
Bridgewater State University
Virtual Commons - Bridgewater State University

Honors Program Theses and Projects Undergraduate Honors Program

12-18-2013

Efficiency and Reliability of the Transit Data
Lifecycle: A Study of Multimodal Migration,
Storage, and Retrieval Techniques for Public
Transit Data
Matthew Ahrens

Follow this and additional works at: http://vc.bridgew.edu/honors_proj

Part of the Databases and Information Systems Commons

This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts.

Recommended Citation
Ahrens, Matthew. (2013). Efficiency and Reliability of the Transit Data Lifecycle: A Study of Multimodal Migration, Storage, and
Retrieval Techniques for Public Transit Data. In BSU Honors Program Theses and Projects. Item 32. Available at: http://vc.bridgew.edu/
honors_proj/32
Copyright © 2013 Matthew Ahrens

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Virtual Commons - Bridgewater State University

https://core.ac.uk/display/48835295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vc.bridgew.edu/?utm_source=vc.bridgew.edu%2Fhonors_proj%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/?utm_source=vc.bridgew.edu%2Fhonors_proj%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu?utm_source=vc.bridgew.edu%2Fhonors_proj%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors_proj?utm_source=vc.bridgew.edu%2Fhonors_proj%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors?utm_source=vc.bridgew.edu%2Fhonors_proj%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://vc.bridgew.edu/honors_proj?utm_source=vc.bridgew.edu%2Fhonors_proj%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=vc.bridgew.edu%2Fhonors_proj%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficiency and Reliability of the Transit Data Lifecycle

Matthew Ahrens

Submitted in Partial Completion of the

Requirements for Interdisciplinary Honors in Mathematics and Computer Science

Bridgewater State University

December 18, 2013

Dr. Uma Shama, Thesis Director

Dr. Laura Gross, Committee Member

Dr. Larry Harman, Committee Member

P a g e | 2

BRIDGEWATER STATE UNIVERSITY

Efficiency and Reliability of

the Transit Data Lifecycle
A study of multimodal migration, storage, and

retrieval techniques for public transit data

Matthew Ahrens

12/4/2013

Acknowledgements

 Special thanks are given to Dr. Uma Shama, my faculty mentor, and Larry Harman, Co-Director

of the GeoLab for helping guide me on this and past projects. They have given me the opportunity to

apply my knowledge on a living system and have let me see the direct effect my work has had in making

people’s lives better. I appreciate the communication and interaction between the GeoLab and Cape Cod

Regional Transit Authority. Through being a primary resource and contact between their technology and

database representative Aparna Sachidanand, Grant Manager Dennis Walsh, and Operations

P a g e | 3

representative Bob Lawson, I have been able to gain the real-world experience that only comes from

working with other leaders in the field. I thank their patience, guidance, and the appreciation of my work

they have shown throughout our projects. Lastly I would like to thank my Honors Coordinator, Dr. Laura

Gross, as well as my co-workers in the GeoLab – current and graduated – for helping me continue to

refine my work, code, and texts into the best that they can be. It is uncanny how many issues can be

clarified and solved through short yet powerful discussion. I truly appreciate the advice, direction, and

purpose they have given me.

If I have seen further it is by standing on the shoulders of Giants
1
.

1
 Sir Issac Newton in a letter to his rival, Robert Hooke. Feb. 5, 1676.

P a g e | 4

Table of Contents

Contents
Acknowledgements ... 2

Table of Contents .. 4

Index of Tables and Figures .. 2

Introduction .. 3

Background ... 3

Thesis .. 4

Overview of Sections .. 5

Specifications and Ideology .. 6

Research Questions .. 6

Purpose ... 6

Methodology ... 7

Results ... 8

Static scheduling and informational data ... 9

Dynamic scheduling and informational data .. 10

Real-time data ... 10

RTA specific data structures .. 11

Discussion.. 11

Conclusion ... 12

Efficiency of Data Migration Techniques and Concurrency Models ... 14

Research Questions .. 14

Purpose ... 14

Methodology ... 15

BusLocator – a study ... 15

Next Bus ETA Helper ... 17

GTFS and NextBus ... 18

Results ... 19

Pull design pattern and improving transmission quality .. 19

Discussion.. 24

Security and the closed pipe vs the open pipe ... 24

P a g e | 1

Conclusion ... 26

Design considerations when moving forward and making GLaaS .. 26

GLaaS Model and Verification of Database Design... 27

Research Questions .. 27

Purpose ... 27

Methodology ... 28

Initial Design – triggers and the trickle down structure ... 28

Subsequent Design – Batch Query .. 32

Results ... 33

Discussion.. 34

Criteria for success .. 34

Conclusion ... 34

GLaaS API and Validation of Client-Service Architecture .. 36

Research Questions .. 36

Purpose ... 36

Methodology ... 36

Tool choices .. 37

The business logic and application levels ... 41

Authentication and security .. 42

Results ... 42

ServiceStack, SignalR, and a multimodal approach to data services .. 42

Discussion.. 44

REST vs. SOAP .. 44

CLR Triggers vs. SQL broker ... 45

Conclusion ... 46

Final Statements ... 47

Index.. 48

Bibliography .. 49

P a g e | 2

Index of Tables and Figures
Figure 1GTFS definition for the block data field. A dependent of the trip structure, from a user oriented

perspective. ... 7

Figure 2 APTA's TCIP definition for a block. Similar, but from the RTA perspective. 7

Figure 3 A model showing that there can be independence of production and consumption rate at either

side of the data sink. ... 8

Figure 4 A composed encapsulation of the superset, ETA, being composed of simpler transit data

structures and primitives. ... 11

Figure 5 A graphical depiction of a simplified BusLocator .. 16

Figure 6 The data flow of ETA data collected and analyzed by NextBus ETA Helper 17

Figure 7 Application example of on-demand, pull design pattern for transit data. 20

Figure 8 Real-time, mapping application that uses the pull design pattern. It displays the most recent

AVL data for CCRTA vehicles at 5 second pull intervals. ... 20

Figure 9 Summary of Exp. Mov. Avg. Algorithm simulation on 10 vehicles. .. 23

Figure 10 A point chart of pulled AVL points from both algorithms between AVL id's 100 and 400 23

Figure 11 An example of an application level query in a c/java/c# like syntax that can lead to SQL

injection. ... 30

Figure 12 An example of a WCF data contract (XSD) that is publicized to the client. 38

Figure 13 The URI route binding and auto generated metadata documentation of a sample ServiceStack

project. This API services the Feature for AVL. ... 39

Figure 14 The human readable metadata for a ServiceStack API with compatibility for SOAP and WCF

client consumers. .. 40

Figure 15 Overridden Route definitions for this operation. Defined by the request DTO and not by

remote procedure calls gives flexibility over verb usage, URI chaining, and embedding the data in the URI

bypassing the need for a response object in some cases. .. 41

Figure 16 Request DTO definition as a lightweight, serializable JSON file. .. 41

Figure 17 Response DTO definition as a lightweight, serializable JSON file. .. 41

P a g e | 3

Introduction

Background
 Student research assistants at the GeoGraphics Laboratory – a GIS research lab at Bridgewater
State University – have to support many systems and act in a variety of roles. The GeoLab fulfills the
transit data needs of many RTAs2 through maintenance of existing systems; mediation on proof of
concept, product and project decisions; consulting in areas of technical expertise; and developing new
applications for existing and prospective grant projects. Student researchers are expected to act as
experts in these areas to best facilitate the RTAs. The skills required range from the political and
authoritative, to the communicational and instructional, to the applied and very technical. Staff turnover
rate for the GeoLab is very high compared to non-academic institutions of similar purpose as student
researchers typically do not begin until their junior year of undergraduate study or until they are
graduate students. Knowledge of systems is inherited in the form of inline comments; version controlled
log entries; or interpreted from existing code and project presentations. These considerations of
programmer time and the student developer’s experience at the GeoLab greatly influenced the purpose
of this project.

 In documenting this project, future GeoLab researchers should be able to understand the
decisions made in designing this new system. In previous projects such as the GeoLabVirtualMaps3
website and the BusLocator Windows/WCF4 service, intention and use had to be interpreted and
assumed. This project includes a protocol that can be followed to incorporate recent best practices.
Hyper-text documents created can be garnered for understanding and the decision structure behind
major aspects of the projects. Lastly, the methodologies utilized by this project are designed to be
replicated in future development. This project has been made realizing it is not complete. It will
continue to be maintained and expanded upon – and ultimately replaced – as new technology becomes
available and web communication improves. This project has been made in such a way to best facilitate
that purpose and act as a template, protocol, and guideline for migrating transit data.

This project has evolved greatly from its initial conceptualization. The first purpose of this
project was to provide efficiency and optimization analysis on data collected from Cape Cod Regional
Transit Authority (CCRTA)5 Vehicles during the spring of 2013. Key areas of interest were AVL6 data
collected from the vehicles’ GPS MDTs7 and customer consumed Estimated Time of Arrival data
provided by the third-party, service provider NextBus. The purpose was to determine the quality and
accuracy of data under different parameters such as date, location, and time and along the different
stages of the data’s lifecycle. It became rapidly apparent, however, that the data collection mechanism
was not expandable to facilitate analysis functionality without interfering with its original purpose of
moving and processing data from source to client. Over the summer of 2013 the data collection
mechanism was to be replicated instead of extended. The purpose was to avoid the previous term’s

2
 Regional Transit Authority

3
 Web application used to display Vehicle AVL Data on a map updated in 5 second intervals. Hosted at

http://www.geolabvirtualmaps.com
4
 Windows Communication Foundation, a runtime and set of APIs for developing request-response based web

services.
5
 Cape Cod Regional Transit Authority. Provides Fixed route bus, Paratransit bus, and Rail services to the Cape Cod

region.
6
 Automatic Vehicle Location. System used for determining and transmitting the geographic location of a vehicle.

7
 Mobile Data Terminal. A programmable terminal installed inside vehicles for wireless communication with an

RTA.

P a g e | 4

issues of dependency while reconstructing the same type of program for ease of use. A program, called
Next Bus ETA Helper, was created to resemble the concurrency model of BusLocator. It utilized .NET
timers to make pull requests at regular intervals. Each request occupied its own thread and could work
simultaneously with other requests. It had a short data lifecycle, pulling aggregate ETA8 Data provided
from NextBus’ public, XML Webservices in two minute intervals. This data would contain tags about
vehicle direction, destination, and route and trip metadata. The request would be parsed by the
windows service and stored in a database structure similar to the AVL structure created for BusLocator
and GeoLabVirtualMaps. The primary goal of this program was to pull a data source for analytics. The
predictions contained in the ETA data feed was to be compared to the AVL data used to calculate it.
Vehicle arrivals would be noted in the system and accuracy was to be correlated to distance, traffic, time
of day, weather, or other parameters.

This process encountered its own issues and made clear the distinct areas of transit data
migration that needed to be addressed:

1. Concepts and definitions of transit data were unclear between different authorities
2. The general tools used in the current data collection system, while complete and

functional for their initial purpose, could be greatly improved
3. Extendibility and replication were unachievable, only maintaining original purpose was

realistic
4. Any replacement of the existing system would need to be integrated in parallel and

include training and documentation materials

Consideration for future work was integral in creating these resulting works during the fall of
2013. While it was unrealistic to assume that a complete refactoring of the existing system was possible
in the remaining amount of time, it is possible to provide the framework for such a system. The works of
this project were done iteratively as outlined by the Agile Software Development philosophy.
Documentation for future student researchers was created with the purpose of future collaboration.
Protocols and working implementations of how to create/replicate, use/consume, and extend each
primary feature of the project was made and accompanied by simple tests to validate their results. If
this framework is followed, future researchers can learn from the work of previous projects in the lab
and not have to recreate and relearn the entirety of existing projects in order to benefit from their
utility.

Thesis
 Designing, implementing, and analyzing transit data services reveals four key areas of study: (1)
There is a need for clear, reliable definitions of transit data structures that satisfy the various authorities,
protocols, and specification; (2) Current protocols and specifications dictate the computational tools and
techniques that must be used with their data definitions and the two should be uncoupled and analyzed
separately; (3) Choosing to make a context-less data model that is separate from the business logic of its
use enables best practices and significantly improves quality of data storage and retrieval in transit
systems; (4) A multimodal approach to API design can make a flexible, secure, and purposeful client
interface to the transit data and eliminates any necessary knowledge of how the data is stored or
retrieved.

8
 Estimated Time of Arrival. Time interval between the expected arrival of a vehicle at a particular location

represented as a data point.

P a g e | 5

Overview of Sections
 The four sections of this project were made so that future GeoLab researchers aiming to
continue this framework need not know every part to make substantial and purposeful progress. On the
contrary, it should be that they are able to focus on a particular aspect and provide expert opinion on
that matter while simply utilizing the other, completed parts of this framework. If they are able to do so,
then the original issues encountered when beginning this project have been addressed and ameliorated.

 The order of the sections is from design to implementation. The first section is descriptive of the
authorities and appeals of this project, the different entities that have influenced this project, and the
definitions, terms, and concepts that will aid future development on the framework. Theoretical
computer science and best practices of big data migration is contained in the second section. This
section will aid designers of new systems in understanding which techniques, design patterns, and
program architectures they should use when replicating the purpose of this framework. The third
section is descriptive of the database and model schema that is implemented in this framework. It
contains the relationship between concrete Database Objects such as tables and queries, and also the
structures the framework invented for best use. This section is important for researchers looking to
extend or replicate the capacity of the framework for new transit data structures, new GeoLab data
types, and other unforeseen uses. The last section is the implementation and use case of the client
facing API. It shows how the data can be stored and retrieved from the consumer or providers point of
view. It describes specific technology implementations, such as ServiceStack and SignalR, and shows
how these implementations improve round-trip time and data load on the server. Researchers looking
to implement security mechanisms for specific data, add features or support for a particular service, or
consume data for their particular research project can consider this section for best practices.

The specific implementation of the framework described in the last two sections has been
named GLaaS – GeoGraphics Laboratory as a Service. The name is a play on the SOA9 programming
paradigm SaaS – Software as a Service. Since the GeoLab provides specifically tailored data services –
data feeds, text file databases, Web Applications – and not redistributable, contextless software, the
name is befitting of the intention of the framework.

9
 Service-Oriented Architecture. The design pattern of providing functionality as services to other applications

independent of software product or use.

P a g e | 6

Specifications and Ideology

Research Questions
 How can the different transit data protocols be described to compromise between conflicting
definitions and structures? Is there a compromise that can be reached that is still purposeful and clear?

Purpose
 Becoming familiar with the various data structures and relationships between data definitions is
the initial step in understanding the problems and concepts of public transit data management. Public
transit data structures will be defined and explained by both their structure and applied use. The
different protocols and specifications governing transit data integrity and agreement will be compared
and separated from their specific implementations. In pursuing these definitions, the conflicting needs
of different RTAs were considered. It is difficult to speak outside the specific scope of data this project
was privy to, and many RTAs disagree on specific terms. The highest representative authority was given
priority in these cases of disagreement.

 The need for data definitions within the scope of this project originally resulted from modifying
an AVL service originally used to simply transport AVL data from CCRTA to the GeoLab. The intention
was to accommodate services provided by NextBus by sending a copy of the data to their service
endpoint as well. While all parties involved in the discussion of this feed had a complete understanding
of transit data concepts, there was disagreement over the definition of the data structure block. It was
unclear what a block was, how it was calculated, and what it should represent. The issue manifested
from translating the practical definition and alternate terms used in the RTA, to the structure labeling of
the associated data in the proprietary AVL database, and to the ETA related definition provided by
NextBus’ specification. The RTA definitions came from how the data was used in practical business
application, and the database definitions came from the medium or location of where the data was
stored. When comparing the GeoLab and CCRTAs understood definitions of transit data structures to
NextBus, it became apparent that NextBus had an implementation-oriented point of view of each
definition. Each data structure was defined by how it was going to contribute to calculating the value of
the ETA between the vehicle and each stop location. In order to find a compromise, GTFS10 – the static
scheduling standard that both CCRTA and NextBus were familiar with – definitions of types were
compared. GTFS has a user-oriented perspective of each definition. The definition of an object is
determined by how the end user will interpret that data in their map-based application. Moreover, the
definitions were tightly-coupled to the text-based database model their GTFS was defined under. The
highest two authorities on the subject were considered: APTA’s TCIP11 and ESRI’s GIS12 definitions. TCIP
is the data definition standard of one of the most highly recognized transit entities known. ESRI is the de
facto standard from the private sector recognized by the OpenGeo Consortium through their creation of
GIS protocols and file formats such as GML. TCIP was written from the use of the RTA, and assumes the
proprietary or in house definition of most data types. In some instances, such as with the definition of
block, alternatives are given and definitions are more like descriptions. The purpose of the TCIP was to
provide a structure for inter-operable data communication between RTAs and departments, but not to
actually define the data itself. The ESRI definitions are the most generic and applicable of the definitions,

10

 General Transit Feed Specification, a data structure for static, RTA scheduling information such as that which is
printed on paper transit schedules.
11

 American Public Transportation Association’s Transit Communication Interface Profiles. A data definition and
initiative for inter-RTA communication and interoperable data.
12

 Supplier of ArcGIS and other GIS applications, the national standard recognized by the OpenGeo Consort. to
provide standard Geographic Information System definitions and file protocols.

P a g e | 7

but they are not tailored to transit. This leaves them as a suitable reference for understanding, but not
in defining a strict protocol.

Figure 1GTFS definition for the block data field. A dependent of the trip structure, from a user oriented perspective.

Figure 2 APTA's TCIP definition for a block. Similar, but from the RTA perspective.

Methodology
 Transit data structures can be broken down into three categories: Static and informational data,
dynamic scheduling and informational data, and real-time data. These categories are made based on
their frequency of change. The aforementioned authorities would categorize the different structures
into their frequency of consumption. Through the desire to repurpose data at variable rates of
consumption, it is apparent that those definitions are inadequate. Therefore the frequency of change
refers to the rate and variability which the data in the data structure is produced. For example, AVL data
produced from a vehicle changing location occurs at a much faster rate than scheduling data that
changes once per season. What constitutes when data moves from one category to the other can be
disputed by different providers. For the purpose of clarity the following definitions are made. Static data
is the least frequent to change and is only changed at predetermined intervals or known times. Dynamic
data is infrequently changed, but it is not known beforehand when or why the change occurs. Real-time
data is expected to change frequently at variable rate intervals which cannot be predicted. The
categories not only help decide which data structures can be classified together, but also how best to
compose them in order to have a clear, definitive understanding and description of a data model.

 By having these distinct categories, transit data structures are independent of how they are
stored and used. They are still dependent on how the data is made. This is a fundamental step in data
reuse, and can alleviate some of the dependency problems posed so far. This also helps solve disputes
about specific data structures between RTAs. The functions that an RTA provides – e.g. vehicle services,
scheduling services, inter-RTA operations, etc. – typically are the same in action and concept, even if
details and management technology or protocols vary. By tailoring this project to the fundamentals of
transit data in the abstract, we are temporarily ignoring implementation level interoperability problems
to inspire solutions that will work beyond the current technological standards.

P a g e | 8

Figure 3 A model showing that there can be independence of production and consumption rate at either side of the data
sink.

 A set theoretical approach to defining transit data structures was chosen to best embody these
ideals. By defining transit data structures as sets of concrete, implementation-free properties, they
satisfy the conditions of reuse. The sought after object-oriented programming principles of
encapsulation13 and extendibility14 can be achieved by composing large transit data structure out of
multiple simpler ones. Invoking these two principles limits the overhead and contextualized metadata
needed to package, store, and retrieve data for multiple uses. Lastly, ambiguity is removed by defining
the properties by how the data structure is made. Some assumed knowledge has to be made, but any
non-transit specific data used in these definitions can come from GIS definable terms or algebraic
mathematics.

Results
 The primitive types assumed by this set theoretical definition of public transit data are the
following: geolocation, datetime, and unique id. A geolocation is any coordinate system data type that
provides an exact geographical location. A latitude and longitude numerical coordinate are typically
used. Geolocations are unique meaning that two geolocations refer to the same coordinate if and only if
they are equal. Datetime in transit data is used for the ordering of events. Two transit data structures
are simultaneous if and only if their datetimes are equal. Datetimes are typically stored numerically—
e.g. 20130712 instead of July 12th, 2013 – in order to take advantage of comparative operations such as
greater than or less than. A datetime that is greater than another is further in the future. While many
different standards exist for datetime, the easiest one found and utilized by this project is akin to the T-
SQL15 datetime regular expression: YYYYMMDD HHMMSS.F. It can be read as: year, month, day, hour,
minute, second, fraction of a second. By giving the data structure this organization, it can be numerically
ordered easily by any data management system. By providing a fraction of a second, uniqueness can be
determined to any precision possible in implementation. The most frequently used storage oriented
competitor to this data ordering has been the combination of days from Jan 1, 1970 and seconds (or

13

 Programming principle of defining an object by its characteristic properties and functionality. E.g. A Student
object encapsulates a name, a gpa, a student id number, etc.
14

 Programming principle of defining an object by inheriting all of the characteristics of another object, and then
adding its own. E.g. all students are people, so students extend the characteristics of people.
15

 Structured Query Language. Programming language used in relational databases to store, access, retrieve
information in a table-like structure.

P a g e | 9

milliseconds) from midnight for date and time, respectively. The benefit gained from this is a
performance increase to typical storage mechanisms and ordering since both numbers are stored as
integers. There are two main costs to this. The first is that it is not visibly human readable and must be
computed to an easily comprehended value to be read. While order can be gained from comparing the
numerical values, a sense of hierarchal grouping cannot. For example, calculation must be performed in
order to determine what values are within the same month, day, or year. The second is that the
granularity is set by the storage mechanism. By having an integer for the time portion, it is not allowed
to have fractions of that time slice, thereby not letting the definition of the datetime be free of the
context of its storage mechanism. This results in unnecessary loss of precision. The unique id of a data
structure is abstract and can be best summarized as a rule. It is the statement that two transit data
types are equal (and can be given the same id) if and only if their corresponding properties are equal.
While almost unnecessary to write, this primitive type is used quite often when organizing data
structures in collections and sets. Therefore, it should be stated what constitutes uniqueness of identity,
even if it is begging the set theoretical definition of equality. Given these fundamentals, the transit
specific data structures can be explored. Metadata or other contextual niceties may exist for these data
types, but these are the context free, concrete definitions that this project sought.

Static scheduling and informational data

Vehicle
The simplest transit data structure is the vehicle. A vehicle is composed of one unique id

property, a vehicle id. A vehicle id must be complex enough to distinguish it from all other vehicles.
Many RTAs provide unique numerical ids to their vehicles. But two RTAs typically do not guarantee
uniqueness between themselves. Typical use case is a unique textual prefix to denote the RTA and/or
service, and a unique numerical id pertaining to a particular vehicle.

Stop
 A stop is a grouping of a unique id property, a stop id, and a geolocation. A stop is simply a
named place, or a point of reference. Ambiguity and violations of uniqueness are not typically
encountered with stops as they are a RTA contained data structure. Any dispute can be resolved by
comparing the geolocation in the case of redundant identification Therefore, in the rare case of scrutiny,
a stop can be the unique pairing of stop id to geolocation.

Trip
 A trip is an ordered collection of stops. Its composition is defined as the ordered collection of
stops that a vehicle will traverse in that particular order. The order can be determined from a linked-list
structure; a vehicle must visit stop at index 1 before stop at index 2. The order can also be determined
from a 2Dimensional array-like structure; a vehicle must visit the stop at index i at time ti and ti < ti+1.
Therefore, a trip’s set definition can optionally include a corresponding collection of datetimes, but in
either case stops in a trip correspond to a chronological order. If the trip does not include a collection of
datetimes, it should be defined what datetime a trip begins, and at what frequency it arrives at each
stop. From this information, the exact datetime a vehicle should be at a given stop can be calculated.
Lastly, a vehicle must have adequate time and resource to get from one stop to the next in physical
space for a trip to be valid.

Route
 A route is a stop-oriented, ordered collection of trips. Each trip has a similar collection of stops.
It is an organizational structure for practical use and not computational or predictive use; the route is a
way of organizing trips by likeness and time.

P a g e | 10

Shape

 A shape is an ordered collection of geolocations that denote a path of traversal – sometimes
called a polyline – through a geographic region. Shapes are commonly used to outline directions or
other paths a vehicle will take when traversing a trip, but can be used to outline any connection
between geolocations or stops.

Dynamic scheduling and informational data

Block
 A block is a vehicle-oriented, ordered collection of trips. A block is created as the collection of
trips a vehicle will take in sequential order. A unique consideration must be made with blocks. If a
vehicle is on a particular block at a particular time, then its position in the trip (what stop it is heading to
and/or arriving from) is calculable. Therefore, a block cannot contain trips whose stop sequences have
overlapping times, and a vehicle must have adequate time and resource to get from one trip to another.

Status and conditions
 A status or condition is the association of any of the static data types with metadata or context.
Typically a mechanism for providing current information such as notifications, weather and safety alerts,
detour and delay information, etc. to existing services that do not change. The particular reason that this
date structure is dynamic and not real-time is because of its intended creation and lifecycle. This data is
used to add informational context by the data collection mechanism. It is kept separate for this reason
and can be seen as metadata. Status and conditions are typically persistent and are unexpected to
change frequently. They are determined not on regular intervals, but rather by the start and stop of
discrete, unplanned events. While this definition may be intentionally abstract, it is much more
understandable than definitions that limit what a status or condition can be. By making it the
composition of any previous data type and some textual or numerically identified notification, any
adopter of this definition can fully identify data of this type while still having the most freedom of
implementation.

Real-time data

AVL
 AVL is the abbreviation of Automatic Vehicle Location. An AVL data structure – sometimes called
an AVL data point – is the set containing a vehicle, a geolocation, and a datetime. When reduced to its
minimalistic definition, the name clarifies the elements of the structure the best. The creation of AVL
points the name describes must be automatic. Therefore, it must be set to an autonomous process.
Most autonomous processes are based on time interval or have some knowledge of the time at which
they occur. That automatic process is taking the location, which can be stored in a geolocation, of a
particular and unique vehicle, which we can represent with the vehicle data structure.

ETA
 ETA is the abbreviation of Estimated Time of Arrival. An ETA data structure is widely disputed
between systems. These systems define ETA as what is most convenient for its intended use. In Next Bus
applications, it is as simple as a vehicle and a time interval. In Trapeze’s database structure, there are
many metadata contexts that are indistinguishable from the required minimum definition. By breaking
down ETA by how it is created, it becomes apparent what is the minimum to satisfy all required uses.

 An ETA can be defined as the encapsulation of an AVL point, a stop, and a datetime. This
satisfies how the ETA is created considering: an ETA data point is created when a particular vehicle at a
particular geolocation and datetime (AVL) will arrive at a stop at an estimated (calculated) datetime. It

P a g e | 11

can be determined if two ETAs are unique, if an ETA is accurate, if ETAs are similar, etc. from this
definition.

Figure 4 A composed encapsulation of the superset, ETA, being composed of simpler transit data structures and primitives.

RTA specific data structures
 There are many infrequently used data structures that exceed the scope of this project. These
include the data structures for fare payment and monetary data, personnel and customer information,
and the useful, application specific inheritance of the aforementioned types. It is expected, though, that
by continuing this set theoretical definition, these types can be derived from the existing ones presented
here. Or new, unrelated ones can be defined in a similar format.

Discussion
A major concern of the three categories is what constitutes real time. ESRI, a leader in GIS

technology and standards defines real-time data as, “Data that is displayed immediately, as it is
collected. Real-time data is often used for navigation or tracking.”16 This definition, while accurate, has
led to confusion when defining transit data structures. For example, consider a typical paper bus
schedule for any transit authority. If the transit authority utilizes a technology that displays their bus
schedule as soon as it is written and committed on a website, then the bus schedule meets this
definition for real-time data. It is understood that this is not what is meant by real-time data, but the
definition allows it to fit. GTFS provides a closer ideal to an approved definition of their specific subset of
real-time data from the user-end perspective. “GTFS-realtime is a feed specification that allows public
transportation agencies to provide real-time updates about their fleet to application developers.”17 This

16

 ESRI GIS Dictionary, http://support.esri.com/en/knowledgebase/GISDictionary/term/real-time%20data
17

 GTFS-Realtime https://developers.google.com/transit/gtfs-realtime/

http://support.esri.com/en/knowledgebase/GISDictionary/term/real-time%20data
https://developers.google.com/transit/gtfs-realtime/

P a g e | 12

definition addresses the category as a superset of data structures. The specific structure in this case is a
feed18. The GTFS’s inclusion and assuming the understood use of the term real-time in their definition is
not intended to this issue of dependable data integrity, thereby not giving any criteria clarity. The
definition concluded to in this section for real-time satisfies the authoritative criteria, while also being
precise.

In making the specific choices of having an implementation free, context free data definition,
there exists cost. More work has to be done on the part of the implementer of these definitions to
decide which delivery and storage mechanism they wish to use when interacting with the data. It is
possible that adding a metadata tag onto one of these structures might make it erroneously similar to
another structure and cause confusion. The primary idea to take way from this work is that the data to
medium should be a one-way function. These data types should be implementable in any environment
or technology that will have them, but the environment should not dictate a definition.

Data structure specific discussions
While trivial in definition, AVL is one of the most important real-time data structures and the

most widely used in customer-facing GIS applications. It is the building block for many of the other real-
time structures and is the primary example of this project’s data collection evaluations. Understanding
AVL and what it consists of (and what it does not consist of) is crucial to success in real-time GIS services.
It can be paired with many other data services such as ridership and pay history, boarding and alighting,
arrival and proximity, etc. to make aggregated data types not described here. The retrieval, storage, and
utilization of AVL data is the primary example discussed in the following three sections of this paper. The
intent is that by having this fundamental strategy on how to dependably store and retrieve the most
representative of real-time data, any future GeoLab project can be made easier.

An ETA data point is the most misunderstood of real-time data. It is typically defined in its end
purpose. The typical end purpose of an ETA point is the numerical value of time as an interval. The rest
of the data is contextualized in how it is retrieved or calculated. An end user application, such as a map
or PDA display, only cares about the numerical interval given a particular vehicle and stop at a time –
right now. By calculating that number for its immediate use, being displayed, and excluding reference of
the defining parts – the AVL and stop information – the ETA point loses any reusable application for
historical information (ETA performance algorithms, Bayesian inference and statistical models, etc.) or
any use for quality assurance and verification (confirm the calculation is reasonable or correct).

Conclusion
 It was seen that a set theoretical definition of transit data structures provides the minimum
requirements that make the data unique, assessable, and clear. While implementations of the data will
vary, and extensions of the data will add on metadata, structures, and technology specific contexts, the
integrity of this data can provide a stable foundation on which to build transit applications. Future
researchers using this document as their basis for understanding the building blocks used by the GeoLab
to provide services for transit should be empowered to understand and separate the data from the tools
they will work with.

18

 A feed is a collection of data structures that is appended to over time. It acts as a fixed length snap shot that a
consumer can periodically check for updates to a resource or history.

P a g e | 13

 Purposeful resources can be built upon this definitive structure. Storage mechanisms can be
made interoperable19 if they are designed in a way that agrees to maintain the integrity of the
definitions. The three categories of data structures, defined by the frequency of data creation, have
been decoupled from purposed implementations (applications and use) and transmission mechanisms
(technologies). It is at this stage that the pairings of data and technologies can be scrutinized and
assessed. The technology, simply the tool, can be best compared to the job or use. Even more
importantly, a combination of tools that best facilitates the end goal can be composed in order to gain
the most utility.

19

 The act of transmuting data from one system to another, while losing a minimal amount of information in the
conversion. Standards, protocols, and specifications exist to make interoperability easier since no information
should be lost due to no conversion being needed.

P a g e | 14

Efficiency of Data Migration Techniques and Concurrency Models

Research Questions
 What technologies, techniques, or models most efficiently and reliably move transit data from
producer to consumer? Which of those best embody the concepts of reuse, extendibility, and
reusability? Which ones are resistant to need modification and internal maintenance?

Purpose
 The current Transit Data service that the GeoGraphics Lab maintains and utilizes for most of its
real-time data needs is BusLocator. BusLocator is the inspiration for this project. Maintaining it,
extending it, replicating it, and now replacing it were the stages of development this project iterated
through. BusLocator and all of the AVL data work and production that the graduated student
researchers built upon BusLocator is not lost in this change. The decisions they made were the stepping
stones. The purpose of this section of the project is to provide a comparison and contrast of the
techniques utilized in BusLocator among other techniques used commonly in storing and retrieving
transit data given the definitions and structures in the previous section. As technology becomes
sufficiently sophisticated, it is up to the engineers and researchers that use that technology not to
simply maintain or produce for the present, but to automate and innovate for the future. The results of
this section outline the choices and decision structures made when implementing the GLaaS framework
discussed in the last two sections.

 This section is concerned with finding the technologies that fit two distinct parts of the software
or service development lifecycle: Verification and Validation. Verification is the act of building
technology that fit their written specifications and goals. Validation is the act of building technology that
best fits its use or application. These two measures of software development effectiveness have been
used for assessing high-volume data simulations and other service oriented software20. The services the
GeoLab provides to RTAs for their data services have grown to fall under the same categories, and the
problems have grown to be of a similar magnitude. The research products and proof-of-concept services
developed by the GeoLab under their various grants have been exceptionally good at verification. Due to
high turnover rate, evolving grants, and the small team nature of daily lab tasks, validation has not been
addressed. It has not been until this iteration of student researchers that time could be spend on
assessing the quality and encompassing themes of the applications developed. By having this period of
refactoring and reflection, the data migration services that the GeoLab provides can have a significant
increase in success of validation. As team documentation tools have improved in the lab, it is apparent
that the majority of time is spent on debugging and maintenance. As new grants have requested the Lab
to recreate past work, it has been apparent that many of the proof-of-concept projects were not
developed with the intent of extendibility. Lastly, as research became reflective during a time that was
in between new venture projects, the need to refactor and reassess the current state of GeoLab services
was apparent.

20

 Engelbrecht, R., Rector, A., Moser W., “Verification and Validation” Assessment and Evaluation of Information
Technologies in Medicine

P a g e | 15

 This section will outline the method which was used to survey tools for facilitating common
GeoLab tasks when developing new solutions. These solutions can be considered as student researchers
are currently automating their manual tasks when maintaining AVL mechanisms, generating GTFS
databases, or tackling new grant objectives. The desired outcome is a cohesive lab culture that:
minimizes having to learn or re-learn lab technologies and solutions; create a design architecture that
fights anti-patterns inherit in specific tools; and lends itself to purposeful documentation and structure
that is best fit to the task.

Methodology
 The best practices discovered during this section of the project were tested iteratively. Due to
semester iteration of project goals through grants, credit commitments, presentations, the lifecycle and
purpose of these projects fit best in the agile software development lifecycle21. This arrangement was
not intentional, but once realized the benefit of it was garnered for its full potential. Documentation was
created concurrently with iterations of the projects, tests, and use. Any time spent on design and
documentation was purposeful and could directly translate into tangible work or products.
Implementation of the current project was in the context of connecting previous and future projects so
that definitions, protocols, and algorithms applied in one project could be easily reused in the next.
Dividing tasks and assigning projects between researchers at the lab was done as to best balance
maintenance, current projects, and future prospects. The following studies show the projects visited and
the practices discovered over the course of this projects lifecycle.

BusLocator – a study
 BusLocator is a Microsoft c# solution that consists of two parts: a data producer and consumer.
The producer program is made from a c# windows service project that is based on timer-event
concurrency using callback functions. Event based concurrency is a standard for performing an action,
subroutine, or any task based on a condition or interrupt. BusLocator was designed to associate a timer
at a constant time interval with each category of data. Categories originally included AVL, ETA, and route
data for fixed route vehicles. The benefit of this concurrency pattern is that it is simple to implement
and understand. To replicate this pattern is easy as well. To add a new feature or associate with a new
category of data, the developer simply adds a new timer. BusLocator is hard to modify however, as
maintaining one aspect of the system service requires interrupting every feature. Also, unhandled errors
and debugging in one feature can halt the entire service. Service design best practices, exception
handling, and replicating and extension over modification did aid in preventing these issues, but other
problems arose from its concurrency model.

Upon event activation, a method is called to handle the entire operation of data transfer from
database, T-SQL and SQL Server in this implementation, to the consumer over the network. It faces two
network connections on either side of the transfer. It occurs at a regular interval, which does not
account for fluctuations in the data load, and holds the success of the entire batch pull of data against
the success of each of its parts. Specifically it is in a design patter, that while typical and successful, does
not lend itself to data assurance and safety. Variations in network load and traffic, connection states and
properties, database efficiency, load, and data set side, among other unforeseen interruptions can cause
the drop of an entire batch.

21

 A software development methodology based on iterative and incremental development where requirements,
purpose, and solutions naturally occur through collaboration and exploratory research.

P a g e | 16

BusLocator was originally created with the intended purpose of real-time data consumption.
This is to be distinguished from the real-time data structures from before. BusLocator was designed with
the purpose of providing data in a reasonable time after it was created for use and consumption. This
led itself to a common big data22 problem that comes before analytics can even be performed. The
problem was that the data did not maintain the integrity of the underlying real-time structure. The data
was regularly, but not reliably transferred to the consumer making it not fault tolerant. This was not a
problem for average, real-time use; a public transit patron does not notice a one to two minute gap
between AVL points on a mapping application or notification system. This was a large problem for
analytics and quality assessment, however. In trying to judge the integrity of NextBus ETA data, as was
an original intent of studying the data gained from CCRTA, the point of reference defined for ETA, AVL,
was inconsistent. The granularity of the collection mechanism was dependent on the technology of the
transfer mechanism and not on the capability of the source and the data.

The consumer counterpart of the BusLocator solution is a c# WCF service that acted as SOAP23
endpoint. That is, an open endpoint for the windows service or other AVL, ETA, and Route service
providers to POST – send – data to. While WCF has been currently criticized for being an anti-pattern
which actively fights the protocol – HTTP – on which it’s built, it is still a utilized and dependable
technology. This service endpoint provides a scalable, concurrent, and reliable mechanism for accepting
data and safely storing it in the database. Independent requests do not conflict with each other. Failure
of one entry does not interfere with another. The actions are performed on demand, and minimal delay
is produced between initialization and completion. Maintenance of this system has been incredibly
simple due to its organization.

Complications arose when trying to modify the structure to handle changing expectations and
features from grant objectives. When trying to add functionality to store the data from a new feature, it
became apparent that the data model in the Lab’s local database was completely dependent on the
business logic of its use. Business logic is the data operations and manipulations that pertain to how the
end user will interpret or interact with the data, but not the operations and manipulations needed to
store and retrieve the data efficiently.

Figure 5 A graphical depiction of a simplified BusLocator

22

 The qualification of data that is difficult to analyze by traditional or non-automated methods due to its sheer
volume.
23

 Simple Object Access Protocol. A specification for exchanging structured information via message based web
services. Implemented by an XML structured definition. Consumed by messages with a distinct metadata header
and data body.

P a g e | 17

Next Bus ETA Helper

 Next Bus ETA Helper was the resulting work of the summer 2013 portion of this project.

Microsoft training technology24 was used to best understand the how to replicate and improve upon the

timer-based concurrency system of the Bus Locator windows service. The purpose of this project was to

provide the same data fetching functionality of Bus Locator for ETA data provided by a third party. This

windows service would periodically poll Next Bus’ XML web service for ETA data instead of consuming

SQL data over a local network. Special considerations were taken to determine:

 What is the most appropriate time interval between polls

 How to pair ETA to corresponding AVL history for analysis

 How to reuse this mechanism for providing ETA locally to GeoLab applications

The interval chosen between pull intervals was two minutes. The smallest unit of time considered

was 30 second intervals since that was the rate BusLocator pulls AVL data and sends it to NextBus for

use. This reference measure was doubled to account for a 50% drop and resend rate worst-case over

the network. That unit of time was doubled again for two reasons. A unique pull request had to be made

for each stop in the RTA. The average process rate to obtain the entire body of data for each of CCRTAs

active stops clocked at thirty seconds per batch request. Each pull was threaded and this time interval

was measured from the start of the first request thread until the end of the last. Organization became

difficult because of this restriction as each timer call was a thread itself. It was a concern that if a batch

request exceeded two minutes, and then it would overlap with the next pull request causing a backlog

and aggregation of tasks. This could become an enormous performance problem. Two minutes was

measured as the minimal amount of time to not create that overlap – rounded up to the nearest 30

second interval.

Figure 6 The data flow of ETA data collected and analyzed by NextBus ETA Helper

24

 Provided by BSU through an ATP Summer Grant.

P a g e | 18

 The data lifecycle was difficult to guarantee in this model. Event-based concurrency with a

reliance on network communication is more appropriate for tasks that are small and performed

infrequently. Initial attempts to pull data resulted in missing points or pulling redundantly and causing

network congestion. In trying to combat these problems in the creation of GLaaS, two techniques were

researched:

 Exponential Moving Average

o Used to determine pull interval in a more robust system

o Creates a more flexible system that can handle fluctuating performance time of

tasks

 Dataflow and Actor Model concurrency

o A way to break up tasks into fault tolerant, scalable threads

o Improves performance by scaling resources to match back log and bottleneck

The intention of using these algorithms was to best approximate the rate at which the real-time data

was produced. Minimal time between production and request and minimal redundant data pulls was

sought.

GTFS and NextBus

 While the previous parts of this section have been focused on real-time, data structures, static

data often gets overlooked for being innovated and automated. A recent grant between the GeoLab and

MassDot resulted in the creation of GTFS databases for RTAs in Massachusetts. These GTFS files are

CSV25 organized text file databases that list particular aspects of transit information. These collections of

data are considered feeds, because they can be consumed by Google or third party developers on

demand. In practical application, however, the transfer time and data involved is updated infrequently

compared to rate of use by patrons viewing the data on google maps. The purpose of these feeds is to

provide a computer readable form for common RTA scheduling data such as routes, trips, stops, shapes

among other metadata. The data can be automatically added to mapping applications, and users can

connect routes, trips, et. al. between several RTAs to get from point A to point B efficiently.

 The consumption of GTFS is automated while its creation must be custom fit by scheduling

software or encoded manually. Efforts have been made throughout this project and the projects of

other research students to automate the creation of GTFS. Discoveries of using third party tools, GIS file

types and standards, and the creation of input applications has all been attempted and accomplished

with varying degrees of success. When expanding upon GTFS for purposes of providing CCRTA’s

scheduling data to NextBus via a common standard, the working title NBFS was given to the feed.

NextBus had made use of the GTFS model for their ETA calculations when comparing AVL data against

the static schedule to determine lateness. Two optional fields in GTFS were required for them to do this

calculation. The need for a collaborative controller became apparent while developing tools for static

data such as GTFS and NBFS. The majority of the work was done manually. If programmed and

25

 Comma/Character Separated Values. A plain-text representation of a spreadsheet or 2D array of data consisting
of rows and columns. Typically, the initial row defines the data fields for interpretation by human or computer.
http://tools.ietf.org/html/rfc4180 -- An Internet Engineering Task Force Definition of CSV.

http://tools.ietf.org/html/rfc4180

P a g e | 19

automated by a third-party service, then the knowledge of this work could be reused free of application

context.

Results

Pull design pattern and improving transmission quality

 Unknown variables that can inhibit data transmission are minimal when a single developer is

able to make both the production mechanism and the client application or consumer. Researchers are

able to measure and make public their production rates and client systems can use that information to

determine the rate at which to request data. The producer and the consumer are not created by the

same entity in most cases. It is uncommon for production rates and statistics to be generated and stored

with the real-time data. These measures are typically for system auditing use, and do not have an on-

demand application internally. In these cases, it is the responsibility of the client to produce a reliable

statistic that measures a satisfactory pull rate.

 When data must be requested of a producer, and is only given on demand, this is sometimes

referred to as the pull design pattern. It is also known as the request-response pattern, or the query

pattern. It commonly is invoked when an application requests information from a database or shared

resource. The following were examples of the pull design pattern from the: BusLocator pulling AVL, ETA,

and Route data from trapeze; Next Bus ETA Helper pulling xml ETA packets from NextBus; and GTFS-

realtime specifying RTAs and RTA data providers host data at a public URI26.

On-demand usage of the pull design pattern

On-demand applications that consume real-time transit data do not concern the issue of pull

rate. An example is a text-based website that gives the most recent AVL data in textual form upon

request. This application does not need to actively update data in real-time, because it is agreed that

they are bound to the user interface. In this example, the application’s data is bound to the most recent

data available at the time of access.

Consider figure 7. Here is an application for the given example; this website is displaying AVL

data in text based form. Note the three outlined parts. The first is the contract with the user stating that

this data is the most recent available for a particular time. The second is a User Interface binding in the

form of a button. Using this button, the user can make a new pull request and demand more data. The

third is the graphical representation of the AVL data with geolocations as approximated street

addresses27.

26

 Uniform Resource Identifier. A text string used to identify a web resource, file or location. Interchangeable with
URL or URN.
27

 This process is called Reverse Geocoding, where geolocations are compared to a street address region by a third
party database provider, such as the Google Maps API.

P a g e | 20

Figure 7 Application example of on-demand, pull design pattern for transit data.

Real-time usage of the pull design pattern

Unintended side-effects occur when trying to use the pull design pattern on real-time

consumption services. The most used GeoLab application that fits this description is real-time mapping.

Figure 8 Real-time, mapping application that uses the pull design pattern. It displays the most recent AVL data for CCRTA
vehicles at 5 second pull intervals.

There are two side-effects that have different costs. The first occurs when the client pulls too slowly.

This means that real-time data points are request more infrequently than they are created. The client is

not consuming the all of the available data. This is not apparent as a problem in real-time display and

P a g e | 21

use. As previously described, patrons do not notice small delays in AVL or ETA. But when compounded

with the discovered possible problems of network reliability, database collision, and other issues, a

dropped packet can cause a long interval of data loss. When going back to information stored by a client

for analytical purposes, this issue can make data sets unreliable. The second side-effect occurs when the

client pulls too frequently. The simple problem, occurring on the client side, of pulling redundant data

can be solved by only storing unique data points. The larger, hidden problem is overloading the network

on the server side. By making redundant requests, the client is causing the server to do work. In most

pull systems, over network via http or web service, the server does not know which client is pulling it.

Even with using cookies or other persistent connection techniques, the server must do work to

guarantee that it only does unique work. It should also not be the duty of the server to break its

response contracts – e.g. returning the set of most recent AVL data – by omitting redundant points since

the server is not aware of how the data is being used or consumed. It is the duty of the client to address

these issues.

 Over the course of this project, alternatives to the pull design pattern were discovered. These

include the push design pattern, sockets and websockets, and the subscription or observer model. They

have several implementations and are part of the multimodal service layer of the GLaaS API. To find a

short term solution for systems that can only implement the pull design pattern, such as bus locator, an

alternative algorithm was employed to help minimize these two side-effects.

Exponential Moving Average and approximating optimal request rate

 The exponential moving average is a function that can be used to determine trends. The pull

interval can be determined dynamically based on the average interval of actual real-time data

occurrences using this function. In general, the function can be written as:

τ is the predicted time or value of the average. t an actual or recorded time or value that occurred. n+1

is the next occurrence we are trying to approximate and n is the most recently recorded occurrence. A

simulation as created for this project. Its purpose is to determine if there is general improvement over

constant rate pulling. Since BusLocator and pulling actual data would cause too many unknowns for

reliable results, vehicles were simulated based on their observed behavior and record. A collection of 10

vehicle threads as c# timers were made. Each vehicle thread pings a shared resource object,

implemented in a synchronized array of AVL points, to simulate populating a database record of the

most recent data for each vehicle. Each vehicle would ping at a randomly chosen rate between 5

seconds and 15 seconds to simulate observed GPS ranger behavior over wireless signals on Cape Cod.

Vehicles were also given a 10% drop rate for each packet to simulate network congestion and collision

between ranger and shared resource. No noise was simulated between Client algorithm and shared

resource.

 Two algorithm implementations were started at the same time. One was a simplified version of

BusLocator’s pull algorithm labeled ConstantRateConsumtion. It would pull the most recent data

available to the shared resource at 30 second intervals. The second algorithm was an implementation of

P a g e | 22

the exponential moving average. A proportion of a constant .5 was chosen for as to be a fair

estimation. Since data points were pulled for all vehicles, and not each vehicle independently, the

occurred time, t, was calculated from the average lag time between the AVL points and the previous

predicted interval. Specifically:

While this may seem logically recursive, it was a simple way to implement the Exp. Avg.

calculation without memorizing the intervals of each vehicle. Vehicle AVL points are pulled in batch, so

the difference between the AVL occurrence and the present was calculated. The average of those

differences was subtracted from the previous interval prediction instead of comparing that datetime to

a previous recording of the vehicle AVL history.

For example, 10 vehicles were pulled and the average difference between then and now was 5

seconds. If the previous pull interval was 25 seconds, and we were on average 5 seconds late, then the

average interval for all the vehicles at the previous time must be 20 seconds. This decision was made

because vehicles change often in practice application. It is certain that recorded instances would be

improved from caching vehicle history for at least two iterations. The one issue that occurred with this

calculation as opposed to caching was: if this algorith’s rate of pull is too quick, then we would be

calculating based on data for the (n-1)th time, not the nth. So, if the average difference exceeded the

previous interval, then the previous interval was too quick. So the actual occurred time, t, is the

negation of the difference – which becomes a positive value) – that is added to the interval. The

pseudocode for the algorithm used can be seen here:

In perspective, you can also consider the constant rate pull algorithm to be the same as the exponential

average, with . This would then only consider the value of the previous interval when predicting

the next.

 Results from running this algorithm addressed the first issue the pull design pattern has on real-

time data systems. The exponential moving average algorithm better approximated the pinging intervals

alpha = 0.5
For each (AVLPoint point in most recent AVL from shared resource)
 {
 if (point is null)
 continue //exit loop and continue, data is not ready

 diff = current_datetime – point.datetime
 if (diff < sender.Interval) //we are pulling to slow
 sum += diff // make the sum bigger
 else //we are pulling too fast
 sum -= diff - sender.Interval //make the sum smaller
 }
 t_avg = sum / number of vehicles

 Interval = (alpha * (sender.Interval – t_avg)) + ((1 – alpha) * Interval)

P a g e | 23

of the vehicles and dropped fewer packets. Because of not pulling each vehicle individually however, as

is the design of this example system, results saw an increase in busy waiting and redundant pulls. The

burden was placed on the server rather than the client in this instance.

Simulation Summary Constant Rate Alg. Exp. Mov. Avg. Alg.

Total data pulled

3009 14819

Unique AVL Points Pulled 3006 8126

Redundant AVL Points Pulled 3 6693

Missing/Dropped AVL Points 5169 49
Figure 9 Summary of Exp. Mov. Avg. Algorithm simulation on 10 vehicles.

Figure 10 A point chart of pulled AVL points from both algorithms between AVL id's 100 and 400

Consider the chart in figure 10 as a graphical representation of a 300 AVL point sample. The

horizontal axis represents unique AVL points. Each AVL point was given an id that represents the unique

pairing of vehicle id and datetime. The vertical axis represents the difference between the average t_avg

and the predicted interval measured in milliseconds. A negative value on the vertical axis means that

the predicted value was too fast when compared to the occurrence. The density of points, measurable

by multiple points sharing the same x value, is the result of redundant pulls. Notice that the exponential

moving average’s results are densely populated. The constant rate algorithm is not. An algorithm that

best approximates the ping rate of real-time data would stay close to 0 on the vertical axis. The optimal

case would be points that come from the function:

-4000

-2000

0

2000

4000

6000

8000

10000

0 100 200 300 400 500

Constant Rate Algorithm

Exp. Mov. Avg. Alg.

P a g e | 24

In the optimal case there would be minimal difference, approximately 0, between occurrence and pull,

and there would be no redundant pulls requests. Future implementers of this algorithm should adjust

the value of dynamically based on success. In practical application, vehicle rate variation would be

smoother since those variations come from geographic occurrences such as distances and weather, and

not pseudo-random chance generated artificially. This algorithm is a smoothing algorithm and would

better suit gradual change that is more consistent.

The optimal solution does exist, but its implementation is not in technologies that can only

perform the pull design pattern when requesting data over network. A connection-oriented design

pattern is better used for this purpose called the push design pattern.

Discussion

Security and the closed pipe vs the open pipe

 When applying the MVC model to these pull based applications, typically the access to the data

is secured at the server side. Since access to data is done explicitly by the applications themselves, there

is no need to have a policy for which systems and users can call specific procedures. When moving to an

open request model that this project has dictated, there is a need for such a protocol. The security

responsibility is no longer on the storage mechanism itself, but now on the serviced functionality that

manipulates the data. The transit data that this project utilized for its findings is not sensitive to any

customer or private information. For good practice it is preferable that the systems being built for open

reuse have the consideration of security. Examples of two methods that are easily used by these

solutions for data migration are authentication for private access and differential privacy for open

access.

Authentication

 Authentication is a basic technique of web security. In the context of transit data, it is important

to guarantee that data integrity is not compromised between storage and retrieval. In the current

systems, protocols specify a non-committed approach to the data retrieval. TCIP states that the XML

production and consumption of transit services is done through approved vendors, and not designed for

open access. GTFS and GTFS-realtime has information posted to a public resource URI, which requires

anonymous authentication by default. To be independent of these constrains, the protocol for security

used in this project needs to be flexible.

 In the data chain, it is important that the data structure stay free from the implemented

context. If access was restricted at this level, then each application would need independent credentials

for each data type. Access would be general to an all or nothing approach, where applications either

have read access or they do not, or they have write access or they do not, etc. The does not allow for

fine tune control of access specification. Abstracting authentication to the access level, either stored

procedure or application level access such as an API28, can ease this problem. Now applications can have

a finer granularity of access of data, but specifying what approved operations they can perform. This

28

 Application Programming Interface. Either a library or a service that specifies how software components or
functionality should interact with each other and be used.

P a g e | 25

authentication should be done before the call is made, to reduce unnecessary work. By abstraction

authentication to this level, it is now guaranteed that application access does not invalidate the integrity

of our data structure. These considerations guided the protocol decisions for the GLaaS Model and API.

Differential Privacy

 There should be another methodology for insuring security in an open system. The purpose of

defining these methods was to insure the fastest and easiest way to connect application to data

migration techniques. In moving to this open approach, it is a goal to still produce data that is

consumable in multiple forms, independent of use. The problem that comes along with these

improvements is similar to problem with big data repositories and survey or customer information data.

 As the data becomes more accurate and granular over geographic regions, periods of time, and

associated services, consumers of the data service are able to notice patterns in data feeds. These

patterns are an important part of the analytical repurposing of real-time data. For example, analyzing

vehicle AVL history for non-stop points can be a leading clue to where the next bus stop should be

placed on a given route. This can also have unintended side effects. Christine Task describes that in

collecting large amounts of survey data, customer information may still be obtainable even with basic

anonymity measures in place.29 This pertains to surveys where name, address, and other identifying

information are removed and only the survey-relevant statistics are scored. With a sufficiently small

sample size, it is possible to use marginal distribution to find out who a person is by making correlations

between their answers and outside information. The problem arose from a participant answering both

about student demographic information – such as major, minor, etc. – and about experience with drugs.

This is similar to a problem in public transit AVL tracking. As we use the above methods to improve

accuracy and relay of AVL information on paratransit and non-route vehicles, we may be uncovering

patterns unwillingly about individual ridership behavior. Where a vehicle is at any given time is

acceptable to be displayed and updated in real-time in a map application or a text based representation

without persistence. For analytical queries, which should be possible by repurposing the data model,

this may become an issue for a public facing data feed. Cynthia Dwork, scientist at Microsoft Research,

provides differential privacy30 as a solution. The concept is to provide just enough accuracy of data,

determined at time of access, to provide purpose to the request but minimize the difference one data

point makes on the overall information. When repurposed for AVL and geolocation based data, this

method is similar to selecting a geofence – or a geographical zone – around the AVL point. The point is

accurate inside this geofence to a specific margin of error. Until the vehicle moves outside the geofence,

no new data points are provided for analytical consumption – such as in a pull request of AVL history for

a time period. In order to protect customers who use transit services, a geofence should be chosen

inversely proportional to speed for non-route vehicles. As a vehicle slows down, the uncertainty fence

expands. Requests for a slow vehicle (or stopped vehicle) have a large range of uncertainty between

concurrent days. This obfuscates the particular house that a paratransit vehicle stops, protecting the

rider.

29

 Task, Christine. “An Illustrated Primer in Differential Privacy”. Crossroads Vol 20.1. Fall 2013.
30

 Dwork, Cynthia. Differential Privacy. http://research.microsoft.com/pubs/64346/dwork.pdf

http://research.microsoft.com/pubs/64346/dwork.pdf

P a g e | 26

Conclusion

Design considerations when moving forward and making GLaaS

 These observed patterns and methods for transporting transit data came from analyzing the

current system. It seemed that passive documentation may not be enough to provide insight into how

they work. GLaaS was designed as the last part of the project. It serves as an expandable and reusable

system in which these ideas could be designed and tested, without breaking existing functionality. From

the core concept of keeping data and application logic separate, two main parts were created: GLaaS

Model and GLaaS API. The model would be the reusable structure, definition, and protocol for all transit

data structures used by GLaaS. The API would be the implementation of the above algorithms and the

manager of all user level authentication and privacy enforcement. The Model would only be accessible

from the API in order to best insure data integrity. The API would have multiple modes of access to best

support the different data production and consumption rates. It would also support multiple rates of

consumption of the same data, simultaneously. Lastly, purposeful patterns and documentation would

serve as training for maintaining, replicating, and extending features of this project.

P a g e | 27

GLaaS Model and Verification of Database Design

Research Questions
 Is there a way to use the data structure definitions to create a data management system that is

both reusable and easy to maintain? What is the easiest way to do that so effort, documentation, and

structure is sufficiently clear, concise, and reliable?

Purpose
 It was apparent that the techniques studied so far in this project could be directly applied when

maintenance BusLocator after a transition the WCF portion to a new webserver. Documentation and

data structures from each project that relied on the AVL data were separate and only accessible from

their parent applications. Data stored in persistent forms was not easily movable to other applications

without being parsed and versioned. Points of interception where efficiency and analysis algorithms

could be implemented were not apparent and varied between systems.

 As previously discussed, the current Data migration programs used in the GeoLab are aptly

suited for their designed purpose. The intent of designing a new, reusable database model for transit

data structures is to gain the benefit that a few levels of abstraction provide. The first is that by

separating how data is stored and retrieved from how it is used and manipulated, those two pieces and

run concurrently and with separate algorithms and efficiency measures. Consumers and producers of

the data do not need to know where and how the data is stored, but only how to interface with it in an

approved way. The duplication, preparation, and caching of data can be purposeful to offload the

burden from the client. Lastly, features and modifications can be separated and issues will not cross

over between existing systems.

 Consider the following example. Researcher J wants to make a new mapping application that

incorporates real-time AVL data from a known source with that of a new one to make a robust,

multimodal map. In order to do so, it may seem easy if a current map already exists. However, currently

the GeoLab has databases designed for their intended use, and not for interfacing with their possible

data. So, each vehicle has its own data table and is easily retrieved from the current map. For J to

achieve their goal, they need to either duplicate the structure in its entirety to best avoid conflicts with

the current system or they need to find points of inject at the data level that they can insert their code

and not affect the existing performance. Both of these approaches have problems that stem from the

underlying structure.

 The solution is to define a database model and feature off of the manipulation of the transit

data structures defined in this project, and not derived from their intended use. An application level API

or service can interpret the data in multiple ways for general and specific use. By making this separation,

the integrity of the data can be kept while different applications can interface with it in parallel. The

pattern followed for this particular implementation is MVC – Model View Controller – but the View is

left unimplemented except for in tests. A client application was not the goal of this project.

P a g e | 28

Methodology
 The database schema is designed in two parts. The first part is a strict protocol for Table

creation based on features. A feature can be thought of as a transit data structure or as any other data

structure from which applications can be based on. The two example data structures that have been

created for this project as examples of the protocol are AVL and Event Logging (abbreviated Log). The

second part is the approved creation and modification of functionality at the database level. This is

implemented as Stored Procedures, which are SQL level functions that can take parameters and return

tables, vectors, and scalars or simply perform work.

Initial Design – triggers and the trickle down structure

Table Structure

Each Feature would have three types of tables: a primary table, a set of specific tables, and a set

of info tables. Each table has a particular purpose for aiding in keeping the data lifecycle purposeful and

keeps unnecessary read and write operations to a minimum.

Primary Table

The primary table would be the contract resource for the entire feature. Transit data would be

inserted into the primary table upon first entering the server via insert calls. The table would be

unindexed to allow for quick insert, but would have a unique, auto-incrementing primary key. This

means that every transit data object in the primary table would be unique upon insert. If data were to

be reinserted, it would have to be known by its primary key, or deleted and reinserted. If the data was

significantly changed then there would be no need to delete and the reinserted data would be

sufficiently unique.

The primary table would have required fields for each of the minimal definitions of the transit

data structure. For example, an object must have a vehicle id, a geolocation, and a datetime in order to

be a valid AVL point. Optional fields for each table would be the commonly used or purposeful metadata

that could accompany the transit data structure on insert. For AVL this is commonly speed, direction,

route information, block information, and other static, dynamic, or composite transit data structures.

This is distinct from the previous organization structure, as AVL tables may have had required fields that

were simply metadata. Making metadata required prevents reuse for systems and purposes that do not

contain the same metadata, requiring application developers to create new parallel structures.

Application developers with metadata that does not exist in the current feature’s primary table can

simply request student researchers to add support for that data. The student researcher can do so by

adding an optional field to the primary table, which is guaranteed not to break any of the existing

functionality if the protocol is followed. We have now minimized time of adding and modifying existing

structure, while not having to maintenance existing systems as a result of the change.

Specific Table

 The specific table is the closest each feature should get to business logic. It is the structure and

ordering of data from the primary table that best fits a particular access mechanism or operation. It is

still separate from how the data will be used, but provides a convenient structure in an attempt to

P a g e | 29

provide efficiency and clarity for researchers wishing to build upon the existing functionality. For

example, a common operation that is performed for AVL data is selecting the most recent AVL data

points for each vehicle. This could be pulled easily from the entire history of AVL, selecting a cutoff of a

reasonable time, and indexing the table by datetime and then by vehicles. This query is expensive for

large datasets, even with proper indexing. A good specific table for the feature that could alleviate this

problem would be a table that contains one row for each unique vehicle id that has been entered and

only stores the most recent AVL data point for that vehicle. Since vehicle ids would be unique they could

be considered the primary key. Selecting the most recent AVL for all vehicles is then a simple select of

the entire table and selecting the most recent AVL for a particular vehicle is a selection against a

clustered, unique index. Both of those operations are fast and cheap. There is a cost associated with

updating such a table, but it is no more expensive than inserting into a large non-unique, indexed table

on several columns. The second benefit is that the purpose of this table is clear, and can be reflected in

its name. Multiple applications can use such data, and expanding it to support new metadata and

applications is the same as the primary table. The database designer now gets to make decisions from

the question: “What is best for the database? “rather than: “What is easiest for the current

application?”.

Lastly, specific tables must have all the required fields of the primary table, but since they are

data delivery specific they do not have to have all of the optional fields. If two specific tables were made

to make a distinction between vehicle specific use and rail / train specific use, we would have a set of

train specific AVL fields and vehicle specific AVL fields. The rail specific table only needs to implement

the optional AVL fields corresponding to being a valid train; the vehicle specific table only needs to

implement the optional AVL fields corresponding to being a valid vehicle. This distinction does not

violate the protocol of organization instead of use. It is not being dictated what kinds of application are

going to consume this data. It is instead that the AVL objects are being extended to be more and more

specific, and at some point are better collected in one way than another. Now there would be tables

that can be organized, indexed, and modified based on mode specific parameters, but can be consumed

by a variety of context-free applications.

Info Table

 The info table is a lightweight, compromise between the above table structures. It is an indexed,

single purpose table that contains metadata and relationships for transit data structures by id. It can

also be used to be the primary insert location and select from location without the delegating structure

above, given that the data is both inserted and selected infrequently. The Info table structure is a way to

also update transit data points after the fact, when editing the specific table is either unnecessary or

messy. For example, consider an info table Info_AVL_Late. This table simply contains a collection of AVL

ids of AVL points of vehicles that were late. That calculation is done at the application level, and we did

not want to burden the primary table and each specific table with this very simple data. The use of join

operations in SQL can assist us instead. It is assumed that the AVL points in question are already gotten

from one of the specific tables. Then, that data set can simply be joined with the Info_AVL_Late table

where their IDs equal to find out which data points are late.

P a g e | 30

 It might be difficult for researchers to decide whether to add an optional field or to add a

joinable info table. The protocol made from this project does not penalize the choice, but recommends

that if the metadata is not readily available upon data point creation, then it should be an info table.

Lateness cannot always be determined at the same time the AVL point is made, and might be calculated

later. That is why it is better suited as a separate info table. Information like block number and route can

likely be determined at creation time from the source, and can be optional fields of the primary and

specific tables.

Stored Procedure Structure

Prohibition on application level queries

 It is easy to think that at this point the protocol should relinquish control to the application level.

There is one more level of indirection required by the GLaaS protocol, though. All interactions from

outside the database must be performed by stored procedures. The purposes of this rule are to

minimize maintenance and debugging and to avoid security risks of open systems. In the current GeoLab

systems, application specific stored procedures have been created and as a result some client

applications have made work-arounds or temporary procedures to fix lacking functionality. These

procedures are designed at the client application level and execute dynamic SQL queries that are

created as plain text. There is nothing inherently wrong with this design, but in maintenance it has

become difficult to debug the application and the database at the same time if it cannot be assumed

that the problems are localized to one or the other. Application problems may masquerade as database

problems by using these rogue queries. By imposing that application level requests must be made

through stored procedures the problems that are being solved are: fixing a stored procedure once fixes

issues for all dependent applications, database issues are traceable and application issues do not

supersede their boundaries, and the parameters and operations that can be performed on a data

structure are explicitly clear.

The hidden benefit is also one layer of indirection between security attacks and sensitive data.

Consider for example ridership information and a client application that inserts and selects client

information that is open to the public. Assume that permissions allow anyone to insert, but only

authenticated users could select data at the application level. An anonymous user might put some rogue

data in the database, and we can assert that it meets the requirements of creating a valid account

before inserting it. If we allow the application to make a custom, dynamic query at the application level

then they would likely be incorporating the data into the query definition:

Figure 11 An example of an application level query in a c/java/c# like syntax that can lead to SQL injection.

public SQLTableType openCreateUserMethodWithoutValidation(string username)
{
 return Sqldelegate.executeQuery(

“Insert into Primary_Users(username) values (‘ “ + username + “’);”
+ “Select * from Primary_Users where username = “ + username
);

}

P a g e | 31

The rogue user could enter in a string such as:

 someUsername’); Select * from SELECT * FROM information_schema.tables --

This is a typical technique of SQL injection where a user injects SQL at the application level and it is

bound to the query at compile time. This string in particular would enter in the someUsername value,

end the query, select information about all the tables in the database, and then comment out the rest of

the query. If the application level does not have proper checks, then the integrity of the database can be

compromised. Instead of returning relevant data about the user to the user, the tables that belong to

the database are returned. If successful, the rogue user could repeat the process and perform serious

and possibly irreversible damage to the database.

 This is prevented when only allowing stored procedures. Data content is bound at runtime in the

SQL environment when passed as parameters. If the same technique was used with a stored procedure,

the data would be packaged as a string literal and get inserted into the field as a whole, not interpreted

as a static command. This would also leave a trail for database administrators, as rogue users would be

the source addressed of queries that contain this malicious data. Since the data cannot actually harm

the database in this way, it would simply either be inserted into the table as a value, or logged.

Stored procedures

 Stored procedures in this model function similarly to in the current system. There are only a few

added rules of their creation. There should be one point of entry into the primary table. It should be

structured as an insert query that takes all parameter. This includes both required and optional

parameters. It then sets the optional ones to null in order to let executors of the insert not set the

optional parameters. It provides and data validation which includes but is not limited to: asserting

required values are not null and of the correct data types and asserting values entered do not violate

any uniqueness rules of the data structure. The data is then inserted into the primary table. In this initial

design, triggers were used to

Triggers

 Triggers are automatic queries that attach to database objects such as tables and execute upon

the occurrence of particular events. The GLaaS Model was going to use triggers as an efficient

mechanism to establish a trickle-down structure between primary tables and specific tables. A trigger

would be made for each specific table that takes data for that feature. The triggers purpose would be to:

 Evaluate if the inserted data is appropriate for the specific table

o The data must have the correct optional fields for the specific purpose

o The data must be unique by the specific tables uniqueness rules

 Insert the data into the specific table

o Or update existing data objects in the specific table with values from the new insert

It was logically assumed that data insert and update for each trigger would be concurrent since each

query was contained in its own trigger definition, and specific tables were not codependent. Each

specific table only needed to get its data from the primary table or through joins with info tables.

P a g e | 32

 Issues with triggers arose when the inner working of trigger logic was revealed. Triggers are not

concurrent, and how they are executed is contrary to how they are created and stored. When an event

is raised on a database object, such as a table, that has a trigger listening for that event:

1. The original query is suspended until all triggers are complete

2. The trigger query is statically attached to the original query

3. Each trigger is performed in order, and in single threading

a. One trigger’s query cannot begin until the previous one finishes

4. If one trigger fails, then the whole query fails, and the original insert and all trigger queries are

undone.

This realization greatly conflicts with the principles of this model and protocol. This means that specific

applications of a feature cannot only interfere with each other, but also invalidate the integrity of the

original data structure. A new methodology was sought to achieve a similar affect, without the

dependency issues.

Subsequent Design – Batch Query

 Solutions were tested to try and resolve the trigger dependency issue. It made sense to simplify

the structure and rely on existing objects provided by the protocol rather than having a difficult or

complex structure from the beginning. The functionality the triggers would have provided were moved

to the insert stored procedure. Batch querying through query delimiting was utilized to let the SQL

environment best decide concurrent actions for itself. The output functionality of insert queries was

used to replace the trigger siphoning function of inserted data on the recommendation of several online

SQL training resources and Microsoft’s Plural-Sight developer training. The first insert is still performed

on the primary table. The output filtered values are then inserted into each subsequent table. Each

specific query is separated by the delimiting character. The semi colon ‘;’ is the delimiting character in

this implementation. This instructs the SQL environment to execute each query in its own batch. Since

the specific queries are only dependent on the output data’s integrity and not on the integrity of others,

the environment will allow the queries to be scheduled, compiled and executed concurrently. If the data

is malformed the subsequent queries will not be executed because they all depend on the output data.

Malformed data will not be able to be inserted into the table initially, and so there will be no output

data to trickle down. If one specific query in the chain fails then the others will still execute, because of

the lack of dependency. The downside to this design is that its function is not apparent in its

appearance. It seems that these queries being executed literally in the same procedure would be more

dependent and sequential than triggers all listening on one object, but it is the contrary. This design

proves to be efficient at tying functionality to the data, as now if any data is malformed or entry is

incorrect, the areas of potential problems are limited.

 Eliminating the primary table as it is no longer listened to directly by triggers was considered. It

seems better to use it as a validation tool and a contract for to enforce the integrity of the data

structure. As features get increasingly specific in subsequent tables, the primary table can be the

unifying structure of what possibly constitutes the data. Between an object being a functional

P a g e | 33

description of the protocol and using the table as data validation, it persisted in the final design of the

framework.

Results
 The tangible product of this design and protocol is the GLaaS Model database object

implemented at the GeoLab. This data model for MVC applications, especially for real-time data

structures, can be achieved by following the methodology. The database structure has already been

defined in the methodology. The tangible result is the ability to easily explain each of the parts and to

define the protocol in a way that future researchers and adopters can easily interpret. The protocol is as

follows:

GLaaS Model Protocol

 Tables added to the GLaaS Model must be implemented around a particular feature

o A feature can be any data structure such as transit data structures

 Three types of tables can be made: Primary, Specific and Info

o The naming convention for the table is type_feature or type_feature_purpose

 E.g. Primary_AVL

 E.g. Specific_AVL_MostRecent

o Required fields in primary tables are also required in specific tables

 They are the minimal definition of what constitutes an object

o Specific fields should be optional fields of the primary table

 Enabling the primary table to be the most complete record of data objects

for analysis and history

o Info fields do not need to contain the required fields of a primary table

 But they must be joinable to unique data objects

o Specific and Info tables must be indexed on their unique or commonly selected and

updated fields

 E.g. Specific_AVL_MostRecent -> indexed by vehicle id

 Stored procedures are the only ways to interface with live data from the application layer

o They have a similar naming convention of tabletype_feature_purpose

 E.g. Primary_AVL_SendDefault

o Insert stored procedures should insert into the primary table for data verification

 Then insert into specific tables from the output values

o Select and Update stored procedures can access specific tables directly

o Info tables can be accessed and mutated independently

P a g e | 34

Discussion

Criteria for success

 The GLaaS Model meets the criteria for good data management design and is purposefully

crafted to be easy to maintain, modify, and extend. Each of these criteria can be assessed for their

worth and tied to a particular aspect of the protocol.

Modification

 The GLaaS Model is modifiable by design since application level logic has been separated from

the data structures. Data can only be accessed and mutated in clear, explicit methods that reside in the

database schema and design. Failure on one specific aspects feature is not likely to cause the failure of

other specific aspects of a feature. Features are kept separate in different primary-specific clusters,

minimizing data verification and missing values errors. Strict rules on what constitutes a data object can

be enforced with required and optional fields. Required fields must now be chosen purposefully in order

to define the data structure, and not what is required for the particular use of that data. Therefore,

modification to any existing structure or function is made easier since they do not interoperate loosely

and are contained in a minimal amount of specific locations.

Extendibility

 The GLaaS Model is extendible by design due to the explicit partitioning of features. To add

support for new data definitions of existing data structures is done by adding optional fields to the

relevant database objects. Adding support for new functionality or operations on existing data is done

completely in stored procedures. The guarantee that data sources must use stored procedures means

adding new functionality does not require detecting data sources at the application level. Adding

functionality that is robust on existing data is easy since data is associated by structure and not by use.

Knowledge of tables for previous use and what they might contain is no longer necessary for developing

new applications that utilize this database and its structure.

Replication

 Replicating the existing model for new features and data structures is simple since a precise, but

flexible protocol has been given. By agreeing to follow the protocol, developers are gaining the

knowledge of this section is consistent for each database object in the GLaaS Model. Data can be shared

freely between GeoLab applications without knowledge of their original purpose, and reuse of previous

data knowledge is not lost.

Conclusion
The GLaaS Model is not in production use yet, but its operations are being trained and

documented for other researchers continuing in the GeoLab to make use of with their projects. The

benefit will be when researchers at the GeoLab adopt this protocol and model; they only need to add

the logic for their project once to collaborate with everyone. Until now, application specific database

logic has been created to assist in persistent storage and assessment of transit data. Over the course of

this project, many different data parsing applications have been seen. GTFS, Wifi+Geolocation, train and

P a g e | 35

rail data and other data structures have been used for application purposes. Since the researchers have

been working independently, these applications are robust and purposeful, but the knowledge of each

application has to be relearned if a subsequent researcher wants to make use of this data. This is the

same problem that occurred at the initial steps of this project when analyzing AVL and ETA data. It is

urged that while GeoLab researchers continue their individual projects, they make their persistent data

stores as part of this framework by adding a feature for their data structures to the GLaaS Model. Their

personal application can make use of the data, but also other researchers can clearly understand,

interpret, and utilize that data in their projects. Web based tools and access applications that are also

reusable can be built upon that data for even more complete applications. Safety and security, data

integrity, and efficiency can also be guaranteed because each researcher followed the simple protocol

provided.

P a g e | 36

GLaaS API and Validation of Client-Service Architecture

Research Questions
 How can the requirements of the business logic and specific applications GeoLab researchers

create be satisfied while keeping the integrity and reusability of the data source? How can vendors and

other specification creators be accommodated when their data requirements are tied to specific

communication mediums? Is there a compromise between performance, reuse, and data validation?

Purpose
 Creating and maintaining a separate, context-free data model is not useful unless an approved

medium is available for application developers to interact with it. The GLaaS API is a layer of abstraction

that lets users, researchers, and application developers have access to the data. Data integrity and

security is guaranteed by implementing an API since each feature and operation has a point of

authentication that can be created by the API designer. It was easy to perform short term operations

that were inefficient and difficult to share efficient operations with other services when applications had

direct access to the data model such as with GeoLabVirtualMaps and BusLocator. Through creating and

maintaining a web facing API, different user levels – anonymous, researcher, third-party collaborator,

administrator etc. – can be given specific levels of security that is dependent on the particular

application or purpose without locking the data storage. The API is the only entity allowed to

automatically interface with the GLaaS Model for this reason.

 It may seem that this layer adds an extra step for GeoLab researchers to go through in order to

access the data. For typical applications they would have simply written the read and write logic once in

their application. Researchers adopting the GLaaS API still only have to write their logic once for the use

of their application. The functionality they design must conform to fit the GLaaS protocols discussed so

far as an extra cost, but there are multiple benefits. Data processed through the GLaaS API is easily

stored in a persistent format in the GLaaS Model. Operations and functionality written for the GLaaS API

is reusable to other applications and easily collaborative between researchers. Functionality can be

written and tested separate of any particular view or implementation which saves time when deciding

between several algorithms or methodologies for a task. Lastly, it is trivial to transmute data from one

medium to another on demand since the client application, views, and consumers are separate from the

retrieval functionality.

Methodology
 Several specific considerations were made when deciding on the technology to use for the

GLaaS API. The issues that have been occurring with the current systems needed to be preempted.

While no technology is impervious to bugs and maintenance, functionality needed to be simple, clear,

and easy to use. The intention was that mistakes, work around, and anti-patterns would be avoided if

the technology made the medium simple and self-explanatory to use.

P a g e | 37

A list of criteria was made so that tools could be compared and contrasted on how applicable they

were at solving these issues. Here is an abbreviation of that list in a prioritized order (from high priority

to low priority).

1. The technology must be compatible with existing systems with a strong preference on the .NET

Framework employed by the GeoLab. Minimal configuration must be needed to begin using the

technology with existing transit projects.

2. The technology must be well-documented and supported in the .NET community.

3. The technology must be light-weight and be easily deployable on windows servers.

4. The technology must be scalable and provide design patterns for its use and adoption.

Tool choices

The two technologies that were originally compared were Microsoft’s WCF technology and the open

source project ServiceStack. These technologies both provide application level Webservice functionality

that is an improvement on .NET web applications and web services. They are executed on the server

side and both adopt the Request-Response protocol using the pull design pattern. The GLaaS API was

intended to be an umbrella for most data migration applications at the GeoLab, which eliminated the

possibility for using ASP .NET’s MVC or WebAPI models. Those models integrate better with single,

application structures and their intended use has to be manipulated to get reusable functionality. All of

these technologies work well with service-oriented architecture and were possible to be used. The

purpose dictates that the best technology currently available be used and scrutinized. Therefore, in

order to make decision and development easier, only WCF and ServiceStack were compared.

WCF was already familiar at the GeoLab as many other applications used it for single use. It is a

protocol built on RPC-message based requests over SOAP via XML. Each command a client wishes to

perform is packaged as an XML document and sent to the WCF endpoint via HTTP Post. The Endpoint

routes to the WCF service which unpacks the request and finds the corresponding service operation

listed in the XMLs header data. The body data is turned into a DTO – Data Transfer Object –an

encapsulation of serializable data types and values with no inherit functionality or methods. The service

operation has been statically bound to a method by the WCF service and the DTO gets bound to

parameter or set of parameters for that method. The functionality is executed and the results – if any –

are packaged up in a DTO. The DTO is wrapped in an XML responses body data and the client’s waiting

HTTP handler is the destination of the header. The client then unpacks the request, the DTO, and can

use the data inside for their purpose.

As an example, consider a WCF service that takes a RTA as a serializable, primitive text such as a

string and responds with a collection of AVL DTOs that encapsulates the AVL data structure. The XML

schema document (XSD) or contract the WCF publicizes to tell clients how to interact with it could look

like the following:

P a g e | 38

Figure 12 An example of a WCF data contract (XSD) that is publicized to the client.

The description of the service operation (method) is set as the complex type. The parameters of the

operation are inside the first sequence as elements. The response DTO is the second type contains the

data structure primitives inside. An alternative documentation is the WSDL which is cross compatible

with not only WCF consumers (as .NET or c# clients) but generic SOAP clients in other programming

languages as well.

This technology is easy to use, but is quite hard to scale and configure. WCF requires many

endpoints to be opened and hides its customizability behind XML configuration documents. Veteran

.NET developers can easily configure these technologies, but new researchers in the GeoLab will have to

study the technology before they can even begin to work on their application. It is easy when starting

with WCF to be mistaken that configuration errors are functionality errors. Quick fixes and work-arounds

might be sought in an attempt to keep up with iterative development in the grant lifecycle of projects in

the lab, and initial project time can be wasted fighting the tool. After those initial steps, WCF becomes a

powerful resource, but this consideration is easy to overlook. This problem is a common occurrence due

to the high turnover rate of student researchers at an academic lab and can perpetuate the same issues

that this project faced in its infancy. Since the GLaaS API favors using the tools and writing functional

code over learning the tools and programming within a paradigm, the open source alternative was

discovered and researched.

ServiceStack is an opensource web service framework built on REST31. The URI endpoint acts as a

route directly instead of packaging the operations’ route information inside the messages of the request

31

 Representational State Transfer. A service interaction architectural style focused on constraints and components
over methods and binding instructions.

<xs:schema xmlns:tns="http://schemas.datacontract.org/2004/07/AVL.Requests

" xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualifie

d"targetNamespace="http://schemas.datacontract.org/2004/07/AVL.Requests">

 <xs:complexType name="MostRecentAVLForRTARequest">

 <xs:sequence>

 <xs:element minOccurs="0" name="RTA_Short_Name” type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="MostRecentAVLForRTARequest"

type="tns:MostRecentAVLForRTARequest"/>

 <xs:complexType name="AVLResponse">

 <xs:sequence>

 <xs:element minOccurs="0" name="DatetimeStamp" type="xs:string"/>

 <xs:element minOccurs="0" name="Latitude" type="xs:float"/>

 <xs:element minOccurs="0" name="Longitude" type="xs:float"/>

 <xs:element minOccurs="0" name="RTA_Short_Name" type="xs:string"/>

 <xs:element minOccurs="0" name="Vehicle_ID" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

P a g e | 39

or the response. This means that the API is not contained as a listener on one URI, but rather a structure

of URIs. The second change is that a URI can be multiplexed by its HTTP verbs. In WCF only the HTTP

verb POST could be used to call functionality. GET, POST, PUT, HEAD, etc. can all be used for different

operation bindings in ServiceStack. ServiceStack shuns the RPC-message model as an Anti-pattern that

actively fights the HTTP on which it is built. Without delving into the protocol politics, improvement can

already be seen for the two previous issues. Since ServiceSrtack can dynamically bind to routes, it can

easily be replicated and scaled with minimal over-arching configuration. This lowers the perceived

barrier of entry for new Lab members wishing to develop at the application level. In ServiceStack in

particular, route bindings are determined relative to the host of the API dynamically above the Request

DTO or at the service configuration. This provides flexibility on the part of the designer while still being

explicit with collaborators. For users that do not wish to read code in order to add new functionality or

modify existing operations, ServiceStack generates human readable metadata that functions as a

contract – similar to WCF’s XSD. The primary different is that ServiceStack does this in both a human

readable HTML, and file-type specific formats. All of these formats are auto-generated and no

configuration needs to be performed on the part of the researcher – save for a premade webconfig xml

file that all ASP web applications require. What this means is that data can be consumed in methods

other than XML. JSON (JavaScript Object Notation) is the REST favorite by accepted use and its syntax is

familiar to those who use Java/C++/C#-like languages.

Figure 13 The URI route binding and auto generated metadata documentation of a sample ServiceStack project. This API
services the Feature for AVL.

P a g e | 40

Consider the URI in figure 13. The first section (1) of the URI route is the host binding. IIS – a

webserver management system for windows server – automates the host binding and multiplexes the

web port for multiple URIs. Development and replication is maintainable since ServiceStack APIs are

published as ASP .NET web applications and can be stored in the file system under this host’s virtual

directory. It was simple to create a virtual directory as a folder location under this host corresponding to

data feature from the GLaaS Model. This made a consistent, implied purpose and connection between

the API and the model. The second section (2) is this folder location that is located in the host. That

folder location is known to the ServiceStack as the root address, represented “/”, and all URI routes

generated by the application are relative to that. This was much simpler to see than the WCF end point

configuration for multiple WCF projects or making a service contract definition for each data feature.

The third section (3) is the auto generated documentation url that functions as the default document for

browser navigation to this page. This provides the human readable consumption guidelines for the

service, as opposed to the hybrid machine-human readable XSD. Below are figures of the human

readable metadata as well as the file type specific data contracts generated by service stack for an AVL

feature.

Figure 14 The human readable metadata for a ServiceStack API with compatibility for SOAP and WCF client consumers.

P a g e | 41

Figure 15 Overridden Route definitions for this operation. Defined by the request DTO and not by remote procedure calls
gives flexibility over verb usage, URI chaining, and embedding the data in the URI bypassing the need for a response object in
some cases.

Figure 16 Request DTO definition as a lightweight, serializable JSON file.

Figure 17 Response DTO definition as a lightweight, serializable JSON file.

Performance benefits from the above definition come in two parts. The DTO request and

response makeups (name and payload) dictate to the service where it should be routed. This eliminates

the reading of an XML header and reduces the Read/Write time of the request process, making it faster.

Network load is also reduced by this slimming of the request DTO since message sizes are smaller.

ServiceStack works with HTTP and not against and is built on pure c# in the ASP framework, requiring

less overhead and system calls for retrieving and sending packets over the network. Secondly, custom

file types that satisfy application requirements or purposes can be provided directly from the HTTP

response since ServiceStack does not require any particular file type or header to be a vehicle for

metadata.

The business logic and application levels

 It is at this stage that student researchers can add in the application specific and use specific

logic their applications will use. API methods in their simplest form have the purpose of taking a DTO

that encapsulates the parameters needed for a model’s stored procedure. The method acts as a

delegate to validate the data of the request, approve permissions and authentication levels, and then

safely execute the stored procedure on the database. Lastly, it packages the results into a response DTO

and returns it to the caller. These method calls can use the benefit of making several stored procedure

calls, checking against other results, and performing work that manipulates the data for specific

P a g e | 42

purposes we were not allowed to perform in the database model. Writing the transit data analysis

algorithms, file processing and creation methods, data comparison methods, and other automations of

the transit work students perform in the GLaaS API and not just in their applications is the subtle,

advanced benefit of this project. Future researchers can now just composite these API calls together to

perform more complicated functionality without worrying about both the integrity of the data, the

creation of the mechanisms – since the original application they were made for should be tested and

proven – and can only have to write code they know they will use. This API model fits with the mantras

of the agile philosophy of small, iterative functionality in succession; lends itself to purposeful code and

documentation; and localizes maintenance and replication to specific areas of use. The unintentional

benefit that was gained was also now a complete knowledge of the data lifecycle is no longer necessary

to create new applications, and larger applications can easily be collaborated on by breaking up the

work between the strictly defined aspects in this framework.

Authentication and security

 Authentication and security implementations were outside the scope of this project, but it must

be considered due to the transition of hard access via database authentication (closed pipe) to web

reuse (open pipe). Goals of authentication with this API are to localize them to the specific features and

requests, and not to the application. This is similar to designing to the data structure and not to the use.

Concerns are data spoofing and impersonation of real-time data pretending to be from an RTA it is not.

 Traditional method would require a custom encryption system for user and password keys that

accompany the DTO to the call. In ServiceStack, authentication is built in as an upfront configuration in

the main entry point of the service. Basic authentications like user and pass as well as new Restful

authentications such as OAuth32 are supported. Developers are even free to develop application specific

authentications custom for features. While implementing any of these authentication techniques were

not performed for this project, the perceived ease of researchers authenticating access to their data in

the future contributed to the decision to choose ServiceStack as the API framework.

Results

ServiceStack, SignalR, and a multimodal approach to data services

 In previous sections, the different creation rates of transit data structures were discussed. The

confusion with these was that most application levels are concerned with the rates at which transit data

is consumed. It is now at the API level that the transit data kept separate in the model can be accessed

in three different mechanisms similar to how the data was created. ServiceStack is dependent on the

pull design pattern like other DTO based web APIs. Techniques are included to try and estimate the push

design pattern. In order to best accommodate different consumer purposes, framework examples were

created for three distinct conditions.

1. Consumption is specific and more infrequent than production.

2. Consumption is on demand and infrequent and does not approach the rate of production.

32

 A common authentication model, used by the Twitter Rest API among others, containing two sets of public-
private encrypted key pairs.

P a g e | 43

3. Consumption is best done at the rate of production or is frequent.

The first condition is for systems such as GTFS-realtime where data is fetched on a regular basis, but

needs to be processed. This is best of static data systems or systems that want to be as loosely coupled

to the data and service provider as possible. The second condition is the typical use of data demand that

is seen in web and client applications. The third condition is the special case use that relies on new

technologies and a special design philosophy. Typically, decoupled services avoid direct connections

when communicating with a variable amount of clients. With this API, and real-time created data, the

API should enable service to the consumer with the minimal amount of time in between production and

consumption. It is not optimal to have to estimate the push design pattern using pull techniques, but to

rather have a service feature that simply provides push logic for this data.

Asynchronous file services

 This is the solution GLaaS API chose for the first condition. Common data requests of the feature

are packaged as files accessible by static URIs. Consumer services can fetch these files on use if they only

need to compare against local caches. Static transit data like seasonal schedules in the form of routes,

stops and trips and text file databases such as GTFS are perfectly suited for this. Special considerations

for this feature include incorporating on demand access to request the generation or refreshing of the

static data to best suit the application needs.

 Implementation of this aspect of API is currently as a combination of request-response for the

file generation, as ServiceStack implementations of features was performed first. The source of these

requests is can be a periodic timer based on a regular event like a database change, maintenance to a

system or structure change, or an application start or stop. The response is simply a success or failure

notification and a URI redirection to where the data feed was saved. Upon finishing this project, no

concrete example of this service has been made, but instructions on how to implement GTFS-realtime

using this aspect of the API have been written for lab use.

Request-response, on demand services

 The primary implementation structure of the GLaaS API is the request-response service

implemented in ServiceStack. Each API Feature is contained in an ASP .NET web application project in

the API c# solution. This gives us the URI structure of glaas.geolabvirtualmaps.com/<feature>. Each

project is made of five parts for the request-response portion:

1. Request DTOs as POCOs33

2. Response DTOs as POCOs

3. Global.asax entrypoint and configuration

4. Service implementation

5. Webconfig ASP friendly XML

By stating that this is the ideal of what the request-response service structure should have, any other

items that implementers create are guaranteed to be for their business logic. Maintainers of the GLaaS

33

 Acronym of plain old CLR objects which describes a DTO implemented in .NET (c#, f#, visual basic, etc.)

P a g e | 44

API engaging in debugging can tell whether the problem is with the request-response structure or the

business specific logic by whether the source of the issue originates from one of these five categories or

something else, respectively.

Subscription services with SignalR

 An ASP .NET adopted library for websocket implementation was researched in an attempt to

find a replacement for approximating the pull design pattern. SignalR is a ServiceStack friendly

websocket implementation that also is built on REST and allows for dynamic route definition. This allows

users wishing to implement real-time consumption of their data to publish a URI relative to their feature

URI for client application subscriptions to data without the need to make a request. This would

commonly be implemented using a listener for data changes at either the API level, in the cache, or by

implementing the observer design pattern on the GLaaS Model. Upon change, the websocket

implementation performs the necessary stored procedure or other work only once and pushes the

result to all connected subscribers. Currently, websocket is not supported by client libraries other than

the most recent versions of web friendly technologies such as jQuery and Java 8. Fortunately, websocket

implementations are being made for HTTP clients other than web technologies and scripting languages.

In the interim, SignalR has a chain of command to implement fallback methods when websocket fails.

Specifically, Long polling, forever frame, and other pull pattern approximations of the push pattern are

implemented as those should be supported by all current clients that accept HTTP connections.

 Due to this flexibility, SignalR and subscription services implementing the push design pattern

can be added to a feature’s project by including the library and adding two parts:

1. A hub implementation

2. A startup point

The hub implementation acts similarly to the service in SignalR as the implementation of the business

logic and specific functionality. The startup point opens the route URI as an endpoint and also is what is

called by the Global.asax (or App initialization if ServiceStack is not needed for the feature).

Discussion
 Implementing the API as the last stage of this project was a natural progression from the

previous stages. After identifying the issues with existing systems and wanting to cultivate a

maintainable and collaborative project that works well with the GeoLab was easy to create after goals

and requirements were clearly defined. There are only two specific higher order discussions topics that

stand out when making this that are actively disagreed on in the field. The overarching topic of this

project was efficiency through verification and validation of data services, and both of these choices –

arbitrary to the learning student – have had an incredible effect on those outcomes. These two

discussions are written in the effort that future student researchers can benefit from the research into

the choice, and can decide on their own what is best for their applications.

REST vs. SOAP

 REST and SOAP services have been described in detail related to their implementations in the

methodology. SOAP is one of the most widely used data migration mechanisms for mobile and short

P a g e | 45

term technologies that utilize the clarity and structure XML structures provide. Many client side libraries

to automatically create POCOs and DTO implementations from XML web service contracts such as XSDs

and WSDLs exist and using web services and APIs implemented in SOAP is the current favorite of the

Transit standards leader APTA in their TCIP documentation.

 REST is the widely preferred choice among developers when lightweight, data serialization in a

timely manner is necessary for performance of the application. Sending images and other media, data

streams, and constantly changing data feeds benefits from the compact nature of REST request and

response payloads which shortens the turnaround time and benefits both parties. The original complain

of REST structures is that the definition of how to use the data is not built into the REST request and

response definitions, but as we have seen in our implementation is overcome through the use of

generated metadata pages.

 The conclusion reached in this project is that the tools do affect the way the implementer

creates their applications. The philosophy of this API implementation and the GLaaS framework is to

encourage and strictly regulate the approved means so that they do not get contrived such as formally

structuring the parts of the API. The other predominating thought is to not discourage the use of

competing tools, but only make sure that each tool is used for its best intended purpose. By following

these rules, the API structure will be clear, readable, manageable, maintainable, and secure for future

development.

CLR Triggers vs. SQL broker

 This issue encompasses a broader topic, but the scope of this project was specifically to answer

the following question: What is the best push mechanism between SQL and c#? Which entity has the

responsibility of notifying the other when data changes. Various implementations employ the API to

monitor changes in the database. These parts of the API then employ the push pattern to their

subscribers. It seems counter intuitive that with sophisticated data management tools such as SQL

server, the API cannot have the server notify it of events on its database objects such as tables. Several

solutions were tested in creating the SignalR implementation of the GLaaS API, and two competitors for

database monitoring came out.

 CLR triggers are application level database objects. They are implemented in the server just like

the SQL triggers discussed before and suffer the same dependencies and issues those triggers did. The

difference is that CLR triggers execute c# code callbacks instead of queries. This would allow the CLR

trigger to listen on insert events on database objects, siphon a copy of the inserted data, and supply it to

the SignalR hub to be pushed to subscribers. This is a perfectly fine implementation of the observer

design pattern, where the CLR triggers are observing the GLaaS Model.

 An alternative to this implementation was sought to avoid these problems. It is a concern that

during the testing phases of subscriber API features issues with trigger logic could throw exceptions.

Breaks in these triggers would abort the entire insert query chain that they are attached to. Fitting in to

the current framework, it is important the any observer of the GLaaS Model attaches to the insert

stored procedure that each feature has. Recently, the ADO .NET framework added support for

P a g e | 46

SqlDependency. It is a way to get notifications from the SQL broker when specific queries are executed.

While this method would not pass the data inserted to the application level like CLR triggers, the query

being observed should be enough to know what table and objects have changed. Then, the only added

step is performing the select stored procedure that corresponds to the feature. This may not resemble

the purest form of the push design pattern, but it is a valid implementation of the pattern since data is

request and sent upon change events with only one step in between. The time between data production

and consumption is kept to a minimal satisfying the same criteria as push.

Conclusion
 Only a limited number of examples of API feature implementations were made under the scope

of this project. The APIs framework and protocol are the most important results of this project. Future

researchers can maximize reuse and stability of their data and operations through minimal work by

adopting this API structure. Acting as the application level counterpart to the GLaaS Model, this API acts

as a smartly documented access point for that data. Creating and structuring this API and Model has

been a way to implement the abstract structures discovered when performing the analysis and quality

assurance measures in the initial parts of this project. This API is the accumulation of the techniques,

data definitions, and all of the decisions and methods researched at the Lab. This documentation acts as

the explicit expectations of the project, the wiki documentation of the API acts as the practical

knowledge that Lab researchers can implement and design against, and the physical examples in the

projects code and its auto generated metadata acts as the training implementers and application

developers in the lab can use to collaborate with researchers.

P a g e | 47

Final Statements
This project evolved dramatically over its course of production. Originally a pure analytics

project of a data collection, it soon became a quality assessment and reflection project on an existing

system. Through the definitions discussed, custom use of data can be easily produced from this

protocoled structure. Specific application can make continued use out of the methodologies practiced

and explained. Many implementations of techniques are dependent on the technology they are

implemented in because of the concurrency between learning and implementing. A protocols form can

dictate its function, and vice versa, such as in the nature of WCF and ASP MVC services and their SOAP

XML message binding.

From a predominantly structure and definition approach, a concrete product and

implementation came from this project. Integration, use, and adoption were outside the timeframe for

this project, but future researchers looking to do analytics on the data can utilize this as precedent. By

following the structure outlined, future transit data implementations can benefit from either consuming

these services directly or modeling their own after these as examples.

The future work of this particular project will be in implementing common GeoLab utilities as

features of the GLaaS Framework. These immediately include geospatial wifi analysis for the Cape Cod

Region; GTFS creation, automation, and integration as a static data reference; and a light-weight

refactoring to the current mapping applications. These implementations can be carried out by future

researchers in the lab, and by adhering to the protocols, guidelines, and algorithmic suggestions in this

paper, can be successful and contribute to a reusable structure.

P a g e | 48

Index

A

Agile Software Development 4

Authentication 1, 24, 42

AVL 3, 6, 7, 10, 12, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 25, 27, 28,

29, 30, 35, 37, 39, 40, 49

B

block .. 10

BusLocator .. 3, 4, 14, 15, 16, 17, 19,

21, 27, 36

C

CCRTA .. 3

D

Differential Privacy 25

E

ESRI .. 6, 11

ETA 3, 4, 6, 10, 11, 12, 15, 16, 17,

18, 19, 21, 35

exponential moving average 21

G

Geo Lab as a Service See GLaaS

GeoGraphicsLab 4

GeoLabVirtualMaps....................... 3

geolocation 8, 9, 10, 25, 28

GLaaS1, 5, 14, 18, 21, 25, 26, 27, 30,

31, 33, 34, 36, 37, 38, 40, 42, 43,

44, 45, 46, 47

GPS MDTs 3

GTFS .. 12

GTFS-realtime............. 11, 19, 24, 43

N

NextBus 3, 6, 16, 17, 18, 19

NextBusETAHelper 4

P

pull .. 24

Pull design pattern 19

R

REST 1, 38, 44, 45, 49

route ... 9

RTA .. 3

S

ServiceStack . 1, 5, 37, 38, 39, 40, 41,

42, 43, 44

SignalR 1, 5, 42, 44, 45

stop .. 9

Stored procedures 31

T

TCIP.. 6

Transit data structures 7

triggers 1, 28, 31, 32, 45

trip ... 9

V

vehicle ... 9

Vehicle ... 9

W

websockets 21

P a g e | 49

Bibliography
Cham, L. Understanding bus service reliability: A practical framework using AVL/APC

data.Thesis, Master of Science in Transporation, MIT, 2005.

Chan, J. Rail transit OD matrix estimation and journey time reliability metrics using automated

fare data. Cornell University, 2005.

Dwork, Cynthia. Differential privacy. Microsoft Research, 2013.

http://research.microsoft.com/pubs/64346/dwork p

Engelbrecht, R., Rector, A., Moser, W “Veri ication an vali ation” Assessment and evaluation

of information technologies in medicine. 51-53. IOSPress, 1995.

Furth, P., et al. Uses of archived AVL-APC data to improve transit performance and

management: Review and potential. Transit Cooperative Research Program, June 2003.

Lentfert, P., Overmars, M. Data structures in a real-time environment. University of Utrecht:

Netherlands, 1988.

Li Li; Wu Chou, "Design and Describe REST API without Violating REST: A Petri Net Based

Approach," Web Services (ICWS), 2011 IEEE International Conference pp.508,515, 4-9

July 2011.

	Bridgewater State University
	Virtual Commons - Bridgewater State University
	12-18-2013

	Efficiency and Reliability of the Transit Data Lifecycle: A Study of Multimodal Migration, Storage, and Retrieval Techniques for Public Transit Data
	Matthew Ahrens
	Recommended Citation

	Efficiency and Reliability of the Transit Data Lifecycle

