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DECOMPOSITIONS OF RATIONAL GABOR REPRESENTATIONS

VIGNON OUSSA

ABSTRACT. Let I’ = <Tk, M :keZdlc BZd> be a group of unitary operators where T, is a transla-
tion operator and M; is a modulation operator acting on L2 (Rd) . Assuming that B is a non-singular
rational matrix of order d with at least one entry which is not an integer, we obtain a direct in-
tegral irreducible decomposition of the Gabor representation which is defined by the isomorphism

27mi

T (Zm X BZd) x Z% — T' where w(0,l,k) =em OM,T,,. We also show that the left regular repre-
sentation of (Zm X BZd) x Z%* which is identified with I" via 7 is unitarily equivalent to a direct sum
of card ([I',I']) many disjoint subrepresentations of the type: Lo, L1,- -+, Leara(r,rj)—1 such that for
k # 1 the subrepresentation Ly of the left regular representation is disjoint from the Gabor represen-
tation. Additionally, we compute the central decompositions of the representations m and L. These
decompositions are then exploited to give a new proof of the Density Condition of Gabor systems (for
the rational case). More precisely, we prove that 7 is equivalent to a subrepresentation of L; if and
only if | det B| < 1. We also derive characteristics of vectors f in L?(R)? such that 7(T)f is a Parseval
frame in L2(R)%.

1. INTRODUCTION

The concept of applying tools of abstract harmonic analysis to time-frequency analysis, and wavelet
theory is not a new idea [I, 2, B, [7, 11]. For example in [I], Larry Baggett gives a direct integral
decomposition of the Stone-von Neumann representation of the discrete Heisenberg group acting
in L?(R). Using his decomposition, he was able to provide specific conditions under which this
representation is cyclic. In Section 5.5, [7] the author obtains a characterization of tight Weyl-
Heisenberg frames in L? (R) using the Zak transform and a precise computation of the Plancherel
measure of a discrete type I group. In [II], the authors present a thorough study of the left regular
representations of various subgroups of the reduced Heisenberg groups. Using well-known results
of admissibility of unitary representations of locally compact groups, they were able to offer new
insights on Gabor theory.

Let B be a non-singular matrix of order d with real entries. For each k € Z% and | € BZ?, we define
the corresponding unitary operators Ty, M; such that Tp.f (t) = f (t — k) and M, f (t) = e 270 f (¢)
for f € L? (]Rd) . The operator T}, is called a shift operator, and the operator M; is called a modulation
operator. Let I' be a subgroup of the group of unitary operators acting on L? (Rd) which is generated
by the set {Tk,Ml kezlle BZd}. We write I' = <Tk, M, :keZilc BZd>. The commutator
subgroup of I' given by [[',T'] = {e2m<l’Bk> ke Zd} is a subgroup of the one-dimensional torus
T. Since [I',T] is always contained in the center of the group, then I' is a nilpotent group which
is generated by 2d elements. Moreover, I' is given the discrete topology, and as such it is a locally
compact group. We observe that if B has at least one irrational entry, then it is a non-abelian group
with an infinite center. If B only has rational entries with at least one entry which is not an integer,
then [I',T'] is a finite group, and T is a non-abelian group which is regarded as a finite extension of an
abelian group. If all entries of B are integers, then T is abelian, and clearly [I",T'] is trivial. Finally,
it is worth mentioning that I is a type I group if and only if B only has rational entries [12].

It is easily derived from the work in Section 4, [11] that if B is an integral matrix, then the
Gabor representation 7 : BZY x Z* - T Cc U (L2 (Rd)) defined by 7 (I, k) = M,T}, is equivalent to a
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subrepresentation of the left regular representation of I' if and only if B is a unimodular matrix. The
techniques used by the authors of [11] rely on the decompositions of the left regular representation and
the Gabor representation into their irreducible components. The group generated by the operators
M; and T}, is a commutative group which is isomorphic to Z; x BZ,4. The unitary dual and the
Plancherel measure for discrete abelian groups are well-known and rather easy to write down. Thus,
a precise direct integral decomposition of the left regular representation is easily obtained as well.
Next, using the Zak transform, the authors decompose the representation 7 into a direct integral of
its irreducible components. They are then able to compare both representations. As a result, one
can derive from the work in the fourth section of [I1] that the representation 7 is equivalent to a
subrepresentation of the left regular representation if and only if B is a unimodular matrix. The main
objective of this paper is to generalize these ideas to the more difficult case where B € GL (d, Q) and
I' is not a commutative group.

Let us assume that B is an invertible rational matrix with at least one entry which is not an
element of Z. Denoting the inverse transpose of a given matrix M by M*, it is not too hard to see
that there exists a matrix A € GL (d,Z) such that A = B*Z¢NZ% = AZ%. Indeed, a precise algorithm
for the construction of A is described on Page 809 of [4]. Put

(1) To=(r,M,T,:1€ BZ ke A, € [I,T] )

and define I'y = <7’, M,:1e€ BZ% e [lT] > . Then I'y is a normal abelian subgroup of I'. Moreover,
we observe that I'; is a subgroup of T'y of infinite index. Let m be the number of elements in [T',T].
Clearly, since B has at least one rational entry which is not an integer, it must be the case that
m > 1. Furthermore, it is easy to see that there is an isomorphism 7 : (Zm X BZd) xZ¢ =T C
U (L2 (Rd)) defined by 7 (j, Bl, k) = M BiT). The multiplication law on the semi-direct product
group (Zm X BZd) x Z% is described as follows. Given arbitrary elements

(4, BL k), (j1, Bli, k1) € (Zy, x BZ?) x Z%,

we define (g, Bl, k) (71, Bli, k1) = ((j + j1 + w (I, k)) modm, B (I + 1) , k + ki) where w ({1, k) € Z,,,
and (Bl k) = % We call 7 a rational Gabor representation. It is also worth observing that
71 (Ty) = (Zm X BZd) x AZ? and 71 (I'}) = (Zm X BZd) x {0} =~ Z,, x BZ%. Throughout this
work, in order to avoid cluster of notations, we will make no distinction between (Zm X BZd) x 74
and [' and their corresponding subgroups.

The main results of this paper are summarized in the following propositions. Let

I'= (T, M : k € Z° 1 € BZ")

and assume that B is an invertible rational matrix with at least one entry which is not an integer.
Let L be the left regular representation of I'.

Proposition 1. The left reqular representation of I' is decomposed as follows:

o
(2) L~ @Z:ol Ind?ox(k7g) do.

R4 R4
Brzd X arzd

Moreover, the measure do in (@ 15 a Lebesque measure, and (@ 18 not an irreducible decomposition

of L.

Proposition 2. The Gabor representation m is decomposed as follows:

®
r
(3) WEAd y Indp, x(1,0) do.
zd " axzd

. d d
Moreover, do is a Lebesque measure defined on the torus 25 x &

73 X Teza and (@) s an irreducible decom-
position of T.
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It is worth pointing out here that the decomposition of 7 given in Proposition [2]is consistent with
the decomposition obtained in Lemma 5.39, [7] for the specific case where d = 1 and B is the inverse
of a natural number larger than one.

Proposition 3. Let m be the number of elements in the commutator subgroup [I',T|. There ezists a
decomposition of the left reqular representation of I' such that

m—1
(4) L~PLy
k=0

and for each k € {0,1,--- ;m — 1}, the representation Ly, is disjoint from m whenever k # 1. More-

over, the Gabor representation m is equivalent to a subrepresentation of the subrepresentation Ly of
L if and only if |det B| < 1.

Although this problem of decomposing the representations m and L into their irreducible compo-
nents is interesting in its own right, we shall also address how these decompositions can be exploited
to derive interesting and relevant results in time-frequency analysis. The proof of Proposition |3|allows
us to state the following:

(1) There exists a measurable set E C R? which is a subset of a fundamental domain for the
lattice B*Z? x A*Z%, satisfying

i (E) !

~ |det (B) det (A)|dim (12 (T /Ty))

where 4 is the Lebesgue measure on R? x R
(2) There exists a unitary map

(5) A /E ) (@f};’{l? (FLO)) do — L* (R?)

which intertwines f}? (@iglndgo (X(l,a))) do with 7 such that, the multiplicity function ¢ is

bounded, the representations x(1 ) are characters of the abelian subgroup I'y and

7 ()
(6) / (e1mdf, (xa) ) do

E
is the central decomposition of 7 (Section 3.4.2, [7]).

Moreover, for the case where |det(B)| < 1, the multiplicity function ¢ is bounded above by the
number of cosets in I'/I"y while if | det(B)| > 1, then the multiplicity function ¢ is bounded but is
greater than the number of cosets in I'/Ty on a set E' C E of positive Lebesgue measure. This
observation that the upper-bound of the multiplicity function behaves differently in each situation
may mistakenly appear to be of limited importance. However, at the heart of this observation,
lies a new justification of the well-known Density Condition of Gabor systems for the rational case
(Theorem 1.3, [§]). In fact, we shall offer a new proof of a rational version of the Density Condition
for Gabor systems in Proposition [9]

It is also worth pointing out that the central decomposition of 7 as described above has several useful
implications. Following the discussion on Pages 74-75, [7], the decomposition given in @ may be
used to:

(1) Characterize the commuting algebra of the representation 7 and its center.
(2) Characterize representations which are either quasi-equivalent or disjoint from 7 (see [7] The-
orem 3.17 and Corollary 3.18).
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Additionally, using the central decomposition of 7, in the case where the absolute value of the
determinant of B is less or equal to one, we obtain a complete characterization of vectors f such that
7 (I) f is a Parseval frame in L? (R?).

Proposition 4. Let us suppose that |det B| < 1. Then

D
") wx [ (6fndf, (xam) ) do

with £ (o) < card (T'/Ty). Moreover, w(T) f is a Parseval frame in L? (]Rd) if and only if f =
2A(a(0)),cg such that for do-almost every o € E, ||a (o) <k)Hz22( ) = 1 forl <k < {(o) and for

distinct k,j € {1, £(c)}, (a (o) (k) ,a (o) (j)) = 0.

This paper is organized around the proofs of the propositions mentioned above. In Section 2, we
fix notations and we revisit well-known concepts such as induced representations and direct integrals
which are of central importance. The proof of Proposition [I| is obtained in the third section. The
proofs of Propositions [2] [3] and examples are given in the fourth section. Finally, the last section
contains the proof of Proposition

I
To

2. PRELIMINARIES

Let us start by fixing our notations and conventions. All representations in this paper are assumed
to be unitary representations. Given two equivalent representations m and p, we write that = ~ p.
We use the same notation for isomorphic groups. That is, if G and H are isomorphic groups, we
write that G ~ H. All sets considered in this paper will be assumed to be measurable. Given two

disjoint sets A and B, the disjoint union of the sets is denoted AU B. Let H be a Hilbert space. The
identity operator acting on H is denoted 1n. The unitary equivalence classes of irreducible unitary
representations of G is called the unitary dual of G and is denoted G.

Several of the proofs presented in this work rely on basic properties of induced representations and
direct integrals. The following discussion is mainly taken from Chapter 6, [6]. Let G be a locally
compact group, and let K be a closed subgroup of G. Let us define ¢ : G — G /K to be the canonical
quotient map and let ¢ be a unitary representation of the group K acting in some Hilbert space which
we call H. Next, let K; be the set of continuous H-valued functions f defined over G satisfying the
following properties:

(1) g (support (f)) is compact,
(2) f(gk)=¢ (k)" f(g) for g€ G and k € K.

Clearly, G acts on the set K; by left translation. Now, to simplify the presentation, let us suppose
that G/K admits a G-invariant measure. We remark that in general, this is not always the case.
However, the assumption that G/K admits a G-invariant measure holds for the class of groups
considered in this paper. We construct a unitary representation of G by endowing K; with the
following inner product:

U 1) = /G )5 @) dlgK) for ff €K,

Now, let K be the Hilbert completion of the space K; with respect to this inner product. The
translation operators extend to unitary operators on K inducing a unitary representation Indff (p)
which is defined as follows:

Ind§ (¢) (z) f(g) = f (z7'g) for f € K.

We notice that if ¢ is a character, then the Hilbert space K can be naturally identified with L? (G/H) .
Induced representations are natural ways to construct unitary representations. For example, it is easy
to prove that if e is the identity element of G and if 1 is the trivial representation of {e} then the
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representation Ind{Ge} (1) is equivalent to the left regular representation of G. Other properties of
induction such as induction in stages will be very useful for us. The reader who is not familiar with
these notions is invited to refer to Chapter 6 of the book of Folland [6] for a thorough presentation.

We will now present a short introduction to direct integrals; which are heavily used in this paper.
For a complete presentation, the reader is referred to Section 7.4, [6]. Let {H,},., be a family
of separable Hilbert spaces indexed by a set A. Let p be a measure defined on A. We define the
direct integral of this family of Hilbert spaces with respect to p as the space which consists of
vectors ¢ defined on the parameter space A such that ¢ («) is an element of H, for each o € A
and [, [J¢ (« )||? 7. dp (o) < oo with some additional measurability conditions which we will clarify. A
family of separable Hilbert spaces {H,},. 4 indexed by a Borel set A is called a field of Hilbert spaces

over A. A map ¢ : A — UHa such that ¢ (o) € H, is called a vector field on A. A measurable

acA
field of Hilbert spaces over the indexing set A is a field of Hilbert spaces {H,},., together with a

countable set {e;}, of vector fields such that

(1) the functions o (e; () , €x (@)); are measurable for all j, k,
(2) the linear span of {e; (a)}, is dense in H, for each o € A.

The direct integral of the spaces H, with respect to the measure p is denoted by fja H,du («)
and is the space of measurable vector fields ¢ on A such that [, [|¢ (oz)||§[a dp () < o0o. The inner

product for this Hilbert space is: (@1, 02) = [, (@1 (@), 2 (@) dp () for o1, s € ff H.dp («).

3. THE REGULAR REPRESENTATION AND ITS DECOMPOSITIONS

In this section, we will discuss the Plancherel theory for I'. For this purpose, we will need a complete
description of the unitary dual of I'. This will allow us to obtain a central decomposition of the left
regular representation of I'. Also, a proof of Proposition [I| will be given in this section.

Let L be the left regular representation of I'. Suppose that I' is not commutative and that B is a
rational matrix. We have shown that I" has an abelian normal subgroup of finite index which we call
I'y. Moreover, there is a canonical action (74-79, [10]) of T on the group I'y (the unitary dual of I'y)
such that for cach P € T and x € L, P - x (Q) = x (P"'QP) . Let us suppose that X = XM 2 ) is

a character in the unitary dual fo where (A1, Ao, A3) € {0,1,--- ,m —1} x Bﬂfzd X A*Zd ~ FO, and

X(A1,22,3) (62? MBlTAJ> — o e2mi(,Bl) 27ilXs, A7) We observe that RY is identified with its dual

R? and {0,1,--- ,m — 1} parametrizes the unitary dual of the commutator subgroup [I',I'] which is
isomorphic to the cyclic group Z,,. For any 7 € [I',T], we have 7 - x(x, 2,08) = X(21,00,05)- Moreover,
given M;, Ty €T,

M; - X(A1,22,23) = X(A1,A2,A3)» and T}, - X(A1,02,23) = X(A1,A2—kA1,)3) "

Next, let I'y, = {P€l': P-x=x}. It is easy to see that the stability subgroup of the character
X(A1,h2,0s) 18 described as follows:

(8) Dy = ATMTy €T -7 € [U,1],1 € B2 kX € BZ%} .
It follows from @D that the stability group Dya rgng) CODtAINS the normal subgroup I'y. Indeed, if
A1 = 0 then FX(MM’AS) =TI". Otherwise,
1
(9) Dy g = {TMlTk el:7e[l\T], l€ BZ% k ¢ ()\—B*Zd) N Zd} :
1

According to Mackey theory (see Page 76, [10]) and well-known results of Kleppner and Lipsman
(Page 460, [10]), every irreducible representation of I' is of the type Indgx (X ® ¢) where X is an
extension of a character x of I'y to I'y, and ¢ is the lift of an irreducible representation o of I'y /T’y



6 VIGNON OUSSA

to I'y. Also two irreducible representations Ind?x (X ® o) and Indgx1 (X1 ® 0) are equivalent if and
only if the characters y and y; of I'g belong to the same I'-orbit. Since I' is a finite extension of
its Subgroup [y, then it is well known that there is a measurable set which is a cross-section for the
F orbits in Fo Now, let ¥ be a measurable subset of Fo which is a cross-section for the I'-orbits in
FO. The unitary dual of I' is a fiber space which is described as follows:

- L Ty
F:U{’]TXJ:IHC].EX(X@O') : OEF—O}

XEX

Finally, since I" is a type I group, there exists a unique standard Borel measure on [ such that the left
regular representation of the group I' is equivalent to a direct integral of all elements in the unitary
dual of I', and the multiplicity of each irreducible representation occurring is equal to the dimension
of the corresponding Hilbert space. So, we obtain a decomposition of the representation L into a
direct integral decomposition of its irreducible representations as follows (see Theorem 3.31, [7] and
Theorem 5.12, [11])

D ©® im(2( L
(10) L~ / /FA @Zzl(l (Fx»ﬂxﬂdwx (o) dx
=

and dim <l2 (%)) < card (I'/Ty) . The fact that dim <l2 (%)) < card (I'/T) is justified because
the number of representative elements of the quotient group FL is bounded above by the number of

elements in FLO Moreover the direct integral representation in 1) is realized as acting in the Hilbert
space

(11) /j /A@ @Zz(ﬂ(%)) 2 (FLX) duo (o) dy.

Although the decomposition in ([10]) is canonical, the decomposition provided by Proposition [1| will
be more convenient for us.

3.1. Proof of Proposition [1} Let e be the identity element in I', and let 1 be the trivial represen-
tation of the trivial group {e}. We observe that L ~ Ind}. (e} (1) It follows that

T I
(12) L ~Ind", (Ind{g}( ))
©®
~ Indlg0 < /A Xt dt)
o
&b
(13) ~ /A Ind®, (x,) dt.
To

The second equivalence given above is coming from the fact that Ind?g} (1) is equivalent to the left
regular representation of the group I'y. Since I'y is abelian, its left regular representation admits a
direct integral decomposition into elements in the unitary dual of Iy, each occurring once. Moreover,
the measure dt is a Lebesgue measure (also a Haar measure) supported on the unitary dual of the
group, and the Plancherel transform is the unitary operator which is intertwining the representations
IndFO (1) and fr@ Xt dt. Based on the discussion above, it is worth mentioning that the representa-
tlons occurrlng in (13| are generally reduc1ble smce 1t 1s not always the case that I'y = I'y,. We observe

Thus, identifying Ty with Z,, x R

that Fo is parametrlzed by the group Z,, x B*Zd X A*Zd B*Zd X Sz

we reach the desired result: L ~ @/} f Rd g ImdF X(k,t) dt.

B*zd " Axzd
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_ N r -
XLtgrty) = Lo, and in this case Indp, (X(l,tg,t3)> s an

Remark 5. Referring to /@/, we remark that T’
wrreducible representation of the group T.

4. DECOMPOSITION OF 7

In this section, we will provide a decomposition of the Gabor representation 7. For this purpose,
it is convenient to regard the set R? as a fiber space, with base space the d-dimensional torus. Next,
for any element ¢ in the torus, the corresponding fiber is the set ¢ + Z¢. With this concept in mind,
let us define the periodization map 9% : L? (R?) — [g (% (Z%) dt such that Rf (t) = (f (t +k))pega -

7d

We remark here that we clearly abuse notation by making no distinction between ZZ and a choice of
a measurable subset of R? which is a fundamental domain for Z7. Next, the inner product which we
endow the direct integral Hilbert space [g [2 (Z*) dt with is deﬁned as follows. For any vectors

zd

®
fandhe/d 1 (z%) dt
2
the inner product of f and g is equal to (f, h)SR(LQ(Rd)) = [aa (Zkezd ft+k)h(t+ k)) dt, and it
7d

is easy to check that ‘R is a unitary map.

4.1. Proof of Proposition . For t € R, we consider the unitary character X(,—t) - I'h = T
which is defined by x(1,—¢ (e*™*M;) = 27”26_27” ) Next, we compute the action of the unitary
representation Indf. X(1,—t) of " which is acting in the Hilbert space

g [T Cf(PQ =xa-0(Q) " f(P),QeT,
- and Ypriep |f (P) < o0 '

Let © be a cross-section for T'/T'; in T'. The Hilbert space H; is naturally identified with /% (©) since
for any @ € I'y, we have |f (PQ)| = |f (P)|. Via this identification, we may realize the representation
Ind?lx(17,t) as acting in [? (©) . More precisely, for a € [* (0) and p; = Ind?lx(17,t) we have

(o (X)a) (T}) = { e 2mbe=2miltd o (T})  if X = M,
e27ri9a (T’]) if X = 627ri9

Defining the unitary operator J : (*(0) — 1% (Z%) such that (Ja) (j) = a(T}), it is easily checked
that:
pe(T) 3 (RS ()] X =T,
ITHRX) )] =9 (M) I RFQ)] i X =M
( 27719) [~ 1 (g{f (t))] if X = 2mif

Thus, the representation 7 is unitarily equivalent to

@
(14) Lo

7d
Now, we remark that p; is not an irreducible representation of the group I'. Indeed, by induc-
ing in stages (see Page 166, [0]), we obtain that the representation p; is unitarily equivalent to
IndlgO (Indll:‘l) (X(L—t))) and Indg‘l)x(L_t) acts in the Hilbert space

K :{ fiTo =+ C:f(PQ) =X (@) (P).QETy }

(15) and ZPrle% If (P)]? < o0
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Since x(,—¢) is a character, for any f € K;, we notice that |f (PQ)| = |f (P)] for @ € I';. Thus, the
Hilbert space K; is naturally identified with [? (E—?) ~ [? (AZ?) where AZ® is a parametrizing set
for the quotient group E—(l) Via this identification, we may realize Ind??x(17,t) as acting in [? (AZd) .
More precisely, for T}, j € AZ?, we compute the action of Ind?? X(1,—¢) as follows:
. f‘(Tj_k) it X =Ty
[IndF?X(l,ft) (X) f} (1) = €_2W2<t’l>f (T;) i X = M,
e2m€f (T]) if X = 62m€
Now, let F 454 be the Fourier transform defined on /2 (AZd) . Given a vector f in [? (AZd) , it is not
too hard to see that
- Xe (Ti) Fazaf (§) i X =T,
[Faze (Indp®x,—n (X) )] (€) = § e ™ F ypaf (€) if X = M,
eQmGFAzdf (6) if X = 6271'10
where x¢ is a character of the discrete group AZ?. As a result, given X € I we obtain:

o

(16) Faziop (X)oF ;. = /Rd X(1,-te) (X) dE,
A*x7d

where x(1,—¢¢) is a character of I'y defined as follows:

X(l,—t,{) (X) = 6_27”.<t7l> lf X = Ml
627”'9 if X = egm'g

Using the fact that induction commutes with direct integral decomposition (see Page 41,[5]) we have

® @
(17) pr = Indp, ( / o Xt df) ~ / L, (Idrx v9) dS.
Axzd A*x7d
Putting and together, we arrive at: m ~ fﬂi‘ix Rd Ind?ox(l,a)da. Finally, the fact that
zd ” Axzd

Indg ,X(1,0) 18 an irreducible representation is due to Remark . This completes the proof.

Remark 6. We shall offer here a different proof of Proposition[d by exhibiting an explicit intertwining
operator which is a version of the Zak transform for the representation m and the direct integral
representation described given in (@) Let C, (]Rd) be the space of continuous functions on R? which

are compactly supported. Let Z be the operator which maps each f € C. (]Rd) to the function
(18) (Zf) (x,w,j + AZY) = Y f(x + Ak + §) 2™ = 6 (z,w, j + AZY)

kezd

where z,w € R? and j is an element of a cross-section for AZ—de in the lattice Z2. Given arbitrary
m' € Z%, we may write m' = AK' + j' where k' € Z¢ and j' is an element of a cross-section for
AZ—Zd. Neaxt, it is worth observing that given m,m' € Z¢, ¢ (x, w+ A*m,j + AZd) =¢ (x, w, ]+ AZd)
and ¢ (ZL‘ +m w,j+ AZd) is equal to e~ 2T wAK) g (x, w,j+ 7 + AZd) . This observation will later
help us explain the meaning of FEquality (@ Let 31 and X5 be measurable cross-sections for HZ&Z
and Aﬂf;;d respectively in RY. For exzample, we may pick 31 = [0, 1)d and ¥y = A* |0, 1)d. Since [ is
square-integrable, by a periodization argument it is easy to see that

(19) Iy = [ 3 15 m) e

21 meZd
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Therefore, the integral on the right of (@) is finite. It immediately follows that

/E S D If @+ Ak + )P dt < o

J+AZAEZL AL ke

Therefore, the sum 3. szacyajaza D peza | (T + Ak + )P is finite for almost every x € %y and a
fized j which is a cross-section for 7Z4/AZ? in 7. Next, observe that

(20) D Flx+ Ak + ) e AR

kezd
is a Fourier series of the sequence (f (x + Ak + 7)) speaza € (AZd) . So, for almost every x and for
a fized j, the function ¢ (x, ]+ AZd) is regarded as a function of L? (]Rd) which is A*Z%-periodic
(it is an L* (33) function). In summary, we may regard the function (Zf) (z,w,j+ AZ®) as being
defined over the set 1 X g X Z Let us now show that Z maps C. (Rd) 1sometrically into the

AZ4"

Hilbert space L? (El X g X AZ—de> . Given any square-summable function f in L? (]Rd) , we have

/ \f(t)|2dt:/ SOUF (R d :/ S NI Akt )Pt
Re Z1 ez 21 4 Azdend/AZ keLd
Regarding (f (t + Ak + 7)) gpcaze @S a square-summable sequence in [ (AZd) , the function
w Z f(t 4 Ak + j) FmitwAk)

kezd

is the Fourier transform of the sequence (f (t + Ak + j)) speaza- The Plancherel theorem being a
unitary operator, we have

Z\f(t+Ak+j)\2=/

kezd X2

2

D Ft+ Ak j) erieAb

kezd

dw.

It follows that

/Rd|f(t)l2dt=/zl ) /

j+AZIeZA AT

:// > |2 (g + AZY) [ dwdt
P

X2 54 A7dezd /A7l

2

> Ft+ Ak + j) AN dwdt

kezd

o 2
- ||ZfHL2<21><22><AZ—de) .

Now, by density, we may extend the operator Z to L? (]Rd) , and we shall next show that the extension

VA

s unitary. At this point, we only need to show that Z is surjective. Let ¢ be any vector in the Hilbert

d
Z:L2(Rd)—>L2(21x22xZ+)

space L? (21 X g X %) . Clearly for almost every x and given any fized j, we have ¢ (z,-,j) €

L? (%,). For such x and j, let (c;(x,7))caza be the Fourier transform of ¢ (x,-,j). Neat, define
fo € L* (R?) such that for almost every x € %,

fole+Al+7) =ci(x,7).
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Now, for almost every w € 3,

Zfy(z,w) = Z fo(z+ AL+ ) o2mi(w,Al)

lezd

— Z CE (33',]) eQﬂi(u;,A@)

Lezs
= ¢ (z,w,j + AZ?).

It remains to show that our version of Zak transform intertwines the representation m with f;’ixzz P(1,zw)
dxdw such that pa g is equivalent to the induced representation IndEOX(l,—x,w)' Let R : 12 (T/Ty) —

2 (Zd/AZd) be a unitary map defined by
R (f (] + AZd)j_,_AZd) = (f (TjFO))TjFO‘
Put
Pazw) (X)=TRo IndFOX(L_z,w) (X)oR™ for every X €T.
It is straightforward to check that

(ZT f Z T. f x ‘l’ 27ri(w,Ak)
kezd
_ ZTf LC+ _j>) 2mi{w,Ak)
kezd

= [p(lzl”ﬂU) (T])} (Zf) ($7w7 )

and
(ZMBlf) (CL’, w, ) _ Z 6—27ri<Bl,m+Ak+j)f (I + ) e27ri(w,Ak)

kezd
— o~ 2mi{BlLa+)) Z €—2m<Bz,Ak>f (x + ) e2mi{w, Ak)
kezd
_ 6—27ri<Bl,a:+j>f (fL‘ + ) 2mi{w,Ak)

= ) (2) (2w, )
= P(1,2,w) (MBZ) (Zf) (.I, w, ) :

In summary, given any X € I,

b
ZoT (X) oZ ! = / P(1,z,w) (X) dxdw.
b

1X X2
Lemma 7. Let Iy = AZ? and Ty = AsZ¢ be two lattices of RY such that A, and Ay are non-
singular matrices and |det Ay| < |det As|. Then there exist measurable sets ¥1,3, such that ¥y is a
fundamental domain for %zd and Yo is a fundamental domain for %;d and ¥, C ¥y C R%

Proof. According to Theorem 1.2, [§], there exists a measurable set ¥; such that 3 tiles R? by the
lattice A;Z¢ and packs R? by A,Z¢. By packing, we mean that given any distinct v, x € A,Z?, the
set (X1 +7) N (X1 + &) is an empty set and Y5, 4 a1y, (x+A) < 1 for z € R? where 1y, denotes
the characteristic function of the set ¥;. We would like to construct a set >y which tlles R? by A,7Z.%

such that »; C ¥,. To construct such a set, let 2 be a fundamental domain for Y Zd It follows

that, there exists a subset I of A5Z? such that ¥; C U (24 k) and each (2 + k) N>y is a set of
kel
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positive Lebesgue measure. Next, for each k € I, we define Q; = (Q + k) N ;. We observe that
= J@+k)N%) = [ J where Q = (2 + k) N T, Put

kel kel

Ebz(Q—LJG@—@)UZL

kel

The disjoint union in the equality above is due to the fact that for distinct k, j € I, the set (2 — k)N
(©2; — j) is a null set. This holds because, ¥; packs R? by A,Z%. Finally, we observe that

and Q) = (Q — U (. — k:)) U (UQ%) where each ) is AyZ%congruent with €. Therefore ¥
kel kel
is a fundamental domain for %;d which contains >;. This completes the proof. [l

Now, we are ready to prove Proposition Part of the proof of Proposition |3| relies on some
technical facts related to central decompositions of unitary representations. A good presentation of
this theory is found in Section 3.4.2, [7].

4.2. Proof of Proposition From Proposition [2, we know that the representation 7 is unitarily
equivalent to

@
(21) i Indf, X(1,0) do.
zd ” Axzd

We recall that 'y is isomorphic to the discrete group Z,, x BZ? x AZ? and that I'; is isomorphic
to Zy,, x BZ% where m is the number of elements in the commutator group of I' which is a discrete
subgroup of the torus. From Proposition [T, we have

®

(22) L~a™) i Imd?0 (X(k,o)) do.
B*zd * Axzd

Now, put
®

(23) M:/M Mmﬁmmwa

Brzd < axzd

From , it is clear that L = Lo &® --- & L,,_1. Next, for distinct ¢ and j, the representations L;
and L; described above are disjoint representations. This is due to the fact that if ¢ # j then the
I-orbits of x(;,») and x(;.) are disjoint sets and therefore the induced representations Indg0 X(i,0) and
Indgox(jﬁa) are disjoint representations. Thus, for k£ # 1 the representation L; must be disjoint from
7. Let us assume for now that |det B| > 1 (or |det (B*)| < 1.) According to Lemma [7] there exist
measurable cross-sections X1, 2o for % X % and Bﬂf;;d X jf;zd respectively such that 3, Y, C R2,
1 D Yo and X1 — X5 is a set of positive Lebesgue measure. Therefore,

® ®
(24) T~ / (Ind?0 (X(LJ))) do and L; ~ / (Ind?O (X(Lg))) do
s

1 3o

and the representations above are realized as acting in the direct integrals of finite dimensional vec-
tor spaces: f;‘i I?(T/Ty) do and fg‘i [?(T/Ty) do respectively. We remark that the direct integrals
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described in are irreducible decompositions of 7 and L. Now, referring to the central decom-
position of the left regular representation which is described in there exists a measurable subset
E of ¥, such that the central decomposition of L, is given by (see Theorem 3.26, [7])

D dim(12(r/To)
/ @k:1< 0 )Indgo (X(l,a)) do.
E

Furthermore, recalling that L, ~ f;’i (Ind?0 (X(l,o))) do and letting v be the Lebesgue measure on
R? x R?, it is necessarily the case that
w(E)=—1 5 ___ :
dim (12 (T'/Ty))  |det (B)det (A)|dim (12 (T'/Ty))
From the discussion provided at the beginning of the third section, the set E is obtained by taking
a cross-section for the I'-orbits in Bﬂf;;d X Aﬂf;;d. Moreover, since 1 D Yo and since X — Yo is a
set of positive Lebesgue measure then 7 ~ fgel IndgO (X(l,a)) do~ L & fz@l—zg Indg0 (X(l,a)) do and

fgel 5, Indf. . (X(l,a)) do is a subrepresentation of 7. Thus a central decomposition of 7 is given by

52 .
u(o) dim(12(T'/Tp)
/E o "l (x) do

and the function v : E — N is greater than one on a subset of positive measure of E. Therefore,
according to Theorem 3.26, [7], it is not possible for 7 to be equivalent to a subrepresentation of the
left regular representation of I' if |det B| > 1. Now, let us suppose that |det B| < 1. Then |det B*| > 1.
Appealing to Lemma [7], there exist measurable sets ¥; and Yy which are measurable fundamental
domains for I;—Z X ﬁ;zd, and E}f;zd X ﬁ;;d respectively, such that ¥;,3, C R% and ¥; C 5. Next,

®
Ly 2/ Indgo (X(LJ)) do
%

2

D 3]
~ (/ Indg0 (X(l,a)) da) S3) (/ Indg0 (X(l,a)) da)
by Yo—3

@
~ 7@ (/ IndgO (X(l,g)) da) .
Sp—3)

Finally, 7 is equivalent to a subrepresentation of L; and is equivalent to a subrepresentation of the
left regular representation L.

4.3. Examples. In this subsection, we shall present a few examples to illustrate the results obtained
in Propositions and [3
(1) Let us start with a trivial example. Let d =1 and B =
® r @
Next, L ~ @7_, f[o,%)x[O%) Indp, X (k) do and m =~ f[O,l)x
decomposition of L; is given by

1N

. Then B*=3,A=3, and 4* = 3.
0.1) Indgox(lp) do. Now, the central

.

)
3 Tndk
/[o,;w[o,;) Eimtndryxa,e) do

and the central decomposition of the rational Gabor representation 7 is
@
/ @?lendfaox(lva) do.
[0.3)x[0:5)
From these decompositions, it is obvious that the rational Gabor representation 7 is equivalent
to a subrepresentation of the left regular representation L.
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1
3 9 and A* = [ 3 ] . Next,
0 5] 0 5 L0z ] | 0 |
the left regular representation of I' can be decomposed into a direct integral of representations

as follows:

2 3
(2)IfwedeﬁneB:[3 O],thenB*:[2 01,14:

= O

®
L~ @20/ Indgox(k,a) do
s

where S = S; x A*[0,1)* and

- (o p) () [) o[ 2) < [0)

is a common connected fundamental domain for the lattices B*Z? and Z2.

FIGURE 1. Illustratlion of Ithe slet S.l'

0.0

-05 0.0 0.5 1.0 1.5

Moreover, we decompose the rational Gabor representation as follows: 7 ~ fsEB Indgo X(1,0) do.
One interesting fact to notice here is that: the rational Gabor representation 7 is actually
equivalent to L; and

L=Lo® L ®Ly® L3sP® Ly ® Ls.

1 0 0
(3) Let I' = (T}, Mp, : k,l € Z®) where B= | —t 1 0 | . The inverse transpose of the matrix
1 -1 5
110
Bisgiven by B¥= | 0 5 1 | . Next, we may choose the matrix A such that
00 %
110 1 0 0
A=105 5| andA*=| -2 1 0
0 01 1 -1 1
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0 01
Finally, we observe that | 0 1 5 [0,1)3 is a common fundamental domain for both B*Z3
110
5
and Z3. Put
0 01 1 0 O
S=1015([01)°x |- L 0][0,1)°.
1+ 0 I -11

Then L ~ &f_, fsea Ind?ox(k,t)dt and T ~ fs@ Indgox(lvt)dt.

5. APPLICATION TO TIME-FREQUENCY ANALYSIS

Let 7 be a unitary representation of a locally compact group X, acting in some Hilbert space H.
We say that 7 is admissible, if and only if there exists some vector ¢ € H such that the operator W7
defined by W7 : H — L*(X), W4 (z) = (¢, 7 (x) ¢) is an isometry of H into L* (X).

We continue to assume that B is an invertible rational matrix with at least one entry which is not
an integer. Following Proposition 2.14 and Theorem 2.42 of [7], the following is immediate.

Lemma 8. A representation of I is admissible if and only if the representation is equivalent to a
subrepresentation of the left reqular representation of T'.

Given a countable sequence {f;},.; of vectors in a Hilbert space H, we say { f;},.; forms a frame
if and only if there exist strictly positive real numbers A, B such that for any vector f € H,

AP < ST P < BIAIP.
iel

In the case where A = B, the sequence of vectors { f;},.; forms a tight frame, andif A = B =1, {fi},,
is called a Parseval frame. We remark that an admissible vector for the left regular representation of
I' is a Parseval frame by definition.

The following proposition is well-known for the more general case where B is any invertible matrix
(not necessarily a rational matrix.) Although this result is not new, the proof of Proposition |§] is
new, and worth presenting in our opinion.

Proposition 9. Let B be a rational matriz. There exists a vector g € L* (]Rd) such that the system
{M/Ty.g : 1 € BZ% k € Z} is a Parseval frame in L* (R?) if and only if |det B| < 1.

Proof. The case where B is an element of GL (d,Z) is easily derived from [I1], Section 4. We shall
thus skip this case. So let us assume that B is a rational matrix with at least one entry not in
7Z. We have shown that the representation 7 is equivalent to a subrepresentation of the left regular
representation of L if and only if |det B| < 1. Since I' is a discrete group, then its left regular
representation is admissible if and only if |det B| < 1. Thus, the representation 7 of I' is admissible
if and only if |det B| < 1. Suppose that |det B| < 1. Then 7 is admissible and there exists a vector
f € L? (RY) such that the map W} defined by W7h (e*™ MT},) = (h,e*™MT}.f) is an isometry.
As a result, for any vector h € L? (Rd) , we have

1/2

22 2 2 (e TS| = Il

e[’ I"lieBZ4 keZd

Next, for m = card ([I', T]),

>0 0 Y KM = 37 3 [(h Ty (m )

0c[I'\I'ie BZ% keZd leBZ4 keZd
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Therefore, if g = m!'/2f then
1/2

> 2 N MTg) | = (1Al 2(ga -

leBZ4 keZd

For the converse, if we assume that there exists a vector g € L? (Rd) such that the system
{MTyg:1€ BZ" k € 2%}

is a Parseval frame in L? (Rd) then it is easy to see that m must be admissible. As a result, it must
be the case that |det B| < 1. O

5.1. Proof of Proposition . Let us suppose that |det B| < 1. From the proof of Proposition
, we recall that there exists a unitary map 2 : f];B <®£(212 (r%)) do — L* (R?) which intertwines

the representations fE@ (@i(glndgo (X(l,a))) do with m such that fI;B (@iglndgo (X(Lg))> do is the
central decomposition of 7, and E C R? is a measurable subset of a fundamental domain for the
lattice B*Z¢ x A*Z? and the multiplicity function ¢ satisfies the condition: ¢ (o) < dim /> (%) :
Next, according to the discussion on Page 126, [7] the vector a is an admissible vector for the
representation 7 = f];B (@i(glndgo (X(l,g))> do if and only if a € f];B <69£(2l2 (%)) do such that for
do-almost every o € E, ||a (o) (k)||l22(FL> =1for 1 <k < /(o) and for distinct k,j € {1,--- ,¢(0)}

0
we have (a (o) (k),a (o) (7)) = 0. Finally, the desired result is obtained by using the fact that
intertwines the representations 7 with .
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