#### Student Success Strategies in STEM Fields as a Diversity Practice



#### Dr. Thomas P. Kling August 14, 2013





# STREAMS: NSF STEP Grant DUE-0969109

- <u>ST</u>udent
- <u>R</u>etention
- <u>Enhancement</u>
- <u>A</u>cross
- <u>Mathematics &</u>
- <u>S</u>cience
- 5 years, \$1 million, May 2010-2015

PAL Colin Gregory (left) explaining some details in studio physics.









#### Session Goals

- Discuss a range of initiatives related to student success, what has been learned at BSU
- Help conference participants reflect on the <u>underlying structures</u> of their local academic & support programs as they relate to success of a diverse range of students





#### **STREAMS GRANT**







#### STREAMS Goal: Improve Retention of Science & Math majors so that more students will graduate.





NSF

#### **STEM Student Retention:** The Problem (2009 Data)





Leading for Change: Diversity Practices in Higher Ed

STATE UNIVERSITY

#### Multi-approach, Best Practices, Implementation, Assessed=yes



- Summer Bridge Incoming Freshmen
- Course Pedagogy
- Structured Learning Assistance – key gateways
- Residential Learning Community
- Transfer Advising, local CC
- Mentoring







#### **PERSONAL MOTIVATIONS**





### **Reflection 1: Untapped Resources**

- Who are faculty and staff at my institution not currently involved in diversity work who would be motivated to join?
- What explicit and implicit incentives and disincentives are in place at my institution?





#### **Intervention Strategies**









#### **Guiding Principles**













# **Guiding Principles**

- Inquiry-based learning
- Small groups, senior undergraduate peer-led
- Every student participates
- Focus on learning, not on skill deficits
- Connect new students to departments (upperlevel students, faculty, staff) both socially & academically





#### Faculty have to own it.



If a large number of students are not passing my class, it is my responsibility to change the learning environment.

I have to teach the students I have in front on me, not the students I wish I had in front of me.

If my department is bleeding away majors, then we have a responsibility to investigate and maybe to take action changing the curriculum.







#### PROGRAM COMPONENTS





#### Summer Bridge

Designed for 16 incoming freshmen STEM majors.

- Residential, 3 week program
- Complete 2 college courses
  - Writing Intensive First Year Seminar (Scientists at Work)
  - Integrated Science & Math (some calculus, some precalculus – applied mathematics)



#### **Early Undergraduate Research:**

Participants complete about 40 hours of research, with a faculty and peer mentor





### Summer Bridge Research

#### Biology

- Methanogenic Bacteria in Goats
- Triclosan Exposure & Bacteria
- Ankle Angle in Sprints
- Chemistry
  - Biodiesel & Green chem
  - Organophosphorus (OP) pesticides







#### More Summer Bridge Research







- Math
  - GIS Modeling for Bus Routes
  - Logarithmic Spirals & MC
     Escher
- Physics
  - Transits of Exoplanets
  - Solar Variability
  - Asteroid Rotations





## Summer Bridge Surveys

#### Percentage of Summer Bridge Participants who Agree or Strongly Agree with Each LEARNING Statement

| Statement                                                                           | % Agree or<br>Strongly Agree |
|-------------------------------------------------------------------------------------|------------------------------|
| I learned some material in science and/or math that was new to me.                  | 100%                         |
| I improved my ability to attack problems in science and math.                       | 81%                          |
| I improved my ability to think critically.                                          | 88%                          |
| I improved my writing skills.                                                       | 81%                          |
| I improved my lab skills.                                                           | 81%                          |
| I gained a clearer understanding of the work that scientists and mathematicians do. | 88%                          |
| I learned to use what I already knew in some practical ways.                        | 81%                          |
| I improved my time management.                                                      | 81%                          |
| This program made me think about learning in new ways.                              | 81%                          |
| I improved my ability to work as a member of a team.                                | 75%                          |
| I improved my ability to work with people who are very different from me.           | 75%                          |





### Summer Bridge Focus Groups

- "The course instructors made me examine my values by prodding me to put meaningful effort into my work rather than drivel."
- "This experience and the people I have met has helped me to realize that there is more than just what I have seen out there and more to learn about college."





- "It helped me get a grasp on the differences between high school work and college work.
   It's been a really great experience for me and I definitely want to try to be a mentor or and RA for next year!"
- What differences do you see in yourself over these three weeks?
  - "When I first came here I felt stupid. I felt that my high school did not prepare me and now I feel more confident."





#### Background Numbers: BSU STEM Retention

- 20% of full-time, first time
   STEM majors do not return
   to BSU for a second year
- About 55% of FT-FT STEM majors remain in STEM after 1 year
- About 40% of FT-FT STEM majors remain in STEM after 2 years









#### Characteristics of Summer Bridge Students

- 16 of 47 students were students of color
- 25 of 47 students were women
- Average SAT = 1056
- 20 of 47 students placed into pre-calculus
- 7 of 47 students placed into Targeted Writing I







#### Summer Bridge Retention

#### For 3 cohorts: Summers 2010, 2011, 2012



- 47 total students in 2010, 2011, 2012
- 31 total students in 2010 & 2011 cohorts
- 85% remain in STEM after 1 year
- 81% remain in STEM after 2 years





# Grades / Credits / Leadership

- Higher GPA
- More credits earned after 1 & 2 years
- More STEM courses passed after 1 & 2 years
- Large presence in leadership roles in departments / colleges
- Large presence in undergraduate research





## **Residential Learning Community**



- Began in 2011-2012 AY
- Better grades
- Slightly higher retention
- 40 first year STEM majors
- 6-10 upper level STEM majors
- Special Programs, study, focus





| Question                                                                                                        | Strongly<br>Agree | Agree | Neither Agree<br>nor Disagree | Disagree | Strongly<br>Disagree |
|-----------------------------------------------------------------------------------------------------------------|-------------------|-------|-------------------------------|----------|----------------------|
| The RLC<br>significantly<br>aided me in<br>learning science<br>and<br>mathematics in<br>introductory<br>course. | 40%               | 26%   | 17%                           | 11%      | 6%                   |
| The RLC has<br>been influential<br>in my remaining<br>a science or<br>math major.                               | 34%               | 31%   | 17%                           | 14%      | 3%                   |
| The RLC has<br>helped me be<br>more successful<br>as a science or<br>math major.                                | 43%               | 29%   | 11%                           | 11%      | 6%                   |

#### More RLC Survey Results

Table 4

Percentage of participants who Agree or Strongly Agree with each of the following Statements regarding General impact of the program

| Statement                                                                                              | % Agree or<br>Strongly Agree |
|--------------------------------------------------------------------------------------------------------|------------------------------|
| Compared to when I entered BSU, I now have greater confidence in my academic<br>abilities.             | 65                           |
| Compared to when I entered BSU, I now have greater confidence in myself socially.                      | 82                           |
| This year has changed me in a positive way.                                                            | 86                           |
| We have developed our own way of doing things as part of the science and math<br>learning community.   | 59                           |
| I gained important knowledge related to my major.                                                      | 77                           |
| I came into the year with basic knowledge in my major, but I learned to think about it in new ways.    | 94                           |
| I came into the year with basic knowledge in my major, but I learned to use it in some practical ways. | 82                           |
| This year as a math or science major at BSU has been intense.                                          | 77                           |



NSF

#### Transfer Student Work

- Partner with Cape Cod Community College and Massasoit Community College
  - Course development grants at the CC level to create / implement new courses to aid is smooth transfer
  - Local visits / better advising
- Transfer Advising Working Group at BSU





#### BSU Transfer Guidelines (All Departments)

#### **Physics BA or BS Programs:**

To transfer to BSU as a sophomore you will need to have completed the following courses. This should allow graduation with a BA or BS in three years:

•General Physics I and II (PHYS 243 and 244) - Calculus Based.

NOTE: Algebra based physics is NOT acceptable – make sure the course you take is calculus based and equivalent to PHYS 243 and 244, not PHYS 181 and 182.

•Single Variable Calculus I & II (MATH 161 and 162).

NOTE: Elements of Calculus I and II (MATH 141 and 142) are NOT acceptable. Ensure the course you take is equivalent to MATH 161 and 162.

To transfer to BSU as a junior you will need to have completed the following courses. This should allow for graduation with a BA or BS in two years:

•General Physics I and II (PHYS 243 & 244) - Calculus Based.

•Single Variable Calculus I & II (MATH 161 and 162).

- •Chemical Principles I and II (CHEM 141 and 142).
- •Calculus III and Differential Equations (MATH 261 and 316) BS DEGREE ONLY.

•If possible, take Modern Physics PHYS401 through SACHEM.

#### Mentoring

- Formal program
  - Failure!
  - Student time constraints
  - Existing 1<sup>st</sup> Year Advising
  - Lack of dedicated focus
  - (See Northeastern for positive program)
- Informal working
  - PALs, RLC, etc.



Physics major Tyler Holloway (red) with summer bridge students.







**Development & Structured Learning Assistance** 

#### **COURSE STRUCTURES**





#### Google search on "lecture class"















# STREAMS Learning Approach

#### Course Development Grants

- Design different approach for their class
  - Small group
  - Inquiry
  - Writing-to-learn,
     Writing-Across-the-Curriculum
  - Inclusiveness
  - Flipped Classrooms
- Sharing Opportunities

#### Structured Learning Assistance

- Departmental designed
  - Undergrad peer-led
  - Generally required for all students
  - Small groups of 6-8 students
  - Structured activities written by faculty
  - Range of models
- Collect lots of data





- Biology 121 (bio & some chem)
   142 students in fall 2012
- Chemistry 141 & 142 (chem, bio & physics)
  - 316 students in fall 2012 & spring 2013
- <u>Computer Science 151</u> (comp sci & some math)
   178 students in fall 2012 & spring 2013
- Math 150 (math, physics & some chem) NEW!
   126 students in fall 2012 & spring 2013
- Math 161 (math, physics & some chem)
  - 188 students in fall 2012 & spring 2013
- Physics 243 & 244 (physics, chem & some math)
  - 107 students in fall 2012 & spring 2013





## Scale

- Five Departments involved about 18 faculty directly teaching classes involved
- Supports ~ 1500 enrolled students per year
- Nearly 100% participation (mandatory coregistration)
- BSU College of Science and Mathematics enrollment is about 1100 majors
- ~ 45 paid senior undergrads





#### Why Successful? Faculty Involvement

- Martina Arndt
- Chris Bloch
- Darcy Boellstorff
- Jeff Bowen
- Ed Brush
- Hang-Ling Chang
- Bob Cicerone
- Chadi El Kari
- Dick Enright
- Paul Fairbanks
- Laura Gross
- Steve Haefner
- James Hayes-Bohanon
- Ward Heilman
- Joe Hernandez

- Seikyung Jung
- Steve Kaczmarek
- Annela Kelly
- Jamie Kern
- Tammy King
- Thomas Kling
- Meredith Krevosky
- Mike Krol
- Michael Leen
- Shannon Lockard
- Samer Lone
- Borianna Marintcheva
- Jenna Mendell
- Timothy Mitchell
- Chifuru Noda

- Laura Norman
- Don Padgett
- Glenn Pavlicek
- Jonathan Roling
- Polina Sabinin
- Peter Saccocia
- Matt Salomone
- John Santore
- Abdul Sattar
- Irina Seceleanu
- Uma Shama
- Steve Waratuke
- Jeff Williams





#### Data Table

| Course                   | Somactors bafara/aftar                      | N hoforo SI A | N oftor SLA | DFWI % | DFWI % | AB %   | AD % ofter |
|--------------------------|---------------------------------------------|---------------|-------------|--------|--------|--------|------------|
| Course                   | Semesters before/after                      | N DEIORE SLA  | N aller SLA | belore | alter  | Delore | AB % aller |
| Bio 121                  | Fall 08,09 / Fall 10,11,12                  | 196           | 386         | 30.6%  | 15.8%  | 41.3%  | 54.9%      |
| Chem 141                 | Fall 09,10 / Fall 11,<br>Spring 12, Fall 12 | 267           | 363         | 37.8%  | 20.1%  | 42.3%  | 59.0%      |
| Chem 142                 | Spring 10,11 / Fall 11,<br>Spring 12,13     | 217           | 304         | 29.5%  | 24.3%  | 44.2%  | 53.3%      |
| Math 151/161<br>(fall)   | Fall 09,10 / Fall 11, 12                    | 284           | 215         | 39.8%  | 28.4%  | 42.6%  | 54.4%      |
| Math 151/161<br>(spring) | Spring 10,11 /<br>Spring 12,13              | 262           | 164         | 24.4%  | 19.5%  | 52.3%  | 54.9%      |
| Physics 243              | AYs 09-10, 10-11 /<br>AYs 11-12, 12-13      | 162           | 115         | 43.2%  | 25.2%  | 32.1%  | 47.0%      |
| Physics 244              | Fall 09-Fall10 /<br>Spring 11-13            | 68            | 111         | 38.2%  | 15.3%  | 33.8%  | 59.5%      |
| Comp 151                 | Fall09-Fall11 /<br>Spring 12-13             | 365           | 257         | 38.1%  | 41.6%  | 44.1%  | 42.0%      |
| Math 150                 | AY 11-12 / AY 12-13                         | 152           | 126         | 32.9%  | 23.8%  | 46.7%  | 58.7%      |



Items in **bold red** are statistically significant changes at p < 0.01. (The null hypothesis that SLA made no difference in the DFWI % or AB % fails at p < 0.01.)





#### **DFWI Rate, STREAMS SLA Supported Courses**







#### AB Rate, STREAMS SLA Supported Courses





To date, **221** fewer D, F, W, or I grades were assigned since SLA began. To date, **229** additional grades of A or B have been earned since SLA began.

Each year, **107** fewer DFWI grades are assigned because of SLA. Each year, **110** additional grades of A or B are earned because of SLA.





# Fall 2011 to 2012 retention by course grade

| Course<br>(Fall 2011) | Overall<br>Retention<br>of Majors | B- or<br>better | C- or<br>better | D, F,<br>W, I | DFWI<br>Rate for<br>Majors |
|-----------------------|-----------------------------------|-----------------|-----------------|---------------|----------------------------|
| BIO 121               | 72%                               | 87%             | 77%             | 39%           | 18%                        |
| CHEM 141              | 74%                               | 84%             | 83%             | 25%           | 11%                        |
| MATH 161              | <b>60%</b>                        | 87%             | 78%             | 8%            | <b>26%</b>                 |
| PHYSICS 243 / 244     | 73%                               | 75%             | 80%             | 0%            | 9%                         |
| COMP 151              | <b>46%</b>                        | 62%             | 63%             | 15%           | 35%                        |
| Total                 | 65%                               | 82%             | 76%             | 27%           | 22%                        |





#### More Details, Biology 121

- First to implement SLA
- Cleanest change lecture remains same, added SLA
- SLA is 75 minute, group of 8, peer-led SLA
- Some focus on note-taking







# **Biology 121 Student Population**

|                                           | Fall 2008 | Fall 2009 | Fall 2010 | Fall 2011 |
|-------------------------------------------|-----------|-----------|-----------|-----------|
| Enrollment                                | 89        | 107       | 109       | 135       |
| Biology Majors and (%)                    | 62 (70%)  | 80 (75%)  | 74 (68%)  | 102 (76%) |
| Incoming SAT-Math 25% -<br>75% quartiles  | 480-560   | 470 – 580 | 460-580   | 460-550   |
| Women and (%)                             | 60 (67%)  | 67 (63%)  | 73 (67%)  | 84 (62%)  |
| First-Time, Full-Time<br>Freshmen and (%) | 52 (58%)  | 67 (63%)  | 57 (53%)  | 85 (63%)  |
| Minority and (%)                          | 12 (13%)  | 26 (24%)  | 25 (23%)  | 42 (31%)  |





#### DFWI Rates: Biology 121

|              | N (pre /<br>post SLA) | DFWI %<br>Drop | AB %<br>Gain  |
|--------------|-----------------------|----------------|---------------|
| All Students | (106/244)             | 12 /0/         | 12 2%         |
| Men          | (69/87)               | 9.7%           | 17.4%         |
|              |                       |                |               |
| Women        | (127/157)             | 15.4%          | 10.8%         |
| Students of  |                       |                |               |
| Color        | (38/67)               | 8.9%           | -0.6%         |
| Biology      |                       |                |               |
| Majors       | (142/176)             | 10.12%         | <b>13.27%</b> |
| Freshmen     | (119/142)             | 12.08%         | 11.48%        |

In bold red, changes significant at the p < 0.05 level.

The low number of men and students of color reduces the significance in the DFWI reduction.

The performance of students of color remains a concern.





#### Relationship with SAT – POST-SLA







#### Relationship with SAT – PRE-SLA







### 2 Year Retention Before and After



STATE UNIVERSITY

#### Some comments . . .

- Technology is making it easier to move away from large lecture sections.
- POGIL Process Oriented Guided Inquiry Learning – see Dr. Chris Bauer at Univ. of New Hampshire for a way to do inquiry within large sections.



• Does your university promote group study?





## Before Questions, Reflection 2

Please take some time to talk with the colleagues from your institution. Consider discussing

- Where do students at my institution do the hard work in their classes? What support do they have during this time?
- What structures at my institution promote teaching in an interactive manner?







tkling@bridgew.edu
www.bridgew.edu/streams

STREAMS is funded by DUE-0969109