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1 Introduction

In this thesis we propose a mathematical model for the spread of measles in a closed

population. In section 1 we offer a motivation for the project, describe the measles virus as

well as its history in the US, and provide a brief summary of three epidemiological models

from the literature. In section 2.1 we introduce some probabilistic tools used in our model.

Section 2.2.1 outlines our stochastic model used for the spread of measles in a population,

which is refined in section 2.2.2 to include health interventions from the CDC. We conclude

the thesis by presenting in section 3 the results of the simulations of the stochastic model

developed and discussing the effects of a decrease in vaccination coverage on the spread of

measles in the population.

1.1 Motivation

The cover of the March 2015 issue of the National Geographic magazine lists vaccination,

along with climate change and evolution, as one of the dominant topics in the national

debate for which scientific facts are met with skepticism by a significant proportion of the

US population (Achenbach, 2015). The ever increasing number of measles outbreaks in

the US has been linked to a recent anti-vaccine movement which gained momentum after

the publication in 1998 of a study erroneously connecting the measles vaccine to autism.

The journal later retracted the article and countless scientific studies have since discredited

this theory (Farrington, Miller, & Taylor, 2001), but despite strong evidence for the safety

and efficacy of the vaccine an increasing proportion of the population are choosing not

to vaccinate their children. The most recent measles outbreak, originating at Disneyland

in California, resulted in 114 cases across several states, of which almost 70 percent were

among people unvaccinated due to personal beliefs (CDC, 2015b). While contagious diseases,

such as measles, have a high prevalence among unvaccinated individuals, they also present

a threat to those that have been immunized as vaccines are not 100 percent efficient. For

example, the Measles, Mumps, Rubella vaccine has a 95 percent efficacy rate at preventing
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the disease (Atkinson, 2012), and so while vaccinated members of the population have a

lower risk of contracting the disease some are nevertheless at risk. Given this recent, highly

concerning trend of parents choosing not to vaccinate their children, we propose to construct

a mathematical model simulating the spread of measles in the US and study the consequences

of increased levels of unvaccinated individuals in the population.

Among contagious diseases, measles is one of the most infectious viral diseases known with

more than 90 percent secondary infection rate in susceptible individuals. In particular, an

unvaccinated individual has a 90 percent chance of contracting the disease, while a vaccinated

individual has only a 5 percent chance of becoming infected. The mean incubation period

from exposure to the measles virus to the onset of the symptoms is 8 days and the mean

duration of the infectious period is 7 days. According to the CDC, the vaccination levels

needed to ensure herd immunity against measles in developed countries is 93-95 percent.

Historically, before the development of the measles vaccine, approximately 500,000-700,000

cases of measles were reported annually, however the actual occurrence is estimated to have

reached over 3 million annually (Atkinson, 2012). After the development of the vaccine in

1963 the incidence of measles dropped and reached a historic low with fewer than 1500 cases

reported in 1983 (Atkinson, 2012).

Figure 1. Measles cases per year between 1950 and 2000’s.

However, despite significant gains in raising the vaccination rate in the US population,

between 1989 and 1991 more than 56,000 cases were reported.

This measles resurgence was primarily caused by low vaccination coverage among low-

income communities and 90 percent of all fatal cases were among individuals with no history

of vaccination (Atkinson, 2012). In response, the Vaccine for Children program was created

in 1993 and led to the elimination of measles in the US in the early 2000s (CDC, 2014b).
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Figure 2. Measles resurgence between 1989 and 1991.

After achieving a 2003 high of a 93 percent vaccination rate in the US, recent years have

brought a slow decline in the percentage of children vaccinated for measles (CDC, 2014a).

Despite the relatively low incidence of infections in the US, the risk of outbreaks remains

because the virus is frequently reintroduced from abroad, as measles is still endemic in many

countries. Measles could therefore become reestablished if vaccine coverage levels continue

to drop significantly (CDC, 2015a).

The increase in frequency and size of the measles outbreaks over the past 7 years has been the

result of the spread of the disease in communities with groups of unvaccinated people (CDC,

2015b). Parents who choose not to vaccinate their children tend to live in communities

together and form pockets of unvaccinated people, where the virus can take hold and easily

spread among people with no immunity to the virus.

Figure 3. Number of measles cases from 2001 to 2015.

The year 2014 had a record number of outbreaks, namely 23 which accounted for ap-

proximately 650 infected people (see figure 3). The outbreak with the highest number of

cases (383 cases) occurred among primarily unvaccinated Amish communities. Even more
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concerning is the trend among upper middle-class families in several wealthy counties across

the US refusing to vaccinate their children for personal beliefs (Healy & Paulson, 2015). For

example, figure 4 shows several counties in California with lower than 80 percent vaccination

coverage.

Figure 4. Vaccination coverage in California per county.

To quantify the consequences of the choice among vaccine skeptics to opt out of immuniza-

tion programs and thus raise awareness about the importance of vaccination, our project will

create a mathematical model simulating the spread of measles in the US assuming different

levels of immunization in the population. Our project can help better explain the effects that

the individual choice not to get vaccinated can have on the entire US population, and thus

raise awareness for the importance of vaccination and the shared responsibility for reducing

outbreaks through individual immunization. Our mathematical model will also be helpful in

better understanding the effects that public health policies can have on the spread of measles

once an epidemic occurs.
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1.2 Literature Review

Before we outline our mathematical model for the spread of measles, we first give a brief

outline of some epidemiological models in the literature that provided us with a starting

point for our approach.

The first model that we discuss is due to Greenwood (1931) and is one of the earliest foun-

dational epidemiological models. In his model Greenwood used two possible states for in-

dividuals to be in during the epidemic,–Susceptible and Infected–and modeled the spread

of the disease in the population based on the interactions between individuals in these two

states. If I(t) is the number of newly infected individuals from time t to time t + 1, and

X(t) is the number of susceptible individuals at time t, then at the next time unit the

number of infected people is X(t + 1) = X(t) + I(t). Let p denote the chance that the

contact between two individuals is sufficient to produce a new infection. Greenwood used

the Binomial distribution with success probability p to model the chance of j individu-

als remaining infected at time t + 1 out of the i susceptible individuals at time t, that is

P(X(t+ 1) = j|X(t) = i) =
(
i
j

)
pi−j(1− p)j if i ≥ j and 0 if i < j. These transition probabil-

ities can then be summarized in a matrix Ar×r, where r is the initial number of susceptible

individuals in the population. Then aij = P(X(t + 1) = j|X(t) = i) and (X(t))t∈N for

1 ≤ i, j ≤ r is a Markov chain.

The importance of Greenwood’s model resides in the fact that it is the first stochastic model

introduced for studying the spread of a disease in a closed population and its main ideas

serve as the basis for current models in epidemiology. However, due to the time in which

Greenwood’s model was created, its major drawback is that it does not take into account

varying immunity levels in the population. As vaccination coverage is the main concern of

our research, Greenwood’s model cannot illuminate the benefits of immunization.

Before discussing another stochastic model which more closely resembles the direction that

we took in our own project, let us take a moment to explore a different type of model in the

field of epidemiology. A deterministic model is one in which no randomness is allowed and
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the outcome of the system is simply a function of the initial conditions. In their determin-

istic SIR model, Smith and Moore used functions to describe the Hong Kong flu in New

York City in the 1960’s (Smith & Moore, 2004). They employed three states–Susceptible,

Infected, Recovered; however, instead of using probability distributions to determine the

transition from one state to the next, they used rates of change with respect to time. While

the functions S(t), I(t), and R(t) kept track of the number of individuals in each state, their

derivatives
dS

dt
,
dI

dt
, and

dR

dt
accounted for the number of individuals entering or leaving each

state. We did not employ a deterministic model as infectious diseases generally spread in a

stochastic fashion.

We now introduce the last major literature source that influenced our model significantly.

Continuing the work of Greenwood, the model created by Yaesoubi and Cohen features three

states – Susceptible, Infected, and Recovered – and involves the use of probability distribu-

tions to determine how individuals transition from one state to the next (Yaesoubi & Cohen,

2011). In their article the authors make reference to Greenwood’s model as a foundational

source for their work. In particular, they make use of a discrete-time Markov chain with two

dynamic driving events, I(t) and R(t), for their transition probabilities. Here, I(t) represents

the probability of a susceptible individual transitioning to the infected state and R(t) that

of an infected individual transitioning to the recovered state. The authors ran simulations

for the influenza virus, and compared their results to the evolution of an outbreak that oc-

curred in an English boarding school during the late 1970’s. Their model employs Binomial

distributions for the transition probabilities as well as lays a detailed foundation for how

to account in the model for the specific parameters of an infectious disease. Our stochastic

model outlined in section 2.2 uses Yaesoubi-Cohen’s model as a starting point with several

areas of improvement. Most notably, the authors did not account in their model for the

exposed state in which individuals carry the disease but are not yet infectious (incubation

period) as well as for public health interactions from the CDC once a measles outbreak is

reported.
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1.3 Description of Research Question

As an increasing number of individuals in our society have embraced a mistrust of scientific

research and the false claims endorsed by various public figures and celebrities about side

effects of vaccination, skepticism about the safety of vaccination has emerged as a public

health concern. As a result, this recent anti-vaccine movement has led to a resurgence of

measles cases in the US with more and more parents choosing not to vaccinate their children.

To better understand the effects that this recent reduction of vaccination levels in certain

counties in the US can have on the spread of measles in the entire US population, we created

a stochastic model simulating the spread of measles in a closed population with the goal

of studying the long-term consequences of decreased vaccination levels on the number and

duration of measles outbreaks. We employed a non-homogeneous Markov model with four

states - Susceptible, Exposed, Infected, and Recovered, in which the transition probabilities

of the dynamic driving events from one state to the next are determined by a variety of

distributional assumptions. We used our model to simulate the dynamics of the spread of

measles using different resistivity levels in the population, and thus were able to illustrate the

influence pockets of unvaccinated people have on the incidence of the disease. Furthermore,

our model incorporates public health intervention factors in response to a measles outbreak

such as quarantining and immunizing individuals, and thus can be used to inform health

policies for preventing and controlling the spread of measles in the US.

2. The Stochastic Model

In this section we explain in detail the components that make up our stochastic model for

the spread of measles in a population. We begin by defining the mathematical tools in our

model employed from the field of probability theory. We then outline the reasoning behind

the modeling assumptions and the choices underlying the equations for the driving events in

our model. Finally, we modify our stochastic model to account for public health intervention

factors and describe the new equations for the driving events.



9

2.1 A Review of Probability Theory

In this section we introduce some basic concepts from probability theory in order to outline

the concepts underlying the random variables employed in the model. To do this, we first

present a few definitions.

Definition 2.1. A random experiment is a procedure with a well-defined set of possible

outcomes that can be repeated as often as we like.

A sample outcome is any potential outcome from an experiment. The collection of all

sample outcomes of an experiment is referred to as the sample space of the experiment.

In general, we denote a sample outcome by the lowercase letter s and a sample space with

the uppercase letter S. If a sample outcome belongs to a sample space we say that s is in S

which we denote as s ∈ S. Rolling a die, flipping a coin, and drawing a card from a standard

deck are all examples of random experiments. For example, in the random experiment of

rolling a standard die we obtain the sample space S = {1, 2, 3, 4, 5, 6} and when flipping a

coin the sample space is S = {H,T} where H and T denote the coin showed heads and tails,

respectively. We can also refer to a realization of an experiment as an outcome that has been

observed. For example, if we roll a die and it lands on 6, then we say that the realization of

the experiment of rolling a die was 6.

Definition 2.2. An algebra A associated with the sample space S is a non-empty collection

of subsets of S closed under the operations of intersection, union, and complement.

Once an algebra is chosen, its elements are our events.

Definition 2.3. An event is any collection of sample outcomes of an experiment that is in

the associated algebra A.

We denote events with a subscripted or unsubscripted letter A.

We now focus on assigning probabilities to events and describing probability distributions.

We begin by introducing the probability function and Kolgomorov’s Axioms.
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Definition 2.4. For a sample space S, with associated algebra A, P : A → [0, 1] is a

probability function if and only if:

(i) 0 ≤ P(A) ≤ 1, ∀A ∈ A

(ii) P(S) = 1

(iii) For any sequence of events A1, A2, . . . ∈ A with Aj ∩ Ak = ∅ when j 6= k,

P

(
∞⋃
n=1

An

)
=
∞∑
n=1

P(An)

Then, P is a function that assigns to each event A a number P(A) between 0 and 1 and

we refer to P(A) as the probability of the event A.

We now introduce three important concepts necessary for our discussion of probability dis-

tributions. First, we need to introduce the concept of conditional probability.

Definition 2.5. Given two events A1 and A2 for which A2 has a non-zero probability, we

call P(A2|A1) the conditional probability of A2 occurring given that A1 has occurred. We

define this as follows: P(A2|A1) =
P(A2 ∩ A1)

P(A1)
.

Definition 2.6. We say that two events A1 and A2, are stochastically independent with

respect to P if P(A1 ∩ A2) = P(A1) · P(A2).

We remark that when A1 and A2 have non-zero probabilities, A1 and A2 are independent

if and only if the occurrence of A1 does not affect the probability that A2 occurs, that is,

P(A2|A1) = P(A2).

Definition 2.7. A random variable from a sample space S, denoted X : S → R, is a

function that maps the outcomes of S to a real number and has the property that for all a < b

in R, (a < X < b) := {s ∈ S;X(s) ∈ (a, b)} is in A.

The advantage of using a random variable is that it often reduces the sample space of the

experiment into a more manageable set. For example, consider the experiment of rolling two

standard dice. The sample space for the event consists of the 36 pairings of the individual

dice (x, y) where x, y ∈ {1, 2, 3, 4, 5, 6}. Now, let X be the random variable that denotes
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the sum of the faces after rolling the two dice. Then the possible values for X are the real

numbers 2,3,...,12. Hence, we reduced our sample space to only 11 possible outcomes.

Now that we have the basics of the concepts we need to introduce the probability distributions

used in the model, we begin by explaining the fundamentals of the Binomial distribution.

In order to discuss the idea of a binomial distribution we first introduce the idea of a Bernoulli

trial.

Definition 2.8. A Bernoulli trial is an experiment which has only two possible outcomes,

success or failure, with the probability of success being p.

In notation, we write P(success) = P(X = 1) = p and P(failure) = P(X = 0) = 1− p.

A binomial experiment denoted Binomial(n, p), then is obtained by performing a specified

number n of independent Bernoulli trials, each with a success probability of p. The outcome

X of the binomial experiment is the number of successes observed during the n trials. To

determine the probability of obtaining k successes in n trials, that is P(X = k), the idea is

to count the number of ways that we can get k successes in n trials, and then multiply by

the probability of getting k successes (pk) and n− k failures ((1− p)n−k).

In general, a binomial distribution meets the following conditions:

(i) Perform n independent Bernoulli trials each with probability p of success.

(ii) The random variable X counts the number of successes in n trials.

(iii) The probability of k successes in n trials is given by the formula

P(X = k) =

(
n

k

)
pk(1− p)n−k

In summary, the outcomes of an experiment in which n independent Bernoulli trials are

performed where each trial has probability p of success are binomially distributed. We de-

note that X follows a binomial distribution with n trials and probability p of success by

X ∼ Binomial(n, p).

Moreover, it is important to note that what is defined as a success depends on the observer’s

interest. To explain this behavior, consider a competition between two individuals in which
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the participants pick a side of a fair coin which then gets flipped five times with the winner

being decided by who’s side is observed the most. This scenario will yield a binomial distri-

bution since each flip of the coin can be regarded as identical Bernoulli trials, however what

is defined as success differs by player. If we have Player 1 as the observer, having chosen

”Heads” as his means to victory, then success will be defined as observing the coin landing

heads up and we will count how many successes occur in the five trials.

Another probability distribution that is of interest to us is the exponential distribution,

which is used to model waiting times. For example, the exponential distribution can be used

to find the probability of waiting for a train at a particular train station knowing that on

average one train arrives every 5 minutes. In general what we are interested in finding is the

probability of having to wait as long as a particular time t and thus we concern ourselves

with finding the probability of waiting t or less units of time. Moreover, a fundamental pa-

rameter of interest in an exponential experiment is the average waiting time which is usually

denoted as 1
λ
, where λ is the average number of arrivals per time unit. We then say that a

random variable X follows an exponential distribution if:

P(X ≤ t) =

∫ t

0

λe−λtdt, t ∈ [0,∞)

and write X ∼ Exponential(λ).

On the example with the waiting times of trains, if we are interested in finding the probability

of having to wait at most 20 minutes to see the first train arrive given that on average a

train arrives every 5 minutes we proceed as follows:

P(X ≤ 20) =

∫ 20

0

1

5
e−

t
5dt = 0.981684

and thus P(X ≤ 20) = 0.981684.

2.2 The SEIR Model

Now that we have laid out the probabilistic terminology, we turn to describing the com-

ponents of our model for the spread of measles in a closed population. We have chosen to
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model this using stochastic processes, which incorporate randomness and assign probabilities

to transitions between states of the system. This is in contrast to a deterministic model,

for which the evolution of the system is a function of the initial conditions. The goal of

our stochastic model is to simulate the spread of measles in a closed population to study

the consequences of reduced vaccination coverage on the number and duration of measles

outbreaks. We employed what is called a SEIR model which has four states: Susceptible,

Exposed, Infectious, and Recovered. These are the four states an individual can be in during

a measles outbreak. At first an individual in the population is susceptible (S) to acquiring

the disease. Then upon being exposed to the disease we say that the individual is in the

exposed state (E), which means the individual has contracted the disease but it is not in-

fectious and cannot spread it. After the incubation period has ended, on average lasting 8

days for measles, the individual becomes infectious (I) and can spread the virus throughout

the duration of the infectious period. For measles the period lasts on average 7 days, and

afterwards the individual transitions to the recovered state (R).

Figure 5. Diagram of how individuals transition through the different states
S, E, I, R.

After an individual finishes the cycle and reaches the recovered state, the individual is

no longer able to contract the virus as successful recovery grants life-long immunity to the

measles virus. It is important to note that an individual in the susceptible state may or may

not be vaccinated. Consequently, the chance of Transitioning from susceptible to exposed

varies. For a vaccinated individual the probability of contracting the disease upon contact

with the virus is five percent, while an unvaccinated individual has a probability of ninety

percent (Atkinson, 2012).
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2.2.1 Dynamic Driving Events

In this section we introduce the dynamic driving events that describe the transitions of

individuals from one state to the next. Since we are using a stochastic model, we will start

by defining the random variables that are involved in our model. We let XS(t) represent the

number of individuals in the susceptible state at time t. Similarly, we let XE(t), XI(t), and

XR(t) represent the number of individuals in the exposed, infected, and recovered states at

time t, respectively. These random variables enable us to keep track of the number of people

in each state at all times t and thus will help us explain the evolution of the distribution

of the states over time. We assume in our model that the population is closed, and so if N

denotes the population size, then the equation XS(t) + XE(t) + XI(t) + XR(t) = N for all

times t.

We now focus on explaining how the distribution of the SEIR states changes over time.

We do this by associating the changes to dynamic driving events. This attention to the

individual transitions is used in deriving the distributions of the dynamic driving events

which are represented by the random variables E(t), I(t), and R(t) and symbolize the number

of newly exposed, infected, and recovered individuals at during the time from t to t+1. Since

an individual in state S can either get exposed or not at time t (similarly an individual in

state E can either become infectious or not and an individual in state I can either recover

or not) we model these random variables using the Binomial distribution where success is

defined as transitioning to the next state.

We now examine the dynamic driving events in the order in which they are used in the model

beginning with E(t).

First, we focus on the distribution of the process of randomly selecting one susceptible

individual and recording a 1 if the person becomes exposed during the time interval from t

to t + 1, and 0 if the person remains in the susceptible state. This is a two valued process,

so it has a Bernoulli(q(t)) distribution for some number q(t) ∈ [0, 1].

Once we find the value of q(t), it follows that the number E(t) of susceptible individuals
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that become exposed is Binomial(XS(t), q(t)) distributed.

To find this q(t), we introduce an auxiliary variable Y which is 1 if the person becomes

exposed during the interval, and is zero otherwise. In this case, q(t) = P(Y = 1).

The event (Y = 1) that we select an individual that transitioned to the exposed state during

this time interval depends on the persons vaccination state (V = 1 for vaccinated, V = 0 if

not), and the number of encounters with infectious individuals. This number of encounters

with infectious individuals depends in turn on the number of encounters the person has with

other individuals in the population, and the proportion of that population that is infectious.

Let U be the number of encounters our randomly selected susceptible individual has with

others in the population, and W be the number of infectious encounters.

Our modeling assumptions are that:

i. U ∼ Poisson(λ), where λ is the mean number of contacts individuals have per unit

of time.

ii. W |U = n ∼ Binomial(n, β(t)), where β(t) is the proportion
XI

N
of the population

that is infectious.

iii. Y |W = j ∼ Bernoulli(1− (1− p)j), where 1− (1− p)j is the chance of contracting

the disease at least once in j encounters with infectious individuals.

Here, the notation W |U = n ∼ Binomial(n, β(t)) is short hand for the assertion that the

conditional distribution of W given that U = n is Binomial(n, β(t)); and in like fashion,

Y |W = j ∼ Bernoulli(1 − (1 − p)j) is a shorthand for the claim that the conditional

distribution of Y given that W = j is Bernoulli(1 − (1 − p)j). Also, implicit in this is the

assumption that Y depends on U only through W so that for all n and j, P(Y = 1|U =

n,W = j) = P(Y = 1|W = j).

To find the value of p in (iii), we call on the law of total probability in finding the probability

of the event A that the person we select transitions to the exposed state upon encountering

an infectious person. Using ν as the proportion of the population that is vaccinated, we

set the chance P(V = 1) that we select a vaccinated person at ν, and the chance P(V = 0)

that we select an unvaccinated person at (1-ν). Then since there are 5%, and 90% chances
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respectively for vaccinated and unvaccinated persons to transition from the susceptible to

the exposed state upon encountering an infectious person, we have that P(A|V = 1) = 0.05

and P(A|V = 0) = 0.90. This leads to

p = P(A)

= P(A|V = 1)P(V = 1) + P(A|V = 0)P(V = 0)

= 0.05 · ν + 0.90(1− ν).

(1)

Now to find q(t), we appeal to the law of total probability once again.

q(t) = P(Y = 1)

= P((Y = 1)(W ∈ N0)(U ∈ N0))

=
∞∑
n=0

n∑
j=0

P((Y = 1)(W = j)(U = n))

=
∞∑
n=0

n∑
j=0

P((Y = 1)|(W = j))P(W = j|U = n)P((U = n))

=
∞∑
n=0

n∑
j=0

(1− (1− p)j)
(
n

j

)
β(t)j(1− β(t))n−je−λ

λn

n!

(2)

So,

q(t) =
∞∑
n=0

n∑
j=0

e−λλn

n!

(
n

j

)
β(t)j(1− β(t))n−j(1− (1− p)j)

=
∞∑
n=0

e−λλn

n!

n∑
j=0

(
n

j

)
β(t)j(1− β(t))n−j(1− (1− p)j)

=
∞∑
n=0

e−λλn

n!

(
n∑
j=0

(
n

j

)
β(t)j(1− β(t))n−j −

n∑
j=0

(
n

j

)
β(t)j(1− β(t))n−j(1− p)j

)

=
∞∑
n=0

e−λλn

n!

(
(β(t) + 1− β(t))n −

n∑
j=0

(
n

j

)
(β(t)(1− p))j(1− β(t))n−j

)



17

q(t) =
∞∑
n=0

e−λλn

n!
−
∞∑
n=0

e−λλn

n!
((β(t)(1− p) + 1− β(t))n))

= 1−
∞∑
n=0

e−λλn

n!
((β(t)(1− p) + 1− β(t))n)

= 1− e−λ
∞∑
n=0

(λ(1− β(t)p))n

n!

= 1− e−λeλ−λβ(t)p.

(3)

Therefore we obtain the simplified expression for the probability that an individual tran-

sitions from susceptible to exposed during the interval of time from t to t+ 1 is

(4) q(t) = 1− e−λβ(t)p.

We formally introduce the probability mass function of E(t) by expressing the probability

that E(t) takes on a value k between 0 and XS(t) as

(5) P(E(t) = k) =

(
XS(t)

k

)
q(t)k(1− q(t))XS(t)−k.

Once an individual becomes exposed to the disease, they are now in state E and have a

chance of transitioning to the infected state. So we now turn our attention to the random

variable I(t), which accounts for the number of individuals transitioning from the exposed

state to the infected state at time t. Similarly to E(t), our random variable I(t) also follows a

binomial distribution with probability α) that keeps track of the number of theXE(t) exposed

individuals that transition to the infected state. Here, α is the chance of transitioning from

exposed to infectious in the time interval from t to t+1. We find α(t) by modeling the random

duration U of the incubation period by an exponential distribution with mean duration φ

which is 8 days for measles. Again we introduce the probability mass function of I(t) at

time t by expressing the probability that I(t) takes on a value i between 0 and XE(t) as

(6) P(I(t) = i) =

(
XE(t)

i

)
αi(1− α)XE(t)−i.
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So now after having introduced both E(t) and I(t) we turn our attention to the last random

variable R(t), which keeps track of the number of individuals transitioning from the infected

state to the recovered state at time t. Once more this random variable follows a binomial

distribution with probability ρ(t) that keeps track of the number of the XI(t) infectious

individuals that transition to the recovered state. Here, ρ(t) is the chance of transitioning

from infectious to recovered in the time interval from t to t + 1. We find ρ(t) by modeling

the random duration Y of the infectious period by an exponential distribution with mean

duration µ which is 7 days for measles. Finally, we introduce the probability mass function

of R(t) by expressing the probability that R(t) takes on a value r between 0 and XI(t) as

(7) P(R(t) = r) =

(
XI(t)

r

)
ρ(t)r(1− ρ(t))XI(t)−r.

We now have all the necessary information regarding the transition probabilities to discuss

how these transitions work. Recalling that we are dealing with a closed population, where

XS(t)+XE(t)+XI(t)+XR(t) = N holds true at all times t. Moreover, the previous equation

must also hold true at time t+ 1 which leads us to the so-called dynamic driving constraints

describing the transitions of individuals between the four states from time t to time t+ 1:

XS(t+ 1) = XS(t)− E(t)

XE(t+ 1) = XE(t) + E(t)− I(t)

XI(t+ 1) = XI(t) + I(t)−R(t)

XR(t+ 1) = XR(t) +R(t).

The first equation describes the number of susceptible individuals, XS(t+1), at the next time

unit t+1 which is given by the number of susceptible individuals, XS(t), at the current time t

minus the newly exposed individuals E(t) which leave state S and transition to state E. The

number of exposed individuals, XE(t+ 1), at the next time unit t+ 1 is given by the number

of exposed individuals, XE(t), at the current time t plus the newly exposed E(t) minus the

newly infected individuals I(t) which leave state E and transition to state I. Similarly, the
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number of of infected individuals, XI(t+1), at the next time unit t+1 is given by the number

of infected individuals, XI(t), at the current time t plus the newly infected I(t) minus the

newly recovered R(t) which leave state I and transition to state R. Finally, the number of

recovered of individuals, XR(t + 1), at the next time unit t + 1 is given by the number of

recovered individuals, XR(t), at the current time t plus the newly recovered R(t). We note

that adding the four equations we get that XS(t+ 1) +XE(t+ 1) +XI(t+ 1) +XR(t+ 1) =

XS(t) +XE(t) +XI(t) +XR(t) = N , and so the population size is constant for all t.

2.2.2 Public Health Responses

The stochastic model outlined above describes the dynamics of how individuals in a closed

population transition between the four states S → E → I → R once the measles virus is

detected in the population. However, the model does not take into account any public health

interventions or changes in the behavior of individuals as the number of measles cases con-

tinues to increase in the population. Because the measles virus is able to spread uninhibited

in the SEIR model outlined above, it is not realistic and so in this section we refine our

model by taking into account public health interventions such as vaccination campaigns

and quarantining of infected individuals. When a measles outbreak is reported, the Center

for Disease Control and Prevention immediately reacts in two major ways: (1) the CDC

urge individuals who are potentially infected to quarantine themselves, and (2) the CDC

also promptly immunizes those in the outbreak area who fail to provide documentation of

measles immunization and thus effectively increases the vaccination coverage of the popula-

tion. These public health interventions are often performed before laboratory confirmation

of an outbreak is obtained as the CDC recommends that ”control activities should not be

delayed for laboratory results on suspected cases” (CDC, 1989). To make our SEIR model

more realistic, we incorporated both of these public health responses into the model, a re-

finement that was not present in any of the reviewed literature.

In order to incorporate the quarantining component of the public health response into the
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model, we introduced a new random variable, Z(t), that keeps track of the number of in-

dividuals tagged for quarantine who fail to comply. This new random variable changes the

model substantially by allowing only a small minority of infected individuals who choose not

to comply with the quarantine to continue to spread the disease. The rest of the infected

individuals have only one time unit since they become infected to spread the disease before

they elect to go into quarantine. Since at each time t individuals will either comply to

quarantine or fail to comply, we modeled Z(t) as a Binomially distributed random variable

choosing from the pool of currently infected individuals, XI(t), with a fixed probability of

success that is set at the start of the model. If we let d be the probability that an individual

tagged for quarantine fails to comply to quarantining, then the probability mass function of

Z(t) at time t is expressed by the probability that Z(t) takes on a value z between 0 and

XI(t) as

(8) P(Z(t) = z) =

(
XI(t)

z

)
dz(1− d)XI(t)−z.

As a consequence of introducing voluntary quarantining, the infected state XI(t) is now

split into two subgroups: those infected individuals who do not comply to quarantine and

keep infecting others for one time unit, XI(t), and those infected individuals who comply

to the quarantine and thus stop infecting others, XI∗(t). Since we now have two groups of

infected individuals, XI(t) and XI∗(t), we must account for the driving event R(t) keeping

track of the individuals that transition from state I to state R separately, and thus we

obtain two random variables R1(t) and R2(t) that sum up to the original random variable

R(t) = R1(t) + R2(t). We introduce the probability mass functions of R1(t) and R2(t) by

expressing the probability that R1(t) takes on a value r1 and that R2(t) takes on a value r2

where r1 is between 0 and XI(t) and r2 is between 0 and XI∗(t) as

(9) P(R1(t) = r1) =

(
XI(t)

r1

)
ρ(t)r1(1− ρ(t))XI(t)−r1
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and

(10) P(R2(t) = r2) =

(
XI∗(t)

r2

)
ρ(t)r2(1− ρ(t))XI∗ (t)−r2 .

As a result of the split among the infected individuals, the aforementioned dynamic driving

constraints change as follows:

(11) XS(t+ 1) = XS(t)− E(t)

XE(t+ 1) = XE(t) + E(t)− I(t)

XI(t+ 1) = I(t) + Z(t)−R1(t)

XI∗(t+ 1) = XI(t)− Z(t)−R2(t)

XR(t+ 1) = XR(t) +R1(t) +R2(t).

The obvious change in this new set of equations is that the number of individuals, XI(t),

that will be able to infect others at the next time unit is given by the newly infected, I(t),

plus the infected individuals who do not comply to quarantine, Z(t), minus the individuals

who recover from this group, R1(t). Also, those who do comply to the quarantine remain

isolated in state I∗ until they become recovered, and so the number of infected individuals

who do not spread the disease at the next time unit, XI∗(t), is given by those who are cur-

rently infected, XI(t), minus those who refuse to go into quarantine, Z(t), minus those who

recover from this group, R2(t).

The second component of the CDC’s public health intervention is the vaccination campaign

once the occurrence is detected in the population. We modeled these vaccination campaigns

by adjusting the vaccination fixed parameter v, indicating the proportion of vaccinated

individuals in the population, to a function, V (t), that increases over time. The function

V (t) denotes the proportion of the population that is vaccinated at time t, given that at

each time unit the CDC vaccinates ω · 100 percent of the unvaccinated individuals. Since
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Figure 6. Diagram of how individuals transition through the different states
S, E, I, I∗, R after accounting for quarantining.

we are dealing with a closed population the proportion of vaccinated individuals in the

population can only increase over time as vaccination are performed and can never exceed

1. Then the proportion of vaccinated individuals at the next time unit, V (t + 1), is given

by the proportion of the currently vaccinated, V (t), plus the proportion of the currently

unvaccinated individuals, (1 − V (t)), who become immunized, namely ω · (1 − V (t)). In

notation we have:

(12) V (t+ 1) = V (t) + (1− V (t))ω,

where ω is a constant giving the proportion of the unvaccinated individuals that get vac-

cinated by the CDC at each time unit.

As expected the introduction of both the quarantining and vaccination campaigns consid-

erably reduced the number of infections. In the following section we present the results

of simulations using different parameters in our model that help us to better understand

the importance of vaccination by comparing the outcome of the dynamic systems of two

populations with different starting vaccination levels.

3 Results

Now that we have discussed the theoretical foundations and the various components of our

stochastic model, we will shift our attention to running simulations using a computer program

consisting of two major components. The first component of the program is called the Disease
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Tracker and keeps track of the number of individuals in each state as well as the number of

individuals transitioning between states at each unit of time t, and then generates a graph

displaying XS(t), XE(t), XI(t), and XR(t) over time. The second component of the program

is called the Spatial Tracker and visually displays the geographic spread of the disease in

the population over the course of time. After we discuss in detail the two components of the

program, we present the results of the simulations using different parameters for the model,

and highlight how changes in these parameters affect the outcomes of this dynamic system.

3.1 Disease Tracker

The first component of the program is called the Disease Tracker and determines the

number of individuals in each state S − E − I − I∗ − R at all times t. The program em-

ploys the probability distributions for the dynamic driving events E(t), I(t), and R(t) as

described in section 2.2 to determine the number of individuals in each state given by XS(t),

XE(t), XI(t), XI∗(t), and XR(t). The program stores the values of XS, XE, XI , XI∗ , and

XR for each unit of time and then visually displays the results. Moreover, the program has

a series of parameters that can be adjusted such as N–the fixed number of individuals in

the population, v–the proportion of vaccinated individuals in the population, τ–the number

of infectious individuals at time t = 1, and n–the number of iterations (here representing

days) for the program. Furthermore, the program also has a series of parameters that are

fixed related to the measles virus such as φ = 7 days, the mean duration of the incubation

period for measles, and µ = 8, the mean duration of infection for measles. The program was

developed using the software Mathematica.

The program begins by creating an n×10 array, M , with n rows representing the number of

days elapsed in the simulation (program initialized at time t = 1), and with 10 columns that

record the values of XS(t), XE(t), XI(t), X
∗
I (t), XR(t), E(t), I(t), R1(t), R2(t), and Z(t) for

all iterations t with 1 ≤ t ≤ n. At time t = 1, we have that XI(1) = τ and XS(1) = N − τ

and all other variables are zero. The dynamic driving events (E(t), I(t), R1(t), R2(t), and

Z(t)) are generated using the RandomV ariate command in Mathematica for the Binomial
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Distribution. The program iteratively generates the values of XS(t), XE(t), XI(t), X
∗
I (t),

XR(t), E(t), I(t), R1(t), R2(t), and Z(t)using equations 1− 11 in section 2.2, for 1 ≤ t ≤ n.

The program then plots a graph that represents the values over time in the columns of matrix

M that contain the values of XS(t), XE(t), XI(t), and XR(t).

Figure 7. Sample result from Disease Tracker graph.

In the graph we can observe the number of susceptible susceptibles XS(t) in yellow, the

number exposed XE(t) in orange, the number of infected XI(t) in red, and the number of

recovered XR(t) in green for all times t from 1 to n =500. The graph serves the purpose of

visually displaying the spread of the disease by tracking the number of individuals in states

SEIR across time, the duration of the outbreak, the end behavior of the system, and the

time at which the outbreak peaked. The information recorded in array M and the visual

display of the number of individuals in each state enables us to compare the outcomes of the

system for different vaccination rates in the population. In particular, we ran simulations

using the same parameters for the model but varying the vaccination rates in the population

(v = 90% and v = 75% respectively). The results of these simulations are presented in

section 3.3.
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3.2 Spatial Tracker

The second component of our program, called the Spatial Tracker, creates a color coded

grid in which each cell represents an individual in the population and the color of the cell

corresponds to the state in which the individual is: yellow for state S, orange for state E,

red for state I, and green for state R. This program serves as a visual aid displaying how

the disease spreads over time in a community. The Spatial Tracker program calls upon the

Disease Tracker component of the program to obtain the number of individuals in each of

the states S − E − I − R, at time t and then color-codes each cell in the grid according

to their corresponding state. The program begins by randomly selecting τ members of the

population as the infected individuals at time t = 1 and then uses a probability model that

weighs in proximity to an infected individual to select those individuals who will then become

exposed at the next unit of time. The reasoning behind using proximity to the infected as

a factor that influences who gets exposed at time t is that individuals in a population will

interact more often with those who are closer to them and thus their chances of exposure,

and therefore infection, are elevated. However, as we are simulating small communities, we

adopted the assumption that the mixing in the population is homogeneous and thus individ-

uals in the population that are not in the proximity of infected people can also be exposed,

however with a reduced probability.

The program works by creating a matrix A in which each (i, j) position corresponds to an

individual in the population. The entries aij in the matrix correspond to the states at which

individual (i, j) is at time t. The values of the matrix A change over time and range from 0

to 3. A susceptible individual is represented in the matrix A by the value 0, exposed by 1,

infected by 2, and recovered by 3. Each individual in the population begins in the susceptible

state except the τ individuals that are randomly selected to be infected at time t = 1. The

program then calls upon the Disease Tracker to gather information about the number of

individuals in each state at the next time unit. To select which individuals become exposed

at the next iteration t+ 1, the program makes it more likely for an individual to be exposed
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if it is located in the vicinity of an infected individual at time t. If an infected individual

is located at position (i, j), these so-called neighbors located in the (i ± 1, j ± 1) positions

have a higher probability of transitioning to state E (provided they are susceptible) than

susceptible individuals that are not neighbors. Based on this probability model, the program

chooses E(t) individuals that become exposed at time t+1. Concurrently, at each time unit,

the Spatial Tracker program calls on the Disease Tracker to randomly selected I(t) individ-

uals in state E to transition to state I, and R(t) individuals in state I to transition to state

R. As the individuals transition from one state to the next from time t to time t + 1, the

entries in the matrix A are increased by 1 unit, and their corresponding color-coding in the

grid (0–Yellow–S; 1–Orange–E; 2–Red–I; 3–Green–R) are updated.

Figure 8. Sample result from Spatial Tracker program.

This enables us to visualize the geographic spread of the disease and understand what pub-

lic health policies to put in place. Given that there is a
1

500
chance of dying from measles,

at the end of the n iterations, the program determines the amount of deceased people by

selecting from the number of individuals which are still infected with a probability of
1

500
,

and then relabels these individuals’ cells as deceased by turning that cell black. The Spatial
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Tracker program then uses the Manipulate command in Mathematica to create an anima-

tion of the color-coded grid from t = 1 to t = n days.

Figure 9. Geographic spread of the disease from t = 1 to t = 100.

3.3 Simulations

We now present the results obtained from the simulations of our stochastic model using

the Disease Tracker and Spatial Tracker programs. We first outline the results of the ini-

tial SEIR model that did not account for the public health interventions of the CDC as

outlined in section 2.2.2. In this first set of results, we showcase two simulations for closed

populations with N = 10000 individuals where the first simulation has a fixed vaccination

coverage of 90 percent (under herd immunity and close to national average) and the sec-

ond population has a vaccination coverage of 75 percent (exhibited by several counties in

the US). The graphs generated by the Disease Tracker program go from t = 1 to t = 200 days.

Figure 10. Graph depicting XS(t), XE(t), XI(t), and XR(t) from t = 1 to
t = 200 for population 1 (left) at 90 percent coverage and population 2 (right)
at 75 percent coverage.
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We note that since neither of these simulations accounted for the CDC’s public health

intervention, both populations eventually became completely infected. This is represented

by the fact that eventually all individuals in the population reached the recovered state (R).

Next we show the results for both simulations using 90% and 75% vaccination levels of the

Spatial Tracker program. Since the population has 10,000 individuals, the Spatial Tracker

creates a grid of dimensions 100×100 in which each (i, j) cell represents an individual. Each

cell in the grid is color-coded (yellow for state S, orange for state E, red for state I, green

for state R) corresponding to the state that the individual is at time t. The figures 11 and

12 below represent the results of the simulations for the population with 90% vaccination

coverage, and the 75% vaccination level, respectively, at time t = 1, t = 20, t = 40, and

t = 60 days. These time-lapse images help us visualize the geographic spread of the disease

in the population over time.

Figure 11. Time lapse of the progression of the disease in population with
90 percent vaccination coverage from t = 1 to t = 60.

Figure 12. Time lapse of the progression of the disease in population with
75 percent vaccination coverage from t = 1 to t = 60.
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As shown by their respective graphs, each population at time t = 60 is almost entirely

green with some red cells, meaning that almost every individual is in the recovered state (R)

and that the few remaining infected individuals will also transition to state R on average

after 8 days. As highlighted before, these simulations do not account for any public health

interventions or any changes in behavior of the individuals in the population as the disease

spreads. Therefore, these simulations are not realistic as they allow the virus to spread un-

inhibited.

We now show the results of the simulations of our stochastic model after incorporating quar-

antining and the vaccination campaigns of the CDC in our model. Similar to the other

simulations, the population size is N = 10000 where in simulation 1 the initial vaccination

coverage is 90 percent, that is 90 percent of the population is already vaccinated before the

CDC’s intervention, and for simulation 2 the initial vaccination coverage is 75 percent. In

both cases the proportion of individuals in state I who refuse to go into quarantine, the rele-

vant parameter for Z(t), is 10 percent. Both populations presented also have the parameter

ω set at 10 percent, meaning that at each time unit the CDC is able to vaccinate 10 percent

of the unvaccinated population. For these simulations the graphs generated from the Disease

Tracker program range from t = 1 to t = 500.

Figure 13. Graph depicting XS(t), XE(t), XI(t), and XR(t) from t = 1 to
t = 500 for population at 90 percent coverage (left) and population at 75
percent coverage (right).

With this new set of results, we can make two main inferences from our model: (1) there

is a significant difference that public health intervention have on the spread of the disease,
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and (2) there is a substantial difference in the spread of the disease that we can attribute

to the difference in vaccination coverage. To better quantify this difference, in the first

population with 90% vaccination coverage there were under 500 total infections by time

t = 500 days, which is less that 5 percent of the population, and in the second population

with 75% vaccination coverage there were over 6500 infections, which is over 65 percent of

the population.

Figure 14. Time lapse of the progression of the disease in population with
90 percent vaccination coverage from t = 1 to t = 100.

Figure 15. Time lapse of the progression of the disease in population with
75 percent vaccination coverage from t = 1 to t = 80.

The results of the simulations using the Spatial Tracker program reinforce the idea that

within our model: there is a significant effect that public health interventions have on the

dynamics of the system. Moreover, it highlights that the disease spreads in clusters around

an initial infection which underscores the importance of complying with the quarantine

recommendations of the CDC. By observing the population in simulation 2 which is at an

initial 75 percent vaccination coverage, we can visually emphasize how a community with

this reduced vaccination coverage is at high risk of a severe measles outbreak. Furthermore,

if a population’s vaccination coverage is lower than 75 percent according to our model the
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results can be catastrophic. It is also important to note that both populations started with

a vaccination coverage that was under herd immunity level (94 percent) explaining why the

population for the first simulation, which had a starting vaccination coverage of 90 percent,

still had hundreds of measles cases during the simulated outbreak.

4 Conclusions

The simulations for our stochastic model suggest that a reduction in the vaccination rates

of a population can significantly impact the number of measles cases and the duration of

a measles outbreak. Moreover, since vaccinated individuals still pose a risk of contracting

the disease, counties with low vaccination rates in the United States increase the threat of

measles outbreaks even for communities with average vaccination rates as they can allow

the virus to gain a foothold in a section of the population that can then continue to spread

the virus to other communities. As measles is still endemic in various countries around the

world, and noting that today’s world is highly interconnected, measles can be reintroduced

in the US from foreign contact. If the virus is allowed to take hold in these communities

with under 80% vaccination coverage we may all be at risk of contracting this disease which

was declared eradicated in the year 2000 in the Americas. Ultimately, we argue that the

best way to prevent such a scenario would be to raise vaccination coverage for the entire

population to reach the herd immunity level of 93-95 percent.
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