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Abstract

A Sr2FeMoO6 (SFMO) pellet was synthesized to use as a target 
in the Pulsed Laser Deposition (PLD) chamber.  The method 
chosen was a solid state reaction of SrCO3, Fe2O3 and MoO3. All 
three materials were combined stoichiometrically, ground in a 

ball mixer, and annealed for 36 hours at 1000°C.  A pellet press was custom 
designed and used to press the annealed powders into a pellet.  The magnetic 
and structural properties of the powder were studied using a Quantum Design 
MPMS SQUID magnetometer and powder X-Ray diffractometer, respectively. 
Previous studies of bulk SFMO suggest it to be ferrimagnetic or ferromagnetic, 
with a magnetic ordering near 400K. The magnetization data completely 
agrees with the reported data.  The 1” diameter pellet was used as a target in 
the PLD chamber to grow a 200 nm thin film on a SrTiO3 (001) substrate at 
800°C and 10-6 torr.  X-Ray diffraction was performed on the film to ensure it 
was epitaxially oriented.  From this data, calculations were performed which 
found the thin film to have been grown epitaxially.

I. Background
A perovskite is a material which has the chemical formula AA’O3, where A 
and A’ are both cations, one larger than the other.  These compounds have the 
same structure, called a perovskite structure.  A variation on the perovskite 
formula is the double perovskite, generally A2BB’O6, where A is Ca, Ba or Sr, 
B is a 3d transition metal (e.g. Fe), and B’ is a 4d transition metal (e.g. Mo).  
The double perovskite may be thought of as the single perovskites ABO3 and 
AB’O3

 alternating in a 3-D manner.  In this research, the compound Sr2FeMoO6 
(SFMO) was studied.  This material contains the two perovskites SrFeO3 and 
SrMoO3.  Ideally, each Fe perovskite would be surrounded by 6 Mo perovskites 
and vice versa, which is best shown in Fig. 1.  This does not occur, however, as 
some Mo perovskites can be vacant (that is, they lack only the Mo atom).  The 
Fe perovskites tend not to be found in a vacant state[3]. Also, the Fe and Mo 
perovskites have a tendency to swap positions, becoming disordered, even to 
the point of having completely random positions[3,4].  
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In terms of conductivity, SFMO is a poor metallic conductor.  
A one inch diameter disc of the material, for example, has a 
resistance on the order of 106 Ω, whereas a good conductor would 
be at least 6 orders of magnitude lower.

There is some debate as to which magnetic ordering SFMO 
actually possesses. The more popular theory is ferrimagnetic 
ordering, which is when the Fe and Mo atoms have a magnetic 
moment pointed in opposite directions, but of unequal 
magnitude[2,5,6].  Specifically, it is theorized that Fe has a +5 µB 
moment while Mo has a -1 µB moment, resulting in a net +4µB 
magnetic moment.  However, another theory suggests that SFMO 
has a ferromagnetic ordering, which is when the Fe and Mo atoms 
have aligned moments[4,8].  With this assumption, Fe is theorized 
to have a +4 µB moment while Mo has no moment.  The result 
is equal to the ferromagnetic ordering, that is, a +4 µB magnetic 
moment.  There is considerable difficulty in determining with 
experimental certainty which ordering is present, but the leading 
result is ferrimagnetic ordering.

The process of synthesis is detailed in section II.  Experiments are 
in section III, which includes X-Ray Diffraction, SQUID, and the 
growth of a SFMO thin film. A discussion of our data is in section 
IV and we conclude our work in section V.

II. Synthesis
Since we had no samples of Sr2FeMoO6 readily available, we 
had to synthesize the material.  After determining the most 
feasible manner to synthesize SFMO, we decided to use a solid 
state reaction of SrCO3 (99.99%), Fe2O3 (99.99%), and MoO3 
(99.998%)[2].  Using the chemical equation 4SrCO3 + Fe2O3 + 
2MoO3 + H2 ‘ 2Sr2FeMoO6 + 4CO2 + H2O and accounting for the 
different purity levels, we determined that 8.3773g SrCO3, 2.2577 
g Fe2O3, and 4.0681 g MoO3 would be used to give 12.0000 g of 
SFMO.  

These starting materials were ground in a Spex ball mill until 
well combined.  The solid state reaction chosen required a tube 
furnace to heat these powders to 1000°C for 24 hours, with 
ramping temperature rates of 1°C/min in both directions. 
 
The result of the initial annealing showed a distinct change in 
volume and color of the material.  The powders were re-ground 
at this point as part of the solid state reaction and various 
experiments were performed with this powder.  

Due to the decrease in volume, we decided to produce a second 
batch of SFMO.  The process with the ball mill and tube furnace was 
repeated.  For unknown reasons, a distinct iron oxide appearance 
was present after annealing in this batch, which was not present 
in the first batch.  Re-annealing at 1000°C for 12 hours removed 
the iron oxide appearance.  Unfortunately, the programming unit 
on the furnace did not ramp down for the second batch, resulting 
in a second annealing of 48 hours instead of 12 hours.  

Our goal to create a thin film of SFMO required the use of a 
Pulsed Laser Deposition (PLD) Chamber.  The PLD uses a 1 
inch diameter pellet of SFMO in order to produce a thin film of 
SFMO.  As the laboratory did not have a 1 inch pellet die kit, 
we designed a pellet die kit, with assistance from the physics 
department machine shop at the University of Connecticut.  The 
die kit consists of three basic parts: a base, a body and a plunger.  
The body was made from a 3” diameter cylinder of 4340 carbon 
steel with a 1” diameter hole in the center, the base was made 
from a 2.5 inch diameter cylinder of 1215 low carbon steel with a 
1” diameter raised insert made of O1 tool steel, for strength.  The 
plunger was made from 1215 low carbon steel as a handle with an 
inserted 3” long, 1” diameter O1 tool steel to act as the plunger.  
Once the body is placed on the base, powder is poured into the 
body and the plunger is inserted.  This entire unit is then placed 
in a pneumatic pellet press to press the powders into a pellet.  
We estimated the die kit to be usable at 80,000 lbs force, with the 
weakest element being the 4340 carbon steel body.

When we pressed the powders at 24,000lbs, they formed a single 
solid pellet. At lower forces, the pellets were easily broken.  
This pellet was then transferred onto a fire brick which we pre-
shaped to slide into the furnace’s ceramic tube.  The furnace was 
programmed to ramp at 1°C/min to 1200°C, hold for one hour, 
then ramp down to room temperature.  Once completed, we 
removed the pellet and found the exposed side to be peeling; the 
side in contact with the firebrick was free of defects.

Shortly thereafter, a SFMO pellet from Dr. B. Dabrowski at 
Northern Illinois University (NIU) was received.  Since this 
sample was not peeling, it was the sample we ultimately used to 
make a thin film in the PLD chamber.

Fig. 1: The double perovskite structure of Sr2FeMoO6.  Note that only 8 of 
the Sr atoms shown have the attached perovskite pictured. The remaining 
Sr atoms are shown for reference.  Most important is the manner in which 
the Fe and Mo perovskites alternate.
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III. Experiments
We performed two experiments on the powders, the first being 
X-Ray Diffraction (XRD) to ensure the correct structure was 
being formed. The second experiment we performed with a 
SQUID to investigate the magnetic ordering temperature.  The 
data from the SQUID was also used to determine if the sample 
was ordered or disordered.  We used the pellet in the PLD to 
grow a thin film, which we then used in a XRD experiment to 
ensure epitaxial growth.

A. Powder X-Ray Experiments
We performed X-Ray Diffraction on the powders after the initial 
annealing.  As the objective was to determine the structures 
present in the powders it is necessary to use photons that have a 
wavelength smaller than the d-spacing (atomic plane separation).  
This spacing is approximately 79 nm from previously reported 
data [7], and the X-Rays produced in the diffractometer have a 
wavelength of 0.154 nm, which makes XRD a very useful atomic-
level tool.  The choice of photons is ideal since they do not have 
a charge and are extremely stable and easy to produce.  The XRD 
experiments are entirely based on Bragg’s Law, which describes 
the diffraction of a photon with a crystal lattice structure.
	

The XRD revealed that all the peaks for SFMO were present, 
indicating the presence of a SFMO concentration in the powder.  
However, the additional lines indicate the presence of at least one 
impurity; SrMoO4 is reportedly the most likely impurity [2,9].  

We also performed XRD on the pellet received from NIU 
before it was used as the target in the PLD chamber.  The result of 
this experiment is given in Fig. 3, which indicates that only SFMO 
peaks are present.  This indicates a high purity sample, suitable 
for use as a target to grow thin films.

B. Superconducting Quantum Interference Device (SQUID) 
Experiments

We used a Quantum Design MPMS Superconducting Quantum 
Interference Device (SQUID) Magnetometer to measure the 
magnetic moment of the produced powder.  Magnetization was 
measured as a function of temperature over 5 to 350 K.  The 
powder was measured after the second annealing at 1000°C.  A 
highly ordered (> 90%) sample of SFMO should display an abrupt 
drop in magnetization [2,3].  The data from the SQUID experiment 
is presented in Fig. 4, which indicates that the sample is relatively 
disordered, but does not indicate how disordered it is.  	

Fig. 2: X-Ray diffraction comparing the powders after a 24 hour and anneal-
ing at 1000°C with the pressed powder pellet after the 1200°C annealing.  
The green dots indicate a proper stricter, as found in [6]. 

Fig. 3: X-Ray Diffraction experiment performed on the received target from 
Dr. Dabrowski at Northern Illinois University.  Comparing with the green 
dots in Fig. 2, we see a perfect match.  Since there are no extra peaks, we 
may conclude this sample is a high purity SFMO pellet.  

Fig. 4: Magnetic moment measurements taken as a function of temperature 
under an applied field of 5000G for SFMO powder after a 24 hour and sub-
sequent 12 hour annealing at 1000°C.  The relationship between magnetiza-
tion and temperature is commonly seen in a disordered sample.
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The impurity revealed in the XRD experiment could also be 
affecting the magnetization measurements.  It is difficult to 
determine whether the ordering is ferrimagnetic or ferromagnetic 
using a SQUID magnetometer. Nevertheless it does measure how 
strong of a magnetic moment it has.

C. Pulsed Laser Deposition (PLD) Chamber A PLD, shown 
in Fig. 5, relies on a high-intensity laser to ablate the surface 
of a solid, causing a plasma plume to form.  Inside the plume 
is the stoichiometric ratio of strontium, iron, molybdenum and 
oxygen.  A mounting plate inside the PLD holds a substrate 
which the plume deposits onto, forming the thin film.  In our 
case, the substrate was a 1 cm x 1 cm piece of SrTiO3 oriented 
in the (001) direction, commonly referred to as STO (001).  It 
was used because it has a close match to the lattice parameters of 
SFMO.  This match is required for SFMO to grow properly on top 
of the substrate [5].  Deposition will occur only in a low pressure 
environment, so the entire metal chamber is held under vacuum 
during growth. 	

The PLD has several important variables for growth.  In the 
experiment performed, we used the following growth conditions:   
a substrate temperature of 800°C, a chamber pressure of 
10-6 torr (1.3 x 10-9 atm), laser energy of 0.252 J with a frequency 
of 4 Hz and a growth time of 16 minutes. The exposure time 
varies depending on the required thickness of the film. The entire 
process takes several hours, as the chamber needs to be brought 
down to pressure and the substrate needs to heat up.

D.Thin Film X-Ray Experiment 
Once we grew the film, we removed the thin film from the 
mounting plate and checked to see if it was grown properly.  This 
was done with a XRD experiment, but with a different purpose 
than when performed for the powder.  We used XRD on the thin 
film to determine if it grew with proper orientation.  In Fig. 6, 
our thin film XRD experiment data is presented, in a logarithmic 
scale for the intensity values.  Since the SFMO thin film is 
approximately 200 nm thick, and the substrate is a ~2 mm thick, 
it is not surprising that the substrate has a much higher intensity 
value.  As a result, if we presented the data in linear rather than 
logarithmic, the SFMO peaks would be indistinguishable from 
background noise.  As the peaks present have (002), (005) and 
(006) Miller Indices, we concluded that this thin film was grown 
properly.

Fig. 5: The Pulsed Laser Deposition (PLD) Chamber.  Optical devices are 
contained inside the chamber, which re-focus the beam into the metal 
chamber.  The beam then hits the target, ablating the surface, and creating 
the plasma plume which will deposit onto the substrate.

Fig. 6: X-Ray Diffraction performed on the thin film as grown.  Note the in-
tensity is in logarithmic scale.  Due to the relative thickness of the substrate, 
we can observe that the largest SFMO peak is approximately 10% of the 
smallest substrate (STO) peak.
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IV. Discussion
Since we did not have data which related a set of 2θ values to 
Miller Indices for SFMO, we had to compute this data.  As we 
used STO (001) for a substrate, this forced the requirement that 
any peaks on the XRD experiments be in an (00l) plane, for an 
epitaxially grown thin film.  We started with Bragg’s Law, as it 
applies to X-Ray Diffraction:

Also, using the relationship between the lattice parameters a, b, 
and c (note that in SFMO, b = a [7]) and the Miller Index (hkl)[1] 
we know that:

Since STO (001) was used for a substrate, the only allowed planes 
are (00l) planes, thus h = k = 0.

We replaced d from (3) into (1) and set n = 1, as is commonly 
done, to yield:

At this point the variable λ, wavelength of the incident photon, is 
a known value that is specific to the X-Ray Diffractometer, in our 
case 15.41 nm.  Also, c is a known value from previously reported 
data and measured as 78.949 nm [7].  To determine if a specific 
angle measurement is a (00l) peak, we solved for the angle.  
Observing that the X-Ray Diffractometer actually measures 2θ:

The final step in equation (5) is to convert from radians to degrees.  
With equation (5), it is easy to see if a peak is a (00l) peak or 
not.  Since l is an integer, we evaluated for each l value starting 
at 1 until the inverse sine function was no longer defined.  From 
this, we obtained a complete set of data relating 2θ to (00l) Miller 
Indices. 

Any peaks that occur which do not appear on the list are a sign 
of a poorly grown thin film.  If, however, every peak that occurs 
is the result of a (00l) peak, then we have shown epitaxial growth.  
This indicates that the thin film is of high quality, and has proper 
orientation.  As the thin film produced yielded (002), (005) and 
(006) peaks, it was found to have been properly grown.

V. Conclusion
The Sr2FeMoO6 material was somewhat successfully synthesized.  
An impurity was found to exist in the powders, which remained 
through to the produced pellet.  In addition, the pellet exhibited 
a peeling surface.  As such, a sample from NIU was received 
with time to perform X-Ray Diffraction, which revealed high 
purity, and was in good physical condition.  The thin film that 
was produced was found to have been successfully grown, as 
confirmed by the X-Ray Diffraction experiment.
	
At this point, the end of the research project was reached.  The 
biggest goal that remained unfinished was performing the Spin-
Resolved Photoelectron Emission Microscopy (Spin-Resolved 
PEEM) and resistance experiments.  These experiments would 
show direct proof of whether or not the SFMO thin film had 
a half-metallic nature, which would indicate that it has some 
rare properties – such as Colossal Magnetoresistance.  With 
confirmation of a half-metallic nature SFMO could be used in 
quantum devices, spintronics or advanced data storage devices. 
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