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Abstract 

AlGaN/GaN high electron mobility transistor (HEMT) has become a 

promising candidate to replace the conventional Silicon-based transistors in the 

field of power electronics due to the superiority in its channel mobility and its 

critical breakdown field. However, the device characteristics under high-

temperature ambient are not fully understood for reliable implementations into 

the high power systems. In this thesis, the design, simulation, fabrication, and 

characterisation on the AlGaN/GaN HEMTs with investigations on high-

temperature characteristics are carried out thoroughly. 

Firstly, a Schottky-gated AlGaN/GaN HEMT was characterised and 

analytically modelled at temperatures up to 500K. The variation in some of the 

important physical parameters such as the Schottky barrier height, VTH, sub-

threshold swing, and specific contact resistances at high temperatures have been 

modelled with the verification of Sentaurus TCAD simulation. This work 

provides fundamental knowledge on the device performance and temperature 

dependence of the AlGaN/GaN HEMTs, which is useful for later studies. 

Additionally, due to the intrinsic existence of the two-dimensional electron 

gas (2DEG) at the AlGaN/GaN interface caused by the polarisation field, the 

fabricated Schottky-gated HEMTs have negative VTH, which is unsafe for high-

power applications. Therefore, this thesis also focuses on the VTH engineering 

through the partial AlGaN barrier recess combined with multiple fluorine 

plasma treatments (FPT) onto the Al2O3 gate dielectrics. The partial recess at 

the gate region is able to weaken the 2DEG density without degrading the 

channel conductivity. With subsequent triple Al2O3 deposition-FPT cycles, 
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significant amount of negative charge is incorporated into the gate dielectric to 

shift the VTH to +6.5V. The negative charge concentration and distribution have 

been verified and modelled by the Sentaurus TCAD simulation and the VTH 

analytical model. Such normally-off metal-insulator-semiconductor (MIS) 

HEMT is able to construct a monolithic logical inverter by integrating it with a 

normally-on MIS-HEMT. The fabricated inverter has high output swing of 96.6% 

and fast switching speed of less than 130ns, which is applicable for power 

integration circuits. 

However, the VTH is unstable for the MIS-HEMTs with multiple FPT on the 

Al2O3 layer at high temperature ambient. This thesis also proposed a method to 

characterise the distribution of FPT-induced electron trapped levels within the 

Al2O3 gate dielectrics through the VTH swing and the gate stressing techniques. 

The VTH thermal instability is caused by the shallower electron trap energy 

levels than the energy level within the Al2O3 bandgap from which electron 

emission will occur at high temperature named as the trap emission energy. It is 

also observed that at higher FPT power, the VTH reduction is less at temperatures 

up to 200°C. Hence, higher FPT power is able to increase the amount of trapped 

electrons at deeper levels than the trap emission energy at high temperatures.  

The relationship between the FPT power and the VTH high-temperature 

stability of the fluorinated Al2O3/AlGaN/GaN MIS-HEMTs proposes a link 

between the Al-F bond incorporation and the trap energy level. To further 

enhance the VTH high-temperature stability and process simplicity, a novel short 

Argon plasma treatment (APT) followed by single FPT on Al2O3 with 

inductively coupled plasma reactive ion etching (ICP-RIE) instrument is 
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reported in this thesis. High VTH of 4.4V, satisfactory drain saturation current 

(IDMAX) of 320mA/mm at (VG−VTH)=6V and 30% improvement in breakdown 

voltage than the device without APT were achieved. The measured VTH of 2.5V 

at 200°C is the highest in hitherto reported FPT-AlGaN/GaN HEMTs. Based on 

the secondary ion mass spectroscopy (SIMS) and the X-ray photoelectron 

spectroscopy (XPS), the APT is able to effectively enhance the breaking of Al-

O bonds and allow for the generation of excessive Al-F bonds in the following 

FPT process on the Al2O3 surface. According to the gate-stressing test which 

extracted the trap state distribution of the fabricated MIS-HEMTs together with 

the Gaussian 09 molecular simulations on the Al2O2.5F and Al2O2F2 cells with 

similar Al-F composition to the XPS characterisation results, the APT-then-FPT 

process can effectively shift most of the trap states to deeper energy levels than 

the trap emission level at 200°C. Therefore, better VTH thermal stability was 

achieved at 200°C with the APT-then-FPT process. 
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CHAPTER 1 Introduction 

1.1 Background 

The semiconductor industry has been dominated by silicon-based 

technology for decades with mature CMOS fabrication process. However, the 

need for higher power applications has made the silicon-based devices 

unsuitable because of its limitations on the channel mobility, saturation velocity, 

operating temperatures and the breakdown field [1]. Therefore, it is essential to 

use an alternative material to replace silicon in the field of modern power 

electronics applications. 

Table 1.1 summarises the material parameters for Si, GaAs, SiC and GaN. 

These are the major materials used in the semiconductor industry. The first 

generation of devices based on III-V materials is the high electron mobility 

transistor (HEMT) with AlGaAs/GaAs heterojunction as the barrier and buffer 

layers of the device. With the appropriate amount of doping and applied gate 

bias, the two-dimensional electron gas (2DEG) carrier density can reach the 

magnitude of 1012 cm-2 for the AlGaAs/GaAs devices [2]. However, its small 

bandgap results in small breakdown field, which is not desirable for high power 

applications. Even though SiC is a good candidate for high power applications 

due to its wide bandgap (i.e. the fabricated device can potentially obtain high 

breakdown voltage), the carrier mobility is the lowest amongst these four 

materials. The low carrier mobility is undesirable for good on-state conductivity 

and fast switching speed.  
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Thus, amongst all of the materials listed in Table 1.1 [3], Gallium Nitride 

(GaN) is a promising material to fabricate HEMTs for high power applications 

due to its high breakdown field and good carrier mobility within the 2DEG. 

These physical properties allow GaN based devices to handle higher breakdown 

voltage, conduction current, and switching speed than conventional Si based 

power transistors.  

Table 1.1 Comparison of GaN material properties with Si, GaAs, and SiC [3]. 

Properties Si GaAs SiC GaN 

Energy Gap (eV) 1.11 1.43 3.2 3.4 

Breakdown Electric Field (ξBR, in MV/cm) 0.6 0.5 3.0 3.5 

Saturation Velocity (υsat, in 107 cm2/s) 1.0 1.0 2.0 2.5 

Thermal Conductivity (W/cm/K) 1.5 0.5 4.9 1.5 

Mobility (cm2/V/s) 1300 6000 600 1500 

For GaN based devices used in power electronics, one of the challenges is 

the achievement of normally-off operations (i.e. the threshold voltage (VTH) is 

greater than zero) in order to ensure the system security. Due to the intrinsic 

polarisation field within the material, 2DEG exists at the AlGaN/GaN interface 

without providing any external bias. Hence, the fabricated device is normally-

on (i.e. VTH<0) if no special gate design is implemented. Techniques such as 

AlGaN barrier layer recess which removed the local 2DEG channel under the 

gate [4-6], p-GaN cap layer at the gate which depleted the 2DEG at the 

AlGaN/GaN interface due to the junction depletion field [7, 8] and fluorine 

incorporation which introduced negatively charged ions to deplete the 2DEG at 

the gate [9] are implemented to achieve normally-off operations. Details of the 

abovementioned gate treatment techniques will be reviewed in Section 1.3. 

Additionally, the performance of the power devices under high-temperature 

is important for power electronics applications as the power system is usually 
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implemented under high ambient temperature. For instance, the power 

electronic system within the electric or hybrid electric vehicles located near the 

engine has an ambient temperature of up to 200°C [10]. Therefore, proper 

modelling of the device performance at high temperature is important during the 

system design. In addition, the threshold voltage stability at high temperature is 

one of the most important properties for power devices as it is directly related 

to the on/off characteristics and the current rating of the device. A stable and 

high positive VTH at high temperature ensure the safety, standby power 

consumption and performance of the system.  

1.2 Overview of polarisation effect at AlGaN/GaN interface 

The highly conductive two-dimensional electron gas (2DEG) formed at the 

AlGaN/GaN interface can act as the channel of a AlGaN/GaN HEMT. It is 

induced by the intrinsic polarisation effect without any external bias to the 

device nor any intentional doping to the material. Unlike the symmetrical 

materials such as tetrahedral-shaped silicon, the non-centrosymmetric materials 

have different faces at the opposing but uniaxial directions. For wurzite GaN 

structure, the (0001) faced GaN has gallium atoms at the surface (Ga-face), and 

the (0001̅) faced GaN has nitrogen atoms at the surface (N-face), as illustrated 

in Fig. 1.1. Different methodologies for GaN epitaxial growth produce different 

faced layers. For example, plasma-induced molecular beam epitaxy 

(PIMBE)grown GaN films are N-faced, while for metal-organic chemical 

vapour deposition (MOCVD) grown GaN films produce Ga-faced surface [11].   

The different faces of the material induce different polarity of the 

polarisation charge at the AlGaN/GaN interface, therefore result in different 
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electrical characteristics for the fabricated device. The polarisation consists of 

two different mechanisms: spontaneous and piezoelectric. The spontaneous 

polarisation (PSP) is generated by the electron cloud displacement in the 

asymmetric GaN crystal [12], and the piezoelectric polarisation (PPE) is induced 

by the mechanical force between the atoms at the AlGaN/GaN interface due to 

the lattice mismatch between AlGaN and GaN[13].  

  

Fig. 1.1 Schematic diagram of the crystal structure of wurzite Ga-faced and N-faced 

GaN [11] 

Fig. 1.2 summarises the polarity of spontaneous and piezoelectric 

polarisation at different faces and tensile forces. It is observed that for Ga-faced 

GaN, the electric field created by PSP is pointing towards the substrate. For N-

faced GaN, it is pointing towards the surface. Additionally, if interfacial 

mechanical forces exist at the AlGaN/GaN interface, PPE will be induced. PSP 

and PPE will have the same polarity if the AlGaN barrier is experiencing tensile 

strain due to its smaller lattice constant than the GaN buffer. If GaN and AlGaN 

become the barrier and the buffer layers respectively, compressive strain will be 

exerted on the GaN barrier [6]. For AlGaN/GaN epitaxial layers grown by 

MOCVD, AlGaN layer is grown on Ga-face and experiences tensile strain. 

Therefore, both the PSP and PPE fields are pointing towards the substrate and a 
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net positive polarisation charge is induced at the AlGaN/GaN interface, as 

shown in Fig. 1.2(b). For AlGaN/GaN HEMT applications, MOCVD is 

normally used to obtain net positive polarisation charge. 

The total amount of polarisation charge at Ga-faced AlGaN/GaN interface 

( pol ) can be expressed as Eq. (1.1) [13]. In Eq. (1.1), the amount of PSP for 

wurzite GaN is −0.029 C/m2 and the PSP for AlGaN can be extracted by Eq. (1.2) 

[13], where x is the Al content within AlGaN. PPE of AlGaN and GaN are 

defined in Eq. (1.3) [13], where a0 is the lattice parameter at equilibrium, e31 

and e33 are the piezo-electric coefficients and C13 together with C33 are the elastic 

coefficients. The detailed values of the above parameters are summarised in 

Table 1.2.  

To compensate the positive polarisation charge at the Ga-faced AlGaN/GaN 

interface, free electrons accumulate at the AlGaN/GaN interface and form the 

two-dimensional electron gas (2DEG). 2DEG can be used as the conduction 

channel of a transistor. The 2DEG sheet carrier density for an ideal Schottky-

gated AlGaN/GaN HEMT can be modelled by Eq. (1.4) [14], where q is the 

elementary charge for single carrier (1.610-19 C), tAlGaN is the thickness of 

AlGaN, ε0 is the permittivity in vacuum (8.8510-14 F/cm), εAlGaN is the relative 

permittivity for AlGaN, ϕb is the Schottky barrier of the gate contact, EF is the 

Fermi level from the GaN conduction band and ΔEC is the conduction band 

offset between AlGaN and GaN. The ϕb, εAlGaN, EF, and ΔEC can be 

approximated by Eq. (1.5) to (1.8) [11], where m*  0.22me is the effective 

electron mass of AlGaN,   is the plank’s constant and Eg is the bandgap. 
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Fig. 1.2 Polarisation induced sheet charge density and directions of the spontaneous 

and piezoelectric polarisation in Ga- and N-face strained and relaxed AlGaN/GaN 

heterostructures [11]. 

Table 1.2 Summary of the parameters used for PSP and PPE calculations of AlGaN and 

GaN 

 AlxGaN GaN 

a0 (nm) 0.3112x+0.3189(1−x) 0.3189 

e31 (C/m2) −0.11x−0.49 −0.49 

e33 (C/m2) 0.73x+0.73 0.73 

C13 (GPa) 5x+103 103 

C33 (GPa) −32x+405 405 
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According to Eq. (1.1), (1.2) and (1.3), the Al content in AlGaN is an 

important factor to the magnitude of polarisation effect and the induced 2DEG 

density accordingly, since higher Al content enhances the AlGaN lattice 

mismatch with GaN. Fig. 1.3 demonstrates the effect of Al content to both PSP 

and PPE, and they both increase with higher Al content.  

 

Fig. 1.3 The relationship between polarisation-induced sheet charge and aluminium 

concentration [13].  
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The formation of 2DEG by the polarisation field can also be explained by 

the energy band diagram shown in Fig. 1.4. For an ideal surface where the 

defects are absent, the valence band of AlGaN surface is approaching the Fermi 

level as its thickness increases during epitaxial growth. Once the valence band 

of AlGaN surface reaches the Fermi level at the AlGaN critical thickness (dCR), 

holes accumulate at the AlGaN surface and the same amount of negative sheet 

charge (i.e. the 2DEG) is formed at the interface to compensate the surface holes. 

The accumulated holes at the surface will hinder further potential increase due 

to the increase of AlGaN thickness. Hence, the 2DEG density is at equilibrium 

[15].  

 

Fig. 1.4 The formation of 2DEG for ideal AlGaN surface [15] 

If the AlGaN growth condition is not ideal, surface trap states will exist at 

the AlGaN surface, as shown in Fig. 1.5. When the thickness of AlGaN reaches 

the dCR, electrons from the ambient partially fill the surface trap states and pin 

the Fermi level near the trap level. The electrons trapped at the surface, which 
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are defined as surface donors, have opposite polarity as the polarisation field. 

Therefore, the 2DEG density at the AlGaN/GaN interface is smaller than that 

with perfect AlGaN surface. Therefore, it is necessary to reduce the amount of 

surface trap states of the device by surface passivation during device fabrication. 

 

Fig. 1.5 The formation of 2DEG for non-ideal AlGaN surface [15]. 

1.3. Review of normally-off techniques for AlGaN/GaN HEMTs 

Due to the nature of intrinsic polarisation effect for GaN, the fabricated 

devices will be at normally-on operations if no special treatment is applied at 

the gate region. It is not desirable for power applications due to system safety 

concerns. Design techniques such as AlGaN barrier layer recess [4-6], p-GaN 

cap layer [7, 8] and charged ion implantation through plasma treatment [9] have 

been implemented to realise normally-off (VTH>0) operations and will be 

reviewed in this Section.  
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1.3.1 AlGaN barrier recess 

According to the 2DEG formation mechanism illustrated in Section 1.2, 

2DEG at the AlGaN/GaN interface will not be induced if the AlGaN barrier 

layer is below the critical thickness. Therefore, the channel between the source 

and drain contacts can be pinched off by selectively etching off the barrier layer 

at the gate region. The channel can be restored by the electron accumulation 

from a gate bias greater than the VTH.  

The relationship between the recessed gate and the performance of the 

device was reported in [6]. Fig. 1.6 is the cross-section schematic of the 

recessed-gate HEMT. In this figure, the Al0.25Ga0.75N barrier layer is 25nm and 

the GaN channel layer is 2μm. The gate recess was realised by Cl2/BCl3/Ar 

inductively coupled plasma reactive ion etching (ICP-RIE).  

 

Fig. 1.6 Cross-sectional schematics of the recessed-gate HEMT reported in [6] 

Fig. 1.7 and Fig. 1.8 demonstrate the ID-VG characteristics and the extracted 

VTH of the devices with different recess depth and etch time. It is clearly shown 

that the VTH is higher with the deeper recess depth. However, the maximum VTH 

achieved by this method is only slightly above 0V. Additionally, the slope of the 

ID-VG is degrading with increasing recess depth. It implies the degradation of 

transconductance (the slope of the ID-VG curve) and the increase of on-state 
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resistance due to its damage to the AlGaN/GaN interface and the degradation in 

the carrier mobility.  

 

Fig. 1.7 ID-VG characteristics of the AlGaN/GaN HEMT with different AlGaN etching 

depth at the gate region. Measurement was carried out when VDS=5V [6] 

 

Fig. 1.8 Summary of extracted threshold voltage as a function of AlGaN etching time 

[6] 

In Fig. 1.9, the 2DEG carrier mobility is obviously reduced with the 

increase of AlGaN recess depth. It is due to the exacerbation of carrier scattering 

by surface roughness. Therefore, for the state-of-the-art gate recessed devices 



12 

 

reported, surface recovery or protection have been applied to the gate to restore 

the degradation in mobility. The most common technique is to deposit a thin 

passivation layer before gate metal deposition to obtain metal-insulator-

semiconductor (MIS) gate configurations [16, 17]. Another method reported is 

to insert an thin etch-stop layer in between AlGaN and GaN layers to ensure the 

etching process do not damage the GaN layer [18].  

 

Fig. 1.9 Mobility as a function of etch depth [6] 

The advantage of the barrier recess technique is the applicability in the 

cleanroom and the simplicity to implement into the fabrication process. It uses 

reactive ion etching (RIE) equipment with Cl2-based gas, which are commonly 

used in the semiconductor industry or the laboratory. In addition, only one 

additional lithography process is required before the barrier etching. Table 1.3 

summarises the VTH and the maximum drain saturation current (IDMAX) of the 

state-of-the-art normally-off GaN HEMT with different gate recess techniques. 

Due to different gate structures of the devices, IDMAX reported in Table 1.3 are 

achieved with different gate overdrive voltages (VG−VTH). Even though the 
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novel etch-stop barrier layer has been implemented to control the gate recess, 

passivation layer deposition after gate recess is still a more widely-used 

technique that provides highest VTH and IDMAX. 

Table 1.3 The threshold voltage (VTH) and maximum drain current (IDMAX) of the state-

of-the-art GaN devices utilising gate recess techniques. The differences between the 

VG and VTH when IDMAX are also shown in the table. 

Reference Gate Processing Technique VTH IDMAX 

[16] Wet Etch Recess+Al2O3 passivation +1.7V 420mA/mm 

(@VG−VTH=4.3V) 

[17] Recess+SiNX & HfO2 dielectric stack +1.65V 650mA/mm 

(@VG−VTH=4.35V) 

[18] Addition of AlN Etch-stop barrier 

layer 

+0.3V 250mA/mm 

(@VG−VTH=2.7V) 

 

The disadvantage for the barrier layer recess is the difficulty in the precise 

control of the etch thickness. If the AlGaN barrier is under-etched, the VTH will 

be unable to reach normally-off condition. If the AlGaN barrier is over-etched, 

the surface damage introduced by the dry etching process will degrade the 

2DEG carrier mobility and reduce the on-state conductivity and switching speed 

of the device. Additionally, the barrier recess technique is unable to obtain high 

enough VTH due to the absence of additional depletion field or p-n junction. 

1.3.2 P-GaN cap layer 

Similar to the working principles of typical p-n homo-junction, the addition 

of p-GaN layer on top of the unintentionally doped AlGaN barrier can form a 

junction field which can deplete the 2DEG charge at the AlGaN/GaN interface. 

Fig. 1.10 compares the conduction band of the device with and without p-GaN 

layer. It is shown that the p-GaN layer at the gate is able to shift the conduction 

band at AlGaN/GaN interface above the Fermi level (0eV), implying the 

disappearance of the 2DEG and normally-off operations.   
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Fig. 1.11 demonstrates the schematic diagram of the p-GaN gate power 

HEMT on Si substrate reported by [19]. In Fig. 1.12, the threshold voltage 

reaches about +3V, which is much higher than the gate recess technique. The 

gate current becomes significant when VG>6V at VD=1V, implying the p-

GaN/AlGaN junction forward voltage is about 6V. At VD=10V, the gate current 

is suppressed even when VG is greater than 6V. This can be explained by the 

hindering of the gate current flow as the p-GaN/AlGaN heterojunction is 

reversed biased between the drain and the gate terminals. 

 

Fig. 1.10 The conduction band energy level underneath a normally-off p-GaN gate 

(blue line, cross-sectional schematic diagram is shown in the inset above) compared to 

a Schottky gate (red line, cross-sectional schematic diagram is shown in the inset below) 

[8] 
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Fig. 1.11 Schematic diagram of the p-GaN gate power HEMT on Si substrate [19] 

 

 

Fig. 1.12 The electrical characteristics of p-GaN HEMTs. (a) Drain and gate currents  

with respect to the gate bias at drain biases of 1 V (in blue) and 10 V (in red). (b) 

transconductance (gm) characteristics.  
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Table 1.4 summarises the threshold voltage and the maximum drain 

saturation current (IDMAX) of the state-of-the-art normally-off GaN HEMT with 

p-GaN cap layer. Generally, p-GaN cap layer is able to provide threshold voltage 

of more than 2V, yet the IDMAX is not as high as the gate recess techniques due 

to the weaker control to the 2DEG from the gate contact through the thick p-

GaN cap layer. In addition, the p-GaN/AlGaN junction will be forward biased 

before the gate drive voltage is large enough to induce high IDMAX. 

Table 1.4 The threshold voltage (VTH) and maximum drain current (IDMAX) for state-

of-the-art GaN devices utilising p-GaN cap layer. The differences between the VG and 

VTH when IDMAX are also shown in the table.  

Reference Device Features VTH IDMAX 

[20] Source-connected p-GaN gate  +2.44V 320mA/mm 

(@VG−VTH=4.56V) 

[7] p-GaN with Tungsten Schottky gate  +3.03V 220mA/mm 

(@VG−VTH=4.97V) 

[8] p-GaN with carbon doped buffer and 

AlGaN back-barrier 

+1.1V 350mA/mm 

(@VG−VTH=3.9V) 

 

The major issue for p-GaN gate is the difficulty of dopant activation. There 

are three reasons for low p-type dopant activation within GaN. Firstly, the 

activation energy of Mg dopant in GaN is very high (EA =136~160 meV [21]). 

Secondly, Mg acceptors within GaN can be passivated through the formation of 

clusters with oppositely charged nitrogen vacancy (Mg-VN)  [22] Lastly, the 

Mg acceptors can also be passivated by the formation of electrically inactive 

Mg-H bonds with hydrogen atoms [23]. Hence, post-growth thermal annealing 

under N2 or H2 environment to compensate the nitrogen vacancy or hydrogen 

bonds and release Mg dopant is required for Mg to be effectively activated into 

free holes. The highest reported hole concentration was ~11018 cm-3 [24], 

regardless of the amount of Mg dosage.   
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1.3.3 Fluorine plasma treatment 

As illustrated in Section 1.3.1, gate recess technology introduces surface 

damage that reduces the mobility and increases the gate leakage current. 

Therefore, [9, 25] have reported an alternative recess-free fluorine treatment 

technique by CF4-based PECVD that implants fluorine ions into the AlGaN 

barrier at the gate region. When fluorine atoms are incorporated into AlGaN, 

they tend to absorb one free electron and behave as negative ions as fluorine has 

strongest electronegativity amongst all other elements. Due to the tight lattice 

structure in AlGaN/GaN heterostructures, most fluorine ions tend to stabilize at 

the interstitial sites by the repulsive force from neighbouring ions if the F is 

incorporated in AlGaN. Hence, the local potential within AlGaN is modulated 

and an extra barrier ϕF is introduced, as illustrated in the conduction band profile 

in Fig. 1.13 (b). Such modulation depletes the 2DEG at the AlGaN/GaN 

interface and achieves normally-off operation. The advantages of fluorine 

plasma treatment on achieving normally-off operation are the simplicity to 

control and the accessibility to the equipment. The fluorine plasma treatment 

normally uses RIE with F-based gas, which is widely available in the 

semiconductor industry and normally applied in SiO2 etching process. It is also 

found that there is a direct relationship between the amount of incorporated 

negative charge and the 2DEG depletion field by the fluorine plasma treatment. 

Therefore, it is theoretically possible to obtain high VTH by simply increasing 

the concentration of incorporated negative charge. 

 



18 

 

 

Fig. 1.13 Cross-sectional schematics and the conduction energy band of (a) standard 

normally-on and (b) fluorine-treated device [25] 

Fig. 1.14 reports the relationship between the threshold voltage and RF 

plasma power and treatment time [9]. The VTH increases with the rise of plasma 

power or the treatment time, and the maximum VTH can be obtained is +0.9V.  

 

Fig. 1.14 The variations in the threshold voltage of the HEMT devices after the fluorine 

treatment with different (a) plasma power and (b) treatment time [9]  

For the latest techniques utilising fluorine treatment, several approaches 

have been applied to enhance the VTH and IDMAX. For instance, a dielectric layer 

was applied after the fluorine treatment to reduce the surface damage and 
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preserve the material quality [26]. Table 1.5 demonstrates the VTH and IDMAX for 

the state-of-the-art GaN devices with fluorine treatment. 

Table 1.5 The threshold voltage (VTH) and maximum drain current (IDMAX) for state-

of-the-art GaN devices utilising fluorine treatments. The differences between the VG 

and VTH when IDMAX are also shown in the table. 

Reference Device Features VTH IDMAX 

[27] LaLuO3 for gate dielectric +0.6V 400mA/mm 

(@VG−VTH=1.9V) 

[28] Si3N4 protected the gate during 

fluorine treatment and removed 

before gate metal deposition   

+1.8V 380mA/mm 

(@VG−VTH=3.2V) 

[29] GaN device on SOI wafer +0.9V 300mA/mm 

(@VG−VTH=1.6V) 

The disadvantages of fluorine plasma treatment are mainly the 

concentration of incorporated fluorine and the thermal stability of negatively 

charged ions. As reported in Fig. 1.14, the VTH (i.e. the concentration of 

incorporated negative charge) is increasing with higher RF power or longer 

treatment time. However, both parameters have to be constrained to ensure the 

2DEG channel is protected from ion bombardment during the plasma treatment. 

Such trade-off prevents the device from achieving a high VTH with good on-

state conductivity. It is also reported that the VTH of devices fabricated with 

fluorine treatment is unstable at higher ambient temperature. Detailed 

discussion will be made in Section 1.5. 

Table 1.6 compares the advantages, disadvantages and device performance 

parameters for all of the gate design techniques reported in Section 1.3. 

Amongst all, the fluorine treatment has the potential to produce very high VTH 

with a good IDMAX if sufficient negative charge can be introduced in the gate 

region and confined above the AlGaN/GaN interface. 
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Table 1.6 Comparison of the advantages and disadvantages for the gate treatment 

techniques and their VTH & IDMAX reported in Section 1.3 to achieve normally-off 

operations 

 Advantages Disadvantages Latest 

Reported 

VTH 

Latest 

Reported 

IDMAX 

Gate 

Recess 

Easy to 

fabricate and 

control 

Surface damage 

degrades 2DEG 

mobility and 

introduces traps 

+1.7V [16] 

+1.65V 

[17] 

 

500mA/mm 

[16] 

650mA/mm 

[17] 

High IDMAX 

after surface 

passivation 

Low VTH  

p-GaN cap High VTH  Difficult Mg dopant 

activation 

+2.44V  

[20] 

+3.03V [7]  

 

320mA/mm 

[20] 

220mA/mm 

[7] 

 

Gate surface 

protected 

Require extra 

epitaxial deposition 

process 

Poor gate control 

due to thick p-GaN 

Fluorine 

plasma 

treatment 

Easy to 

fabricate and 

control 

May damage the 

lattice in channel 

region 

+0.6V [27]  

+1.8V [28] 

+0.9V [30] 

400mA/mm 

[27] 

380mA/mm 

[28] 

300mA/mm 

[30] 

Higher IDMAX 

than p-GaN 

Lower VTH than p-

GaN 

Potentially can 

obtain high 

VTH 

Poor VTH thermal 

stability 

1.4 Effect of charge trapping to the VTH of AlGaN/GaN HEMTs 

Even though GaN-based HEMT is a promising candidate for power 

electronics application due to its wide bandgap, high 2DEG carrier density and 

high mobility, the defects at the AlGaN surface, AlGaN/GaN interface, or the 

bulk of the gate dielectrics behaves as trap sites for free-moving charge and may 

affect the device performances.  

The traps located between the gate contact and the 2DEG will alter the 

threshold voltage of the device [31]. An example is the fluorine-treated HEMTs 

reported in Section 1.3.3, which utilised trapped electrons by fluorine plasma 

treatment to deplete the 2DEG and achieve normally-off operations. However, 

even there is no plasma treatment applied to the gate, the unintentionally 
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introduced defects also affect the VTH. According to the Fig. 1.15 extracted in 

[31], direct relationship is found between the VTH hysteresis (ΔVTH) and the 

maximum gate voltage during the ID-VG bi-directional sweep. Referring to Fig. 

1.15 (b), a maximum VTH hysteresis of 1V is found when maximum VG is 

stressed to 9V.  

The increase in the hysteresis at higher VGS,max is explainable by the 

variations in the energy band during the bi-directional sweep, extracted from 

[31] and shown in Fig. 1.16. In Fig. 1.16 (a), when VG is increasing, the electrons 

from 2DEG are emitted and trapped at the Al2O3/GaN interface due to the field 

induced by positive VG. These trapped charge behaves as a parasitic capacitor, 

Ctrap-filling, connected in parallel with the 2DEG parasitic capacitance (C2DEG). 

As shown in Fig. 1.16 (b), when VG has reached its maximum and starts to 

decrease, the electrons trapped at the Al2O3/GaN interface are emitted after a 

period of time. Therefore, if the sweep time is faster than the trap emission time, 

the electrons at the interface will provide an extra field to deplete the 2DEG. 

Therefore, the VTH is higher during the negative sweep.  
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Fig. 1.15 (a) ID-VG transfer characteristics of Ni/Al2O3/GaN/AlGaN/GaN MIS-HEMTs 

and corresponding HEMTs with increasing VG,max. (b) The relationship between ΔVTH 

and VG,max− VTH for reported HEMT and MIS-HEMT [31] 
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Fig. 1.16 Schematic band diagrams and equivalent circuits of MIS-diode when VG is 

(a) increasing and (b) decreasing [31] 

The model for the trap emission time from a certain trap state is expressed 

in Eq. (1.9), where σn is the capture cross section for holes, vT is the electron 

thermal velocity, Nv is the effective density of states in the valence band, ET is 

the energy depth of the trap states, and T is the ambient temperature. According 

to Eq. (1.9), the trap emission time at ET is shorter at high temperature. In other 

words, the same trap emission time under higher ambient temperature will 

release the traps located at deeper levels than the ones at room temperature. Such 

effect affects the VTH stability at high-temperatures, especially for the normally-

off devices using fluorine plasma treatment as their gate processing technique. 

It will be further discussed in Section 1.5.  

     (1.9) 

1.5 VTH thermal stability of fluorine plasma treated AlGaN/GaN 

HEMTs 

The performance of the power device under high-temperature is important 

for power electronics applications as the system is usually implemented under 
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high ambient temperature. For instance, the power electronic system within the 

electric or hybrid electric vehicles located on the engine will have an ambient 

temperature of up to 200°C [10]. The VTH thermal stability is one of the most 

important parameters for power devices as it directly influences the on/off 

characteristics and the current rating of the power system. A stable and high 

enough positive VTH ensures the safety and performance of the system. In this 

section, the VTH of AlGaN/GaN HEMTs with the fluorine treatment technique 

will be reviewed and compared. 

An example of the VTH thermal stability analysis is carried out on a 

normally-off HEMT fabricated with CF4 plasma treatment on the gate at RF 

power of 150W for 150s [32]. According to the ID-VG characteristics of the 

device at 25°C and 375°C shown in Fig. 1.17, a 68% decrease of 0.76V to 0.24V 

is observed. It implies the stronger emission of trapped electrons from fluorine-

induced trap states at higher temperatures.  

 

Fig. 1.17 ID-VG characteristics of normally-off (E-Mode) normally-off AlGaN/GaN 

HEMTs with a gate width of 100μm, operating at room temperature and 375°C [32] 
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It is also found that different techniques of fluorine incorporation lead to 

different VTH thermal performances. The Al0.28GaN (22nm)/GaN (1.1μm) 

HEMT fabricated with CF4 plasma or F ion implantation is reported in [33]. 

With CF4 plasma treatment at RF power of 60W for 200s on the AlGaN barrier 

layer, the VTH can be shifted from 3.1V to −0.9V at room temperature. If the 

AlGaN layer is processed with F ion implantation with a dose of 51012 cm-2 at 

50 keV, the VTH=0.38V at room temperature. As shown in Fig. 1.19, the VTH 

of CF4-treated device will decrease from −0.9V to 1.6V at temperatures higher 

than 60°C. While for F ion implanted device, the VTH can be maintained at 

0.42V under 200°C. Due to the relationship between the trap level and the 

temperature indicated in Eq. (1.9), it is expected that most of the states with 

electrons occupied are relatively close to the conduction band (i.e. “shallow 

traps”) if the F was introduced through plasma treatments. Therefore, the 

fluorine plasma treatment technique has to be replaced or optimised for 

improved VTH thermal stability 

 
Fig. 1.18 Comparison of VTH dependence on the ambient temperature for CF4 plasma-

treated and F-implanted AlGaN/GaN HEMTs [33] 
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1.6 Aims and objectives 

The aim of this PhD thesis is the thorough study of the normally-off 

AlGaN/GaN HEMTs, including the design, simulation, fabrication and 

characterisation of the devices with special focus on the VTH thermal stability. 

This PhD study offers deep understanding on the high-temperature device 

physics and possible solution to the future application of GaN-based HEMTs 

within a power electronic circuit under high ambient temperature. 

In this thesis, the underlying physics on the influence of high temperature 

on the HEMTs was investigated with the optimisation of existed room-

temperature analytical models. In order to fabricate a functional 

Al2O3/AlGaN/GaN power HEMTs with high VTH, multiple fluorine plasma 

treatments combined with partial AlGaN recess were implemented with detailed 

analysis of the fluorine-induced trap distribution within the gate dielectrics. 

Finally, the understanding of the trap distribution and its relationship to VTH 

thermal stability leaded to the successful design, fabrication and characterisation 

of an Al2O3/AlGaN/GaN-based normally-off MIS-HEMT with novel Argon 

pre-fluorination plasma treatment. The device maintained high VTH of 2.5V at 

up to 200°C, which is the highest reported using the fluorine plasma treatment 

technology. 

1.7 Thesis organisation 

   The thesis consists of 8 chapters, including the introduction as Chapter 1. 

The tools used for the simulation, fabrication and characterisation of the thesis 

are discussed in Chapter 2 with brief explanations of their operating principles. 

The major work of the thesis is documented in Chapters 3~7. 



27 

 

Firstly, in order to have a better understanding on the effect of high ambient 

temperature to the performance of AlGaN/GaN HEMTs, the steady state 

characterisation and modelling of AlGaN/GaN HEMT with temperatures up to 

500K are carried out and is discussed in Chapter 3. By modifying the reported 

analytical model on AlGaN/GaN HEMTs to become temperature-dependent, 

the variations in the physical parameters at high temperatures such as the 

Schottky barrier height, 2DEG density, VTH, specific contact resistance, 

subthreshold slope and the ID-VD characteristics are verified. This work is 

important for power device performance prediction and power circuit design 

because many applications in the power electronics systems are under high 

temperature environment.  

In addition, the devices used for power electronics require high VTH to 

ensure the system safety, standby power reduction and surge protection. In 

Chapter 4, the fabrication and characterisation of normally-off 

Al2O3/AlGaN/GaN power MIS-HEMTs with partial gate recess and multiple 

fluorine treatments to obtain high VTH are realised. Based on the knowledge of 

the origin of 2DEG proposed in Chapter 3, the partial gate recess reduces the 

2DEG density yet preserves the 2DEG carrier mobility. The multiple low-power 

fluorine plasma treatments on different ALD-Al2O3 gate dielectric layers 

enhance the fluorine-induced trapped negative charges within the gate dielectric 

significantly. Meanwhile, a monolithic logical inverter is also reported by 

integrating the abovementioned normally-off MIS-HEMT with a normally-on 

MIS-HEMT without any gate recess or fluorine plasma treatment. The inverter 
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has a large output swing and fast switching speed, making it possible for power 

integrated circuit application. 

However, the high-temperature VTH of the normally-off MIS-HEMT using 

the gate processing techniques reported in Chapter 4 decreases significantly due 

to the emission of the negative charges trapped at the Al2O3 gate dielectric. The 

depletion field to the 2DEG underneath the gate is weakened with the decrease 

in trapped negative charge concentration. In Chapter 5, the thermal emission of 

negative charges trapped at the Al2O3 gate dielectric is modelled and 

characterised. The distribution of the trap states along the Al2O3 energy band 

can be investigated by stressing the gate with various negative bias for a period 

of time. With such technique, the degradation of VTH at high temperature can be 

related with the energy level that the trapped negative charge is located within 

the Al2O3 energy bandgap. Thus, the trap state distribution induced by fluorine 

treatments can be derived. It is also found that the higher fluorine plasma 

treatment power result in the accumulation of trapped negative charges at deeper 

energy level. Hence, more trapped charges remain in the trap sites at high 

temperatures.  

As it is observed in Chapter 5, higher fluorine plasma power generates 

deeper trap states and thus obtain better VTH thermal stability. It suggests that 

introducing a certain degree of damage to the Al2O3 surface creates traps within 

deeper energy levels. Therefore, in Chapter 6, a short Argon pre-fluorination 

treatment is implemented to break more Al-O bonds on the surface of Al2O3 

prior to the fluorine treatments. The increased amount of surface dangling bonds 

enhances the Al-F bond formation during the subsequent fluorine plasma 
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treatment. Meanwhile, the multiple fluorine plasma treatments by conventional 

RIE is replaced with single treatment using ICP-RIE. The ICP-RIE is able to 

control the fluorine flux and the bombardment energy independently, thus obtain 

high concentration of incorporated fluorine without damaging the 2DEG 

channel quality. Using the gate-stressing technique reported in Chapter 5, the 

location of the peak of the trap states is shifted further away from the conduction 

band after the argon pre-fluorination treatment.  

The physical mechanism of the argon pre-fluorination treatment is further 

discussed in Chapter 7. According to the SIMS measurement on the fluorine 

depth profile, the argon pre-fluorination treatment can effectively increase the 

peak of the F atoms and shift the peak location closer to the surface. The decline 

in the O atoms also showed the replacement of O atoms by the F atoms within 

Al2O3. With XPS characterisation, it is found that the argon pre-fluorination 

treatment has effectively increased the amount of Al-F bonds at the Al2O3 

surface. The link between the increase in Al-F bonds and the amount of deeper 

level traps is verified by the Gaussian 09 molecular simulation tools. The 

simulated trap state distributions of the samples with and without argon pre-

fluorination treatment agree with the ones obtained from the gate-stressing 

measurements. It is also found in the simulation that the formation of F-Al-F 

bond by argon pre-fluorination treatment also attributed to the generation of 

deeper traps. 

Finally, the thesis is concluded in Chapter 8 with recommendations on the 

future research. 
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CHAPTER 2 Device Simulation, Fabrication and 

Characterisation Techniques  

The work reported in this thesis involves simulation, fabrication, and 

characterisation of both the normally-on and normally-off AlGaN/GaN metal-

insulator-semiconductor (MIS) HEMTs.  

The device simulation carried out by Synopsys Sentaurus TCAD simulation 

[34-36] tools not only visualised the inherent physical properties of the devices, 

but also assisted in the design of novel devices. For instance, the investigation 

of the temperature dependence on the AlGaN/GaN HEMT performance 

reported in Chapter 3 used the Sentaurus device simulation to understand the 

variations in the Schottky barrier height, 2DEG density, and the threshold 

voltage (VTH) at higher temperatures. They provide alternative and reliable 

indicators with the terminal measurement results to verify the accuracy of the 

analytical models proposed. In addition, in Chapter 4~6, the device simulation 

played an important role on determining the amount of negative charge trapped 

within the Al2O3 gate dielectric after the fluorine plasma treatments on the gate. 

These simulated values are essential for the design of the fluorine treatment 

recipes to obtain high VTH. The simulation is also important for the extraction 

of the energy levels of traps where these negative charges are trapped within the 

gate dielectric. Detailed introduction on the Sentaurus device simulation tool is 

discussed in Section 2.1 and the sample run script for the normally-off 

Al2O3/AlGaN/GaN MIS-HEMTs with fluorine plasma treatments is 

demonstrated in Appendix I with brief explanations on the scripts.  
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The facilities used in the fabrication process include the photolithography 

mask aligner for pattern development, wet bench for sample cleaning and 

photoresist removal, electron-beam (e-beam) evaporator for metal deposition, 

rapid thermal annealing (RTA) for material recovery or ohmic contact formation, 

reactive ion etcher (RIE) for SiO2 dry etching and fluorine plasma treatments 

reported in Chapter 4 and 5, inductively coupled plasma-RIE (ICP-RIE) for 

AlGaN & GaN dry etching together with F & Ar plasma treatment reported in 

Chapter 6 and 7, plasma-enhanced chemical vapour deposition (PECVD) for 

SiO2 deposition and atomic layer deposition (ALD) for Al2O3 gate dielectric 

deposition. Detailed operating principles of these instruments are described in 

Section 2.2. Specific parameters used for the device fabrication are listed in 

Appendix II.  

In order to understand the performance and the underlying physics of the 

fabricated devices, characterisations on the electrical performance, surface 

morphology, material composition and material bonding were carried out. These 

characterisations require the usage of power device analyser station, atomic 

force microscopy (AFM), scanning electron microscopy (SEM), secondary ion 

mass spectroscopy (SIMS), and X-ray photoelectron spectroscopy (XPS), 

respectively. Detailed operating principles of these instruments are described in 

Section 2.3.  

2.1 Simulation of AlGaN/GaN MIS-HEMTs 

The device simulation is a useful tool to understand the inherent physical 

properties and assist in the device design. The simulation of the AlGaN/GaN 

devices in this thesis was conducted by the Synopsis Sentaurus TCAD 
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simulation tools [34, 35], and the simulation process can be summarised as a 

flowchart shown in Fig. 2.1. 

 

Fig. 2.1 The flowchart for AlGaN/GaN HEMT simulation procedures 

The simulation begins with the drawing of the device structure with 

Sentaurus structural editor [35]. It can be either drawn through its graphical 

interface or coding. After the device structure drawing, the mesh is 

automatically drawn according to the assigned conditions in the structural editor. 

The physical models assigned in the Sentaurus Device simulation are calculated 

in every single mesh and these solutions are examined with the adjacent mesh 

to ensure they are converged [35]. Therefore, proper design on the mesh 

dimension is important to carry out converged and reliable results. Generally, 

the number of mesh used in the simulation is directly proportional to the 
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simulation time. However, convergence failure encounters if coarse mesh was 

placed at the region where abrupt change occurred. As a rule of thumb for the 

AlGaN/GaN HEMT simulations, very fine mesh is required at the metal contact 

edges and the device surface as the electric field is usually high at these regions. 

Additionally, fine mesh at the vertical direction is required at the material 

interfaces, especially at the AlGaN/GaN interface where 2DEG is present. To 

avoid long computation time, coarser mesh is acceptable at the other regions. 

An example for the layout of unbiased fluorinated Al2O3/AlGaN/GaN MIS-

HEMT simulation with mesh is shown in Fig. 2.2. The distribution of the 

electron density (labelled as eDensity) is shown in colour, and successful 2DEG 

depletion (i.e. very low electron density at the AlGaN/GaN interface) 

underneath the fluorinated Al2O3 gate dielectric is observed.  

 

Fig. 2.2 The mesh and electron density distribution within the normally-off 

Al2O3/AlGaN/GaN MIS-HEMT device simulation at the edge of the gate towards the 

drain contact. VG=VD=0V. 

With proper design of the device structure and the mesh, the Sentaurus 

Device run script (named with .cmd file extension) can be implemented to 
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simulate the device performance under a range of circumstances. The run script 

consists of the physical models included in the numerical solution of the device, 

the desired output parameters and the mathematical configurations for the 

simulation. Based on the Sentaurus template script of conventional normally-on 

AlGaN/GaN HEMTs simulation issued in [36], the Sentaurus Device run script 

used for normally-off Al2O3/AlGaN/GaN MIS-HEMTs with multiple 

fluorination plasma treatment used in Chapter 4 and 5 is attached in Appendix 

I. To obtain normally-off operation, the fluorine-induced negative charges are 

simulated as fixed interfacial charges at the designed locations, and the 2DEG 

concentration of the partially recessed AlGaN is obtainable from the weakened 

polarization field strength in the run script. These parameters are calibrated from 

the measured current-voltage characteristics to ensure the simulation is reliable 

before being used for the design. Detailed design process of the fluorine-treated 

normally-off device simulation is discussed in Chapter 4. 

In order to link the script with reality and make the simulation outcome 

reliable, the parameters of the simulated materials used in the run script are 

defined in the parameter file with .par file extension. The physical parameters 

used in the simulations for Al2O3, AlGaN, GaN and AlN layers are the default 

values provided by the software [35]. 

If the script runs successfully without convergence failure, the output file 

with current-voltage characteristics from the contact terminals (labelled 

with .out file extension) and the mesh file with calculated physical 

characteristics (labelled with .tdr file extension) at any locations within the 

device will be generated. For example, the distribution of the electrons at the 
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Al0.25GaN (20nm)/GaN interface without any external bias shown in Fig. 2.3 

can be extracted from the simulation. By integrating the electron density 

distribution near the AlGaN/GaN interface, the 2DEG density of the device can 

be calculated. It is about 81012 cm-2, which is similar to the 2DEG density of 

the same wafer characterised from the Hall measurement [37].   

 
Fig. 2.3 The vertical electron density distribution near the Al0.25GaN/GaN interface. 

The thickness of AlGaN is 20nm. 

To verify the simulation configuration, a common device structure is 

simulated and compared with the experimental data. Such calibration step is 

essential before simulating the devices with novel structures. The calibration is 

achieved by reasonably adjusting the parameters. For example, in the device 

simulation used for Chapter 4~6, the simulation is calibrated with a partial 

recessed normally-on AlGaN/GaN MIS-HEMT reported in Section 4.3 and [37] 

before the design of the fluorine plasma treatments. By reducing the electron 

mobility of the 2DEG under the gate from 1450 cm2/V∙s to 1200 cm2/V∙s, a 

good fit of the current-voltage characteristics between the simulated and 

measured devices is obtained and shown in Fig. 2.4. Such a good fit with the ID-
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VD characteristics ensures the reliability of the parameters and models used for 

the simulation. Therefore, the negative charges placed within the Al2O3 are able 

to mimic the fluorine plasma treatments by fitting the simulated VTH with the 

ones obtained in the measurement. 

 

Fig. 2.4 The fitting between the measurement and simulation results for the ID-VD 

characteristics of Al2O3/AlGaN/GaN MIS-HEMT with 10nm AlGaN partial recess at 

the gate region. The measurement was conducted when VGT=VG−VTH=10V. 

2.2 Facilities used for AlGaN/GaN MIS-HEMT fabrication 

The fabrication process of the normally-on and normally-off AlGaN/GaN 

MIS-HEMTs can be summarised as a flowchart shown in Fig. 2.5. The detailed 

run sheet and parameters used for the device fabrication in Chapter 3~7 are 

listed in Appendix II. 
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Fig. 2.5 The process flowchart for normally-on and normally-off Al2O3/AlGaN/GaN 

MIS-HEMTs fabrication. 

The optical lithography is the most commonly used technique for pattern 

definition in the semiconductor industry [38]. It transfers the pattern defined on 

a photomask to the sample surface with the usage of organic light-sensitive 

photoresist. The photoresist exposed to UV radiation changes its solubility in a 

developer. It can either become more soluble (positive) or less soluble (negative) 

after light exposure. A positive photoresist AZ-5214E was used in this thesis, as 

it provides better resolution than most of the negative resists. Another feature 

for the AZ-5214E is its image reversal property, which forms undercuts on the 

developed sidewalls. The sidewall undercuts shown in Fig. 2.6 are ideal for 
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metal lift-off purposes [39]. The image reversal is obtained by a special 

insoluble crosslinking agent in the resist which is activated at 110°C baking after 

the first light exposure, while the unexposed area is behaved the same as the 

regular positive resist. After the flood exposure without any mask, the region 

where was exposed under the first illumination is remained on the sample with 

undercuts after development. Hence, the image on the mask should be designed 

as the reverse of the desired pattern. The principle of image reversal is 

demonstrated in Fig. 2.7 [40].     

 
Fig. 2.6 The sidewall of the developed positive resist and the image reversal. The 

undercut of the sidewall made the metal lift-off more effective as the discontinuity of 

the metal film at the sidewall allows for complete resist strip-off [39] 

 

Fig. 2.7 The operating principles for the image reversal resist [40] 
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The reactive ion etching (RIE) is a commonly used dry etching technique 

that combines the chemical and physical etching on the surface to provide good 

selectivity and anisotropy. The RF power source in the RIE system is able to 

generate a strong electromagnetic field that dissociates the inlet gas molecules 

into electrons, ions, and chemically-active radicals. As ions do not have high 

enough mobility to keep up with the changing of the RF field, less ions than 

electrons are collected at the plates, which result in negative bias in both plates 

[41]. Therefore, the samples, which are placed on the plate, receive continuous 

bombardment from the ions during RIE. 

For instance, the etching of SiO2 with RIE involves in the usage of fluorine-

based gas to dissociate the F radicals and react chemically with the SiO2. Argon 

inert gas is also introduced to remove the surface residuals through Ar ion 

bombardment. In this thesis, CHF3 gas is used due to laboratory conditions. In 

the RIE system with RF power supply, the CHF3 will be dissociated into CHxFy, 

HFx, and F radicals. Among these, F radicals are very reactive F atoms with 

incomplete outer electron shells. These F radicals tend to react with SiO2 and 

form gaseous SiF4 and O2. The total reaction is shown in Eq. (2.1). The recipe 

used for SiO2 etching in the thesis is the default recipe provided by the 

laboratory and is demonstrated in Table A-8 of Appendix II. SiO2 etching speed 

of 43nm/min is obtained from this recipe referring to the Scanning Electron 

Microscopy (SEM) cross-sectional image. 

4F+SiO2→SiF4+O2       (2.1) 

Similarly, Cl-based gases (e.g. BCl3 and Cl2) are used as effective etchants 

for AlGaN and GaN based on the formation of volatile GaCl3 after the reaction 
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[42, 43]. In this thesis, they have been used for mesa and partial AlGaN gate 

recess reported in chapters 4~7. The AlGaN gate recess recipe is based on the 

existing AlGaN etching recipe provided in the laboratory. Lower RF power is 

applied to ensure proper control of the shallow recess. The AlGaN gate recess 

speed is verified by the surface profile of Atomic Force Microscopy (AFM) 

summarised in Fig. 2.8. According to the AFM profile illustrated in Fig. 2.8(b), 

30s of plasma etching induces 9.7nm of AlGaN recess. A smooth profile of 

surface roughness less than 1nm is observed from the AFM surface image. 

 

Fig. 2.8 (a) The summary of AlGaN etching depth using the AlGaN recess recipe 

reported in Table A-9 of Appendix II. (b) The AFM profile of the AlGaN surface 

underwent 30s of AlGaN recess. About 9.7nm AlGaN recess is obtained. 

 Due to the existence of fluorine radicals by using CHF3-RIE, it is possible 

to use this technique for normally-off Al2O3/AlGaN/GaN MIS-HEMTs 

application. Since F does not form volatile products with Al-based materials, 

the F radicals can be trapped within the Al2O3 and form negative charges [37]. 

These negative charges are able to deplete the 2DEG underneath the 
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AlGaN/GaN interface and increase the VTH of the MIS-HEMT. Detailed design 

of the plasma treatment recipes is explained in Chapter 4 and 6. 

 The RF power within a conventional RIE system not only controls the 

amount of F radicals induced in the plasma, but also affects the bias (i.e. the ion 

bombardment energy) on the plate. Therefore, even though using higher RF 

power to increase the concentration of F radicals is essential to improve the VTH 

for the MIS-HEMT, the higher ion bombardment energy may degrade the 2DEG 

quality and device reliability. To overcome such trade-off, inductively coupled 

plasma (ICP) RIE was used for gate plasma treatments in Chapter 6 and 7. The 

schematics of a ICP-RIE system is shown in Fig. 2.9. The most significant 

difference between ICP-RIE and RIE systems is the independent RF control on 

the coil (which controls the concentration of radicals and ions) and the cathode 

(which controls the ion bombardment energy). Therefore, it is possible for the 

ICP system to obtain high F radical concentration and remain low ion 

bombardment energy to protect the 2DEG conductivity.  

 
Fig. 2.9 Schematic diagram of the ICP-RIE system [44] 
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The chemical vapour deposition (CVD) is a film deposition process 

involves in chemical reactions [45]. It is usually used for the deposition of SiO2 

passivation with SiH4 and N2O as the reactant gas. The overall reaction is shown 

in Eq. (2.2), where H2 and N2 are the by-products of the reactions which can be 

easily desorbed from the surface.  

SiH4+2N2O→SiO2+H2+2N2       (2.2) 

The rate of the film deposition depends on the CVD temperature, and the 

film growth rate is faster at higher temperature. Normally, for the growth of SiO2 

using SiH4 and N2O gas, the growth temperature has to be around 840-860°C 

[46]. However, such a high temperature may affect the ohmic contact quality on 

the sample as it is close to its annealing temperature. Alternatively, plasma-

enhanced-CVD (PECVD) system was used in this thesis for SiO2 deposition. 

The schematics of a typical PECVD system is shown in Fig. 2.10, in which the 

RF-powered electrodes induce a plasma in between to enhance the energy 

required to initiate the surface reaction. Consequently, the growth temperature 

can be significantly reduced without sacrificing the growth time. For example, 

the growth temperature of PECVD-grown SiO2 is normally less than 400°C [47]. 

The SiO2 deposition recipe used in the thesis is the default recipe provided in 

the laboratory, and is shown in Table A-7 of Appendix II. The SiO2 deposition 

rate of the recipe is about 26nm/min, which was verified by the SEM cross-

sectional image. 
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Fig. 2.10 Schematics of a typical PECVD system [45] 

The atomic layer deposition (ALD) is a technique that enables very thin 

film depositions controlled in atomic level. In this thesis, ALD is used to deposit 

the Al2O3 gate dielectric due to its better quality and thickness control than 

PECVD. The deposition of Al2O3 in this thesis uses water and tri-methyl-

aluminium (TMA) precursors to introduce pulses of water or TMA molecules 

as the source of Al and O atoms for Al2O3 formation. The overall reaction and 

process are shown in Eq. (2.3) [48] and Fig. 2.11 [49].  

2Al(CH3)3+3H2O→Al2O3+6CH4     (2.3) 

In the schematic of ALD-Al2O3 growing process shown in Fig. 2.11, the 

silicon substrate is used as an example for demonstration, where hydroxide (OH) 

groups are formed at the surface due to air exposure. During the TMA precursor 

pulse, the TMA molecules react with the hydroxides and passivates the surface, 

where the CH4 gas is formed as the by-product (Fig. 2.11 (b) and (c)). After 

purging nitrogen to evacuate the excessive TMA molecules in the chamber (Fig. 

2.11 (d)), water precursor pulses are introduced to remove the CH3 groups and 

create Al-O-Al bridges. CH4 is formed again as the gaseous by-product (Fig. 

2.10 (e) and (f)). Lastly, the unreacted H2O and CH4 are evacuated from the 
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chamber with nitrogen purge (Fig. 2.11 (g)). As in each cycle there is about one 

atomic layer deposited on the surface, the deposition rate of Al2O3 is about 

0.1nm/cycle. The Al2O3 deposition recipe is reported in Table A-10 in Appendix 

II.  

  

 
Fig. 2.11 Steps of depositing Al2O3 on Si substrate by Savannah 100 ALD system [49]. 
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2.3 Facilities used for AlGaN/GaN MIS-HEMT characterisation 

The characterisations of AlGaN/GaN MIS-HEMT include the electrical 

characterisation, the structure characterisation, and the material characterisation. 

The electrical characterisations in this thesis included all of the current-voltage 

analysis for threshold voltage, contact resistance, maximum drain current, and 

breakdown voltage. Those characterisations used the Agilent B1505A Power 

Device Analyser with a probing station and a hot plate. The structure 

characterisations in this thesis used the atomic force spectroscopy (AFM) for 

surface morphology analysis or shallow recess depth, and the scanning electron 

spectroscopy (SEM) for the cross-sectional view of the fabricated device. Lastly, 

the material characterisations involved in the application of secondary ion mass 

spectroscopy (SIMS) and the X-ray photoelectron spectroscopy (XPS) for the 

atomic depth profile and atomic bonding characterisations in the thesis 

respectively.  

The AFM is a characterisation technique on surface profile and morphology. 

It uses a laser source to detect the deflection of a cantilever which attaches to a 

thin tip and sweeps the surface [50]. There are three scanning modes of the 

cantilever on the sample surface: contact, attractive, and tapping modes [51]. 

The contact mode, which the tip is always in contact with the sample and 

detecting the repulsive atomic force from the surface, provides the best 

resolution of the surface topology and the fastest scanning speed. However, it 

may damage the sample surface or the tip. The non-contact attractive mode 

utilised the attractive atomic force between the tip and the surface that made the 

tip resonant with the surface. It is a non-destructive method yet provides poor 
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resolution. The technique used for the AFM characterisation in the thesis is the 

tapping-mode, which the cantilever is vibrating at a certain frequency and 

amplitude to allow the tip to tap the surface during the sweep. A feedback 

control is also implemented to maintain the oscillation amplitude during 

measurement. Therefore, a good resolution of the surface topography with 

minimised surface damage can be achieved. The schematic layout of the 

tapping-mode AFM system is shown in Fig. 2.12.  

 

Fig. 2.12 Schematic diagram of the principles for the AFM tapping system [50] 

   The scanning electron microscope (SEM) is a commonly used system for 

nanoscale imaging. As shown in Fig. 2.13, the SEM has an electron gun as the 

source of the electron beam. After passing through the magnetic condenser lens 

and objective lens to adjust the electron beam concentration and diameter, the 

electrons reach the specimen and interact with the coulomb field of the nucleus 
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and electrons of the sample. The interaction can be categorised into inelastic and 

elastic interactions.  

The inelastic interaction occurs when the electron beam interact with the 

electric field of the electrons in the sample [52]. The energy from the beam is 

transferred to the atoms on the sample and emit secondary electrons, which can 

be detected by the detector. Meanwhile, if the vacancies from the secondary 

electron are fulfilled by the electrons from higher orbitals, the excessive energy 

will either be emitted from the sample as X-ray or be transferred to other 

electrons in the atom and emit Auger electrons. The X-ray and Auger electrons 

can be collected by the detector and provide information about the surface 

material. 

On the other hand, the elastic interaction occurs when there is no transfer 

in energy but only exchange in momentum between the electron beam and the 

atoms on the sample [52]. These electrons will scatter in the sample and may be 

deflected out to the specimen as the backscattered electrons. The backscattered 

electrons are collected by the detector and are used for surface topology imaging. 

These interactions take place at different interaction volumes, which is 

shown in Fig. 2.14. The X-ray is able to escape to the surface from a deeper 

depth due to its long wavelength, while the escape depth for the secondary 

electrons is relatively shallow (5-50 nm). Therefore, the different signals in the 

SEM carry information from different depths. 
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Fig. 2.13 Scanning Electron Microscopy (SEM) [53] 

 

Fig. 2.14 The interaction volume of the particles reacted with the electron beam during 

the SEM measurement [52] 

The secondary ion mass spectroscopy (SIMS) is a commonly used 

technique for surface spectroscopy, surface imaging, and depth profiling of the 

sample. In this thesis, SIMS is mainly used as the atomic depth profile within 

the Al2O3. It is a destructive method that uses the energetic ions as the primary 
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ion beam (usually O2
+, O-, Cs+, Ar+, or Ga+) to bombard the surface and capture 

the secondary ions sputtered from the surface [54]. The sputtered secondary ions 

are collected by the detector with selected energy. It is achieved by the energy 

window set by the electrostatic energy analyser. Similarly, the ion mass can also 

be selected by the magnetic mass analyser. The components within a SIMS 

system are shown in Fig. 2.15. 

 

Fig. 2.15 Components within a SIMS system and the data can be retrieved from the 

SIMS system. [54] 

The X-ray photoelectron spectroscopy (XPS) is a chemical analysis tool 

that utilised incident X-ray to induce photoelectron effect on the sample surface. 

As shown in the system schematics in Fig. 2.16 [55], the X-ray produced by the 

X-ray gun excites the electrons at the core levels to escape from the surface. 

After passing through the hemispherical sector analyser, electrons with selected 

energy can be collected by the detector. The electron energy spectra are 

produced by the XPS and they can be compared with the energy spectrum 
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database of materials to decide the chemical composition of the characterised 

sample. 

 

Fig. 2.16 The schematics of a XPS system together with a typical XPS spectra. 

  



51 

 

CHAPTER 3 High Temperature Characterisation and 

Analytical Modelling of AlGaN/GaN HEMTs under 

Steady State 

3.1 Introduction 

The properties of wide-bandgap (3.4eV) and high saturation velocity 

(1.5×107 cm/s) for GaN material enable it to be useful in the high-power 

applications operated under high temperature [56]. However, even though 

completed studies on the high-temperature effects on AlGaN/GaN HEMTs 

performance as regard to the Schottky gate barrier height, the two-dimensional 

electron gas (2DEG) sheet density [57, 58], threshold voltage (VTH) [59], drain 

current-gate voltage (ID-VG) and the on-state drain current-voltage (ID-VD) 

characteristic variations [56, 60] already been observed, there is no study that 

verifies the analytical models of both the terminal characteristics and the 

intrinsic physical parameters under high temperature. This study improves the 

development of power circuit modelling at high temperatures as it prevents the 

solution of complicated numerical expressions that requires sophisticated 

computer coding. Additionally, the work reported in this chapter enables the 

device designer to predict the device performance under high temperature. The 

research of the GaN-based device performance in this chapter delivers the 

fundamental knowledge on the design of high threshold voltage 

Al2O3/AlGaN/GaN MIS-HEMTs reported in Chapter 4 and its studies on the 

high temperature performances reported in Chapter 5.  

Starting with the characterisation of the I-V characteristics under high 

temperature, this work utilised the reported analytical models on characterising 
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the performances of AlGaN/GaN HEMT devices under room temperature and 

developed them to be adaptable to high temperature conditions. The accuracy 

of these models was then verified by the Sentaurus TCAD simulations and 

experimental characterisations.  

3.2 The effect of high temperature on device characteristics 

3.2.1 Structure and fabrication process of the characterised HEMTs 

The cross-sectional schematic diagram and the microscopic image of the 

normally-on Schottky-gate AlGaN/GaN power HEMT used for modelling and 

characterisation in this chapter are shown in Fig. 3.1 (a) and (b). The device was 

fabricated on the AlGaN/GaN epitaxial wafer grown on Si substrate and a thick 

4.2μm wide-bandgap AlN barrier layer which is responsible for high breakdown 

voltage. The thickness of the unintentionally-doped AlGaN and GaN epitaxial 

layers are 25nm and 1.6μm respectively. The AlGaN has an Al content of 20% 

to induce high 2DEG density with good carrier mobility. Therefore, the 2DEG 

can be used as the channel of a device with good conductivity and fast switching 

speed. A 1 nm GaN cap layer is deposited on top of the AlGaN barrier to prevent 

surface traps formation. The drain and source ohmic contacts are made of 

Ti/Al/Ni/Au with thickness of 25/125/45/55nm and rapid thermal annealing 

(RTA) processing at 850°C for 1 minute after deposition. The Ti/Al/Ni/Au metal 

stack configuration for ohmic contact is one of the most widely used technique 

for GaN-based HEMTs with small contact resistivity and good thermal stability. 

The gate electrode is made of un-annealed Ni/Au metal layers with thickness of 

15/150nm and post-growth annealing at 400ºC for 20 minutes. The gate length 
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(LG), gate-to-source length (LGS) and gate-to-drain length (LGD) are 2μm, 5μm 

and 7μm respectively. The width (W) of the normally-on HEMT is 130μm and 

it is assumed as the width of the ohmic pad. It is because of the similar width of 

mesa isolation as the pad width has minimised the outflow of current between 

the pads. 

 
Fig. 3.1 (a) The cross-sectional schematic diagram the Schottky-gated normally-on 

AlGaN/GaN HEMT device; (b) the microscopic image of the fabricated normally-on 

AlGaN/GaN HEMT device. 

3.2.2 Drain current-gate voltage (ID-VG) characteristics 

The current-voltage characteristics demonstrated in this section were 

measured by the Agilent B1505A Power Device Analyser system. Fig. 3.2 (a) 

demonstrates the ID-VG measurements from 300K to 500K with 50K intervals 

in the sub-threshold region plotted in logarithmic scale. The drain voltage 

remained at VD=6V during the characterisation. Table 3.1 reports the 

subthreshold swings and the threshold voltage (VTH, obtained by extrapolating 

the linear region of the ID-VG characteristics plotted in linear scale shown in Fig. 

3.2 (b) [61]) at different temperatures. From T=300K to 500K, the off-state 

leakage has increased by about three orders of magnitude. Meanwhile, the 
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subthreshold swing is also doubled. Little reduction of VTH is found with the 

increase in temperature. 

 

 

Fig. 3.2 (a) The logarithmic ID-VG characteristics in the sub-threshold region and (b) 

the linear ID-VG characteristics at temperatures from 300K to 500K. (VD = 6V) 

Table 3.1 The extracted VTH and sub-threshold slope of the ID-VG curve at and different 

temperatures (VD=6V) 

Temperature (K) 
Threshold 

Voltage (V) 

Sub-threshold 

Slope (mV/dec) 

300 K 
-1.87 

100 

350 K -2.05 120 

400 K -2.09 130 

450 K -2.12 160 

500 K -2.15 180 

(a) 

(b) 
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3.2.3 Drain current-drain voltage (ID-VD) characteristics 

The ID-VD characteristics of different temperatures when VG=0V (Fig. 3.3 

(a)) and VG=1V (Fig. 3.3 (b)) are illustrated and summarised in Table 3.2. It is 

observed that the on-state resistance, which is the inverse of the slope of the ID-

VD linear region, has increased at higher temperature. Approximately 100% 

increase of the on-state resistance is observed when temperature has raised from 

300K to 500K. Meanwhile, about 40% reduction in the maximum drain 

saturation current (IDMAX) is observed when the temperature rises from 300K to 

500K. Similar trends are found when VG used in the ID-VD characterisation is 

reduced to 1V, as shown in Fig. 3.3 (b) and Table 3.2.  

 

Fig. 3.3 The ID-VD characteristics of the device from T=300K to 500K. (a) VG=1V and 

(b) VG=1V 
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Table 3.2 The on-state resistance and drain saturation current of the device from 

T=300K to 500K and VG=0V and −1V. 

 VG=0V VG=1V 

Temperature (K) 

On-state 

Resistance 

(Ω·mm) 

Drain 

Saturation 

current 

(A/mm) 

On-state 

Resistance 

(Ω·mm) 

Drain 

Saturation 

current 

(A/mm) 

300 K 33 0.100 47 0.050 

350 K 36 0.095 50 0.045 

400 K 44 0.085 57 0.038 

450 K 50 0.078 66 0.035 

500 K 66 0.065 80 0.030 

3.3 Verification of the AlGaN/GaN HEMT analytical model at 

high temperature  

To understand the mechanism behind the performance variation at different 

temperatures, models for the physical parameters within the device have been 

verified and compared with device characterisation or Sentaurus TCAD 

simulation. Fig. 3.4 is the flowchart of the methodology adopted in the 

modelling approach. The method begins with the analytical modelling of the 

inherent properties of the devices, such as the flat-band Schottky barrier height. 

Then, combining it with the Fermi-Dirac function approximation, the 2DEG of 

the device can be modelled and be further used to model the VTH and 2DEG 

carrier mobility. Lastly, they can be used to extract the terminal properties 

which can be directly measured, such as the ID-VD and ID-VG characteristics. 
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Fig. 3.4 The flowchart of the proposed analytical modelling process in characterising 

the AlGaN/GaN device performance at different high temperatures 

 
Fig. 3.5 The conduction energy band diagram of the active region (near AlGaN/GaN 

interface) of the HEMT without applying any external bias 
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The conduction band diagram of the active region (i.e. region near the 2DEG) 

underneath the gate metal is demonstrated in Fig. 3.5. The physical parameters 

involved will be explained and modelled in the following sections in this chapter.  

3.3.1 Flat-band Schottky barrier height (FSBH) at the gate metal/AlGaN 

interface 

Prior to the investigation of the effect of high temperatures to the 

performance of the fabricated AlGaN/GaN HEMTs, it is essential to observe 

the temperature dependence on the gate Schottky barrier height since it 

determines the 2DEG density and the VTH within the device [11]. The study has 

applied the two-diode forward current model proposed in [62], which is usually 

used in FETs with heterojunction gate. However, the Schottky barrier height 

extracted from IG-VG measurements, which is also known as the effective 

Schottky barrier height (ESBH, ϕEB), is not the inherent physical parameter of 

the device as it is dependent on the applied gate electric field and current flow 

[63, 64]. Therefore, the flat-band Schottky barrier height (FSBH (ϕFB)), which 

is the calibrated Schottky barrier height under zero electric field, was extracted 

and used for later stage calculations on the 2DEG together with the VTH [9, 11, 

64, 65]. In order to calculate the FBSH accurately, the temperature dependence 

on ϕEB and the ideality factor (nG) shall be obtained first by measuring the IG-

VG characteristics between the Schottky gate and the source terminals of the 

HEMT with Eq. (3.1) and (3.2) [62, 64, 66]. ϕEB and nG in Eq. (3.1) are extracted 

by plotting the VG versus ln(IG/(aA*T2 )) through the gradients and the y-

intercepts of the best fitted lines to the data points. The plot is demonstrated in 

Fig. 3.6 (a). In Eq. (3.1), a is the gate contact area and A* is the effective 

Richardson constant (~28.4 Acm-2K-1 for Al0.2Ga0.8N [64] ). The effect of the 
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thin GaN cap layer to the Schottky barrier height is neglected as most of the 

current is tunnelled through this layer. To extract ΔEC in Eq. (3.2) for FBSH, 

Eq. (3.3) is utilised [11]. Eq. (3.4) and (3.5) provide a method to calculate the 

temperature dependence on the band gap of AlN and GaN respectively [67]. 

      (3.1) 

ϕFB=nG ϕEB−(nG−1)[ΔEC(EF−EC)interface]    (3.2) 

     

(3.3)

 Where       (3.4) 

     (3.5) 

The values of the EBSH and the ideality factor under different temperatures 

are summarised in Fig. 3.6 (b). It is observed that the ESBH increases at higher 

temperatures, while the ideality factor has an opposite trend. It is also notable 

that the ideality factor for AlGaN/GaN HEMTs is much higher than one, implies 

the occurrence of strong band-to-impurity and band-to-band tunnelling [68].  

The extraction of FSBH involves in the temperature dependence on the 

work function of the gate metal. In [69], the relationship of the FSBH and the 

Al content at 300K is provided. For Al0.2Ga0.8N, the FSBH is 1.5eV at room 

temperature. The variation in the FSBH with temperature can be related to the 

electron affinity of AlGaN (ХAlGaN) and the work function of the gate metal (ϕM). 

It is expressed as: ϕFB=ϕM-ХAlGaN [70]. The nickel and gold work functions at 
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300K are 5.15eV and 5.1eV respectively, and their temperature coefficients are 

−5.6 10-4eV/K and −6.8 10-4eV/K respectively [71]. The work function and 

its temperature dependence of the Ni/Au alloy can be linearly interpolated. The 

ХAlGaN at room temperature is 3.6eV and its temperature dependence, which is 

originated from the change in AlGaN bandgap with temperature, is negligible 

compared to the more significant variations in the metal work functions [72]. 

The surface traps at the gate can also influence the accuracy of extracted FSBH. 

In this chapter, 9 1011cm-2 of acceptor surface traps at the metal/semiconductor 

interface (NST) located at 1.0eV from the AlGaN valence band [73, 74] are 

adopted to calibrate the extracted ϕFB by adding the term qNSTdAlGaN/εAlGaN into 

the derivation. Such calibration is applicable to the device characterised in this 

section as it uses the same Ni/Au gate metal stack configuration as the one 

reported in [74]. The temperature dependences on ϕFB obtained from modelling 

with and without the surface traps together with the characterised results are 

shown in Fig. 3.6 (c). They demonstrate that the FSBH decreases at higher 

temperature, and is further verified from the simulation results carried out by 

Sentaurus TCAD simulation tools. Therefore, the analytical FSBH model is able 

to accurately predict the Schottky barrier heights at temperatures ranging from 

300K to 500K. 

 


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(a) 

(b) 
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Fig. 3.6 (a) The experimental data of VG versus ln(IG/(AA×T2 )) from 300K to 500K; 

(b) The ESBH and the ideality factor (nG) extracted from Eq. (3.1); (c) The 

experimental FSBH data based on five repetitive IG-VG characterisations, the 

analytically-modelled FSBH with (red solid line) and without (broken line) the 9

1011cm-2 of acceptor surface trap from 300K to 500K. The TCAD Sentaurus simulation 

results (black bold line) are also included in the figure. 

3.3.2 The conduction band location at the AlGaN/GaN interface and 2DEG 

density 

To analytically extract the energy difference between the Fermi level and 

the conduction band at the GaN side of the AlGaN/GaN interface, labelled as 

(EF-EC)interface, the Fermi-Dirac approximation is required. The most common 

way in band calculations for semiconductors is to use the Fermi-Dirac integral 

of order ½ (F1/2) and gamma function of Γ(3/2)=√π/2. The complete expression 

of the Fermi-Dirac integral with half order is demonstrated in Eq. (3.6). 

However, it requires iterative numerical extractions. Since the conduction band 

of GaN at the AlGaN/GaN interface is lower than the Fermi level [13, 75], it 

can be perceived as degenerate and the approximations for degenerate 

semiconductors can be utilised, as shown in Eq. (3.7) [76]. In Eq. (3.7), EFEC 



(c) 
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is the difference between the Fermi level and the conduction band, n is the 

electron density at the position of interest, k is the Boltzmann constant, T is the 

ambient temperature, and NC_GaN is the effective density of states at the 

conduction band of GaN. 

      (3.6) 

   (3.7) 

Where             

Before solving the Fermi-Dirac approximations at the AlGaN/GaN 

interface, the electron density at the interface must be determined. It is normally 

extracted by solving the Poisson’s equation, which is unable to be solved 

analytically. Therefore, a simplified analytic approach is proposed. For 

unintentionally doped AlGaN/GaN layers, the space charge at the AlGaN/GaN 

interface is determined by the polarisation charge induced by the spontaneous 

and piezoelectric polarisation fields [13]. Based on the electron distribution near 

the AlGaN/GaN interface extracted by the self-consistent Poisson-Schrodinger 

solver [11, 14, 77], the charge distribution near this interface can be empirically 

approximated as linearly distributed charge within 3nm to obtain similar peak 

electron concentration at the AlGaN/GaN interface. Therefore, as the 

temperature-independent polarisation charge concentration at the perfect 

Al0.2Ga0.8N/GaN interface is about 1.1 1013 cm-2, its peak point charge density 

at the interface is around 7.33 1019 cm-3. The electron density at the 
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AlGaN/GaN interface can then be approximated for conduction band location 

calculation in Eq. (3.7). 

Once the conduction band level at the AlGaN/GaN interface is extracted, 

the 2DEG can be derived analytically from Eq. (3.8) proposed in [13]. In Eq. 

(3.8), εAlGaN(x) is the dielectric constant of AlGaN, which can be obtained by 

linearly interpolating the dielectric constants of GaN (~8.9) and AlN (~8.5); σpol 

is the sheet polarisation charge concentration at the AlGaN/GaN interface, 

which is 1.1 1013 cm-2; dAlGaN is the thickness of the AlGaN layer; and ΔEC(x) 

is the conduction band offset between AlGaN and GaN. 

   (3.8) 

It has been previously reported that the polarisation charge concentration is 

independent from temperature [14]. The analytical approximation of the 

temperature dependence on EF-EC and the 2DEG density are verified by the 

Sentaurus TCAD simulations and the Hall measurement results provided by the 

wafer manufacturer shown in Fig. 3.7. For simplicity, the cap, the buffer, and 

the substrate layers were not involved in the simulations as they do not affect 

the on-state electrical properties. According to Fig. 3.7, it is seen that the 

quantum well at the AlGaN/GaN interface becomes shallower with the increase 

of temperature, while the 2DEG density increases at higher temperatures. It can 

be attributed to the decrease of the FBSH at higher temperature reversed the 

trend of 2DEG density and the depth of the quantum well. In summary, the 

analytical model predicts the temperature dependence on the quantum well and 

the 2DEG density very well. The mismatch between the model and the TCAD 


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simulation is within 2% at characterised temperatures. However, about 10% 

reduction of the 2DEG density is obtained by the Hall measurement compared 

with the values calculated and simulated. It can be attributed to the possible 

variations in manufacturing conditions, such as the uniformity and the quality 

of the epitaxial layers. 

 

Fig. 3.7 The comparison between the model and TCAD simulation of the conduction 

band energy level with respect to the fermi level and the 2DEG sheet density from 

300K to 500K. The green dot is the 2DEG sheet charge density provided by the wafer 

manufacturer by Hall measurement.  

3.3.3 Analytical modelling of the threshold voltage (VTH) 

The analytical model for the threshold voltage (VTH) of the normally-on 

AlGaN/GaN HEMT is shown in Eq. (3.9) [62, 63]. The measured VTH was 

obtained by linear extrapolating the ID-VG curves proposed in [61]. This method 

is one of the most widely used way to extract VTH. The measurements are 

obtained when VD= 1V. NST is the density of surface traps of the device 

mentioned in Section 3.3.1 (91011cm-2). According to Fig. 3.8, the VTH 

calculated by Eq. (3.9) has a good match with the experimental results, and the 

VTH has declined only slightly at higher temperatures. This is caused by the 
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increase in the 2DEG sheet density at higher temperatures. Therefore, higher 

negative gate voltage is required to deplete the 2DEG and pinch off the channel.  

     (3.9) 

 
Fig. 3.8 The comparison between the VTH obtained from the experiments (dots) and Eq. 

(3.9) with (solid line) and without (broken line) the incorporation of acceptor traps. 

3.3.4 Modelling of specific contact resistance and 2DEG electron mobility 

The extraction of specific contact resistance is also essential for the sub-

threshold ID-VG and ID-VD modelling. It is an indicator of the quality of the 

ohmic contact fabricated on the AlGaN surface. It is desirable to obtain contacts 

with small specific contact resistance in order to reduce the conduction loss 

within the device. It can be obtained experimentally from the transmission line 

measurements (TLM) with small voltage sweep (from 1V to 1V) to avoid the 

self-heating effect. The self-heating effect may reduce the electron mobility 

during measurement and affect the accuracy of the extracted contact resistances. 

The distance between each of the contact pads are 15μm, 25μm, and 40μm. 

According to Fig. 3.9, the resistances versus the distances between the pads at 
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different temperatures are plotted. The slopes of the fitted lines in Fig. 3.9 are 

able to extract the sheet resistance (Rsheet) between the pads at different 

temperatures through Rsheet=slope Z, where Z is the width of the contact pad 

(130μm). Therefore, the electron mobility at 300K (μ(T=300K)) can be calculated 

from μ=1/(nsqRsheet ), where ns equals to the 2DEG density extracted in Section 

3.3.2. Once μ(T=300K) is obtained, the 2DEG mobility at other temperatures can 

be extracted from the following relationship: μ(T)=μ(T=300K) (T/300)γ. In this 

expression, μ(T) is the mobility at the adjusted temperature, T is the temperature, 

and γ is the temperature-independent mobility exponent, which is assumed to be 

1.5 [78]. The contact resistance of the ohmic contact is extracted based on the 

transmission line model reported in [79]. The calculated 2DEG mobility at 

different temperatures are summarised in Table 3.3. 

 

Fig. 3.9 The resistances versus the distance between each contact pads at different 

temperatures 

Even though the carrier transport across the ohmic contact is dominated by 

the temperature-independent tunnelling process, both the contact resistance and 

specific contact resistivity are obviously reduced at higher temperatures. It can 




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be attributed to the involvement of thermionic mechanism during charge 

transportation at the metal/AlGaN interface within the ohmic contact. The 

thermionic transportation is enhanced at higher temperature [80]. Specifically, 

the specific contact resistance of the Ti/Al/Ni/Au ohmic contact can be modelled 

by the field emission effect illustrated in Eq. (3.10) [81]. ϕB is the barrier height 

at the metal/AlGaN interface and can be extracted by ϕM-ХAlGaN. For

 Ti/Al/Ni/Au ohmic contacts, a low-work-function TiN (ϕTiN=3.74eV) is formed 

and contacted the AlGaN surface after the rapid thermal annealing (RTA) 

process. However, the formation of TiN in reality is imperfect and a certain 

amount of Ti (ϕTiN=4.33eV) may remain at the interface. Therefore, the barrier 

height of the metal/AlGaN interface should be fitted within the range between 

0.14 eV to 0.73 eV. With numerous iterations, ϕB=0.56 eV provides the best fit. 

ND=5 1019cm-3 [82] is the doping concentration of AlGaN at the interface. AC 

is the area of the ohmic contact pad, which is 0.03 mm2 for our sample. The 

value of EF−EC can be obtained from Eq. (3.7). The comparison between the 

model and the measurement results of the specific contact resistance is shown 

in Fig. 3.10. The barrier height at the ohmic contact and AlGaN interface can be 

different according to the types of metals used and the processing technologies 

applied.  

  (3.10) 
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Fig. 3.10 The comparison between the specific contact resistance obtained from Eq. 

(3.10) (solid line) and TLM experimental results (dots) 

Table 3.3 The parameters used for sub-threshold ID-VG and ID-VD modelling obtained 

from the TLM measurements. 

Temperature (K) 300K 350K 400K 450K 500K 

2DEG Density (1012 cm−2) 8.60 8.67 8.74 8.83 8.93 

Mobility obtained from the TLM (cm2/V·s) 895 719 599 452 380 

Mobility obtained from the model (cm2/V·s) 895 710 581 487 416 

Mobility exponent ~=−1.5 

Sheet Resistivity (Ω/□) 896 1100 1300 1710 2160 

Contact Resistance (Ω·mm) 4.43 3.61 3.61 2.43 1.63 

Specific contact resistance (Ω·mm2) 0.039 0.021 0.018 0.006 0.002 
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3.3.5 Modelling of ID-VG sub-threshold characteristics 

The model used for ID-VG sub-threshold characteristics is described in Eq. 

(3.11) [83]. L and W are the length and width of the channel respectively, and μ 

is the 2DEG electron mobility which has been extracted from the TLM in 

Section 3.3.4 [84-86]. η is the capacitive coupling between the gate and the GaN 

surface, which is defined in Eq. (3.12). In Eq. (3.12), CAlGaN, CQW, Cdepletion, 

Csurface and Ccap are the capacitances of the AlGaN layer, quantum well at the 

AlGaN/GaN interface, depletion region at GaN, surface states and GaN cap 

layer, respectively. Fig. 3.11 demonstrates the location of these capacitances 

within the device [85]. For the device used in this study with a well passivated 

AlGaN surface with GaN cap layers and SiO2 passivation layer, the amount of 

the surface states is so small that the Csurface can be neglected [87]. CQW can also 

be eliminated in the calculation due to the high conductivity of the 2DEG [88]. 

Ccap is also negligible since it is too thin that most of the carriers are tunnelled 

through rather than accumulating at both sides of the cap layer. Cdepletion and 

CAlGaN can be obtained from C=ε/d. Therefore, η of the characterised HEMT 

can be approximated as 1.34 when the depletion depth of the unintentionally 

doped AlGaN/GaN HEMT is about 75 nm [11, 89].  

  (3.11) 
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Fig. 3.11 The schematic of equivalent capacitance circuit diagram and the simulated 

depletion region of the AlGaN/GaN HEMT under the gate at sub-threshold condition. 

By using Eq. (3.11) with the capacitive coupling constant, the ID-VG 

characteristics can be modelled, where the VTH at different temperatures has 

already been obtained in Section 3.3.3. Compared to the experimental results, 

the analytical model has a good fit at all tested temperatures, as shown in Fig. 

3.12.  

 

Fig. 3.12 The comparison between the experimental results (data points) and the 

analytical model (broken lines) of the ID-VG characteristics in the sub-threshold region 

from 300K to 500K. (VD = 6V) 
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3.3.6 Modelling of ID-VD characteristics 

The variations in ID-VD characteristics at various temperatures are mainly 

caused by the change of 2DEG channel mobility [78]. The enhancement of 

phonon scattering effect at higher temperature is the major mechanism 

responsible for the on-state current reduction.  

The analytical ID-VD model is expressed differently under linear or 

saturation region. They are shown in Eq. (3.13) and (3.14) respectively [90]. Rd 

and Rs are the contact resistances of the drain and source terminals respectively, 

which are calculated and summarised in Table 3.3. In Eq. (3.15), the λ, saturation 

electric field (Esat), and the saturation velocity (vsat) can be extracted based on 

the 2DEG mobility values calculated in Section 3.3.4 and summarised in Table 

3.3 [87, 89, 90]. Fig. 3.13 compares the experimental and analytical results of 

the ID-VD characteristics for VG = 0V, 1V, between 300K and 500K.  

        (3.13) 
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Where      

      (3.15) 

The on-state drain currents at both linear and saturation regions reduce at 

higher temperatures. It is mainly due to the mobility reduction caused by the 

enhanced phonon scattering of the lattice [13]. By examining the linear region 

of the ID-VD characteristics to extract the on-state resistance, it is observed that 

the on-state resistance is higher with increasing temperature. It proves the 

dominant effect of carrier phonon scattering on the on-state current even though 

the 2DEG density is slightly increasing at higher temperatures reported in 

Section 3.3.2.  

The current reduction at lower VG during the ID-VD sweep is caused by its 

depletion effect to the 2DEG channel at the gate region. When negative voltage 

is applied to the gate, the electrons at the 2DEG below the gate are depleted due 

to the electric field induced by VG. Therefore, the free carrier density in 2DEG 

is reduced, resulting in current reduction and earlier current saturation [1].  
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Fig. 3.13 The comparison between the experimental results (data point) and the 

analytical modelling results (solid lines) of the ID-VD characteristics from 300K to 

500K when the gate voltage (VG) is (a) 0V and (b) -1V 

 3.4. Conclusion 

This chapter characterised the high-temperature performance of 

AlGaN/GaN HEMTs then integrates the existing room-temperature analytical 

models for high-temperature environment. Specifically, the temperature 

dependence on the FSBH, EC-EF at AlGaN/GaN interface, 2DEG sheet density, 
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threshold voltage, specific contact resistance, sub-threshold ID-VG and ID-VD 

characteristics have been illustrated. The models have been verified through 

characterising an Al0.2Ga0.8N/GaN HEMT by lab measurements and Sentaurus 

TCAD simulations. As a result, the analytical models are able to predict the 

device performance parameters fairly accurately at temperatures ranged from 

300K to 500K. When temperature increases, the FBSH, EC-EF and drain 

saturation current decrease in different magnitudes, whereas the on-state 

resistance, 2DEG sheet density and the threshold voltage increase. The 

reduction in mobility due to enhanced phonon scattering is the dominant factor 

for the increase in the on-state resistance at higher temperatures. The increase 

in 2DEG is trivial to affect the on-state resistance. The proposed analytical 

models are useful for device designers on the prediction of the AlGaN/GaN 

HEMT device performance under high temperature. The fundamental 

knowledge on the device performance offered in this chapter will be applied in 

the VTH engineering and VTH thermal stability studies in chapters 4 and 5 
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CHAPTER 4 Multi-Fluorinated Al2O3/AlGaN/GaN 

MIS-HEMTs for High-VTH and Monolithic Inverter 

Integration 

4.1 Introduction 

It is discussed in previous chapters that GaN-based power HEMTs are able 

to provide high breakdown voltage as well as good conductivity due to their 

superiority on breakdown field and 2DEG carrier density. However, achieving 

normally-off (i.e. threshold voltage higher than zero) operation for the GaN-

based devices is strongly desired in order to simplify the gate drive circuit and 

improve the system reliability, particularly in power electronics applications. 

Special gate design approaches such as the AlGaN barrier recess [4-6], p-GaN 

cap layer [7, 8] and negative charge incorporation through fluorine plasma 

treatments (FPT) [9] have been explored in Section 1.3 to achieve normally-off 

operations. Among these, fluorine treatment is a promising technique as it is 

able to provide high threshold voltage (VTH) without extra epitaxial growth or 

high temperature treatments which are costly and increasing the thermal budget 

on the device. However, the carriers in 2DEG channel suffer mobility 

degradation due to the impurity scattering from the implanted fluorine ions if 

they are in close proximity. Meanwhile, the reported VTH of the devices 

fabricated with single FPT process are not very high (detailed review has been 

reported in Section 1.3.2). It implies that the 2DEG density in the gate region is 
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too high for FPT-introduced negative charges (F) to deplete the electrons in the 

2DEG channel effectively. Table 4.1 summarises the reported gate fabrication 

methodology and the performance of the state-of-the-art devices with single 

FPT process applied on the gate. The maximum VTH obtained from fluorine RIE 

plasma treatment is only 0.9V, which requires further improvements.  

Table 4.1 Gate processing methodology of the state-of-the-art devices with fluorine 

treatment together with their threshold voltage (VTH) and maximum drain current 

(IDMAX) respectively 

Ref F Treatment 

recipe 

Dielectric Post-Gate 

Treatment 

VTH IDMAX 

[27] 150W, CF4 

based RIE for 

250s 

16nm LaLuO3 400ºC 

annealing in 

N2 ambient 

for 10 

minutes 

+0.6V 400mA/mm 

[28] 25keV F+ ions 

implantation. 

Dosage of 5 

1012 cm-2 

80nm Si3N4 as 

protection layer 

before F treatment 

(gate stack details 

not mentioned)  

50W, CF4 

based RIE to 

remove 

Si3N4 

+1.8V 380mA/mm 

[29] 150W, CF4 

based RIE for 

250s 

AlN/Al2O3 

(2nm/10nm) 

400ºC 

annealing in 

N2 ambient 

for 10 

minutes 

+0.9V 300mA/mm 

In this chapter, a normally-off AlGaN/GaN MIS-HEMT with partial AlGaN 

recess combining with multiple FPT on the Al2O3 gate dielectric is realised to 

significantly improve the VTH of the device. The partial AlGaN recess weakens 

the polarisation field at the AlGaN/GaN interface and reduces the 2DEG density. 

Meanwhile, the multiple FPT can effectively improve the concentration of 

negative charges within the gate dielectric, thus provide a strong depletion field 
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to the 2DEG and raise the VTH. With careful design of the multiple FPT recipe, 

the shortcoming in severe on-state current reduction due to the fluorine-induced 

damages to the 2DEG [91] can be effectively alleviated. With the assistance of 

the VTH analytical model, the amount of the FPT-induced negative charge can 

be precisely guided. Lastly, a monolithic logic inverter is implemented with the 

combination of such normally-off HEMT as the power switch with a normally-

on HEMT as the depletion-load. It mimics the standard pseudo-nMOS 

configuration.  

4.2 Design and modelling of the high-VTH MIS-HEMT  

   Referring to Section 1.3.2, it is clear that the AlGaN recess and FPT are 

both effective methodologies on increasing the VTH from negative to positive. 

However, based on reported data in Table 4.1, single FPT applied on AlGaN 

does not provide sufficient negative charges in achieving high VTH. Compared 

to FPT on AlGaN barrier layer, FPT on the gate dielectric enhances the amount 

of negative charge incorporation without significantly degrading the channel 

quality. The incorporated fluorine atoms are much further from 2DEG and 

ineffective to the 2DEG carrier mobility as compared with the FPT directly 

applied on AlGaN. Due to the precise control of the Al2O3 gate dielectric 

thickness by the atomic layer deposition (ALD) technique, it is possible to 

obtain good quality of Al2O3 with reasonable thickness after multiple fluorine 

treatments in between each ALD-Al2O3 deposition process. Therefore, much 
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more negative charges from FPT can be introduced into the gate dielectric than 

single FPT. To further increase the VTH of the device, the AlGaN at the gate 

region is recessed partially to weaken the polarisation field and hence reduce 

the induced 2DEG density. The process flow for the gate formation is shown in 

Fig. 4.1 which illustrates in detail how multiple FPTs are done. 

 

Fig. 4.1 Designed process of the multi-fluorinated Al2O3 gate dielectrics 
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To investigate the location and concentration of negative charges within the 

gate dielectric, three different sequences of the FPT process are designed and 

shown in Fig. 4.2. For dies C~E, four separate fluorine treatments are processed 

with RIE system at RF plasma power of 30W under CHF3 gas ambient. Low RF 

plasma power of 30W is selected to minimise the bombardment damage 

introduced to the sample surface. The processing parameters were obtained 

from process short-loops under a wide range of conditions. For Die C, FPTs are 

conducted on both the AlGaN layer (one time) and Al2O3 dielectrics (3 times), 

where the dose is concentrated at the centre of the Al2O3 dielectric. For Dies D 

and E, both devices have eliminated the treatments at the AlGaN layer and the 

dosage is concentrated at the top surface of Al2O3. Die E has even more biased 

FPT distribution away from the 2DEG to minimise their influences on the 

channel quality and carrier mobility. A constant negative charge incorporation 

rate of about 4.651010 cm2s-1 is extracted based on the FPT recipe used by 

fitting the VTH of the fabricated devices with the Sentaurus simulation, which 

will be explained in detail later. Therefore, the incorporated negative charge 

concentration is in linear proportion to the plasma treatment time, as shown in 

Fig. 4.2.  
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Fig. 4.2 The fluorine treatment time and the concentration of incorporated negative 

charges (Q) versus the distances of the treatments from the 2DEG applied on Dies C~E 
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To study the relationship between F ion incorporation through the FPT and 

the VTH of the device, a VTH model based on [92] has been extended for multi-

layer fluorine treatments, which is presented in Eq.(4.1). The first term in Eq. 

(4.1) shows the band offsets between each layers. With the assistance of the 

conduction band diagram of Dies B~E shown in Fig. 4.3, the barrier between 

Ni and Al2O3 is ϕb=3.5eV [93], and ΔE1 and ΔE3 are the conduction band offsets 

between AlGaN/GaN and Al2O3/AlGaN respectively, which added to 2.1 eV 

[94]. ΔE2 is the offset of the conduction band from the Fermi level before FPTs, 

which is 0.16 eV [14]. Permittivities of AlGaN and Al2O3 are AlGaN=9.20 and 
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Al2O3=70 respectively [14, 94]. The second and the third terms in Eq. (4.1) 

illustrate the electrostatic potentials across the AlGaN and Al2O3 layers 

respectively. Q2DEG=61012 cm2 is the 2DEG density at AlGaN/GaN interface 

when the thickness of AlGaN is 10nm [14]. QT=1.51012 cm-2 is the fixed 

charge density at Al2O3/AlGaN interface [95]. QEQ is the equivalent amount of 

FPT-induced negative charge located at the Al2O3/AlGaN interface which 

achieves the identical electrostatic effect to the multiple fluorine charges Q1~Q4 

within the Al2O3 gate dielectrics. The QEQ extracted from Eq. (4.2) is expressed 

as a sum of portions of Q1~Q4 related to their distances from the Al2O3/AlGaN 

interface. In other words, Q4, which is the furthest to the Al2O3/AlGaN interface, 

has the weakest influence to the value of QEQ. The concept of QEQ helps to 

simplify the relationship between the Q1~Q4 and VTH. It enables direct 

comparison of different combinations of Q1~Q4 to VTH. The transformation 

between Q1~Q4 and QEQ is illustrated in Fig. 4.4 (a). As listed in Table 4.2, these 

four fluorine plasma treatments are applied on AlGaN surface (Q1) and three 

layers of Al2O3 deposited by atomic layer deposition (ALD) at 250°C (labelled 

as Q2~Q4 on t1~t3). It is observed that the FPT will slightly etch the Al2O3 with 

a rate of 0.02nm/s observed by ellipsometer. Therefore, the deposition thickness 

of Al2O3 of Dies C~E are calibrated to ensure the total Al2O3 thickness after 

FPT are all about 18nm. According to Fig. 4.3, an additional potential barrier ϕF 

is induced after FPT will shift the conduction band at the AlGaN/GaN above the 

Fermi level, resulting in positive VTH.  
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Fig. 4.4 (b) shows the relationship between VTH and QEQ
 for data from model 

prediction (which is shown as dashed line in Fig. 4.4) by Eq.(4.1), Sentaurus 

simulations, measurement from previous work [91] and extracted VTH on Dies 

B~E, which will be discussed in Section 4.4. The VTH extracted from Sentaurus 

simulation used different combinations of Q2, Q3, and Q4 at their respective 

locations to show the accuracy of VTH extracted by the model using QEQ. The 

model prediction is realistic for all cases regardless of the amount and location 

of fluorine charge applied. In general, VTH increases linearly with QEQ, 

indicating a higher potential barrier ϕF is induced by more FPT-induced negative 

charges incorporated within the Al2O3 gate dielectrics. Die E is expected to have 

the highest VTH at around 6.5V due to its highset QEQ. 

Table 4.2 Summary of the multiple FPT gate processing parameters for Dies C, D, and 

E. 

Dies C D E 

1st F− treatment time (s) 30 0 0 

1st F− treatment conc. [Q1] (cm−2) −1.401012 0 0 

2nd F− treatment time (s) 185 185 140 

2nd F− treatment conc. [Q2] (cm−2) −8.601012 −8.601012 −6.511012 

3rd  F− treatment time (s) 185 185 240 

3rd  F− treatment conc. [Q3] (cm−2) −8.601012 −8.601012 −1.211013 

4th F− treatment time (s) 90 240 280 

4th F− treatment conc. [Q4] (cm−2) −4.191012 −1.121013 −1.301013 

Equivalent F conc. [QEQ] (cm−2) −1.521013 −1.691013 −1.821013 

ALD-Al2O3 t1, t2, t3, t4 (nm) 7.4, 6, 4.3, 8 7.4, 6, 7.6, 8 6.5, 7.3, 7.6, 8 

Total thickness considering RIE 

etching by F− treatments (nm) 
18.00 18.15 18.10 
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Fig. 4.3 Schematic conduction band energy (EC) diagram along the gate region for Dies 

B~E. 

 

 

Fig. 4.4 (a) The schematic of Q1~Q4 and QEQ transformation (b) Relationship between 

VTH and QEQ for data from model prediction (dash line), Sentaurus simulations, 

laboratory measurements from Dies B~E and previously reported work [91]. 

(a) 

(b) 
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4.3 Fabrication process of the high-VTH MIS-HEMT 

The process parameters used for the gate stack formation are already 

demonstrated in Table 4.2 and verified by Sentaurus TCAD simulations [34]. 

The cross-sectional schematic diagram of the HEMT device in which the multi-

layer fluorinated dielectric stack is shown in Fig. 4.5 (b). The epitaxial 

AlGaN/GaN on Si substrate has the 2DEG density and carrier mobility of 

8.51012 cm-2 and 1450 cm2/V·s respectively. The LG, LGD and LGS are 3µm, 

5μm and 5µm respectively. After mesa isolation by BCl3-based ICP-RIE and 

SiO2 dielectric deposition by PECVD, metal stacks made of Ti/Al/Ni/Au 

(25/125/45/55 nm) were deposited by the thermal evaporator and ohmic 

contacts were formed by post-deposition rapid thermal annealing (RTA) at 

850°C for 30s. According to the transmission line measurements (TLM), the 

specific contact resistance of the ohmic contact is 2.410-6 Ωcm2. About 10nm 

(which is about 50% of the total AlGaN thickness) of AlGaN barrier layer was 

recessed at the gate region by low power BCl3-based ICP-RIE. The partial gate 

recess reduces the 2DEG concentration without severely damaging the 

AlGaN/GaN interface, thus the carrier mobility in the 2DEG channel can be 

preserved. To benchmark with the fluorinated Dies C~E, normally-on 

AlGaN/GaN MIS-HEMT dies without and with partial gate recess process were 

fabricated and labelled as Dies A and B. 
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For dies C~E, four separate fluorine treatments were processed with RIE 

system at RF plasma power of 30W under CHF3 gas ambient. The processing 

parameters were obtained from process short-loops under a wide range of 

conditions. As listed in Table 4.2, these four fluorine plasma treatments were 

applied on AlGaN surface (Q1) and on three layers of Al2O3 deposited by atomic 

layer deposition (ALD) at 250°C (labelled as Q2~Q4 on t1~t3). For Die E, the 

secondary ion mass spectroscopy (SIMS) measurement shown in Fig. 4.5 (a) 

was carried out to observe the F distribution within the gate dielectric. Three 

distinctive peaks of F concentration are found at t1, t2, and t3, showing the 

effectiveness of FPT on F incorporation at the desired location. The integrated 

F concentrations of the three peaks at t1, t2, and t3 are 1.76×1022 cm-2, 3.2×1022 

cm-2, and, and 3.85×1022 cm-2 respectively. They give the similar ratio of 

Q2:Q3:Q4 =1:1.82:2.15 used in the Sentaurus simulation and Eq. (4.1). After 

the multiple fluorine plasma treatments, additional 8nm of Al2O3 (t4) was 

deposited before the gate metal deposition. This helps to avoid the interactions 

between the negative charges incorporated by FPT with the traps at the 

metal/Al2O3 interface. Dies C~E have identical t1, t2, and t3 thickness of 4nm, 

3nm, and 3nm respectively after the FPTs due to the etching effect of the 

fluorine plasma. Finally, Ni/Au (15/150nm) layers were deposited by the 

thermal evaporator as gate metal. The cross-sectional schematics and SEM 

photo of gate region are shown in Fig. 4.5 (b).  
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Fig. 4.5 (a) Fluorine profile within the Al2O3 of Die E characterised by SIMS; (b) 

Schematic of the normally-off HEMT device treated with partial AlGaN recess and 

fluorine plasma treated at the gate region. The SEM cross-sectional image of the gate 

region of the fabricated device is also demonstrated.  

4.4 Characterisation of the high-VTH MIS-HEMT  

Fig. 4.6 shows the measured ID-VG, and the transconductance (gm) of Dies 

A~E at VD = 1V. The VTH is extracted by extrapolating the tangent of the ID-VG 

characteristics at the voltage where gm is at maximum. The recess-only Die B 

shifts the VTH from −4.8V to −2.0V, showing the reduction of the polarisation 
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field and the 2DEG density after partial AlGaN recess. The Dies C~E that 

underwent fluorine plasma treatments have shifted the VTH to normally-off 

operations, where Die E has the highest VTH of +6.5V. The measured VTH agrees 

with the design based on the VTH analytical model as shown in Fig. 4.4. 

Consistent VTH is obtained for all dies C~E from the ID-VG measurements when 

VD=8V, as summarised in Table 4.3. It shows that the VTH are stable when the 

devices are at the saturated region. Meanwhile, the maximum gm=28mS/mm for 

Die E is similar to the untreated Die B. It indicates trivial degradation on the 

sub-threshold swing after the partial recess and multiple FPTs at the gate. 

 

Fig. 4.6 Comparison of measured ID-VG (data points) on devices Dies A~E at VD=1V. 

VTH is obtained by linear extrapolating the ID-VG at the gate voltage where the 

maximum gm (dotted lines) occurs. 

Table 4.3 The VTH of Dies C~E when VD=1V and 8V 

 Die C Die D Die E 

VTH at VD=1V 4.3 5.0 6.5 

VTH at VD=8V 4.2 4.8 6.4 
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Fig. 4.7 shows the ID-VG and IG-VG characteristics of Dies A~E in 

logarithmic scale. Low gate leakage current IG of around 1nA/mm at VG=12V 

is observed for Die E, indicating the preservation of dielectric quality after the 

multiple FPT process. However, FPT on the AlGaN barrier such as in the case 

of Die C provides a trap-assisted leakage path between the 2DEG and the gate 

metal contact. It results in high gate leakage and poor device reliability. 

Numerous characterisations on the VTH, IG and IDMAX stability after terminal 

stresses have been conducted on Die E for reliability and stability verification. 

Less than 5% variation in VTH is found after ten ID-VD sweeps. The ID-VD 

sweeps are done with VD swept from 0V to 10V at VGT= VG−VTH =10V with 1s 

holding of VD at 10V after each sweep. Less than 6% reduction in IDMAX is also 

observed if a 50ms-pulsed VGT from −5V to 10V is applied before each ID-VD 

data point extraction. The values selected for gate and drain stress are to 

maximise the stressing conditions to ensure the device is reliable. In terms of 

the current collapse effect, the increase in the dynamic on-resistances (Ron) 

measured for Dies A, B, and E after off-state biasing VD at 200V for 10s are 

11.2%, 19.7%, and 61.3% respectively. Even though a significant increase in 

Ron is found for Die E, it is comparable to other fluorine-treated devices reported 

in [26]. The current collapse can be possibly mitigated by reduce the surface 

trap concentration or the peak electric field [3], which is achievable through 

surface passivation layer deposition and field plate implementation [96].  
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Fig. 4.7 ID-VG characteristics and IG-VG of Dies A-E at VD=1V in log scale. Low off-

state gate leakage current of 1 nA/mm is observed for Die E. 

Fig. 4.8 (a) shows the on-state ID-VD characteristics of Dies A~E at gate 

overdrive voltage VGT of 10V. The IDMAX is defined as the maximum drain 

current in the saturation region when VGT=VGVTH=10V. After FPTs, a 

moderate 29% reduction in IDMAX, which reduces from 490mA/mm to 

350mA/mm, is observed for Dies D & E compared to normally-on Die A with 

neither gate recess nor FPTs on the gate. However, for Die C which also 

conducted FPT on AlGaN, about 60% reduction in IDMAX is observed. It 

indicates that applying FPT directly on the AlGaN surface has deteriorated the 

AlGaN/GaN interface and reduced the carrier mobility of the 2DEG. The 2DEG 

carrier mobilities at the gate region shown in Table 3.3 are obtained from fitting 

the ID-VD characteristics in Fig. 4.8 (a) with Sentaurus simulations for Dies A~E. 

In agreement with the most IDMAX degradation, the lowest 2DEG mobility is 

observed in Die C. In Fig. 4.8 (b), the off-state ID-VD characteristic of Die E 

with LGD=15μm and LFP=2.5μm at VG =0V is shown. A maximum breakdown 

voltage of 1140V is obtained for Die E. It agrees with the designed rating 
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obtained from simulation [97] thus confirms the suitable gate formation without 

any premature breakdown. The comparison of VTH and IDMAX with other 

reported state-of-the-art AlGaN/GaN normally-off power HEMTs are shown in 

Fig. 4.9. Dies D and E reported in this chapter have the highest VTH with 

competitive IDMAX compared to the other reported devices. 

 

Fig. 4.8 (a) On-state ID-VD with measured data points and simulated solid lines of Dies 

A~E at VGT=10V demonstrated. (b) Off-state ID-VD characteristic for Dies E at VG=0V.  

Table 4.4 The 2DEG carrier mobility for Dies A~E from simulations in Fig. 4.8 (a) 

Dies A B C D E 

Mobility (cm2/V·s) 1450 1200 600 1000 1050 

 

Fig. 4.9 Benchmark of VTH and IDMAX of Dies D & E with published state-of-the-art 

normally-off power AlGaN/GaN HEMTs [7, 20, 26, 27, 29, 91, 98]. Highest VTH and 

a competitive IDMAX are observed for Dies D and E.  
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4.5 Fabrication and characterisation of GaN-based monolithic 

inverter 

In Sections 4.1 to 4.4, the enhancement-mode (VTH>0V, E-mode) 

AlGaN/GaN MIS-HEMT with high VTH and good conductivity was fabricated 

with multiple FPTs. Therefore, a monolithic logical inverter can be realised by 

integrating this normally-off MIS-HEMT with a depletion-mode (VTH<0V, D-

mode) AlGaN/GaN MIS-HEMT without any gate recess or FPTs at the gate 

region. A well-performed GaN-based inverter enables the full integration of 

control and current sensing unit for power integrated circuits with potentially 

low-cost GaN-on-Si wafers. In this section, a depletion-load NMOS inverter is 

fabricated with much enhanced noise margins and high output swing than 

conventional Si-based CMOS.  

As indicated in the designed fabrication flow in Fig. 4.10, the inverter 

fabrication process begins with Ti/Al/Ni/Au (25/125/45/55 nm) ohmic contacts 

formed by RTA at 850C for 30s. Then, 500nm-deep mesa isolation is formed 

by BCl3-based ICP-RIE and 150nm SiO2 dielectric deposition by PECVD for 

surface passivation. After opening the gate area at the normally-off region, 

about 10nm of AlGaN (50% of the original thickness) is recessed by low power 

BCl3-based ICP-RIE to reduce the 2DEG concentration without damaging the 

AlGaN/GaN interface that degrades the electron mobility. Three cycles of ALD-

Al2O3 depositions at 250°C and 30W of CHF3-based RIE treatment were 
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applied to introduce sufficient F− charges in the gate region for high VTH for the 

normally-off devices [37]. Same as the fluorine treatment recipe utilised for Die 

E reported in Section 4.1 to 4.4, longer treatment time was applied on the top 

layer to minimise the penetration of fluorine atoms into the 2DEG channel that 

may create impurity scattering and mobility degradation. Then, the gate 

dielectric at the D-Mode gate region was etched away to remove the fluorine-

treated Al2O3. 8nm of ALD-Al2O3 was deposited as the normally-on device gate 

dielectric and the last gate dielectric layer for the normally-off devices. This 

layer was applied to prevent high gate leakage by spacing the fluorinated 

normally-off gate stack away from the gate metal. Considering the CHF3 plasma 

etching on Al2O3, the total Al2O3 thickness of 18.1nm for the normally-off 

device was obtained after the FPTs. Lastly, 15/150nm of Ni/Au was deposited 

as the gate metal. The gate length (LG), gate-drain length (LGD), gate-source 

length (LGS), field-plate length (LFP) for both normally-on and normally-off 

devices are 3μm, 10μm, 5μm and 1.5μm respectively. The cross-sectional 

schematic of the devices with metal routing to each other and the equivalent 

circuit diagram of the inverter are shown in Fig. 4.11. In this configuration, the 

normally-off HEMT is acted as the logic switch, while the normally-on HEMT 

is acted as the resistive load. Due to the absence of well-performed GaN-based 

PMOS transistor, such depletion-load NMOS configuration is a competitive 

substitution to CMOS configuration for GaN-based logic inverter applications. 

The specific steps and processing parameters used for gate fabrication are 



94 

 

summarised in Table 4.5. The equivalent F− sheet concentrations of each layers 

are obtained by fitting the measured VTH with Sentaurus TCAD simulations 

based on the same method used in [37] and Section 4.2. 

 

Fig. 4.10 The designed fabrication process flow of the monolithic inverter 
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Fig. 4.11 Cross-sectional schematics of the monolithic logic inverter with normally-on 

and normally-off devices connected as depletion-load NMOS inverter configuration. 

The equivalent circuit diagram of the logic inverter is shown above. 

The surface morphology of Al2O3 dielectrics before and after FPT is shown 

in Fig. 4.12 (a) and (b). The surface roughness RMS of the dielectric surface has 

increased from 0.648nm to 1.14nm after FPTs, showing the introduction of 

plasma-induced damage. However, such increase in surface roughness is not 

influential to the carriers in the 2DEG channel at the AlGaN/GaN interface. It 

does not result in any degradation in gate leakage.  
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Fig. 4.12 The AFM image of the Al2O3 surface (a) without and (b) with FPT. The 

surface roughness RMS has trivially increased by about 0.5 nm after treatments.  

Table 4.5 The fabrication process and the respective parameters used for the gate 

region 

Step Process Parameters 

1 
AlGaN partial recess at 

normally-on region 
Cl2 ICP @ 30W for 30s 

2 ALD-Al2O3 6.5 nm 

3 F− treatment 
CHF3 RIE @ 30W for 140s 

F− Conc.~= −6.511012 cm−2 

4 ALD-Al2O3 7.3 nm 

5 F− treatment 
CHF3 RIE @ 30W for 260s 

F− Conc.~= −1.211013 cm−2 

6 ALD-Al2O3 7.6 nm 

7 F− treatment 
CHF3 RIE @ 30W for 280s 

F− Conc.~= −1.301013 cm−2 

8 
Fluorinated Al2O3 removal at 

the normally-on region 
BCl3 ICP @ 200W for 180s 

9 ALD-Al2O3 8 nm 

10 Gate metal deposition Ni/Au (15/150 nm) 

The static voltage transfer characteristics (VTC) performance of the 

monolithic inverter with different width ratio between normally-off and 

normally-on HEMTs (Wratio) of 20, 35, and 50 are shown in Fig. 4.13. The VTC 
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is a figure of merit for the static behaviour of the inverter. A sharp transition 

between the high and low conditions with large swing are desired. In the VTC 

characteristics, the definition of input-low (VIL, lower voltage when slope=−1), 

output-low (VOL, lowest output voltage), input-high (VIH, higher voltage when 

slope=−1), output-high (VOH, highest output voltage) are also shown. The above 

parameters extracted together with the ratio between the output voltage swing 

and maximum VIN (S/VINMAX), low noise-margin (NML), and high noise-margin 

(NMH) voltages have been summarised in Table 4.5. It is observed that Wratio=35 

resulted in the highest S, NML and NMH. Comparing with 82.8% of the GaN-

based inverter reported in [99] and 80.3% of the Si CMOS inverter shown in 

[100], a much higher S/VINMAX of 96.6% is achieved for the inverter fabricated 

with Wratio of 35. It indicates good conductivity in both normally-on and 

normally-off HEMTs within the inverter. Therefore, there is much reduced 

voltage drop through the normally-off device when the input is high.  

 

Fig. 4.13 Voltage-transfer characteristics (VTC) of the monolithic inverter with Wratio 

of 20, 35, and 50. The definitions of VOL, VIL, VOH, and VIH are shown.  
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The dynamic performance of the inverter with Wratio=35 at f=100 kHz has 

been demonstrated in Fig. 4.14. Successful and fast inverter switching from 0V 

to 10V is observed on input and output signals in Fig. 4.14(a). In Fig. 4.14(b), 

the rise of VOUT waveform is shown along with the indicators of propagation 

delay from low to high (τPLH, the time difference between VIN and VOUT at 50% 

of VOH) and rise time (τrise, the time different between 90% VOH and 10% VOH). 

All of the abovementioned parameters along with two additional 

characterisations on the propagation delay from high to low (labelled as τPHL) 

and the fall time (labelled as τfall) for Wratio=20, 35 and 50 have been summarised 

in Table 4.5. It is found that there is a trade-off between the response times when 

the inverter is switching at different Wratio. An optimal switching behaviour is 

observed when Wratio=35. The propagation delay times of around 90ns for the 

fabricated inverter is comparable with the typical values of the inverters used in 

the high power and high frequency DC/DC converters [101].  
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Fig.. 4.14 Dynamic performance of the monolithic inverter with Wratio=35 at f=100 kHz 

with timespan of (a) 0~20 μs which shows complete switching periods and (b) 4.9~5.3 

μs which presents the switch-on transient for VOUT and the definition of τPLH and τrise. 

  

(a) 

(b) 
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Table 4.6 Summary of the performance of the monolithic inverter 

Wratio 20 35 50 

VIL (V) 2.9 3.6 3.8 

VOL (V) 1.24 0.34 0.64 

VIH (V) 4.6 5.1 5.4 

VOH (V) 10 10 10 

S/VINMAX (%) 87.6 96.6 94.6 

NML = VIL − VOL (V) 1.66 3.26 3.16 

NMH = VOH − VIH (V) 5.40 4.90 4.60 

τPLH (ns) 35 90 110 

τPHL (ns) 90 80 73 

τrise (ns) 100 135 140 

τfall (ns) 90 40 35 

 

4.6 Conclusion 

In this chapter, a technique that combined partial AlGaN barrier layer recess 

with multiple fluorine treatments on dielectric stack was proposed to target for 

higher amount of negative charge incorporation within the gate dielectric stack 

while minimising the damage to 2DEG channel. Al2O3 deposited by atomic 

layer deposition (ALD) technology was applied in order to meet the requirement 

of high quality thin dielectric layers for the gate dielectrics. In addition, a 

monolithic inverter with large output swing and fast switching time was realised 

by combining the abovementioned normally-off device with a normally-on 

MIS-HEMT. 

A normally-off AlGaN/GaN MIS-HEMT with high VTH of +6.5V, 

competitive IDMAX of 320mA/mm and good breakdown voltage of 1140V was 

achieved by partial AlGaN recess and multiple FPTs on the gate dielectric. The 

modelling on the relationship between multi-FPT-processed Al2O3 gate stacks 
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and VTH has also been proposed to guide the gate region design. Good 

agreement on the simulated VTH was verified by the ID-VG characterisations on 

the fabricated devices. 

Lastly, a monolithic inverter based on GaN normally-off and normally-on 

MIS-HEMT configuration have been fabricated. The well-performed normally-

off device as the driving transistor of the inverter enhances both the output 

voltage swing and the noise margins significantly. A better output swing and 

switching speed were realised as compared with conventional Si-based CMOS 

inverter.  
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CHAPTER 5 Fluorinated Trap Distribution within 

Al2O3 Gate Dielectric for Normally-off AlGaN/GaN 

MIS-HEMTs 

5.1 Introduction 

In previous chapters, it was observed that the normally-off AlGaN/GaN 

HEMT device with positive gate threshold voltage (VTH > 0) is one of the most 

important properties required in power system switching applications for system 

controllability, safety, and standby power minimisation. To fabricate such 

device, AlGaN barrier recess [98] and fluorine plasma treatment [9, 26, 28, 99, 

102] on the gate region are two of the approaches used to weaken the 

polarisation in the 2DEG conduction channel and induce an additional vertical 

electric field to deplete the carriers in the HEMT structure. For the devices 

underwent multiple fluorine plasma treatments (FPT) on ALD-Al2O3 gate 

dielectric combined with partial AlGaN recess, which was reported in Chapter 

4 and [37], they allowed a significant amount of fluorine-induced negative 

charge (F) to be incorporated at the gate stack. As a result, high threshold 

voltage of +6.5V was obtained with satisfactory maximum drain current (IDMAX) 

of 340mA/mm and off-state breakdown voltage of 1130V. However, a 

significant decrease in VTH is found when devices operate at higher temperature. 

Therefore, it is necessary to study the distribution of trap states in the Al2O3 gate 
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dielectric bandgap after the FPTs to investigate the stability of the F within the 

gate dielectric at higher temperature. 

This chapter studies the fluorine-induced negatively charged traps (F) 

within the Al2O3 gate dielectric by the gate stressing characterisation based on 

the VTH model [37] and the Poole-Frenkel trap emission theory. Using such 

technique, the trap state concentrations at corresponding energy levels within 

the Al2O3 gate dielectrics can then be found. Hence, the VTH stability for the 

fluorine-plasma treated AlGaN/GaN MIS-HEMTs under high temperatures can 

be understood.  

5.2 Design and fabrication of HEMT devices with different RIE 

fluorine plasma power 

   The structure of the normally-off Al2O3/AlGaN/GaN MIS-HEMTs used in 

this chapter is based on the design for Die E in Chapter 4. According to Section 

4.4, it is found that the Die E with most of the FPT processed closer to the Al2O3 

surface is able to sustain the high-VTH with least on-state current reduction 

compared to other FPT configurations reported. Therefore, in this chapter, the 

same FPT recipes applied on the same locations as the Die E in Chapter 4 are 

implemented with variations in the RF plasma power. 

In Table 5.1, three different RIE recipes have been used for Dies A, B and 

C respectively with gate processing parameters listed. For Die A, 30W of RF 

power with 50 scum of CHF3 gas is used in each of the treatments. This gate 



104 

 

processing recipe is identical to the Die E reported in Chapter 4. Higher RF 

power of 60W and 90W with the same flow of CHF3 gas are used for Die B and 

C respectively to enhance the breaking of Al-O bonds, since the higher RF 

power has enhanced the ion bombardment and the fluorine radical concentration 

ionised from CHF3.  

The AlGaN/GaN HEMT device structure with multiple fluorine plasma 

treatments on the gate dielectric used for this work is shown in Fig. 5.1 (a). The 

fabrication began with the formation of Ti/Al/Ni/Au (25/125/45/55 nm) ohmic 

contacts with rapid thermal annealing (RTA) at 850°C for 30s. Then, 500nm-

deep mesa isolation was obtained on the dies by BCl3-based inductively coupled 

plasma reactive ion etching (ICP-RIE). 150nm of SiO2 dielectric was deposited 

by PECVD for surface passivation. After the gate region opening, about 10nm 

of AlGaN, which is 50% of the total AlGaN layer thickness, was recessed by 

low power BCl3-based ICP-RIE. Therefore, the 2DEG concentration under the 

gate is reduced yet the 2DEG mobility at the AlGaN/GaN interface is 

maintained. Followed by the first layer of Al2O3 deposition at 250°C by atomic 

layer deposition technique (ALD), three cycles of FPTs combining with ALD-

Al2O3 gate dielectric depositions were used for gate stack formation. With this 

approach, sufficient F− charges were introduced in the gate region for high VTH. 

Longer FPT processing time was applied on the top layer of Al2O3 to minimise 

F− penetration into the 2DEG channel region, which can possibly create 

degradation of 2DEG mobility. Considering the CHF3 plasma etching on Al2O3, 
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the final Al2O3 thickness of 18.1nm is obtained. The thickness of each deposited 

layers was verified by the Scanning Electron Spectroscopy (SEM) image, which 

is shown in the inset of Fig. 5.1(a). The change in surface morphology after the 

FPT was assessed in the atomic force microscopy (AFM) image shown in Fig. 

5.1 (b) and (c). The surface roughness RMS was increased from the un-

fluorinated sample of 0.648nm to the fluorinated Die A of 1.138nm. It implies 

the increase in the surface dangling bonds and possible trapping sites after 

fluorination. For comparison, a benchmarking sample with 18nm of Al2O3 

deposited after gate recess but without any fluorine plasma treatments was also 

fabricated and labelled as the “recess-only” device.  

 

Fig. 5.1 (a) Cross-sectional schematic of the fabricated normally-off MIS-HEMT 

device, where the inset shows the cross-sectional SEM image of the fabricated device 

near the gate region. The approximate thickness of each of the layers is also shown; 

AFM image of the Al2O3 surface (b) without and (c) with fluorine plasma treatments 

(Die A);  

(a) 

(b) 
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The analytical model of the VTH of fluorinated HEMT devices is shown in 

Eq. (5.1) [37]. The barrier ϕb between Ni and Al2O3 is 3.5eV. ΔE1 and ΔE3 are 

the conduction band offsets between Al2O3/AlGaN and AlGaN/GaN 

respectively, which added to 2.1eV. ΔE2 is the conduction band offset from the 

Fermi level prior to the FPTs, which is 0.16eV. The permittivities of AlGaN 

and Al2O3 are AlGaN=9.20 and Al2O3=70. Q2DEG=6 1012cm2 is the 2DEG 

density at AlGaN/GaN interface when AlGaN thickness is at 10nm. QT=1.5

1012 cm-2 is the fixed charge density at Al2O3/AlGaN interface [95]. QEQ is the 

equivalent amount of charge at the Al2O3/AlGaN interface for the identical 

electrostatic effect by the multiple fluorine charges Q1~Q3 at different Al2O3 

layers t1~t3. The extraction of QEQ was discussed in Section 4.2. Q1~Q3 values 

for the process conditions shown in Table 5.1 are extracted by fitting the 

measured VTH from the ID-VG characterisations with the Sentaurus TCAD 

simulations [37]. 
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Table 5.1 Procedures of gate stack fabrication for multi-fluorinated normally-off MIS-

HEMTs Die A, Die B, and Die C 

Steps Process Die A Die B Die C 

1 ALD-Al2O3 (t1) 6.5 nm 9.3 nm 

3 RIE F− treatment (140s) 

50 sccm 

CHF3 @ 

30W 

50 sccm 

CHF3 @ 60W 

50 sccm 

CHF3 @ 

90W 

4 ALD-Al2O3 (t2) 7.3 nm 10.1 nm 12.8 nm 

5 RIE F− treatment (260s) 

50 sccm 

CHF3 @ 

30W 

50 sccm 

CHF3 @ 60W 

50 sccm 

CHF3 @ 

90W 

6 ALD-Al2O3 (t3) 7.6 nm 10.6 nm 13.5 nm 

7 RIE F− treatment (280s) 

50 sccm 

CHF3 @ 

30W 

50 sccm 

CHF3 @ 60W 

50 sccm 

CHF3 @ 

90W 

8 ALD-Al2O3 (t4) 8 nm 

Total Al2O3 thickness after F−
 RIE 

treatment 
18.1 nm 

5.3 Trapping and de-trapping of the negative charge within the 

gate region 

Fig. 5.2 shows the bi-directional transfer gate swing characteristics (with 

sweeping time of 0.5V/s) of recess-only and fluorinated dies A, B, and C at 

VD=1V. It is observed that the FPT is able to increase the VTH from about −2.2V 

to 5.4V~7.4V at room temperature, indicating significant amount of negative 

charge trapping within the gate dielectric. The negative charges generate a 

depletion field to deplete the 2DEG. The increase in the RF power of the FPT 

creates greater amount of dissociated fluorine radicals provided to the sample 

surface and resulted in higher VTH. Highest VTH of 7.4V for Die C is found with 

RIE power at 90W. Additionally, positive shift in VTH is investigated during the 

negative sweep of ID-VG comparing with the VTH during the positive sweep. It 
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demonstrates the trapping and de-trapping behaviour of electrons to the trap 

states at Al2O3/AlGaN interface or Al2O3 bulk at high VG during the positive 

sweep. The amount of de-trapped charge resulted in the change in VTH during 

the bi-directional voltage swing is expressed as QDETRAP in Eq. (5.2) [103]. In 

Eq. (5.2), εAl2O3=7ε0, where ε0 is the permittivity in vacuum, q is the electronic 

charge and tAl2O3 is the thickness of Al2O3 as shown in Table 5.1. The parameters 

shown in Table 5.2 are the VTH, ΔVTH and QDETRAP values for Die A~C at 25°C 

based on Fig. 5.2 measurement data and Eq. (5.2). It is observed that the ΔVTH 

is smaller with a higher fluorine treatment power, implying that more negative 

charges are located at deeper levels. Therefore, the charges are not trapped nor 

de-trapped by the VG-induced variations in Fermi level during the gate swing at 

room temperature.  

32

320

ETRAPQ
OAl

THOAl

D
qt

V



     (5.2) 

 

Fig. 5.2 Bi-directional linear ID-VG characterisic of recess-only and FPT-processed dies 

A~C at 25°C. The ID-VG sweep was done in 20s. ΔVTH is demonstrated in the inset for 

the recess-only device.  
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Table 5.2 Extracted ΔVTH and QDETRAP on devices of recess-only and FPT-processed 

dies A~C at 25 °C. VTH is obtained by extrapolating the linear region of the positively-

swept ID-VG curves. 

Devices Recess-only Die A Die B Die C 

VTH in positive 

sweep (V) 
−2.2 5.4 6.05 7.4 

QEQ  (1013 cm-2) 0 1.67 1.81 2.07 

∆VTH (V) 0.4 1.5 1 0.8 

QDETRAP          

(1012 cm-2) 
1.07 4.01 2.67 2.13 

Fig. 5.3 gives the schematic energy diagrams to illustrate the trapping and 

de-trapping mechanisms of charged carriers which resulted in ΔVTH during the 

ID-VG bi-directional swing [104]. When VG=0V (Fig. 5.3(a)), the fermi level 

(EF) is pinned below the conduction band (EC) of GaN due to the 2DEG 

depletion effect by the FPT-induced trapped negative charges. When 

VG=V1>VTH in positive sweep of ID-VG shown in Fig. 5.3(b), electrons from 

2DEG at the AlGaN/GaN interface are attracted by the positive gate bias and 

move towards the gate metal. They will finally be trapped at empty states at the 

Al2O3/AlGaN interface or Al2O3 bulk through field emission (FE) or trap-

assisted tunnelling (TAT) effects [105]. When VG reaches maximum (shown in 

Fig. 5.3 (c)) and most of the empty states are being filled by electrons, those 

trapped electrons are slowly de-trapped back into 2DEG during negative sweep. 

The remained trapped electrons provide an additional depletion field to the 

2DEG that causes positive VTH shift comparing with the VTH during the positive 

shift, as shown in Fig. 5.3 (d). Thus, higher amount of trapped charge results in 

larger VTH and ΔVTH is observed during the negative sweep.  
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Fig. 5.3 Schematic energy band diagram of Al2O3/AlGaN/GaN interface at (a) VG=0V 

in positive sweep (b) VG=V1 in positive sweep (the empty trap states start being filled 

due to field emission (FE) and trap-assisted tunneling (TAT) (c) VG at maximum VG 

and (d) VG=V1 in nagative sweep (more electrons remained in the gate dielectric and 

Al2O3/AlGaN interface since the trap emission is slower than the sweep time. Positive 

shift in VTH is observed due to enhanced 2DEG depletion) 
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5.4 The effect and mechanism on VTH thermal degradation of the 

fluorinated MIS-HEMTs 

The amount of electrons trapped at FTP-induced trap states varies with 

temperature and thus changes the VTH of the device. Fig. 5.4 summarises the 

variation in VTH of the recess-only device and FPT-processed Dies A~C from 

25°C to 200°C. Unlike the relatively stable VTH for the recess-only device, a 

noticeable decrease in VTH is found for all Dies A to C. It proves that the 

emission of electrons within the gate is mainly from the FPT-induced traps 

within Al2O3. Therefore, it can be expressed as solely the reduction in QEQ in 

Eq. (5.1). For both Dies A and B, the VTH is reduced to about −1.9V at 200°C, 

which is closer to the VTH of recess-only device. Therefore, most of the FPT-

induced negative charges for Die A and B have been emitted from the trap sites 

and lost the control of VTH under high temperatures. While for Die C at 200°C, 

VTH remained at 2V, showing good retainment of QEQ at high temperature.   

The deepest emission level of the FPT-induced negative charges 

corresponding to different temperatures can be modelled by Eq. (5.3) [106, 107]. 

In Eq. (5.3), ET_MAX is the deepest energy level (referenced to the conduction 

band edge) of the trapped charges emitted from the trap sites, kb is the 

Boltzmann’s constant, T is the device temperature, 

n=(th/T
0.5)(Nc/T

1.5)=3.251021(mn/m0), where mn/m0 is the relative electron 

effective mass within Al2O3, which is 0.16 [108], th is the thermal velocity of 
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Al2O3, obtainable from th=(3kbT/ (mnm0))
0.5 [109], NC is the effective density 

of states in Al2O3, obtainable from NC=2(2πmnm0kbT/h2)1.5 [109] and h is the 

Planck’s constant. σAl2O3=10−16cm2 is the capture cross-section of the electrons 

in Al2O3
 [110], and t=50s is the device heating time. The time is sufficient for 

stable device surface temperature and reaching quasi-steady state [111, 112]. 

The ET_MAX is relatively insensitive to changes in the characterised time range. 

Therefore, the ET_MAX at different temperatures are calculated and plotted in the 

schematic energy band diagram of Al2O3 in Fig. 5.5. It is reasonable to assume 

that all of the charges trapped shallower than ET_MAX is emitted due to the exerted 

thermal energy. All trapped charges deeper than ET_MAX at a certain temperature 

T is not emitted from the level.  

)(ln 2
32_ tTTkE OAlnbMAXT      (5.3) 

 

Fig. 5.4 The VTH obtained from the ID-VG transfer characteristics for FPT-processed 

dies A~C and the unprocessed recess only device at temperatures from 25 °C to 200 °C.  
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Fig. 5.5 The schematic energy band diagram and depicted trap emission mechanism of 

the FPT-processed Al2O3 with the maximum trap emission levels (ET_MAX) 

demonstrated at (a) 100 °C (b) 150 °C and (c) 200 °C. 

The variation in QDETRAP of the four devices with temperatures according to 

the bi-directional ID-VG measurements and Eq. (5.2) is summarised in Fig. 5.6. 

A significant increase in QDETRAP is found for the FPT-treated devices at higher 

temperatures, implying more negative charges are de-trapped faster than the ID-

VG negative sweeping time (the sweep speed was 0.5s/V, thus the total negative 

sweep time was 7.5s). While for the recess-only device, the QDETRAP is much 

more stable at high temperature. It is also noteworthy that the amount of QDETRAP 

is less in Die C than in Die A and B at higher temperatures, implying less amount 

of the trapped charge is emitted from the sample with higher RIE plasma power. 

Therefore, it is possible to use the extracted QDETRAP to map the trap state 

distribution within the Al2O3 energy band with the assistance of Eq. (5.3). 

However, the bi-directional ID-VG characterisation is not capable of extracting 

the charges at deep-level FPT-induced trap states in Al2O3 accurately. These 

(a) (b) (c) 

(a) (b) (c) 
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deep-level traps are dominating the high temperature stability of the device as 

their emission time is much longer than the ID-VG sweep time. Furthermore, the 

excess carriers attracted from the 2DEG region during the positive VG sweep 

may overestimate the actual amount of trapped charge within Al2O3. Therefore, 

in Section 5.5, the gate-stressing characterisations are carried out to provide a 

better estimation on the distribution of the traps within the Al2O3 energy band.   

 

Fig. 5.6 The change in the QDETRAP obtained from bi-directional ID-VG characteristics 

for FPT-processed Die A~C comparing with unprocessed recess-only device at 

temperatures from 25°C to 200°C. 

5.5 Deep trap state characterisation by the gate-stressing 

technique 

In order to better estimate the deep trap states and densities (DEQ) induced 

by FPT, the gate-stressing characterisation was carried out by stressing the gate 

at different levels of negative bias voltage. Based on the Poole-Frenkel trap 
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emission theory [113-116] leading to Eq. (5.4), the negative gate bias is able to 

provide an electric field (ξ) that enhances the emmission of FPT-induced 

negative charges trapped within Al2O3. A larger reduction of VTH is observed 

with increasing gate base voltage (VB) due to the stronger emission field. 

Specifically, pulsed ID-VG measurement with VB from 0V to 40V held for 50s 

at 25°C was performed. In order to minimise the charge injection during positive 

VG sweep which introduces error to the characterisation, the positive gate 

voltage is provided in terms of short pulses. After the initial 50s of VB stressing 

to emit the trapped negative charges, the pulsed positive gate sweep initiates and 

returned to the same VB between pulses. The time for VB in between two pulses 

is 18ms and the time for pulsed positive VG is 2ms to ensure the charge injection 

introduced by the positive VG is emitted in each cycle. According to the change 

in VTH for Die C at different pulse seapration times shown in Table 5.3, most of 

the carriers have already been emitted when pulse separation time is 18ms. 

Detailed time sequence of these VG pulses is shown in the inset of Fig. 5.7(a). 

The sampled drain current (ID) waveform from the characterisation is shown in 

Fig. 5.7(a). In Eq. (5.4), QEQ,0 and QEQ,VB are the effective FPT-induced trapped 

negative charges before and after the gate stress VB is applied. The QEQ,0 and 

QEQ,VB can be derived by the change in characterised VTH by Eq. (5.1).  
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Table 5.3 The VTH of Die C with different pulse separation time and VB. 

Pulse separation time VTH when VB=−20V  VTH when VB=−40V 

18ms 2.50V −0.60V 

48ms 2.50V −0.65V 

98ms 2.45V −0.65V 

The ID-VG characteristic of the Dies A and C are measured with gate stress 

voltage of VB= 0V, 10, 20, 30 and 40V, as shown in Fig. 5.7(b). The VTH 

decrease in Die C compared to Die A at VB= 10V is less, implying Die C has 

less shallow trap states than that of Die A. Additionally, greater reduction in 

VTH from when VB= 40V to VB= 30V of Die C than that of Die A indicates 

greater amount of deeper traps in Die C. The gate dielectric quality throughout 

the gate stress characterisation is verified by the off-state gate leakage current 

obtained before and after the gate stressing test, as shown in Fig. 5.7(c).   

 (a) 
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(c) 

 

 

Fig. 5.7 (a) Drain current waveform during the ID-VG pulse when VG is near the VTH at 

VB=40V and VD=1V. The inset shows the schematic VG waveform, where the VB is 

held initially for 50s followed by the pulsed signal with a period of 20ms (2ms pulse 

VG and 18 ms bias VB) during each sweep. (b) Pulsed ID-VG characterisation of Die A 

and C with VB from 0V to 40V. (c) The IG-VG leakage currents before and after the 

gate stress measurement of 40V for 50s; Similar IG leakage implies no damage to the 

gate dielectric after the stressing test.  

Specifically, by using Eq. (5.3) and (5.4), the ET_MAX from the conduction 

band (EC) edge corresponding to the stressed VB at 25°C and elevated device 

temperature without stressed gate bias are plotted in Fig. 5.8. It demonstrates 
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that VB at 25°C is able to characterise the same ET_MAX for high temperature 

effects with appropriate choice of VB. For instance, both T=150°C and VB=−15V 

correspond to ET_MAX=0.98eV. In other words, all of the traps located shallower 

than 0.98eV from the EC are emitted when the gate is unstressed at 150°C or 

stressed at 15V under room temperature.  

 

Fig. 5.8 The corresponding ET_MAX from the conduction band edge within the Al2O3 

gate dielectric stack at different stressed base voltage (VB) and temperatures. 

With proper selection on VB, the FPT-induced trap state distribution can be 

quantified within the Al2O3 energy band. Therefore, the gate stress measurement 

is able to characterise the distribution of trap states over a wide range of trap 

energy levels. Accordingly, by using the VTH model shown in Eq. (5.1), the 

amount of trapped charge emitted (ΔQEQ) from the energy levels shallower than 

ET_MAX at high temperature can be extracted with the observed VTH reduction 

and being referred to a certain value of VB.  
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In Fig. 5.9, VB ranging from 40V to 0V with 5V increments is applied to 

derive the trap state density (DEQ) mapping for dies A, B, and C from 0.4eV to 

1.5eV away from the conduction band energy (EC) of Al2O3. The ET_MAX at 

different temperatures is also indicated. Die A has the most DEQ at shallow 

energy levels as it loses most of the DEQ at high temperature. It implies the worse 

VTH thermal stability if the gate was processed with low FPT power. While for 

Die C, higher DEQ at deeper energy levels is observed. Especially, a lot of traps 

are located deeper than the trap emission energy of ET=1.1eV (i.e. the ET_MAX 

when T=200ºC). Therefore, more trapped charges in Die C remains in the 

dielectric at 200ºC. It clearly illustrates the capability of Die C maintaining its 

VTH at 2V under high temperature. For further verification of the gate-stressing 

method, ΔQEQ can also be extracted by integrating the the best-fitted sixth-order 

polynomial function of the DEQ measured points. The comparison of ΔQEQ 

obtained from the high-temperature (ΔQEQ, HighT) and the DEQ mapping in Fig. 

5.9 (ΔQEQ,Fig.5.9) for Dies A~C is summarised in Table 5.4. They agree with each 

other quite well with generally less than 15% mismatch, whereas such error can 

be due to the introduction of excess carriers into the Al2O3 trap states during the 

positive ID-VG swing. The mapping of FPT-induced trapped charge distribution 

within Al2O3 energy band provides valuable information and enables the 

prediction of the VTH degradation at higher temperature. 
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Fig. 5.9 The distribution of DEQ within the Al2O3 energy band for Dies A, B, and C. It 

is quantified from the negative gate stress characterisation. 

Table 5.4 The amount of VTH reduction (VTH−VTH,25°C in V) and QEQ reduction (ΔQEQ, 

in 1012 cm-2) obtained from either the high temperature characterisation (ΔQEQ, HighT, in 

1012 cm-2)) or the integration of the DEQ (ΔQEQ,Fig.5.9, in 1012 cm-2) for Dies A~C. 

Temperature 100 ºC 150 ºC 200 ºC 

ET_MAX 0.86 eV 0.98 eV 1.1 eV 

Dies A B C A B C A B C 

VTH−VTH,25°C −5.2 −5.5 −3.7 −6.5 −6.5 −4.8 −7.2 −7.9 −5.5 

ΔQEQ, HighT −9.6 −10 −6.8 −11.9 −11.9 −8.9 −13.1 −14.6 −10 

ΔQEQ, Fig.5.9 −9.9 −9.1 −7.8 −11.1 −10.8 −8.4 −12.9 −13.1 −9.0 

% mismatch 

between 

ΔQEQ, HighT and 

ΔQEQ, Fig.5.9 

−3.1% 9% −14.7% 6.7% 9.2% 5.6% 1.5% 10.3% 10% 
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5.6 Conclusion 

In this chapter, the distributions of the FPT-induced traps for the multiple 

fluorinated Al2O3/AlGaN/GaN MIS-HEMTs were studied through the gate 

stressing technique combined with the analytical VTH model and the Poole-

Frenkel trap emission model. With this methodology, the distribution of the 

trapped negative charges within Al2O3 trap states can be found accurately. In 

addition, the capability of retaining the trapped charges at higher temperature 

can then be extracted. From the study carried out in Chapter 5.5, it revealed that 

at 200°C, greater amount of FPT-induced trap states located deeper than 1.1 eV 

allow more trapped negative charges to remain in the dielectric and maintain the 

VTH at higher value under high temperature. For which, the Die C fabricated 

with a higher RF power on the gate dielectric during FPT can yield higher trap 

state density at levels deeper than 1.1eV. Therefore, higher VTH of 2V at 200°C 

can be obtained. 
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CHAPTER 6 Characterisation of Al2O3/AlGaN/GaN 

MIS-HEMTs with Argon Pre-Fluorination Treatment 

for VTH Thermal Stability Improvements 

6.1 Introduction 

Fluorine Plasma Treatment (FPT) is a promising gate processing method 

applied to GaN-based HEMTs to achieve normally-off operations with positive 

threshold voltage (VTH). High VTH is desired in power electronics applications 

to ensure the system safety and low standby power loss. However, the reported 

devices with FPT on AlGaN obtains low VTH of around 0.6V at 25°C and 0.1V 

at 200°C [117]. Applying multiple traditional RIE-FPTs on Al2O3 gate dielectric 

along with partial gate recess utilised in Chapter 4, 5 and [37, 91] introduced a 

large concentration of trapped negative charges within the gate dielectric which 

achieved large VTH of 6.5V. Meanwhile, a satisfactory IDMAX of 350mA/mm [37] 

indicates the preservation of 2DEG channel quality after the multiple FPT on 

Al2O3. However, as observed in Chapter 5, the multiple low-power FPT process 

is complicated in fabrication process and is unable to generate sufficient deep-

level trap states to retain the electrons at the trapped states under high 

temperature. In this chapter, the multiple RIE FPTs on Al2O3 were replaced by 

single ICP-RIE FPT to reduce the fabrication complexity for the first time. It is 

able to introduce significant flux of negative charges at low bombardment 

energy. Therefore, a high VTH can be obtained while preserving the 2DEG 
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channel quality at the same time. In addition, a novel short Argon (Ar) plasma 

treatment (APT) was applied prior to FPT to effectively enhance the fluorine-

plasma induced states to deeper energy levels within the Al2O3 dielectrics. 

Hence, the negative charges trapped at these deep trap states can be maintained 

within the dielectric at high temperatures. The study in this chapter proposed a 

simple and effective approach to achieve high-VTH for AlGaN/GaN power 

HEMTs suitable for high temperature operation, which is useful in electric 

vehicle power systems. 

6.2 Design and fabrication of normally-off HEMTs with argon 

pre-fluorination technology 

The mechanism of Al2O3 gate dielectric fluorination on the VTH shift can 

be explained by the conduction band energy diagram along the gate stack region 

without any external stress. It was simulated by the Sentaurus TCAD simulation 

tool [34, 35] and shown in Fig. 6.1. The barrier between Ni and Al2O3 is 

ϕb=3.5eV [93], and E1 and E3 are the conduction band offset between 

Al2O3/AlGaN and AlGaN/GaN respectively, which add to 2.1eV [94]. E2 is the 

conduction band offset from the Fermi level before fluorine treatments, which 

is 0.16eV [14]. When there is no FPT applied to the Al2O3 gate dielectrics, the 

conduction band at the AlGaN/GaN interface is below the Fermi level (EF) and 

the 2DEG is induced. Therefore, the VTH of the fabricated device becomes 

negative due to the intrinsic existence of the 2DEG. If the Al2O3 gate dielectric 
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is fluorinated, significant amount of negative charge will be trapped in the Al2O3 

and shift the conduction band at the AlGaN/GaN interface above the EF. Hence, 

the electrons in 2DEG at the gate region are depleted by these negative charges 

and the device has its VTH greater than zero. It is notable that if the negative 

charges are trapped at energy levels above the EF, it will be emitted within a 

period of time. The emission time constant is related to the trap energy level of 

where the charge is trapped, which will be further discussed in Section 6.4. 

 

Fig. 6.1 The conduction band energy (EC) schematic diagram along the gate stack 

region for the devices with (solid line) and without (dashed line) FPT at VG=0V.  

   According to Chapter 5, better VTH thermal stability was obtained when the 

RF power of the fluorine plasma treatment is higher. It was also reported in 

Section 2.2 that the RF plasma power controls the amount of fluorine radicals 

dissociated from CHF3 as well as the surface bombardment energy of the 

dissociated ions. As summarised in Chapter 5, the significant improvement on 

the VTH thermal stability of ΔVTH=8V to 5.4V from 25°C to 200°C when the 
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RF power is increased from 30W to 90W implies the change in the energy level 

of the traps. In other words, more trap states will be formed at deeper energy 

levels within the gate dielectric bandgap when higher concentration of fluorine 

radicals is introduced. However, increasing the RF power in the RIE system will 

damage the surface or even the channel quality and will degrade the on-state 

device performances. As the fluorine radicals are neutral in the plasma and do 

not accelerate with RF power, the exacerbated surface damage with higher RF 

power may be attributed to the ions dissociated from the gas.  

   Based on these observations, the RIE was replaced with ICP-RIE to carry 

out FPTs in this chapter. Unlike conventional RIE system, the ICP-RIE is able 

to control the amount of dissociated fluorine radicals and the ion bombardment 

energy separately through independent adjustments on the coil and cathode 

power. In order to further enhance the fluorine incorporation during FPT, an 

innovative short APT is introduced to the gate dielectric surface right before the 

FPT. Therefore, shallow surface damage with broken Al-O bonds can be 

intentionally introduced to allow for increased amount of Al-F bonds. Detailed 

physical mechanism of the APT on VTH thermal stability improvement will be 

demonstrated in Chapter 7.  

The fabrication process flow and the cross-sectional schematic of the 

fluorinated device are shown in Fig. 6.2 and 6.3 respectively. Except for the gate 

region, the device uses the same wafer as the ones reported in Chapter 4 and 5. 
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The LG, LGS, LFP, and LGD are 3µm, 5µm, 1.5µm, and 5µm respectively. The 

AlGaN/GaN-on-Si wafer has the 2DEG carrier density and mobility of 8.5×1012 

cm-2 and 1450 cm2/Vs respectively. The fabrication of the device began with 

mesa isolation by BCl3-based ICP-RIE and SiO2 dielectric deposition by 

PECVD. Ti/Al/Ni/Au (25/125/45/55 nm) source/drain ohmic contacts were 

formed by RTA at 850C for 30s. About 10nm (50%) of AlGaN was recessed at 

the gate region by low power BCl3-based ICP-RIE to reduce the 2DEG 

concentration to Q2DEG=6×1012cm-2 without damaging the AlGaN/GaN 

interface, and to preserve carrier mobility in the 2DEG channel [37]. After 

6.5nm of ALD-Al2O3 dielectric layer deposition at 250°C, Dies C~E underwent 

20s ICP-Ar plasma treatment with a fixed coil power of 100W. The APT recipe 

implemented was based on the existing Al2O3 etching recipe using BCl3/Cl2/Ar 

ICP-RIE (included in Appendix II). It uses the same coil power and Ar gas flow 

as the Al2O3 etching recipe to ensure the amount of dissociated Ar+ is sufficient. 

Minor adjustment on the cathode power from the etching recipe was 

implemented to seek for optimised results. The design of the FPT recipe follows 

the principle of maximising the amount of fluorine radicals (i.e. high CP) while 

minimising the ion bombardment energy (i.e. low CEP). Therefore, ICP-CHF3 

plasma treatment was tested with fixed cathode power of 10W and varied CEP 

for 4 minutes, which will be discussed in Fig 6.5(a). After the tests, the CEP of 

FPT was determined to be 200W. The process parameters used for the gate 

formation and the resulting surface roughness RMS obtained from the Atomic 
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Force Microscopy (AFM) are listed in Table 6.1 and Fig. 6.4. The Al2O3 surface 

of Die A (without any plasma surface treatment) has a smooth surface with 

surface RMS of 0.38nm, as shown in Fig. 6.4 (a). According to the small 0.53nm 

surface roughness for Die B (FPT-only) shown in Fig. 6.4 (b), the designed FPT 

recipe does not have a significant impact on the surface roughness. It shows the 

effectiveness of damage control by minimising the CEP of the FPT recipe. If 

APT is introduced prior to FPT, the surface roughness RMS will be further 

increased. However, controlling the cathode power of the argon treatment below 

75W (Die D shown in Fig. 6.4 (c)) is able to preserve the surface roughness 

RMS within 0.78nm. If the cathode power of the Ar treatment is increased to 

100W (Die E), the surface roughness RMS will significantly increase from 0.78 

nm to 2.29 nm, indicating damage to the Al2O3 surface. Finally, Ni/Au (15/150 

nm) gate-metal deposition followed by annealing at 400°C for 5 minutes were 

applied. 

Table 6.1 Processing parameters for the gate dielectric of Dies A~E 

Steps Die A Die B Die C Die D Die E 

ALD-Al2O3 (t1) 6.5 nm 

CEP for APT N/A N/A 50W 75W 100W 

ICP FPT (CEP/CP) N/A 10W/200W 

ALD-Al2O3 (t2) 15 nm 

AFM surface RMS 

Roughness 
0.38 nm 0.53 nm 0.61 nm 0.78 nm 2.29 nm 
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Fig. 6.2 The fabrication process flow of the normally-off Al2O3/AlGaN/GaN MIS-

HEMT with APT-then-FPT gate process 

 

Fig. 6.3 The device cross-sectional schematics of the normally-off AlGaN/GaN MIS-

HEMT with ICP-fluorinated Al2O3. The inset magnifies the gate region, where the 

fluorine-induced negatively charged ions (F−) and the thickness of Al2O3 gate dielectric 

stack (t1 and t2) are shown. 
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Fig. 6.4 The Atomic Force Microscopy (AFM) image of the Al2O3 surface right before 

t2 deposition for (a) Die A (b) Die B (c) Die D and (d) Die E with the surface roughness 

RMS indicated.  

6.3 Current-voltage characteristics at room temperature 

In this section, the current-voltage characteristics of dies A~E designed in 

Section 6.2 are measured and compared. Fig. 6.5 (a) compares the ID-VG 

characteristics of the recess-only and FPT-only devices with varied coil power 

(CP, which controls the flux of particles within plasma) and fixed cathode 

electrode power (CEP, which controls the particle bombardment energy) of 10W 

on the CHF3-based FPT. This test is applied to seek for optimum gas 

dissociation power to obtain maximum amount of negative charge incorporation 

into the sample and to minimise the damage to the surface at the same time. It 

is found that ICP-FPT is able to shift the VTH from 0.95V to as much as 4.2V 
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(Die B with CP=200W). It is the highest reported VTH with single FPT treatment. 

Replacing the conventional RIE with ICP-RIE process, the capability of 

introducing much more negative charges into Al2O3 gate dielectric yields higher 

VTH. It is observed that 300W of CEP for FPT does not improve the VTH but 

reduce the on-state conductivity, which implies the increase in the amount of 

positive ions dissociated from the CHF3 gas (explained in Section 2.2) but 

unchanged concentration of the F radicals in the plasma when CEP is higher 

than 200W. 

When applying argon plasma treatment (APT) prior to the FPT, which are 

noted as dies C, D, and E in Fig. 6.5 (b), slight variation in the VTH was obtained 

with appropriate control of the CEP of the APT. 4.4V of VTH is obtained for Die 

D with the Ar CEP at 75W, while increasing the Ar CEP to 100W (Die E) is able 

to further increase the VTH to 5V due to greater amount of vacancies within 

Al2O3 for fluorine radicals to combine with after Ar bombardment. The 

preservation of gate leakage for Die C and D compared with Die B indicated in 

Fig. 6.5 (c) has ensured the Al2O3 gate dielectric quality after the APT with 

appropriate CEP. In Fig. 6.5 (d), a good IDMAX of about 320mA/mm is found for 

Dies B~D, proving the preservation of 2DEG channel quality after Ar 

bombardment and FPT. Yet if the Ar cathode power is too high (Die E), it will 

roughen the treated surface, damage the channel, and worsen the IDMAX or the 

gate leakage current. The obvious degradation in the mobility for Die E 

extracted from the simulation fitting with the ID-VD characteristics is observed 
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in Table 6.2. It is another evidence of the degradation in 2DEG with excessive 

CEP during APT. 

 

Fig. 6.5 ID-VG of (a) Dies A & B comparing with devices with different ICP-

fluorination coil power (CP) of 100W and 300W and (b) Dies C~E with different Ar 

ICP pre-treatment cathode powers (CEP) at VD of 1V. (c) IG-VG of Dies B~E at VD=1V. 

(d) ID-VD performance of Dies A~E with VG−VTH=3V or 6V. 

Table 6.2 The 2DEG carrier mobility for Dies A~E obtained by simulations in Fig. 6.5 

(d) 

Dies A B C D E 

Mobility obtained from simulation 

(cm2/V·s) 

1200 900 1050 1000 750 

CEP for APT (W) N/A N/A 50W 75W 100W 
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According to Fig. 6.6 (a), proper APT also reduces the ratio between the 

dynamic on-state resistance and static on-state resistance (RDynamic/RON). RON 

was extracted from the linear region of the ID-VD characteristic with no stress 

applied before the measurement. RDynamic was measured from the linear region 

of the ID-VD characteristic right after a drain bias was applied for 10 seconds at 

VG=0V. In addition, the breakdown voltage, which was measured at VG=5V 

for un-treated Die A and VG=0V for plasma-treated Dies B~E shown in Fig. 6.6 

(b), is also improved with proper design of APT. These improvements imply 

effective passivation of the shallow trap states after the APT. For instance, Die 

D is able to have about 7% smaller RDynamic/Ron (1.37 versus 1.27) and 40% 

higher breakdown voltage (940V versus 670V) than for FPT-only Die B without 

sacrificing the on-state conductivity. However, if the CEP for APT is too high 

(Die E), the off-state leakage will be significantly increased by about one order 

of magnitude and the breakdown voltage will be decreased to 800V. Therefore, 

reasonably optimised CEP for the APT process is necessary to ensure good 

performance of the device. Significant reduction in RDynamic/Ron is observed 

when comparing with the RDynamic/Ron=1.61 for the multi-fluorinated Al2O3 stack 

based on conventional RIE technique reported in Section 4.2. It proves the 

significant reduction in the shallow trap concentrations with ICP-RIE treatment.  
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Fig. 6.6 (a) The ratio between the dynamic on-resistance (RDynamic) and the static on-

resistance (Ron) of Dies A, B and D after drain bias applied for 10 seconds during off-

state. (b) Off-state ID-VD performance of Dies B~E at VG=0V and Die A at VG=−5V.  

6.4 VTH thermal stability and deep trap characterisation 

The effect of APT on the transfer characteristics of the device at high 

temperature can be illustrated in the logarithmic ID-VG curves of Die B (FPT-

only) and Die D (APT+FPT) shown in Fig. 6.7. A significant improvement on 

the turn-on voltage is observed for Die D at 200°C. Detailed discussions on the 

change in VTH at various temperatures will be conducted in Fig. 6.9. The drain 

leakage current of Die D is similar to the leakage of Die B at both 25°C (about 

10nA/mm) and 200°C (about 1μA/mm), showing the preservation of the drain 

off-state leakage current after the APT process. 
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Fig. 6.7 The logarithmic ID-VG characteristic of Die B (gate processed with FPT-only) 

and Die D (gate processed with APT+FPT) at 25°C and 200°C.  

The ID-VG hysteresis of Device B (FPT) and Device C (APT+FPT) with no 

delay time during the sweep at 25°C and 200°C are shown in Fig. 6.8 (a) and 

(b) respectively. Much smaller hysteresis of about 0.8V for Device C at 200°C 

is obtained than that of 2.2V for Device B, which is about 63.6% reduction in 

hysteresis. It indicates that less population of shallow traps within Al2O3, which 

are emitted at 200°C, is observed when the gate dielectric is treated with APT 

prior to FPT. 
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Fig. 6.8 The ID-VG hysteresis of Device B (FPT-only) and Device C (APT+FPT) at 

VD=1V when the ambient temperature is (a) 25°C and (b) 200°C 

To further elaborate the VTH thermal stability and its relationship with trap 

distribution, the VTH thermal stabilities of Dies A (no treatment), B (FPT only), 

and D (APT+FPT) at 25°C, 100°C, 150°C, and 200°C are reported in Fig. 6.9 

(a) and (b). Generally, ICP-fluorination is able to maintain the device under 

enhancement-mode (VTH>0V) with VTH=0.6V at 200°C compared with the 

multiple RIE-fluorination technique [37] with VTH=2V at 200°C shown in Fig. 

6.9 (b). More importantly, APT is able to improve the VTH at 200°C significantly 

from 0.6V to 2.5V, which is the highest reported VTH using the fluorination 
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technique to achieve normally-off operation. It implies the negative charges 

incorporated by FPT is mostly trapped at deeper level within the Al2O3 energy 

band if APT was applied prior to FPT. Specifically, the emission level of the 

electrons at different temperatures can be calculated by Eq. (6.1), where ET_MAX 

is the deepest energy level of the trapped charges emitted from the trap sites, kb 

is the Boltzmann’s constant, T is the device temperature, 

n=(th/T
0.5)(Nc/T

1.5)=3.251021(mn/m0), where mn/m0=0.16 is the relative 

electron effective mass within Al2O3 [108], th=(3kbT/ (mnm0))
0.5 is the thermal 

velocity of Al2O3 [109], NC=2(2πmnm0kbT/h2)1.5 is the effective density of states 

in Al2O3[109] and h is the Planck’s constant. σAl2O3 is the capture cross-section 

of the electrons in Al2O3, which is about 10−16 cm2 [110], and t=50s is the device 

heating time to allow for sufficient device surface temperature stabilisation and 

to reach device quasi-steady state [111]. The ET_MAX is insensitive to changes in 

the typical time range of tens of seconds required for reaching quasi steady state. 

It is reasonable to assume that all of the charges trapped in shallower levels than 

ET_MAX can be emitted due to thermal energy, and the ones at a deeper level than 

ET_MAX remained trapped. Once the ET_MAX for a given temperature is found, as 

indicated in Fig. 6.9 (d), the amount of sheet negative trapped charge (QN) 

remained within the Al2O3 can be found from the change in VTH referring to the 

VTH at 25°C and the VTH model depicted in Eq. (6.2). In Eq. (6.2), the barrier 

between Ni and Al2O3 is ϕb=3.5eV [93], and ΔE1 together with ΔE3 are the 

conduction band offset between AlGaN/GaN and Al2O3/AlGaN respectively, 
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which added to 2.1 eV [94]. ΔE2 is the offset of the conduction band from the 

Fermi level before FPTs, which is 0.16 eV [14]. Permittivities of AlGaN and 

Al2O3 are AlGaN=9.20 and Al2O3=70 respectively [14, 94]. The second and the 

third terms in Eq. (4.1) illustrate the electrostatic potentials across the AlGaN 

and Al2O3 layers respectively. Q2DEG=6 1012cm2 is the 2DEG density at 

AlGaN/GaN interface when the thickness of AlGaN is 10nm [14]. QT=1.5

1012 cm-2 [95] is the fixed charge density at Al2O3/AlGaN interface. 

To better estimate the densities of trap states created by plasma treatments in 

Al2O3 bandgap (DN), the pulsed ID-VG measurement by stressing the gate at 

different levels of negative base voltage (VB) was carried out. Based on the 

Poole-Frenkel trap emission theory reported in Section 5.5 which leads to the 

model shown in Eq. (6.3) [113], VB is able to provide an external electric field 

(ξ) that enhances the emmission of negative charges trapped at deeper energy 

levels. Therefore, much larger reduction in VTH is observed with increasing |VB|. 

Specifically, pulsed ID-VG measurements with VB from 0V to 40V held for 50s 

before the pulse under room temperature were performed and shown in Fig 6.9 

(c). To minimise the charge injection into Al2O3 during the positive gate voltage 

sweep, 2ms-pulsed gate signals have longer 18ms-VB between pulses. Detailed 

time sequence of these gate voltage pulses is shown in the inset of Fig. 6.9 (c). 

In Eq. (6.3), QN,0 and QN,VB, which are the trapped charges within Al2O3 before 

and after the gate stress is applied, can also be derived from the change in VTH 

with Eq. (6.2). Hence, the comparison of ET_MAX predicted by the high 
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temperautre and gate stressing techniques are shown in Fig. 6.9 (d). Clearly, 

much wider range of ET_MAX is measured using the gate stressing technique. 
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Fig. 6.9 ID-VG performance of Die B and D for VD=1V) with (a) ambient temperatures 

of 25°C, 100°C, 150°C, and 200°C and (c) with stressed gate voltage (VB) from 0V to 

−40V for 50s (b) The summary of ΔVTH for Dies A~E at high temperatures. (d) The 

relationship between the stressed gate bias and the ambient temperature to the deepest 

trap emission level (ET_MAX) 

D 
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   The mechanism of trapping and emission of electrons from the fluorine 

plasma induced states within the Al2O3 energy band within a finite time is 

demonstrated in Fig. 6.10. When negative VG is applied, the external field will 

pull the EC up and resulted in more trapped negative charges located above the 

EF which will be emitted within a period of time. In other words, the referred 

trap emission level at a fixed time can be varied by changing VG. Therefore, 

with the application of a certain negative gate stress, the amount of trapped 

charge density located within a certain energy level away from EC can be 

accessed without the need to increase the ambient temperature.  

 

Fig. 6.10 The conduction band energy diagram along the gate stack region for 

fluorinated device with (solid line) and without (dashed line) negative gate stress.  

The amount of intrinsic QN for Dies A to E at room temperature without 

any gate bias can be accurately calculated from the measured VTH and Eq. (6.2) 

with verification from the good fitting to the VTH obtained from Sentaurus 

TCAD simulation [34], as shown in Fig. 6.11 (a). In Fig. 6.11 (b), the DN 
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mapping at corresponded energy level with and without APT (Die D & B 

respectively) are found by the gate stressing technique with VB=0V to −40V 

with −5V intervals. The VTH obtained for Die B and D with different negative 

gate stress are summarised in Table 6.3. The change in QN due to gate stressing 

test (ΔQN2) of different VB can be extracted by integrating a sixth-order 

polynomial function that fitted with the DN data-points with the RMS error less 

than 2%. ΔQN2 can be directly compared with the change in QN caused by high-

temperature (ΔQN1) with the same corresponded ET_MAX, as shown in the Table 

6.4. Generally, a good fit of less than 15% mismatch between ΔQN1 and ΔQN2 is 

observed. It indicates the effectiveness of the gate stressing technique on DN 

extraction.  

Table 6.3 The VTH obtained for Die B and D after different gate base voltage (VB) 

VB 

(V) 

−5 −10 −15 −20 −25 −30 −35 −40 

Die B 3.6 3.5 3.0 2.0 0.7 0 -0.3 -0.5 

Die D 3.75 3.7 3.5 3.2 2.8 2.3 1.2 0 
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Fig. 6.11 (a) The relationship between the QN and the VTH of Dies B~E with the usage 

of the model shown in Eq. (6.2) (b) The fluorine-induced trap state (DN) distribution 

along the A2O3 energy level from the EC. 

Table 6.4 The amount of VTH reduction from 25°C to 200ºC (ΔVTH) and QN reduction 

obtained from the high temperature measurement (ΔQN1) and the integration of the 6th-

order polynomical fitting of DN (ΔQN2) for Dies B & D. 

T 100 ºC 150 ºC 200 ºC 

ET_MAX 0.86 eV 0.98 eV 1.1 eV 

Dies B D B D B D 

ΔVTH (V) −0.9 −0.6 −2.7 −1.4 −3.7 −1.9 

ΔQN1 (1012 cm-2) −2.3 −1.1 −5.4 −2.6 −7.1 −3.5 

ΔQN2 (1012 cm-2) −2.0 −0.9 −4.5 −2.3 −6.8 −3.0 

% mismatch 

between ΔQN1 and 

ΔQN2 

13% 18.1% 14.8% 11.5% 4.2% 14.2% 
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6.5 Conclusion 

In this chapter, single ICP-based fluorine plasma treatment was applied on 

Al2O3 for the first time to realise normally-off operations of Al2O3/AlGaN/GaN 

MIS-HEMTs. It is able to obtain high VTH of 4.2V with single plasma treatment 

due to the independent control on the coil and the cathode of the ICP-RIE system. 

Therefore, high F radical concentration and low ion bombardment energy can 

be obtained simultaneously with high coil power and low cathode power. In 

addition, by implementing a short argon plasma pre-fluorination treatment, the 

device can achieve a high VTH of 4.4V, a satisfactory IDMAX of 320mA/mm and 

40% improvement on breakdown voltage than the device without Ar pre-

fluorination treatment at room temperature due to the reduction in shallow trap 

states. Additionally, a highest-reported VTH of 2.5V at 200C compared to other 

FPT-processed AlGaN/GaN HEMTs was achieved from the device underwent 

APT prior to the FPT. With gate stressing characterisation, it was found that the 

negatively-charged traps tend to locate at deeper energy levels after the Ar 

treatment. Most of the trapped charges are located deeper than the trap emission 

level at 200°C (1.1eV from the conduction band edge). Therefore, more 

negative charges are remained in the gate dielectric to deplete the 2DEG and 

stabilize the VTH at 200°C.  
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Chapter 7 The Physical Mechanism of the Argon Pre-

Fluorination Treatment Leading to VTH Thermal 

Stability Improvement 

7.1 Introduction 

According to Chapter 6, it was observed that the argon plasma treatment 

(APT) prior to the fluorine plasma treatment (FPT) treatment obtained the 

highest reported VTH of +2.5V at 200°C among all FPT techniques. In this 

chapter, the underlying physical mechanisms of the APT-then-FPT process 

behind the improvement of VTH thermal stability were investigated. Samples 

with the same APT and FPT recipes as the Die B and Die D reported in Chapter 

6 were processed on the ALD-grown Al2O3 and analysed in this chapter. The 

detailed recipe is shown in Table 7.1. Sample C with APT-only was fabricated 

to verify the distribution and the role of Ar in the designed process. The depth 

profile of the F atoms was measured by the secondary ion mass spectroscopy 

(SIMS) to compare the F/Ar/O concentrations of these samples. Additionally, 

the X-ray photoelectron spectroscopy (XPS) analyses on the plasma-treated 

Al2O3 surfaces were performed to investigate the relative compositions of Al-O 

and Al-F bonds. However, it has to be ascertained that formation of different 

compositions of Al-F bonds can actually lead to trap formation with different 

distributions and energies. Hence the solution of the Schrödinger equation of 

Al2OxFy cells with defect potential modification using Gaussian 09 molecular 
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simulations was carried out to quantify how Al-F bond proportion affects the 

trap creation. Finally, the trap distribution extracted from the simulations was 

verified against the gate-stress experimental characterisation discussed in 

Section 6.4 to confirm the validity of the physical mechanism described.  

Table 7.1 The parameters used for the gate plasma treatments for Samples A~D 

 Sample A Sample B Sample C Sample D 

First Treatment N/A 

CHF3-based 

CEP: 10W 

CP: 200W 

Time: 4 mins 

Ar-based 

CEP: 75W 

CP: 100W 

Time: 20s 

Ar-based 

CEP: 75W 

CP: 100W 

Time: 20s 

Second Treatment N/A N/A N/A 

CHF3-based 

CEP: 10W 

CP: 200W 

Time: 4 mins 

Corresponding 

HEMT with the 

same gate 

structure reported 

in Chapter 6 

Die A  Die B N/A Die D  

 

7.2 Depth profile analysis for F and Ar atoms within Al2O3 

dielectrics 

To investigate the effect of APT to the F depth profile during the subsequent 

FPT process, the SIMS depth profile characterisation was carried out on Sample 

B and Sample D shown in Fig. 7.1. The APT and FPT processing recipes are 

identical to the ones used for Die B and Die C in Chapter 6. As material was 

removed during SIMS characterisation, these samples were fabricated 

separately from the devices discussed in Chapter 6 yet were from the same wafer 
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used in this thesis. 30nm of Al2O3 was deposited by ALD at 250°C before the 

plasma treatments and an additional 10nm of ALD-Al2O3 was deposited 

afterwards to seal the F atoms away from the surface to avoid the inaccuracy of 

SIMS characterisation at the surface. Even though the thickness of Al2O3 is 

different from the one used in Chapter 6, it does not have an effect on the F or 

Ar distribution. In the measured SIMS depth profile shown in Fig. 7.1 on 

samples B and D, an obvious increase in the peak of the F concentration is 

observed for the sample with APT-then-FPT process (Sample D). The peak F 

concentration has increased by about 85% with APT pre-fluorination process. It 

implies the assistance of APT in F incorporation into the Al2O3 as compared 

with Sample B due to prior creation of the additional dangling bonds after Ar 

bombardment. Additionally, the F depth profile is shifted towards the surface 

by about 2nm after APT, showing the depth of damage and dangling bonds 

created by APT is shallow. This also explains the slight increase in IDMAX of Die 

D as compared with the IDMAX of Die B shown in Fig. 6.5 (d). In terms of the O 

intensity, an obvious decrease in the relative O concentration was found at 

where F is present. This phenomenon indicates the replacement of O atoms by 

the F atoms within the Al2O3 dielectrics.  
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Fig. 7.1 The SIMS depth profiles for F and O atoms of the samples with (Sample D) 

and without APT (Sample B) prior to the FPT.  

The effect of different fluorine depth profiles to the VTH of the device can 

be investigated by transforming the profile into a sheet negative charge located 

at the peak of the SIMS profile, labelled as QN and shown in Fig. 7.2. 

Specifically, the depth profile of F is integrated from 0nm to 25nm from the 

surface and transformed into a sheet charge located at the peak of the SIMS 

profile. The distribution of trapped negative charges within the Al2O3 dielectric 

is assumed to be proportional to the F SIMS depth profile.  
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Fig. 7.2 The transformation of F depth profile into integrated sheet negative charge (QN) 

located at the peak of the profile (t2 from the gate contact) for (a) sample went through 

APT & FPT (Sample D) and (b) sample went through FPT only (Sample B).  

The effect of QN on VTH can be calculated by the VTH model used in Chapter 

6 and shown in Eq. (7.1) [37], where the barrier ϕb between Ni and Al2O3 is 

3.5eV. ΔE1 and ΔE3 are the conduction band offsets between Al2O3/AlGaN and 

AlGaN/GaN respectively, which added to 2.1eV. ΔE2 is the conduction band 

offset from the Fermi level before fluorination treatments, which is 0.16eV. 

pol is the polarisation charge between the recessed AlGaN barrier and GaN, 

which is 61012 cm-2. QT=1.5  1012 cm-2 is the fixed charge density at 

Al2O3/AlGaN interface. QN is the FPT-induced sheet negative charge 

equivalently located at the Al2O3/AlGaN interface. Permittivities are 

AlGaN=9.20 and Al2O3=70.  
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Similar value of QNt2 =1.37×107cm-1 is obtained for Sample B and D due to 

the shallower peak location (i.e. smaller t2) for Sample D than Sample B even 

though its QN is greater. In other words, the effect of incorporated negative 

charges to the depletion of 2DEG carriers is the same for Sample B and D. As a 

result, since all of the other terms in Eq. (7.1) are the same between Sample B 

and D, the VTH shall also be the same. This conclusion agrees with the similar 

VTH of 4.2V and 4.4V obtained for Dies B and C shown in Fig. 6.4 (a) in Chapter 

6. Therefore, introducing APT prior to FPT process does not influence the VTH 

at room temperature.  

It is assumed that there was no migration of F ions within our characterised 

range of temperatures due to the similar room-temperature VTH of Sample B 

after several heating cycles to 200°C, which is shown in Fig 7.3. In this figure, 

cycle 1 is the room-temperature ID-VG characteristics after the device has been 

heated to 200°C once. The following process has been repeated again and 

labelled as cycle 2. The similar VTH indicates the value of QN×t2 remained 

constant after these heating cycles. In other words, the temperatures used for 

characterisations in this study are not high enough to migrate the FTP-induced 

states within Al2O3. 
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Fig. 7.3 The room-temperautre ID-VG characteristic of Sample B with two heating 

cycles to 200°C. 

Additionally, the depth profiles of Ar atoms for Sample A (without Ar) and 

C (with Ar) were also inspected by the SIMS characterisation shown in Fig. 7.4 

to evaluate the role played by Ar. It is observed that there is a decrease in the O 

profile for Sample C, showing the removal of the O atoms within the Al2O3 after 

the Ar treatment leading to formation of dangling bonds. It is also important to 

evaluate if any Ar was present in the Al2O3. However, the concentration of Ar 

atoms obtained by SIMS is not reliable due to the presence of Ca contamination 

on the surface introduced during the semiconductor fabrication process [118]. 

Hence, Ar profiles of Sample A (without APT) and Sample C (with APT-only) 

need to be compared to evaluate if any Ar was present. The Ar depth profile for 

Sample A and Sample C in Fig. 7.4 are similar, which proves the absence of Ar 

within Sample C since the effect of Ca contamination in these samples was 

identical. The Ar atoms tend to leave damages on the Al2O3 surface of the 

file:///C:/Users/Sam%20Wang/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/52A3ZUOV/ch6+ch7%20may%2016.docx%23_ENREF_118
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sample and appear to be reflected back to the ambient. It explains why the effect 

of Ar is confined near the surface.   

 

Fig. 7.4 The SIMS depth profiles for Ar and O atoms of the samples with (Sample C) 

and without (Sample A) APT.  

7.3 Investigation of chemical compositions of plasma-treated 

Al2O3 

To verify the underlying mechanism of the APT to the increase of deeper level 

of traps, the chemical composition study by XPS characterisations on Samples 

A~D was conducted. Unlike the samples used for SIMS characterisation, the 

plasma treated surfaces of the samples need to be exposed for XPS 

characterisation. The spectrum near the Al 2p and O 1s binding energies were 

analysed on samples A~D, and the F 1s spectrum were conducted on Sample B 

(FPT-only) and D (APT+FPT). According to the XPS scan near the Ar 2p 

binding energy for samples C and D which both underwent APT, there was no 

observable peak found in the spectrum. Therefore, it provides another evidence 
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along with the Ar depth profile from SIMS that no accountable Ar atoms 

remained in the sample after the APT. 

In terms of the O 1s spectrum, both the APT and FPT decrease the height of 

the O 1s peaks as compared with the as-grown Al2O3 (Sample A) shown in Fig. 

7.5 and Table 7.2. The detected photoelectron intensity at the O 1s peak explains 

the amount of electrons located at the inner 1s orbital of oxygen atoms on the 

sample surface. Therefore, the existence of O 1s peak is an indicator of the 

presence of O atoms. The reduced O 1s peaks after either APT or FPT imply the 

increase of oxygen vacancies (i.e. loss of oxygen atoms) at the sample surface. 

It is observed that Sample D with APT+FPT-processed surface has the lowest 

O 1s peak. Another method to characterise the O vacancies is by comparing the 

full widths at half maximum (FWHM) of the spectrum, which are shown in 

Table 7.2. Higher FWHM indicates higher amount of vacancies [119], and the 

highest value of the FWHM of Sample D (APT+FPT) also indicates the loss of 

O atoms at the surface of the Al2O3 samples.  

 

Fig. 7.5 The O 1s (binding energy=532 eV [120]) XPS spectrum of the ALD-Al2O3 

samples with no plasma treatments (Sample A), FPT-only (Sample B), APT-only 

(Sample C) and APT-then-FPT (Sample D). 
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Table 7.2 Summary of the XPS characterisations on the O 1s spectrum for Sample 

A~D. 

Samples Peak Intensity (arb. unit) FWHM (eV) 

A 2949.0 1.900 

B 995.7 2.217 

C 2039.9 2.123 

D 594.87 2.237 

By fitting the measured Al 2p spectra to the reported Al-F and Al-O binding 

energies, the chemical composition of the Al bonds at the sample surface can be 

extracted. The fitting of the XPS spectrum of Sample B and Sample D to Al-F 

bonding (binding energy=77.17eV [121]) and Al-O bonding (binding 

energy=75.81 eV [122]) spectrum are shown in Fig. 7.6. The co-existence of the 

Al-F bonds and Al-O bonds for fluorine-treated samples is proven by the good 

fit between the measured XPS spectra and the spectra that combined the Al-F 

and Al-O spectrum. According to the Al 2p spectrum of Sample B and D and 

their fitting with the Al-O and Al-F spectrum shown in Fig. 7.6, the composition 

of Al-F bonds amongst all bonds has increased from 20.7% to 36.13% for 

Sample D than that for Sample B. Therefore, the APT prior to FPT can 

effectively increase the proportion of Al-F bonds within the material. The 

evidence of Al-F bonds formation also minimised the possibility of F 

combination with methyl groups and escape from the gate dielectric during the 

subsequent ALD process. 

file:///C:/Users/Sam%20Wang/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/52A3ZUOV/ch6+ch7%20may%2016.docx%23_ENREF_121
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Fig. 7.6 The Al 2p XPS spectra of the ALD-Al2O3 sample with (a) F plasma treatment 

only (Sample B) and (b) Ar plasma treatment prior to the F plasma treatment (Sample 

D). The measured spectra is compared with the combined spectrum (blue) which 

consist of Al-O (red) and Al-F (purple) chemical bonding spectrum. 

Finally, by directly compare the F 1s spectrum of Sample B (FPT-only) and 

Sample D (APT+FPT) shown in Fig. 7.7, an obvious increase in the XPS peak 

of Sample D is observed. Since the signal of F 1s inner shell indicates the 

existence of F atoms, it demonstrates the increase in the amount of F at the 

surface of Sample D. The peak intensity of F 1s spectra is increased by about 



154 

 

66% for Sample D, which presents a similar trend as the SIMS characterisations 

reported Fig. 7.1.  

 

Fig. 7.7 The F 1s (binding energy=686 eV [123]) XPS spectra of the ALD-Al2O3 

samples with F treatment only (Sample B), and Ar treatment prior to the F plasma 

treatment (Sample D). 

7.4 Simulated trap states distribution within the Al2O3 energy 

band 

To investigate the link between the Al-F bonds and the formation of trap 

states at deeper energy levels, the solution of the Schrödinger equation 

incorporating the defect potentials was used. A numerical solution was obtained 

for a primitive cell with 2 Al atoms bonded to a mixture of O and F when F is 

introduced by FPT. It yields the relative density of states (DOS) distribution 

within the energy bandgap (Eg) of 8.6eV. The bandgap is similar to the Eg=8.7eV 

of reported crystalline α-Al2O3 [124]. The bonding schematics of Al2OxFy 

primitive cells are shown in Fig. 7.8 (a), where each of the O atoms at the cell 

edge are counted as 0.5 O in the cell formula as they are shared with adjacent 

file:///C:/Users/Sam%20Wang/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/52A3ZUOV/ch6+ch7%20may%2016.docx%23_ENREF_123
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primitive cells within the amorphous Al2O3 grown by ALD. The same bandgap 

(Eg) of 8.6 eV was obtained for Al4O6 and Al6O9 cluster simulations. Therefore, 

the same Eg is obtained regardless of the simulated cluster size. The Schrödinger 

equation for the traps[125, 126] is expressed as (H0+V)Φ=EΦ, where H0 is the 

Hamiltonian of the perfect crystal, V is the potential of the defects, Φ is the wave 

function, and E is its energy eigenvalue. When any impurities are introduced to 

the perfect lattice and substitute the host atoms, an additional potential V, which 

is related to the difference in the atomic electronegativity between them, arises 

near the impurities and performs as states with finite DOS forming the trap 

centres [125-127]. Deeper traps can be formed when more F atoms 

(electronegativity=3.98) [128] are substituting the O atoms 

(electronegativity=3.44) [128] to form more Al-F bonds locally by the APT-

then-FPT treatments. To study the quantitative relationship between the 

composition of Al-F bonds and the trap state distribution within Eg, the atomistic 

first-principle simulations were numerically carried out by the Gaussian 09 

software [129]. The software is able to model the electronic structures and 

orbital energies of desired molecular structures. The orbital energies of Al2OxFy 

lattice cell with different amount of Al-F bonds were calculated with the 

Hartree-Fock self-consistent method with the basis set of 6-31G for a good 

accuracy [130]. The proportion of Al-F bonds against the total amount of bonds 

used in the simulation was similar to the Al-F bond composition of 20% and 36% 

of the samples that underwent FPT with (Sample D) and without (Sample B) 
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APT shown in Fig. 7.8 (a). Once the Gaussian 09 software has solved the 

molecular orbital energies of the cell, the Multiwfn wavefunction analyser was 

then used to simulate the total DOS of the cells are plotted by the [131] in Fig. 

7.8 (b). For Al2O2.5F simulation (Al-F bond=17% with three O atoms shared 

with adjacent primitive cells), a symmetrical trap state distribution with peak 

DOS at about 0.96eV below EC (i.e. the trap energy level, ET, is 0.96eV) is found. 

For Al2O2F2 simulation (Al-F bond=33%), the two F atoms can either be bonded 

with the same (denoted as Al2O2F2 (I)) or different Al atoms (denoted as Al2O2F2 

(II)). Both of the calculated ET levels are deeper than that of Al2O2.5F. Deepest 

ET of 1.44eV is obtained for Al2O2F2 (II) as the adjacency of the two F atoms 

provide the strongest local defect potential which hinders electron de-trapping. 

 

Fig. 7.8 (a) The bonding schematic of the Al2O3, Al2O2.5F, Al2O2F2(I), and Al2O2F2(II) 

primitive cells used in the Gaussian 09 simulation, where the dashed line represents the 

bonds connecting with adjacent primitive cells. (b) The simulated total DOS 

distrubutions of Al2OxFy along the energy band with the bandgap (Eg) of Al2O3 

indicated. 
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To verify the simulated trap levels obtained in Fig. 7.8 (b) are realistic, the 

trap state densities (DN) within the plasma-treated Al2O3 bandgap carried out by 

the gate stressing measurements on Dies B & D reported in Section 6.4 were 

compared. These comparisons were based on the similar Al-F composition 

between Die B & Al2O2.5F and Die D & Al2O2F2. Comparing the DN of Die B 

(with FPT-only) shown in Fig. 6.11 (b) with the simulated DOS of Al2O2.5F in 

Fig.7.8 (b), they have a similar energy peak level at around ET=0.98eV. For DN 

of the Die D (with APT+FPT) demonstrated in Fig. 6.11 (b) (similar Al-F 

composition as Al2O2F2 clusters), it is found that the DOS of Al2O2F2(II) 

provided a closer fit with the DF of Die D than that of Al2O2F2(I). The ratio of 

DOS of Al2O2F2 (II) to Al2O2.5F can be compared with the DN of Die D to Die 

B along the range between 0.6eV and 1.2eV from the EC to ensure the validity 

of the simulation. The comparison is listed in Table 7.3, and less than 14% 

mismatch between them is observed along the energy range. Therefore, Al2O2F2 

(II) is a more suitable model for the APT-then-FPT gate stack to explain its 

improvement in VTH thermal stability. Its deeper trap level is attributed to the 

high local defect potential formed around the F-Al-F bonds.  
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Table 7.3 The simulated DOS ratio of the Al2O2F2 (II): Al2O2.5F extracted in Fig. 7.8 (b) 

and the characterised DN ratio of the Die D (APT-then-FPT): Die B (FPT-only) 

extracted from Fig. 6.11(b). The mismatch between DOS simulation and DN 

characterisation is also calculated. 

ET 

(eV) 

Ratio of DOS or DN at certain ET 

% mismatch 

between DOS ratio 

and DN ratio 

DOS of  

Al2O2F2 (II): 

Al2O2.5F  

(Fig. 7.8 (b)) 

DN of  

Die D:Die B  

(Fig. 6.11 

(b)) 

0.65 2.03 1.95 4.10% 

0.8 2.64 2.51 5.17% 

0.91 3.01 3.33 9.6% 

1.02 2.82 3.24 12.96% 

1.13 1.55 1.40 10.7% 

1.23 0.66 0.76 13.15% 

7.5 Conclusion  

The mechanism of the VTH high-temperature stability improvement with Ar 

treatment prior to the F plasma treatment was discussed in this chapter. By the 

SIMS characterisation, it was observed that the APT can effectively improve 

the peak concentration of the F depth profile and shift the location of the peak 

towards the surface. The decrease in the O concentration at where the F atoms 

were present showed the replacement of O atoms by the F atoms within the 

Al2O3. According to the XPS measurement of the plasma-treated Al2O3 surface, 

the proportion of the Al-F bonds was effectively increased from 20.1% to 36.1% 

for the sample with Ar bombardment. 

The link between the increase in the Al-F bonds and the increase in the 

amount of deeper trap level states was verified by the Gaussian 09 molecular 

simulation. By simulating the Al2O2.5F and Al2O2F2 molecules which have the 
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similar Al-F bond compositions as Sample B (FPT-only) and D (APT+FPT), it 

was found that the increased Al-F composition can effectively shift the trap 

states away from the conduction band edge. In addition, the generation of F-Al-

F bonding configuration after APT is one of the factors that shifts the trap states 

towards deeper level. The shifting of the trap level was attributed to the 

enhanced defect potential near the F-Al-F bonds. 
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Chapter 8 Conclusions and Suggested Future Work  

8.1 Conclusions 

Research attentions have been paid to Gallium Nitride for power device 

fabrication due to its superior material properties. Its high breakdown field 

makes the GaN-based device with high breakdown voltage possible. Meanwhile, 

the high mobility 2DEG induced from intrinsic polarisation field when AlGaN 

barrier layer is deposited on the GaN can be utilised as the highly-conductive 

channel of a device. However, challenges such as achieving normally-off 

operation with high threshold voltage at a wide range of temperatures and 

simultaneously maintaining an acceptable level of on-state conductivity and off-

state breakdown voltage hinder the further promotion of GaN based devices. 

This PhD project focused on the design, simulation, fabrication and 

characterisation of GaN-based HEMTs with good VTH thermal stability using 

fluorine plasma treatments on the Al2O3 gate dielectrics to realise normally-off 

operations. This study offered a possible solution to the GaN-based high-power 

systems which can minimise the system size and improve the system operating 

temperatures as compared with the conventional Si-based power electronics. 

In Chapter 3, studies on the high temperature performance of GaN power 

HEMTs under steady state was carried out. It is important for power electronics 

applications as they are usually implemented at high temperature environment. 

The study adapted the existing analytical models for the Schottky barrier height, 
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2DEG carrier density, threshold voltage, and specific contact resistance under 

room temperature to be capable to model high temperature performances. This 

work provided fundamental knowledge of the physical parameters and device 

performance at high temperature, which is helpful in the future device design to 

improve the room temperature VTH and obtain good VTH thermal stability.  

In Chapter 4, the fabrication and characterisation of normally-off 

Al2O3/AlGaN/GaN power MIS-HEMT with partial gate recess and multiple 

fluorine treatments to obtain high VTH have been realised with successful 

modelling of VTH. The characterised device has the highest reported threshold 

voltage of 6.5V for GaN-based HEMTs while preserving the maximum drain 

saturation current at 350mA/mm when VG-VTH=10V, the low drain/gate leakage 

and the breakdown voltage of up to 1130V. The device with such a high VTH is 

desirable for power electronics applications as the noise signal has much less 

effect on the switching response. In addition, the standby power consumption is 

small for the device with high VTH due to its small leakage current at VG=0V. 

Meanwhile, a monolithic logical inverter with integration of the 

abovementioned normally-off MIS-HEMT with a normally-on MIS-HEMT the 

was also reported. The inverter has large output swing and fast switching speed, 

which offers a possible option for GaN-based power integrated circuit 

applications. 
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In Chapter 5, the thermal emission of negative charges trapped at the Al2O3 

gate dielectric incorporated by fluorine plasma treatments was modelled and 

characterised. It was found that the different thermal VTH stability is related to 

the energy level of trapped negative charge and better VTH thermal stability was 

achieved if the trapped charges are accumulated at deeper level. The distribution 

of the trap states along the Al2O3 energy band was investigated by stressing the 

gate with various negative bias for a period of time. It was also found that the 

higher fluorine plasma treatment power resulted in the accumulation of trapped 

negative charges at deeper energy level from the Al2O3 conduction band. As a 

result, the VTH was retained at 2V instead of 2V at 200°C if the fluorine plasma 

power had been increased from 30W to 90W. The study accomplished in this 

chapter provided a clear explanation on the relationship between the VTH 

thermal stability and the fluorine treatment recipe with trap distribution 

mapping within the energy band. It provided important information for the 

design of fluorine plasma treatment recipe to achieve good VTH thermal stability. 

In Chapter 6, a novel short argon pre-fluorination treatment was 

implemented to create more O vacancies on the surface of Al2O3 prior to the 

fluorine treatments to allow for extra Al-F bond formation. Meanwhile, the 

multiple fluorine plasma treatments by conventional RIE was replaced with 

single ICP-RIE treatment for the first time to obtain high VTH with a much 

simpler approach. With ICP-RIE technique, the fluorine flux and the 

bombardment energy can be controlled independently to obtain high 
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concentration of F radicals to improve the VTH but small ion bombardment 

energy to minimise the 2DEG degradation. As a result, the VTH of the fabricated 

device with APT-then-FPT process was able to reach 4.4V and 2.5V at 25°C 

and 200°C respectively. According to the gate-stressing technique reported in 

Chapter 5, the Ar pre-fluorination technique was able to shift the peak of the 

trapped charge levels from ET=1eV towards deeper energy levels. The argon 

pre-fluorination treatment, which was firstly proposed in this thesis research, 

suggested an effective method to improve the VTH thermal stability of normally-

off AlGaN/GaN HEMTs utilising fluorine plasma treatment techniques on the 

gate. 

The physical mechanism of the argon pre-fluorination treatment was further 

discussed in Chapter 7. With SIMS measurement on the fluorine depth profile, 

it was found that the argon pre-fluorination treatment can effectively increase 

the peak of the F atoms by about 85% and shift the peak location by about 2nm 

closer to the surface. With XPS characterisation, it was found that argon pre-

fluorination treatment has effectively increased the composition of Al-F bonds 

at the Al2O3 surface from 20% to 36% of the total amount of bonds. The link 

between the increase in Al-F bonds and the amount of deeper level traps was 

verified by the Gaussian 09 molecular simulation tools. The simulation revealed 

the density of states distributions of Al2O2F2(II) (where two F atoms bonded to 

one Al atom) and Al2O2.5F cells have similar peak location to the fabricated 

devices with and without argon pre-fluorination treatment reported in Chapter 
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6 respectively. The thorough investigations of the physical mechanism on the 

argon pre-fluorination with various characterisation techniques provided clear 

evidence and explanation of the underlying physics on the VTH thermal 

improvement of the devices reported in Chapter 6. In addition, the Gaussian 09 

simulation has linked the trap state distribution and the chemical composition 

of fluorine plasma treated dielectrics, which is useful for the study of traps 

within a device.  

8.2 Proposed Future Works  

In summary, this thesis provided possible solutions to the future application 

of GaN-based HEMTs within a power electronic circuit under high-temperature 

ambient with successful fabrication of normally-off AlGaN/GaN HEMTs with 

high VTH under either room temperature or high temperatures up to 200°C. 

However, several issues related to this work require further development before 

actual implementation. 

Regarding the fabrication of the normally-off Al2O3/AlGaN/GaN MIS-

HEMTs by using partial recess on AlGaN barrier and fluorine plasma treatments 

on the Al2O3, one of the difficulties is the control of the recess depth of the 

AlGaN barrier. Since the AlGaN recess technique is normally achieved by the 

ICP dry etching technique, the error in the etching speed is inevitable due to the 

difficult control of the chamber and plasma conditions. It is suggested to utilise 
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wet etching technique or the oxidation-then-wet-etching techniques [117] to 

enhance the integrity of the AlGaN barrier etching depth. 

It is also suggested to carry out more research on the devices using argon 

pre-fluorination technique, especially on its switching behaviour. Even though 

the gate stress characterisation conducted in Chapter 7 did not observe any 

obvious difference in the shallow trap distribution between the devices with or 

without any argon treatments, the trap state distribution at levels near EC is still 

unknown. The shallow state distribution is dominant in the switching 

characteristics of the device, thus requires further investigation before actual 

application in the power electronic circuits. 

In addition, it is also possible to find other substances for pre-fluorination 

treatment. According to the research findings in this thesis, it does not matter 

which substance is used as the source of ion bombardment as long as it is heavy 

enough to create damages to the Al2O3 surface. It is possible to find another 

substance which is able to create more surface damage, or even being able to 

alter the defect potential within the material and further enhance the deep trap 

population. 

In terms of the device application into circuits, the fluorine-treated device 

has the potential to be applied in the power integrated-circuit. For instance, a 

logical monolithic inverter with good output swing and fast switching speed has 

been reported in Section 4.5 in the thesis. However, the high temperature 
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performance of the inverter was not carried out in this thesis research. It is 

important to carry out a thorough research on the high temperature rating of the 

inverter before being implemented in actual applications.  

Finally, the integration of the reported devices into a more complicated 

power IC can be studied in the future. For example, these devices are possible 

to be integrated as the power switches for a DC-DC buck/boost converter, or 

DC-AC inverters. By fabricating the integrated circuit on the GaN platform, the 

size of the circuit can be significantly reduced comparing with the conventional 

Si-based power IC. The size reduction of the system is attributed to the much 

higher power density for GaN-based devices and the reduction in the size of the 

cooling system as compared with Si-based system. 
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Appendix I: Run Script of the Sentaurus Device 

Simulation for Normally-off Al2O3/AlGaN/GaN MIS-

HEMTs 

*The run script is an example script used for the Sentaurus device simulation 

of Die E reported in Chapter 4. 

 

*Defining the electrodes: 

Electrode { 

   { Name="gate"   Voltage= 0 Schottky Workfunction= 5.1} 

   { Name="source" Voltage= 0 Schottky Workfunction= 4.3} 

    { Name="drain"  Voltage= 0 Schottky Workfunction= 4.3} 

} 

 

*Calling the input files and naming the output file: 

File { 

   Grid= "sdemodel_msh.tdr" 

   Parameter= "MIS.par" 

   Current= "MIS_des.plt" 

   Plot= "MIS_des.tdr" 

   Output= "MIS_des.log" 

 } 

 

*Calling the physics models using for the solution of the entire device (based 

on the template for normally-on AlGaN/GaN HEMTs issued in [36]): 

Physics { 

   AreaFactor= 1000 

   Mobility ( 

     DopingDependence  

     Highfieldsaturation 

     ) 

   EffectiveIntrinsicDensity (Nobandgapnarrowing) 

   Fermi 

   Piezoelectric_Polarisation (strain) 

   Thermionic 

   eBarrierTunneling "SourceNLM" 

   eBarrierTunneling "DrainNLM" 

} 
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*Defining the polarisation field strength at AlGaN/GaN interface (strain 

activation rate of the partially-recessed AlGaN is defined based on the 2DEG 

concentration fitting with [14]): 

Physics (MaterialInterface="AlGaN/GaN") { 

   Piezoelectric_Polarisation (strain activation=0.7)  

} 

 

*Defining the bulk traps within GaN (based on the template for normally-on 

AlGaN/GaN HEMTs issued in [36]): 

Physics (Material="GaN") { 

   Traps ( 

(Acceptor Level Conc= 6.0e17 EnergyMid= 1.1 EnergySig= 0 

FromMidBandGap eXSection= 1e-15 hXSection= 1e-15) 

     ) 

} 

 

*Defining the Al mole fraction and bulk traps within AlGaN (based on the 

template for normally-on AlGaN/GaN HEMTs issued in [36]): 

Physics (Material="AlGaN") { 

        MoleFraction( xFraction= 0.25 Grading= 0)  

        Traps ( 

(Acceptor Level Conc= 1e16 EnergyMid= 1.0 EnergySig= 0 

FromMidBandGap eXSection= 1e-15 hXSection= 1e-15) 

         ) 

} 

 

*Defining the polarisation field at the AlGaN/passivation interface (strain 

activation is absent as the oxide is amorphous): 

Physics (MaterialInterface="AlGaN/Oxide") { 

    Piezoelectric_Polarisation (strain activation=0) 

} 

 

*Defining the polarisation field at the AlGaN/Al2O3 interface (strain 

activation is absent as the oxide is amorphous): 

Physics (MaterialInterface="AlGaN/Insulator1") { 

    Piezoelectric_Polarisation (strain activation=0) 

} 

 

*Defining the negative charge concentration at the first fluorine plasma 

treated surface located at the AlGaN/Al2O3 interface (fixed charge 

concentration is based on the fitting of simulated VTH with the experimental 

VTH by ID-VG characterisation): 

Physics (RegionInterface="AlGaN/1AO") { 

Piezoelectric_Polarisation (strain activation=0) 
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    Traps( 

                (FixedCharge Conc= -1.5e12)        

            ) 

} 

 

*Defining the negative charge concentration at the second fluorine plasma 

treated surface located between t1 and t2 in Al2O3 reported in Chapter 4(fixed 

charge concentration is based on the fitting of simulated VTH with the 

experimental VTH by ID-VG characterisation): 

Physics (RegionInterface="1AO/2AO") { 

   Traps( 

(FixedCharge Conc= -7.42e12)        

         ) 

} 

 

*Defining the negative charge concentration at the third fluorine plasma 

treated surface located between t2 and t3 in Al2O3 reported in Chapter 4 (fixed 

charge concentration is based on the fitting of simulated VTH with the 

experimental VTH by ID-VG characterisation): 

Physics (RegionInterface="2AO/3AO") { 

   Traps( 

            (FixedCharge Conc=-1.2e13)        

         ) 

} 

 

*Defining the negative charge concentration at the fourth fluorine plasma 

treated surface located between t3 and t4 in Al2O3 reported in Chapter 4 (fixed 

charge concentration is based on the fitting of simulated VTH with the 

experimental VTH by ID-VG characterisation): 

Physics (RegionInterface="3AO/4AO") { 

   Traps( 

            (FixedCharge Conc= -1.29e12)        

         ) 

} 

 

*Defining the non-local mesh at the ohmic contacts (required for carrier 

tunnelling model. Selection of parameters is based on the template for 

normally-on AlGaN/GaN HEMTs issued in [36]): 

Math { 

   NonLocal "SourceNLM" ( 

    Electrode="source" 

    Digits= 4 

    Length= 12e-7 

    EnergyResolution= 1e-3 
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   ) 

   NonLocal "DrainNLM" ( 

    Electrode="drain" 

    Digits= 4 

    Length= 12e-7 

    EnergyResolution= 1e-3 

   ) 

} 

 

*Defining parameters required for output demonstration (selection of models 

is based on the template for normally-on AlGaN/GaN HEMTs issued in [36]): 

Plot {   

   NonLocal 

   Electricfield/Vector 

   eCurrent/Vector hCurrent/Vector TotalCurrent/Vector 

   SRH Avalanche 

   eMobility hMobility 

   eQuasiFermi hQuasiFermi 

   eGradQuasiFermi hGradQuasiFermi 

   eEparallel hEparallel 

   eVelocity hVelocity 

   Doping DonorConcentration Acceptorconcentration 

   SpaceCharge 

   ConductionBand ValenceBand 

   BandGap Affinity 

   xMoleFraction 

   PE_Polarisation/Vector 

   PE_Charge 

   eTrappedCharge eInterfaceTrappedCharge 

   hTrappedCharge hInterfaceTrappedCharge 

   eBarrierTunneling 

} 

 

*Defining the mathematical models used for device solution (selection of 

models is based on the template for normally-on AlGaN/GaN HEMTs issued 

in [36]): 

Math { 

   Transient= BE 

   ExitOnFailure 

   Extrapolate 

   Iterations= 20 

   DirectCurrentComputation 

   ErrRef(Electron)=1e5 

   ErrRef(Hole)=1e5 
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   ExtendedPrecision 

   Digits= 5 

   RHSMin= 1e-15 

RHSMax= 1e30 

   eDrForceRefDens= 1e8 hDrForceRefDens= 1e8  

   CNormPrint 

   NewtonPlot ( 

   Error MinError Residual) 

} 

 

*Defining the sweeping method for the simulation (ID-VG sweep from VG=0V 

to 15V with VD=1V, coding is based on the template for normally-on 

AlGaN/GaN HEMTs issued in [36]: 

Solve { 

   Coupled (Iterations=10000 LinesearchDamping=1e-5) {Poisson} 

   Coupled (Iterations=10000 LinesearchDamping=1e-5) {Poisson Hole} 

   Coupled (Iterations=10000 LinesearchDamping=1e-5) {Poisson Electron Hole} 

 

Plot(FilePrefix="Zero_Bias") 

    Quasistationary ( 

                InitialStep=1e-2 Minstep=1e-5 MaxStep=0.2 

                Increment=1.6 

                Goal{Name="drain" Voltage=1} 

        ){ 

                Coupled {Poisson Electron} 

         } 

    Quasistationary ( 

                InitialStep=1e-2 Minstep=1e-5 MaxStep=0.25 

                Increment=1.6 

                Goal{Name="gate" Voltage=15} 

        ){ 

                Coupled {Poisson Electron} 

         }   

} 
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Appendix II: Processing Parameters for Device 

Fabrication 

Table A-1. Major fabrication process flow for fluorine-treated normally-off 

Al2O3/AlGaN/GaN MIS-HEMT 

Steps Process Equipment Used Process Outcome 

1 Wafer Cleaning Fume Cupboard 
Cleaned wafer with 

dirt removed 

2 (a) 
Lithography (Double 

UV Exposure)   

Karl Suss MA6 

Mask Aligner 

Ti/Al/Ni/Au with 

thickness of 

25/125/45/55 nm 
2 (b) 

Drain/Source Metal 

Deposition  

ULVAC EX-400 

Electron-beam Film 

Evaporator 

2 (c) Metal Lift-off Fume Cupboard 

3 
Rapid Thermal 

Annealing 

BPS Nextral 

ADAX 60 

Formation of ohmic 

contacts with 

Ti/Al/Ni/Au alloy 

4 (a) 
Lithography (Single 

Exposure)  

Karl Suss MA6 

Mask Aligner 
~600 nm of AlGaN 

and GaN etched in 

the mesa region 4 (b) Mesa Isolation 
STS Multiplex ICP-

RIE System 

5 Surface Passivation 

Oxford Plasmalab 

80 Plus PECVD 

System 

~200nm of SiO2 

deposited 

6 (a) 
Lithography (Single UV 

Exposure)  

Karl Suss MA6 

Mask Aligner ~200nm SiO2 etched 

at the gate  
6 (b) Gate Region Opening 

STS Multiplex ICP-

RIE System 

7 
AlGaN Recess at the 

Gate Region 

STS Multiplex ICP-

RIE System 

~10nm of AlGaN 

etched at the gate 

8 (a) 
Gate Dielectric 

Deposition  

Savannah 100 ALD 

system  

Plasma-treated Al2O3 

gate dielectric 

8 (b) Plasma Treatments 

STS Multiplex ICP-

RIE System/Oxford 

PlasmaPro 80 RIE 

System 
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9 (a) 
Lithography (Double 

UV Exposure) 

Karl Suss MA6 

Mask Aligner 

Ni/Au gate contact 

(15/150 nm) 9 (b) Gate Metal Deposition 

ULVAC EX-400 

Electron-beam Film 

Evaporator 

9 (c) Metal Lift-off Fume Cupboard 

10 (a) 
Lithography (Single UV 

Exposure) 

STS Multiplex ICP-

RIE System 
Metal pads are 

exposed for device 

characterisations 10 (b) Pad Opening 
STS Multiplex ICP-

RIE System 

 

Table A-2. Detailed processing procedure for wafer cleaning 

(Refer to step 1 in Table A-1) 

Steps Process Parameters 

1 
Organic Contamination 

Removal 

Dip in H2SO4+H2O2 mix (ratio of 3:1) for 

2 minutes; then rinse with DI water 

2 Native Oxide Removal 
Dip in buffered oxide etch (BOE) for 15s; 

then rinse with DI water 
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Table A-3. Detailed processing procedure for lithography (double UV exposure) 

(This process is used for the lithography processes which require lifting-off (Steps 

2(a) & 9(a) in Table A-1) as undercuts at the resist sidewall are obtained) 

Steps Process Parameters 

1 
HMDS spin-coating for 

adhesion enhancement 
3000 rpm for 20s 

2 
AZ-5214E Photoresist spin-

coating 
3000 rpm for 20s 

3 Photoresist Pre-baking 120ºC for 60s 

4 
UV Light Exposure after 

aligned with the mask pattern 
2s exposure at UV wavelength of 320nm 

5 Photoresist Post-baking 120ºC for 90s 

6 
UV Light Exposure without 

mask 

30s exposure at UV wavelength of 

320nm 

7 Pattern Development 
Dip into FHD-5 positive photoresist 

developer for 50s   

8 Lift-off after metal deposition 
Dip into acetone and placed in ultrasonic 

cleaner for 20 min 

9 Acetone Removal 
Dip into IPA and placed in ultrasonic 

cleaner for 10 min  

10 IPA Removal 

Dip into DI water and placed in 

ultrasonic cleaner for 10 min; blow dry 

with N2 gun 
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Table A-4. Detailed processing procedure for lithography (single UV exposure) 

(This procedure is used for lithography processes which require no lifting-off (Steps 

4(a), 6(a), and 10(a) in Table A-1)) 

Steps Process Parameters 

1 
HMDS spin-coating for 

adhesion enhancement 
3000 rpm for 20s 

2 
AZ-5214E Photoresist spin-

coating 
3000 rpm for 20s 

3 Photoresist Pre-baking 120ºC for 90s 

4 
UV Light Exposure after 

aligned with the mask pattern 

30s exposure at UV wavelength of 

320nm 

5 Pattern Development 
Dip into FHD-5 positive photoresist 

developer for 50s   

6 
Post-process photoresist 

removal 

Dip into acetone and placed in ultrasonic 

cleaner for 10 min 

7 Acetone Removal 
Dip into IPA and placed in ultrasonic 

cleaner for 10 min  

8 IPA Removal 

Dip into DI water and placed in 

ultrasonic cleaner for 10 min; blow dry 

with N2 gun 
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Table A-5. Detailed processing procedure for metal deposition by thermal evaporator 

(Refer to steps 2(b) & 9(b) in Table A-1) 

Steps Process Comments 

1 
Sample & 

Crucible Loading 

Load the required metal crucibles with sufficient 

amount of metals within 

2 
Chamber 

Vacuuming 

Wait until the chamber pressure is under 410-6 Pa 

(~2 hours) 

3 
E-beam location 

adjustment 

Ensure the electron beam is bombarding the surface 

of the metal crucible 

4 Metal Deposition 

Carefully control the speed of metal deposition for 

good deposition uniformity and quality. Ensure the 

rate is around 0.1nm/s.  

5 Crucible Cooling 
Allow for about 3 min of cooling time after each 

deposition before changing the crucible   

6 
Change of 

Crucible 

Change the crucible to the next required metal and 

repeat from step 3.  

7 

Chamber Vent & 

Sample 

Unloading 

When metal deposition is completed, vent the 

chamber and unload the sample. Finally, vacuum the 

chamber after usage to avoid chamber 

contamination. 

 

Table A-6. Parameters used for 500nm mesa isolation by ICP-RIE 

(Refer to step 4(b) in Table A-1.) 

Step 1: High Power Etch for fast etching speed (~2.3nm/s) 

Gas Flow 

Ar 15 sccm  

BCl3 2 sccm 

Cl2 8 sccm 

Pressure 120 mTorr  

Coil Power 100 W 

Cathode Power 175 W 

Etch Time 190s 

Step 2: Low Power Etch for improved etched surface quality (~0.3nm/s) 

Gas Flow 

Ar 15 sccm  

BCl3 2 sccm 

Cl2 8 sccm 

Pressure 120 mTorr  

Coil Power 30 W 

Cathode Power 30 W 

Etch Time 200s 
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Table A-7. Parameters used for 200nm of SiO2 Surface Passivation by PECVD 

(Refer to step 5 in Table A-1) 

Gas Flow 
N2O 706 sccm  

SiH4/N2 158 sccm 

Pressure 906 mTorr  

RF Power 18 W 

Valve Position 26.3º 

Temperature 300ºC 

SiO2 deposition Time (rate is about 0.4nm/s) 450s  

 

Table A-8. Parameters used for 200nm of gate region opening by ICP-RIE 

(Refer to step 6(b) in Table A-1) 

Gas Flow 
Ar 5 sccm  

SF6 20 sccm 

Pressure 50 mTorr  

Coil Power 5 W 

Cathode Power 100 W 

SiO2 Etching Time (rate is about 0.6nm/s) 330s 

 

Table A-9. Parameters used for AlGaN Recess by ICP-RIE 

(Refer to step 7 in Table A-1) 

Gas Flow 

Argon 15 sccm  

BCl3 2 sccm 

Cl2 8 sccm 

Pressure 120 mTorr  

Coil Power 30 W 

Cathode Power 30 W 

Etch Time 30s 
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Table A-10. Parameters used for ALD-Al2O3 gate dielectric deposition 

(Refer to step 8(a) in Table A-1) 

Gas 

Flow 

Tri-methyl-aluminium (TMA) 
20 sccm 

H2O 

Temperature 250ºC  

Al2O3 Thickness per cycle 0.1nm 

 

Table A-11. Parameters used for gate plasma treatment by RIE or ICP-RIE 

(Refer to step 8(b) in Table A-1) 

A: RIE Treatment 

CHF3 gas flow 50 sccm  

Pressure 37.5 mTorr  

RF Power 
Refer to Table 4.2, 5.1 

Treatment Time 

B: ICP-RIE Treatment 

Step 1: Argon pre-treatment 

Ar gas flow 10 sccm  

Pressure 15 mTorr  

Cathode Power 
Refer to Table 6.1 

Coil Power 

Treatment Time (Varied) 20s 

Step 2: Fluorine treatment 

CHF3 gas flow 36 sccm  

Pressure 37.5 mTorr  

Cathode Power 10W 

Coil Power 
Refer to Table 6.1 

Treatment Time 
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Table A-12. Parameters used for pad opening by ICP-RIE 

(Refer to step 10(b) in Table A-1) 

Step 1: Al2O3 Etch 

Gas Flow 
Ar 10 sccm  

BCl3 25 sccm 

Pressure 15 mTorr  

Coil Power 100 W 

Cathode Power 175 W 

Etch Time 180s 

Step 2: SiO2 Etch 

Gas Flow 

Ar 5 sccm  

SF6 20 sccm 

Cl2 8 sccm 

Pressure 50 mTorr  

Coil Power 5 W 

Cathode Power 100 W 

Etch Time 300s 
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