is a Parseval frame for L*(C, d). For example, it suffices to pick C < I such that the collection {I+k : k € 7"
forms a measurable partition of R*">* = 3*. Our main results are summarized as follows.

Theorem 3.2. Let N be a connected, simply connected nilpotent Lie group satisfying Condition 1.1. Then
there exists some ¢ € H(e, E n C) such that Wy(H(e,ENC)) is a [-sampling subspace of L*(N) with sinc-type
function W¢(¢>). Moreover, W¢(H(e, E n C)) does not generally have the interpolation property with respect to I

Now, let N be a nilpotent Lie group which satisfies all properties described in Condition 1.1 such that
additionally, there exist a strong Malcev basis for the Lie algebra n, and a compact subset R of 3* such
thatforE = ENR,

Jldet B(A)|dA = 1.

B
Since E’ is a subset of E, for each A € E° there exists (see Remark 4.5) a corresponding set E(A) which tiles R?
by Z? and packs R? by B(A)"*Z“. Fix a fundamental domain A for the lattice "> such that

E=J(A-x)nE)

kjeS
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where § is a finite subset of Z">? and each (A — ;) NE’ is a set of positive Lebesgue measure on R,
For A € X, we define the map A — u, on X such that

det B(L)|/? ifAeFE,
u, = J14etBOI xmqy  1EA € 33)
0 ifA ¢ E,
and ¢ € L*(N) such that
u, ®e
PH(\) = —2—A (3.4)
¢ /|det B

Theorem 3.3. If for each 1< j,j' < card(S), j# j, for A € A, for arbitrary functions f,g € L*(RY), and for
distinctkj,x; € S one has

(1 ()0 e, L (8 T, ()W D, err,

then W¢(H(e, E")) is a I-sampling space with sinc-type function W¢(</>). Moreover, W¢(H(e, E’)) has the interpo-
lation property.

The proofs of Theorem 3.2 and Theorem 3.3 will be given in the last section of this paper.

4 Results on frames and orthonormal bases

We will need to be familiar with the theory of frames (see [1, 5, 8]). Given a countable sequence { f;},.; of vectors
in a Hilbert space H, we say { f;},; forms a frame if and only if there exist strictly positive real numbers A, B
such that for any vector f € H,

AIFI* < Y KL 1P < BIFIE.

i€l

In the case where A = B, the sequence of vectors {f;};.; forms what is called a tight frame, and if A = B =1,
{f:}ier is called a Parseval frame because it satisfies the Parseval equality

Y KL P =1fI? forall f e H.

i€l
Also, if {f;};c; is a Parseval frame such that | f;|| = 1 for all i € I, then {f;},; is an orthonormal basis for H.

Let & = AZ* for some matrix A. We say E is a full-rank lattice if A is non-singular. We say a lattice is

separable if & = AZ® x BZ®. A fundamental domain D for a lattice in R is a measurable set which satisfies
the following: (D + 1) N (D +I') # 0 for distinct /, I’ in 8, and R = Uies(D +1). We say D is a packing set for 2
if (D +1)n (D +1') has Lebesgue measure zero for any I # I. Let £ = AZ? x BZ* be a full-rank lattice in R*
and f € L*(R?). The family of functions in L*(R%)

S(f, AZ* x BZ?) = {2 * f(x —n) : k € BZ?, n € AZ") (4.1)

is called a Gabor system. Gabor frames are a particular type of frame whose elements are generated by
time-frequency shifts of a single vector. A Gabor system which is a Parseval frame is called a Gabor Parseval
frame. Let r be a natural number. Let £ = AZ" be a full-rank lattice in R". The volume of E is defined as

vol(E) = |det A,
and the density of the lattice 2 is defined as d(8) = |det A| ™.

Lemma 4.1 (Density condition). Let & = AZ? x BZ* be a full-rank lattice in R**. There exists f € L*(R?) such
that §(f, AZ% x BZ%) isa Parseval frame in LX(R%) if and only if vol(E) = |det Adet B| < 1.

A proof of Lemma 4.1 is given in [5, Theorem 3.3].

Lemma 4.2. Let E be a full-rank lattice in R*. There exists fe L*(R?) such that §( f, B)is an orthonormal basis
if and only if vol(8) = 1. Also, if §(f, E) is a Parseval frame for L*(R?), then | f|* = vol(E).
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Lemma 4.2 is due to Theorem 1.3 and the proof of Lemma 3.2 is given in [5]. Next, from the definition of the
irreducible representations of N, provided in Proposition 2.2, it is easy to see that for f € LA(RY), (L) f
is a Gabor system for each fixed A € . Moreover, following the notation given in (4.1), we write

m,(T,LL) f = G(f, 2% x BAW)ZY).
We recall that the set C satisfies the following conditions: C ¢ ;* = R" % is a bounded set such that the system
(RN (V) sk e 2
is a Parseval frame for L*(C, d)). Also, we recall that
E={Ae;" :|detB(A)| # 0 and |det B(A)| < 1}.
Therefore, {e¥™*" y. (1) : k € Z"*%} is a Parseval frame for the Hilbert space L*(E n C, dA).
Lemma 4.3. There exists a function ¢ € H(e, E N C) such that L(T')¢ is a Parseval frame in H(e, E N C).

Proof. We know that by the Density Condition (see Lemma 4.1), for A € E n C, there exists a rank-one operator

T, = u, ® e, such that
T
PP(A) = —2 | (4.2)
s /|det B(A)|

and the system G(u,, 7% x B(A\)Z%) is a Gabor Parseval frame in L*(R). Next, given any vectory € H(e,ENn C),
we obtain that

1 Lol = X | | @ym) - P60hscs dutt)

yel yer ENC

2

2

- J (Py (L), m,(y)(|det BA)*uy) ® €))5cs|det B(A)| dA

EnC

2
-y j (Py), 7, () ® € )ocsldet B2 d/\’ . 43)

EnC

Using the fact that {e*™*" y. (1) : k € Z"*%} is a Parseval frame for L*(E n C,dA), and letting
£(1) = (PyL), 1, (y,)w,, ® €)) 5¢sldet B2, (4.4)

we obtain

) 2
Y1 Lol = Y Y je*m%mm) da

yel 11€lela mezr—24 " g2

= Y ) [fmfdr

V1€ Ty mezr—24

T2
= ) g

Ylerh ra
2
= z "f”LZ(EnC,d/\)'
Ylerh ra
The last equality above is due to the Plancherel Theorem on I*(Z">?). Using (4.4), letting Py(1) = w! ®¢,,

where w! = w, € L*(R%), and coming back to (4.3), it follows that

2
Y 1 L nesnol = Y| [ Pym i © e ssldet B dr

yel yel ENC

Y [(wy ® ey, 77, (1)1 ® €, ) gcs]°|det B(A)| dA
YIEFbrn ENC

Y [(wy ® ey, my (1)), ® €))gcs | [det B()| dA

€Ty T,

EnCc N

- Y KW ()W) ey [det B(L)| dA.
ENC ylerhrn
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Since 7, (T, I, )u, is a Parseval Gabor frame for each fixed A €e En C,

2 2
Z |<w/\’ ﬂA(YI)u/\>LZ(]Rd)| = ”w/\"LZ(]Rd)’
Ylerb ra

we have
> Ky L)) e = j 1wy 172 ey |det BQL)| dA = j 1Py (M) I5csIdet B dA = [1¥lliye pncy-
yer ENC ENC
Finally, we obtain that L(I')¢ is a Parseval frame in H(e, E N C). O

Lemma 4.4. If L(T)¢ is a Parseval frame in H(e, E N C) as described in Lemma 4.3 and if

j \det B[ dA = 1,
ENC
then L(I')¢ is an orthonormal basis.

Proof. Recall from Lemma 4.3 thatfor A € En C,

PP(A) = |det BA)| ", ® €,
such that G(u,, 7% x B(L)Z%) is a Gabor Parseval frame in L*(R%). Referring to [5, proof of Theorem 1.3], we
have "“/\"iZ(Rd) = |det B(1)| for A € En C. Now,

181 ey = j [PV s |det B dA

ENC
- J lidet B ™ u, ® ;|5 |det BA)| dA
ENC
- J luy ® e, s dA
ENC
_ J a2 gy
ENC
= J |det B(A)| dA
ENC
=u(ENnC) =1
Since any unit-norm Parseval frame is an orthonormal basis, the proof is completed. O

Remark 4.5. Note that [8, Theorem 3.3] guarantees that for each A € E n C, it is possible to pick
u) = |det B(A)|1/2XE(/\)

such that E(}) tiles R? by 7% and packs R? by B\ "z and G(uy, 7% x B(\)Z%) is a Gabor Parseval frame
in L(RY).

5 Proof of results and examples

Recallthatn = a® b @ 3, [a, b] C 3, a, b, ; are abelian algebras, dimy(a) = dimy(b) = d, and det([[ X, Yj]]lgi’jgd)

is a non-vanishing polynomial in the unknowns Z,,..., Z,_,;. Also, we recall that
AMXLY D - AX,, YY)
B(\) = : . :
MXg Y] o A[Xy Y]
and

du(A) = |det B(A)| dA.
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Moreover, the unitary dual of N is parametrized by the smooth manifold
T={len":det(BL) £ 0, M(X,) == MX,) = MY}) =--- = A(Y,)) = 0}
which is naturally identified with a Zariski open subset of 3*.

Definition 5.1. Let (71, H,,) denote a strongly continuous unitary representation of a locally compact group G.
We say that the representation (7, H,,) is admissible if and only if the map Wy :H— LA(G), Wy (x) = (y, m(x)¢)
defines an isometry of H into L*(G), and we say that ¢ is an admissible vector or a continuous wavelet.

Proposition 5.2. Let T be a discrete subset of G. Let ¢ be an admissible vector for (m,H,) such that n(T)¢ is
a Parseval frame for H,,. Then K = W, (H,,) is a I'-sampling space, and W(¢) is the associated sinc-type function
forK.

See [4, Proposition 2.54].

5.1 Proof of Theorem 3.2

Since C c 3* = R"* is a bounded set such that the system
{ezm(k,/\)xc( A ke Zn—Zd}
is a Parseval frame for L*(C, d) and
(N V) ke 2

is a Parseval frame for the Hilbert space L*(E N C,d)\), it follows that, according to Lemma 4.3, there exists
afunction ¢ € H(e, E N C) such that L(I')¢ is a Parseval framein H(e, EN C). Infact,forA e ENC,T), = u, ® ey,
we define ¢ such that
T
PH(N) = ——2—, (5.1)
¢ /|det B(A)|
and the system G(u,, 7% x B(\)Z%) is a Gabor Parseval frame in L*(R?). Next,

u/\®e/\ 2

y/|det B(A)|
Since N is unimodular, and since u(E N C) < o, it follows from [4, p. 127] that (L, H(e, E n C)) is an admissible
representation of N. Moreover, ¢ is an admissible vector for the representation (L, H(e, E n C)). Now, appeal-
ing to Proposition 5.2, then K = W, (H(e, E n C)) is a sampling space, and Wy(¢) is the associated sinc-type
function for K. To see that in general W, (H(e, E n C)) does not have the interpolation property, it suffices to
observe that the condition

PO MEcs = |

= |det BA)|™ w2 gy = 1.
38

19l ene) = HENC) =1
does not always hold. This completes the proof of Theorem 3.2.

5.2 Proof of Theorem 3.3

In order to prove Theorem 3.3, we will need a series of lemmas first. Let us assume throughout this subsection
that there exist a basis for the Lie algebra n and a compact subset R of 3 such that y(ENR) = 1.PutE° = ENR
and

H(e,E’) = :Pl(j L*(RY) ® e, |det B(A)| dA).
S

Lemma 5.3. Let R be given such that
jldetB(z\)ld)t =1
o

Then the set E° cannot be contained in a fundamental domain of the lattice 2",
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Proof. Assume that

u(E’) = IldetB(A)l dA=1.

e
We observe that the function A — |det B(1)| is a non-constant continuous function which is bounded above
by 1 on E’. Therefore,
1= j |[det B(A)| dA < Jd/\ =m(E’)

E° E°
where m is the Lebesgue measure on X. By contradiction, let us assume that E° is contained in a fundamental
domain of a lattice Z" 2%, Then 1 < m(E’) < 1 and we reach a contradiction. O

Lemma 5.4. There exists a finite partition of E’,

P = {AI’AZ’ cee ’Acard(P)}’

such that:
(1) We have
card(P)
E=|]A; and HEeE)=  HeeA).
AjeP j=1

(2) Foreach jwhere1 < j < card(P), A i is contained in a fundamental domain for 72,
(3) Foreach jwhere1 < j < card(P), there exists a Parseval frame of the type L(T)¢ i for the Hilbert space

3]
H(e, A = ?l(j L*(R") ® ¢ |det B(A)| d)t).
A;
Proof. Parts (1)—(2) are obviously true.
For the proof for part (3), we observe that if A j is contained in a fundamental domain of 7”24, then

{eZm'(k,A) XA](A) cke Zn—Zd}
is a Parseval frame for the Hilbert space L*(A j»dA). Thus Lemma 4.3 gives us part 3. O

Lemma 5.5. Foreach1 < j < card(P), we can construct a Parseval frame of the type L(I')¢; such that

card(P) 2

> 9

=

=1.
H(e,E°)

Proof. The construction of a Parseval frame for each H(e, A j), 1 < j < card(P), of the type L(F)</>j is given in
Lemma 4.3, and
card(P)

2 ¢
j=1

2 card(P)
= Z "¢j"§1(e,Aj) = j |det BOA)| dA = I |det B(A)|dA = 1. O

H(e,E°) j=1

card(P) E°
U j=1 4

Lemma5.6. Let ¢ = Z;i‘ld“)) ¢; such that for each 1 < j < card(P), L(T)$; is a Parseval frame for H(e, A)),
and II(pIIf{(e,EQ) = 1. If L(T)(¢) is a Parseval frame, then L(T')¢ is an orthonormal basis for H(e, E*).

Proof. If L(I')¢ is a Parseval frame for H(e, E°), then L(T')¢ is an orthonormal basis since ”(/Suil(e,EnC) =1. O

We would like to remark that in general the direct sum of Parseval frames is not a Parseval frame.
Next, let us fix a fundamental domain A of Z" ¢ such that

E={J(A-x)nE),

k€S

each A; = E’'n (A - «;) is a set of positive Lebesgue measure for all x; € Sand § is a finite subset of 7",
Clearly, the collection of sets
P= {Aj 11 < j < card(S)}

provides us with a partition of E* as described in Lemma 5.4.
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Lemma5.7. Foreach1 < j < card(P), there exists some ¢; €H(e, A)) such that the following holds:
6))] L()¢; is a Parseval frame for H(e, A )
2) P¢;(A) = (u, ® €,)ldet BA)| /> where

W = |det B(/\)|1/2XE(/\) ifle Aj’
"o ifA¢s-4A;
such that E(}) tiles R? by 7 and packs R? by B(\) ™" Z".
Proof. See Lemma 4.3 and Remark 4.5. .

Let us now define
(p = ¢1 +eee ¢card(P)

such that each ¢j is as described in Lemma 5.7. Then clearly,

® if A € E,
py() = {HEW TN o
0 ifA¢>-F.
Lemma5.8. Ifforeach1 < j, j' < card(P), j # j', and for arbitrary functions f, g € L*(R%), K, k; € Sone has
(<f’ T[A—kj (YI )u/\—m ) )Y1€rh T, 1 (<g’ Tk, (YI )u/\—x.f >)y1 €r, T
J a § § bla
for A € A, then L(T)(¢) is an orthonormal basis for the Hilbert space H(e, E").

Proof. Let y be any arbitrary element in

card(P)
H(e,E') = (P H(e,A))
=1
such that y = Z;irld(l)) y;fory; € H(e, A)). Let r(A) = |det B(A)|. Then

1;len ) = j 1Py ;(0)5¢s7(0) do.
A;

Next, it is easy to see that
(2 j 1Py;(A = k)55 (A = &) dA.

A
Let Py;(A —x)) = (Wy_,, ® ey ) € IR e €y, for A € A. Then

card(P) card(P)
2 2
Y Wilkeay= X | X KW g () Y~ k) dA
= 71§ nelel,
card(P)
=1 2 D KW () r( - ) dA. (5.2)
A nelyly  j=1
We would like to be able to state that for A € E°,
card(P) card(P) 2
2
z Z |<WA—1clv> T[/\—xj (YI)uA—KjH = z Z <WA—kj’ T[/l—xj ()/I)ul—xj> . (53)
nelely  j=1 nelply !l j=1

Indeed, letting (by1 ()L))ylerbru € lz(l“bl“a) such that (by1 (A))ylefhru is a sum of card(P)-many sequences of the
type (bmi (M), er,r, such that

card(P) card(P)
(b71 (/\))Ylerh T, = z ((WA‘K;" ﬂ/\"‘j (YI)u/\_Kj»)’lErb T, = Z (b% (/\))Ylérb Ly
= =

we compute the norm of the sequence (by1 ()t))ylerhru in two different ways. First,

card(P) 2

1B, Wyeryr, P = Y B, = Y | Y W ()W) -

1€l Ty nelp el j=1
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Second
card(P) 2
2 .
||(bY1(A))Y1€rhru|| = z (b){l(A))YIEFbru
j=1
card(P)
j 2
S [CRey
=1
card(P)
2
= Y W o (1 Dy |
j=1
card(P)
2
= z z |<w/1—kj’ﬂ/1—xj(yl)u)t—xj>| .
j=1 nelpT,

The second equality above is due to the fact that we assume that for j # j',
(<WA—K}- ’ n/\—;c/- (YI )“Aij»ylerh T, L1 (<WA—KIJ > n/\—xi (YI )u/\—xj; >)y1€I'l, T, for A e A.

Thus, the equality given in (5.3) holds.
Next, coming back to (5.2), we obtain

card(P) card(P) qj,, (1)

DE GRUYTER

Z "Wj"f—l(e,Aj) = Z Jlayl(}t)|2 dA where a, (A) = Z (wA_Kj, ”A—xj(yl)“A—xj”(A—Kj)l/z)-

= e Ta 3 =1

Writing A(m) = 7™ it follows that

card(P)

2 2
> ilbe.a, = Y lay

j=1 n€lpTy

— 12
= 2 1@l
1€l ly

=Y ) lamr

Y1€0pTe mezr—24

-y Yy Jayl()t))t(m)d/\

1€l la mezn-2d13

=2 2

V1€l Ty mezn—2d

2

card(P) 2

Z J (Wi Qjy, (A))A(m) dA

j=1 A

Next, letting
A(m) = e2milAm) — e—Zﬂi(lJn)’

we obtain that

card(P) card(P) 2

Y ilheay= X 2 || Y W Aima;, () dA

j=1 V€T mezr2dly  j=1

)

yer

)

yer

P¢(0) 2
JU’W(G), ,(Plol*u, ® e,)5cslol do

B

2
J(TI//(G), 7, (Y)PP(0)) 5cslol do
M

= Z [y, L(Y)¢>H(e,E°)|2-

yer

Finally, we arrive at the following fact:

Wlies) = . ¥ LD e

yer

Thus, L(I')¢ is a Parseval frame for H(e, E*).
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Now, we compute the norm of the vector ¢. Since
Pp(A) = (u, ®e))|det BA)[T* and w, = |det BV xpar)»

we have
PP(A) = (Idet B[ x50y ® €3)ldet BO)|™? = yp ® €.

Since E()) is a fundamental domain for Z¢, it follows that

2
||¢"H(e)E°) =1
Finally, because L is a unitary representation, and using the fact that L(I')¢ forms a unit norm Parseval frame,
it follows that L(I')¢ forms an orthonormal basis in H(e, E’). O

Lemma 5.9. If¢satisfies all conditions givenin Lemma 5.8, then | P$(A)|4cs = 1for A € E* and ¢ is an admissible
vector for the representation (L, H(e, E°)).

Proof. For any given A € E’,
IP@MD)3es = luy © eyldet B35 = [det BA)| ™ g [}z ey = 1.

Since N is unimodular, and since u(E’) < oo, it follows from [4, p.126] that (L, H(e, E’)) is an admissible
representation of N and ¢ is an admissible vector for the representation (L, H(e, E°)). O

Remark 5.10. A proof of Theorem 3.3 is derived by applying Proposition 5.2, Lemma 5.8 and Lemma 5.9.

5.3 Additional observations

Let m be the Lebesgue measure on R™ 24, Given two measurable sets A, B € R" 24,
AAB=(A-B)U(B-A)
is the symmetric difference of the sets. Now, let us assume that there exists a fundamental domain A of 7
such that
m(E 8 (UJa+kp)) =o.
j€s
That is, up to a set of Lebesgue measure zero, E° is a finite disjoint union of sets which are Z"~2?-congruent

to a fundamental domain of R" ¢, We acknowledge that this is a very strong condition to impose. However,
under this condition, we would like to present some simple sufficient conditions for the statement

(«f, ﬂ/\—Kj(YI)uA—K}->)y1€I‘bI‘ﬂ L (8 Tr—x; (yl)u/l—xj/ Nyer, 1,
given in Lemma 5.8.

Lemma 5.11. Let us assume that there exists a fundamental domain A of Z"* such that
m(E A (U(A + kj))) = 0.
j€Ss
Forj# j',A e Aand Wy Wiy, € L*(RY) as given in Lemma 5.8, if for any fixed m € Z°,
J

U B(A — )" (E(A — ) + m) is a subset of a fundamental domain for z°
K €S
and if
B(A - xj)“(E(/\ —&;) +m) N B(A -« ) (E(A - K1) +m)
is a null set, then
(<f’ n/\—xj (Vl )u)t—K}-))yl ST L1 (<g’ n/\—Kj, (yl )u/\—Kj, >)y1 €l T,

for all f, g € L*(R%).
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Proof. Clearly, in order to compute the inner product of the sequences

(«f, Th—x; (YI)u/\—Kj>)ylel"bl"ﬂ’ (g Trxy (Yl)“/\—xj, MDyer,r, € lZ(FbFa),

we need to calculate a formula for the following sum:

Z ((f’ ﬂ}t—xj (YI)u/\—kj) <g’ ﬂ/\—kj/ (YI)u/\—Kjl >)

4! erb ra

First,

<f’ T[A—Kj (yl)uk—x]) = J‘ f(t)nA—Kj (Yl)uh—kj (t) dt = J f(t)ezrli(l’B(A_Kj)"t) u,\_Kj (t - m) dt
R R

Put s = B(A - «)""t. We recall that u; = |det BA)|"* xz)- So,

f(B(A - Kj)_"s)

—27mi(l,s) ds.
|det B — x))| /2

<f’ T[/\—xj (YI )uA—Kj> =
B(A—x;)" (E(A-x;)+m)

Similarly,
Y g(B(A - Kj,)_trs)
(& Tr-x, (Yl)“A—x].,> = |det B(A — x.,)[1/2
B(Ar )" (E(Lx,1)+m) ]

—27mi(l,s) ds

If for A —K; €A,
J BA = %) (B - x,) + m)

K €S

is a subset of a fundamental domain of Z? for distinct Kj K € S, and if
B(A - Kj)"(E(A - ;) +m) N B(A - Kj/)"(E(/\ —Kj) +m)

is a null set, then
(£, T\, (YI)u)\—Kj>)yleI‘b r, L (& Tk (Yl)“)t—xj, Nyer,r,
because ({f, nA—Kj(Yl)uA—Kj»y er,T, and ({(g, my_., (Y1), ))y er,r, A€ Fourier inverses of the following ortho-
1 a j j 1 a
gonal functions:

f(B(A - x))™"s)

O 2,jm(s) = XB(/\—K]-)"(E(A—K}-Hm)(S)—|det B0\ - K]')|1/2, (5.4)

respectively

g(BA —1x;)™"s)

Og 1, jm(s) = XB(/\—K]./)"(E(/\—Kj,)+m)(s)m' (5.5)

In fact, we think of the functions above (5.4), (5.5) as being elements of Lz(Im’ »)suchthatl, , is a fundamental
domain for Z°. Combining the observations made above, we obtain that for any f, g € Lz(]Rd),

Y T, ()W) (& T, ()W, ) = oy ( J O ) () ds)( J O 1,1 m(5)e2i0) dx)
1

1€l Ty mezd lez4

Y Y Oeaim DOy

meZ €72

mA

=0
YN Oep im0 D
meZ4 lez4

=0.

Thus
(6 e, (YW Dyerr, L (& T, (P, Dy er, T, -

This concludes the proof. O
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In light of Lemma 5.8 and Lemma 5.11, the following holds true.

Proposition 5.12. Let us assume that there exists a fundamental domain A of Z""~*? such that

m(E A (U(A + kj))) = 0.

j€Ss
If stes B(A - x,)"(E(A - x,) + m) is a subset of a fundamental domain of 7% and if
B(A - «))"(E(A — &) +m) N B(A —1;)"(E(A — 1) + m)

is a null set for A € A form € Z% and for distinct K,k €S, then L(T')(¢) is an orthonormal basis for the Hilbert
space H(e, E°).

5.4 Examples

Example 5.13. Let N be a nilpotent Lie group with Lie algebra spanned by the vectors Z,,Z,,Y,,Y,, X, X,
with the following non-trivial Lie brackets:

X,Y1=2,, [X,Y,]=2,.
In this example, the discrete set
I'=exp(ZZ, + ZZ,) exp(ZY, + ZY,) exp(ZX, + ZX},)

is actually a uniform subgroup of the Lie group N. Moreover, N is a direct product of two Heisenberg groups
and satisfies all properties described in Condition 1.1. Next, we will apply Theorem 3.3 to show that there
exists a left-invariant subspace of L>(N) which is a I-sampling space with the interpolation property. First,
it is easy to check that

H(E) = u({(A1, A,) € R?: 414, # 0and [A;4,] < 1}) = oo.
Now, let R = [-1, 1]*. Then

11
WENR) = J J A, dAdA, = 1.
1

Next, we observe for each A € ENR, [0, 1)? tiles R? by Z* and packs R? by

-1
By [AO fz] z.
Next, it is not too hard to check that
E'={(A,A,) € [-1,1]*: A, A, # 0}
and

m(E A (U([o, 1%+ j))) =0

j€s

(LI

Moreover, for A € [0,1)? and for m € Z?, we define

A 0 A =1 0 A,—-1 0 A 0
M. . = |™M i M. = |™M ML= ™M i M. = |™M i
M [ 0 /\2] b [ 0 Ay - 1] 3 [ 0 /\2] o [ 0 A,- 1]

Sunj =My (0,02 + ), Si,i=Mu,(0,17+ ), Sis;=Mu(0,17+ ), Sy, =M, ((0,1)*+ ).

where
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We observe that forall j € Z2, U;_, Sy ;isasubset of a fundamental domain for 7*and$ ve,j N Sae,,jisanull
set for distinct ¢, £, and for almost every A € (0, 1)*. Let ¢ € H(e, E°) such that

:P(p(/\) = X[O,l)z (t) ® X[0,1)2 (t)

According to Theorem 3.3 and Proposition 5.12, L(I')¢ is an orthonormal basis for H(e, E*) and W, (H(e, E")) is
a I'-sampling space with the interpolation property.

Example 5.14. Put « = (g)l/“. Let N be a nilpotent Lie group with Lie algebra spanned by the vectors
Z1,72,,Y,,Y,, Xy, X, with the following non-trivial Lie brackets:

(X, Y]l =aZ,, [X,Y,]=-aZ,, [X,,Y1]=0aZ, [X,,Y,]=aZ,.

Here

B(\) = [(xx\l —(xx\z]

al, ald;

and
I'=exp(ZZ, + ZZ,) exp(ZY, + ZY,) exp(ZX, + ZX,).

Next, the Plancherel measure is a*(A3 + A2) dA,dA, and it is supported on the manifold
2 ={(AA,) € R : (A, 1,) # (0,0)}.

Now, we have
1
E=- {(Al,/\z) ezt 4 A2 ;}

and
2 (57
u(E) = J- I P drdo = 1.
0 0

Thus, in this example E° = E. Next, we partition the set E° such that

E = J(0.0" + ) nE)

j€S

s BRI

For each j € S, put A j= ([0,1)>NE) + j. Next, appealing to Theorem 3.2, for each j € S, there exists some
¢ € H(e, A j) such that W‘P/ (H(e, A j)) is a I-sampling subspace of L*(N) with sinc-type function W‘P/ (¢j). Also
for each j € S, W¢]_ (H(e, A j)) does not have the interpolation property with respect to I since u(A j) < 1 for
each j € S. Although

29

j€Ss

where

2
:1’

we cannot say that L(T)(}, jes¢j) is a Parseval frame in

H(e, E) = @ H(e, A)).

jes
Suppose that we define the map A — u, on X such that
ldet BV xpy ifA € E,
u
o ifA¢S—F,
where E()) c R? tiles R* by Z* and packs R* by

—tr 1 i _zx)l21+¢x)L§
B(L) l N !

—r2 — 1
PP V) 2 )
ari+ads ari+ads
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Finally, we define ¢ € L*(N) such that
uA ® eA

\|det B[

According to Theorem 3.3, if for each 1 < j, j’ < card(S) with j # j', for A € [0, 1), for two arbitrary functions
f,g € L*(R%), and for distinct , ' € S one has

Pe(A) =

(6 j(yw )y er,r, L (& Ty (Y)W )y er, 1,5

then W¢(H(e, E")) is a I-sampling space with sinc-type function W¢(¢). Moreover, W¢(H(e, E°)) has the inter-
polation property as well.
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