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ABSTRACT
The accuracy of mass estimates by gravitational lensing using the thin-lens approximation
applied to Navarro–Frenk–White mass models with a soft truncation mechanism recently
proposed by Baltz, Marshall and Oguri is studied. The gravitational lens scenario considered
is the case of the inference of lens mass from the observation of Einstein rings (strong lensing).
It is found that the mass error incurred by the simplifying assumption of thin lenses is below
0.5 per cent. As a byproduct, the optimal tidal radius of the soft truncation mechanism is found
to be at most 10 times the virial radius of the mass model.
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1 IN T RO D U C T I O N

In recent years gravitational lensing has become the main tool in use
to estimate the amount and distribution of matter of astrophysical
systems of various kinds and sizes, from single compact objects
to clusters of galaxies. Some very wide ranging predictions rest
on the accuracy of such mass estimates, most notably the value of
the dark energy density and, with it, the time since the big bang.
The predictive power of gravitational lensing as a tool to study
individual deep objects also hinges heavily on the accuracy of the
method. Consequently, any studies of the degree of accuracy of
the method are naturally warranted. In this paper we describe a
study that provides a quantitative measure of the degree of accuracy
of the method in a particular context. Together with those of a
previous study of ours (Kling & Frittelli 2008), these results are
among the first quantitative estimates of the accuracy of the thin-
lens approximation applied to gravitational lensing systems.

Our conceptualization of a gravitational lensing system is as fol-
lows. There is a physical ‘lens’ that gravitationally disturbs the
path of light rays from a source to the observer. The theoretical
framework for this situation would be a space–time with a metric
that solves the Einstein equations with a mass density source that
describes the lens. The light rays from the source to the observer
would be null geodesics connecting both points. Even though the
gravitational lensing event in itself (the null rays) is very amenable
to a straightforward computational strategy, there is an intrinsic
difficulty with this theoretical framework: the metric. This is deter-
mined by the mass density of the lens, also known as the density
profile, and this, at this time, is still subject to modelling.

�E-mail: frittelli@duq.edu (SF); tkling@bridgew.edu (TPK)

The conventional approach consists in making use of the thin-lens
approximation to calculate the bending of light rays. The conven-
tional approach also makes use of the density profile assumed for
the physical system. However, the quantities of interest in the con-
ventional approach require a set of manipulations on the density
profile that differ significantly from those needed in the theoretical
framework. One significant difference resides in the fact that most
quantities of interest in the conventional approach require the mass
density integrated along the line of sight, a quantity referred to as
the projected mass.

The conditions that a mass density must meet as a function in
space in order to be useful for the conventional approach are much
weaker than what is needed for the theoretical framework. The con-
ventional approach admits density profiles that are not integrable
over all space, namely, that have slow fall-off rates (slower than
r−3). Admittedly, such density profiles are unphysical in the sense
that they do not represent the isolated systems that they intend to
model. Nevertheless, they continue to be used because they are
known to be a close approximation to the underlying physical sys-
tem within a finite region centred on the lens. The question arises
as to how to ‘terminate’ such unphysical density profiles in the re-
gion where the approximation is not valid anymore (i.e. far from
the lens).

The simplest way to terminate an unphysical density profile is by
‘hard’ truncation, that is: by setting the profile discontinuously to
zero beyond some radius. Arguably, this mechanism results in a den-
sity profile with questionable physical sense, especially because the
truncation radius is largely arbitrary but also because discontinuous
truncation introduces significant spurious magnification of images.
However, the underlying system may be better approximated by
such a drastically truncated density profile than by a non-integrable
one, so the method is not devoid of merit.
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Alternatively to hard truncations, various ‘soft’ truncation mecha-
nisms have been proposed, which normally consist of multiplicative
factors that speed-up the fall-off rate of the density profile in order
to ensure a finite total mass.

In the present work we investigate how well the conventional
approach to gravitational lensing estimates the mass of a lens, com-
pared to the theoretical prediction. There are several subtleties as-
sociated with this seemingly straightforward task. To start with, the
physical system itself (the actual density profile of a cluster in all
space) is not known. What is known is a good representation of
the density profile within a certain radius, referred to as the virial
radius. Since the ‘true’ density profile of the lens must be integrable
over all space, we take the view that a profile with a finite total mass
is the ‘true’ system, and any other profile with a fall-off rate slower
than r−3 is an approximation to the true system, whose degree of
accuracy must be quantified. In this view, a profile with an infinite
total mass takes second seat to its truncated version, regardless of
the truncation mechanism. This may sound contrary to prevailing
practice, but is absolutely necessary to our goal because, in the the-
oretical framework, non-physical profiles result in inaccurate light
rays.

Taking a given truncated profile as the ‘true’ physical system,
there are thus two different approximations to quantify in relation
to the ‘true’ mass of the system as predicted by the theoretical
approach: the error introduced by the thin-lens approximation and
the further error introduced by the use of a profile that is integrable
along the line of sight but which results in an infinite total mass. In
this paper we refer to the latter as the error introduced by ‘removal
of truncation’, for lack of a better phrase. Both errors are quantified
in the present work within a given family of density profiles.

One can, and probably should, think of the truncation mechanism
itself as an approximation: soft versus hard, for instance, or different
kinds of soft truncation, all applied to the same model. In that case,
it makes sense to quantify the error introduced by the truncation
mechanism as a third source of inaccuracy in the mass estimates.
We are able to provide an estimate of the truncation mechanism
error by comparing mass predictions using soft and hard truncation
schemes for the same class of density profiles.

The gravitational lens scenario considered is the case of the in-
ference of lens mass from the observation of Einstein rings (strong
lensing). The family of density profiles of interest is described in
Section 2. The mass prediction by the conventional approach is dis-
cussed in Section 3. The calculation of the ‘true’ mass as predicted
by the theoretical framework is found in Section 4. The results of
our study are found in Sections 5 and 6. We conclude in Section 7
with some remarks of interest that follow from our study.

2 DA R K M AT T E R H A L O E S

Numerical modelling of dark matter haloes predicts a density profile
of the form (Navarro, Frenk & White 1997)

ρ(r)

ρcrit
= δc(

r
rs

) (
1 + r

rs

)2 , (1)

hereafter referred to as the NFW model, where ρ crit is the critical
density (given by 3H (z)2/8πG in terms of the gravitational constant
and Hubble’s constant at the lens redshift), rs is a scale radius defined
as the peak of r2ρ(r), and δc is a characteristic density contrast. A
‘virial’ radius is defined as the radius r200 of the sphere with mean
density equal to 200ρcrit, and is used to identify collapsed particle
systems in numerical simulations. The ratio r200/rs ≡ c is referred

to as the halo’s concentration. By definition of the virial radius one
has, as a consequence,

δc = 200

3

c3

log(1 + c) − c/(1 + c)
. (2)

Falling off as r−3, the NFW profile is not integrable over all
space, which is interpreted as an indication that the model fails at
large radius. Hence, a truncation mechanism is needed for long-
range applications, such as gravitational lensing. Two truncation
mechanisms for the NFW model have been used: hard truncation
(Takada & Jain 2003; Kling & Frittelli 2008) and smooth truncation
(Baltz, Marshall & Oguri 2009). The hard-truncation mechanism
consists of discontinuously terminating the model by assuming that
the mass density is identically vanishing outside a given radius. In
the lack of good knowledge pertaining to halo edges, the choice
of termination radius is largely arbitrary. The common choice has
been to terminate the NFW model at the virial radius.

The smooth truncation mechanism of Baltz et al. (2009) consists
of multiplying the NFW profile by a factor that falls off at least
like r−2, being close to one within small values of r. This mechanism
yields a sufficiently fast decay to ensure a finite total mass (at least
r−5), while preserving the original profile within a finite radius,
within some accuracy. The smoothly truncated profile of Baltz et al.
(2009) is

ρn(r) = δcρcrit(
r
rs

) (
1 + r

rs

)2
(

1 +
(

r
rt

)2
)n , (3)

where n is a positive integer and rt is a parameter referred to as the
tidal radius. For the purposes of the current investigation, we restrict
attention to the case n = 1, hereafter referred to as the truncated
profile. For notational convenience we use ρ0 for the NFW model,
since clearly the expression (3) reduces to the NFW model (1)
for n = 0. If we use a rescaled coordinate x ≡ r/rs, the virial
radius would be located at x = c and the tidal radius would be at
x = τ ≡ rt/rs. At any given radius x, the truncated profile ρ1 differs
from the NFW profile ρ0 by

ρ1(x) − ρ0(x)

ρ0(x)
= − x2

x2 + τ 2
. (4)

As a consequence, one way to interpret the tidal radius is as the
radius at which the profiles differ by 50 per cent. At the virial radius
the profiles differ by

ρ1(c) − ρ0(c)

ρ0(c)
= − 1

1 + (
τ
c

)2 . (5)

Large values of the tidal radius τ relative to the virial radius thus
ensure that the truncated profile remains sufficiently close to the
NFW profile within the virial radius. For the profiles to differ by 10
per cent or less at any point within the virial radius, the tidal radius
needs to be chosen as τ = 3c or larger. For this range of values of τ ,
the virial mass (the mass contained within the virial radius) of the
truncated profile differs from the virial mass of the NFW profile by
less than 3 per cent.

On the other hand, for large values of the tidal radius the trun-
cated profile approaches the NFW profile, acquiring the undesirable
features of the NFW model, such as a very large unrealistic total
mass. The optimal value of τ would thus be the smallest possi-
ble value that yields the desired accuracy within the virial radius,
which is somewhat arbitrary itself. Baltz et al. (2009) justify the
choice of τ = 2c on the basis that for this tidal radius the virial
mass of the truncated profile differs from the NFW virial mass by
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only 6 per cent. With this choice, however, the profiles themselves
differ by up to 20 per cent at the virial radius, a difference that may
be considered significant. At any rate, the tidal radius should not
be viewed as an independent parameter but should be considered
a function of the concentration parameter. With this assumption,
the models have two free parameters: the concentration parameter
c and the scale radius rs.

3 MASS ESTIMATES BY THIN-LENS
GRAV ITATIONA L LENSING

We are interested in estimating the error in the prediction of the mass
of a cluster by the observation of Einstein rings produced by the
perfect alignment of a source of light behind a massive spherically
symmetric deflector along the line of sight. In the usual manner
(Schneider, Ehlers & Falco 1992), the radius s of the Einstein ring
on the deflector’s plane (perpendicular to the line of sight) at a
distance Dl from us is the root of the lens equation:

1 − Mn(s)

�crπs2
= 0. (6)

where Mn(s) is the projected mass within a distance s to the centre
of the lens:

Mn(s) ≡ 2π

∫ s

0
s ′ds ′

∫ ∞

−∞
ρn

(√
s ′2 + �2

)
d�. (7)

The constant �cr is the characteristic surface mass density, given by

�cr = c2

4πG

Ds

DlDls
, (8)

where Ds is the distance to the source, Dls is the distance between the
lens and the source, G is the universal gravitational constant and c is
the speed of light, not to be confused with the NFW concentration
parameter.

For a given configuration of source and lens, different spherically
symmetric models ρn will predict different sizes of Einstein rings by
virtue of the difference in their projected masses Mn(s). In principle,
given a known Einstein ring and known source and lens locations,
equation (6) determines the concentration c0 or c1 of the NFW
model or the truncated model, respectively, as functions of the scale
radius rs. Different concentrations c0 and c1 would lead to different
predicted virial masses. In practice, we fix the value of the scale
radius, the Einstein ring’s angle and the distances to the lens and
the source, and determine the concentration by numerically solving
equation (6) for cn to high accuracy using a standard bisection
algorithm.

The value of the concentration parameter determines the virial
mass of the model M200

n by:

M200
n ≡ 4π

∫ cnrs

0
r2ρn(r) dr (9)

which, in the case of n = 0, is equivalent to M200
0 ≡ c3

0π
800
3 ρcritr

3
s .

4 MASS ESTIMATES BY NUMERICAL
I N T E G R AT I O N O F TH E L I G H T R AY S

The standard gravitational lensing formalism, leading to equa-
tion (6), assumes that the light rays from the source to the observer
are straight lines with sharp bending at the plane containing the
deflector. The bending and all its consequences are obtained by
‘projecting’ the mass density along the line of sight, namely, by
integrating the mass density along the line of sight. This formalism
is shadowed by a general relativistic formalism in which the light

rays from the source to the observer curve according to the geodesic
equation of the metric of space–time. The space–time in this case
is a lens with a weak gravitational field located on a expanding
cosmological background. The lens is described by the truncated
model ρ1.

There is some leeway as to how to put together the metrics of
an isolated lens and that of a Friedman–Robertson–Walker cosmol-
ogy, in the sense that, to our knowledge, a rigorous and complete
derivation of the Einstein equations valid for the particular case of
an isolated lens on a cosmological background is still lacking. The
Einstein equations matter because the motion of the space–time af-
fects the matter density, which affects the metric in turn. So long as
the rigorous results remain outstanding, plausible (if unproven) de-
scriptions of the behaviour of the matter in the lens may need to be
used. A widely accepted notion, supported by preliminary results, is
that the matter distribution in a cluster of galaxies does not partake
of the general expansion (namely, clusters do not Hubble-expand
internally, see for instance Cooperstock, Faraoni & Vollick 1998).
This can be modelled with a metric that approaches the standard
cosmology at large distances from the lens, but which, in the vicin-
ity of the lens itself, is indistinguishable from an isolated lens in flat
space. Such a metric would be of the form

ds2 = (1 + 2ϕ(r, t)) dt2

− a(t)2(1 − 2ϕ(r, t)){dr2 + r2(dθ 2 + sin2 θ dφ2)}, (10)

where ϕ represents the non-expanding isolated lens centred at r = 0.
Wherever the function ϕ is not negligibly small, the space part of the
metric would be equivalent to that of an isolated lens on flat space if
ϕ(r, t) is the Newtonian potential of the lens in proper coordinates,
namely ϕ(r, t) = U(a(t)r) with ∇2U = 4πGρ1. By requiring the
solution of this equation to vanish at infinity and be finite at the
origin, the Newtonian potential U of the mass distribution ρ1 is
found to be

U (x) = Gm

rs

τ 2

(1 + τ 2)2

[
arctan(x/τ )

(
1

τ
− τ − 2

τ

x

)

+ ln

(
1 + (x/τ )2

(1 + x)2

)(
τ 2 − 1

2x
− 1

)
+ π(τ 2 − 1)

2τ
− 2 ln τ

]

(11)

with x ≡ r/rs. Here m ≡ 4πr3
s δcρcrit.

The function ϕ(r, t) is obtained by the substitution r → a(t)r in
equation (11), and is, in principle, a time-varying function. However,
the time variation is extremely slow in the conditions of observable
lensing, where the source and observer are very far away from the
lens. Since ϕ is relevant only in the vicinity of the lens, one could
substitute the time-varying a(t) with a constant a(tl) with tl being a
representative time at which the light ray being considered reaches
the vicinity of the lens. A posteriori, we find that the results of the
numerical calculations that follow are not significantly affected by
the choice of fixing the value of a(t) to a constant, so we follow
common practice and set

ϕ(r, t) = U (a(tl)r) (12)

for use in the metric (10). This has the additional advantage that
in these conditions the metric (10) is conformally static, as as-
sumed in Schneider et al. (1992), and thus the well-known phe-
nomena associated with lenses follow as per that text, including
equation (6).
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In the standard cosmology, the expansion parameter a(t) is given
by

a(t) =
(

�m

��

)1/3 {
sinh

(
3H0

√
��t

2

)}2/3

, (13)

with H0 = 70 km s−1 Mpc−1, �m = 0.3 and �� = 0.7 = 1 − �m.
Since the metric is spherically symmetric, we can restrict at-

tention to the equatorial plane without loss of generality. The null
geodesic equations are equivalent to the the Euler–Lagrange equa-
tions of the Lagrangian:

L = (1 + 2ϕ)ṫ2 − a2(t)(1 − 2ϕ){ṙ2 + r2φ̇2} = 0. (14)

The Lagrangian is set to zero because the geodesics are null. The
Euler–Lagrange equations are equivalent to five first-order ODEs,
which we can write as

ṫ = vt

ṙ = vr

v̇t = −da

dt

v2
t

a
− 2(1 − 2ϕ)

∂ϕ

∂r
vtvr

v̇r = −2vtvr

a

da

dt
+ 4

ϕ

a2

∂ϕ

∂r
v2

t

− 2b2

a4r2

∂ϕ

∂r
(1 + 6ϕ) + b2

a4r3
(1 + 4ϕ)

φ̇ = − b

a2r2
(1 + 2ϕ). (15)

These equations are accurate to first order in ϕ. The parameter b
is a constant of integration and is related to the ‘observation angle’
at the observer, or the angle between the light ray and the optical
(radial) axis connecting the observer to the lens as explained in
Kling & Frittelli (2008):

sin θobs = θobs = b

r0
(1 + 2ϕ0), (16)

where the potential ϕ0, is evaluated at the observer position, r0.
By integrating the equations of motion from a given point, for a

specified set of parameters (rs, c) describing the matter density, one
finds a specific light ray passing through that point. Our scheme
for a mass prediction is based on light rays making Einstein rings,
for which the source, lens and observer are collinear and are at
known distances from each other. So the beginning and end point
of the null geodesics being sought are known. In these conditions,
for every observed Einstein ring θobs, as per equation (16), there
is an associated set of values of (rs, c) that are consistent with the
observed angle as well as the fixed configuration of lens, source
and observer. As in the case of the prediction by the thin-lens
gravitational lens formalism, in practice we fix rs and find c using
Newton’s method and a ray shooting technique. The ray shooting
technique consists essentially of integrating rays for a given value of
c and seeing where they land with respect to the end point aimed at,
either in front of it or behind it, subsequently adjusting c accordingly,
until the ray integrated lands sufficiently close to the target, within a
specified accuracy. In practice, the integration is done from observer
to source.

Table 1. The concentration parameters and relative errors in the virial mass for a set of hypothetical lensing systems assuming
that the true system has a density profile ρ1 with a scale radius of rs = 0.25 Mpc and τ = 3c. We give the true c value, and values
obtained by thin-lens approximations using a density profile ρ1 (c1) and an NFW profile ρ0 (c0). The virial radius quoted, r200,
is the one calculated using the true c value. The true mass, M200 is given in units of 1015 solar masses.

τ = 3c

System θE r200 (Mpc) c c1 c0 M200 (1015 M	) 1 − M200
1 /M200 1 − M200

0 /M200

10.0 2.05 8.201 8.210 8.204 1.14 −0.0033 −0.0289
zl = 0.2 17.5 2.29 9.153 9.161 9.154 1.60 −0.0028 −0.0274

25.0 2.48 9.939 9.948 9.940 2.04 −0.0026 −0.0264
zs = 0.4 32.5 2.66 10.639 10.648 10.639 2.50 −0.0025 −0.0257

40.0 2.82 11.282 11.291 11.281 2.98 −0.0025 −0.0251

10.0 1.69 6.756 6.763 6.755 0.72 −0.0031 −0.0289
zl = 0.3 17.5 1.91 7.658 7.664 7.655 1.04 −0.0025 −0.0270

25.0 2.10 8.415 8.421 8.410 1.38 −0.0022 −0.0257
zs = 0.8 32.5 2.27 9.093 9.100 9.087 1.74 −0.0021 −0.0248

40.0 2.43 9.720 9.727 9.712 2.12 −0.0020 −0.0240

5.0 1.34 5.376 5.384 5.377 0.36 −0.0045 −0.0319
zl = 0.3 9.0 1.49 5.972 5.979 5.971 0.50 −0.0035 −0.0297

13.0 1.61 6.453 6.459 6.450 0.62 −0.0029 −0.0283
zs = 1.5 17.0 1.72 6.874 6.880 6.870 0.76 −0.0026 −0.0273

21.0 1.81 7.258 7.264 7.253 0.88 −0.0024 −0.0265

10.0 2.05 8.198 8.207 8.199 1.82 −0.0032 −0.0280
zl = 0.6 17.5 2.37 9.466 9.475 9.464 2.80 −0.0029 −0.0262

25.0 2.64 10.546 10.556 10.544 3.86 −0.0029 −0.0251
zs = 0.8 32.5 2.88 11.521 11.533 11.518 5.04 −0.0030 −0.0243

40.0 3.11 12.426 12.439 12.422 6.32 −0.0032 −0.0237

5.0 1.30 5.205 5.214 5.205 0.74 −0.0049 −0.0313
zl = 1.0 9.0 1.48 5.933 5.941 5.930 1.10 −0.0038 −0.0286

13.0 1.63 6.538 6.546 6.533 1.48 −0.0033 −0.0269
zs = 1.5 17.0 1.77 7.078 7.086 7.071 1.88 −0.0030 −0.0257

21.0 1.89 7.576 7.584 7.567 2.30 −0.0029 −0.0247
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For the purposes of integrating the null geodesics, we rescale the
time and radial coordinates by the age of the universe. The equations
of motion are integrated using an adaptive step-size Runge–Kutta–
Fehlberg 4–5 method based on the implementation in (Press et al.
1995). The numerical error is at least 500 times smaller than the
difference between the result by null geodesic integration and the
prediction by the thin-lens formalism.

The value of c found by this method is considered to be the ‘true’
value of the model and is used to predict the ‘true’ virial mass of
the model M200 by equation (9) with n = 1, namely:

M200 ≡ 4π

∫ crs

0
r2ρ1(r) dr. (17)

5 C O M PA R I S O N O F TH E T H I N - L E N S
MASS PREDICTION R ELATIVE
TO THE NULL-GEODESIC PREDICTION

For our first study we arbitrarily choose a series of five reasonable
lensing systems with varying redshifts, and calculate the concentra-
tion parameters (c, c1, c0) by the method of null-geodesics, thin-lens
with truncation and thin-lens with no truncation, respectively. We
do this for τ = 2c and for τ = 3c separately. In all cases, the scale
radius is arbitrarily assumed to be rs = 0.25 Mpc. The results are
shown in Tables 1 and 2.

In all cases, the concentration parameter c1 is slightly higher than
the true value c, whereas c0 is closer to and generally lower than c.
However, the reader should keep in mind that when the virial mass

is used as the parameter for comparison, the relative values of c0 and
c1 are not significant in themselves. The tables show for each case
the errors in the virial masses of the truncated and non-truncated
thin lens models relative to the true model (which is truncated with
no assumption of thin lenses).

We can verify that, whether truncation is applied or not, the use
of the thin-lens approximation overestimates the virial mass of the
system, as the relative errors are negative in all cases.

The sizes of the two separate simplifying assumptions (thin lens
and removal of truncation) are revealed to be very different. The
error incurred by the sole simplifying assumption of thin lenses,
displayed in the column headed by 1 − M200

1 /M200, is generally
between 0.3 and 0.7 per cent for τ = 2c, and between 0.2 and
0.4 per cent for τ = 3c.

By contrast, the error incurred by further removing the truncation
in order to simplify the estimation of the mass is about 6 per cent
for τ = 2c and 3 per cent for τ = 3c. This is the dominant source
of error in the virial mass. Keeping in mind that ‘truncation’ in
this model refers merely to a fast decay, this is not surprising, as
different decay rates lead to significantly different profiles within
the virial radius, as shown in Fig. 1.

For our second study, we consider three observed systems with
symmetrical arcs where one can use an Einstein ring analysis to
determine parameters of the system with confidence. The systems
are RXJ1347−1145, the brightest source in the ROSAT all sky
survey (Sahu et al. 1998); MS2137−23, a relatively structure-
free, four-arc system (Gavazzi et al. 2003); and cluster A of
the high-redshift cluster RCS2319+00 (Gilbank et al. 2008).

Table 2. The concentration parameters and relative errors in the virial mass for a set of hypothetical lensing systems assuming
that the true system has a density profile ρ1 with a scale radius of rs = 0.25 Mpc and τ = 2c. We give the true c value, and values
obtained by thin-lens approximations using a density profile ρ1 (c1) and an NFW profile ρ0 (c0). The virial radius quoted, r200,
is the one calculated using the true c value. The true mass, M200 is given in units of 1015 solar masses.

τ = 2c

System θE r200 (Mpc) c c1 c0 M200 (1015 M	) 1 − M200
1 /M200 1 − M200

0 /M200

10.0 2.05 8.202 8.216 8.204 1.12 −0.0049 −0.0611
zl = 0.2 17.5 2.29 9.156 9.168 9.154 1.54 −0.0040 −0.0579

25.0 2.49 9.944 9.956 9.940 1.98 −0.0035 −0.0558
zs = 0.4 32.5 2.66 10.647 10.656 10.639 2.44 −0.0033 −0.0541

40.0 2.82 11.289 11.300 11.281 2.90 −0.0031 −0.0528

10.0 1.69 6.757 6.770 6.755 0.70 −0.0054 −0.0626
zl = 0.3 17.5 1.92 7.662 7.673 7.655 1.00 −0.0041 −0.0583

25.0 2.11 8.421 8.431 8.410 1.34 −0.0035 −0.0555
zs = 0.8 32.5 2.28 9.102 9.111 9.087 1.70 −0.0031 −0.0533

40.0 2.43 9.731 9.740 9.712 2.08 −0.0029 −0.0515

5.0 1.34 5.374 5.389 5.377 0.34 −0.0087 −0.0696
zl = 0.3 9.0 1.49 5.973 5.986 5.971 0.48 −0.0066 −0.0649

13.0 1.61 6.455 6.467 6.450 0.60 −0.0054 −0.0618
zs = 1.5 17.0 1.72 6.878 6.889 6.870 0.72 −0.0047 −0.0595

21.0 1.82 7.264 7.274 7.253 0.86 −0.0042 −0.0577

10.0 2.05 8.202 8.214 8.199 1.76 −0.0047 −0.0591
zl = 0.6 17.5 2.37 9.472 9.485 9.464 2.72 −0.0039 −0.0551

25.0 2.64 10.556 10.568 10.544 3.76 −0.0036 −0.0525
zs = 0.8 32.5 2.88 11.533 11.547 11.518 4.92 −0.0035 −0.0505

40.0 3.11 12.440 12.455 12.422 6.18 −0.0036 −0.0489

5.0 1.30 5.206 5.221 5.205 0.72 −0.0091 −0.0680
zl = 1.0 9.0 1.48 5.937 5.950 5.930 1.06 −0.0067 −0.0622

13.0 1.64 6.545 6.557 6.533 1.44 −0.0055 −0.0584
zs = 1.5 17.0 1.77 7.087 7.099 7.071 1.82 −0.0048 −0.0555

21.0 1.90 7.587 7.598 7.567 2.24 −0.0044 −0.0532
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Figure 1. Density profiles as functions of the scaled distance x ≡ r/rs. The solid line represents the standard NFW profile x2ρ0(x), with a non-integrable
fall-off. The other three lines represent the n = 1 truncated profiles x2ρ1(x) for three different values of the tidal parameter τ as multiples of the concentration
c. All three truncated profiles have integrable fall-off rates. However, the larger the ratio τ /c, the closer the truncated profile matches the NFW profile within
the virial radius, represented by c as a scaled distance.

Table 3. Three lensing systems analysed in
Figs 2, 3 and 4. System RXJ1347−1145 is from
Sahu et al. (1998), system MS2137+23 is from
Gavazzi et al. (2003) and system RCS2319+00
is from Gilbank et al. (2008).

System zl zs θE (arcsec)

RXJ1347−1145 0.45 0.80 35
MS2137+23 0.313 1.6 16

RCS2319+00A 0.9 3.86 12

Table 3 gives the redshift and arc distribution details of these
clusters.

For each one of these three systems, the Einstein rings are known.
Modelling each system as a truncated ρ1 density profile with τ = 3c

leads to two unknown parameters for each system: the value of
the concentration parameter c and the value of the scale radius
rs. The left panel of Fig. 2 shows the contour plot in the rs − c

plane for the Einstein rings of these three systems. For this plot,
rs was varied arbitrarily and c is the true concentration parame-
ter determined using the null-geodesic integration formalism. In
the right-hand panel of Fig. 2, we show the error in the virial
mass 1 − M200

1 /M200. As the errors are negative, we verify that
the thin-lens approximation overestimates the mass of each system.
For reasonable values of rs and c, the errors are of the order of
0.5 per cent.

Fig. 3 shows the corresponding results for the case that the mod-
elling is done with τ = 2c. One can verify that even though the
concentration parameters do not differ significantly from the ones
in the case of τ = 3c, the accuracy of the mass prediction is reduced

Figure 2. Contour in (rs, c) space (left) and relative error between thin-lens prediction and actual total mass (right) for the three lensing systems modelled as
truncated distributions ρ1 with τ = 3c. Circles correspond to the 35 arcsec arcs in RXJ1347−1145, triangles correspond to the 16 arcsec arcs in MS2137−23,
and squares correspond to the 12 arcsec arcs around cluster A of RCS2319+00.
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Figure 3. Contour in (rs, c) space (left) and relative error between thin-lens prediction and actual total mass (right) for three lensing systems modelled as as
truncated distributions ρ1 with τ = 2c. Circles correspond to the 35 arcsec arcs in RXJ1347−1145, triangles correspond to the 16 arcsec arcs in MS2137−23,
and squares correspond to the 12 arcsec arcs around cluster A of RCS2319+00.

by a factor of 2, as the maximum relative error in the mass is of the
order of 10 per cent.

6 C O M PA R I S O N O F TRU N C AT I O N
MECHANISMS

As indicated in the introduction, one of the fundamental problems
of gravitational lensing is the level of uncertainty in the under-
lying physical model of the lens irrespective of the approxima-
tion method used to make predictions. Here we address some of
the consequences of this uncertainty by calculating the difference
between the virial masses predicted exactly (with null geodesics)
for two different models assumed to represent the same physical
lens.

The two models differ in the truncation mechanism applied to an
NFW lens: soft versus hard truncation. We use a density profile ρ1

with τ = 3c as a softly truncated NFW lens with rs = 0.25 Mpc. The
hard truncation model is a density profile ρ0 with rs = 0.25 Mpc
within the virial radius, and zero outside of the virial radius. The
hard truncation model is discussed extensively in our previous work
(Kling & Frittelli 2008), where the gravitational potential needed
for the integration of the null geodesics is found (equation 34 in
Kling & Frittelli 2008).

Table 4 shows the result of this study. The predicted virial masses
for both models differ within 4 per cent. This is an independent indi-
cation that the truncation mechanism itself is much more important
than the simplifying assumption of thin lenses, and is the dominant
source of error in mass estimates by gravitational lensing, by an
order of magnitude. Perhaps counter-intuitively, the difference in
profiles outside of the virial radius (as seen in Fig. 1) is a significant
source of inaccuracy in the prediction of virial mass by actual light
paths travelled.

One puzzling result is that the hard truncation model consistently
overestimates the mass with respect to the soft truncation model (as
indicated by the negative values in the last column in Table 4). With
both profiles being almost identical within the virial radius, one
would expect that the soft truncation mechanism (just be virtue of

having more total mass) would produce larger bending and would
lead to a higher estimate for the virial mass.

7 D ISCUSSION

One of the main results obtained through our present study is that
given a reasonable physical mass profile, such as ρ1, the use of
the thin-lens approximation as a simplifying assumption to predict
the virial mass of the system leads to very small errors, which we
found to be of the order of 0.5 per cent. This can be interpreted as
a validation of the use of the thin-lens approximation in the present
context and, by extension, as an indication of the validity of the
thin-lens approximation in generic physically reasonable systems.

A second result found is that, for this family of models, given a
reasonable physical mass profile, such as ρ1, removing the trunca-
tion as a further simplifying assumption (such as using the NFW)
in addition to the thin-lens approximation leads to a significant
loss of accuracy in the prediction of the virial mass of the system
in the cases τ = 2c and 3c. The error introduced by removing the
truncation is larger by a factor of at least 10 over the error introduced
by the use of the thin-lens approximation.

For practitioners of the thin-lens approximation, one of the main
concerns with the soft truncation mechanism studied here is the
built-in τ -dependent discrepancy in the mass profile. In effect, sys-
tems modelled with profiles ρ1 with different values of τ /c can
vary significantly. Because the truncation is effected by means of a
modification of the decay rate, the profiles diverge over a significant
range of distances. What is important, however, is that the τ -profiles
are reasonably close to the NFW profile ρ0 within the virial radius.
This is because the NFW profile is known to be accurate up to the
virial radius, so any loss of accuracy within the virial radius is a
disadvantage of the τ -dependent model. Baltz et al. (2009) propose
that a discrepancy of about 20 per cent in the mass profile between
ρ1 and ρ0 is acceptable, as the penalty for working with a small
tidal parameter τ = 2c.

However, larger values of the tidal parameter lead to better ac-
curacy in the mass profile within the virial radius. We have argued
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Table 4. The concentration parameters and relative error in the virial mass for a set of possible lensing systems modelled
with soft truncation versus hard truncation. For soft truncation, the density profile is ρ1 with τ = 3c. For hard truncation,
the density profile is ρ0 within the virial radius, and zero outside of the virial radius. The corresponding values of c are
both found by integration of the geodesic equations.

rs = 0.25 Mpc

System θE rsoft
200 (Mpc) csoft chard M200

soft (1015 M	) 1 − M200
hard/M200

soft

10.0 2.05 8.201 8.209 1.15 −0.0308
zl = 0.2 17.5 2.29 9.153 9.161 1.59 −0.0296

25.0 2.48 9.939 9.947 2.04 −0.0287
zs = 0.4 32.5 2.66 10.639 10.647 2.51 −0.0281

40.0 2.82 11.282 11.290 2.99 −0.0276

10.0 1.69 6.756 6.766 0.71 −0.0340
zl = 0.3 17.5 1.91 7.658 7.668 1.04 −0.0324

25.0 2.10 8.415 8.425 1.38 −0.0314
zs = 0.8 32.5 2.27 9.093 9.104 1.74 −0.0306

40.0 2.43 9.720 9.731 2.13 −0.0300

5.0 1.34 5.376 5.388 0.36 −0.0380
zl = 0.3 9.0 1.49 5.972 5.984 0.49 −0.0363

13.0 1.61 6.453 6.464 0.62 −0.0351
zs = 1.5 17.0 1.72 6.874 6.886 0.75 −0.0343

21.0 1.81 7.258 7.270 0.88 −0.0336

10.0 2.05 8.198 8.207 1.81 −0.0313
zl = 0.6 17.5 2.37 9.466 9.475 2.79 −0.0298

25.0 2.64 10.546 10.556 3.86 −0.0288
zs = 0.8 32.5 2.88 11.521 11.532 5.04 −0.0280

40.0 3.11 12.426 12.437 6.33 −0.0274

5.0 1.30 5.205 5.219 0.74 −0.0396
zl = 1.0 9.0 1.48 5.933 5.947 1.10 −0.0374

13.0 1.63 6.538 6.552 1.47 −0.0361
zs = 1.5 17.0 1.77 7.078 7.093 1.87 −0.0351

21.0 1.89 7.576 7.591 2.30 −0.0344

and demonstrated that a slightly higher value τ = 3c cuts the error
in both the virial mass and density profile by half. Raising the value
of τ relative to c increases the accuracy of the profile, in principle
arbitrarily. However, a profile ρ1 for high τ can approach ρ0 too
accurately to be useful, if the predicted virial mass M200

1 approaches
M200

0 more accurately than the limiting accuracy of the thin-lens
approximation itself. In other words, since the thin-lens approxima-
tion itself carries a base accuracy of 0.5 per cent in the virial mass
prediction, there is no use in fine-tuning the density profile to lead
to an accuracy better than 0.5 per cent in the virial mass.

Our present study thus allows us to formulate a criterion for an
optimal value of the tidal parameter τ relative to c: τ /c should be as
large as possible but larger than required to achieve an accuracy of
about 0.5 per cent in the virial mass M200

1 relative to the NFW virial
mass M200

0 . We can come up with a rough estimation by noticing
that 20 per cent accuracy in the profile leads to 6 per cent accuracy
in the virial mass, whereas 10 per cent accuracy in the profile leads
to 3 per cent accuracy in the virial mass. The gross trend would
indicate that 0.1 per cent accuracy in the profile would achieve
roughly 0.3 per cent accuracy in the virial mass. By equation 5,
a relative error of no less than 1 per cent in the profile leads to a
tidal radius no larger than τ ∼ 10c. A value of the order of τ =
10c thus would guarantee that the NFW profile is modelled with
ρ1 within the virial radius to the limit of accuracy of the thin lens
approximation, while ensuring that the model has a finite total mass.

This rough estimate is validated by Table 5 where the errors in
the virial masses M200

1 and M200
0 relative to the true virial mass M200

are shown in the last two columns. The column headed by 1 −
M200

1 /M200 represents the error incurred by the use of the thin-lens
approximation, and is generally of the order of 0.2 per cent. The
last column, headed by 1 − M200

0 /M200, represents the combined
error of the thin lens approximation and lack of truncation, and is
generally of the order of 0.4 per cent. The difference between the
values in both columns is the error introduced by the truncation
mechanism alone, and is of order 0.2 per cent, namely, comparable
to the thin-lens approximation error, as anticipated. We claim that
for thin-lens practitioners, using τ much greater than 10c would be
inefficient, as it would lead to a truncation error smaller than the
error inherently built into the thin-lens approximation itself.

Further validation of this claim is provided by Fig. 4, where the
relative virial mass errors 1 − M200

1 /M200 and 1 − M200
0 /M200 are

calculated for values of τ = jc with j = 1, 2, . . . 15, for the three
observed systems of Table 3. One can see that in all three cases the
thin-lens errors hover around 0.2 per cent, whereas the combined
truncation/thin-lens error drops dramatically from roughly 2 per
cent at τ = 3c to less than 0.5 per cent at τ = 8c, reaching within
a factor of two of the thin-lens error at τ = 10c, indicating that the
truncation error alone is of the same size as the thin-lens error at
τ = 10c, as anticipated.

Other features to note from inspection of Tables 1, 2 and 5 are
as follows. The larger the predicted mass, the more accurate the
thin-lens prediction, with or without truncation. Nevertheless, the
non-truncated prediction improves only marginally in accuracy, in
contrast to the truncated prediction, which improves significantly.
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Table 5. The concentration parameters and relative errors in the virial mass for a set of hypothetical lensing systems assuming
that the true system has a density profile ρ1 with a scale radius of rs = 0.25 Mpc and τ = 10c. We give the true c value, and
values obtained by thin-lens approximations using a density profile ρ1 (c1) and an NFW profile ρ0 (c0). The virial radius quoted,
r200, is the one calculated using the true c value. The true mass, M200 is given in units of 1015 solar masses.

τ = 10c

System θE r200 (Mpc) c c1 c0 M200 (1015 M	) 1 − M200
1 /M200 1 − M200

0 /M200

10.0 2.05 8.199 8.205 8.204 1.18 −0.0022 −0.0045
zl = 0.2 17.5 2.29 9.149 9.155 9.154 1.64 −0.0020 −0.0042

25.0 2.48 9.934 9.941 9.940 2.08 −0.0020 −0.0041
zs = 0.4 32.5 2.66 10.633 10.640 10.639 2.56 −0.0020 −0.0041

40.0 2.82 11.274 11.282 11.281 3.06 −0.0021 −0.0041

10.0 1.69 6.753 6.756 6.755 0.74 −0.0014 −0.0037
zl = 0.3 17.5 1.91 7.652 7.656 7.655 1.06 −0.0013 −0.0034

25.0 2.10 8.408 8.411 8.410 1.42 −0.0013 −0.0034
zs = 0.8 32.5 2.27 9.084 9.089 9.087 1.78 −0.0014 −0.0033

40.0 2.43 9.710 9.714 9.712 2.08 −0.0014 −0.0033

5.0 1.34 5.375 5.378 5.377 0.36 −0.0015 −0.0038
zl = 0.3 9.0 1.49 5.970 5.972 5.971 0.50 −0.0012 −0.0035

13.0 1.61 6.449 6.451 6.450 0.64 −0.0011 −0.0033
zs = 1.5 17.0 1.72 6.869 6.871 6.870 0.76 −0.0011 −0.0032

21.0 1.81 7.252 7.254 7.253 0.90 −0.0011 −0.0031

10.0 2.05 8.193 8.200 8.199 1.86 −0.0023 −0.0045
zl = 0.6 17.5 2.36 9.458 9.466 9.464 2.86 −0.0023 −0.0044

25.0 2.63 10.536 10.545 10.543 3.94 −0.0025 −0.0044
zs = 0.8 32.5 2.88 11.510 11.520 11.518 5.14 −0.0027 −0.0046

40.0 3.10 12.412 12.424 12.422 6.44 −0.0030 −0.0047

5.0 1.30 5.203 5.206 5.205 0.76 −0.0020 −0.0042
zl = 1.0 9.0 1.48 5.928 5.932 5.930 1.12 −0.0018 −0.0039

13.0 1.63 6.531 6.535 6.533 1.50 −0.0018 −0.0037
zs = 1.5 17.0 1.77 7.069 7.073 7.071 1.92 −0.0018 −0.0037

21.0 1.89 7.565 7.569 7.567 2.34 −0.0019 −0.0037

Figure 4. Relative error between thin-lens prediction and actual total mass for three lensing systems for increasing values of τ as multiples of the concentration
parameter (τ = jc). Filled symbols correspond to the truncated model ρ1 and open symbols correspond to the non-truncated NFW model ρ0.
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