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Modeling Plaque Aggregation on 
the Neuronal Network
thomas howarD

lzheimer’s disease is a condition linked to plaque aggregation in the 
brain. Despite being the focus of many studies, current treatments 
are of questionable significance in the overall improvement of a 
patient’s condition. In recent years, computer models have been used 

to better understand complex biological systems and simulate the effects of various 
treatments. In the following paper we present a mathematical model studying 
the effects of plaque aggregation on the neuronal pathways of the human brain. 
To create our mathematical model we employ tools from the theory of dynamical 
systems and stochastic processes, and simulate the passage of a signal through a 
healthy and a plaque-affected brain. Moreover, our model simulates the increased 
resistance of the neuronal network to plaque disruption as a result of cognitive 
stimulation through learning and cerebral exercises, and measures the increased 
connectivity in a plaque-affected neuronal network when cognitive stimulation 
is present. Our mathematical model shows promise as a first step in modeling 
the complex interactions of plaque deposits in the human brain and studying the 
influence of behavioral treatments on Alzheimer patients.

Alzheimer’s disease is a condition linked to plaque aggregation in the 
brain which has a great impact on the population in the United States and 
worldwide. Projections show that fifty percent of Americans over 85 will suffer 
from dementia, and fifty million Americans are expected to have some form 
of dementia by 2030 according to the Alzheimer’s Association (2012). The 
debilitating effects on patients include memory disturbances, high incidence 
of emotional outbursts, communication difficulties, daytime wandering, 
hallucinations, delusions, physical violence, and incontinence. Moreover, 
Alzheimer’s disease impacts the vast number of caregivers, linked to their 
higher incidence of alcoholism, anger, sadness, fatigue, and depression. Care 
giving increases likelihood of disease and familial conflict (Rabins, Mace, 
& Lucas, 2008). In 2012, an estimated $200 billion dollars will be spent 
on Alzheimer’s disease alone, not to mention the variety of other forms of 
dementia. However, the current medicines have had questionable significance 
in the overall improvement on patients’ conditions, and side effects vary from 
mild incontinence to severe liver damage (Qaseem et al., 2008). 

Effective pharmacotherapeutic treatments for Alzheimer’s disease have been 
difficult to find despite being the focus of many studies. Most drugs used 
for dementia are limited by side effects, restricted duration of efficacy, and 
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the need for frequent monitoring of blood levels or other 
laboratory values to prevent toxicity. In recent years, the 
creation of computer simulations of the human brain to 
investigate the interaction of plaque granules and the neural 
network has become a target for researchers. In the following, 
we present a mathematical model of this complex biological 
system using tools from the field of dynamical systems to 
better understand the aggregation of these undesirable proteins 
and their interference with neurons. This type of computer 
modeling has potential for evaluating drug and behavioral 
interventions.

the theory of Dynamical Systems
The study of dynamical systems seeks to describe structures 
which change with respect to time. An abundance of examples 
exist: blood pumped by the atria and ventricles flowing through 
the chambers of the heart, planetary motion, a pendulum 
swinging back and forth from its axis, a population of rabbits 
growing and declining in a field, etc. Many dynamical systems 
can be described via mathematical models allowing for the 
prediction of state information (Devaney, 2003). 

Sir Isaac Newton (1642-
1726) is credited with the 
development of the study 
of dynamical systems as an 
articulated field. Newton was 
driven to develop methods 
of calculus to describe the 
motion of the planets over 
time, which he introduced in 
his Principia. Henri Poincaré 
(1854-1912) contributed to 
the study of dynamical systems 
by introducing a wide variety 
of tools and methods for the 
advancement in this area. 
Through work on the three-

body problem (introduced by Newton), Poincaré noted the 
complexity of the behavior which could arise from simple 
nonlinear systems. Famously stating, “…small differences 
in the initial conditions produce very great ones in the final 
phenomena” (Poincaré, 1914), Poincaré is considered one of 
the forebears of Chaos Theory, a field focused on this high 
sensitivity to the starting circumstances.

Gaston Julia in his work, Mémoire sur l’itération des fonctions 
rationnelles (1881), and Pierre Fatou helped explain the orbits 
of particles using recursively iterated functions. A recursively 
iterated function is of the type fn+1

(x)= f(f
n
(x)); that is the input 

to the subsequent iteration of the function is the current output. 

By analyzing the dynamics of iterated complex polynomials, 
Julia introduced a geometric object of particular interest called 
the Julia Set (see Figure 2), which gives rise to beautiful graphs 
exhibiting properties of self-similarity, and an accessible, 
intuitive way to understand the behavior of chaotic systems. 

In the 1960s, Edward Norton Lorenz set off to make a 
computer modeling program for meteorological forecasting. 
Truncating a variable to save time in his computations, Lorenz 
noticed  how dropping  a seemingly insignificant portion  of  
a  number  led  to  a  great  discrepancy  in  the  resultant. 
His discoveries contributed greatly to the modern theory of 
chaos. His observations led him to popularize the Butterfly 
Effect, the notion that “The fluttering of a butterfly’s wing 
in Rio de Janeiro, amplified by atmospheric currents, could 
cause a tornado in Texas two weeks later (Krützmann, 
2008).” Along with the rise in computer processing speeds, 
a renaissance to the field of dynamical systems took place, in 
that previously intractable problems could be approached with 
processing power which standard analytics could not match. 
The iteration of functions at a very fast rate led self-described 
“nomad-by-choice” (Gleick, 1987) of the sciences Benoit 
Mandelbrot to begin his investigation into visualizations of 
certain mathematical sets using computers. Mandelbrot saw 
the regular in the irregular objects often found in nature and 
developed fractal geometry, allowing for the description of 
many complex patterns in a systematic way. 

Mathematical Model
Computer simulations have been indispensable in understand-
ing of the dynamics of various complex phenomena (Anderson, 
1986). Computer models are now used in diverse scientific are-

Figure 1. Henri Poincaré 

Figure 2. Julia Set
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nas from physics, to astrophysics, biology, and chemistry. In 
the following, we describe our mathematical model created to 
study the effects of plaque deposits on the neuronal pathways 
of the human brain. To start, a recursive algorithm is used to 
generate a set of points to graph a fractal image resembling the 
complex neural network. Given that plaque deposits exhibit 
clustering patterns of formation, a probabilistic model using 
a non-homogeneous Markov process is employed to simulate 
their aggregation. To study the effects of the plaque granules 
on the neuronal network, we integrate the two models into 
one and identify the neurons affected by the plaque. Moreover, 
graph theoretical tools are used to measure the number of neu-
ronal connections that a signal travels before and after plaque 
deposition. To emphasize the resemblance of our model to re-
ality, we present computer generated graphs, from our simula-
tions, in juxtaposition to the actual image of plaque deposits in 
the human brain. Finally, we model the increased connectivity 
in a plaque-affected neuronal network as a result of learning 
and cognitive exercises, by making the neuronal connections 
more resistant to plaque disruption when cognitive stimulation 
is present. We then contrast this improvement in signal passage 
through the neuronal network to the reduced connectivity of 
a brain affected by plaque without cognitive stimulation. Our 
mathematical model shows promise as a first step in model-
ing the complex interactions of plaque deposits in the human 
brain and studying the influence of different pharmacological 
and behavioral treatments while weighing these results against 
side effects. 

Generating the neuronal network
To model the neuronal network in the human brain we employ 
a fractal generating algorithm. Fractal, a term coined in 1975 
by Benoit Mandelbrot from the Latin fractus (derived from the 
past participle of frangere to break apart), describes a type of 

geometry which is self-similar at different scales. Mathematicians 
are able to model complex systems by “breaking” these complex 
structures into simple pieces using properties of self-similarity. 
In wide-ranging arenas, from computer graphics to cellular 
data transmissions to noise cancellation, fractals have provided 
insights and have led to new engineering solutions. In modern 
cell-phone antennas bandwidth has increased while size has 
diminished by incorporating the self-similar structure known 
as the Sierpinski Carpet (see Figure 3). In our model of the 
neuronal network, we use a recursive algorithm to generate a 
fractal tree acting as a topological map of the human brain. 
By modeling the neuronal network as a symmetric geometric 
object with regular plots, we are able to use relatively simple 
algorithms to simulate the flow of signal in the network and 
measure the effects of the deposits. The fractal generating 
algorithm uses the following steps (see also Figure 4): 

1. The first stage graphs a horizontal line. 

2. In the next step, three more lines are drawn, two 
perpendicular to and one straight out from the original 
segment. At each step, the new lines drawn are half the length.

Figure 3. Sierpinski Carpet

Figure 4. Generating the Fractal Tree

3. In the nth iteration, each new line branches off to produce 
3n-1 new lines of length      relative to the first line. For 
instance, the first stage produces 30=1 of length 1; the 
second 31 = 3 of length 1/2; the fifth 34 = 81 lines of length 
1/16.

The output of our fractal tree program is transformed into a 
directed graph (see Figure 5). Each vertex (representative of a 
neuron) and edge is numbered. A signal flows across a directed 
graph in one direction, similar to the signal firing across the 
neural networks of the human brain.

We model the flow of a signal in a healthy neuronal network 
using the Bernoulli distribution, a discrete probability 
assignment designating low and high receptor values to the 
vertices in the fractal tree. In a biological setting, the action 
potential is more likely transmitted the higher the number of 
receptors on the dendritic side of the synapse. Similarly, in 
our model, the success of the signal passing is related to the 
receptor value associated with each vertex.
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After Swiss scientist and mathematician Jacob Bernoulli, the 
Bernoulli distribution gives the probability that a value will 
take one of two (discrete) predetermined values, be it high or 
low receptors; 0 or 1; success or fail. The probability for success 
is given as variable p and failure is given as  q=1–p. The q and 
p values in this type of assignment will always total 1, meaning 
that a discrete value will be defined in every case. For instance if 
a p value is given as .6 the q value will be equal to .4. Moreover, 
the mean of assigned “successful” values will be around 60% 
and the mean of the failure value will be around 40%. In the 
receptor distribution portion of our model a high count of 
receptors is denoted by a 1, and a low count by a 0. We can 
formalize this as P(X = 1) = 1 - P(X = 0) = 1 - q = p.

For our model, the starting p value is .9; in this stage, about 
90% of vertices get assigned a high receptor value, represented 
as 1, and in 10% of cases, the vertex would be assigned a low 
receptor value or 0. The assigned Bernoulli distribution value 
is descriptive of either a high, 1, or low, 0, number of receptors 
located at the terminus of the dendrites. A high number of 
receptors will increase the likelihood a vertex will receive 
the signal, whereas a low number of receptors has a lower 
probability of signal reception. A successfully transmitted signal 
represents an action potential (signal firing) being received, 
consequently passing through the neuron and triggering the 
release of neurotransmitters at the axon terminals, and further 
signal propagation. Since downstream neurons receive signal 
less frequently in the human brain, our model incrementally 
decreases the probability p of having high receptor values 
for vertices at each stage of the fractal tree. Consequently, q 
increases at each stage and further downstream vertices are 
more likely to have a low receptor values. 

Once the receptor values have been assigned to each neuron in 
the fractal tree, we now simulate the passage of a signal through 
the fractal tree by using another Bernoulli distribution. The 
assigned probability that the signal passes through a neuron 
depends on the number of receptors: a relatively higher p-value 
(lower q-value) for those vertices with a high receptor value 
and a relatively lower p-value (higher q-value) for those with 
a low receptor value. Figure 6 shows an example of how the 
high (upper half of ring in black) and low (lower half of ring in 
black) receptor values end up being disbursed throughout the 
graph. The figure also depicts the passage of a signal over this 
network of a healthy brain, where signal reception is depicted 
by a shaded inner circle. 

Figure 5. Fractal Tree in the form of a directed graph

Figure 6. Distribution of neurons with High and Low number of receptors 

and signal passage through network

Figure 7. High Probability Box defined 

around initial deposit

Modeling Plaque Formation
Plaque formation, a major contributing factor to Alzheimer’s 
disease and neuronal decay, is the second component of our 
model. In the human brain, plaques form in clusters posited to 
disrupt neuronal connections. After defining an n x n matrix, 

the first of our plaque 
deposits is randomly 
chosen from the 
entire field; any cell 
a

i,j 
has a 1/n2 chance 

of being chosen in the 
first iteration. Next, a 
high probability box 
is defined around the 
initial grain (a

i,j
) along 

with its eight adjacent 
cells. The next grain is 



BridgEwatEr StatE UNiVErSitY 2013  •  thE UNdErgradUatE rEViEw  •  51

selected with 9/10  chance of being in the high probability 
box (each cell has a 1/10 possibility of being utilized). The 
remaining 1/10 of a chance is divided over the rest of the 
field (the complement to the high probability box), yielding a  
1/(10n2 – 90) likelihood of being chosen for the next placement. 
In the next step, a new high probability box is created around 
the new grain. We continue this process of generating a 
new granule at each stage recording its position in the two-
dimensional matrix which, consequently, is layered onto the 
directed graph. As a result of the probability model employed, 
the granules generally form in clusters (see Figure 9).

Modeling the Effects of Plaque on the network
To measure the effects of the granules on the network, we 
measure the distance between each plaque deposition and the 
closest edge on the directed graph. If the particle and segment 
fall within a predetermined distance threshold of each other, 
the edge is considered affected by the deposit. Once a certain 
number of plaque granules fall within this distance, the edge 
is considered interrupted and signal passage is not allowed 
to downstream vertices. The number of plaques required to 
disrupt an edge is proportional to the length of the edge. 

Figure 8. Iteration for plaque deposition

Figure 9. Plaque disrupted network

Figure 10. Path of signal through neuronal network affected by plaque 

degradation (i) without memory and learning exercises (ii) with memory and 

learning exercises.
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In figure 9, we see the network after damage done by plaque 
deposition. Where plaque gets to within a predetermined 
proximity of the network, in great enough numbers, the signal 
does not reach the downstream neuron (depicted with shaded 
circle and white rectangle). The unfilled circles denote vertices 
connected to the network, ready to receive a signal; their 
preceding pathways have not been interrupted by the proteins. 
In figure 10(i), we see the signal passage through the network 
which has been degraded by plaque. The darkened circles 
with white rectangles are blocked; neurons ringed by circles 
are passable: the ones which are shaded in have successfully 
received a signal while the ones with white centers have not 
been reached by the signal. We contrast this graphic with figure 
6 and easily see that the network without plaque degradation 
allows a substantially increased signal passage throughout the 
network. 

Plaque disrupts signal flow on the neural network like downed 
trees interfere with traffic on a roadway. Signals, accustomed 
to traveling on a certain path, can still be delivered via a re-
organization of available healthy neural branches. A variety of 
the brain’s regions are pooled together to form a behavioral 
output. If the connection between these regions is disrupted, 
a person can possibly relearn a different way to connect the 
regions using a different neural substrate (set of neurons), 
resulting in an overall similar type of behavior. Certain 
modularity of basic tasks is common to many theories of neural 
branch configuration (Mogensen, 2011). Furthermore, mature 
astrocytes transform into radial glial cells to guide immature 
neurons to form fresh neural substrate (Pelvig, Pakkenberg, 
Stark, & Pakkenberg, 2008). Otherwise, factors, present in the 
adult brain, promote axon regeneration over more complicated 
trajectories, which may aid in finding new connections (Becker, 
et al. 2012). Like drivers taking detours to avoid road debris, the 
new routes are less direct. Passage of a signal across a network 
degraded by the influx of these plaque proteins results in fewer 
neurons being activated than in a disruption-free system.

Simulating the Impact of Learning
The frequent use of neurons through cerebral exercises 
(Sudoku, playing piano, complex housing, physical tasks, and 
learning) decreases the impact of plaque deposits (Kolb, Arif, 
& Gibb, 2011). The effects of cognitive training have been 
shown to have a variety of implications on the health of the 
neural network. This long-lasting enhancement in signal 
transmission between two neurons that results from simulating 
them synchronously is called Long Term Potentiation (Cooke 
& Bliss, 2006). LTP enhances the ability of a signal to be 
received after crossing the synaptic cleft by adding new 
glutamate receptors to the membrane surface. As learning 

occurs, the successful signal passage across the synchronous 
neurons promotes the likelihood of future propagation; LTP 
is a positive feedback loop. In addition, mice given learning 
tasks show delays in the onset of extracellular amyloid beta 
plaque and tau protein synthesis (Billings, Green, McGaugh, 
& LaFerla, 2007). Furthermore, preconditioning (learning 
prior to the arrival of deleterious effects) provides greater long 
term benefits compared to conditioning beginning in the 
pathological stages of Alzheimer’s; plaque burdens are best 
reduced by lifelong learning regimens. On top of this, lacking 
the cognitive stimulation, plaque levels tend to return to their 
normal pathological state rapidly, suggesting learning enhances 
protective mechanisms. Moreover, learning increases the 
amount of synaptic connections; from postmortem autopsies, 
people who engage in mentally stimulating jobs have an 
average of seventeen percent more neuronal connections than 
those with less cerebrally demanding career paths. 

In our model, we simulated the effect of learning by increasing 
the threshold values for the number of plaque granules needed 
to disrupt a neuronal connection, which resulted in the signal 
being able to pass through some regions previously disrupted 
by plaque. In figure 10(ii), we depict the signal passage through 
such a neuronal network after cognitive training. Contrasting 
this to the brain without cognitive stimulation represented 
in figure 10(i), we see areas (circled in grey) which are now 
reached due to the introduction of the cognitive exercises, but 
were disrupted in the other model. 

  Average Proportion of 
 Path of Signal  Neurons Reached

A without Plaque 0.378

B after Plaque 0.255

C with Learning 0.301

Figure 11 Average proportion of neurons reached in 50 simulations

To quantify the effects of plaque on the neuronal network 
in each of the three models (healthy brain without plaque; 
brain affected by plaque; and brain affected by plaque with 
learning), we ran a large number of simulations and averaged 
the number of neurons reached by the signal. To allow for 
a valid comparison of how the signal travels through the 
neuronal network in the three different models, we ran our 
simulations with the same fixed parameters for the neuronal 
network and plaque formation. That is, all three models had 
the same underlying distribution of low/high receptor values 
for the neurons throughout the network. Moreover, we used 
the same plaque formation affecting the brain in both models 
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b and c. In figure 11, we show the result of our 50 trials on 
the network, and report the mean proportion of the 1093 
neurons in our neuronal network that were reached in the 50 
simulations for each of the three models. When the variables 
for each of the three programs are fixed, we note that b = 0.255 
= 279/1093 (network after plaque deposition) is a substantially 
less than a = 0.378 = 413/1093 (before plaque deposition), and 
c = 0.301 = 329/1093 (network ameliorated by cognition) is a 
slight improvement on b. 

Conclusion
In figure 12, we illustrate the results of (i) our computer 
generated model by juxtaposing it next to a picture of the 
(ii) human hippocampus affected by plaque deposits. Our 
model shows resemblance to reality and can be manipulated 
using several variables to better reflect the actual conditions 
seen in Alzheimer’s patients and the clustering characteristics 
(amount and pattern) of the proteins. From our studies on the 

References

Alzheimer’s Association. (2012). 2012 Alzheimer’s Disease Facts and 
Figures. Alzheimer’s & Dementia, 8(2).

Anderson, H.L. (1986). Metropolis, Monte Carlo and the MANIAC. 
Los Alamos Science, 14, 96–108.

Becker, K., Ertürk, A., Mauch, C.P., Hellal, F., Förstner, F., Keck, 
T., Jährling, N., Steffens, H., Richter, M., Hübener, M., Kramer, 
E., Kirchhoff, F., Dodt, H.U., Bradke, F. (2012). Three-dimensional 
imaging of the unsectioned adult spinal cord to assess axon 
regeneration and glial responses after injury. Nature Medicine, 18(1), 
166-71.

Billings, L.M., Green, K.N., McGaugh, J.L., & LaFerla, F.M. (2007). 
Learning Decreases Aβ*56 and Tau Pathology and Ameliorates 
Behavioral Decline in 3xTg-AD Mice. Journal of Neuroscience 27(4), 
751-61.

Cooke, S.F. & Bliss, T.V.P. (2006). Plasticity in the human central 
nervous system. Brain, 129, 1659-73.

Devaney, R. (2003). An Introduction to Chaotic Dynamical Systems 
(2nd ed.). Boulder: Westview Press. 

Gleick, J. (1987). Chaos: Making a New Science. New York: Viking.

Holmgren, R.A. (1996). A First Course in Discrete Dynamical Systems 
(2nd ed.). New York: Springer-Verlag New York, Inc.

Hampton, Tracy. (2008). Alzheimer Plaques. Journal of the American 
Medical Association, 299(13), 1533.

Kolb, B., Arif, M., & Gibb, R. (2011). Searching for factors 
underlying cerebral plasticity in the normal and injured brain. Journal 
of Communication Disorders, 44, 504-12.

Krützmann, N.C. (2008). Application of Complexity Measures to 
Stratospheric Dynamics. Unpublished physics thesis, University of 
Canterbury, Christchurch, New Zealand.

Lam, L. (1998). Nonlinear Physics for Beginners: Fractals, Chaos, 
Solitons, Pattern Formation, Cellular Automata, Complex Systems. 
Singapore: World Scientific.

Lorenz Wins Kyoto Prize for Work on Weather and Chaos. (1991) 
Physics Today, 44(11), 109-10.

Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. New York: 
W.H. Freeman and Co.

Mogensen, J. (2011). Reorganization of the Injured Brain: 
Implications for Studies of the Neural Substrate of Cognition. 
Frontiers in Psychology, 2, 1-10.

Pelvig, D.P., Pakkenberg, H., Stark, A.K., & Pakkenberg, B. (2008). 
Neocortical glial cell numbers in human brains. Neurobiology of 
Aging, 29(11), 1754–62.

Poincaré, H. (1914). Science and method. (Francis Maitland, trans.). 
London: T. Nelson.

Figure 12 (i) Our computer generated model juxtaposed with (ii) biological 

network in the human hippocampus (Hampton, 2008).

model, strengthening the resiliency of the neural connections, 
such as occurs through learning, ameliorates the deleterious 
effects of plaque deposits on the network. We hope we have 
produced a rudimentary tool to better predict the outcomes of 
using certain treatments, possibly weighing them against any 
potential adverse side effects, and providing a framework to 
add features which enhance realism. Our model is the basis to 
which a variety of nuances could be added to more completely 
explain the system: Long Term Potentiation on the synaptic 
conductivity, differentiability of intraneuronal vs. extra cellular 
plaques, regeneration of axonal fibers, neurogenesis, etc. The 
complexity of the human brain is astounding, having roughly 
1 quadrillion synaptic connections; our model consists of 
merely one thousand. In a subject which branches between 
mathematics; programming, neuroscience; and behavioral 
psychology; we hope to have made an inroad into a gigantic 
problem.
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