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Who Wants to Play Sadisticube?
danica Baker

Logic puzzles and games are popular amongst many people for the purpose 
of entertainment. They also provide intriguing questions for mathemati-
cal research. One popular game that has inspired interesting research is 
Rubik’s Cube. Researchers at MIT have investigated the Rubik’s Cube 

to find the maximum number of moves, from any starting position, needed to 
win the game [6]. Another logic puzzle that has recently become very popular is 
Sudoku. Sudoku is a Japanese number game where a 9x9 grid is set up with a few 
numbers scattered on the grid. Mathematicians have been investigating Sudoku, 
exploring questions such as the number of possible Sudoku grids there are [7].

Sadisticube is a newer logic puzzle, created by a mathematician. A Sadisticube 
set is made up of eight separate blocks that form a 2x2x2 cube when placed 
together. The individual blocks can be rotated and swapped with each other 
to any position in the cube. The goal of the game is the same as in Rubik’s 
Cube where each face of the cube needs to be one color. However, because 
there are trillions of ways to arrange the blocks and we do not know what our 
solution will look like, Sadisticube is far more difficult than Rubik’s Cube to 
solve by hand. Fortunately, we can use mathematics to find solutions. Graphs 
can be used to model the cube so that a solution can be determined for any 
particular set of blocks. The methods used to create the matrices were adapted 
from a paper by Jean- Marie Magnier [5]. We will describe how to generate 
the matrices and their corresponding graphs and will then focus on the graphs 
in the second half of the paper. After describing how to generate graphs, we 
will discuss the analysis done on several graphs and the results we found while 
searching for characteristics common to all graphs.

Even though the final goal of Sadisticube is the same as the Rubik’s Cube, the 
game is played differently. Each of the eight separate blocks is painted with 
one of six different colors: red (R), orange (O), yellow (Y), green (G), blue 
(B), or purple (P). To play the game, the individual blocks can be swapped 
and rotated to any position in the cube to get each face of the cube to be one 
color, as show below in Figure 1.
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Figure 1. The cube on the left is unsolved while the cube on the right is 

solved.

Trying to win the game by trial and error is impractical. Since 
there are 185 trillion ways to arrange eight blocks in the form 
of a cube and the solution to the set of blocks is unknown, it 
is unimaginable luck if a player wins by trial and error. For 
example, say it takes ten seconds to put the blocks together in 
one formation. If there is one solution and it is the very last 
configuration put together, the 185 trillionth configuration, it 
would take approximately 58,000,000 years with no sleeping, 
eating, or doing anything other than configuring the blocks 
to reach the solution. Since people do not live for millions of 
years, it seems reasonable to represent the puzzle using math in 
order to solve the puzzle more efficiently.

As mentioned earlier, the blocks are painted with one of six dif-
ferent colors. There are 30 unique ways to color a block with 
six different colors, where each face of the block is a different 
color. Consider a single block: to count the number of ways 
to color a block, we will fix purple to the bottom face of that 
block. There are five colors used for the top and side faces of 
the block. Coloring the top face first, there are five choices for 
the color of the top face. Once the top face has a color, there 
are only four colors left to place on one of the faces on the side, 
then three colors to place on another side, two colors on the 
third side, and one color on the last side. In this way, we find 
there 5*4*3*2*1, or 120, ways to color the block with no re-
strictions on rotation. However, each rotation of an individual 
block does not change the way it is colored. With purple fixed 
to the bottom face, there are only four rotations for a block. 
Taking the number of colorings and dividing by the number of 
rotations, we find there are (5*4*3*2*1)/4, or 30, ways to color 
any one block.

Thus, there are 30 different blocks from which we choose eight 
blocks to make a game set (Figure 2). To show the different 
ways to color the blocks, we represent a block two-dimension-
ally as a flattened box showing the top and sides of the block. 
In the figure below, purple is fixed to be the bottom color while 
the middle square gives the color of the top face and the other 
four colors shown are the side colors. The blocks are displayed 

with numbers instead of colors, as seen in Figure 2. We use the 
following colors and numbers interchangeably: Blue = 1, Red = 
2, Green = 3, Yellow = 4, Orange = 5, and Purple = 6. 
 

Figure 2. Thirty different ways to color a block (picture from [5]). 

Since there are thirty ways to color a block, and the solution 
could also look like any of these blocks, this also means that 
there are thirty possible solutions for any set of blocks. Previous 
research has indicated that a set of blocks can have anywhere 
from zero to five different solutions [5]. Since trial and error is 
an impractical approach to winning the game, other methods 
are useful in analyzing and solving the game. We will use the 
method described in [5] to generate the matrices that will be 
used to draw graphs. The graphs represent the relationship be-
tween a set of blocks and its possible solution cube. 

We will use the diagram from Figure 2 to create sets of num-
bers that represent the 30 different individual blocks. To gener-
ate these sets, we look at the corners of the blocks to form three 
digit numbers, or triples, which represent the colors of the faces 
that are adjacent to each corner. Each block will have eight tri-
ples associated with it, one for each of the eight corners of the 
block. Figure 3 shows the diagram of block 13. On the left side 
of the figure is the top of the block in two-dimensional form 
while the middle is a similar image with the center replaced by 
6, or purple, giving a representation of the bottom of the block. 
These diagrams are used to generate triples.
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 1 2 3 4 5 6 7 8

C8 {142 243 235 125 641 634 653 615}

B3  {125 154 143 132 652 645 634 623}

B6 {123 135 154 142 632 653 643 614}

B8 {142 243 235 125 641 634 653 615}

B12 {132 235 254 124 631 653 645 614}

B13 {153 235 243 134 651 625 642 614}

B20 {134 243 254 145 631 623 652 615}

B22 {124 234 354 145 621 632 653 615}

B25 {145 254 235 153 641 624 632 613}

Figure 4. This chart represents the corners of both the cube and the eight 

blocks. The underlined triples are the corners that the blocks share with the 

cube, C8.

We also use the chart in Figure 4 to see if there are any similari-
ties between the corners of the possible solution cube and the 
blocks. Similarities between the blocks and the cube show that 
the blocks can be placed in a particular spot to create the solu-
tion. The underlined triples in the chart represent the corners 
that the cube and blocks have in common. If there is a block 
that does not have any triples in common with the cube, then 
that block that cannot be placed in any corner of the solution 
cube, so the cube is not a solution to that set of blocks. Each 
block has either 0, 2, or 8 similarities to the cube [5]. In Figure 
4, each of the blocks has something in common with the cube, 
so there is a possibility that cube 8 is a solution to the set. 

After finding the similarities between the blocks and the solu-
tion cube, we generate a matrix, A. When a corner between a 
block and the solution cube are the same, a 1 is placed in the 
column and row that corresponds to that corner of the cube, 
while corners that do not match have a 0 placed in the column 
corresponding to that corner. Rows in the matrix will contain 
0, 2, or 8 ones based on the number of similarities [5]. Con-
sider the solution cube and block 3 from Figure 4. This block 
has two triples in common with the cube, 125 and 634, so the 
block matches corners four and six of the cube. Since this triple 
represents corner 4 of the cube, a 1 is placed in the fourth col-
umn of the matrix in the row corresponding to block 3. Simi-
larly, we will place a 1 in the sixth entry of the row since the 
sixth triple, or corner, in cube 8 also appears in block 3. The 
resulting initial row of matrix A is [ 0 0 0 1 0 1 0 0 ]. We repeat 
this process for each of the blocks, resulting in the matrix

Figure 3. The block on the left is the top of block 13. The image in the 

middle shows the bottom of the block as it would be viewed through the top. 

The image on the right shows the cube, all eight blocks, three-dimensionally 

with the corners numbered.

The corners of the blocks were arbitrarily labeled from 1 to 8, 
but kept in the same order for all of the blocks. The image on 
the right of Figure 3 shows the block in 3-dimensional form. 
The corners are numbered to correspond to the 2-dimensional 
display on the left. Triples for the top of the cube are generated 
first. Starting with Corner 1, we list the numbers in clockwise 
order beginning with the smallest number in that corner. So, 
the first triple we find for the block in Figure 3 is 153. This 
process is repeated for corners 2, 3, and 4 around the top of the 
block, shown on the left in Figure 3, giving the triples {153, 
235, 243, 134}. To find the bottom four corners, imagine the 
top color replaced by purple, as shown in the middle diagram 
in Figure 3. Starting from the center color in corner 5, we now 
read counterclockwise, giving the first triple for the bottom of 
the block as 651. Continuing in this manner, we find triples 
representing corners 6, 7, and 8 of the block, giving the last 
four triples of the set {651, 625, 642, 614}. So the complete 
set of triples that represents the block in Figure 3 is {153, 235, 
243, 134, 651, 625, 642, 614}. 

We can now use these sets of triples to generate matrices by 
comparing each of the blocks in the set to each of the possible 
solutions. Since each Sadisticube set contains eight blocks, a 
game set will have eight sets of triples associated with it, result-
ing in a matrix with eight rows, one row for each block. As an 
example, we consider a game set that contains blocks 3, 6, 8, 
12, 13, 20, 22, and 25 from Figure 2, and compare each block 
to cube 8 as a possible solution. Figure 4 below gives the sets 
of triples for each block in the set and the possible solution 
cube. The row labeled B3 gives the triples for block 3, B6 gives 
the triples for block 6, and so on. The row labeled C8 gives 
the triples for cube 8, the possible solution cube to this set of 
blocks. The numbers 1 through 8 above the columns represent 
the eight corners of the cube.
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The matrices that we find in this way will be used to draw 
graphs that represent the relationship between the blocks in the 
set and the possible solution cube.

Each row of the matrix represents a block of the game set and 
an edge on the graph. Columns represent a corner of the 2x2x2 
cube and correspond to vertices on the graph. Remember that 
each of the rows will only have zero, two, or eight “1”s in the 
row. If the rows can be swapped so that the main diagonal of 
the matrix has a one in each entry, then the cube is a solution 
to the set of blocks. If there is a “1” in the main diagonal, the 
block represented by the row will fit in the corner of the cube 
represented by that column. So if there are all “1”s in the main 
diagonal, a block will fit in every corner of the cube, meaning 
there is a solution. If the rows cannot be swapped to have a one 
in each entry of the main diagonal, the cube is not a solution 
to the set of blocks because some corners of the cube will not 
have any blocks that match the coloring of the solution. In our 
example, it is possible to swap the rows of matrix A so that the 
main diagonal is all ones, indicating that cube 8 is a solution.

Graphs can be used to represent the cubes instead of using 
matrices. Since there are thirty possible solutions, each set of 
blocks has thirty graphs we call Sadisticube graphs. We find 
each of the Sadisticube graphs for one set of blocks by com-
paring the set to all 30 possible solutions and then use these 
graphs to determine if a particular cube is a solution to the set 
of blocks. If the graph indicates the cube is a solution, we call 
that graph a Sadisticube solution graph, — or simply, a solu-
tion graph.  

The matrices we find using the procedure outlined above are 
used as adjacency matrices and tell us where to place edges on 
the graph. To draw the graph for our example set of blocks, 
consider the first row of the example matrix A. In this row, 

there are “1”s in the fourth and sixth column of the matrix. 
This means the block represented by this row of the matrix and 
edge of the graph has Corners 4 and 6 in common with the 
solution. So on the graph, an edge is drawn between vertices 
4 and 6. 

We draw an edge in this way for all the rows that have two “1”s. 
When a row of all “1”s appears, as we see in the third row of 
the matrix A, we must do something a little different. A row 
of all ones indicates that each corner of that particular block is 
identical to the solution being considered. So this block could 
be placed in any of the corners of the cube. This means that 
we are allowed to draw an edge between any two of the eight 
vertices. If there is a row of all zeros, implying the block shares 
nothing in common with the possible solution cube, we do not 
draw an edge and the cube is not a solution. The graph for our 
example is shown below.

Figure 5. The graph of matrix A.

For this graph, the edge between vertices 1 and 8 represents the 
row of all ones. 

All Sadisticube graphs have eight vertices, representing the cor-
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ners of the 2x2x2 cube. The number of edges on the graph 
varies depending on the set of blocks and the cube to which we 
compare it. So, if there was block with few similarities to the 
cube, there would be fewer edges on the graph. Even though 
the number of edges varies for each set of blocks, we can find 
an upper bound on the number of edges in a Sadisticube graph. 

Theorem: There are at most 8 edges on a Sadisticube graph.
Proof: The edges on the graph are determined by the rows of 
the corresponding matrix. If a row has all “0”s, there is no edge. 
If a row has a “1” in column i and another one in column j, 
one edge is drawn between vertex i and vertex j. If a row has all 
ones, one edge is drawn between any two vertices on the graph. 
Since there are eight blocks, there are eight rows in the matrix. 
Since there are eight rows, and each row corresponds to zero or 
one edges on the graph, there can be at most eight edges.

Recall that if a matrix has a row of all “1”s, we can place an 
edge between any two vertices on the graph. In the remainder 
of this paper, if there is a row of all ones, we will draw an edge 
between vertex 1 and a vertex that remains isolated after draw-
ing the other edges of the graph. If there is no isolated vertex 
after we have drawn the other edges, we will simply place an 
edge between vertex 1 and vertex 8. The graph in Figure 5 is 
drawn using this convention. 

As stated before, every set of eight blocks has thirty possible so-
lutions and thirty corresponding graphs. Since not all of these 
graphs are solution graphs, we looked closely at the graphs to 
determine the characteristics that are present in solution graphs 
but are not present in non-solution graphs. This gives us a set 
of identifying graph characteristics that can be used to deter-
mine if the corresponding cube is a solution cube for that set 
of graphs. In order to generate a large number of matrices and 
corresponding graphs, we wrote two programs using Maple. 
The first program generates matrices given a set of blocks. The 
second program uses these matrices to draw the corresponding 
graphs. Figure 5 above is one graph that was generated by these 
programs. 

After the graphs were drawn, we considered several different 
characteristics that are typically observed in graph theory. One 
characteristic we observed was planarity. A graph is planar if the 
vertices can be rearranged so the edges of the graph do not cross. 
All of the Sadisticube graphs we looked at were planar whether 
or not they were solution graphs. Since this characteristic was 
seen in both solution and non-solution graphs, we did not 
consider this to be a defining characteristic for solution graphs. 
Another interesting characteristic of graphs is the diameter. To 
find the diameter of a graph, we first determine the length of 
the shortest path between each pair of points on the graph. The 

diameter is then the longest of these lengths. Diameters for 
the Sadisticube graphs ranged from 1 to 7 while the diameters 
of solution graphs varied between 2 and 7. Since the range of 
possible values for the diameters was similar for solution graphs 
and non-solution graphs, we did not consider diameters to be a 
defining characteristic for solution graphs either.

However, after analyzing nearly 1,000 graphs for over 20 dif-
ferent characteristics, we did fine three characteristics that are 
always present in solution graphs. All Sadisticube graphs have 
eight vertices because the vertices represent the eight corners of 
the 2x2x2 cube, so solution graphs also have eight vertices. By 
the theorem above, Sadisticube graphs have at most 8 edges. 
Each edge of a graph represents a block that can be placed in 
the solution cube. Since we must be able to place all 8 blocks in 
the cube to have a solution, solution graphs must have exactly 
8 edges. Solution graphs also have at least one cycle as a result 
of the following lemma.

Lemma: Suppose G is a connected graph with n vertices and n 
edges. Then G contains a cycle.

Proof: Assume G is a connected graph with n edges and n ver-
tices. Suppose by way of contradiction that there are no cycles. 
Since G is connected and contains no cycles, it is a tree. Since 
it is a tree with n vertices, there must be n-1 edges. This is a 
contradiction to the hypothesis that there are n edges on the 
graph. Therefore the graph must contain a cycle.

 By this lemma, since all solution graphs have 8 vertices and 
8 edges, they must also contain at least one cycle. However, 
we found that these are not the only characteristics needed to 
define a graph class for solution graphs. We have found Sadis-
ticube graphs that have eight vertices, eight edges, and at least 
one cycle that are not solution graphs, implying there is at least 
one more identifying characteristic. In fact, we have found that 
isolated vertices are also very important. An isolated vertex on 
a Sadisticube graph indicates that a corner of the possible so-
lution cube does not appear in any of the blocks in the set. It 
is important for each vertex to have an incident edge because 
this means a block can be placed in each corner of the cube. 
If there is no block that can fill a corner of the solution cube, 
it is impossible for the cube to be a solution to a particular set 
of blocks. This is summarized in the following theorem. Recall 
that when a row of the adjacency matrix contains all ones, we 
draw an edge between vertex 1 and an isolated vertex if there 
is one present and between vertices 1 and 8 if there are no iso-
lated vertices. 
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Theorem: Suppose a graph G is a Sadisticube graph. If G has 
an isolated vertex, then the corresponding cube is not a solu-
tion to that set.

Proof: Suppose G is a Sadisticube graph. Then it has eight ver-
tices. Assume G has an isolated vertex. We will show the cube 
is not a solution to the set. Since there is an isolated vertex, 
there is a column of zeros in the matrix. Since the matrix has a 
column of zeros, there must be one zero on the main diagonal 
after swapping rows, implying the cube is not a solution. Thus, 
if there is an isolated vertex, the cube is not a solution to the 
set of blocks.

Sadisticube graphs represent the relationship between the 
blocks in a game set and its possible solutions. There are char-
acteristics that help determine if a Sadisticube graph is a solu-
tion graph or not. We have seen that solution graphs always 
have eight vertices, eight edges, and at least one cycle. How-
ever, these characteristics are not enough to define a graph class 
since some graphs have these three characteristics but are not 
solution graphs. Since an isolated vertex in a graph implies the 
corresponding cube is not a solution, solution graphs cannot 
have isolated vertices. Thus every Sadisticube solution graph 
has eight edges, eight vertices, at least one cycle, and no isolated 
vertices. 
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