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Research Article

Vignon Oussa
Sampling and interpolation on some nilpotent Lie groups
Abstract: Let N be a non-commutative, simply connected, connected, two-step nilpotent Lie group with
Lie algebra n such that n = a ⊕ b ⊕ z, [a, b] ⊆ z, the algebras a, b, z are abelian, a = ℝ-span{X1, X2, . . . , Xd},
and b = ℝ-span{Y1, Y2, . . . , Yd}. Also, we assume that det[[Xi, Yj]]1≤i,j≤d is a non-vanishing homogeneous
polynomial in the unknowns Z1, . . . , Zn−2d where {Z1, . . . , Zn−2d} is a basis for the center of the Lie algebra.
Using well-known facts from time-frequency analysis, we provide some precise su�cient conditions for the
existence of sampling spaces with the interpolation property, with respect to some discrete subset ofN. The
result obtained in this work can be seen as a direct application of time-frequency analysis to the theory of
nilpotent Lie groups. Several explicit examples are computed. This work is a generalization of recent results
obtained for the Heisenberg group by Currey and Mayeli in [3].
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1 Introduction
LetN be a locally compact group, and let Γ be a discrete subset ofN. LetH be a left-invariant closed subspace
of L2(N) consisting of continuous functions. We call H a sampling space ([4, Section 2.6]) with respect to Γ
(or Γ-sampling space) if the following properties hold.
(1) The restriction mapping RΓ : H → l2(Γ), RΓf = (f(ã))ã∈Γ is an isometry.
(2) There exists a vector S ∈ H such that for any vector f ∈ H, we have the following expansion:

f(x) = ∑
ã∈Γ

f(ã)S(ã−1x)

with convergence in the norm ofH.
The vector S is called a sinc-type function, and if RΓ is surjective, we say that the sampling space H has the
interpolation property.

The simplest example of a sampling space with interpolation property over a nilpotent Lie group is
provided by thewell-knownWhittaker, Shannon, Kotel’nikov Theorem (see [4, Example 2.52])whichwe recall
here. Let C(ℝ) be the vector space of complex-valued continuous functions on the real line, and let

H = {f ∈ L2(ℝ) ∩ C(ℝ) : supp f̂ ⊆ [−0.5, 0.5]},

where f Ü→ f̂ is the Fourier transform of f and is defined as f̂(î) = ∫
ℝ
f(x)e−2ðixî dx whenever f ∈ L1(ℝ).

ThenH is a sampling space which has the interpolation property with associated sinc-type function

S(x) =
{
{
{

sin ðx
ðx if x ̸= 0,

1 if x = 0.

To the best of our knowledge, the first example of a sampling space with interpolation property on a non-
commutative nilpotent Lie group, using the Plancherel transform was defined over the three-dimensional
Heisenberg Lie group. This example is due to a remarkable result of Currey and Mayeli [3]. The specific
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256 | V. Oussa, Sampling and interpolation on some nilpotent Lie groups

definition of bandlimited spaces by the Plancherel transform used in [3], was taken from [4, Chapter 6],
where a very precise characterization of sampling spaces over the Heisenberg groupwas provided. Moreover,
sampling spaces using a similar definition of bandlimitationwere studied in [6] and [7] for a class of nilpotent
Lie groups which contains the Heisenberg Lie groups. This class of groups was first introduced by the author
in [6]. However, nothing was said about the interpolation property of the sampling spaces described in [6].
In fact, the question of existence of sampling spaces with interpolation property on some non-commutative
nilpotent Lie groups is a challenging problem which is the central focus of this paper.

LetN be a simply connected, connected, two-step nilpotent Lie group with Lie algebra n of dimension n
satisfying the following conditions.

Condition 1.1. Assume that n = a⊕b⊕z, where [a, b] ⊆ za, b, z are abelian algebras such that, for d ≥ 1, n > 2d,

a = ℝ-span{X1, X2, . . . , Xd},

b = ℝ-span{Y1, Y2, . . . , Yd},
z = ℝ-span{Z1, Z2, . . . , Zn−2d},

and

det
[[[[[

[

[X1, Y1] [X1, Y2] ⋅ ⋅ ⋅ [X1, Yd]
[X2, Y1] [X2, Y2] ⋅ ⋅ ⋅ [X2, Yd]

...
... ⋅ ⋅ ⋅

...
[Xd, Y1] [Xd, Y2] ⋅ ⋅ ⋅ [Xd, Yd]

]]]]]

]

(1.1)

is a non-vanishing homogeneous polynomial in the unknowns Z1, . . . , Zn−2d.

We remark that the entries of the matrix [[Xi, Yj]]1≤i,j≤d are linear combinations of a basis of the commutator
ideal of [n, n] which can be taken to be a subset of {Z1, Z2, . . . , Zn−2d}. The object described in (1.1) is then
obtained by formally computing the determinant in the unknowns Z1, . . . , Zn−2d. Also, given a Lie algebra n

which satisfies all assumptions in Condition 1.1, it is worth mentioning that since we require n − 2d to be
positive, we have dim z = n − 2d ≥ 1 and nmust necessarily be non-abelian.

One very appealing fact about these groups is the following. The infinite-dimensional irreducible
representations of any group satisfying the conditions given above are related to the well-known Schrödinger
representations [6, 7]. Thus, the advantage of working with this class of groups is that we are able to exploit
well-known theorems from time-frequency analysis.

Let N be a nilpotent Lie group satisfying Condition 1.1. We deal with the existence of left-invariant
subspaces of L2(N) which are sampling spaces which have the interpolation property. More precisely, we
investigate conditions under which sampling provides an orthonormal basis which is generated by shifting
a single function. The work presented here provides a natural generalization of recent results obtained for
the Heisenberg group in [3]. We o�er precise and explicit su�cient conditions for sampling spaces, which
also have the interpolation property with respect to some discrete set Γ ⊂ N.

We organize this paper as follows. The second section deals with some preliminary results which can be
found in [2, 6, 7]. In the third section, we introduce a natural notion of bandlimitation for the class of groups
considered, and we state the main results (Theorem 3.2 and Theorem 3.3) of the paper. In the fourth section,
we prove results related to sampling and frames for the class of groups considered here. The results obtained
in the fourth section are crucial for the proofs of Theorem 3.2 and Theorem 3.3 which are provided in the last
section. Finally, explicit examples are computed.

2 Preliminaries
Let us start by setting up somenotation. In this paper, all representations are strongly continuous andunitary,
unless we state otherwise. All sets aremeasurable, and given two equivalent unitary representations ó and ð,
we write ó ≅ ð. We also use the same notation for isomorphic Hilbert spaces. The characteristic function of
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a set E is written as öE, and the cardinal number of a set I is denoted by card(I). Further,V∗ stands for the dual
vector space of a vector space of V. Let v be a vector in ℝn. Then vtr stands for the transpose of the vector v.
The Fourier transform of a suitable function f defined over a commutative domain is written as f̂, and the
conjugate of a complex number z is denoted z. The general linear group of ℝn is denoted GLn(ℝ). Let v, w be
two vectors in someHilbert space.Wewrite v ⊥ w to denote that the vectors are orthogonal to each other with
respect to the inner product which the given Hilbert space is endowed with.

Now, we will provide a short introduction to the theory of direct integrals which is also nicely exposed
in [4, Section 3.3]. Let {Há}á∈A be a family of separable Hilbert spaces indexed by a set A. Let ì be a measure
defined inA. We define the direct integral of this family of Hilbert spaces with respect to ì as the space which
consists of functions f defined on the parameter space A such that f(á) is an element of Há for each á ∈ A,
and

∫
A

‖f(á)‖2Há
dì(á) < ∞

with some additional measurability conditions which we will clarify. A family of separable Hilbert spaces
{Há}á∈A indexed by a Borel set A is called a field of Hilbert spaces over A. Next, a map

f : A → ⋃
á∈A

Há such that f(á) ∈ Há

is called a vector field on A. A measurable field of Hilbert spaces over the indexing set A is a field of Hilbert
spaces {Há}á∈A together with a countable set {ej}j of vector fields such that
(i) the functions á Ü→ ⟨ej(á), ek(á)⟩Há

are measurable for all j, k,
(ii) the linear span of {ek(á)}k is dense inHá for each á ∈ A.

The direct integral of the spacesHá with respect to the measure ì is denoted by
⊕

∫
A

Há dì(á)

and is the space of measurable vector fields f on A such that

∫
A

‖f(á)‖2Há
dì(á) < ∞.

The inner product for this Hilbert space is naturally obtained as follows. For f, g ∈ ∫⊕
A
Há dì(á),

⟨f, g⟩ = ∫
A

⟨f(á), g(á)⟩Há
dì(á).

This theory of direct integrals will play an important role in the definition of bandlimited spaces in our work.
Let N be a non-commutative connected, simply connected nilpotent Lie group with Lie algebra n over

the reals with some additional assumptions described in Condition 1.1.
Notice that if n is the three-dimensional Heisenberg Lie algebra which is spanned by vectorsX, Y, Z such

that [X, Y] = Z, then we may define

a = ℝX, b = ℝY and z = ℝZ.

Although this is trivial, we make the following observation: det[X, Y] = Z is a non-vanishing homogeneous
polynomial in the variable Z. Therefore, the class of groups satisfying the conditions described above con-
tains groups which can be seen as some generalization of the Heisenberg Lie groups. Let

B = {T1, T2, . . . , Tn}

be a basis for the Lie algebra n. We say that B is a strong Malcev basis (see [2, p. 10]) if and only if for each
1 ≤ j ≤ n the real spanof {T1, T2, . . . , Tj} is an ideal of n. For the class of groups considered in thiswork, in order
to obtain a strong Malcev basis, it su�ces to define Zk = Tk if 1 ≤ k ≤ n − 2d. Next, if n − 2d + 1 ≤ k ≤ n − d,
then k = n − 2d + j for some j ∈ {1, 2, . . . , d} and Tk = Yj. Finally, if n − d + 1 ≤ k ≤ n, then k = n − d + j for
j ∈ {1, 2, . . . , d} and in this case Tk = Xj. Fixing such a strong Malcev basis of the Lie algebra n, a typical

Brought to you by | EP Ipswich
Authenticated

Download Date | 3/7/16 9:12 AM



258 | V. Oussa, Sampling and interpolation on some nilpotent Lie groups

element of the Lie groupN is written as follows:

exp(
n−2d

∑
k=1

zkZk) exp(
d

∑
k=1

ykYk) exp(
d

∑
k=1

xkXk).

The subgroup

exp(
n−2d

∑
k=1

ℝZk)

is the center of the Lie groupN and the subgroup

exp(
n−2d

∑
k=1

ℝZk) exp(
d

∑
k=1

ℝYk)

is a maximal normal abelian subgroup of N. Moreover, N is a step-two nilpotent Lie group since the
commutator ideal [n, n] is central. Let us now collect some additional basic facts about groups satisfying
Condition 1.1.

Proposition 2.1. Let N be a nilpotent Lie group satisfying the conditions given above. There is a finite dimen-
sional faithful representation ofN in GL(n + 1, ℝ) for n ≥ 3.

Proof. Clearly if n < 3, then nmust be abelian. Thus, wemust assume that n ≥ 3. First, let n1 = a⊕b⊕(z⊖[n, n])
and n2 = [n, n] ⊆ z such that n = n1 ⊕ n2. Let á be a positive real number. Next, we define an element Aá in
the outer derivation of n acting by a diagonalizable action such that [Aá, U] = ln(á)U for all U ∈ n1 and
[Aá, Z] = 2 ln(á)Z for all Z ∈ n2. Using the Jacobi identity, it is fairly easy to see that indeed Aá defines
a derivation. Next, we consider the linear adjoint representation of g = n ⊕ ℝAá, ad : g → gl(g) and we define
G = exp(ad(g)) which is a subgroup of GL(g). Fixing a strong Malcev basis for the Lie algebra n, the adjoint
representation of G acting on the vector space g is a faithful representation. Thus, G = exp(ad(g)) is a Lie
subgroup of GL(g) ≅ GL(n + 1, ℝ). SinceN is isomorphic to exp(ad(n ⊕ {0})), it follows that exp(ad(n ⊕ {0})) is
an isomorphic copy of the Lie groupN inside GL(n + 1, ℝ).

Next, in order to make this paper self-contained, we will revisit the Plancherel theory for the class of groups
considered in this paper. We start by fixing a strong Malcev basis for the Lie algebra of n. The exponential
function takes the Lebesgue measure on n to a left Haar measure on N (see [2, Theorem 1.2.10]). Since N
is a nilpotent Lie group, according to the orbit method (see [2]) all irreducible representations of N are
parametrized by the coadjoint orbit of N in n∗, and it is possible to construct a smooth cross-section Σ in
a Zariski open subset Ω of n∗ which is dense and N-invariant such that Σ meets every coadjoint orbit in Ω
at exactly one point. Let P be the Plancherel transform on L2(N) and let F be the Fourier transform defined
on L2(N) ∩ L1(N) by

F(f)(ë) = ∫
N

f(n)ðë(n) dn,

where {ðë : ë ∈ Σ}parametrizes up to a null set the unitary dual ofN. In fact, the setΣ can be chosen such that
for eachë ∈ Σ, the corresponding irreducible representationðë is realizedas acting in theHilbert spaceL2(ℝd)
where d is half of the dimension of the coadjoint orbit of ë. Next, it is well known that

P : L2(N) →
⊕

∫
Σ

L2(ℝd) ⊗ L2(ℝd) dì(ë)

such that the Plancherel transform is the extension of the Fourier transform to L2(N) inducing the equality

‖f‖2L2(N) = ∫
Σ

‖P(f)(ë)‖2HS dì(ë).

We recall that ‖ ⋅ ‖HS denotes the Hilbert–Schmidt norm on L2(ℝd) ⊗ L2(ℝd) and that the Hilbert space tensor
product L2(ℝd) ⊗ L2(ℝd) is defined as the space of bounded linear operators T : L2(ℝd) → L2(ℝd) such that

‖T‖HS = ∑
k∈I

‖Tek‖
2
L2(ℝd)
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where (ek)k∈I is an orthonormal basis of L2(ℝd). Given arbitrary S, T ∈ L2(ℝd) ⊗ L2(ℝd), the inner product of
the operators S and T is

⟨S, T⟩HS = ∑
k∈I

⟨Sek, Tek⟩L2(ℝd).

Also, it is useful to observe that the inner product of arbitrary rank-one operators in L2(ℝd) ⊗ L2(ℝd) is given
by

⟨u ⊗ v, w ⊗ y⟩HS = ⟨u, w⟩L2(ℝd)⟨v, y⟩L2(ℝd).

Let ë be a linear functional in n∗. Put
ëk = ë(Zk).

Treating the ëk as unknowns, we define

B(ë) =
[[[

[

ë[X1, Y1] ⋅ ⋅ ⋅ ë[X1, Yd]
...

. . .
...

ë[Xd, Y1] ⋅ ⋅ ⋅ ë[Xd, Yd]

]]]

]

(2.1)

which is a squarematrix of order d. The entries in B(ë) are linear combinations of the unknowns ë1, . . . , ën−2d.
Computing the determinant of the matrix B(ë), we obtain a polynomial in the unknowns ë1, . . . , ën−2d.
Thus, det[[Xi, Yj]]1≤i,j≤d is a non-vanishing homogeneous polynomial in the unknowns Z1, . . . , Zn−2d if and
only if det B(ë) is non-vanishing homogeneous polynomial in the unknowns ë1, . . . , ën−2d. Therefore, if the
assumptions of Conditions 1.1 are met, then for ë ∈ n∗, det(B(ë)) is a non-vanishing polynomials in the
unknowns ë1, . . . , ën−2d.

Proposition 2.2. Let n be a Lie algebra overℝ satisfying Condition 1.1 and letL be the left regular representation
of the groupN.
∙ The unitary dual ofN is parametrized by the smooth manifold

Σ = {ë ∈ n∗ : det(B(ë)) ̸= 0, ë(X1) = ⋅ ⋅ ⋅ = ë(Xd) = ë(Y1) = ⋅ ⋅ ⋅ = ë(Yd) = 0}

which is naturally identified with a Zariski open subset of z∗.
∙ Let dë be the Lebesgue measure on Σ. The Plancherel measure for the group N is supported on Σ and is

equal to
dì(ë) = |det(B(ë))|dë. (2.2)

∙ The unitary dual ofN which we denote by N̂ is up to a null set equal to {ðë : ë ∈ Σ} where each representa-
tion ðë is realized as acting in L2(ℝd) such that

ðë(exp(
n−2d

∑
i=1

ziZi))f(t) = e
2ðië(∑n−2di=1 ziZi)f(t),

ðë(exp(
d

∑
i=1

yiYi))f(t) = e
−2ði⟨B(ë)y,t⟩f(t),

ðë(exp(
d

∑
i=1

xiXi))f(t) = f(t − x),

where y = (y1, . . . , yd)tr, and x = (x1, . . . , xd).
∙ We have

L ≅ P ∘ L ∘ P−1 =
⊕

∫
Σ

ðë ⊗ 1L2(ℝd) dì(ë)

and 1L2(ℝd) is the identity operator on L2(ℝd). Moreover for ë ∈ Σ, we have

P(L(x)õ)(ë) = ðë(x) ∘ (Põ)(ë).

The results in the proposition above are some facts, which are well known in the theory of harmonic analysis
of nilpotent Lie groups. See [6], where we specialized to the class of groups considered here. For general
nilpotent Lie groups, we refer the interested reader to [2, Section 4.3] which contains a complete presentation
of the Plancherel theory of nilpotent Lie groups.
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We will now provide a few examples of Lie groups satisfying Condition 1.1.

Example 2.3. Let N be a nilpotent Lie group with Lie algebra n spanned by the strong Malcev basis Z1, Z2,
Y1, Y2,X1,X2 with non-trivial Lie brackets

[X1, Y1] = Z1, [X2, Y1] = −Z2,

[X1, Y2] = Z2, [X2, Y2] = Z1.

Clearly,N satisfies all properties described in Condition 1.1 and

det([[Xi, Yj]]1≤i,j≤2) = det [
Z1 Z2

−Z2 Z1
] = Z2

1 + Z
2
2.

Applying Proposition 2.1, we define the monomorphism ð : N → GL7(ℝ) such that for

p = exp(z1Z1) exp(z2Z2) exp(y1Y1) exp(y2Y2) exp(x1X1) exp(x2X2),

the image of p under the representation ð is the following matrix:

[[[[[[[[[[[

[

1 0 x1 x2 −y1 −y2 2z1
0 1 −x2 x1 −y2 y1 2z2
0 0 1 0 0 0 y1
0 0 0 1 0 0 y2
0 0 0 0 1 0 x1

0 0 0 0 0 1 x2

0 0 0 0 0 0 1

]]]]]]]]]]]

]

.

Next, referring to Proposition 2.2, the Plancherel measure is supported on the manifold

Σ = {ë ∈ n∗ : ë(Z1)
2 + ë(Z2)

2 ̸= 0, ë(Yj) = 0, ë(Xj) = 0 for 1 ≤ j ≤ 3}

and the Plancherel measure is |ë2
1 + ë

2
2| dë1dë2 where ëk = ë(Zk).

The following example exhausts all elements in the class of groups considered in this paper.

Example 2.4. Fix two natural numbers n and d such that n − 2d > 0. Let M be a matrix of order d with
entries inℝZ1 ⊕ ⋅ ⋅ ⋅ ⊕ ℝZn−2d such that det(M) is a non-vanishing homogeneous polynomial in the unknowns
Z1, Z2, . . . , Zn−2d. Now let a = ℝ-span {X1, . . . , Xd} and b = ℝ-span {Y1, . . . , Yd} such that [Xi, Yj] = Mi,j andMi,j

is the entry ofM located at the intersection of the i-th row and j-th column. The Lie algebra

n = a ⊕ b ⊕ (ℝZ1 ⊕ ⋅ ⋅ ⋅ ⊕ ℝZn−2d)

satisfies all properties given in Condition 1.1.

Now, we define

Γb = exp(ℤY1 + ⋅ ⋅ ⋅ + ℤYd), Γa = exp(ℤX1 + ⋅ ⋅ ⋅ + ℤXd), Γz = exp(ℤZ1 + ⋅ ⋅ ⋅ + ℤZn−2d)

and
Γ = ΓzΓbΓa ⊂ N. (2.3)

Then Γ is a discrete subset ofN which is not generally a subgroup ofN.

3 Overview of main results
In this section, wewill present an overview of themain results. In order to do so, wewill need a few important
definitions.
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Definition 3.1. We say a function f ∈ L2(N) is bandlimited if its Plancherel transform is supported on
a bounded measurable subset of Σ. Fix a measurable field of unit vectors e ={eë}ë∈Σ where eë ∈ L2(ℝd).
We say a Hilbert space is a multiplicity-free left-invariant subspace of L2(N) if

H(e) = P−1(
⊕

∫
Σ

L2(ℝd) ⊗ eë dì(ë)).

We observe here that the Hilbert space P(H(e)) is naturally identified with L2(Σ × ℝd). Next, we define

E = {ë ∈ z∗ : |det B(ë)| ̸= 0 and |det B(ë)| ≤ 1}. (3.1)

It is easy to see that E is the intersection of a Zariski open subset of z∗ and a closed subset of z∗. Also, E is not
bounded in general and E is necessarily a set of positive Lebesguemeasure on z∗. In order to develop a theory
of bandlimitation, we will need to consider some bounded subset of E.

For any given bounded set A ⊂ Σ, we define the corresponding multiplicity-free, bandlimited, left-
invariant Hilbert subspaceH(e,A) as follows:

H(e,A) = P−1(
⊕

∫
A

L2(ℝd) ⊗ eë|det B(ë)|dë). (3.2)

To be more precise, for any õ ∈ H(e,A), there exists a measurable field of vectors {wõë}ë∈A, w
õ
ë ∈ L

2(ℝd), such
that

Põ(ë) =
{
{
{

wõë ⊗ eë if ë ∈ A,
0 if ë ∉ A.

Let õ ∈ H(e,A) and define the linear map Wõ : H(e,A) → L2(N) such that Wõ÷(x) = ⟨÷, L(x)õ⟩. It is easy to
see that the spaceWõ(H(e,A)) is a subspace of L2(N) which consists of continuous functions.

Let é : ℝn−2d → z∗ be a map defined by

é(ë1, . . . , ën−2d) =
n−2d

∑
k=1

ëkZ
∗
k

where {Z∗
k : 1 ≤ k ≤ n − 2d} is the dual basis of z∗ which is associated to {Zk : 1 ≤ k ≤ n − 2d} which is a fixed

basis for the central ideal z. Clearly, é is a measurable bijection. Identifying ℝn−2d with z∗ via the map é, we
slightly abuse notation when we say z∗ = ℝn−2d. In order to make a simpler presentation, we will adopt this
abuse of notation for the remainder of the paper. Now, let C ⊂ z∗ = ℝn−2d be a bounded set such that

{e2ði⟨k,ë⟩öC(ë) : k ∈ ℤ
n−2d}

is a Parseval frame forL2(C, dë). For example, it su�ces to pickC ⊆ I such that the collection {I+k : k ∈ ℤn−2d}
forms a measurable partition ofℝn−2d = z∗. Our main results are summarized as follows.

Theorem 3.2. Let N be a connected, simply connected nilpotent Lie group satisfying Condition 1.1. Then
there exists some õ ∈ H(e, E ∩ C) such that Wõ(H(e, E ∩ C)) is a Γ-sampling subspace of L2(N) with sinc-type
functionWõ(õ). Moreover,Wõ(H(e, E ∩ C)) does not generally have the interpolation property with respect to Γ.

Now, let N be a nilpotent Lie group which satisfies all properties described in Condition 1.1 such that
additionally, there exist a strong Malcev basis for the Lie algebra n, and a compact subset R of z∗ such
that for E∘ = E ∩ R,

∫
E∘

|det B(ë)| dë = 1.

Since E∘ is a subset of E, for each ë ∈ E∘ there exists (see Remark 4.5) a corresponding set E(ë)which tilesℝd

byℤd and packsℝd by B(ë)−trℤd. Fix a fundamental domain Λ for the latticeℤn−2d such that

E∘ = ⋃
kj∈S

((Λ − êj) ∩ E
∘)
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where S is a finite subset of ℤn−2d and each (Λ − êj) ∩ E
∘ is a set of positive Lebesgue measure on ℝn−2d.

For ë ∈ Σ, we define the map ë Ü→ uë on Σ such that

uë =
{
{
{

|det B(ë)|1/2öE(ë) if ë ∈ E∘,
0 if ë ∉ E∘,

(3.3)

and õ ∈ L2(N) such that
Põ(ë) =

uë ⊗ eë
√|det B(ë)|

. (3.4)

Theorem 3.3. If for each 1 ≤ j, j� ≤ card(S), j ̸= j�, for ë ∈ Λ, for arbitrary functions f , g ∈ L2(ℝd), and for
distinct êj, êj� ∈ S one has

(⟨f , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa ⊥ (⟨g, ðë−êj�
(ã1)uë−êj� ⟩)ã1∈ΓbΓa ,

then Wõ(H(e, E
∘)) is a Γ-sampling space with sinc-type function Wõ(õ). Moreover, Wõ(H(e, E

∘)) has the interpo-
lation property.

The proofs of Theorem 3.2 and Theorem 3.3 will be given in the last section of this paper.

4 Results on frames and orthonormal bases
Wewill need to be familiarwith the theory of frames (see [1, 5, 8]). Given a countable sequence {fi}i∈I of vectors
in a Hilbert space H, we say {fi}i∈I forms a frame if and only if there exist strictly positive real numbers A, B
such that for any vector f ∈ H,

A‖f‖2 ≤ ∑
i∈I

|⟨f, fi⟩|
2 ≤ B‖f‖2.

In the case where A = B, the sequence of vectors {fi}i∈I forms what is called a tight frame, and if A = B = 1,
{fi}i∈I is called a Parseval frame because it satisfies the Parseval equality

∑
i∈I

|⟨f, fi⟩|
2 = ‖f‖2 for all f ∈ H.

Also, if {fi}i∈I is a Parseval frame such that ‖fi‖ = 1 for all i ∈ I, then {fi}i∈I is an orthonormal basis forH.
Let Ξ = Aℤ2d for some matrix A. We say Ξ is a full-rank lattice if A is non-singular. We say a lattice is

separable if Ξ = Aℤd × Bℤd. A fundamental domain D for a lattice in ℝd is a measurable set which satisfies
the following: (D + l) ∩ (D + l�) ̸= 0 for distinct l, l� in Ξ, and ℝd = ⋃l∈Ξ(D + l). We sayD is a packing set for Ξ
if (D + l) ∩ (D + l�) has Lebesgue measure zero for any l ̸= l�. Let Ξ = Aℤd × Bℤd be a full-rank lattice in ℝ2d

and f ∈ L2(ℝd). The family of functions in L2(ℝd)

G(f, Aℤd × Bℤd) = {e2ði⟨k,x⟩f(x − n) : k ∈ Bℤd, n ∈ Aℤd} (4.1)

is called a Gabor system. Gabor frames are a particular type of frame whose elements are generated by
time-frequency shifts of a single vector. A Gabor system which is a Parseval frame is called a Gabor Parseval
frame. Let r be a natural number. Let Ξ = Aℤr be a full-rank lattice inℝr. The volume of Ξ is defined as

vol(Ξ) = |det A|,

and the density of the lattice Ξ is defined as d(Ξ) = |det A|−1.

Lemma 4.1 (Density condition). Let Ξ = Aℤd × Bℤd be a full-rank lattice in ℝ2d. There exists f ∈ L2(ℝd) such
that G(f, Aℤd × Bℤd) is a Parseval frame in L2(ℝd) if and only if vol(Ξ) = |det A det B| ≤ 1.

A proof of Lemma 4.1 is given in [5, Theorem 3.3].

Lemma 4.2. Let Ξ be a full-rank lattice inℝ2d. There existsf ∈ L2(ℝd) such that G(f, Ξ) is an orthonormal basis
if and only if vol(Ξ) = 1. Also, if G(f, Ξ) is a Parseval frame for L2(ℝd), then ‖f‖2 = vol(Ξ).
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Lemma 4.2 is due to Theorem 1.3 and the proof of Lemma 3.2 is given in [5]. Next, from the definition of the
irreducible representations of N, provided in Proposition 2.2, it is easy to see that for f ∈ L2(ℝd), ðë(ΓbΓa)f
is a Gabor system for each fixed ë ∈ Σ. Moreover, following the notation given in (4.1), we write

ðë(ΓbΓa)f = G(f, ℤ
d × B(ë)ℤd).

We recall that the setC satisfies the following conditions:C ⊂ z∗ = ℝn−2d is a bounded set such that the system

{e2ði⟨k,ë⟩öC(ë) : k ∈ ℤ
n−2d}

is a Parseval frame for L2(C, dë). Also, we recall that

E = {ë ∈ z∗ : |det B(ë)| ̸= 0 and |det B(ë)| ≤ 1}.

Therefore, {e2ði⟨k,ë⟩öE∩C(ë) : k ∈ ℤn−2d} is a Parseval frame for the Hilbert space L2(E ∩ C, dë).

Lemma 4.3. There exists a function õ ∈ H(e, E ∩ C) such that L(Γ)õ is a Parseval frame inH(e, E ∩ C).

Proof. Weknow that by the Density Condition (see Lemma 4.1), for ë ∈ E ∩ C, there exists a rank-one operator
Të = uë ⊗ eë such that

Põ(ë) =
Të

√|det B(ë)|
, (4.2)

and the systemG(uë, ℤ
d × B(ë)ℤd) is a Gabor Parseval frame in L2(ℝd). Next, given any vector÷ ∈ H(e, E ∩ C),

we obtain that

∑
ã∈Γ

|⟨÷, L(ã)õ⟩H(e,E∩C)|
2 = ∑

ã∈Γ

!!!!!!!
∫
E∩C

⟨P÷(ë), ðë(ã) ∘ Põ(ë)⟩HS dì(ë)
!!!!!!!

2

= ∑
ã∈Γ

!!!!!!!
∫
E∩C

⟨P÷(ë), ðë(ã)(|det B(ë)|
−1/2uë) ⊗ eë⟩HS|det B(ë)| dë

!!!!!!!

2

= ∑
ã∈Γ

!!!!!!!
∫
E∩C

⟨P÷(ë), ðë(ã)uë ⊗ eë⟩HS|det B(ë)|
1/2 dë

!!!!!!!

2

. (4.3)

Using the fact that {e2ði⟨k,ë⟩öE∩C(ë) : k ∈ ℤn−2d} is a Parseval frame for L2(E ∩ C, dë), and letting

f(ë) = ⟨P÷(ë), ðë(ã1)uë ⊗ eë⟩HS|det B(ë)|
1/2, (4.4)

we obtain
∑
ã∈Γ

|⟨÷, L(ã)õ⟩H(e,E∩C)|
2 = ∑

ã1∈ΓbΓa

∑
m∈ℤn−2d

!!!!!!!
∫
E∩C

e−2ði⟨ë,m⟩f(ë)
!!!!!!!

2

dë

= ∑
ã1∈ΓbΓa

∑
m∈ℤn−2d

|f̂(m)|2 dë

= ∑
ã1∈ΓbΓa

‖f̂‖2l2(ℤn−2d)

= ∑
ã1∈ΓbΓa

‖f‖2L2(E∩C,dë).

The last equality above is due to the Plancherel Theorem on l2(ℤn−2d). Using (4.4), letting P÷(ë) = w÷ë ⊗ eë,
where w÷ë = wë ∈ L

2(ℝd), and coming back to (4.3), it follows that

∑
ã∈Γ

|⟨÷, L(ã)õ⟩H(e,E∩C)|
2 = ∑

ã∈Γ

!!!!!!!
∫
E∩C

⟨P÷(ë), ðë(ã)uë ⊗ eë⟩HS|det B(ë)|
1/2 dë

!!!!!!!

2

= ∑
ã1∈ΓbΓa

∫
E∩C

|⟨wë ⊗ eë, ðë(ã1)uë ⊗ eë⟩HS|
2|det B(ë)| dë

= ∫
E∩C

∑
ã1∈ΓbΓa

|⟨wë ⊗ eë, ðë(ã1)uë ⊗ eë⟩HS|
2|det B(ë)| dë

= ∫
E∩C

∑
ã1∈ΓbΓa

|⟨wë, ðë(ã1)uë⟩L2(ℝd)|
2|det B(ë)| dë.

Brought to you by | EP Ipswich
Authenticated

Download Date | 3/7/16 9:12 AM



264 | V. Oussa, Sampling and interpolation on some nilpotent Lie groups

Since ðë(ΓbΓa)uë is a Parseval Gabor frame for each fixed ë ∈ E ∩ C,

∑
ã1∈ΓbΓa

|⟨wë, ðë(ã1)uë⟩L2(ℝd)|
2 = ‖wë‖

2
L2(ℝd),

we have

∑
ã∈Γ

|⟨÷, L(ã)õ⟩H(e,E∩C)|
2 = ∫
E∩C

‖wë‖
2
L2(ℝd)|det B(ë)| dë = ∫

E∩C

‖P÷(ë)‖2HS|det B(ë)| dë = ‖÷‖
2
H(e,E∩C).

Finally, we obtain that L(Γ)õ is a Parseval frame inH(e, E ∩ C).

Lemma 4.4. If L(Γ)õ is a Parseval frame inH(e, E ∩ C) as described in Lemma 4.3 and if

∫
E∩C

|det B(ë)| dë = 1,

then L(Γ)õ is an orthonormal basis.

Proof. Recall from Lemma 4.3 that for ë ∈ E ∩ C,

Põ(ë) = |det B(ë)|−1/2uë ⊗ eë
such that G(uë, ℤd × B(ë)ℤd) is a Gabor Parseval frame in L2(ℝd). Referring to [5, proof of Theorem 1.3], we
have ‖uë‖2L2(ℝd) = |det B(ë)| for ë ∈ E ∩ C. Now,

‖õ‖2H(e,E∩C) = ∫
E∩C

‖Põ(ë)‖2HS|det B(ë)| dë

= ∫
E∩C

‖|det B(ë)|−1/2uë ⊗ eë‖
2
HS|det B(ë)| dë

= ∫
E∩C

‖uë ⊗ eë‖
2
HS dë

= ∫
E∩C

‖uë‖
2
L2(ℝd) dë

= ∫
E∩C

|det B(ë)| dë

= ì(E ∩ C) = 1.

Since any unit-norm Parseval frame is an orthonormal basis, the proof is completed.

Remark 4.5. Note that [8, Theorem 3.3] guarantees that for each ë ∈ E ∩ C, it is possible to pick

uë = |det B(ë)|
1/2öE(ë)

such that E(ë) tiles ℝd by ℤd and packs ℝd by B(ë)−trℤd and G(uë, ℤ
d × B(ë)ℤd) is a Gabor Parseval frame

in L2(ℝd).

5 Proof of results and examples
Recall that n = a ⊕ b ⊕ z, [a, b] ⊆ z, a, b, z are abelian algebras, dimℝ(a) = dimℝ(b) = d, and det([[Xi, Yj]]1≤i,j≤d)
is a non-vanishing polynomial in the unknowns Z1, . . . , Zn−2d. Also, we recall that

B(ë) =
[[[

[

ë[X1, Y1] ⋅ ⋅ ⋅ ë[X1, Yd]
...

. . .
...

ë[Xd, Y1] ⋅ ⋅ ⋅ ë[Xd, Yd]

]]]

]
and

dì(ë) = |det B(ë)| dë.
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Moreover, the unitary dual ofN is parametrized by the smooth manifold

Σ = {ë ∈ n∗ : det(B(ë)) ̸= 0, ë(X1) = ⋅ ⋅ ⋅ = ë(Xd) = ë(Y1) = ⋅ ⋅ ⋅ = ë(Yd) = 0}

which is naturally identified with a Zariski open subset of z∗.

Definition 5.1. Let (ð,Hð) denote a strongly continuous unitary representation of a locally compact group G.
We say that the representation (ð,Hð) is admissible if andonly if themapWõ :H→ L2(G),Wõ÷(x) = ⟨÷, ð(x)õ⟩
defines an isometry ofH into L2(G), and we say that õ is an admissible vector or a continuous wavelet.

Proposition 5.2. Let Γ be a discrete subset of G. Let õ be an admissible vector for (ð,Hð) such that ð(Γ)õ is
a Parseval frame forHð. ThenK = Wõ(Hð) is a Γ-sampling space, andWõ(õ) is the associated sinc-type function
for K.

See [4, Proposition 2.54].

5.1 Proof of Theorem 3.2

Since C ⊂ z∗ = ℝn−2d is a bounded set such that the system

{e2ði⟨k,ë⟩öC(ë) : k ∈ ℤ
n−2d}

is a Parseval frame for L2(C, dë) and

{e2ði⟨k,ë⟩öE∩C(ë) : k ∈ ℤ
n−2d}

is a Parseval frame for the Hilbert space L2(E ∩ C, dë), it follows that, according to Lemma 4.3, there exists
a functionõ ∈ H(e, E ∩ C) such thatL(Γ)õ is a Parseval frame inH(e, E ∩ C). In fact, forë ∈ E ∩ C,Të = uë ⊗ eë,
we define õ such that

Põ(ë) =
Të

√|det B(ë)|
, (5.1)

and the system G(uë, ℤ
d × B(ë)ℤd) is a Gabor Parseval frame in L2(ℝd). Next,

‖P(õ)(ë)‖2HS =
"""""""
uë ⊗ eë

√|det B(ë)|

"""""""

2

HS

= |det B(ë)|−1‖uë‖
2
L2(ℝd) = 1.

SinceN is unimodular, and since ì(E ∩ C) < ∞, it follows from [4, p. 127] that (L,H(e, E ∩ C)) is an admissible
representation ofN. Moreover, õ is an admissible vector for the representation (L,H(e, E ∩ C)). Now, appeal-
ing to Proposition 5.2, then K = Wõ(H(e, E ∩ C)) is a sampling space, and Wõ(õ) is the associated sinc-type
function for K. To see that in general Wõ(H(e, E ∩ C)) does not have the interpolation property, it su�ces to
observe that the condition

‖õ‖2H(e,E∩C) = ì(E ∩ C) = 1

does not always hold. This completes the proof of Theorem 3.2.

5.2 Proof of Theorem 3.3

In order to prove Theorem 3.3, wewill need a series of lemmas first. Let us assume throughout this subsection
that there exist a basis for the Lie algebra n and a compact subsetR of z∗ such that ì(E ∩ R) = 1. Put E∘ = E ∩ R
and

H(e, E∘) = P−1(
⊕

∫
E∘

L2(ℝd) ⊗ eë|det B(ë)| dë).

Lemma 5.3. Let R be given such that
∫
E∘

|det B(ë)| dë = 1.

Then the set E∘ cannot be contained in a fundamental domain of the latticeℤn−2d.

Brought to you by | EP Ipswich
Authenticated

Download Date | 3/7/16 9:12 AM



266 | V. Oussa, Sampling and interpolation on some nilpotent Lie groups

Proof. Assume that
ì(E∘) = ∫

E∘

|det B(ë)| dë = 1.

We observe that the function ë Ü→ |det B(ë)| is a non-constant continuous function which is bounded above
by 1 on E∘. Therefore,

1 = ∫
E∘

|det B(ë)| dë < ∫
E∘

dë = m(E∘)

wherem is the Lebesguemeasure on Σ. By contradiction, let us assume that E∘ is contained in a fundamental
domain of a latticeℤn−2d. Then 1 < m(E∘) ≤ 1 and we reach a contradiction.

Lemma 5.4. There exists a finite partition of E∘,

P = {A1, A2, . . . , Acard(P)},

such that:
(1) We have

E∘ = ⋃
Aj∈P

Aj and H(e, E∘) =
card(P)
⨁
j=1

H(e, Aj).

(2) For each j where 1 ≤ j ≤ card(P), Aj is contained in a fundamental domain forℤn−2d.
(3) For each j where 1 ≤ j ≤ card(P), there exists a Parseval frame of the type L(Γ)õj for the Hilbert space

H(e, Aj) = P
−1(
⊕

∫
Aj

L2(ℝd) ⊗ eë|det B(ë)| dë).

Proof. Parts (1)–(2) are obviously true.
For the proof for part (3), we observe that if Aj is contained in a fundamental domain ofℤn−2d, then

{e2ði⟨k,ë⟩öAj
(ë) : k ∈ ℤn−2d}

is a Parseval frame for the Hilbert space L2(Aj, dë). Thus Lemma 4.3 gives us part 3.

Lemma 5.5. For each 1 ≤ j ≤ card(P), we can construct a Parseval frame of the type L(Γ)õj such that
"""""""""

card(P)
∑
j=1

õj
"""""""""

2

H(e,E∘)
= 1.

Proof. The construction of a Parseval frame for each H(e, Aj), 1 ≤ j ≤ card(P), of the type L(Γ)õj is given in
Lemma 4.3, and

"""""""""

card(P)
∑
j=1

õj
"""""""""

2

H(e,E∘)
=
card(P)
∑
j=1

‖õj‖
2
H(e,Aj)
= ∫

⋃card(P)j=1 Aj

|det B(ë)| dë = ∫
E∘

|det B(ë)| dë = 1.

Lemma 5.6. Let õ = ∑card(P)j=1 õj such that for each 1 ≤ j ≤ card(P), L(Γ)õj is a Parseval frame for H(e, Aj),
and ‖õ‖2H(e,E∘) = 1. If L(Γ)(õ) is a Parseval frame, then L(Γ)õ is an orthonormal basis forH(e, E∘).

Proof. If L(Γ)õ is a Parseval frame forH(e, E∘), then L(Γ)õ is an orthonormal basis since ‖õ‖2H(e,E∩C) = 1.

We would like to remark that in general the direct sum of Parseval frames is not a Parseval frame.
Next, let us fix a fundamental domain Λ ofℤn−2d such that

E∘ = ⋃
êj∈S

((Λ − êj) ∩ E
∘),

each Aj = E
∘ ∩ (Λ − êj) is a set of positive Lebesgue measure for all êj ∈ S and S is a finite subset of ℤn−2d.

Clearly, the collection of sets
P = {Aj : 1 ≤ j ≤ card(S)}

provides us with a partition of E∘ as described in Lemma 5.4.
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Lemma 5.7. For each 1 ≤ j ≤ card(P), there exists some õj ∈ H(e, Aj) such that the following holds:
(1) L(Γ)õj is a Parseval frame forH(e, Aj),
(2) Põj(ë) = (uë ⊗ eë)|det B(ë)|

−1/2 where

uë =
{
{
{

|det B(ë)|1/2öE(ë) if ë ∈ Aj,

0 if ë ∉ Σ − Aj,

such that E(ë) tilesℝd byℤd and packsℝd by B(ë)−trℤd.

Proof. See Lemma 4.3 and Remark 4.5.

Let us now define
õ = õ1 + ⋅ ⋅ ⋅ + õcard(P)

such that each õj is as described in Lemma 5.7. Then clearly,

Põ(ë) =
{
{
{

öE(ë) ⊗ eë if ë ∈ E∘,
0 if ë ∉ Σ − E∘.

Lemma 5.8. If for each 1 ≤ j, j� ≤ card(P), j ̸= j�, and for arbitrary functions f , g ∈ L2(ℝd), êj, êj� ∈ S one has

(⟨f , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa ⊥ (⟨g, ðë−êj�
(ã1)uë−êj� ⟩)ã1∈ΓbΓa

for ë ∈ Λ, then L(Γ)(õ) is an orthonormal basis for the Hilbert spaceH(e, E∘).

Proof. Let ÷ be any arbitrary element in

H(e, E∘) =
card(P)
⨁
j=1

H(e, Aj)

such that ÷ = ∑card(P)j=1 ÷j for ÷j ∈ H(e, Aj). Let r(ë) = |det B(ë)|. Then

‖÷j‖
2
H(e,Aj)
= ∫

Aj

‖P÷j(ò)‖
2
HSr(ò) dò.

Next, it is easy to see that
‖÷j‖

2
H(e,Aj)
= ∫

Λ

‖P÷j(ë − êj)‖
2
HSr(ë − êj) dë.

Let P÷j(ë − êj) = (wë−êj ⊗ eë−êj ) ∈ L
2(ℝd) ⊗ eë−êj for ë ∈ Λ. Then

card(P)
∑
j=1

‖÷j‖
2
H(e,Aj)
=
card(P)
∑
j=1

∫
Λ

∑
ã1∈ΓbΓa

|⟨wë−êj , ðë−êj (ã1)uë−êj⟩|
2r(ë − êj) dë

= ∫
Λ

∑
ã1∈ΓbΓa

card(P)
∑
j=1

|⟨wë−êj , ðë−êj (ã1)uë−êj⟩|
2r(ë − êj) dë. (5.2)

We would like to be able to state that for ë ∈ E∘,

∑
ã1∈ΓbΓa

card(P)
∑
j=1

|⟨wë−êj , ðë−êj (ã1)uë−êj⟩|
2 = ∑

ã1∈ΓbΓa

!!!!!!!!!

card(P)
∑
j=1

⟨wë−êj , ðë−êj (ã1)uë−êj⟩
!!!!!!!!!

2

. (5.3)

Indeed, letting (bã1 (ë))ã1∈ΓbΓa ∈ l
2(ΓbΓa) such that (bã1 (ë))ã1∈ΓbΓa is a sum of card(P)-many sequences of the

type (bjã1 (ë))ã1∈ΓbΓa such that

(bã1 (ë))ã1∈ΓbΓa =
card(P)
∑
j=1

(⟨wë−êj , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa =
card(P)
∑
j=1

(bjã1 (ë))ã1∈ΓbΓa ,

we compute the norm of the sequence (bã1 (ë))ã1∈ΓbΓa in two di�erent ways. First,

‖(bã1 (ë))ã1∈ΓbΓa‖
2 = ∑

ã1∈ΓbΓa

|bã1 (ë)|
2 = ∑

ã1∈ΓbΓa

!!!!!!!!!

card(P)
∑
j=1

⟨wë−êj , ðë−êj (ã1)uë−êj⟩
!!!!!!!!!

2

.
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Second

‖(bã1 (ë))ã1∈ΓbΓa‖
2 =

"""""""""

card(P)
∑
j=1

(bjã1 (ë))ã1∈ΓbΓa

"""""""""

2

=
card(P)
∑
j=1

‖(bjã1 (ë))ã1∈ΓbΓa‖
2

=
card(P)
∑
j=1

‖(⟨wë−êj , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa‖
2

=
card(P)
∑
j=1

∑
ã1∈ΓbΓa

|⟨wë−êj , ðë−êj (ã1)uë−êj⟩|
2.

The second equality above is due to the fact that we assume that for j ̸= j�,

(⟨wë−êj , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa ⊥ (⟨wë−êj� , ðë−êj (ã1)uë−êj� ⟩)ã1∈ΓbΓa for ë ∈ Λ.

Thus, the equality given in (5.3) holds.
Next, coming back to (5.2), we obtain

card(P)
∑
j=1

‖÷j‖
2
H(e,Aj)
= ∑

ã1∈ΓbΓa

∫
Λ

|aã1 (ë)|
2 dë where aã1 (ë) =

card(P)
∑
j=1

⟨wë−êj ,

qj,ã1 (ë)⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
ðë−êj (ã1)uë−êjr(ë − êj)

1/2⟩.

Writing ë(m) = e2ði⟨ë,m⟩, it follows that
card(P)
∑
j=1

‖÷j‖
2
H(e,Aj)
= ∑

ã1∈ΓbΓa

‖aã1‖
2
L2(Λ)

= ∑
ã1∈ΓbΓa

‖âã1‖
2
l2(ℤn−2d)

= ∑
ã1∈ΓbΓa

∑
m∈ℤn−2d

|âã1 (m)|2

= ∑
ã1∈ΓbΓa

∑
m∈ℤn−2d

!!!!!!!!!
∫
Λ

aã1 (ë)ë(m) dë
!!!!!!!!!

2

= ∑
ã1∈ΓbΓa

∑
m∈ℤn−2d

!!!!!!!!!

card(P)
∑
j=1

∫
Λ

⟨wë−êj , qj,ã1 (ë)⟩ë(m) dë
!!!!!!!!!

2

.

Next, letting
ë(m) = e2ði⟨ë,m⟩ = e−2ði⟨ë,m⟩,

we obtain that
card(P)
∑
j=1

‖÷j‖
2
H(e,Aj)
= ∑

ã1∈ΓbΓa

∑
m∈ℤn−2d

!!!!!!!!!
∫
Λ

card(P)
∑
j=1

⟨wë−êj , ë(m)qj,ã1 (ë)⟩ dë
!!!!!!!!!

2

= ∑
ã∈Γ

!!!!!!!!!
∫
E∘

⟨P÷(ò), ðò(ã)

Põ(ò)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
|ò|−1/2uò ⊗ eò⟩HS|ò| dò

!!!!!!!!!

2

= ∑
ã∈Γ

!!!!!!!!!
∫
E∘

⟨P÷(ò), ðò(ã)Põ(ò)⟩HS|ò| dò
!!!!!!!!!

2

= ∑
ã∈Γ

|⟨÷, L(ã)õ⟩H(e,E∘)|
2.

Finally, we arrive at the following fact:

‖÷‖2H(e,E∘) = ∑
ã∈Γ

|⟨÷, L(ã)õ⟩H(e,E∘)|
2.

Thus, L(Γ)õ is a Parseval frame forH(e, E∘).
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Now, we compute the norm of the vector õ. Since

Põ(ë) = (uë ⊗ eë)|det B(ë)|
−1/2 and uë = |det B(ë)|

1/2öE(ë),

we have
Põ(ë) = (|det B(ë)|1/2öE(ë) ⊗ eë)|det B(ë)|

−1/2 = öE(ë) ⊗ eë.

Since E(ë) is a fundamental domain forℤd, it follows that

‖õ‖2H(e,E∘) = 1.

Finally, because L is a unitary representation, and using the fact that L(Γ)õ forms a unit norm Parseval frame,
it follows that L(Γ)õ forms an orthonormal basis inH(e, E∘).

Lemma 5.9. Ifõ satisfies all conditions given in Lemma5.8, then ‖Põ(ë)‖HS = 1 forë ∈ E∘ andõ is anadmissible
vector for the representation (L,H(e, E∘)).

Proof. For any given ë ∈ E∘,

‖P(õ)(ë)‖2HS = ‖uë ⊗ eë|det B(ë)|
−1/2‖2HS = |det B(ë)|

−1‖uë‖
2
L2(ℝd) = 1.

Since N is unimodular, and since ì(E∘) < ∞, it follows from [4, p. 126] that (L,H(e, E∘)) is an admissible
representation ofN and õ is an admissible vector for the representation (L,H(e, E∘)).

Remark 5.10. A proof of Theorem 3.3 is derived by applying Proposition 5.2, Lemma 5.8 and Lemma 5.9.

5.3 Additional observations

Letm be the Lebesgue measure onℝn−2d. Given two measurable sets A, B ⊆ ℝn−2d,

A Δ B = (A − B) ∪ (B − A)

is the symmetric di�erence of the sets. Now, let us assume that there exists a fundamental domainΛ ofℤn−2d

such that
m(E∘ Δ (⋃

j∈S

(Λ + kj))) = 0.

That is, up to a set of Lebesgue measure zero, E∘ is a finite disjoint union of sets which are ℤn−2d-congruent
to a fundamental domain of ℝn−2d. We acknowledge that this is a very strong condition to impose. However,
under this condition, we would like to present some simple su�cient conditions for the statement

(⟨f , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa ⊥ (⟨g, ðë−êj�
(ã1)uë−êj� ⟩)ã1∈ΓbΓa

given in Lemma 5.8.

Lemma 5.11. Let us assume that there exists a fundamental domain Λ ofℤn−2d such that

m(E∘ Δ (⋃
j∈S

(Λ + kj))) = 0.

For j ̸= j�, ë ∈ Λ and uë−êj , uë−êj� ∈ L
2(ℝd) as given in Lemma 5.8, if for any fixedm ∈ ℤd,

⋃
ês∈S

B(ë − ês)
tr(E(ë − ês) + m) is a subset of a fundamental domain forℤd

and if
B(ë − êj)

tr(E(ë − êj) + m) ∩ B(ë − êj� )
tr(E(ë − êj� ) + m)

is a null set, then
(⟨f , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa ⊥ (⟨g, ðë−êj�

(ã1)uë−êj� ⟩)ã1∈ΓbΓa

for all f , g ∈ L2(ℝd).
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Proof. Clearly, in order to compute the inner product of the sequences

(⟨f , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa , (⟨g, ðë−êj�
(ã1)uë−êj� ⟩)ã1∈ΓbΓa ∈ l

2(ΓbΓa),

we need to calculate a formula for the following sum:

∑
ã1∈ΓbΓa

(⟨f , ðë−êj (ã1)uë−êj⟩⟨g, ðë−êj�
(ã1)uë−êj� ⟩).

First,
⟨f , ðë−êj (ã1)uë−êj⟩ = ∫

ℝ

f(t)ðë−êj (ã1)uë−êj (t) dt = ∫
ℝ

f(t)e2ði⟨l,B(ë−êj)trt⟩uë−êj (t − m) dt.

Put s = B(ë − êj)trt. We recall that uë = |det B(ë)|1/2öE(ë). So,

⟨f , ðë−êj (ã1)uë−êj⟩ = ∫
B(ë−êj)tr(E(ë−êj)+m)

f(B(ë − êj)
−trs)

|det B(ë − êj)|1/2
e−2ði⟨l,s⟩ ds.

Similarly,

⟨g, ðë−êj�
(ã1)uë−êj� ⟩ = ∫

B(ë−êj� )
tr(E(ë−êj� )+m)

g(B(ë − êj� )
−trs)

|det B(ë − êj� )|1/2
e−2ði⟨l,s⟩ ds.

If for ë − êj ∈ Aj,
⋃
ês∈S

B(ë − ês)
tr(E(ë − ês) + m)

is a subset of a fundamental domain ofℤd for distinct êj, êj� ∈ S, and if

B(ë − êj)
tr(E(ë − êj) + m) ∩ B(ë − êj� )

tr(E(ë − êj� ) + m)

is a null set, then
(⟨f , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa ⊥ (⟨g, ðë−êj�

(ã1)uë−êj� ⟩)ã1∈ΓbΓa
because (⟨f , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa and (⟨g, ðë−êj�

(ã1)uë−êj� ⟩)ã1∈ΓbΓa are Fourier inverses of the following ortho-
gonal functions:

èf ,ë,j,m(s) = öB(ë−êj)tr(E(ë−êj)+m)(s)
f(B(ë − êj)

−trs)

|det B(ë − êj)|1/2
, (5.4)

respectively

èg,ë,j� ,m(s) = öB(ë−êj� )tr(E(ë−êj� )+m)(s)
g(B(ë − êj� )

−trs)

|det B(ë − êj� )|1/2
. (5.5)

In fact, we think of the functions above (5.4), (5.5) as being elements of L2(Im,ë) such that Im,ë is a fundamental
domain forℤd. Combining the observations made above, we obtain that for any f , g ∈ L2(ℝd),

∑
ã1∈ΓbΓa

⟨f , ðë−êj (ã1)uë−êj⟩⟨g, ðë−êj�
(ã1)uë−êj� ⟩ = ∑

m∈ℤd
∑
l∈ℤd

( ∫
Im,ë

èf ,ë,j,m(s)e
−2ði⟨l,s⟩ ds)( ∫

Im,ë

èg,ë,j� ,m(s)e−2ði⟨l,x⟩ dx)

= ∑
m∈ℤd

∑
l∈ℤd

è̂f ,ë,j,m(l)è̂g,ë,j� ,m(l)

= ∑
m∈ℤd

= 0⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑
l∈ℤd

è̂f ,ë,j,m(l)è̂g,ë,j� ,m(l)

= 0.

Thus
(⟨f , ðë−êj (ã1)uë−êj⟩)ã1∈ΓbΓa ⊥ (⟨g, ðë−êj�

(ã1)uë−êj� ⟩)ã1∈ΓbΓa .

This concludes the proof.
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In light of Lemma 5.8 and Lemma 5.11, the following holds true.

Proposition 5.12. Let us assume that there exists a fundamental domain Λ ofℤn−2d such that

m(E∘ Δ (⋃
j∈S

(Λ + kj))) = 0.

If ⋃ês∈S
B(ë − ês)

tr(E(ë − ês) + m) is a subset of a fundamental domain ofℤd and if

B(ë − êj)
tr(E(ë − êj) + m) ∩ B(ë − êj� )

tr(E(ë − êj� ) + m)

is a null set for ë ∈ Λ form ∈ ℤd and for distinct êj, êj� ∈ S, then L(Γ)(õ) is an orthonormal basis for the Hilbert
spaceH(e, E∘).

5.4 Examples

Example 5.13. Let N be a nilpotent Lie group with Lie algebra spanned by the vectors Z1, Z2, Y1, Y2, X1, X2

with the following non-trivial Lie brackets:

[X1, Y1] = Z1, [X2, Y2] = Z2.

In this example, the discrete set

Γ = exp(ℤZ1 + ℤZ2) exp(ℤY1 + ℤY2) exp(ℤX1 + ℤX2)

is actually a uniform subgroup of the Lie groupN. Moreover,N is a direct product of two Heisenberg groups
and satisfies all properties described in Condition 1.1. Next, we will apply Theorem 3.3 to show that there
exists a left-invariant subspace of L2(N) which is a Γ-sampling space with the interpolation property. First,
it is easy to check that

ì(E) = ì({(ë1, ë2) ∈ ℝ
2 : ë1ë2 ̸= 0 and |ë1ë2| ≤ 1}) = ∞.

Now, let R = [−1, 1]2. Then

ì(E ∩ R) =
1

∫
−1

1

∫
−1

|ë1ë2| dë1dë2 = 1.

Next, we observe for each ë ∈ E ∩ R, [0, 1)2 tilesℝ2 byℤ2 and packsℝ2 by

B(ë)−tr [
ë1 0
0 ë2

]
−1

ℤ2.

Next, it is not too hard to check that

E∘={(ë1, ë2) ∈ [−1, 1]
2 : ë1ë2 ̸= 0}

and
m(E∘ Δ (⋃

j∈S

([0, 1)2 + j))) = 0

where

S = {[
0
0
] , [
−1
0
] , [
−1
−1

] , [
0
−1

]}.

Moreover, for ë ∈ [0, 1)2 and form ∈ ℤ2, we define

Më,1 = [
ë1 0
0 ë2

] , Më,2 = [
ë1 − 1 0

0 ë2 − 1
] , Më,3 = [

ë1 − 1 0
0 ë2

] , Më,4 = [
ë1 0
0 ë2 − 1

] ,

Së,1,j = Më,1((0, 1)
2 + j), Së,2,j = Më,2((0, 1)

2 + j), Së,3,j = Më,3((0, 1)
2 + j), Së,4,m = Më,4((0, 1)

2 + j).
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We observe that for all j ∈ ℤ2,⋃4
k=1 Së,k,j is a subset of a fundamental domain forℤ2 and Së,ℓ1 ,j ∩ Së,ℓ2 ,j is a null

set for distinct ℓ1, ℓ2 and for almost every ë ∈ (0, 1)2. Let õ ∈ H(e, E∘) such that

Põ(ë) = ö[0,1)2 (t) ⊗ ö[0,1)2 (t).

According to Theorem 3.3 and Proposition 5.12, L(Γ)õ is an orthonormal basis forH(e, E∘) andWõ(H(e, E
∘)) is

a Γ-sampling space with the interpolation property.

Example 5.14. Put á = (ð2 )
1/4. Let N be a nilpotent Lie group with Lie algebra spanned by the vectors

Z1, Z2, Y1, Y2, X1, X2 with the following non-trivial Lie brackets:

[X1, Y1] = áZ1, [X1, Y2] = −áZ2, [X2, Y1] = áZ2, [X2, Y2] = áZ1.

Here

B(ë) = [
áë1 −áë2

áë2 áë1
]

and
Γ = exp(ℤZ1 + ℤZ2) exp(ℤY1 + ℤY2) exp(ℤX1 + ℤX2).

Next, the Plancherel measure is á2(ë2
1 + ë

2
2) dë1dë2 and it is supported on the manifold

Σ = {(ë1, ë2) ∈ ℝ
2 : (ë1, ë2) ̸= (0, 0)}.

Now, we have
E = {(ë1, ë2) ∈ Σ : ë2

1 + ë
2
2 ≤

1
á2 }

and

ì(E) =
2ð

∫
0

( ð2 )
−1/4

∫
0

r3 dr dè = 1.

Thus, in this example E∘ = E. Next, we partition the set E∘ such that

E∘ = ⋃
j∈S

(([0, 1)2 + j) ∩ E∘)

where

S = {[
0
0
] , [
−1
0
] , [
−1
−1

] , [
0
−1

]}.

For each j ∈ S, put Aj = ([0, 1)
2 ∩ E∘) + j. Next, appealing to Theorem 3.2, for each j ∈ S, there exists some

õj ∈ H(e, Aj) such thatWõj (H(e, Aj)) is a Γ-sampling subspace of L2(N)with sinc-type functionWõj (õj). Also
for each j ∈ S, Wõj (H(e, Aj)) does not have the interpolation property with respect to Γ since ì(Aj) < 1 for
each j ∈ S. Although

"""""""
∑
j∈S

õj
"""""""

2

= 1,

we cannot say that L(Γ)(∑j∈Sõj) is a Parseval frame in

H(e, E∘) =⨁
j∈S

H(e, Aj).

Suppose that we define the map ë Ü→ uë on Σ such that

uë
{
{
{

|det B(ë)|1/2öE(ë) if ë ∈ E∘,
0 if ë ∉ Σ − E∘,

where E(ë) ⊂ ℝ2 tilesℝ2 byℤ2 and packsℝ2 by

B(ë)−tr [

[

ë1
áë2

1+áë
2
2
− ë2

áë2
1+áë

2
2

ë2
áë2

1+áë
2
2

ë1
áë2

1+áë
2
2

]

]
ℤ2.
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Finally, we define õ ∈ L2(N) such that
Põ(ë) =

uë ⊗ eë
√|det B(ë)|

.

According to Theorem 3.3, if for each 1 ≤ j, j� ≤ card(S) with j ̸= j�, for ë ∈ [0, 1)2, for two arbitrary functions
f , g ∈ L2(ℝ2), and for distinct j, j� ∈ S one has

(⟨f , ðë−j(ã1)uë−j⟩)ã1∈ΓbΓa ⊥ (⟨g, ðë−j� (ã1)uë−j�⟩)ã1∈ΓbΓa ,

then Wõ(H(e, E
∘)) is a Γ-sampling space with sinc-type function Wõ(õ). Moreover, Wõ(H(e, E

∘)) has the inter-
polation property as well.

Acknowledgement: Many thanks go to the anonymous referee for a very thorough reading of this paper.
His suggestions, remarks and corrections greatly improved the quality of the work.

References
[1] P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), no. 2, 129–202.
[2] L. Corwin and F. Greenleaf, Representations of Nilpotent Lie Groups and their Applications. Part I: Basic Theory and

Examples, Cambridge Stud. Adv. Math. 18, Cambridge University Press, Cambridge, 1990.
[3] B. Currey and A. Mayeli, A density condition for interpolation on the Heisenberg group, Rocky Mountain J. Math. 42 (2012),

no. 4, 1135–1151.
[4] H. Führ, Abstract Harmonic Analysis of Continuous Wavelet Transforms, Lecture Notes in Math. 1863, Springer-Verlag,

Berlin, 2005.
[5] D. Han and Y. Wang, Lattice tiling and the Weyl Heisenberg frames, Geom. Funct. Anal. 11 (2001), no. 4, 742–758.
[6] V. Oussa, Bandlimited spaces on some 2-step nilpotent Lie groups with one Parseval frame generator, preprint (2012), http:

//arxiv.org/abs/1111.5559; to appear in Rocky Mountain J. Math.
[7] V. Oussa, Sinc type functions on a class of nilpotent Lie groups, Adv. Pure Appl. Math. 5 (2014), no. 1, 5–19.
[8] G. Pfander, P. Rashkov and Y. Wang, A geometric construction of tight multivariate Gabor frames with compactly supported

smooth windows, J. Fourier Anal. Appl. 18 (2012), no. 2, 223–239.

Received February 23, 2014; revised July 7, 2014.

Brought to you by | EP Ipswich
Authenticated

Download Date | 3/7/16 9:12 AM

http://arxiv.org/abs/1111.5559
http://arxiv.org/abs/1111.5559

	Bridgewater State University
	Virtual Commons - Bridgewater State University
	2016

	Sampling and Interpolation on Some Nilpotent Lie Groups
	Vignon Oussa
	Virtual Commons Citation


	tmp.1473602004.pdf.nHttg

