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PII S0016-7037(97)00346-3

Hydrogen and oxygen isotope fractionation between brucite and aqueous NaCl solutions
from 250 to 450°C
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1Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
2United States Geological Survey, Denver Federal Center, Denver, Colorado 80225, USA

(Received September12, 1996;accepted in revised form September25, 1997)

Abstract—Hydrogen and oxygen isotope fractionation factors between brucite and aqueous NaCl solutions
(1000lnabr-sw) have been calibrated by experiment from 250 to 450°C at 0.5 Kb. For D/H fractionation,
1000lna br-swvalues are as follows:2326 6‰ (250°C, 3.2 wt% NaCl),2216 2‰ (350°C, 10.0 wt% NaCl),
and2226 2‰ (450°C, 3.2 wt% NaCl), indicating that brucite is depleted in D relative to coexisting aqueous
NaCl solutions. These results are in good agreement with previous D/H fractionation factors determined in the
brucite-water system, indicating that any effects of dissolved salt on D/H fractionation are relatively small,
particularly in solutions with near seawater salinity. The maximum salt effect (14‰) was observed in 10.0
wt% NaCl solutions at 350°C, suggesting that the addition of dissolved NaCl increases the amount of
deuterium fractionated into mineral structures. For18O/16O fractionation, 1000lnabr-sw values in 3.0 wt%
NaCl solutions are26.06 1.3‰,25.66 0.7‰ and24.16 0.2‰, at 250, 350, and 450°C, respectively, and
25.8 6 0.6‰ in 10.0 wt % NaCl at 350°C. These data indicate that brucite is depleted in18O relative to
coexisting aqueous NaCl solutions and that the degree of depletion decreases slightly with increasing
temperature and is not strongly dependent on salinity. We calculated18O/16O brucite-water fractionation
factors from available calibrations of the salt-effect on18O/16O fractionation between coexisting phases. The
resulting values were fit to the following equation that is valid from 250 to 450°C

1000lnabr-w 5 9.543 106T22 2 3.533 104T21 1 26.58

whereT is temperature in Kelvins. These new data have been used to improve the prediction of18O/16O
fractionation factors in the talc-water and serpentine-water systems by modifying existing empirical bond-
water models. The results of this analysis indicate that thed18O composition of talc-brucite and serpentine-
brucite pairs could be used as a geothermometer and that these coexisting phases should display the following
order of18O enrichment: talc. serpentine. brucite. Copyright © 1998 Elsevier Science Ltd

1. INTRODUCTION

The stable isotope composition of minerals and fluids has been widely
used to study rock alteration processes in hydrothermal environments.
Primary goals of such studies include constraining the origin of
minerals and fluids and defining temperature during fluid-rock inter-
action (Taylor, 1974). This requires that equilibrium isotope fraction-
ation factors between minerals and fluids be known as a function of
temperature and fluid composition. Because most geologic fluids are
not pure water, the calibration of mineral-fluid fractionation factors in
salt solutions is particularly important.

Although D/H and18O/16O fractionation factors have been
determined by experiment for a large number of mineral-water
pairs (O’Neil, 1986), data for minerals in the MgO-SiO2-H2O
system are lacking. A notable example is brucite. Fractionation
of 18O and16O between brucite and water has not been cali-
brated by experiment despite the fact that brucite is associated
with low to moderate grade metamorphism of ultramafic and
carbonate rocks and has a well defined composition and struc-
ture. The D/H fractionation factor between brucite and pure
water has been calibrated by experiment from 100° to 510°C
(Satake and Matsuo, 1984), but no data exists for D/H frac-

tionation in systems containing brucite and salt solutions.
Moreover, empirical bond-type models have been used to cal-
culate 18O/16O mineral-water fractionation factors for other
hydrous phases in the MgO-SiO2-H2O system, such as talc and
serpentine, which have been difficult to calibrate by experiment
(Savin and Lee, 1988). Results of these calculations are depen-
dent on the quality of bond-water fractionation factors. One of
the most poorly known factors is that involving the bonding of
Mg with the hydroxyl anion as in the brucite structure (Savin
and Lee, 1988). Thus, predictions of18O/16O fractionation
factors based on the empirical bond-water approach would be
greatly improved by experimental calibration of18O/16O frac-
tionation in the relatively simple brucite-fluid system.

Recent experiments by Horita et al. (1993a,b, 1995) have
defined the effect of dissolved salt on D/H and18O/16O frac-
tionation between liquids and vapors to 350°C. Extension of
their results to mineral-fluid systems suggests that D/H frac-
tionation factors for all mineral-fluid pairs should become more
positive with increasing dissolved salt concentration. For18O/
16O fractionation, the opposite effect has been measured, and
this has been further supported by experiments in the calcite-
water6 NaCl system at 300°C and 1 kbar (Horita et al., 1995).
Other mineral-fluid equilibration studies have yielded different
results, particularly with regards to the magnitude of the salt
effect on D/H fractionation (Graham and Sheppard, 1980). It
has been suggested that these discrepancies are related to
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uncertainties associated with the use of more complex phases
such as epidote in some mineral-fluid isotope exchange exper-
iments (Horita et al., 1995). As a consequence, more studies of
the effect of dissolved salt on mineral-fluid isotope fraction-
ation are needed, particularly for compositionally and structur-
ally simple minerals such as brucite.

In this study, D/H and18O/16O fractionation between brucite
and NaCl solutions has been investigated by experiment from
250 to 450°C at 0.5 kbar. The results provide the first experi-
mental calibration of18O/16O fractionation between brucite and
a coexisting aqueous phase and help place constraints on the
effect of dissolved salt on D/H fractionation at sub- and super-
critical conditions.

2. EXPERIMENTAL

2.1. Approach

The fractionation factor between mineral and fluid (amineral-fluid) can
be defined by

amineral-fluid5

11
dmineral

1000

11
dfluid

1000

(1)

wheredmineral anddfluid refer to the isotopic composition of coexisting
mineral and fluid samples, respectively, in standardd notation as
follows:

dsample5
Rsample2Rstandard

Rstandard
31000 (2)

In Eqn. 2,RsampleandRstandardrefer to the D/H or18O/16O ratio of the
sample and standard, respectively. Alld values are reported in units of
per mil (‰) relative to the SMOW standard.

The partial exchange technique (Northrop and Clayton, 1966; Su-
zuoki and Epstein, 1976) was used in this study to retrieve equilibrium
fractionation factors. This technique involves the use of companion
runs, defined here as two experimental charges that are identical in
every respect except for the isotopic composition of the initial fluids. In
this investigation, the initial fluids were prepared to be either isotopi-

cally depleted or enriched relative to brucite so that the brucite-fluid
fractionation factor could be approached from opposite sides of the
equilibrium distribution of isotopes. Calculation of equilibrium frac-
tionation factors with this technique assumes that the extent of isotopic
exchange as defined by the relationship

% exchange5
lnai 2 lnaf

lnai 2 lnae
3 100 (3)

is equal in companion runs, whereai, af, andae refer to the initial,
final, and equilibrium value ofabrucite-fluid, respectively. Thus, by
equating the percentage of exchange in two companion runs,ae can be
solved from

lnai,enr 2 lnaf,enr

lnai,enr 2 lnae
5

lnai,dep 2 lnaf,dep

lnai,dep 2 lnae
(4)

where subscriptsenranddeprefer to companion runs with initial fluids
that are isotopically enriched and depleted, respectively. In principal,
ae can be calculated as a function of time and ideally the resulting
values should be equivalent; that is, independent of the extent of
isotopic exchange. Consequently, values ofae that vary as a function of
time reflect uncertainties associated with experimental and analytical
techniques in addition to assumptions inherent in the partial exchange
approach.

2.2. Reactants

Fine-grained reagent grade Mg(OH)2 was used in all experiments.
X-ray diffraction (XRD) analyses indicate that this material is crystal-
line. Previous isotope exchange experiments in the brucite-water sys-
tem have revealed no systematic difference in the D/H fractionation
factor obtained by using synthetic and natural brucite samples (Satake
and Matsuo, 1984). Fluids with salinities of 3.0 wt% NaCl and 10.0
wt% NaCl were prepared from Milli-Q water, reagent grade NaCl, and
water isotopically enriched or depleted in D and18O. The isotopic
compositions of all reactants are given in Tables 1 and 2.

2.3. Methods

The experiments were performed using flexible gold capsules (1 cm
outside diameter, 0.13 mm wall thickness, 5 cm length, 4 mL internal
volume) pressurized within steel pressure vessels. The gold capsules
were welded at one end before loading with 0.20 g brucite and 1.25 g

Table 1. Hydrogen isotope data for brucite-water1 NaCl Exchange experiments.*

Days T (°C)
NaCl
wt. %

Initial fluid enriched in D Initial fluid depleted in D

103lnabr-sw % ex
Wt. br
grams

Wt. sw
grams dDbr dDsw

Wt. br
grams

Wt. sw
grams dDbr dDsw

0# 250 3.0 274 218 274 2125
27 250 3.0 0.2007 1.5316 258 219 0.2009 1.5178 2137 2122 236 79.7
210 250 3.0 0.2006 1.5264 253 219 0.2006 1.4766 2129 2123 228 75.6

(2326 6)
0# 350 10.0 274 224 274 2128
32 350 10.0 0.2012 1.5801 251 225 0.2043 1.5948 2135 2126 223 86.3
70 350 10.0 0.2061 1.5809 249 226 0.2003 1.5822 2131 2126 219 84.0
225 350 10.0 0.2037 1.5886 246 226 0.2022 1.5838 2142 2125 221 98.6

(2216 2)
0# 450 3.0 274 218 274 2125
14 450 3.0 0.2045 1.2658 242 220 0.2025 1.2655 2141 2122 223 99.5
30 450 3.0 0.2023 1.2660 242 220 0.2039 1.2580 2140 2122 223 98.5
45 450 3.0 0.2056 1.2627 238 220 0.2013 1.2591 2142 2122 220 103.6

(2226 2)

* The subscripts ‘‘br’’, ‘‘sw’’, and ‘‘w’’ refer to brucite, salt-water, and pure water, respectively. Accordingly, the subscripts ‘‘br-sw’’ and ‘‘br-w’’
indicate 1000lna values in the brucite-water1 NaCl and brucite-water systems, respectively. The values in parenthesis represent mean 1000lna values
for each condition.

# The initial isotopic composition of brucite and NaCl solutions is indicated by the data at 0 days of reaction.
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fluid (450°C experiments) or 1.50 g fluid (250 and 350°C experiments).
A relatively high fluid/brucite mass ratio (6.25–7.50) was adopted to
minimize changes in the isotopic composition of the fluid during an
experiment, thereby reducing the potential for isotopic zonation within
the brucite. After loading the solid and fluid reactants, the open end of
the gold capsule was squeezed in a vice to remove air and create an
initial seal which was then welded while submerging the previously
welded end in liquid nitrogen to prevent evaporation of the fluid. For
each experiment, three or four gold capsules with identical solid and
fluid reactants were prepared. These capsules were weighed and loaded
into separate pressure vessels along with the companion capsules for
each temperature1 brucite1 salinity condition.

The internal pressure of each gold capsule was externally adjusted by
pumping water into the pressure vessel. Pressure was maintained at 0.5
kbar for all experiments. Temperature was monitored by a thermocou-
ple placed in a well that extended into the pressure fluid surrounding
the gold capsules. In addition, other thermocouples were attached to the
outside of each pressure vessel along its entire length to ensure that
there were no thermal gradients during the experiments. All pressure
vessels were then placed into a single tube furnace. Using this design,
the temperature inside the pressure vessels was controlled to62°C.

The isotopic compositions of brucite and fluid were determined as a
function of time by removing a single pressure vessel from the furnace
at selected times, without disturbing the temperature and pressure
condition of the remaining vessels. Reaction times varied from 14 to
225 days. The pressure vessel was cooled to room temperature in less
than 10 min by exposure to a cold gas stream followed by immersion
in a water bath. Because the solubility of brucite increases with de-
creasing temperature and is extremely small in the near neutral pH
fluids used for this study (Walther, 1986), brucite precipitation during
quench can not occur while any brucite dissolution would be relatively
minor with little effect on the isotopic composition of the fluid and
solid phases.

Immediately after cooling, each capsule was weighed and then
punctured with a hypodermic needle to transfer the fluid to a glass
gas-tight syringe. Each fluid sample was then passed through a 0.22mm
syringe filter to remove any particulates and sealed in a glass ampule
for chemical analyses. The solids were dried at 40°C and then stored for
isotopic, XRD, and SEM analyses. Dissolved Cl concentration was

determined for all fluid samples using ion chromatography. A large
decrease in the Cl concentration indicated that a capsule had leaked
during an experiment, and all results from such a capsule were dis-
carded. All isotopic analyses were performed at the USGS in Denver
using a Finnigan Mat 252 mass spectrometer. All brucite samples were
dried overnight in a vacuum at 80°C. Water was then liberated from
brucite for D/H measurements by heating each sample in a Pt boat
using an induction coil followed by a conversion to H2 gas through
reaction with U (Godfrey, 1962). The18O/16O composition of brucite
was determined by the BrF5 technique (Clayton and Mayeda, 1963).
For initial fluid reactants, the D/H composition was determined by zinc
reduction following the techniques of Coleman et al. (1982), and the
18O/16O composition was determined using the CO2 equilibration ap-
proach of O’Neil et al. (1975). Analytical precision for isotope analyses
were approximately60.1‰ and61.0‰ for 18O/16O and D/H, respec-
tively. Because the experiments were conducted in a closed-system at
high fluid/brucite mass ratios, changes in the isotopic composition of
the fluids were small compared to those for brucite. As a consequence,
the isotopic composition of the fluid after reaction was calculated by
material balance using the isotopic composition of the brucite measured
after reaction.

3. RESULTS AND DISCUSSION

The initial fine-grained brucite underwent rapid and signifi-
cant dissolution-recrystallization during all experiments. Bru-
cite crystals could be easily observed in all reaction products,
and XRD analyses showed more intense reflections compared
to the starting material. Closer examination of reaction products
by SEM reveals the growth of both small and large euhedral
brucite crystals (Fig. 1) with the lower temperature experiments
yielding a larger variation in crystal size. In general, most of the
isotopic exchange during an experiment occurred prior to the
first sampling occassion, a result that is consistent with rapid
recrystallization of brucite during the early stages of each
experiment. Thus, it is likely that isotope exchange was gov-

Table 2. Oxygen isotope data for brucite-water1 NaCl exchange experiments.*

Days T (°C)
NaCl
wt. %

Initial fluid enriched in18O Initial fluid depleted in18O

103lnabr-sw % ex 103lnG 103lnabr-w

Wt. br
grams

Wt. sw
grams d18Obr d18Osw

Wt. br
grams

Wt. sw
grams d18Obr d18Osw

0# 250 3.0 23.4 22.6 23.4 253.0
27 250 3.0 0.2007 1.5316 7.8 21.7 0.2009 1.5178237.0 250.2 26.9 64.3 20.05 26.9
210 250 3.0 0.2006 1.5264 10.7 21.4 0.2006 1.4766240.6 249.8 25.1 73.7 20.05 25.1

(26.06 1.3) 20.05 (26.06 1.3)
0# 350 3.0 23.4 22.6 23.4 253.0
31 350 3.0 0.2004 1.5208 11.8 21.3 0.2001 1.5301244.1 249.6 25.3 80.3 20.11 25.2
79 350 3.0 0.2004 1.4384 11.3 21.3 0.2005 1.5310246.0 249.4 26.5 82.5 20.11 26.4
128 350 3.0 0.2006 1.5197 12.6 21.3 0.2005 1.5086245.1 249.5 25.0 82.9 20.11 24.9
223 350 3.0 0.2009 1.5320 12.7 21.3 0.2006 1.5173246.7 249.4 25.5 85.4 20.11 25.4

(25.66 0.7) 20.11 (25.56 0.7)
0# 450 3.0 23.4 22.6 23.4 253.0
14 450 3.0 0.2045 1.2658 15.9 20.6 0.2025 1.2655250.5 248.2 24.0 97.1 20.2 23.8
30 450 3.0 0.2023 1.2660 15.4 20.7 0.2039 1.2580249.6 248.3 24.1 95.1 20.2 23.9
45 450 3.0 0.2056 1.2627 15.7 20.6 0.2013 1.2591250.8 248.2 24.3 97.3 20.2 24.1

(24.16 0.2) 20.2 (23.96 0.2)
0# 350 10.0 23.4 22.6 23.4 253.0
32 350 10.0 0.2012 1.5801 7.9 21.6 0.2043 1.5948235.1 250.2 26.0 61.8 20.34 25.7
70 350 10.0 0.2061 1.5809 8.9 21.5 0.2003 1.5822236.0 250.2 25.1 64.6 20.34 24.8
225 350 10.0 0.2037 1.5886 10.2 21.4 0.2022 1.5838242.0 249.6 26.2 75.2 20.34 25.9

(25.86 0.6) 20.34 (25.56 0.6)

* The subscripts ‘‘br’’, ‘‘sw’’, and ‘‘w’’ refer to brucite, salt-water, and pure water, respectively. Accordingly, the subscripts ‘‘br-sw’’ and ‘‘br-w’’
indicate 1000lna values in the brucite-water1 NaCl and brucite-water systems, respectively. The values in parenthesis represent mean 1000lna values
for each condition.

# The initial isotopic composition of brucite and NaCl solutions is indicated by the data at 0 days of reaction.
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erned primarily by dissolution-recrystallization, rather than vol-
ume diffusion. Moreover, at each temperature the extent of D/H
exchange between brucite and the NaCl fluid was similar to the
extent of 18O/16O exchange (Figs. 2 and 3). These data are
consistent with a dissolution-recrystallization mechanism since
hydrogen diffusion is generally thought to be more rapid than
oxygen diffusion in mineral-fluid systems (Cole and Ohmoto,
1986). A two-stage process involving volume diffusion after an
initial rapid recrystallization process (Matthews et al., 1983)
cannot be ruled out although it is likely that volume diffusion
would be quite slow at the temperatures of these experiments.

Values ofae were computed as a function of time for each
experiment. Because the extent of isotope exchange increased
only slightly after the first sampling occassion in most exper-
iments, we adopted the meanae value as the most accurate
fractionation factor at each condition. This approach allowed us
to better assess the uncertainties associated with the partial
exchange technique.

3.1. Hydrogen Isotopes

Hydrogen isotope data in the brucite-water1 NaCl system
are summarized in Table 1. The extent of D/H exchange was
dependent on temperature, varying from 76% after 210 days of
reaction at 250°C, to 100% after only 14 days of reaction at
450°C (Fig. 2). Values of 103lnabr-sw calculated as a function
of time are characterized by less variation at higher temperature
(Table 1), a result that can be attributed to the fact that uncer-
tainties are magnified when applying the partial exchange tech-
nique at relatively low extents of isotopic exchange (Northrop
and Clayton, 1966). Accordingly, standard deviations for mean
values of 103lnabr-sw vary from 66‰ at 250°C to62‰ at
450°C. Examination of Fig. 4 shows that 103lnabr-swvalues are
less than zero at 250° to 450°C, indicating that brucite is
depleted in D relative to coexisting NaCl solutions. Decreases
in 103lnabr-sw values from 450 to 250°C in 3.0 wt% NaCl
solutions also indicate that the degree of depletion increases
with decreasing temperature.

In isotopic systems containing solids and aqueous solutions,
the effect of dissolved salt (G) on mineral-water fractionation
factors for any pair of stable isotopes can be written as

103ln G 5 103ln am2sw 2 103ln am2w (5)

where 103lnam-sw and 103lnam-w refer to fractionation factors
in the mineral-water1 salt and mineral-water systems, respec-
tively. Thus, a direct comparison of the fractionation factors
obtained here in NaCl solutions with those obtained by Satake
and Matsuo (1984) in pure water serves to define the effect of
dissolved salt on D/H fractionation. Such a comparison (Fig. 4)
shows that the fractionation factors reported in this study are in

Fig. 1. (a) SEM image of initial reagent grade brucite used for
isotope exchange experiments. The material is extremely fine-grained,
and individual crystals are not discernible at this magnification. (b)
SEM image of brucite after 210 days of reaction in 3.0 wt% NaCl
solution at 250°C. Large euhedral brucite crystals have grown at the
expense of the initial fine grained material. This analysis suggests that
isotope exchange occurred by a dissolution-recrystallization mecha-
nism as opposed to volume diffusion.
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reasonable agreement with those measured by Satake and Mat-
suo (1984) in the brucite-water system, which suggests that the
effect of dissolved salt on D/H fractionation between minerals
and hydrothermal solutions with near seawater salinity is small
(within the error of the measured fractionation factors). The
most statistically significant discrepancy occurs at 350°C in the
10.0 wt% NaCl solution, where our value of 103lnabr-sw ap-
pears to be more positive than the corresponding value of
103lnabr-w measured by Satake and Matsuo (1984). At this
condition, uncertainties associated with the fractionation fac-
tors are sufficiently low and the salinity sufficiently high, to
more clearly resolve how the addition of salt changes D/H
fractionation between minerals and NaCl solutions (see Fig. 4).
Application of Eqn. 5 yields a 103lnG value of 14‰ at this
condition, suggesting that the addition of dissolved NaCl to
mineral-water systems increases the amount of D fractionated
into the mineral structure.

Horita et al. (1995) measured the salt-effect on D/H frac-
tionation factors between coexisting phases by equilibrating
liquids and vapors in the water1 NaCl system and derived the
following empirical relationship:

103ln G(D) 5 m~0.01680T 2 13.791 3255/T! (6)

wherem is the molality of dissolved NaCl, andT is temperature
(K). At 350°C for a 10.0 wt% NaCl solution, Eqn. 6 yields a
103lnG(D) value of13.3‰, in good agreement with our value
(14‰) obtained from Eqn. 5. At 250°C for a 3.0 wt% NaCl
solution, Eqn. 6 yields a 103lnG(D) value of10.7‰, which is
well within the uncertainty of our measurements. It is important
to note that Eqn. 6 has been calibrated by Horita et al. (1995)
to a maximum temperature of 350°C using the liquid-vapor
equilibration approach. As a consequence, the effect of dis-
solved salt on D/H fractionation is still not well constrained at
higher temperatures in the supercritical region for hydrothermal
fluids. Although we can not statistically constrain a precise
value forG at 450°C, we can use the uncertainties in fraction-
ation factors reported here and by Satake and Matsuo (1984) to
place limits on the range of possibleG values at this condition.
This analysis constrains 103lnG(D) to be less than64‰, sug-
gesting that any effect of dissolved salt on D/H fractionation is
small for hydrothermal fluids with near seawater salinity at
temperatures up to 450°C.

3.2. Oxygen Isotopes

Oxygen isotope exchange data in the brucite-water1 NaCl
system are summarized in Table 2. The extents of18O/16O
exchange were similar to those measured for D/H and varied
from 74% after 210 days of reaction at 250°C to 97% after 14
days of reaction at 450°C (Fig. 3). Standard deviations associ-
ated with mean 1000lnabr-sw calculated by applying the partial
exchange technique to successive samples vary from61.3‰ at
250°C to only60.2‰ at 450°C. Values of 1000lnabr-w are less
than zero and increase slightly from 250° to 450°C (Table 2).
Thus, over this temperature range, brucite is depleted in18O
relative to coexisting NaCl solutions, and the degree of deple-
tion decreases with increasing temperature.

Oxygen isotope fractionation factors between brucite and

Fig. 2. Changes in 1000lnabr-sw with time for D/H exchange at 250
to 450°C. Arrows indicate the progression of 1000lnabr-sw values from
the initial condition to the final sample for companion capsules.

Fig. 3. Changes in 1000lnabr-sw with time for 18O/16O exchange at
250 to 450°C. Arrows indicate the progression of 1000lnabr-sw values
from the initial condition to the final sample for companion capsules.
The extents of isotopic exchange shown here are similar to those
accompanying D/H exchange.

Fig. 4. Comparison of 1000lna values for D/H fractionation in the
brucite-water and brucite-water1NaCl systems. The dotted lines show
the 62.3‰ standard deviation associated with the data of Satake and
Matsuo (1984). Based on this analysis, the salt-effect appears to be
small (within the error of the fractionation factors) for fluids with near
seawater salinity (3.0 wt% NaCl). At 10.0 wt% NaCl, the 1000lna
value appears to be more positive than the value in pure water,
suggesting that the addition of salt increases the amount of deuterium
fractionated into mineral structures.

489Isotope fractionation of H and O between brucite and a NaCl solution



pure water have not been directly measured, but values of
1000lnabr-sw can be calculated from our data by considering
the empirical relationship of Horita et al. (1995)

103lnG(18O) 5

m~20.0331 8.933 1027T222.1231029T3) (7)

that defines the effect of dissolved NaCl on18O/16O frac-
tionation between two coexisting phases. This equation is
directly analogous to Eqn. 6 describing the effect of dis-
solved NaCl on D/H fractionation and can be used with Eqn.
5 to compute values of 1000lnabr-w from our measured
values of 1000lnabr-sw. Over the temperature and salinity
range of this study, 103lnG(18O) values vary from20.05‰
in 3.0 wt% NaCl at 250°C to20.34‰ in 10.0 wt% NaCl at
350°C (Table 2). As a consequence, 1000lnabr-w values are
predicted to be only slightly more positive than the corre-
sponding values of 1000lnabr-sw and still less than zero,
indicating that brucite is depleted in18O relative to coexist-
ing pure water from 250° to 450°C (Fig. 5). Equation 7 was
calibrated by Horita et al. (1995) to a maximum temperature
of 350°C. Our application of this equation at 450°C is only
meant to provide an approximation of the potential effect of
dissolved salt on18O/16O fractionation at this condition.
Moreover, because the salt-effect is predicted to be quite
small in 3.0 wt% NaCl at all temperatures up to 350°C, and
an order of magnitude smaller than the salt-effect on D/H
fractionation, any additional uncertainty to our calculated
value of 1000lnabr-w introduced by extrapolating Eqn. 7 to
450°C is not likely to be significant.

The 1000lnabr-w values derived in the manner described
above were fit to the following equation:

1000lnabr2w 5 9.543 106T2223.533104T21126.58 (8)

whereT is temperature in Kelvins. This equation can be used to
compute 18O/16O fractionation factors between brucite and
water from 250 to 450°C.

A comparison of the 1000lnabr-w values determined in this
study with the empirical curve for brucite-water18O/16O frac-
tionation proposed by Savin and Lee (1988) shows marked
disagreement in the temperature dependence from 250 to
450°C (Fig. 5). Our values increase slightly with temperature
whereas the empirical predictions exhibit a sharp decrease with
increasing temperature. The discrepancy is largest at 450°C
(nearly 6‰) where the uncertainty associated with our exper-
imental data is smallest (60.2‰) because oxygen isotope ex-
change was close to 100%. Savin and Lee (1988) derived the
fractionation curve shown in Fig. 5 from oxygen isotope ex-
change data for experiments in the geothite-water (Yapp, 1987)
and magnetite-water (Becker, 1971; Friedman and O’Neil,
1977) systems at low temperatures and data from natural meta-
morphic biotite-muscovite assemblages at high temperatures.
In their derivation, it was assumed that all divalent and trivalent
cations bonded to OH, other than Al, have the same effect on
the fractionation factor. Accordingly, the curve was designed to
be applicable to all pure nonaluminous hydroxide phases. The
general form of the curve is consistent with that of most
common rock-forming minerals in that brucite is predicted to
be enriched in18O relative to coexisting pure water at low
temperatures and progressively depleted in18O at higher tem-
peratures, but is inconsistent with our experimental results at
high temperatures. This discrepancy with our data is likely due
to large uncertainties inherent in the model-dependent assump-
tions that are required to derive fractionation factors for pure
hydroxide phases from natural sheet-silicate assemblages. If
18O/16O brucite-water fractionation behaves like that of most
common rock forming minerals, then we would expect the
fractionation factor to become more positive at temperatures
below 250°C. This would imply that 1000lnabr-w reaches a
minimum value at approximately 250°C, exhibiting a nonlinear
temperature dependence similar to that of magnetite-water
(Friedman and O’Neil, 1977). More experimental data in the
brucite-water system, particularly at lower temperatures, are
needed to further test this hypothesis.

3.2.1. Application of results to empirical models

Calibrations of18O/16O mineral-water fractionation factors
have been performed by theoretical (Kieffer, 1982), semi-
empirical (Zheng, 1993), and purely empirical (Savin and Lee,
1988) approaches. An important goal of these models is the
prediction of fractionation factors for minerals that have not
been calibrated by experiment. In the MgO-SiO2-H2O system,
talc and serpentine, two common products of hydrothermal
metamorphism, are good examples. Thus, accurate prediction
of 18O/16O fractionation factors between these minerals and
water would lead to more reliable geothermometers and new
constraints on the origin of metamorphic fluids.

Two calibration curves for talc and serpentine based on the
models of Savin and Lee (1988) and Zheng (1993) are shown
in Fig. 6. Although both models predict a decrease in
1000lnam-w values with increasing temperature, significant dis-
crepancies exist in the magnitude and form of the temperature
dependence. In particular, the Savin and Lee (1988) model
predicts a more linear dependence on temperature (1/T2) and
more negative 1000lnam-w values from 350° to 450°C (Fig. 6).
Savin and Lee (1988) emphasize that the most uncertain aspect

Fig. 5. A comparison of 1000lnabr-sw values for18O/16O fraction-
ation measured in this study with those predicted by the empirical
model of Savin and Lee (1988). The experimental data indicate that
1000lnabr-sw increases slightly with temperature whereas the empirical
predictions show the opposite trend with 1000lnabr-sw decreasing with
increasing temperature.
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of their model is the fractionation associated with divalent cat-
ions such as Mg bonded to the hydroxyl anion as in the brucite
structure. Moreover, as discussed above, our 1000lnabr-w val-
ues calibrated by experiment differ significantly from those
predicted by Savin and Lee (1988) over the same temperature
range that their model departs from that of Zheng (1993). Since
brucite-like layers are an important component of the talc and
serpentine crystal structures, large uncertainties in the Mg-OH
bond-water fractionation factor proposed by Savin and Lee
(1988) could explain the discrepancies in Fig. 6. To test this
possibility, the 1000lnabr-w values determined in this study
were used to calculate new oxygen isotope fractionation factors
for talc and serpentine using the Savin and Lee (1988) bond-
water model. For this analysis we have adopted all components
of the Savin and Lee (1988) model except that we have used
our 1000lnabr-w values from 250° to 450°C in the calculation.
The results show that 1000lnam-w values in the talc-water and
serpentine-water systems are displaced to more positive values
from 350° to 450°C and more negative values at 250°C using
our fractionation factors for brucite (Fig. 6). In effect, we
predict a smaller temperature dependence than the original
model of Savin and Lee (1988). Serpentine is affected more
than talc as a consequence of the larger percentage of OH-
bonds in the serpentine structure. For both talc and serpentine,
the 1000lnam-w values determined from the modified Savin and
Lee (1988) model are in excellent agreement with the calibra-
tion curve of Zheng (1993), in terms of both temperature
dependence and magnitude, particularly from 350° to 450°C
(Fig. 6). It is interesting to note that our experimental
1000lnam-w values for brucite are much more negative than
those for talc or serpentine and display a very different tem-
perature dependence (Fig. 6). This would suggest that the

difference in d18O composition of talc-brucite (Dtc-br) and
serpentine-brucite (Dsp-br) pairs could be used as a geother-
mometer. According to the data for brucite, talc, and serpentine
from this study, values ofDtc-br are 9.6, 6.8, and 4.2‰ at 250,
350, and 450°C, respectively. Corresponding values ofDsp-br

are 6.4, 4.5, and 2.8‰. These data also suggest that coexisting
phases in the MgO-SiO2-H2O system should exhibit the fol-
lowing order of enrichment with respect to18O: talc. serpen-
tine. brucite, consistent with the tendency for minerals rich in
Si to concentrate18O (Garlick, 1966; O’Neil and Taylor, 1967).
These results should greatly enhance the accuracy of stable
isotope-based models of hydrothermal processes in mafic and
ultramafic systems where hydrous Mg phases are common
products of fluid-rock interaction.

4. SUMMARY

Hydrogen and oxygen isotope fractionation factors between
brucite and aqueous NaCl solutions (3.0-10 wt%) have been
calibrated by experiment from 250 to 450°C. For hydrogen
isotopes, 1000lnabr-swvalues (brucite-water1 NaCl system) in
3.0 wt% NaCl solutions are in good agreement with
1000lnabr-w values (brucite-water system) measured by Satake
and Matsuo (1984). Thus, dissolved NaCl appears to have a
small effect on D/H fractionation factors between minerals and
aqueous solutions, particularly for fluids with near seawater
salinity. In 10.0 wt% NaCl at 350°C, our value of 1000lnabr-sw

is 4‰ more positive than the corresponding value of
1000lnabr-w, suggesting that the addition of dissolved NaCl to
mineral-water systems increases the amount of D fractionated
into mineral structures. This result is in good agreement with
other calibrations of the effect of dissolved salt on D/H frac-
tionation between coexisting phases (Horita et al., 1995).

For oxygen isotopes, measured values of 1000lnabr-swat 250
to 450°C indicate that brucite is depleted in18O relative to
coexisting NaCl solutions and that the degree of depletion
decreases with increasing temperature and is not strongly de-
pendent on salinity. The corresponding 1000lnabr-w values,
calculated by considering the effect of dissolved salt on18O/
16O fractionation (Horita et al., 1995) were fit to the following
equation:

1000lnabr2w 5 9.543 106T2223.533104T21126.58

whereT is temperature in Kelvins. This equation is valid from
250° to 450°C and indicates that the18O/16O brucite-water
fractionation factor is significantly more negative at 250°C and
more positive at 450°C, compared to values estimated by the
empirical model of Savin and Lee (1988). We have modified
the empirical model of Savin and Lee (1988) using our results
for brucite to improve the prediction of oxygen isotope frac-
tionation factors in the talc-water and serpentine-water systems.
The resulting fractionation factors are in good agreement with
those predicted using the semi-empirical/theoretical increment
method of Zheng (1993). A comparison of our18O/16O brucite-
water fractionation factors with those of talc and serpentine
also suggests that thed18O composition of talc-brucite and
serpentine-brucite pairs could be used as a geothermometer.
These results should lead to more reliable interpretations of the
d18O composition of natural brucite, talc, and serpentine sam-
ples in hydrothermally altered mafic and ultramafic rocks.

Fig. 6. A comparison of 1000lnam-w values for18O-16O fraction-
ation in the talc-water and serpentine-water systems as predicted by
empirical and semi-empirical models. We have incorporated the
1000lnabr-w values calibrated in this study by experiment into the Savin
and Lee (1988) model from 250 to 450°C. The empirical predictions
modified in this manner (diamonds) are in much better agreement with
the semi-empirical increment model of Zheng (1993). This analysis
also shows that brucite should be strongly depleted in18O when
coexisting with talc or serpentine and that talc-brucite and serpentine-
brucite pairs could be used as a geothermometer.
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