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Abstract. Let Γ =
〈
Tk,Ml : k ∈ Zd, l ∈ BZd

〉
be a group of unitary operators where Tk is a transla-

tion operator and Ml is a modulation operator acting on L2
(
Rd
)
. Assuming that B is a non-singular

rational matrix of order d with at least one entry which is not an integer, we obtain a direct in-
tegral irreducible decomposition of the Gabor representation which is defined by the isomorphism

π :
(
Zm ×BZd

)
o Zd → Γ where π (θ, l, k) = e

2πi
m θMlTk. We also show that the left regular repre-

sentation of
(
Zm ×BZd

)
oZd which is identified with Γ via π is unitarily equivalent to a direct sum

of card ([Γ,Γ]) many disjoint subrepresentations of the type: L0, L1, · · · , Lcard([Γ,Γ])−1 such that for
k 6= 1 the subrepresentation Lk of the left regular representation is disjoint from the Gabor represen-
tation. Additionally, we compute the central decompositions of the representations π and L1. These
decompositions are then exploited to give a new proof of the Density Condition of Gabor systems (for
the rational case). More precisely, we prove that π is equivalent to a subrepresentation of L1 if and
only if |detB| ≤ 1. We also derive characteristics of vectors f in L2(R)d such that π(Γ)f is a Parseval
frame in L2(R)d.

1. Introduction

The concept of applying tools of abstract harmonic analysis to time-frequency analysis, and wavelet
theory is not a new idea [1, 2, 3, 7, 11]. For example in [1], Larry Baggett gives a direct integral
decomposition of the Stone-von Neumann representation of the discrete Heisenberg group acting
in L2(R). Using his decomposition, he was able to provide specific conditions under which this
representation is cyclic. In Section 5.5, [7] the author obtains a characterization of tight Weyl-
Heisenberg frames in L2 (R) using the Zak transform and a precise computation of the Plancherel
measure of a discrete type I group. In [11], the authors present a thorough study of the left regular
representations of various subgroups of the reduced Heisenberg groups. Using well-known results
of admissibility of unitary representations of locally compact groups, they were able to offer new
insights on Gabor theory.

Let B be a non-singular matrix of order d with real entries. For each k ∈ Zd and l ∈ BZd, we define
the corresponding unitary operators Tk,Ml such that Tkf (t) = f (t− k) and Mlf (t) = e−2πi〈l,t〉f (t)
for f ∈ L2

(
Rd
)
. The operator Tk is called a shift operator, and the operator Ml is called a modulation

operator. Let Γ be a subgroup of the group of unitary operators acting on L2
(
Rd
)

which is generated

by the set
{
Tk,Ml : k ∈ Zd, l ∈ BZd

}
. We write Γ =

〈
Tk,Ml : k ∈ Zd, l ∈ BZd

〉
. The commutator

subgroup of Γ given by [Γ,Γ] =
{
e2πi〈l,Bk〉 : l, k ∈ Zd

}
is a subgroup of the one-dimensional torus

T. Since [Γ,Γ] is always contained in the center of the group, then Γ is a nilpotent group which
is generated by 2d elements. Moreover, Γ is given the discrete topology, and as such it is a locally
compact group. We observe that if B has at least one irrational entry, then it is a non-abelian group
with an infinite center. If B only has rational entries with at least one entry which is not an integer,
then [Γ,Γ] is a finite group, and Γ is a non-abelian group which is regarded as a finite extension of an
abelian group. If all entries of B are integers, then Γ is abelian, and clearly [Γ,Γ] is trivial. Finally,
it is worth mentioning that Γ is a type I group if and only if B only has rational entries [12].

It is easily derived from the work in Section 4, [11] that if B is an integral matrix, then the
Gabor representation π : BZd × Zd → Γ ⊂ U

(
L2
(
Rd
))

defined by π (l, k) = MlTk is equivalent to a
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subrepresentation of the left regular representation of Γ if and only if B is a unimodular matrix. The
techniques used by the authors of [11] rely on the decompositions of the left regular representation and
the Gabor representation into their irreducible components. The group generated by the operators
Ml and Tk is a commutative group which is isomorphic to Zd × BZd. The unitary dual and the
Plancherel measure for discrete abelian groups are well-known and rather easy to write down. Thus,
a precise direct integral decomposition of the left regular representation is easily obtained as well.
Next, using the Zak transform, the authors decompose the representation π into a direct integral of
its irreducible components. They are then able to compare both representations. As a result, one
can derive from the work in the fourth section of [11] that the representation π is equivalent to a
subrepresentation of the left regular representation if and only if B is a unimodular matrix. The main
objective of this paper is to generalize these ideas to the more difficult case where B ∈ GL (d,Q) and
Γ is not a commutative group.

Let us assume that B is an invertible rational matrix with at least one entry which is not an
element of Z. Denoting the inverse transpose of a given matrix M by M?, it is not too hard to see
that there exists a matrix A ∈ GL (d,Z) such that Λ = B?Zd∩Zd = AZd. Indeed, a precise algorithm
for the construction of A is described on Page 809 of [4]. Put

(1) Γ0 =
〈
τ,Ml, Tk : l ∈ BZd, k ∈ Λ, τ ∈ [Γ,Γ]

〉
and define Γ1 =

〈
τ,Ml : l ∈ BZd, τ ∈ [Γ,Γ]

〉
. Then Γ0 is a normal abelian subgroup of Γ. Moreover,

we observe that Γ1 is a subgroup of Γ0 of infinite index. Let m be the number of elements in [Γ,Γ] .
Clearly, since B has at least one rational entry which is not an integer, it must be the case that
m > 1. Furthermore, it is easy to see that there is an isomorphism π :

(
Zm ×BZd

)
o Zd → Γ ⊂

U
(
L2
(
Rd
))

defined by π (j, Bl, k) = e
2πji
m MBlTk. The multiplication law on the semi-direct product

group
(
Zm ×BZd

)
o Zd is described as follows. Given arbitrary elements

(j, Bl, k) , (j1, Bl1, k1) ∈
(
Zm ×BZd

)
o Zd,

we define (j, Bl, k) (j1, Bl1, k1) = ((j + j1 + ω (l1, k)) modm,B (l + l1) , k + k1) where ω (l1, k) ∈ Zm,

and 〈Bl1, k〉 = ω(l1,k)
m

. We call π a rational Gabor representation. It is also worth observing that

π−1 (Γ0) =
(
Zm ×BZd

)
× AZd and π−1 (Γ1) =

(
Zm ×BZd

)
× {0} ' Zm × BZd. Throughout this

work, in order to avoid cluster of notations, we will make no distinction between
(
Zm ×BZd

)
o Zd

and Γ and their corresponding subgroups.
The main results of this paper are summarized in the following propositions. Let

Γ =
〈
Tk,Ml : k ∈ Zd, l ∈ BZd

〉
and assume that B is an invertible rational matrix with at least one entry which is not an integer.
Let L be the left regular representation of Γ.

Proposition 1. The left regular representation of Γ is decomposed as follows:

(2) L ' ⊕m−1
k=0

∫ ⊕
Rd

B?Zd
× Rd
A?Zd

IndΓ
Γ0
χ(k,σ) dσ.

Moreover, the measure dσ in (2) is a Lebesgue measure, and (2) is not an irreducible decomposition
of L.

Proposition 2. The Gabor representation π is decomposed as follows:

(3) π '
∫ ⊕

Rd
Zd
× Rd
A?Zd

IndΓ
Γ0
χ(1,σ) dσ.

Moreover, dσ is a Lebesgue measure defined on the torus Rd
Zd ×

Rd
A?Zd and (3) is an irreducible decom-

position of π.
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It is worth pointing out here that the decomposition of π given in Proposition 2 is consistent with
the decomposition obtained in Lemma 5.39, [7] for the specific case where d = 1 and B is the inverse
of a natural number larger than one.

Proposition 3. Let m be the number of elements in the commutator subgroup [Γ,Γ] . There exists a
decomposition of the left regular representation of Γ such that

(4) L '
m−1⊕
k=0

Lk

and for each k ∈ {0, 1, · · · ,m− 1} , the representation Lk is disjoint from π whenever k 6= 1. More-
over, the Gabor representation π is equivalent to a subrepresentation of the subrepresentation L1 of
L if and only if |detB| ≤ 1.

Although this problem of decomposing the representations π and L into their irreducible compo-
nents is interesting in its own right, we shall also address how these decompositions can be exploited
to derive interesting and relevant results in time-frequency analysis. The proof of Proposition 3 allows
us to state the following:

(1) There exists a measurable set E ⊂ Rd which is a subset of a fundamental domain for the
lattice B?Zd × A?Zd, satisfying

µ (E) =
1

|det (B) det (A)| dim (l2 (Γ/Γ0))

where µ is the Lebesgue measure on Rd × Rd.
(2) There exists a unitary map

(5) A :

∫ ⊕
E

(
⊕`(σ)
k=1l

2

(
Γ

Γ0

))
dσ → L2

(
Rd
)

which intertwines
∫ ⊕
E

(
⊕`(σ)
k=1IndΓ

Γ0

(
χ(1,σ)

))
dσ with π such that, the multiplicity function ` is

bounded, the representations χ(1,σ) are characters of the abelian subgroup Γ0 and

(6)

∫ ⊕
E

(
⊕`(σ)
k=1IndΓ

Γ0

(
χ(1,σ)

))
dσ

is the central decomposition of π (Section 3.4.2, [7]).

Moreover, for the case where | det(B)| ≤ 1, the multiplicity function ` is bounded above by the
number of cosets in Γ/Γ0 while if | det(B)| > 1, then the multiplicity function ` is bounded but is
greater than the number of cosets in Γ/Γ0 on a set E′ ⊆ E of positive Lebesgue measure. This
observation that the upper-bound of the multiplicity function behaves differently in each situation
may mistakenly appear to be of limited importance. However, at the heart of this observation,
lies a new justification of the well-known Density Condition of Gabor systems for the rational case
(Theorem 1.3, [8]). In fact, we shall offer a new proof of a rational version of the Density Condition
for Gabor systems in Proposition 9.

It is also worth pointing out that the central decomposition of π as described above has several useful
implications. Following the discussion on Pages 74-75, [7], the decomposition given in (6) may be
used to:

(1) Characterize the commuting algebra of the representation π and its center.
(2) Characterize representations which are either quasi-equivalent or disjoint from π (see [7] The-

orem 3.17 and Corollary 3.18).
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Additionally, using the central decomposition of π, in the case where the absolute value of the
determinant of B is less or equal to one, we obtain a complete characterization of vectors f such that
π (Γ) f is a Parseval frame in L2

(
Rd
)
.

Proposition 4. Let us suppose that |detB| ≤ 1. Then

(7) π '
∫ ⊕
E

(
⊕`(σ)
k=1IndΓ

Γ0

(
χ(1,σ)

))
dσ

with ` (σ) ≤ card (Γ/Γ0). Moreover, π (Γ) f is a Parseval frame in L2
(
Rd
)

if and only if f =

A (a (σ))σ∈E such that for dσ-almost every σ ∈ E, ‖a (σ) (k)‖2

l2
(

Γ
Γ0

) = 1 for 1 ≤ k ≤ ` (σ) and for

distinct k, j ∈ {1, · · · , ` (σ)}, 〈a (σ) (k) , a (σ) (j)〉 = 0.

This paper is organized around the proofs of the propositions mentioned above. In Section 2, we
fix notations and we revisit well-known concepts such as induced representations and direct integrals
which are of central importance. The proof of Proposition 1 is obtained in the third section. The
proofs of Propositions 2, 3 and examples are given in the fourth section. Finally, the last section
contains the proof of Proposition 4.

2. Preliminaries

Let us start by fixing our notations and conventions. All representations in this paper are assumed
to be unitary representations. Given two equivalent representations π and ρ, we write that π ' ρ.
We use the same notation for isomorphic groups. That is, if G and H are isomorphic groups, we
write that G ' H. All sets considered in this paper will be assumed to be measurable. Given two

disjoint sets A and B, the disjoint union of the sets is denoted A
·
∪B. Let H be a Hilbert space. The

identity operator acting on H is denoted 1H. The unitary equivalence classes of irreducible unitary

representations of G is called the unitary dual of G and is denoted Ĝ.
Several of the proofs presented in this work rely on basic properties of induced representations and

direct integrals. The following discussion is mainly taken from Chapter 6, [6]. Let G be a locally
compact group, and let K be a closed subgroup of G. Let us define q : G→ G/K to be the canonical
quotient map and let ϕ be a unitary representation of the group K acting in some Hilbert space which
we call H. Next, let K1 be the set of continuous H-valued functions f defined over G satisfying the
following properties:

(1) q (support (f)) is compact,
(2) f (gk) = ϕ (k)−1 f (g) for g ∈ G and k ∈ K.

Clearly, G acts on the set K1 by left translation. Now, to simplify the presentation, let us suppose
that G/K admits a G-invariant measure. We remark that in general, this is not always the case.
However, the assumption that G/K admits a G-invariant measure holds for the class of groups
considered in this paper. We construct a unitary representation of G by endowing K1 with the
following inner product:

〈f, f ′〉 =

∫
G/K

〈f (g) , f ′ (g)〉H d (gK) for f, f ′ ∈ K1.

Now, let K be the Hilbert completion of the space K1 with respect to this inner product. The
translation operators extend to unitary operators on K inducing a unitary representation IndGK (ϕ)
which is defined as follows:

IndGK (ϕ) (x) f (g) = f
(
x−1g

)
for f ∈ K.

We notice that if ϕ is a character, then the Hilbert space K can be naturally identified with L2 (G/H) .
Induced representations are natural ways to construct unitary representations. For example, it is easy
to prove that if e is the identity element of G and if 1 is the trivial representation of {e} then the
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representation IndG{e} (1) is equivalent to the left regular representation of G. Other properties of
induction such as induction in stages will be very useful for us. The reader who is not familiar with
these notions is invited to refer to Chapter 6 of the book of Folland [6] for a thorough presentation.

We will now present a short introduction to direct integrals; which are heavily used in this paper.
For a complete presentation, the reader is referred to Section 7.4, [6]. Let {Hα}α∈A be a family
of separable Hilbert spaces indexed by a set A. Let µ be a measure defined on A. We define the
direct integral of this family of Hilbert spaces with respect to µ as the space which consists of
vectors ϕ defined on the parameter space A such that ϕ (α) is an element of Hα for each α ∈ A
and

∫
A
‖ϕ (α)‖2

Hα
dµ (α) <∞ with some additional measurability conditions which we will clarify. A

family of separable Hilbert spaces {Hα}α∈A indexed by a Borel set A is called a field of Hilbert spaces

over A. A map ϕ : A →
⋃
α∈A

Hα such that ϕ (α) ∈ Hα is called a vector field on A. A measurable

field of Hilbert spaces over the indexing set A is a field of Hilbert spaces {Hα}α∈A together with a
countable set {ej}j of vector fields such that

(1) the functions α 7→ 〈ej (α) , ek (α)〉Hα are measurable for all j, k,
(2) the linear span of {ek (α)}k is dense in Hα for each α ∈ A.

The direct integral of the spaces Hα with respect to the measure µ is denoted by
∫ ⊕
A
Hαdµ (α)

and is the space of measurable vector fields ϕ on A such that
∫
A
‖ϕ (α)‖2

Hα
dµ (α) < ∞. The inner

product for this Hilbert space is: 〈ϕ1, ϕ2〉 =
∫
A
〈ϕ1 (α) , ϕ2 (α)〉Hα dµ (α) for ϕ1, ϕ2 ∈

∫ ⊕
A
Hαdµ (α) .

3. The regular representation and its decompositions

In this section, we will discuss the Plancherel theory for Γ. For this purpose, we will need a complete
description of the unitary dual of Γ. This will allow us to obtain a central decomposition of the left
regular representation of Γ. Also, a proof of Proposition 1 will be given in this section.

Let L be the left regular representation of Γ. Suppose that Γ is not commutative and that B is a
rational matrix. We have shown that Γ has an abelian normal subgroup of finite index which we call

Γ0. Moreover, there is a canonical action (74-79, [10]) of Γ on the group Γ̂0 (the unitary dual of Γ0)

such that for each P ∈ Γ and χ ∈ Γ̂0, P · χ (Q) = χ (P−1QP ) . Let us suppose that χ = χ(λ1,λ2,λ3) is

a character in the unitary dual Γ̂0 where (λ1, λ2, λ3) ∈ {0, 1, · · · ,m− 1} × Rd
B?Zd ×

Rd
A?Zd ' Γ̂0, and

χ(λ1,λ2,λ3)

(
e

2πik
m MBlTAj

)
= e

2πiλ1k
m e2πi〈λ2,Bl〉e2πi〈λ3,Aj〉. We observe that Rd is identified with its dual

R̂d and {0, 1, · · · ,m− 1} parametrizes the unitary dual of the commutator subgroup [Γ,Γ] which is
isomorphic to the cyclic group Zm. For any τ ∈ [Γ,Γ] , we have τ · χ(λ1,λ2,λ3) = χ(λ1,λ2,λ3). Moreover,
given Ml, Tk ∈ Γ,

Ml · χ(λ1,λ2,λ3) = χ(λ1,λ2,λ3), and Tk · χ(λ1,λ2,λ3) = χ(λ1,λ2−kλ1,λ3).

Next, let Γχ = {P ∈ Γ : P · χ = χ} . It is easy to see that the stability subgroup of the character
χ(λ1,λ2,λ3) is described as follows:

(8) Γχ(λ1,λ2,λ3)
=
{
τMlTk ∈ Γ : τ ∈ [Γ,Γ] , l ∈ BZd, kλ1 ∈ B?Zd

}
.

It follows from (8) that the stability group Γχ(λ1,λ2,λ3)
contains the normal subgroup Γ0. Indeed, if

λ1 = 0 then Γχ(λ1,λ2,λ3)
= Γ. Otherwise,

(9) Γχ(λ1,λ2,λ3)
=

{
τMlTk ∈ Γ : τ ∈ [Γ,Γ] , l ∈ BZd, k ∈

(
1

λ1

B?Zd
)
∩ Zd

}
.

According to Mackey theory (see Page 76, [10]) and well-known results of Kleppner and Lipsman
(Page 460, [10]), every irreducible representation of Γ is of the type IndΓ

Γχ (χ̃⊗ σ̃) where χ̃ is an

extension of a character χ of Γ0 to Γχ, and σ̃ is the lift of an irreducible representation σ of Γχ/Γ0
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to Γχ. Also two irreducible representations IndΓ
Γχ (χ̃⊗ σ̃) and IndΓ

Γχ1
(χ̃1 ⊗ σ̃) are equivalent if and

only if the characters χ and χ1 of Γ0 belong to the same Γ-orbit. Since Γ is a finite extension of
its subgroup Γ0, then it is well known that there is a measurable set which is a cross-section for the

Γ-orbits in Γ̂0. Now, let Σ be a measurable subset of Γ̂0 which is a cross-section for the Γ-orbits in

Γ̂0. The unitary dual of Γ is a fiber space which is described as follows:

Γ̂ =
⋃
χ∈Σ

{
πχ,σ = IndΓ

Γχ (χ̃⊗ σ̃) : σ ∈ Γ̂χ
Γ0

}
.

Finally, since Γ is a type I group, there exists a unique standard Borel measure on Γ̂ such that the left
regular representation of the group Γ is equivalent to a direct integral of all elements in the unitary
dual of Γ, and the multiplicity of each irreducible representation occurring is equal to the dimension
of the corresponding Hilbert space. So, we obtain a decomposition of the representation L into a
direct integral decomposition of its irreducible representations as follows (see Theorem 3.31, [7] and
Theorem 5.12, [11])

(10) L '
∫ ⊕

Σ

∫ ⊕
Γ̂χ
Γ0

⊕
dim

(
l2
(

Γ
Γχ

))
k=1 πχ,σdωχ (σ) dχ

and dim
(
l2
(

Γ
Γχ

))
≤ card (Γ/Γ0) . The fact that dim

(
l2
(

Γ
Γχ

))
≤ card (Γ/Γ0) is justified because

the number of representative elements of the quotient group Γ
Γχ

is bounded above by the number of

elements in Γ
Γ0
. Moreover the direct integral representation in (10) is realized as acting in the Hilbert

space

(11)

∫ ⊕
Σ

∫ ⊕
Γ̂χ
Γ0

⊕
dim

(
l2
(

Γ
Γχ

))
k=1 l2

(
Γ

Γχ

)
dωχ (σ) dχ.

Although the decomposition in (10) is canonical, the decomposition provided by Proposition 1 will
be more convenient for us.

3.1. Proof of Proposition 1. Let e be the identity element in Γ, and let 1 be the trivial represen-
tation of the trivial group {e} . We observe that L ' IndΓ

{e} (1) . It follows that

L ' IndΓ
Γ0

(
IndΓ0

{e} (1)
)

(12)

' IndΓ
Γ0

(∫ ⊕
Γ̂0

χt dt

)
'
∫ ⊕

Γ̂0

IndΓ
Γ0

(χt) dt.(13)

The second equivalence given above is coming from the fact that IndΓ0

{e} (1) is equivalent to the left

regular representation of the group Γ0. Since Γ0 is abelian, its left regular representation admits a
direct integral decomposition into elements in the unitary dual of Γ0, each occurring once. Moreover,
the measure dt is a Lebesgue measure (also a Haar measure) supported on the unitary dual of the
group, and the Plancherel transform is the unitary operator which is intertwining the representations
IndΓ0

{e} (1) and
∫ ⊕

Γ̂0
χt dt. Based on the discussion above, it is worth mentioning that the representa-

tions occurring in (13) are generally reducible since it is not always the case that Γ0 = Γχt . We observe

that Γ̂0 is parametrized by the group Zm× Rd
B?Zd ×

Rd
A?Zd . Thus, identifying Γ̂0 with Zm× Rd

B?Zd ×
Rd
A?Zd ,

we reach the desired result: L ' ⊕m−1
k=0

∫ ⊕
Rd

B?Zd
× Rd
A?Zd

IndΓ
Γ0
χ(k,t) dt.
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Remark 5. Referring to (9), we remark that Γχ(1,t2,t3)
= Γ0, and in this case IndΓ

Γ0

(
χ(1,t2,t3)

)
is an

irreducible representation of the group Γ.

4. Decomposition of π

In this section, we will provide a decomposition of the Gabor representation π. For this purpose,
it is convenient to regard the set Rd as a fiber space, with base space the d-dimensional torus. Next,
for any element t in the torus, the corresponding fiber is the set t + Zd. With this concept in mind,
let us define the periodization map R : L2

(
Rd
)
→
∫ ⊕

Rd
Zd
l2
(
Zd
)
dt such that Rf (t) = (f (t+ k))k∈Zd .

We remark here that we clearly abuse notation by making no distinction between Rd
Zd and a choice of

a measurable subset of Rd which is a fundamental domain for Rd
Zd . Next, the inner product which we

endow the direct integral Hilbert space
∫ ⊕

Rd
Zd
l2
(
Zd
)
dt with is defined as follows. For any vectors

f and h ∈
∫ ⊕

Rd
Zd

l2
(
Zd
)
dt

the inner product of f and g is equal to 〈f, h〉R(L2(Rd)) =
∫

Rd
Zd

(∑
k∈Zd f (t+ k)h (t+ k)

)
dt, and it

is easy to check that R is a unitary map.

4.1. Proof of Proposition 2. For t ∈ Rd, we consider the unitary character χ(1,−t) : Γ1 → T
which is defined by χ(1,−t) (e2πizMl) = e2πize−2πi〈t,l〉. Next, we compute the action of the unitary

representation IndΓ
Γ1
χ(1,−t) of Γ which is acting in the Hilbert space

Ht =

{
f : Γ→ C : f (PQ) = χ(1,−t) (Q)−1 f (P ) , Q ∈ Γ1

and
∑

PΓ1∈ Γ
Γ1

|f (P )|2 <∞

}
.

Let Θ be a cross-section for Γ/Γ1 in Γ. The Hilbert space Ht is naturally identified with l2 (Θ) since
for any Q ∈ Γ1, we have |f (PQ)| = |f (P )| . Via this identification, we may realize the representation
IndΓ

Γ1
χ(1,−t) as acting in l2 (Θ) . More precisely, for a ∈ l2 (Θ) and ρt = IndΓ

Γ1
χ(1,−t) we have

(ρt (X) a) (Tj) =

 a (Tj−k) if X = Tk
e−2πi〈j,l〉e−2πi〈t,l〉a (Tj) if X = Ml

e2πiθa (Tj) if X = e2πiθ
.

Defining the unitary operator J : l2 (Θ) → l2
(
Zd
)

such that (Ja) (j) = a (Tj) , it is easily checked
that:

J−1 [(RXf) (t)] =

 ρt (Tk) [J−1 (Rf (t))] if X = Tk
ρt (Ml) [J−1 (Rf (t))] if X = Ml

ρt
(
e2πiθ

)
[J−1 (Rf (t))] if X = e2πiθ

.

Thus, the representation π is unitarily equivalent to

(14)

∫ ⊕
Rd
Zd

ρt dt.

Now, we remark that ρt is not an irreducible representation of the group Γ. Indeed, by induc-
ing in stages (see Page 166, [6]), we obtain that the representation ρt is unitarily equivalent to
IndΓ

Γ0

(
IndΓ0

Γ1

(
χ(1,−t)

))
and IndΓ0

Γ1
χ(1,−t) acts in the Hilbert space

(15) Kt =

{
f : Γ0 → C : f (PQ) = χ(1,−t) (Q−1) f (P ) , Q ∈ Γ1

and
∑

PΓ1∈Γ0
Γ1

|f (P )|2 <∞

}
.
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Since χ(1,−t) is a character, for any f ∈ Kt, we notice that |f (PQ)| = |f (P )| for Q ∈ Γ1. Thus, the

Hilbert space Kt is naturally identified with l2
(

Γ0

Γ1

)
' l2

(
AZd

)
where AZd is a parametrizing set

for the quotient group Γ0

Γ1
. Via this identification, we may realize IndΓ0

Γ1
χ(1,−t) as acting in l2

(
AZd

)
.

More precisely, for Tj, j ∈ AZd, we compute the action of IndΓ0
Γ1
χ(1,−t) as follows:

[
IndΓ0

Γ1
χ(1,−t) (X) f

]
(Tj) =

 f (Tj−k) if X = Tk
e−2πi〈t,l〉f (Tj) if X = Ml

e2πiθf (Tj) if X = e2πiθ
.

Now, let FAZd be the Fourier transform defined on l2
(
AZd

)
. Given a vector f in l2

(
AZd

)
, it is not

too hard to see that[
FAZd

(
IndΓ0

Γ1
χ(1,−t) (X) f

)]
(ξ) =

 χξ (Tk)FAZdf (ξ) if X = Tk
e−2πi〈t,l〉FAZdf (ξ) if X = Ml

e2πiθFAZdf (ξ) if X = e2πiθ

where χξ is a character of the discrete group AZd. As a result, given X ∈ Γ we obtain:

(16) FAZd ◦ ρt (X) ◦ F−1
AZd =

∫ ⊕
Rd
A?Zd

χ(1,−t,ξ) (X) dξ,

where χ(1,−t,ξ) is a character of Γ0 defined as follows:

χ(1,−t,ξ) (X) =

 χξ (Tk) if X = Tk
e−2πi〈t,l〉 if X = Ml

e2πiθ if X = e2πiθ
.

Using the fact that induction commutes with direct integral decomposition (see Page 41,[5]) we have

(17) ρt ' IndΓ
Γ0

(∫ ⊕
Rd
A?Zd

χ(1,−t,ξ) dξ

)
'
∫ ⊕

Rd
A?Zd

(
IndΓ

Γ0
χ(1,−t,ξ)

)
dξ.

Putting (14) and (17) together, we arrive at: π '
∫ ⊕

Rd
Zd
× Rd
A?Zd

IndΓ
Γ0
χ(1,σ)dσ. Finally, the fact that

IndΓ
Γ0
χ(1,σ) is an irreducible representation is due to Remark 5. This completes the proof.

Remark 6. We shall offer here a different proof of Proposition 2 by exhibiting an explicit intertwining
operator which is a version of the Zak transform for the representation π and the direct integral
representation described given in (3). Let Cc

(
Rd
)

be the space of continuous functions on Rd which

are compactly supported. Let Z be the operator which maps each f ∈ Cc
(
Rd
)

to the function

(18) (Zf)
(
x,w, j + AZd

)
=
∑
k∈Zd

f (x+ Ak + j) e2πi〈w,Ak〉 ≡ φ
(
x,w, j + AZd

)
where x,w ∈ Rd and j is an element of a cross-section for Zd

AZd in the lattice Zd. Given arbitrary

m′ ∈ Zd, we may write m′ = Ak′ + j′ where k′ ∈ Zd and j′ is an element of a cross-section for
Zd
AZd . Next, it is worth observing that given m,m′ ∈ Zd, φ

(
x,w + A?m, j + AZd

)
= φ

(
x,w, j + AZd

)
and φ

(
x+m′, w, j + AZd

)
is equal to e−2πi〈w,Ak′〉φ

(
x,w, j + j′ + AZd

)
. This observation will later

help us explain the meaning of Equality (18). Let Σ1 and Σ2 be measurable cross-sections for Rd
Zd

and Rd
A?Zd respectively in Rd. For example, we may pick Σ1 = [0, 1)d and Σ2 = A? [0, 1)d . Since f is

square-integrable, by a periodization argument it is easy to see that

(19) ‖f‖2
L2(Rd) =

∫
Σ1

∑
m∈Zd

|f (x+m)|2 dx.
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Therefore, the integral on the right of (19) is finite. It immediately follows that∫
Σ1

∑
j+AZd∈Zd/AZd

∑
k∈Zd
|f (x+ Ak + j)|2 dt <∞.

Therefore, the sum
∑

j+AZd∈Zd/AZd
∑

k∈Zd |f (x+ Ak + j)|2 is finite for almost every x ∈ Σ1 and a

fixed j which is a cross-section for Zd/AZd in Zd. Next, observe that

(20)
∑
k∈Zd

f (x+ Ak + j) e2πi〈w,Ak〉

is a Fourier series of the sequence (f (x+ Ak + j))Ak∈AZd ∈ l2
(
AZd

)
. So, for almost every x and for

a fixed j, the function φ
(
x, ·, j + AZd

)
is regarded as a function of L2

(
Rd
)

which is A?Zd-periodic

(it is an L2 (Σ2) function). In summary, we may regard the function (Zf)
(
x,w, j + AZd

)
as being

defined over the set Σ1 × Σ2 × Zd
AZd . Let us now show that Z maps Cc

(
Rd
)

isometrically into the

Hilbert space L2
(

Σ1 × Σ2 × Zd
AZd

)
. Given any square-summable function f in L2

(
Rd
)
, we have∫

Rd
|f (t)|2 dt =

∫
Σ1

∑
k∈Zd
|f (t+ k)|2 dt =

∫
Σ1

∑
j+AZd∈Zd/AZd

∑
k∈Zd
|f (t+ Ak + j)|2 dt.

Regarding (f (t+ Ak + j))Ak∈AZd as a square-summable sequence in l2
(
AZd

)
, the function

w 7→
∑
k∈Zd

f (t+ Ak + j) e2πi〈w,Ak〉

is the Fourier transform of the sequence (f (t+ Ak + j))Ak∈AZd. The Plancherel theorem being a
unitary operator, we have∑

k∈Zd
|f (t+ Ak + j)|2 =

∫
Σ2

∣∣∣∣∣∑
k∈Zd

f (t+ Ak + j) e2πi〈w,Ak〉

∣∣∣∣∣
2

dw.

It follows that ∫
Rd
|f (t)|2 dt =

∫
Σ1

∑
j+AZd∈Zd/AZd

∫
Σ2

∣∣∣∣∣∑
k∈Zd

f (t+ Ak + j) e2πi〈w,Ak〉

∣∣∣∣∣
2

dwdt

=

∫
Σ1

∫
Σ2

∑
j+AZd∈Zd/AZd

∣∣Zf (x,w, j + AZd
)∣∣2 dwdt

= ‖Zf‖2

L2
(

Σ1×Σ2× Zd
AZd

) .
Now, by density, we may extend the operator Z to L2

(
Rd
)
, and we shall next show that the extension

Z : L2
(
Rd
)
→ L2

(
Σ1 × Σ2 ×

Zd

AZd

)
is unitary. At this point, we only need to show that Z is surjective. Let ϕ be any vector in the Hilbert

space L2
(

Σ1 × Σ2 × Zd
AZd

)
. Clearly for almost every x and given any fixed j, we have ϕ (x, ·, j) ∈

L2 (Σ2) . For such x and j, let (c` (x, j))`∈AZd be the Fourier transform of ϕ (x, ·, j) . Next, define

fϕ ∈ L2
(
Rd
)

such that for almost every x ∈ Σ1,

fϕ (x+ A`+ j) = c` (x, j) .
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Now, for almost every w ∈ Σ2,

Zfϕ (x,w) =
∑
`∈Zd

fϕ (x+ A`+ j) e2πi〈w,A`〉

=
∑
`∈Zd

c` (x, j) e2πi〈w,A`〉

= ϕ
(
x,w, j + AZd

)
.

It remains to show that our version of Zak transform intertwines the representation π with
∫ ⊕

Σ1×Σ2
ρ(1,x,w)

dxdw such that ρ(1,x,w) is equivalent to the induced representation IndΓ
Γ0
χ(1,−x,w). Let R : l2 (Γ/Γ0)→

l2
(
Zd/AZd

)
be a unitary map defined by

R
(
f
(
j + AZd

)
j+AZd

)
= (f (TjΓ0))TjΓ0

.

Put

ρ(1,x,w) (X) = R ◦ IndΓ
Γ0
χ(1,−x,w) (X) ◦ R−1 for every X ∈ Γ.

It is straightforward to check that

(ZTjf) (x,w, ·) =
∑
k∈Zd

Tjf (x+ ·) e2πi〈w,Ak〉

=
∑
k∈Zd

Tjf (x+ (· − j)) e2πi〈w,Ak〉

=
[
ρ(1,x,w) (Tj)

]
(Zf) (x,w, ·)

and

(ZMBlf) (x,w, ·) =
∑
k∈Zd

e−2πi〈Bl,x+Ak+j〉f (x+ ·) e2πi〈w,Ak〉

= e−2πi〈Bl,x+j〉
∑
k∈Zd

e−2πi〈Bl,Ak〉f (x+ ·) e2πi〈w,Ak〉

= e−2πi〈Bl,x+j〉f (x+ ·) e2πi〈w,Ak〉

= e−2πi〈Bl,x+j〉 (Zf) (x,w, ·)
= ρ(1,x,w) (MBl) (Zf) (x,w, ·) .

In summary, given any X ∈ Γ,

Z ◦ π (X) ◦Z−1 =

∫ ⊕
Σ1×Σ2

ρ(1,x,w) (X) dxdw.

Lemma 7. Let Γ1 = A1Zd and Γ2 = A2Zd be two lattices of Rd such that A1 and A2 are non-
singular matrices and |detA1| ≤ |detA2| . Then there exist measurable sets Σ1,Σ2 such that Σ1 is a

fundamental domain for Rd
A1Zd and Σ2 is a fundamental domain for Rd

A2Zd and Σ1 ⊆ Σ2 ⊂ Rd.

Proof. According to Theorem 1.2, [8], there exists a measurable set Σ1 such that Σ1 tiles Rd by the
lattice A1Zd and packs Rd by A2Zd. By packing, we mean that given any distinct γ, κ ∈ A2Zd, the
set (Σ1 + γ) ∩ (Σ1 + κ) is an empty set and

∑
λ∈A2Zd 1Σ1 (x+ λ) ≤ 1 for x ∈ Rd where 1Σ1 denotes

the characteristic function of the set Σ1. We would like to construct a set Σ2 which tiles Rd by A2Zd
such that Σ1 ⊆ Σ2. To construct such a set, let Ω be a fundamental domain for Rd

A2Zd . It follows

that, there exists a subset I of A2Zd such that Σ1 ⊆
·⋃

k∈I

(Ω + k) and each (Ω + k) ∩ Σ1 is a set of
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positive Lebesgue measure. Next, for each k ∈ I, we define Ωk = (Ω + k) ∩ Σ1. We observe that

Σ1 =
·⋃

k∈I

((Ω + k) ∩ Σ1) =
·⋃

k∈I

Ωk where Ωk = (Ω + k) ∩ Σ1. Put

Σ2 =

(
Ω−

·⋃
k∈I

(Ωk − k)

)
·
∪ Σ1.

The disjoint union in the equality above is due to the fact that for distinct k, j ∈ I, the set (Ωk − k)∩
(Ωj − j) is a null set. This holds because, Σ1 packs Rd by A2Zd. Finally, we observe that

Σ2 =

(
Ω−

·⋃
k∈I

(Ωk − k)

)
·
∪

(
·⋃

k∈I

Ωk

)

and Ω =

(
Ω−

·⋃
k∈I

(Ωk − k)

)
·
∪

(
·⋃

k∈I

Ω′k

)
where each Ω′k is A2Zd-congruent with Ωk. Therefore Σ2

is a fundamental domain for Rd
A2Zd which contains Σ1. This completes the proof. �

Now, we are ready to prove Proposition 3. Part of the proof of Proposition 3 relies on some
technical facts related to central decompositions of unitary representations. A good presentation of
this theory is found in Section 3.4.2, [7].

4.2. Proof of Proposition 3. From Proposition 2, we know that the representation π is unitarily
equivalent to

(21)

∫ ⊕
Rd
Zd
× Rd
A?Zd

IndΓ
Γ0
χ(1,σ) dσ.

We recall that Γ0 is isomorphic to the discrete group Zm × BZd × AZd and that Γ1 is isomorphic
to Zm × BZd where m is the number of elements in the commutator group of Γ which is a discrete
subgroup of the torus. From Proposition 1, we have

(22) L ' ⊕m−1
k=0

∫ ⊕
Rd

B?Zd
× Rd
A?Zd

IndΓ
Γ0

(
χ(k,σ)

)
dσ.

Now, put

(23) Lk =

∫ ⊕
Rd

B?Zd
× Rd
A?Zd

IndΓ
Γ0
χ(k,σ) dσ.

From (22), it is clear that L = L0 ⊕ · · · ⊕ Lm−1. Next, for distinct i and j, the representations Li
and Lj described above are disjoint representations. This is due to the fact that if i 6= j then the
Γ-orbits of χ(i,σ) and χ(j,σ) are disjoint sets and therefore the induced representations IndΓ

Γ0
χ(i,σ) and

IndΓ
Γ0
χ(j,σ) are disjoint representations. Thus, for k 6= 1 the representation Lk must be disjoint from

π. Let us assume for now that |detB| > 1 (or |det (B?)| < 1.) According to Lemma 7, there exist

measurable cross-sections Σ1,Σ2 for Rd
Zd ×

Rd
A?Zd and Rd

B?Zd ×
Rd
A?Zd respectively such that Σ1,Σ2 ⊂ R2,

Σ1 ⊃ Σ2 and Σ1 − Σ2 is a set of positive Lebesgue measure. Therefore,

(24) π '
∫ ⊕

Σ1

(
IndΓ

Γ0

(
χ(1,σ)

))
dσ and L1 '

∫ ⊕
Σ2

(
IndΓ

Γ0

(
χ(1,σ)

))
dσ

and the representations above are realized as acting in the direct integrals of finite dimensional vec-
tor spaces:

∫ ⊕
Σ1
l2 (Γ/Γ0) dσ and

∫ ⊕
Σ2
l2 (Γ/Γ0) dσ respectively. We remark that the direct integrals
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described in (24) are irreducible decompositions of π and L1. Now, referring to the central decom-
position of the left regular representation which is described in (10) there exists a measurable subset
E of Σ2 such that the central decomposition of L1 is given by (see Theorem 3.26, [7])∫ ⊕

E

⊕dim(l2(Γ/Γ0))
k=1 IndΓ

Γ0

(
χ(1,σ)

)
dσ.

Furthermore, recalling that L1 '
∫ ⊕

Σ2

(
IndΓ

Γ0

(
χ(1,σ)

))
dσ and letting µ be the Lebesgue measure on

Rd × Rd, it is necessarily the case that

µ (E) =
µ (Σ2)

dim (l2 (Γ/Γ0))
=

1

|det (B) det (A)| dim (l2 (Γ/Γ0))
.

From the discussion provided at the beginning of the third section, the set E is obtained by taking

a cross-section for the Γ-orbits in Rd
B?Zd ×

Rd
A?Zd . Moreover, since Σ1 ⊃ Σ2 and since Σ1 − Σ2 is a

set of positive Lebesgue measure then π '
∫ ⊕

Σ1
IndΓ

Γ0

(
χ(1,σ)

)
dσ ' L1 ⊕

∫ ⊕
Σ1−Σ2

IndΓ
Γ0

(
χ(1,σ)

)
dσ and∫ ⊕

Σ1−Σ2
IndΓ

Γ0

(
χ(1,σ)

)
dσ is a subrepresentation of π. Thus a central decomposition of π is given by∫ ⊕

E

⊕u(σ) dim(l2(Γ/Γ0))
k=1 IndΓ

Γ0

(
χ(1,σ)

)
dσ

and the function u : E → N is greater than one on a subset of positive measure of E. Therefore,
according to Theorem 3.26, [7], it is not possible for π to be equivalent to a subrepresentation of the
left regular representation of Γ if |detB| > 1. Now, let us suppose that |detB| ≤ 1. Then |detB?| ≥ 1.
Appealing to Lemma 7, there exist measurable sets Σ1 and Σ2 which are measurable fundamental

domains for Rd
Zd ×

Rd
A?Zd , and Rd

B?Zd ×
Rd
A?Zd respectively, such that Σ1,Σ2 ⊂ Rd and Σ1 ⊆ Σ2. Next,

L1 '
∫ ⊕

Σ2

IndΓ
Γ0

(
χ(1,σ)

)
dσ

'
(∫ ⊕

Σ1

IndΓ
Γ0

(
χ(1,σ)

)
dσ

)
⊕
(∫ ⊕

Σ2−Σ1

IndΓ
Γ0

(
χ(1,σ)

)
dσ

)
' π ⊕

(∫ ⊕
Σ2−Σ1

IndΓ
Γ0

(
χ(1,σ)

)
dσ

)
.

Finally, π is equivalent to a subrepresentation of L1 and is equivalent to a subrepresentation of the
left regular representation L.

4.3. Examples. In this subsection, we shall present a few examples to illustrate the results obtained
in Propositions 1, 2 and 3.

(1) Let us start with a trivial example. Let d = 1 and B = 2
3
. Then B? = 3

2
, A = 3, and A? = 1

3
.

Next, L ' ⊕2
k=0

∫ ⊕
[0, 32)×[0, 13) IndΓ

Γ0
χ(k,σ) dσ and π '

∫ ⊕
[0,1)×[0, 13) IndΓ

Γ0
χ(1,σ) dσ. Now, the central

decomposition of L1 is given by∫ ⊕
[0, 12)×[0, 13)

⊕3
j=1IndΓ

Γ0
χ(1,σ) dσ

and the central decomposition of the rational Gabor representation π is∫ ⊕
[0, 12)×[0, 13)

⊕2
j=1IndΓ

Γ0
χ(1,σ) dσ.

From these decompositions, it is obvious that the rational Gabor representation π is equivalent
to a subrepresentation of the left regular representation L.
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(2) If we define B =

[
2
3

0
0 3

2

]
, then B? =

[
3
2

0
0 2

3

]
, A =

[
3 0
0 2

]
and A? =

[
1
3

0
0 1

2

]
. Next,

the left regular representation of Γ can be decomposed into a direct integral of representations
as follows:

L ' ⊕5
k=0

∫ ⊕
S

IndΓ
Γ0
χ(k,σ) dσ

where S = S1 × A? [0, 1)2 and

S1 =

(
[0, 1)×

[
0,

2

3

))
∪
([

1,
3

2

)
×
[

2

3
, 1

))
∪
([
−1

2
, 0

)
×
[
−1

3
, 0

))
is a common connected fundamental domain for the lattices B?Z2 and Z2.

Figure 1. Illustration of the set S1.

Moreover, we decompose the rational Gabor representation as follows: π '
∫ ⊕
S

IndΓ
Γ0
χ(1,σ) dσ.

One interesting fact to notice here is that: the rational Gabor representation π is actually
equivalent to L1 and

L = L0 ⊕ L1 ⊕ L2 ⊕ L3 ⊕ L4 ⊕ L5.

(3) Let Γ = 〈Tk,MBl : k, l ∈ Z3〉 where B =

 1 0 0
−1

5
1
5

0
1 −1 5

 . The inverse transpose of the matrix

B is given by B? =

 1 1 0
0 5 1
0 0 1

5

 . Next, we may choose the matrix A such that

A =

 1 1 0
0 5 5
0 0 1

 and A? =

 1 0 0
−1

5
1
5

0
1 −1 1

 .
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Finally, we observe that

 0 0 1
0 1 5
1 1

5
0

 [0, 1)3 is a common fundamental domain for both B?Z3

and Z3. Put

S =

 0 0 1
0 1 5
1 1

5
0

 [0, 1)3 ×

 1 0 0
−1

5
1
5

0
1 −1 1

 [0, 1)3 .

Then L ' ⊕4
k=0

∫ ⊕
S

IndΓ
Γ0
χ(k,t)dt and π '

∫ ⊕
S

IndΓ
Γ0
χ(1,t)dt.

5. Application to time-frequency analysis

Let π be a unitary representation of a locally compact group X, acting in some Hilbert space H.
We say that π is admissible, if and only if there exists some vector φ ∈ H such that the operator W π

φ

defined by W π
φ : H → L2 (X) , W π

φψ (x) = 〈ψ, π (x)φ〉 is an isometry of H into L2 (X) .
We continue to assume that B is an invertible rational matrix with at least one entry which is not

an integer. Following Proposition 2.14 and Theorem 2.42 of [7], the following is immediate.

Lemma 8. A representation of Γ is admissible if and only if the representation is equivalent to a
subrepresentation of the left regular representation of Γ.

Given a countable sequence {fi}i∈I of vectors in a Hilbert space H, we say {fi}i∈I forms a frame
if and only if there exist strictly positive real numbers A,B such that for any vector f ∈ H,

A ‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B ‖f‖2 .

In the case where A = B, the sequence of vectors {fi}i∈I forms a tight frame, and if A = B = 1, {fi}i∈I
is called a Parseval frame. We remark that an admissible vector for the left regular representation of
Γ is a Parseval frame by definition.

The following proposition is well-known for the more general case where B is any invertible matrix
(not necessarily a rational matrix.) Although this result is not new, the proof of Proposition 9 is
new, and worth presenting in our opinion.

Proposition 9. Let B be a rational matrix. There exists a vector g ∈ L2
(
Rd
)

such that the system{
MlTkg : l ∈ BZd, k ∈ Zd

}
is a Parseval frame in L2

(
Rd
)

if and only if |detB| ≤ 1.

Proof. The case where B is an element of GL (d,Z) is easily derived from [11], Section 4. We shall
thus skip this case. So let us assume that B is a rational matrix with at least one entry not in
Z. We have shown that the representation π is equivalent to a subrepresentation of the left regular
representation of L if and only if |detB| ≤ 1. Since Γ is a discrete group, then its left regular
representation is admissible if and only if |detB| ≤ 1. Thus, the representation π of Γ is admissible
if and only if |detB| ≤ 1. Suppose that |detB| ≤ 1. Then π is admissible and there exists a vector
f ∈ L2

(
Rd
)

such that the map W π
f defined by W π

f h
(
e2πiθMlTk

)
=
〈
h, e2πiθMlTkf

〉
is an isometry.

As a result, for any vector h ∈ L2
(
Rd
)
, we have ∑

θ∈[Γ,Γ]

∑
l∈BZd

∑
k∈Zd

∣∣〈h, e2πiθMlTkf
〉∣∣21/2

= ‖h‖L2(Rd) .

Next, for m = card ([Γ,Γ]) ,∑
θ∈[Γ,Γ]

∑
l∈BZd

∑
k∈Zd

∣∣〈h, e2πiθMlTkf
〉∣∣2 =

∑
l∈BZd

∑
k∈Zd

∣∣〈h,MlTk
(
m1/2f

)〉∣∣2 .
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Therefore, if g = m1/2f then(∑
l∈BZd

∑
k∈Zd
|〈h,MlTkg〉|2

)1/2

= ‖h‖L2(Rd) .

For the converse, if we assume that there exists a vector g ∈ L2
(
Rd
)

such that the system{
MlTkg : l ∈ BZd, k ∈ Zd

}
is a Parseval frame in L2

(
Rd
)

then it is easy to see that π must be admissible. As a result, it must
be the case that |detB| ≤ 1. �

5.1. Proof of Proposition 4. Let us suppose that |detB| ≤ 1. From the proof of Proposition

3, we recall that there exists a unitary map A :
∫ ⊕
E

(
⊕`(σ)
k=1l

2
(

Γ
Γ0

))
dσ → L2

(
Rd
)

which intertwines

the representations
∫ ⊕
E

(
⊕`(σ)
k=1IndΓ

Γ0

(
χ(1,σ)

))
dσ with π such that

∫ ⊕
E

(
⊕`(σ)
k=1IndΓ

Γ0

(
χ(1,σ)

))
dσ is the

central decomposition of π, and E ⊂ Rd is a measurable subset of a fundamental domain for the

lattice B?Zd × A?Zd and the multiplicity function ` satisfies the condition: ` (σ) ≤ dim l2
(

Γ
Γ0

)
.

Next, according to the discussion on Page 126, [7] the vector a is an admissible vector for the

representation τ =
∫ ⊕
E

(
⊕`(σ)
k=1IndΓ

Γ0

(
χ(1,σ)

))
dσ if and only if a ∈

∫ ⊕
E

(
⊕`(σ)
k=1l

2
(

Γ
Γ0

))
dσ such that for

dσ-almost every σ ∈ E, ‖a (σ) (k)‖2

l2
(

Γ
Γ0

) = 1 for 1 ≤ k ≤ ` (σ) and for distinct k, j ∈ {1, · · · , ` (σ)}
we have 〈a (σ) (k) , a (σ) (j)〉 = 0. Finally, the desired result is obtained by using the fact that A
intertwines the representations τ with π.
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(1972), 459–516

[10] R. Lipsman, Group representations. A survey of some current topics. Lecture Notes in Mathematics, Vol. 388.
Springer-Verlag, Berlin-New York, 1974.

[11] A. Mayeli, V. Oussa, Regular Representations of Time Frequency Groups, Math. Nachr. 287, No. 11-12, 1320-1340
(2014).

[12] E. Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I. (German) Invent. Math. 6 1968 190196

Dept. of Mathematics, Bridgewater State University, Bridgewater, MA 02325 U.S.A.,


	1. Introduction
	2. Preliminaries
	3. The regular representation and its decompositions
	3.1. Proof of Proposition ??

	4. Decomposition of 
	4.1. Proof of Proposition ??
	4.2. Proof of Proposition ??
	4.3. Examples

	5. Application to time-frequency analysis
	5.1. Proof of Proposition ??

	References

