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Summary

Solar photovoltaics (PV) is set to become one of the major energy

sources of the future, tapping into the virtually endless supply of energy from

the sun. The actual power output of a solar PV system can vary substantially,

depending on the local irradiation conditions and the system performance,

making it a variable type of renewable energy with high variability. Since

more than 90% of the installed PV systems worldwide are grid-connected,

this in turn raises concerns among grid operators regarding the in�uence of

photovoltaic power on the performance of their electricity grid.

To minimize the risk of destabilizing the electricity grid by a sizeable

share of solar PV, it is indispensable to forecast the contribution of solar

power ahead of time, by 5 minutes, 1 hour, or 1 day in advance depending on

the needs of the grid operation. This would allow the grid operator to take

suitable grid management measures, such as up- or downscaling of the power

output of other, adjustable generation capacities, demand-side management,

especially looking ahead into future smart-grids, or forward buying at the

electricity exchange at lower rates. Solar power forecasting requires forecasting

of irradiance at a spatial resolution customized for the relevant grid area as the

major input parameter, and modelling of solar power systems in the same grid

area, unless the actual locations of the PV units can be used to get reliable

forecast values with high accuracy.

However, the forecasting is particularly challenging in the tropics due

to high solar irradiance variability. The primary goal of this thesis there-

fore is to develop novel, robust irradiance forecasting models for application

in the tropics. Several novel models based on statistical time series analy-

sis and machine learning techniques are proposed and investigated, including

a short-term exponential smoothing state space (ESSS) model, mid-term hy-



brid models (arti�cial neural network (ANN) with ESSS model, self-organising

maps (SOM), support vector regression (SVR) with particle swarm optimiza-

tion (PSO) ) and a spatial-temporal analysis. Superior forecasting accuracy

is achieved by the proposed models and forecasting at arbitrary locations can

be performed with high spatial resolution data.
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Chapter 1

Introduction

1.1 Background

With rapid reduction in the cost of solar photovoltaic (PV) electricity over

the last ten years, and grid parity occurring in many locations, PV is set to

become one of the major energy sources of the future. However, the instan-

taneous power output of a PV system can vary substantially, depending on

local irradiance conditions and the system performance, making PV a variable

form of renewable energy. Since more than 90% of the installed PV systems

worldwide are grid-connected, this in turn raises concerns among grid opera-

tors regarding the in�uence of PV power on the stability of their electricity

grids (SPE, 2015).

Considering the power rather than the energy contribution of PV in

a typical electricity grid, a 5 − 10% share of the total annual electric energy

generation, as seen today in Germany, can easily correspond to more than

49% instantaneous share of the total power in the middle of the day(SPE,

2015). This may occur for example on a bright, sunny weekend day when

large industrial consumers are closed.
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In Singapore, future PV generation could theoretically contribute up to

20% of annual electric energy generation (National Climate Change Strategy

(NCCS), 2014). To avoid the risk of destabilising the electricity grid, it will

be necessary to forecast the contribution of solar power on short (minutes),

medium (hours) and long (days) time scales. Forecasts allow the grid operator

to implement on-the-�y grid management measures, such as up- or downscaling

of the power output of other adjustable generation capacities, demand-side

management, or forward buying at the electricity exchange at lower rates.

Even though there are other factors a�ecting the performance of PV

systems, solar irradiance is the dominating factor in the forecasting of the

overall PV output in grid integration.

Accurate solar irradiance forecasting is essential for many PV system

level and electricity power grid level applications. Three categories of fore-

casting horizons are usually used: short term, medium term and long term.

Short-term forecasting is de�ned as intra-hour forecasting. Medium-term fore-

casting is de�ned as one to six hours ahead forecasting. Long-term forecasting

is de�ned as above six hours ahead forecasting.

The focus of this thesis is short-term forecasting and medium-term

forecasting. They have very di�erent statistical characteristics. Short-term

forecasting demonstrates high time sequential correlation while medium-term

forecasting does not. Five-minute forecasting is selected to represent the short-

term forecasting characteristic and the result can be extended to other short-

term interval forecasting. One hour interval is also typical in power scheduling

and hence selected to represent the medium-term forecasting characteristics.

The result can be extended to other medium-term interval forecasting.
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1.2 Thesis statement

The primary goal of this thesis is to develop more accurate irradiance fore-

casting models for application in tropical Singapore. Novel models involving

statistical time series analysis and machine learning techniques are investi-

gated and developed to meet the speci�c spatial and temporal requirements

of solar irradiance forecasting in the tropics.

1.3 Motivation

Solar irradiance is de�ned as the power per unit area of solar radiation at a

surface. We are only interested in solar irradiance reaching the ground surface.

The nature of solar irradiance forecasting is to make predictions of the future

irradiance value based on past and present relevant data. The past relevant

data are usually in the form of time series. The most widely applied method to

determine patterns in the past time series data and deduce predictions for the

future is the statistical time series analysis. There is a great number of models

in statistical time series analysis which have been applied to various �elds of

studies such as economic forecasting, �nancial forecasting, climate forecasting,

utility forecasting, census forecasting and so on. Since solar irradiance time

series have speci�c characteristics, the traditional statistical models must be

carefully modi�ed and improved to accommodate these properties.

In Chapter 3, a novel statistical time series analysis model for solar ir-

radiance forecasting is proposed. We forecast 5-minute solar irradiance time

series based on a novel exponential smoothing state space (ESSS) model.

To stationarize the irradiance data before applying linear time series mod-

els, we propose a novel Fourier trend model and compare the performance

with other popular trend models using residual analysis and the Kwiatkowski-
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Phillips-Schmidt-Shin (KPSS) stationarity test. Using the optimized Fourier

trend, an ESSS model is implemented to forecast the stationary residual se-

ries of datasets from Singapore and Colorado, USA. To compare the perfor-

mance with other time series models, autoregressive integrated moving average

(ARIMA), linear exponential smoothing (LES), simple exponential smoothing

(SES) and random walk (RW) models are tested using the same data. The

simulation results show that the ESSS model has generally better performance

than other time series forecasting models. To assess the reliability of the fore-

casting model in real-time applications, a complementary study of the fore-

casting 95% con�dence interval and forecasting horizon of the ESSS model has

been conducted.

In terms of analysing patterns in the past relevant data, machine learn-

ing is a powerful technique in general. The concept of machine learning is

to enable computers to learn without being programmed explicitly. It has

been proved to be e�ective in regression, classi�cation, clustering, structured

prediction and so on (Yann LeCun and Hinton, 2015). Speci�cally in solar

irradiance forecasting, machine learning models are designed and optimized to

achieve better accuracy.

In Chapter 4, a novel hybrid model including both statistical time series

analysis and machine learning is proposed. We forecast hourly solar irradiance

time series using satellite image analysis and a hybrid exponential smoothing

state space (ESSS) model together with arti�cial neural networks (ANN). Since

cloud cover is the major factor a�ecting solar irradiance, cloud detection and

classi�cation are crucial to forecast solar irradiance. Geostationary satellite

images provide cloud information, allowing a cloud cover index to be derived

and analysed using self-organizing maps (SOM). Owing to the stochastic na-

ture of cloud generation in tropical regions, the ESSS model is used to forecast



5

cloud cover index. Among di�erent models applied in the ANN, we favour the

multi-layer perceptron (MLP) to derive solar irradiance based on the cloud

cover index. This hybrid model has been used to forecast hourly solar ir-

radiance in Singapore and the technique is found to outperform traditional

forecasting models.

In Chapter 5, a novel hybrid model based on machine learning is pro-

posed. We forecast hourly solar irradiance time series using a novel hybrid

model based on self-organizing maps (SOM), support vector regression (SVR)

and particle swarm optimization (PSO). In order to solve the noise and sta-

tionarity problems in the statistical time series forecasting modelling process,

SOM is applied to partition the whole input space into several disjointed re-

gions with di�erent characteristic information on the correlation between the

input and the output. Then SVR is used to model each disjointed region

to identify the characteristic correlation. In order to reduce the performance

volatility of SVM with di�erent parameters, PSO is implemented to automat-

ically perform the parameter selection in SVR modelling. This hybrid model

has been used to forecast hourly solar irradiance in Colorado, USA and Sin-

gapore. The technique is found to outperform traditional forecasting models.

From Chapter 3 to Chapter 5, single station solar irradiance forecasts

using novel statistical analysis and machine learning have been proposed and

studied. Although the accuracies of these forecasting methods can be ade-

quate, we are also interested in the spatial irradiance information where there

are no monitoring stations. In order to plan the electricity generation at the

power grid level, a large number of monitoring stations over the power grid

area is required. However, the number of sensors is generally limited and their

distribution is irregular. Thus, spatial-temporal estimation for solar irradiance

is an important step towards the forecast required by renewable energy driven
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cities.

In Chapter 6, a novel statistical spatial-temporal analysis is proposed.

Spatial-temporal datasets that enjoy the properties of stationarity, full sym-

metry and separability are in general more amenable to statistical forecasting

algorithms. Usually, none of these properties obtain in meteorological data

such as wind velocity �elds and solar irradiance distributions. In this analy-

sis, we construct a statistical analysis system to mitigate this problem. We

�rst achieve temporal stationarity by detrending solar irradiance time series

at individual monitoring stations. We then approximate spatial stationarity

through deformations of the geographic coordinates. Various spatial-temporal

variance-covariance structures are formed to explore full symmetry and sepa-

rability.

It is also important to know how we pre-process the solar irradiance

data from all the stations to obtain the spatial-temporal datasets. Irradiance

at di�ering geographical locations is frequently measured using sensors which

are installed in the plane of existing PV arrays, whose tilt is optimized to the

location. One is therefore often compelled to convert the irradiance from an

arbitrary tilt to global horizontal irradiance (GHI) as would be measured on a

horizontal surface. The existing literature, however, focuses on using transpo-

sition and decomposition models to predict solar irradiance on a tilted surface

from solar irradiance data on a horizontal plane. In this part of the chapter,

we discuss the reverse process. We use Singapore data collected at various tilts

and azimuths to perform the analysis. We �rst evaluate the performance of

various transposition and decomposition models in tropical regions. Then we

further analyse constraints on each decomposition model and select an optimal

model using measured GHI data as a benchmark.

Finally, Chapter 7 presents the conclusions from this work and proposed
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future works.

1.4 Novel contributions

In Chapter 3, the novel contribution is the proposed ESSS model with Fourier

trend preprocessing to forecast short-term solar irradiance. Compared with

other popular statistical time series models, the ESSS model has better fore-

casting accuracy in general for the forecasting horizon from 5 to 20 minutes.

This timescale is one of great interest to power grid operators. Even a marginal

improvement in forecasting accuracy on this timescale can represent huge cost

savings in grid operation. Moreover, our novel formulation of the Fourier trend

model also outperforms other similar trend models.

In Chapter 4, the novel contribution is the proposed SOM+ESSS+MLP

hybrid model with satellite image preprocessing to forecast medium-term solar

irradiance. Compared with other popular statistical time series models, the

proposed model has superior forecasting accuracy for hourly solar irradiance.

In Chapter 5, the novel contribution is the proposed SOM+SVR+PSO

hybrid model to forecast medium-term solar irradiance without satellite im-

ages. To compare the performance with other time series forecasting models,

the hybrid model has generally better performance than other statistical mod-

els in hourly solar irradiance forecasting.

In Chapter 6, the novel contribution is the proposed spatial-temporal

solar irradiance analysis. This analysis provides a scienti�c way to predict

solar irradiance at locations without monitoring stations. The methodology

presented here was useful when high spatial resolution irradiance data are

available.
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Chapter 2

Literature Review

2.1 Solar forecasting needs, market connection

and stakeholders

If the world is to avoid catastrophic climate change, massive uptake of renew-

able energy (RE) is essential. Some RE deployment will be at the utility scale

and some will take the form of 'distributed' small scale systems, for example

rooftop PV. One example of this phenomenon at present is Australia, where a

small number of on- and o�- grid MW scale PV systems have been deployed,

along with over one million kW scale systems (Simpson and Clifton, 2016).

Together, these PV systems can represent a signi�cant fraction of total energy

generation in some areas. In these areas, grid management issues have already

arisen, leading to occasional PV curtailment (Bahadori and Nwaoha, 2013).

The Australian example shows that to mitigate grid problems caused by the

inherently variable nature of most RE, modern grids must be more �exible

than traditional power grids, deploying technologies including, but not limited

to, monitoring, information management, storage and advanced demand and

supply forecasting on a variety of time scales.
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For power system operators, it is therefore important to understand

the value of accurate solar energy forecasting on all time scales. The bene-

�ts of forecasting were ignored previously mainly because the RE penetration

level is generally too low. With the rapid expansion of RE, particularly solar

power installations, the value of forecasting must be examined by addressing

the challenges in power system integration. Here we only consider solar PV

forecasts.

In the middle of the day, large instantaneous solar power generation is

expected to correspond a large portion of the electricity demand. Depending

on local irradiance conditions and the grid topology, it is challenging, and

potentially possible, for power system operators to adjust power generation

to meet the downward and upward net load ramping to compensate the solar

power generation. Without proper power system management, solar power

must be curtailed or the power system reliability is at risk, as already seen in

Australia. The curtailment is an avoidable ine�ciency in the grid. Accurate

solar power forecasting can e�ectively reduce the ine�ciencies through unit

commitment and economic dispatch decisions (Martinez-Anido et al., 2016).

Di�erent power plants have various unit commitment schedules accord-

ing to their start-up and shut-down timings. Some power plants like gas and

oil fast turbines and internal combustion engines can be re-committed one

hour ahead or less. Some power plants like gas combined cycle and gas and

oil steam turbines can only be re-committed a few hours ahead. Several other

power plants like nuclear and coal must be re-committed one day ahead. Solar

power forecasting is essential for the commitment decisions in di�erent time

scales, with signi�cant portion of solar power present in the system.

Economic dispatch decisions are the cost optimization of various power

system operations including the unit commitment decisions. Solar power fore-
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casting can reduce the uncertainty of solar power generation in dispatch de-

cisions to facilitate economic and reliable power dispatch, given that other

constraints in generation, transmission and load have been considered.

In California USA, the solar forecasting is primarily used by Califor-

nia Independent System Operators (CAISO). With greater distributed PV

penetration level, utilities are also using solar forecasting for local automated

response to voltage �uctuations caused by solar production (Lentz et al., 2014).

The market need for better solar power forecasting and grid integration

planning tools has been widely recognized. Di�erent time interval forecasts

are used by CAISO:

• The day ahead (DA) forecast is submitted to the CAISO at 5:30 AM

prior to the operating day. The forecast covers each of the 24 hours of

that operating day beginning from midnight, which means the day ahead

forecast provides 18.5 to 42.5 hours ahead forecast for the operating day.

Most of the conventional generation is scheduled in the DA market.

• The hour ahead (HA) forecast is submitted 105 minutes prior to each

operating hour. Under the CAISO Participating Intermittent Resources

Program (PIRP), a participating intermittent resource can receive spe-

cial settlement treatment if HA forecast is submitted by the resource's

scheduling coordinator.

• The minute ahead (MA) forecast is submitted every 5 minutes accord-

ing to the market period in CAISO. The Federal Energy Regulatory

Commission (FERC) has issued a Notice of Proposed Rulemaking re-

quiring public utility transmission providers to o�er all customers the

opportunity to schedule transmission service every 15 minutes, and re-

quiring providers with variable renewables on their systems to use power
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production forecasting.

In the future, increasing solar penetration level requires solar energy

generators to participate in parts of the regular DA and HA markets. In this

case, the marketplace for renewable forecasting would change dramatically,

since the economic bene�t and interest in forecasting would shift to the owner-

operators of solar power plants.

For example in Spain, there is premium tari� for the regulation of re-

newable energy which allows operators of power plants to participate directly

on the electricity market instead of reverting to �at-rate prices. With the

incentive, operators of renewable energy plants would act like operators of

conventional plants to sell electricity at the liberalized market. The opera-

tors bids in advance on the market and is obliged to ful�l the biddings. It is

necessary for the renewable energy plant operators to provide high accuracy

forecast on the energy to enjoy the pro�table premium tari�.

Currently in Singapore, SERIS has provided both minute ahead and

hour ahead forecasting for Energy Market Authority (EMA). With increas-

ing share of solar energy generation, EMA will release similar guidelines like

CAISO to facilitate the grid integration of solar energy.

2.1.1 Cost saving on energy bu�ers using forecasting

The variability of short-term PV output is well understood but remains a

major concern to the grid operators and utilities, who have to manage the

variable source appropriately. From the grid operator's point of view, the

cost of keeping the variable source's ramp rates below speci�c thresholds must

be carefully examined. This cost can be quanti�ed by the shock-absorbing

hardware like energy bu�ers, which receives the variable PV output and deliver

an output with speci�c maximum ramp rate requirements (Lentz et al., 2014).
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The cost can be evaluated using a function of four components:

• The time scale of the ramp rate requirement;

• The spatial distribution of the generating resources: from a single point

to a PV resource distributed over 200 km× 200 km;

• The climate environment including tropical, semi-arid and temperate

locations;

• The availability of solar forecasts.

In this study (Lentz et al., 2014), to determine the cost of the bu�ers,

one-year PV output time series for horizontally-mounted PV systems operating

are used, in three climatically distinct locations: Hanford, in Central Califor-

nia, Goodwin Creek in the southeastern US, and Kalaeloa in Hawaii. For each

of the location, 13 spatial resolutions (from single point to 200 km× 200 km)

and 6 temporal resolutions (from one minute to two hours) are analysed, using

a total of 78 PV output time series.

The impact of the ramp mitigation objective on bu�er cost for two

temporal resolution (1 minute and 15 minute) and two spatial resolution (1

km× 1 km and 30 km× 30 km) is shown in Figure 2.1. This example shows

that bu�er cost decreases signi�cantly with the ramp mitigation target. The

solar forecast availability systematically leads to lower costs by an average of

$50-300 per kW of PV across this illustrative example.

The study has been extended to operational scenarios by setting real op-

erational ramp mitigation targets: 5% of installed PV capacity at one-minute,

10% at 5 minutes, 15% at 15 minutes and 25% at one hour. For a single

point, the operational cost is of the order of $300-350 per kW of PV with solar

energy forecasts and would be about 40% higher without. Dispersed at the
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Figure 2.1: In�uence of ramp mitigation objective on bu�er cost for selected

spatial and temporal resolutions

level of a large substation covering 20 km× 20 km, PV generation could be

operationally mitigated for $150-250 per kW, but this cost would be nearly

twice as much without forecasts.
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2.2 Solar forecasting fundamentals

2.2.1 Solar Radiation

The amount of solar electromagnetic radiation per unit area per unit time

received outside the earth's atmosphere is de�ned as solar constant GSC . GSC

is a measure of �ux estimated at the mean distance of the earth from the sun.

The power of the solar radiation is 1.367 ± 1% kW/m2, which is mea-

sured by satellite and recognised by the World Radiation Centre (World Radi-

ation Centre (WRC), 2014). The changing distance between the sun and the

earth varies the solar radiation by up to ±3.3%. This can be estimated by the

following equation:

Gon = GSC(1.00011 + 0.034221 cosB + 0.00128 sin B

+ 0.000719 cos 2B + 0.000077 sin 2B) (2.1)

where B = (n − 1)360
365

and Gon is the radiation on a plane normal to

the incidence outside the atmosphere on the nth day of a year from the 1st

January (Du�e and Beckman, 2006).

Considering the solar radiation at the earth's solid surface, �direct� ra-

diation is the part that has not been scattered by the atmosphere and �di�use�

radiation is the part that has been scattered by the atmosphere. The details

will be discussed in the later part of this section.

2.2.1.1 Solar irradiance

For the power per unit area of electromagnetic radiation at a surface, the

radiometry term �irradiance� is usually used when the radiation is incident on

the surface. The SI unit for irradiance is watts per square meter (W/m2).
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For the incident energy per unit area on a surface, �radiant exposure�

is used to represent the sum of energy arriving over a speci�c time period and

the SI unit is J/m2. Speci�cally for solar energy radiant exposure, "insolation"

is often used instead of �radiant exposure�.

When a surface is directly facing the sun, the insolation into the surface

is largest. The insolation is reduced as the angle increases between the direc-

tion of the rays of sunlight and the direction at a right angle to the surface.

Direct insolation is calculated by subtracting atmospheric losses due

to scattering and absorption from the solar constant. The atmospheric loss

depends mainly on cloud cover condition, the time of day, impurities and mois-

ture content. On a clear sky day, the insolation is reduced to approximately

1000 W/m2 for a surface perpendicular to the sun at sea level, due to the

attenuation passing through the atmosphere (Newport, 2014).

2.2.1.2 Atmospheric considerations

When radiation passes through a medium, non-uniformities may force it to

deviate from a straight trajectory. This physical process is called scattering.

There are many types of non-uniformities causing scattering, including bub-

bles, droplets, �uids with density �uctuations, various particles, etc. In the

earth's atmosphere speci�cally, all atoms and molecules scatter sunlight. The

scattering due to water and particulates can be signi�cant.

Light scattering is important because most objects' visible appearance

relies on it. When a surface almost completely scatters the light, it appears

to be white to human eyes. Three categories are usually de�ned in light

scattering. De�ning a dimensionless size parameter α:

α =
πDp

λ
(2.2)
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where πDp is the circumference of a particle and λ is the wavelength of

incident radiation. The three categories are de�ned according to α:

• [α� 1] Rayleigh scattering

• [α ∼ 1] Mie scattering

• [α� 1] Geometric scattering

Small spherical matters like bubbles, droplets and particles can cause

Rayleigh scattering. Additionally, there exist microscopic density �uctuations

within pure gases which also lead to Rayleigh scattering. This is the reason

why the Earth's sky is blue, since the blue wavelengths of sunlight are scat-

tered more strongly than other wavelengths. Rayleigh scattering is the main

attenuation phenomenon of radiation by the atmosphere.

Absorption is when the energy of a photon is taken by the electrons

of an atom or molecule of matter. The energy taken by the matter may be

transformed to another form or re-emitted. Absorption is the other main

attenuation of radiation by the atmosphere, besides Rayleigh scattering.

In practice, to quantify the attenuation of solar radiation by the atmo-

sphere, aerosol optical depth (AOD) is de�ned. AOD measures the extinction

of solar radiation contributed by an atmosphere-long column of aerosols. To

determine AOD, radiometers point directly at the sun measuring the spec-

tral transmission of solar radiation. The validation and calibration of AOD

modelling is based on ground based AOD measurements and satellite data.

Direct normal irradiance (DNI), di�use horizontal irradiance (DHI) and

global horizontal irradiance (GHI) are the three fundamental components of

solar radiation at the Earth's surface relating closely to solar irradiance fore-

casting. DNI is the direct solar radiation available from a planar surface

normal to the Sun. It is usually measured by a pyrheliometer. DHI is the
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solar radiation from the sky dome excluding DNI. This part of solar radia-

tion is scattered by atmospheric constituents like particles and clouds. DHI

is usually measured by a shaded pyranometer. GHI is the total hemispheric

solar radiation on a horizontal surface. It is usually measured by an unshaded

pyranometer.

For any surface, GHI equals DNI plus DHI. For a horizontal surface:

GHI = DNI × cos(Z) +DHI (2.3)

where Z is the zenith angle (Lorenz, Kühnert, and Heinemann, 2014).

2.2.2 Solar irradiance instrumentation

DNI is measured by a pyrheliometer. Pyrheliometers track the Sun throughout

the day and typically employ a 5 ◦ to 6 ◦ aperture allowing only the direct solar

radiation to the sensor so that di�use radiation from the sky is excluded from

by the equipment. The circumsolar radiation is also counted as DNI since up

to 40% of the DNI comes from it (Blanc et al., 2014).

The DHI and GHI are measured by a pyranometer. Pyranometers can

receive total hemispheric solar radiation on a horizontal surface. In order to

measure DHI, a disk or ball is placed in the path of the direct sunlight beam

to the sensor. This blocking part tracks the Sun throughout the day. For a

research level equipment, the tracking-shade device must be implemented.

Fundamentally, the thermopile detectors absorb incident solar radia-

tion and output a signal relating the temperature of the detector. Within

thermopile detectors, there is a black absorbing surface absorbing solar ra-

diation. 20 to 40 thermojunctions are in contact with the surface enabling

thermal �ux to �ow to �cold junctions�. The thermal �ux then produces a

voltage proportional to the temperature di�erence. The temperature di�er-

ence are typically 5 ◦C for a 1000 Wm−2 optical input, resulting in a 4 mV to
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8 mV signal. However, the output of thermocouples is not perfectly linear and

the absorbing surface of the detector is not perfectly isotropic, which lead to

uncertainty in the measurement.

Another type of sensor is solid-state silicon photodiodes. It generates

photovoltaic current proportional to the incident solar radiation �ux. This

type of sensor is much cheaper than the radiometers mentioned above. How-

ever, it sacri�ces the measurement accuracy since silicon photodiodes have

smaller spectral response ranges and cannot produce a signal proportional to

the whole radiation spectrum. With the atmosphere changing composition

during the day, varying infrared spectral content of the solar radiation cannot

be captured by silicon photodiodes.

2.3 Review of solar irradiance forecasting mod-

els

2.3.1 Statistical time series models

With an increasing share of solar energy in power grid operations, many appli-

cations require short-term forecasts, for example operational planning, short-

term power purchase, reserve usage planning, peak load matching, source

switching, backup programming, etc. Statistical time series models are well

suited for short-term solar irradiance forecasting. Several statistical time series

models are introduced in this section.

2.3.1.1 The persistence model

The persistence model is the most basic forecasting model. Persistence indi-

cates that the future predicted value is unchanged from the current observed



19

value. In this time series, the value at future time t + h is the same as the

value at current time t. The implementation of this model is straightforward:

rt+h = rt (2.4)

under the assumption that the time series is stationary. A stationary time

series means the variance and mean of the series do not change over time.

However, it is well known that the solar irradiance received at the ground is not

stationary due to the in�uences from all atmospheric factors, and diurnal and

seasonal cycles. To overcome this limitation, detrend models are implemented

to decompose the solar irradiance time series into a trend component and a

random component.

2.3.1.2 Detrend model

Many detrend models have been proposed in the literature. The high order

polynomial model was �rst published by Al-Sadah et al. (Al-Sadah, Ragab,

and Arshad, 1990b) and claimed by them to be a good �t to the daily GHI

trend:

rt = a+ bt+ ct2 (2.5)

where a, b and c are the regression parameters.

The cosine function model was �rst used by (Kaplanis, 2006):

rt = a+ b cos(
2π(t− d)

24
) (2.6)

where a and b are the regression parameters and d is the peak irradiance

hour of the day.

The Gaussian function model (Baig, Akhter, and Mufti, 1991) tries to

�t the GHI series with a Gaussian function:
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rt =
1

σ
√

2π
exp−(t−d)2/2σ2

(2.7)

where σ is the standard deviation of the Gaussian curve (the regression

parameter that should be decided by the actual data) and d is the peak irradi-

ance hour of the day which corresponds to the expected mean of the Gaussian

distribution.

2.3.1.3 ARIMA model

Every time series is fundamentally a realization of a stochastic process. Based

on the nature of time series, autoregressive (AR) models and moving aver-

age (MA) models have been developed by many authors. The AR model

formulates the linear dependence between the forecast value and the previ-

ous observed values with the consideration of stochastic di�erence. The MA

model formulates the linear regression of the current time series against white

noise (Box, Jenkins, and Reinsel, 1970). The autoregressive integrated moving

average (ARIMA) model combines AR model, MA model and a di�erencing

component. The ARIMA model can be expressed as:

Rt = (1−B)drt (2.8)

(1− Σp
i=1φiB

i)Rt = (1 + Σq
i=1θiB

i)εt (2.9)

where p is the autoregressive parameter, d is the number of di�erencing passes,

q is the moving average parameter, B is the backward operator, ε is a Gaussian

white noise error term and φ and θ are �tting coe�cients. Parameters p,

d and q are determined using model identi�cation tools (Box, Jenkins, and

Reinsel, 1970) and the coe�cients φ and θ are determined using minimization

procedures.

ARIMA prediction can be seen as a constant or weighted sum of one or

more recent values in the time series, or a weighted sum of one or more recent
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errors. The constant or weighted sum of one or more recent values in the time

series is the AR part. The weighted sum of one or more recent errors is the

MA part. The "integrated" part is the di�erenced time series in order to make

it stationary.

The ARIMA model has been widely deployed in many forecasting �elds

and is often used as a comparison benchmark for new models developed (Voy-

ant et al., 2014). The performance of the ARIMA model for solar irradi-

ance forecasting has been evaluated at various short-term intervals (Reikard,

2009b). Additional variables including cloud cover information and humidity

level are also introduced into the autoregressive model family (Bacher, Mad-

sen, and Nielsen, 2009).
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2.3.2 Machine learning models

Machine learning is the study of building algorithms that learn, adapt and

predict based on available data. It involves computational statistics, pattern

recognition and mathematical optimization. Machining learning is widely ap-

plied in the �eld of solar irradiance forecasting. Di�erent machine learning

models are discussed in this section.

2.3.2.1 kNN model

As one of the simplest machine learning models, the k-Nearest-Neighbours

(kNN) algorithm has been widely implemented in pattern recognition, clas-

si�cation as well as forecasting. For solar irradiance time series forecasting,

the kNN model processes the historical time series data and identi�es the best

candidate that is similar to the current situation. Then the forecast value is

determined by the subsequent time stamp of the best candidate. Fundamen-

tally, the kNN model identi�es the past patterns and uses the most resembling

pattern to predict subsequent values.

2.3.2.2 ANN model

Arti�cial neural network (ANN) model is one of the most widely applied ma-

chine learning algorithms in solar irradiance forecasting. Resembling the bio-

logical processing neurons, the ANN model constructs an interconnected net-

work structure of computational nodes to adapt and process a certain problem.

To optimize the adaptive capability of the ANN model, the network architec-

ture, the connection between nodes and network parameters must be carefully

designed. The ANN model has proven to be e�ective in data classi�cation,

non-linear function approximation and system simulation.

Back in the 1990s, researchers started to estimate and forecast solar
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irradiance using environmental and weather parameters. A large number of

ANN models with various architectures and parameters were built and in-

vestigated. Several speci�c areas of research are discussed in the rest of this

section in order to provide a comprehensive understanding of relevant ANN

model applications.

In order to generate hourly solar irradiance, atmospheric transmittance

has been used as the input of an ANN model (Hontoria, Aguilera, and Zu�ria,

2002). The atmospheric transmittance is decomposed into two parts: trend

component and random component. The Multi-layer perceptron (MLP) model

with feed-forward feedback architecture is used on the trend component as

well as the autocorrelation coe�cient and standard deviation of the random

component. Eight years of data from seven stations in Spain are used to verify

the model: seven years of data for training the ANN model and one year of

data for validation. Both the trend and random components are shown to be

reproduced by the model proposed.

Another ANN model using hourly values of the input climatic param-

eters has been proposed to estimate hourly values of global solar irradiance

(M. Santamouris and Asimakopoulos, 1999). Air temperature, sunshine du-

ration, humidity and calculated extraterrestrial radiation are used as input

parameters. This model makes use of a deterministic atmospheric model, and

a backpropagation procedure with a fuzzy logic method. The network archi-

tecture of this model consists of one hidden layer of �fteen log-sigmoid neurons

and a single output layer of one linear neuron. Eleven years of data are used

to train this model and one year of data is used as validation. The results

show that backpropagation ANN model is e�ective in predicting hourly so-

lar irradiance values. Additionally, the authors also conclude that the larger

architecture of this ANN model has a longer converging time without signif-
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icantly improving the forecasting accuracy, based on their experiments using

more hidden layers and hidden nodes architectures. Similar approaches have

also been applied in recent years (Renno, Petito, and Gatto, 2015).

Other ANN models like recurrent neural networks and radial basis neu-

ral networks are also proposed in estimating hourly solar irradiance (Sfetsos

and Coonick, 2000). Raw solar irradiance values, temperature, air pressure,

wind speed and direction are used as input parameters. After comparing sev-

eral ANN models with adaptive neurofuzzy inference scheme, a feed-forward

model with the Levenberg-Marquardt algorithm is found to outperform other

models to be the optimal irradiance forecasting model.

MLP models with Radial Basis Functions (RBF) model are used to

predict solar irradiance from a clearness index (Dorvlo, Jervase, and Al-Lawati,

2002). The clearness index in this model is de�ned as the ratio of the measured

solar irradiance to the maximum solar irradiance measured in a clear day.

In this approach, three MLP models with one, two and three hidden layers

together with one RBF model are implemented to train and validate with ten

years of data from eight meteorological stations. The input parameters are

time, sunshine ratio, altitude, latitude and longitude. The models produce

the clearness index as the output, which is then multiplied by the maximum

solar irradiance to get the estimation of the solar irradiance. The result shows

that the performance of the applied models are similar but the computational

speed is optimized by RBF. The RBF model and its variations have also been

discussed in recent applications (Jiang et al., 2015).

A backpropagation ANN model is adopted to predict solar irradiance as

wells as infra-red and ultra-violet components (Elminir, Areed, and Elsayed,

2005). The input parameters are cloudiness, wind velocity, wind direction,

humidity and ambient temperature. One year of data is used in training and
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the subsequent year of data is used in validation.

The ANN model has been used to predict daily solar irradiance for many

years. A backpropagation ANN model has been applied using various input

weather and environmental parameters including ambient temperature, daily

precipitation, humidity, sunshine duration, clear sky irradiance and others

(Elizondo, Hoogenboom, and McClendon, 1994). Twenty-three years of data

from four meteorological stations are used in this study. Half of the data is

used as training set and the other half is used as testing set. The predicted

daily solar irradiance values from output of the model is compared with the

measured solar irradiance values. The result shows that the performance of

the model is excellent.

A multi-stage ANN model is designed to forecast the next day total

solar irradiance (KEMMOKU et al., 1999). Six years of weather data are used

in this approach. The input parameters include clearness index, temperature,

local maxima and minima of atmospheric pressure, the average atmospheric

pressure, etc. In the �rst stage of the ANN model, the average atmospheric

pressure is predicted from the historical data, since the solar irradiance de-

pends on weather conditions which can be re�ected by the atmospheric pres-

sure. In the second stage, the predicted solar irradiance is classi�ed into one of

three levels, namely high, middle and low, using the result of the �rst stage and

other meteorological data. Each level corresponds to a speci�cally designed

neural network. In the �nal stage, the result from last stage is re�ned to pro-

duce a �nal result. The result of this study shows the multi-stage ANN model

is e�ective in forecasting daily solar irradiance. There are similar applications

in more recent research (Amrouche and Pivert, 2014).

A wavelet architecture ANN model has also been proposed to predict

daily solar irradiance (Mellit, Benghanem, and Kalogirou, 2006). In this ar-
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chitecture, wavelets are used as activation functions in feedforward neural

networks. The bene�t of using wavelets is to improve learning performance by

constructing a double local structure. This technique has been widely applied

in data classi�cation problems. Five di�erent structures are proposed in this

study to predict daily total solar irradiance from various input combinations.

Twenty years of data from a meteorological station have been used to train

and test the di�erent structures of the model. Variations of wavelet neural

network have also been discussed in recent years (Sharma et al., 2016).

2.3.2.3 Time Series Prediction Models

The ANN model can be used to forecast solar irradiance from times series ir-

radiance data (Mihalakakou, Santamouris, and Asimakopoulos, 2000). Twelve

years of time series data are used for the training and testing of this model.

The data with the value of zero at night time are removed from the data sets.

Two versions of the ANN models are proposed in the study. The �rst ver-

sion implements a one-lag scheme to predict one time step in the future. The

prediction is based on actual past measured values only. The second version

implements a multi-lag scheme to forecast several time steps in the future. The

forecast is based on both past measured values and predicted output which is

fed back to the model.

A multilayer feedforward network based on a backpropagation learning

algorithm is used for both versions. The optimized structure contains one

hidden layer with sixteen log-sigmoid neurons and one output layer with one

linear neuron. The result shows that one-lag scheme outperforms the multi-lag

scheme. The authors also conclude that the variability of the solar irradiance

has signi�cant in�uence in time series prediction models.
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2.3.2.4 Genetic algorithms

In order to create an ANN forecasting model, several architecture components

must be chosen carefully. First of all, the overall structure is determined by the

number of layers and the number of neurons per layer. Secondly, the prepro-

cessing scheme needs to be chosen among smoothing, di�erencing and spectral

decomposition. Thirdly, the training and testing data must be distributed

appropriately.

After analysing various ANN forecasting models, it is shown that the

input parameters have huge in�uence in the performance of the models. With

the advance of meteorological monitoring stations and satellite technologies,

there are many parameters available for the ANN model. Considering various

locations and climate conditions, it can be di�cult to decide which variables

have the most direct impact on the irradiance forecasting. Moreover, data

preprocessing may also lead to new variables increasing the overall parameter

space. Conventionally, researchers apply trial-and-error approaches which are

ine�cient and have little chance to obtain the optimal input selection and

ANN structure. To overcome this limitation, genetic algorithms are proposed

to be the optimization methods.

Genetic algorithms make use of genetic operators to implement an ar-

ti�cial survival-of-the-�ttest scheme. Genetic evolution begins with various

individual samples in the solution space. These samples carry genetic fea-

tures which are encoded from certain parameters de�ning the sample identity

in the population. In ANN optimization, crucial parameters like number of

layers, number of neurons and input parameters, are encoded into individual

samples in the solution space. The genetic algorithms will �nd the �ttest so-

lution through selection, crossover and mutation in the evolution of the entire

solution space. With the �tness measure de�ned as the minimization of fore-
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casting error, the �ttest solution presents the ANN parameters with minimal

forecasting error.
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2.3.3 Satellite analysis models

Even though measuring solar irradiance from the ground is the most accurate

method to evaluate solar resource in a certain site, satellite-derived solar irra-

diance is still valuable in those area with a low spatial density of monitoring

stations. It is as e�ective as interpolation from ground stations at a distance

of 25 km (Beyer, Costanzo, and Heinemann, 1996).

Many models have been proposed to estimate solar irradiance at ground

level using satellite image analysis. They are usually classi�ed into two groups:

statistical models and physical models. The statistical models perform statis-

tical regression between satellite information and ground observations. The

physical models requires precise information on the atmospheric conditions.

These atmospheric parameters are used to model solar radiation attenuation

through the atmosphere.

There are two kinds of satellites orbiting around the earth: polar orbit-

ing satellites and geostationary satellites. The polar orbiting satellites have

high spatial resolution since their orbit height is only around 800 km. However

the temporal coverage is limited for this kind. For the geostationary satellites,

they are orbiting at around 36000 km from the ground. They are able to

provide a temporal resolution up to 15 minutes and a spatial resolution up to

1 km. Generally, information from geostationary satellites is used in satellite

analysis models.

2.3.3.1 Fundamentals

Before the solar radiation reaches the surface of the Earth, it travels through

the atmosphere interacting with the atmospheric constituents. The radiation

is partly re�ected to the space, partly absorbed, with the rest reaching the

ground. The ground absorbs part of the radiation and re�ects the rest back
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to space through the atmosphere. The information received by the sensor of a

satellite is the radiation emerging from the atmosphere, which consists of two

parts: solar radiation re�ected by the atmosphere and the radiation re�ected

by the ground.

The following equation is expressed based on the conservation of energy:

Io = Ir + Ea + Et (2.10)

Here Io is the extraterrestrial solar radiation, Ir is the solar radiation

re�ected by the earth-atmosphere system, , Ea is the solar radiation absorbed

at the atmosphere , and Et is the solar radiation absorbed at the earth surface.

The relationship among Et and the surface albedo (ρ) and incident solar

irradiation (IG) can be expressed as:

Et = IG(1 − ρ) (2.11)

Then IG can be derived as:

IG =
1

1 − ρ
[Io − Ir − Ea] (2.12)

This equation (2.12) is the most fundamental equation to derive solar

radiation from satellite images, and is widely used in most of the models.

There are many advantages to make use of satellite images to estimate

and forecast solar irradiance. First of all, satellite images enable solar resource

analysis without ground measurements. Second, a series of satellite images

can be used to forecast the solar irradiance in a speci�c location (a pixel of

an image). Third, satellite images also show solar irradiance information for

a large ground area which is convenient for spatial analysis of solar irradiance

on the ground.
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The satellite images used to estimate solar irradiance come from the

visible channel of a satellite. The image shows the ground and atmospheric

state at a certain time and a speci�c spatial resolution. The varying factor

is mainly contributed by the state of atmosphere and the re�ectance of the

ground. The information on cloudiness at a certain time and location can be

derived from the satellite image. It is convenient to de�ne a parameter, namely

cloud index, describing the cloudiness derived from radiance measurements of

the satellite radiometer. One way to de�ne cloud index is shown in equation

2.13,

n =
ρ − ρg
ρc − ρg

(2.13)

where ρ is the re�ectance viewed by the satellite radiometer, ρc is the

re�ectance of the clouds (cloud albedo) and ρg is the re�ectance of the ground

(ground albedo) (Diagne et al., 2013).

The re�ectance can be derived from the radiance measured by the satel-

lite.

ρ =
πL∆

E∆

(2.14)

where L∆ is the radiance and E∆ is the incident solar irradiance within

the spectral band of the satellite radiometer.

The ground albedo represents the clear sky situation and the cloud

albedo represents the maximum overcast sky condition. According to equation

(2.13), it can be seen that the cloud index tends towards zero under the clear

sky situation and tends towards unity under complete overcast sky situation.

The cloud index may be de�ned di�erently but the importance of this

concept is that solar irradiance can be derived from the cloud cover information



32

captured by the satellite. It is usually assumed that there is a linear relation-

ship between the cloud index and the atmospheric transmission (Diagne et al.,

2013).

2.3.3.2 Geostationary meteorological satellite images

Geostationary satellites rotate around the earth axis at the same speed of the

earth self rotation and at a �xed hight above the Earth. Therefore they appear

stationary from the ground. The satellites can only collect images from the

same part of the earth disc. Since the geostationary satellites are located above

the equator, the spatial resolution decreases when the latitude becomes higher.

Usually above 70 degree south or north, the low spatial resolution limits the

application (Lorenz et al., 2009).

The satellite images are scanned by the radiometers on the geostation-

ary meteorological satellites. There are generally four kinds of resolution stated

in a certain set of satellite images: spatial resolution, time resolution, spectral

resolution and radiometric resolution (Perez et al., 2004).

The spatial resolution represents the geographical size of each pixel in

the satellite image. The resolution depends mainly on the angular section

detected by the sensor. The time resolution is the time interval between two

consecutive images. The spectral resolution depends on the number of spec-

tral bands and the spectral range of the sensor. The radiometric resolution

indicates the sensitivity of the radiometer.

There are three main channels for most of the geostationary satellites: a

visible channel, a thermal infrared channel and a water vapour channel. More

spectral channels are currently adding to the new generations of geostationary

satellites (Rigollier, Lefvre, and Wald, 2004).
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2.3.3.3 Satellite-based models

During the last three decades, several well-known models for deriving solar

irradiance from satellite information have been developed and improved in

di�erent aspects. In the evolution process of these models, pure empirical

models and pure physical models tend to combine with each other to form

more accurate modelling. This also represents the trend of hybridization in

various solar irradiance modelling applications.

Cano was one of the pioneers in satellite-based modelling and proposed

the famous Heliosat model using Meteosat satellite images (Cano et al., 1986).

Many researchers have made modi�cations and improvements based on this

model to develop various versions (Diabat, Moussu, and Wald, 1989; Beyer,

Costanzo, and Heinemann, 1996; Rigollier, Lefvre, and Wald, 2004). The

original Heliosat 1 model was a pure empirical model. After considering phys-

ical atmospheric parameters (Linke turbidity factor1), Heliosat 2 model was

proposed. In the Second Generation Meteosat (MSG), Heliosat 3 model was

proposed incorporating aerosol and other atmospheric absorber parameters.

Heliosat 1 model proposed a linear relationship between the cloud index

(2.13) and the clearness index (kT ) which is de�ned as the hourly global solar

irradiance normalised by the extraterrestrial irradiance,

kT = an + b (2.15)

where a and b are parameters derived from �tting the ground data.

In addition to cloud cover radiation extinction, Heliosat 2 model also

takes atmospheric radiation extinction into consideration. Firstly the irradi-

ance under clear skies is estimated using a clear sky model with Linke turbidity

1The Linke turbidity factor is the full spectrum radiation attenuation unit that is pro-
duced in a cloudless atmosphere containing neither aerosols nor water vapour.
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factor as the only atmospheric parameter (Rigollier, Bauer, and Wald, 2000).

The Linke turbidity factor is de�ned as the number of days with solar ra-

diation extinction under clear and dry atmosphere. Then the estimation of

ground and cloud re�ectance can be derived from,

ρg =
ρ − ρatm
TuTd

(2.16)

ρc =
ρeff − ρatm

TuTd
(2.17)

Td is the downward (sun to ground) transmittance and Tu is the upward

transmittance of the clear atmosphere. ρatm is the intrinsic re�ectance of the

atmosphere which can be derived from the di�use irradiance under clear sky.

ρeff is the e�ective cloud albedo which is de�ned by

ρeff = 0.78 − 0.13[1− exp(−4 sin4 α)] (2.18)

where α the solar elevation angle (Rigollier, Bauer, and Wald, 2000).

The last step is to �nd the relationship between the clear sky index, kc,

de�ned as the global irradiance normalised to the clear sky global irradiance,

and the cloud index by the following set of equations (Rigollier, Bauer, and

Wald, 2000),

n < −0.2 , kc = 1.2 (2.19)

−0.2 ≤ n < 0.8 , kc = 1 − n (2.20)

0.8 ≤ n < 1.1 , kc = 2.0667 − 3.6667n + 1.6667n2 (2.21)

1.1 ≤ n , kc = 0.05 (2.22)

The Heliosat 3 model is further improved based on the enhanced infor-

mation from multiple channels of MSG. Linke turbidity is on longer the only
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atmospheric parameter involved in the calculation scheme. Many other at-

mospheric parameters are available from the MSG to make radiative transfer

modelling possible, which can calculate the solar radiation attenuation through

the atmosphere more accurately.

The Perez model is another variation of the original Cano model (Cano

et al., 1986), which is developed by the Atmospheric Sciences Research Centre

(ASRC) of the University of Albany. It has been mainly applied to the GOES

satellite images.

In Perez model, global hourly irradiance is derived from the cloud index

and the global irradiance of clear sky,

IG = ICSf(n)[0.00011ICSf(n) + 0.9] (2.23)

f(n) = 2.36n5 − 6.2n4 + 6.22n3 − 2.36n2 − 0.58n + 1 (2.24)

where IG is the global hourly irradiance, n is the cloud index and ICS

is the global irradiance of clear sky (Perez et al., 2004).

The global irradiance of clear sky is determined by the Kasten model

with some modi�cations incorporating a improved formulation of the Linke

turbidity coe�cient eliminating the dependence on solar geometry (Perez et

al., 2004).

Another external datum used by the model is the snow cover data pro-

vided by National Operational Hydrologic Remote Sensing Center. The algo-

rithm of the model can be dynamically modi�ed based on snow cover data to

determine the cloud index.

The author also developed new methodologies to retrieve solar irradi-

ance more accurately at complex terrain with high re�ectance surface(Perez

et al., 2004).
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The BRASIL-SR model can generate solar irradiance maps using the

GOES satellite images, surface albedo, ground data on temperature, relative

humidity and visibility, to solve the radiative transfer function (Pereira et al.,

2000; Martins, Pereira, and Abreu, 2007). The global irradiance can be derived

from

IG = I0[nTcloud + (1− n)Tclear] (2.25)

where n is the cloud index, Tclear is the sky transmittance for clear

condition and Tcloud is the sky transmittance for cloudy condition.

The radiative transfer function is used to estimate the boundary condi-

tions for the sky transmittances. The climate data including surface albedo,

temperature, relative humidity, visibility and cloud conditions are the input

to simulate the real atmosphere with absorption and scattering by gases and

aerosols.
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2.3.4 Total sky imager

Total sky imager (TSI) is another popular method to forecast short-term solar

irradiance (Chow et al., 2011). TSI takes sky images sequentially in time. The

cloud information then can be derived from the sky images through image

processing.

There are commercially available TSIs in the market. The Yankee Envi-

ronmental Systems' model TSI-800 is commonly used by some research groups

(Chu, Pedro, and Coimbra, 2013). Many other groups are also developing their

own TSIs to meet di�erent research requirements (Yang et al., 2014).

Analysing the cloud motion sky images is challenging. Di�erent ap-

proaches have been proposed. Cloud motion vector analysis are usually con-

ducted to describe the movement of the clouds on time sequential sky images

(Bernecker et al., 2014). The forecasting of cloud motion can calculated using

motion vector persistence or advection-di�usion analysis (West et al., 2014).

Even though the physical nature of the analysis has good potential, the cur-

rent accuracy for short-term forecasting still improves little from persistence

(Chu et al., 2015).
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2.3.5 Numerical weather prediction

Numerical weather prediction (NWP) is the most commonly used long-term

solar irradiance forecasting method. NWP models have the capability to anal-

yse the initial state of the atmosphere and predict the change of atmosphere

through physical laws which are the fundamentals of the evolution of the at-

mosphere (Lorenz, Kühnert, and Heinemann, 2014).

Many famous NWP models are available for weather forecasting, includ-

ing Weather Research and Forecasting (WRF), Global Forecast System (GFS)

and North American Mesoscale (NAM). These models have di�erent under-

lying physical models, input parameters and spatial resolutions. To forecast

solar irradiance, the choice of NWP model and the post-processing techniques

are very important (Inman, Pedro, and Coimbra, 2013).

Among all the output parameters form NWP models, solar irradiance is

only one of them. NWP is not specially designed to forecast solar irradiance.

Therefore statistical post-processing is even more important for irradiance fore-

casting. Model output statistics (MOS) and Kalman �lters are used widely in

the post-processing (Diagne et al., 2014).
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Chapter 3

Solar irradiance forecasting using

novel statistical analysis

Statistical time series forecasting has been the most popular technique for

short time scales. Statistical time series analyses such random walk (RW), au-

toregressive (AR), moving average (MA), simple exponential smoothing (SES)

and autoregressive integrated moving average (ARIMA) method (Yang, Jiru-

titijaroen, and Walsh, 2012a; Reikard, 2009b), are widely used for modelling

and prediction solar irradiance data.

Recently, the exponential smoothing method has attracted attention.

Table 3.1: 15 Exponential Smoothing Methods

Seasonal

N (None) A (Additive) M (Multiplicative)

N (None) NN NA NM

A (Additive) AN AA AM

Trend Ad (Additive damped) AdN AdA AdM

M (Multiplicative) MN MA MM

Md (Multiplicative damped) MdN MdA MdM
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This method was developed by Robert G. Brown in a tracking model of

military �re-control equipment in the USA Navy (Gass and Harris, 2000).

Brown's simple exponential smoothing models have been extended to expo-

nential smoothing with trends and seasonality. Brown's two books, Statistical

Forecasting for Inventory Control (Brown, 1959), and Smoothing, Forecasting,

and Prediction of Discrete Time Series (Brown, 1963), describe the funda-

mental methodology of exponential smoothing. In the 1950s, Charles C. Holt

independently developed a similar exponential smoothing method with a dif-

ferent approach to smooth seasonal data, but this was not published until 2004

(Holt, 2004). Winters (Winters, 1960) further developed Holt's method and

their work is known as the Holt-Winters forecasting system.

Muth was the �rst to demonstrate that exponential smoothing can fore-

cast an optimal random walk with noise (Muth, 1960). Since then, many

authors have worked to develop exponential smoothing within a statistical

framework. Among them, (Box, Jenkins, and Reinsel, 1970), (Roberts, 1982),

and (Abraham and Ledolter, 1983) pointed out that some linear exponential

smoothing methods are special cases of ARIMA models.

Although substantial research had been done on the exponential smooth-

ing method (Gardner, 1985), the method was considered an ad hoc forecasting

approach since there was no appropriate underlying stochastic formulation un-

til 2002 when (Hyndman et al., 2002) proposed the state space framework for

exponential smoothing.

Exponential smoothing consists of a total of �fteen methods, which are

summarized in Table 3.1 (adapted from (Hyndman et al., 2002)). Some of

these methods were �rst published with di�erent names: cell NN is simple

exponential smoothing (SES) and cell AN is linear exponential smoothing

(LES). This table will be expanded into Table 3.3 and explained into details
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in the next section.

3.1 Solar irradiance time series data

The �rst irradiance time series dataset we have used is from the rooftop sta-

tion of the Solar Energy Research Institute of Singapore (SERIS) located at

(1.30◦N, 103.77◦E). The pyranometer used in this station is a meteorological

class Delta-T SPN1 Sunshine Pyranometer1. Located just 1.0 degrees north

of the equator on an island, Singapore enjoys a tropical climate with a daily

temperature between 25 degrees Celsius and 31 degrees Celsius, and relative

humidity of 70% − 80%. Rainfall occurs almost every day but usually only

for a short period of time. The high temperature and warm ocean leads to

high evaporation, which causes fast cloud formation and dense cloud cover.

Therefore the solar irradiance variability is high in Singapore.

The second set of irradiance time series data is from a rooftop station

in South Park, Colorado, USA located at (39.16◦N, 105.37◦W ) (Measurement

and Instrumentation Data Center (MIDC), NREL, 2012). The pyranome-

ter used in this station is a LI-200 LI-COR Pyranometer which compares

favourably with �rst class thermopile-type pyranometers 2. The climate of

Colorado South Park is semi-arid with low humidity and low precipitation.

The solar irradiance variability is moderate and typical for the temperate

zone. We would like to compare the performance of the forecasting models

in this climate with the tropical climate in Singapore. This comparison will

demonstrate the challenge in tropical climate forecasting.

1http:\delta-t.co.uk
2http:\www.licor.com/pyranometer

http:\delta-t.co.uk
http:\www.licor.com/pyranometer
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3.2 Forecasting methodology

This section details the steps in implementing our prediction model. First,

our Fourier trend model is introduced and compared with other trend models.

Second, the exponential smoothing forecasting equations are elaborated. In

order to generate 95 percent con�dence interval, the state space models of

the exponential smoothing technique are then introduced. Finally, the model

selection method is presented to identify the best model in each step forecast.

3.2.1 Trend model

The foundation of time series analysis is stationarity. A time series {rt} is said

to be strictly stationary if the joint distribution of (rt1 , . . . , rtk) is identical to

that of (rt1+t, . . . , rtk+t) for all t, where k is an arbitrary positive integer and

(rt1 , . . . , rtk) is a collection of k positive integers (Box, Jenkins, and Reinsel,

1970). This simply means the joint distribution of the time series remains

unchanged under time shift. However, this condition is hard to verify empir-

ically: thus a weaker version of stationarity is usually applied. A time series

{rt} is considered weakly stationary if both the mean of rt and the covariance

between rt and rt−l are time invariant, where l is an arbitrary integer. In

real applications, with N observed data points, weak stationarity implies that

the time plot of the data would show that these N values �uctuate with con-

stant variation around a �xed level. Weak stationarity is generally su�cient

to predict future observations (Brown, 1963).

Since our global horizontal irradiance (GHI) data is non-stationary with

a clear daily trend, this daily trend must be removed to obtain stationarity.

The most commonly-used trend models include high order polynomials (Al-

Sadah, Ragab, and Arshad, 1990b), cosine functions (Kaplanis, 2006) and the
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Gaussian function model (Baig, Akhter, and Mufti, 1991). However, we have

found that the performance of these models is not satisfactory and thus we

have developed our own Fourier trend model.

By observing the weekly mean GHI data, we note that the diurnal cy-

cle is not the only cycle existing in the trend. Several other cycles at higher

frequency are also associated with the trend. After carrying out the spectral

analysis of the GHI time series, these higher frequency cycles are clearly iden-

ti�ed. The spectral density of the GHI time series of the year 2010 is shown

in Figure 3.1, using the Singapore station's 5.0 minutes data.

The highest peak in the �gure appears at the frequency of 1.16× 10−5

Hz, which corresponds to the 24-hour daily cycle. Other peaks in the �gure are

also indicated. After obtaining these signi�cant frequency peaks, the Fourier

trend is generated based on these peak frequencies:

rt = µ+
n∑
i=1

[ai cos(2πfit) + bi sin(2πfit)] (3.1)

where t is time, rt is the �tted trend at di�erent time, n is the number

of signi�cant frequencies and ai, bi are the regression coe�cients. By �tting

the sinusoids, we eliminate the signi�cant cyclic behaviours (trend) from the

GHI time series.

In order to test the performance of our Fourier trend model, three other

popular trend models (namely a high order polynomials model, a cosine func-

tion model and a Gaussian function model) are built for comparison.

The high order polynomial model was �rst published by (Al-Sadah,

Ragab, and Arshad, 1990b) and claimed to be a good �t to the daily GHI

trend:

rt = a+ bt+ ct2 (3.2)
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Figure 3.1: Solar irradiance spectral density of Singapore for 2010, using 5

minutes data

where a, b and c are the regression parameters.

The cosine function model was �rst used by (Kaplanis, 2006):

rt = a+ b cos(
2π(t− d)

24
) (3.3)

where a and b are the regression parameters and d is the peak irradiance

hour of the day.

The Gaussian function model (Baig, Akhter, and Mufti, 1991) tries to

�t the trend of GHI series with a Gaussian function:

rt =
1

σ
√

2π
exp−(t−d)2/2σ2

(3.4)

where σ is the standard deviation of the Gaussian curve (the regression

parameter that should be decided by the actual data) and d is the peak irradi-
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ance hour of the day which corresponds to the expected mean of the Gaussian

distribution.

We take a random week's data (the �rst week of December 2010) to

evaluate the performance of these trend models. After subtracting these trends

from the weekly average of the daily GHI, the series of residual of the four

trends are displayed in Figure 3.2. It is clear that unlike the Fourier trend

model, the other three models �t poorly at the beginning and the end of the

day.
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Figure 3.2: Plot of the four series of trend residual

The autocorrelation function (ACF) of the four series of residuals are

shown in Figure 3.3. Autocorrelation is the linear dependence between obser-

vations as a function of time separation between them. Compared with the
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other three series of trend residual series, the series of Fourier trend residual

has the smallest serial correlation, indicating that it is more stationary than

the others.
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Figure 3.3: Autocorrelation function (ACF) of the four series of trend residual

To statistically evaluate the stationarity of these series of residuals,

the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationary test (Kwiatkowski

et al., 1992) is used. The KPSS test is used to test a null hypothesis that

an observable time series is not stationary. In our case, the test is carried

out on the series of residuals under the null hypothesis that the underlying

process is not stationary. If the test result (KPSS value) is larger than the
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Table 3.2: KPSS test for the four trend methods

Detrend Method Critical level Critical value KPSS value

Fourier trend 0.01 0.739 0.1211

Polynomial trend 0.01 0.739 0.6973

Cosine trend 0.01 0.739 1.0772

Gaussian trend 0.01 0.739 1.3425

critical value, the null hypothesis is accepted and the series of residual is not

stationary; otherwise the null hypothesis is rejected and the series of residual is

stationary. The lower the KPSS value, the higher the probability of obtaining

stationarity. In order to compare the results, the critical level is �xed at 0.013

and the corresponding critical value is 0.739.

The KPSS test results are shown in Table 3.2. The KPSS values of the

residual series of cosine trend and Gaussian trend are higher than the critical

value, indicating that the two series are not stationary. The residual series

of Fourier trend and high order polynomial trend are stationary since their

KPSS values are smaller than the critical value. However, the KPSS value of

the residual series of Fourier trend is much smaller than that of high order

polynomial trend, which proves that the residual series of Fourier trend has

much higher probability of obtaining stationarity. Hence we use the Fourier

trend model for our further forecasting.

3.2.2 Forecast equations

There are �fteen sets of forecast equations in this forecast model. The observed

time series is denoted by y1, y2, . . . , yn. The forecast for h steps ahead based

on all the training data up to time t is denoted by ŷt+h.

3The numerical value of critical level is set to calculate the corresponding critical value,
which is the threshold to reject null hypothesis in the KPSS test.
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Level: lt = αAt + (1− α)Bt (3.5)

Growth: gt = βCt + (1− β)Dt (3.6)

Seasonal: st = γEt + (1− γ)st−m (3.7)

Forecast: ŷt+h = f(lt, gt, st−m+hm) (3.8)

where lt is the level component at time t, gt is the growth component at

time t, st is the seasonal component at time t and hm = [(h− 1) mod m] + 1

where m denotes the number of seasons in the data. In order to apply this

method, the initial states l0, g0 and s1−m, . . . , s0, and the smoothing param-

eters α, β and γ, will be estimated from the training data. The values of

At, Bt, Ct, Dt and Et vary according to the cell which the method belongs

to. Table 3.3 shows the values of At, Bt, Ct, Dt, Et and the forecast equation

(adapted from (Hyndman et al., 2002)).

It should be noted that there is an additive damped trend and a mul-

tiplicative damped trend in the table. The damped trend acts to dampen the

trend with increasing length of the forecast horizon. The damped trend is ap-

plied because it is unrealistic to invariantly use the �nal estimate of the growth

rate at the end of the training data to forecast di�erent horizon. To forecast

h periods ahead, the trend is damped by a factor of φh = φ+ φ2 + · · ·+ φh.

3.2.3 State space model

The state space model is a more sophisticated stochastic concept than the

exponential smoothing method. The exponential smoothing method can only

produce a point forecast but the state space model provides the framework

for computing prediction interval and other properties. Every exponential

smoothing method corresponds to two possible state space models, one with
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ŷ
t+
h

=
l t
h
g
h t

ŷ
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additive errors and the other with multiplicative errors. Additive errors and

multiplicative errors provide di�erent prediction intervals with the same pa-

rameter values. Since there are 15 exponential smoothing methods, 30 state

space models are deduced accordingly. The state space model for exponential

smoothing here is expanded from the general OKS framework (Ord, Koehler,

and Snyder, 1997):

yt = h(xt−1) + k(xt−1)εt (3.9)

xt = f(xt−1) + g(xt−1)εt (3.10)

where the �rst equation is called observation equation and the second is

called state equation. xt is the state vector which in this case de�ned as xt =

(lt, gt, st, st−1, . . . , st−(m−1)). We also de�ne et = k(xt−1)εt and µt = h(xt−1) so

that yt = µt + et. The additive error form can be expressed as yt = µt + εt

where µt = y(t−1)+1 stands for the one-step point forecast at time t − 1 and

k(xt−1) = 1. The multiplicative error form can be expressed as yt = µt(1 + εt)

where k(xt−1) = µt. All of the 15 exponential smoothing methods can be

written in the state space model forms which is illustrated in Table 3.4.

3.2.4 Model selection criterion

Akaike's Information Criterion (AIC) is used to select the model to be used to

perform the point forecasting. The AIC is speci�ed by the following equations:

AIC = L(θ̂, X̂0) + 2P (3.11)

L(θ,X0) = nlog(
n∑
t=1

e2
t/k

2(xt−1))

+2
n∑
t=1

log|k(xt−1)| (3.12)
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where L is the maximum likelihood function, P is the number of pa-

rameters in θ, θ̂ and X̂0 are the estimated of θ and X0 where θ = (α, β, γ, φ)

and initial states X0 = (l0, g0, s0, s−1, . . . , s−m+1). The reason why the AIC is

used instead of mean squared error (MSE) or mean average percentage error

(MAPE) is that AIC can select between additive error and multiplicative error

models. Since the two kinds of error models produce the same point forecast,

MSE or MAPE cannot di�erentiate between them. However AIC is based on

likelihood which meets our requirement. The model which minimizes the AIC

will be chosen from among all the 30 models.

3.3 Experiments, results and discussion

The �rst set of experiments is based on the solar irradiance time series data

from Singapore and the comparison set of experiments is based on the solar

irradiance time series data from Colorado. Since it is meaningless to forecast

solar irradiance after sunset, we only investigate samples from 07:00 to 19:30.

The error type used is the normalized root mean square error (nRMSE) which

is described by the following equation.

nRMSE =

√
E[(X − X̂)2]√

E[X2]
(3.13)

where E is the expected value.

All the predicted values are true out-of-sample forecasts, in that they use

only data prior to the start of the forecast horizon. The models are estimated

over the data prior to the start of the forecast, the points of the next time step

is forecast, and the forecast values are compared with the actual ones. The

procedure is iterative until forecasts have been run over the daily data set.

The SERIS data consists of twelve months from September 2010 to August
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2011. Data from September 2010 is used to generate an average daily residual

to �t in as the initialization of our prediction model, in order to forecast the

time series of the next month, i.e. October 2010. In the forecasting test after

October 2012, the data from the previous month is used to form average daily

residual initially �tting in the prediction model.

3.3.1 Forecasting accuracy

To test the accuracy of our exponential smoothing state space (ESSS) model,

5.0 minute average solar irradiance data is used. There are 150 samples from

07:00 to 19:30 for each day. Every 5.0 minute step is predicted and compared

with the actual irradiance data to calculate the nRMSE. The test is repeated

over the whole month and then the average nRMSE of that month is calcu-

lated. For comparison purposes, four other well-established forecasting meth-

ods, namely Autoregressive integrated moving average (ARIMA) model, lin-

ear exponential smoothing model (LES), simple exponential smoothing (SES)

model and random walk (RW), are also tested in the same way. The benchmark

RW model is persistence with white noise. Even though the performances of

RW and persistence are similar, using RW model instead of persistence is to

address the randomness in high variability solar irradiance. All the test results

are listed in Table 3.5 and Table 3.6.

The ARIMA is implemented using forecast package in R. The speci�c

ARIMA model is chosen automatically. The parameters used are: max.p=5,

max.q=5, max.d=2, max.P=2, max.Q=2, max.order=5, ic=AIC, test=KPSS.

The LES model parameters are: α = 0.5, β = 0.5. The SES model α = 0.5.

Table 3.5 shows that the ESSS model has generally better prediction

accuracy than other time series models in Singapore. Although the SES model

performs better in January and March 2011, the ESSS model is behind by less
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Table 3.5: nRMSE (%) comparison among 5 forecasting methods for SERIS

data

Forecast Period ESSS ARIMA LES SES RW

2010 October 17.40 20.95 20.47 20.98 23.52

2010 November 21.59 24.00 23.31 23.69 26.07

2010 December 27.77 29.77 28.72 29.26 32.20

2011 January 33.71 33.62 33.89 33.49 37.55

2011 February 29.15 30.37 30.44 31.00 35.23

2011 March 33.03 33.60 34.43 32.84 34.85

2011 April 29.84 31.36 30.55 30.14 35.95

2011 May 18.55 22.78 22.48 22.37 25.59

2011 June 19.64 23.44 22.73 22.42 26.00

2011 July 20.80 23.46 23.05 22.56 27.22

2011 August 21.31 24.90 24.32 24.27 28.33

than 0.5%. By comparing with the benchmark RW model, we infer that the

solar irradiance variability is high from December 2010 to April 2011, since

the RW nRMSEs are all above 30%. The performance of the ESSS model

may decrease in these months. In other months, however, the ESSS model

outperforms other forecasting models.

Table 3.6 shows that the ESSS model performs well compared with

other time series models in Colorado, US. The solar irradiance variability in

this area is generally smaller than that in Singapore due to the di�erence in

latitude. The peak variability occurs in summer months like July and August

2011, when the ESSS model accuracy is slightly less accurate than the other

models.

In general, the ESSS model has better forecasting accuracy over other

time series forecasting models in both Singapore and Colorado, US. The perfor-

mance of di�erent models can be in�uenced by the solar irradiance variability
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Table 3.6: nRMSE (%) comparison among 5 forecasting methods for Colorado

data

Forecast Period ESSS ARIMA LES SES RW

2010 October 16.86 18.86 18.97 19.98 20.22

2010 November 12.76 13.80 13.85 13.47 15.49

2010 December 15.37 17.96 17.64 17.00 19.14

2011 January 11.51 13.58 13.67 13.17 14.11

2011 February 9.75 11.04 10.78 10.46 11.38

2011 March 15.17 17.24 17.50 16.08 17.08

2011 April 15.12 17.21 17.10 16.98 17.86

2011 May 18.10 19.22 19.16 19.02 20.22

2011 June 19.86 20.90 20.91 20.72 21.91

2011 July 29.04 28.93 29.14 29.02 29.19

2011 August 24.25 24.40 24.24 24.06 24.00

in the region.

The performances of the short-term forecasting models are also com-

pared using 5-minute solar irradiance data in Singapore for the whole year of

2015. The nRMSE comparison is shown in Figure 3.4. The nMBE comparison

is shown in Figure 3.5. Among all the statistical models available for short-

term forecasting, ESSS model has the lowest error in most of the months. It is

also obvious that ESSS is not consistently biased to either positive or negative

values.

3.3.2 Forecasting interval

The state space model of exponential smoothing provides the framework for

computing prediction intervals. Since the prediction con�dence interval is

useful for power station managers and grid operators, the accuracy of the

forecasting con�dence interval is tested. The forecasting con�dence interval
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Figure 3.4: nRMSE (%) comparison of 5 forecasting methods for 5-minute

Singapore data in 2015

is an estimate of an interval in which the future forecasting values will fall

with a certain probability. In this test, accuracy is calculated by the ratio

of forecasting points fall within the con�dence interval, to the total number

of forecasting points. The result is shown in Table 3.7. The theoretical 95%

con�dence interval usually gives us forecasting accuracy around 90%, which is

an acceptable forecasting range for industrial application.

Figure 3.6 and Figure 3.7 illustrate the forecasting interval examples

for a day with relatively smooth irradiance and a relatively spiky day. It is

seen that large variations of the solar irradiance would expand the con�dence

interval which is expected.
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Figure 3.5: nMBE (%) comparison of 5 forecasting methods for 5-minute

Singapore data in 2015

3.3.3 Forecasting horizon

In the previous sections, 5.0 minute average solar irradiance data is used to

test the performance of di�erent time series forecasting models. In real ap-

plications, di�erent time series forecast horizons must be tested in order to

meet various forecasting requirements from the power grid managers. It is

also useful to determine the best measurement dataset to be used at a cer-

tain forecast horizon. We have made use of the SERIS data ranging from 5.0

minute averages to 60 minute averages, to forecast from 5.0 minutes up to 60

minutes. The nRMSE maps of four di�erent time series models are shown in

Figure 3.8. The nRMSE value is displayed using colours. Clearly, the ESSS

model exhibits the best performance when using less than 20 minute average

data to predict less than 20 minutes ahead.
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Table 3.7: ESSS 95% con�dence interval accuracy(%)

Forecast Period Singapore Colorado

2010 October 92.67 91.45

2010 November 93.33 94.67

2010 December 94.00 86.67

2011 January 91.67 89.00

2011 February 87.33 88.00

2011 March 86.67 91.87

2011 April 91.67 89.80

2011 May 89.02 96.00

2011 June 89.72 87.25

2011 July 91.02 87.33

2011 August 92.25 91.33
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Chapter 4

Solar irradiance forecasting using

novel hybrid statistical analysis

and machine learning

Cloud cover is the most attenuating factor of solar irradiance. Solar irradiance

forecasting would be improved by predicting the cloud cover. Some researchers

study the cloud cover by observing the portion of the cloud covering the sky

and classifying them into cloud cover index (Robaa, 2008; Yang, Jirutitijaroen,

and Walsh, 2012a). Cloud cover has also been studied using satellite images.

Researchers have developed methods to estimate solar irradiance from satellite

images (Yang et al., 2013).

4.1 Data

The satellite images we have used are from the geostationary weather satel-

lites of Japan Meteorological Agency (JMA). The current satellite in opera-

tion is called Multifunctional Transport Satellites (MTSAT) 2, also known as
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Himawari-7, which operates at 35,800 km above the equator at 145 degrees

East longitude, from 2010 to 2015. This satellite carries an imaging telescope

of �ve channels: one visible (550− 880 nm), 2 IR (10, 300− 12, 500 nm), one

IR/WV (6, 500− 7, 000 nm) and one NIR (3, 500− 4, 000 nm).

The solar irradiance time series dataset we have used is from the mete-

orological station of the Solar Energy Research Institute of Singapore (SERIS)

located at (1.30◦N , 103.77◦E) and the elevation is about 50 meters above sea

level. The pyranometer used in this station is a meteorological class Delta-T

SPN1 Sunshine Pyranometer1. Located just 1.0 degrees north of the equator,

Singapore enjoys a tropical climate with an average daily temperature between

25 degrees Celsius and 31 degrees Celsius, and relative humidity of 70%−80%.

Rainfall occurs almost every day but usually only for a short period of time.

The high temperature and high humidity levels lead to high evaporation which

causes frequent cloud formation and dense cloud cover. Therefore the solar

irradiance variability is high in Singapore.

4.2 Forecasting methodology

This section details the steps in implementing our prediction model. First,

satellite images are analysed and cloud cover index is derived using self-

organising map. Second, the exponential state space model is introduced.

Finally, the back propagation multilayer perceptron model is discussed.

4.2.1 Satellite image analysis

Before detecting cloudy pixels from satellite images, the grey levels of the

raster image are converted into re�ectance and temperature using MTSAT

1http:\delta-t.co.uk

http:\delta-t.co.uk
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calibration algorithm provided by the Meteorological Satellite Centre (MSC)

of JMA (Meteorological Satellite Center (MSC), Japan Meteorological Agency

(JMA), 2013). After the pixel values are converted to physical value, multi-

ple threshold tests are applied to the images. Re�ectance and temperature

pixel values as well as the algebraic combination of them can be compared

with di�erent thresholds to identify the cloud cover index. A land-sea-coast

raster image mask is also generated to modify the thresholds according to the

underlying surface.

Two main threshold tests are used in this analysis, namely the visible

re�ectance threshold test and infra-red temperature threshold test. For the

visible re�ectance threshold test, one year of image data has been used to gen-

erate monthly synthetic raster image of surface albedo. Every pixel re�ectance

from the whole image has been recorded and the most repeated value should be

the surface albedo, assuming the clouds have wide spectrum of re�ectance val-

ues and the surface albedo has a rather constant re�ectance. Finally the values

within the reasonable albedo interval, which de�nes as [0.1,0.4] for land and

[0.0,0.3] for sea, are taken as the surface albedo. For the infra-red temperature

threshold test, the monthly synthetic raster images of surface temperature are

generated using two temperature sources, namely the monthly mean minimum

sea surface temperature and monthly mean minimum land temperature from

National Environment Agency of Singapore. Linear interpolation and nearest

neighbour extrapolation has been implemented to �ll the pixel without val-

ues. The infra-red channel temperature values are then compared with the

monthly mean minimum surface temperature for each pixel. If temperature is

lower than the minimum values minus an o�set, pixel is marked as cloudy.

The derivation of cloud cover index is based on the quantitative de-

termination of pixel opaqueness, which indicates the level of solar irradiance
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obstruction. In the visible channel satellite image, opaque clouds re�ect more

solar irradiance than thin clouds. Thus the re�ectance of opaque clouds have

high values. However, the exact degree of opaqueness is hard to determine.

Therefore we make use of a neural network pattern classi�cation technique,

namely the self-organising maps (SOM), to automatically classify the cloud

coverage over Singapore into 20 levels (0− 19) of cloud cover index.

4.2.1.1 Self-organising maps

Neural network learning is a process by which the free parameters of a neural

network are adapted through a process of stimulation by the environment in

which the network is embedded. The type of learning is determined by the

manner in which the parameter changes take place. There are three steps in the

process of learning. First the neural network is stimulated by an environment.

Second the neural network undergoes changes in its free parameters as a result

of this stimulation. Finally the neural network responds in a new way to the

environment because of the changes that have occurred in its internal structure.

SOM is one of the most e�ective neural network learning techniques.

The self-organising process of SOM is derived from human brain cortex's local

ordering of feature-sensitive cortical cells. The principle of topographic map

formation behind SOM is that the spatial location of an output neuron in a

topographic map corresponds to a particular domain or feature of data drawn

from the input space. To achieve this topology-conserving mapping, SOM is

constructed using two layers: input layer and output (map) layer. The two

layers are fully connected. A topology is thus de�ned on the output layer.

The principle goal of the SOM is to transform an incoming signal pattern

of arbitrary dimension into a two dimensional discrete feature map, and to

perform this transformation adaptively in a topologically ordered fashion.
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To implement the SOM, the weights connecting all the input neurons

and the output neurons are randomly initialised. The input vector is then

selected from the training set. The next step is the competitive process, which

a continuous input space of activation patterns is mapped onto a discrete

output space of neurons by a process of competition among the neurons in

the network. The best-matching neuron is the one whose weight vector has

smallest Euclidean distance from the input vector.

O(x) = arg min
j
||x− wj|| (4.1)

where O(x) is the best-matching neuron to input vector x and wj is a weight

vector for any output neuron j associated with input vector x. After the best-

matching neuron is determined, it is located at the centre of a topological

neighbourhood of cooperating neurons. From neurobiology, a �ring neuron

tends to excite the neuron in its immediate neighbourhood more than those

farther away from it. This topological neighbourhood is symmetric about the

maximum point and the amplitude of the topological neighbourhood decreases

monotonically with increasing lateral distance. The topological function used

in this model is shown below.

Ej,O(x)(t) = exp(−
d2
j,O

2σ(t)2
) t = 0, 1, 2, ... (4.2)

σ(t) = σ0 exp(− t

τ1

) (4.3)

where Ej,O(x)(t) is a measure of the e�ectiveness of the O(x) on its neighbours

and d2
j,O is the Euclidean distance from the neuron j to the O(x) at time t.

σ(t) is the time-varying e�ective width of the topological neighbourhood. σ0

is the initial e�ective width and τ1 is the time constant. The �nal step is the



67

adaptive process. The adaptation function is de�ned in the following equation.

wj(t+ 1) = wj(t) + η(t)Ej,O(x)(t)(x− wj(t)) t = 0, 1, 2, ... (4.4)

η(t) = η0 exp(− t

τ2

) (4.5)

where η(t) is the learning-rate parameter decreasing with time. τ2 is another

time constant to control the decay rate of the learning rate. Upon repeated

presentations of the training data, the synaptic weight vector tend to follow

the distribution of the input vectors due to the neighbourhood updating. The

algorithm leads to a topological ordering of the feature map in the sense that

neurons that are adjacent in the lattice will tend to have similar synaptic

weight vectors. By using SOM, cloud cover index is e�ectively classi�ed into

20 levels.

4.2.2 Hybrid forecasting model

After analysing the satellite images, the derived cloud cover index is predicted

using the ESSS model and the solar irradiance is estimated based on the

predicted cloud cover index using back propagation multi-layer perceptron.

The overall structure of the hybrid model is shown in Figure 4.1.

4.2.2.1 Back propagation multi-layer perceptron

The multi-layer perceptron used in this model consists of an input layer, a hid-

den layer of computational nodes and an output of computational nodes. For

each neuron in the hidden layer, hyperbolic tangent sigmoid transfer function

is used as activation function.

ϕ(x) = tanh(x) =
ex − e−x

ex + e−x
(4.6)

where ϕ(x) is the transfer function. For the output neuron, linear transfer

function is used as activation function.
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Back propagation algorithm is used as the training algorithm. There

are two passes of computation for the back propagation algorithm, namely

forward pass and backward pass. The forward pass is the computation of

transfer function signals for each neuron. For the backward pass, the process

starts at the output layer, recursively compute the error function for each

neuron from output layer towards the �rst hidden layer. At each layer, the

synaptic weights are changed accordingly to the weight updating rule. The
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weight updating rule is shown in the following equations:

w
(s)
ji (n+ 1) = w

(s)
ji (n) + ηδ

(s)
j (n)x

(s−1)
out,i (n) (4.7)

δ
(s)
j (n) = (d(n)− x(s)

out,j(n))ϕ(s)′(v
(s)
j (n)) (output layer) (4.8)

or

δ
(s)
j (n) = (

ns+1∑
k=1

δ
(s+1)
k (n)w

(s+1)
kj (n))ϕ(s)′(v

(s)
j (n)) (hidden layer)(4.9)

where s is the layer number, i is the neuron number for the current layer, j

is the neuron number for the previous layer, η is the learning rate, δ(n) is the

error function, v(n) is the input of transfer function, xout(n) is the output of

transfer function and d(n) is the desired output value. For the training mode,

batch training with Levenberg-Marquardt algorithm (LMA) is used in the

model. LMA is one of the stabilized Newton and Gauss-Newton algorithms,

which interpolates between the Gauss-Newton algorithm and the method of

gradient descent. The LMA is a robust second order method for non-linear

optimization, which is capable of �nding a solution with starting point far o�

the minimum value.

To minimize the neural network structure, singular value decomposition

(SVD) is used to estimate the number of hidden neurons. Singular value

decomposition is commonly found in statistical signal processing approaches

and subspace modelling. For an N × n matrix H, matrix factorization is

performed.

HN×n = UN×NΣN×nV
T
n×n (4.10)

Σ =


σ1 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σk

 (4.11)

where U and V are orthogonal matrices and σ1 ≥ σ2 ≥ · · · ≥ σk > 0 are
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the singular values of the matrix H. The SVD can be used to determine the

e�ective rank of the matrix H.

Rank(Hm×n) = k (4.12)

For the training set, there are N training samples and each sample is

an M-dimensional vector. Then the outputs of the hidden neurons for each

training sample input vector x(k) can be calculated.

hki = fi(
M∑
j=1

wijxj(k) + bi) ∈ H (4.13)

where bi is the bias. Then the matrix HN×n consists of N training samples and

n hidden neurons, which describes the outputs of the hidden neurons for all

the training samples. If the MLP is too large, there must be some redundant

information in the matrix H, which indicates that some columns are almost

linearly independent. To reduce these redundant hidden neurons, a pruning

criterion is selected to obtain the e�ective rank of the H

mink(

∑k
i=1 σi∑n
i=1 σi

) ≥ 99% (4.14)

where k is the new number of hidden neurons. This is procedure is repeated

until k is converged.

The multi-layer neural network is trained using previous one-year data

including solar irradiance and ESSS forecasted cloud cover index. Once the

model is trained, the neural network structure is kept the same to make all

the hourly forecasts in the test year.

4.3 Application of the proposed model

The �rst application is based on the satellite images and solar irradiance time

series data from Singapore. Since it is meaningless to forecast solar irradiance

after sunset, we only investigate samples from 07:00 to 19:00.
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4.3.1 Evaluation of errors

To evaluate the quality of the proposed model, three di�erent types of er-

ror measurement are used, namely the normalized root mean square error

(nRMSE), coe�cient of determination (R2) and the normalized mean bias

error (nMBE)(Marquez and Coimbra, 2011). The three error types are calcu-

lated using the following equations:

nRMSE =

√
E[(X̂ −X)2]√

E[X2]
(4.15)

R2 = 1− E[(X̂ −X)2]

E[(X −
√
E[X2])2]

(4.16)

nMBE =
E[X̂ −X]√

E[X2]
(4.17)

where X̂ is the prediction from the forecasting model and X is the measured

value of GHI in the training or test set. All the predicted values are true

out-of-sample forecasts, in that they use only data prior to the start of the

forecast horizon. The models are estimated over the data prior to the start of

the forecast, the points of the next time step is forecast, and the forecast values

are compared with the actual ones. The procedure is iterative until forecasts

have been run over the daily data set. The satellite data and the SERIS data

consists of twelve months from September 2010 to July 2011. For the satellite

data, all the months except the month to be predicted are used as training set

to derive the cloud cover index. Data from September 2010 is used to generate

an average daily residual to �t in the initialization of our prediction model, in

order to forecast the time series of the next month, i.e. October 2010. In the

forecasting test after October 2010, the data from the previous month is used

to form average daily residual initially �tting in the prediction model.
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Table 4.1: nRMSE (%) comparison among 5 forecasting methods for SERIS

data

Forecast Period Hybrid ARIMA LES SES RW

2010 October 28.19 40.36 43.85 37.06 41.52

2010 November 36.09 43.66 48.00 42.28 50.00

2010 December 29.16 35.81 38.03 34.45 42.84

2011 January 43.69 50.62 51.35 49.72 58.28

2011 February 20.65 28.98 31.34 26.57 36.90

2011 March 32.78 43.60 44.10 36.38 40.56

2011 April 29.65 41.44 42.32 35.50 44.22

2011 May 33.12 42.29 44.87 39.29 48.22

2011 June 36.41 43.75 44.87 42.36 51.21

2011 July 28.57 28.15 31.52 25.56 35.20

4.3.2 Forecasting accuracy

To test the accuracy of our hybrid forecasting model, one hour average solar

irradiance data is used. Every one hour step is predicted and compared with

the actual irradiance data to calculate the errors. The test is repeated over

the whole month and then the average errors of that month is calculated. For

comparison purposes, four other well-established forecasting methods, namely

Autoregressive integrated moving average (ARIMA) model, linear exponential

smoothing model (LES), simple exponential smoothing (SES) model and ran-

dom walk (RW), are also tested in the same way. All the test results are listed

in Table 4.1 to Table 4.3.

Table 4.1 shows the normalized root mean square error comparison of

the hourly solar irradiance forecasting accuracy of all the models. The best

forecasting accuracy is shown in bold. It is clear that the hybrid model has bet-

ter prediction accuracy than the other time series models in Singapore based
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Table 4.2: R2 comparison among 5 forecasting methods for SERIS data

Forecast Period Hybrid ARIMA LES SES RW

2010 October 0.845 0.684 0.613 0.772 0.754

2010 November 0.764 0.596 0.492 0.607 0.467

2010 December 0.811 0.810 0.802 0.798 0.783

2011 January 0.616 0.432 0.479 0.485 0.349

2011 February 0.908 0.820 0.835 0.816 0.809

2011 March 0.834 0.681 0.627 0.815 0.776

2011 April 0.863 0.732 0.758 0.787 0.660

2011 May 0.825 0.595 0.576 0.632 0.503

2011 June 0.792 0.699 0.710 0.694 0.447

2011 July 0.874 0.857 0.801 0.894 0.775

Table 4.3: nMBE (%) comparison among 5 forecasting methods for SERIS

data

Forecast Period Hybrid ARIMA LES SES RW

2010 October -1.81 -2.13 -0.96 -1.86 0.17

2010 November -1.75 -2.48 -3.40 -2.84 -0.09

2010 December -2.31 -1.21 -0.96 -1.61 0.14

2011 January 1.45 -3.59 -1.00 -0.23 0.39

2011 February -0.68 -0.97 -5.17 -0.01 0.39

2011 March 1.38 -1.44 -2.67 -3.09 -1.22

2011 April 0.97 -2.71 -0.86 -0.32 -0.34

2011 May -0.21 -0.81 -0.79 -1.43 -0.13

2011 June -0.54 -1.47 -0.67 -0.31 -0.16

2011 July -0.25 -0.85 -0.96 -0.18 -0.42
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on nRMSE. From October 2010 to June 2011, the hybrid model consistently

outperforms all other comparison models. In October 2010, the proposed

model improves at least 9% from other models. On average the forecasting

accuracy of the proposed model is 6% better than the best prediction accuracy

of all other statistical time series models. It is important to note that from

November 2010 to January 2011, Singapore faces north-east monsoon. The

rainfall is very often in these months and intermittent rainfall leads to high

variability in the cloud formation. The fast winds during the season cause the

fast pace in cloud movements. All these factors will lead to high variability in

short-term solar irradiance. In these months, it is very di�cult to achieve a

satisfying forecasting accuracy.

Only in July 2011, the SES model and ARIMA model perform better

than the proposed model. The main reason for the worse performance in July

2011 is that there were quite a few missing satellite images in this month. Even

though linear interpolation is implemented to deal with the missing data, the

accuracy to derive the cloud cover index is still a�ected. With inaccurate cloud

cover index, the prediction accuracy is decreased as expected.

Table 4.2 shows the R2 comparison of the hourly solar irradiance fore-

casting accuracy of all the models. By comparing Table 4.1 and Table 4.2 we

can observe that the results of coe�cient of determination matches the result

of normalized root mean squared error, which substantiate our analysis.

Table 4.3 shows the normalized mean bias error comparison of the

hourly solar irradiance forecasting accuracy of all the models. The bias er-

rors for all the models are generally less than 3% with a few exceptions. The

small bias errors indicate that there is no particular bias in all the forecasting

models. It is expected that the benchmark RW model has the smallest bias

error for most of the times since it is based on persistence.
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4.3.3 Computational complexity

The hybrid model is implemented based on Theano library in Python. Theano

is designed to de�ne, optimize, and evaluate mathematical expressions involv-

ing multi-dimensional arrays e�ciently. The parallel computational structure

of Theano allows us to have fast training time even with a quad-core 3.5GHz

personal computer. For one year hourly training data, the hybrid model train-

ing can be �nished within 15 minutes. The major part of the training time

(about 10 minutes) is consumed in the satellite image processing (SOM) part.

The forecasting stage (ESSS+MLP) can be �nished within 5 minutes.
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Chapter 5

Solar irradiance forecasting using

novel machine learning

For the statistical time series methods, there are two major issues in the mod-

elling process, namely noise and stationarity. In the context of time series

modelling, noise is characterized by the absence of complete characteristic in-

formation from the historical data of the time series to appropriately identify

the correlation between historical data and predicted data (Box, Jenkins, and

Reinsel, 1970). Problems like over-�tting or under-�tting are the possible con-

sequences of noise existing in the time series. As a result, the performance of

the trained model is poor when applied to test data. A time series {rt} is said

to be strictly stationary if the joint distribution of (rt1 , . . . , rtk) is identical to

that of (rt1+t, . . . , rtk+t) for all t, where k is an arbitrary positive integer and

(rt1 , . . . , rtk) is a collection of k positive integers (Box, Jenkins, and Reinsel,

1970). This simply means the joint distribution of the time series remains

unchanged under time shift. However, this condition is hard to verify empir-

ically: thus a weaker version of stationarity is usually applied. A time series

{rt} is considered weakly stationary if both the mean of rt and the covariance
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between rt and rt−l are time invariant, where l is an arbitrary integer. In real

applications, with N observed data points, weak stationarity implies that the

time plot of the data would show that these N values �uctuate with constant

variation around a �xed level. Weak stationarity is generally su�cient to pre-

dict future observations (Brown, 1963). However, even weak stationarity is

di�cult to obtain in solar irradiance forecasting since the trend in the daily

solar irradiance is hard to capture when there is large variability. The non-

stationarity characteristic in the solar irradiance implies the dynamics between

di�erent time series regions varies, which changes the correlation between past

and future. This dynamic changing process is hard for a single time series

model to capture. Moreover, the noise level varies in di�erent time series in-

put regions. A single time series model could encounter local under-�tting or

over-�tting problems extracting features from regions with various noise levels.

In order to resolve these complex problems, we propose a hybrid ap-

proach based on self-organizing map (SOM), support vector regression (SVR)

and particle swarm optimization (PSO). SOM is applied to partition the whole

input space into several disjointed regions with di�erent characteristic infor-

mation on the correlation between the input and the output. Then SVR is

used to model each disjointed regions to identify the characteristic correlation.

In order to reduce the performance volatility of SVM with di�erent parame-

ters, PSO is implemented to automatically perform the parameter selection in

SVR modelling. Figure 5.1 shows the overall structure of the hybrid model.

5.1 Data

The �rst set of solar irradiance time series data is from a rooftop station in

South Park, Colorado, USA located at (9.16◦N , 105.37◦W ) and the eleva-

tion is about 3000 meters above sea level (Measurement and Instrumentation
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Figure 5.1: The overall structure of the hybrid model

Data Center (MIDC), NREL, 2012). The pyranometer used in this station

is a LI-200 LI-COR Pyranometer which compares favorably with �rst class

thermopile-type pyranometers1. The climate of South Park is semi-arid with

low humidity and low precipitation. The solar irradiance variability is moder-

ate and typical for the temperate zone.

The second set of solar irradiance time series data we have used is from

the meteorological station of the Solar Energy Research Institute of Singapore

(SERIS) located at (1.30◦N , 103.77◦E) and the elevation is approximately 50

meters above sea level. The pyranometer used in this station is a meteoro-

logical class Delta-T SPN1 Sunshine Pyranometer2. Located just 1.0 degrees

north of the equator, Singapore enjoys a tropical climate with an average daily

temperature between 25 degrees Celsius and 31 degrees Celsius, and relative

1http://www.licor.com/pyranometer
2http://delta-t.co.uk

http://www.licor.com/pyranometer
http://delta-t.co.uk
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humidity of 70%− 80%. Rainfall occurs almost every day but usually only for

a short period of time. The high temperature and high humidity levels lead

to high evaporation which causes frequent cloud formation and dense cloud

cover. Therefore the solar irradiance variability is high in Singapore.

5.2 Forecasting methodology

This section details the steps in implementing our prediction model. First,

self-organizing map is applied to partition the whole input space into several

disjointed regions with di�erent characteristic information on the correlation

between the input and the output. Second, support vector regression is used to

model each disjointed regions to identify the characteristic correlation. Finally,

the implementation of particle swarm optimization in SVR parameter selection

is discussed.

5.2.1 Self-organising maps (SOM)

Neural network learning is a process by which the free parameters of a neural

network are adapted through a process of stimulation by the environment in

which the network is embedded. The type of learning is determined by the

manner in which the parameter changes take place. There are three steps in the

process of learning. First the neural network is stimulated by an environment.

Second the neural network undergoes changes in its free parameters as a result

of this stimulation. Finally the neural network responds in a new way to the

environment because of the changes that have occurred in its internal structure.

SOM is one of the most e�ective neural network learning techniques

(Kohonen, 2013). The self-organising process of SOM is deliberately analogous

to the form human brain cortex's local ordering of feature-sensitive cortical
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cells. The principle of topographic map formation behind SOM is that the

spatial location of an output neuron in a topographic map corresponds to a

particular domain or feature of data drawn from the input space. To achieve

this topology-conserving mapping, SOM is constructed using two layers: an

input layer and an output (map) layer. The two layers are fully connected.

A topology is thus de�ned on the output layer. The principle goal of the

SOM is to transform an incoming signal pattern of arbitrary dimension into

a two dimensional discrete feature map, and to perform this transformation

adaptively in a topologically ordered fashion.

To implement the SOM, the weights connecting all the input neurons

and the output neurons are randomly initialised. The input vector is then

selected from the training set. The next step is the competitive process, in

which a continuous input space of activation patterns is mapped onto a discrete

output space of neurons by a process of competition among the neurons in

the network. The best-matching neuron is the one whose weight vector has

smallest Euclidean distance from the input vector.

O(x) = arg min
j
‖x− wj‖ (5.1)

where O(x) is the best-matching neuron to input vector x and wj is a weight

vector for any output neuron j associated with input vector x. After the best-

matching neuron is determined, it is located at the centre of a topological

neighbourhood of cooperating neurons. From neurobiology, a �ring neuron

tends to excite the neuron in its immediate neighbourhood more than those

farther away from it. This topological neighbourhood is symmetric about the

maximum point and the amplitude of the topological neighbourhood decreases

monotonically with increasing lateral distance. The topological function used
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in this model is shown below.

Ej,O(x)(t) = exp

(
−

d2
j,O

2σ(t)2

)
t = 0, 1, 2, ... (5.2)

σ(t) = σ0 exp

(
− t

τ1

)
(5.3)

where Ej,O(x)(t) is a measure of the e�ectiveness of O(x) on its neighbours

and d2
j,O is the Euclidean distance from the neuron j to the O(x) at time t.

σ(t) is the time-varying e�ective width of the topological neighbourhood. σ0

is the initial e�ective width and τ1 is the time constant. The �nal step is the

adaptive process. The adaptation function is de�ned in the following equation.

wj(t+ 1) = wj(t) + η(t)Ej,O(x)(t) (x− wj(t)) t = 0, 1, 2, ... (5.4)

η(t) = η0 exp

(
− t

τ2

)
(5.5)

where η(t) is the learning-rate parameter decreasing with time. τ2 is another

time constant to control the decay rate of the learning rate. Upon repeated

presentations of the training data, the synaptic weight vector tends to follow

the distribution of the input vectors due to the neighbourhood updating. The

algorithm leads to a topological ordering of the feature map in the sense that

neurons that are adjacent in the lattice will tend to have similar synaptic

weight vectors.

As an unsupervised clustering algorithm based on competitive learning,

SOM can e�ectively classify the input data with similar characteristic into

the same region. Within each region, the distribution becomes more uniform

than the whole input data space. Therefore the classi�cation facilitates SVR

to obtain the more stationary characteristic correlation between input and

output.

Since the exact number of regions cannot be determined before the

training procedure, a tree-structured architecture is adopted from (Abdel Hady,
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Schwenker, and Palm, 2010) to partition the input space. This structure par-

titions the input space into two regions recursively until a certain terminal

condition is met. Without predetermine the total number of classi�cation re-

gions, a suitable size and structure for partitioning the input space can be

determined automatically by specifying a terminal condition.

Figure 5.2: The tree-structured architecture of the training procedure

As an example shown in Figure 5.2, SOM is applied in each node to

partition the input sample space into two smaller regions recursively until the

terminal condition is met. At end-nodes or leaves, SVR and PSO are used to

solve each partitioned region. The detailed description of the tree-structured

learning algorithm is listed as follows.

1. Set the training data set as an end-node and determine a threshold num-

ber N as the minimum number of data points in each end-node.

2. Input the data set at the end-node to SOM which will classify the data
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set into two non-overlapping subsets.

3. Count the number of data points in each subset and compare with N . If

the number of data points is larger than N in both subsets, the former

end-node is converted to a normal node and the two subsets are indicated

as end-nodes. Otherwise, merge the two subsets back to the former end-

note and stop.

4. Repeat step 2 to 3 until the classi�cation stops in all the nodes.

5. Train SVR with PSO using the data set in each end-node.

5.2.2 Support vector regression (SVR)

The SVR model makes use of support vector classi�ers to apply in regression

and time series prediction (Smola and Scholkopf, 2004). The basic principle

of SVR can be described in a linear formulation and then generalized to a

non-linear algorithm which is applied in this chapter.

Given a set of training data {(xi, yi)}Ni=1 ∈ Rn × R, where xi is the n-

dimensional vector, yi is the output value and N is the number of the training

data. Then a linear relation is de�ned as:

y = g(xi) = wTxi + b with w ∈ Rn, b ∈ R (5.6)

where w is the weight vector and b is the threshold coe�cient. The goal is to

�nd g(xi) which has less than ε deviation from yi and is as �at as possible.

This leads to a minimization problem:

min
1

2
‖w‖+ C

N∑
i=1

[l(ξi) + l(ξ∗i )] (5.7)

s.t.


yi − g(xi) ≤ ε+ ξi

g(xi)− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(5.8)
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where C is the trade-o� coe�cient which is always positive, ξi and ξ
∗
i are slack

variables and l is the loss function which is de�ned as:

l(ξ) =

 0 if |ξ| ≤ ε

|ξ| − ε otherwise
(5.9)

After applying standard Lagrange multiplier techniques, we can get the

support vector expansion:

w =
N∑
i=1

(αi − α∗i )xi (5.10)

g(x) =
N∑
i=1

(αi − α∗i )xTi x+ b (5.11)

where αi and α
∗
i are Lagrange multipliers.

In order to achieve non-linearity, the training data pattern xi can be

mapped to a higher dimensional feature space:

Φ : Rn → Rn+h,x→ Φ(x) (5.12)

and we de�ne the kernel as:

K(xi,xj) = Φ(xi)
TΦ(xj) (5.13)

therefore we have:

g(x) =
N∑
i=1

(αi − α∗i )K(xi,x) + b (5.14)

The expression of the kernel can be chosen directly without knowing Φ() explic-

itly, on the condition that the chosen expression satis�es the Mercer's Con-

dition (Mercer, 1909). In this study, the most widely used Gaussian kernel

function is applied:

K(xi,x) = exp

(
−‖xi − x‖2

2σ2

)
(5.15)
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where σ is the kernel parameter which de�nes the structure of the high dimen-

sional feature space.

The determination of the user-de�ned parameters (C, ε, σ) is crucial to

the performance of the SVR. In order to improve the forecasting accuracy of the

SVR, particle swarm optimization is applied to automatically and e�ectively

choose these parameters.

5.2.3 Particle swarm optimization (PSO)

The PSO is selected as the parameter optimization algorithm due to the non-

di�erentiable target function and no gradient information.

The PSO is a population based method for stochastic optimization of

continuous non-linear functions. The development of the PSO algorithm was

inspired by the social behaviours of bird �ocking and �sh schooling (Eberhart

and Kennedy, 1995). The population of particles in the PSO is analogous to

the birds and �sh. Each particle is a potential solution in the searching space.

By the end of the searching procedure, the optimal solution is de�ned by the

particle with the smallest error.

In the searching procedure, a particle i (i = 1, 2, ..., N) is de�ned by

a position vector xi ∈ Rn, a velocity vector vi ∈ Rn and individual's best

position yi ∈ Rn in an n-dimensional searching space. The initial positions

and velocities are random for the N particles. Each particle's best position yi

can be determined by calculating the error in the objective function f . The

position with the smallest error is the current best position for the particle

i. The global best position y is the position with the smallest error of all yi.

In each step of the searching procedure, each particle's position and velocity

is adjusted based on the particle's best position and the global best position.

By the end of the search, either a minimum error or a maximum number of
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iterations is achieved. The updating rules of the particle velocity and position

are showing below:

vl+1
i = χ

{
wvli + c1ϕ

l
1i

(
yli − xli

)
+ c2ϕ

l
2i

(
yl − xli

)}
(5.16)

xl+1
i = vl+1

i + xli (5.17)

where l denotes the lth iteration, χ is the velocity magnitude factor, w is

the inertia weight coe�cient, c1 and c2 are acceleration constants, ϕ1 and ϕ2

are random weights in the range [0, 1] under normal distribution generated

at each step for each particle component. The velocity magnitude factor χ is

adopted to improve the convergence speed. The inertia weight coe�cient w can

determine the impact of previous velocity on the current velocity. Therefore a

large w value can facilitate global exploration while a small w value leads to

local exploration. To balance both exploration, a linearly decreasing inertia

weight is applied here:

w(l) = wmax − l ×
wmax − wmin

L
(5.18)

where l is the current iteration number, L is the maximum iteration number,

wmax is the maximum inertia value and wmin is the minimum inertia value.

In our application, PSO is used to determine three parameters in the

SVR model, namely the trade-o� coe�cient C, the deviation ε and the width

parameter σ of the Gaussian kernel function. The PSO optimization process

is shown in Figure 5.3 and the detailed description is listed as follows.

1. Initialize all the PSO parameters including particle dimension n, the

position vector xi and the velocity vector vi of each particle, the velocity

magnitude factor χ, the acceleration constants c1 and c2, the maximum

number of iteration L and a �tness threshold FT .

2. Set the initialized position as the particle's best position yi and the

optimal individual position in the space as the global best position y.



87

Figure 5.3: The overall �owchart of the hybrid forecasting model

3. Use K-fold cross validation method to evaluate �tness and adopt mean

absolute percentage error (MAPE) as the �tness function:

MAPE =
1

m

m∑
i=1

|Y − f(x)

Y
| (5.19)

where Y is the actual value, f(x) is the output value and m is the number

of the sample data.

4. Calculate the current �tness function value for each particle. Compare

the current �tness function value with the particle's best position yi to
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determine the current local best position and then compare all the yi to

determine the current global best position y.

5. Update position and velocity of each particle according to function 5.16-

5.18 to search for a better solution.

6. Increase iteration number l by 1.

7. Stop the iteration if l > L or �tness function value is less than FT and

y is the optimal solution for the SVR parameters. Otherwise go to step

3.

The choice of PSO parameters are: wmax = 0.8, wmin = 0.3, c1 = 2.5,

c2 = 1.3, χ = 1.1, n = 2, L = 400, N = 25, FT = 0.2. The parallel

computational time for optimizing a set of parameters is less than 30 seconds.

5.3 Application of the proposed model

Our application is based on the hourly solar irradiance time series data from

South Park, Colorado, USA and Singapore. Since it is meaningless to forecast

solar irradiance after sunset, we only investigate daytime samples from 04:00

to 20:00 in Colorado and 07:00 to 19:00 in Singapore.

5.3.1 Evaluation of errors

To evaluate the quality of the proposed model, two di�erent types of error mea-

surement are used, namely the normalized root mean square error (nRMSE)

and the normalized mean bias error (nMBE)(Marquez and Coimbra, 2011).

The two error types are calculated using the following equations.

nRMSE =

√
E[(X̂ −X)2]√

E[X2]
(5.20)
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nMBE =
E[X̂ −X]√

E[X2]
(5.21)

where X̂ is the prediction from the forecasting model and X is the measured

value of GHI in the training or test set.

All the predicted values are true out-of-sample forecasts, in that they use

only data prior to the start of the forecast horizon. The models are estimated

over the data prior to the start of the forecast, the points of the next time step

are forecast, and the forecast values are compared with the actual ones. The

procedure is iterative until forecasts have been run over the daily data set.

The Colorado data consist of 17 years from 1997 to 2013 and the SERIS

data consist of 3 years from 2010 to 2013. All the months except the month

to be predicted are used as the training set. During the training and testing

procedure, past 8 hours' data are used as the input for the hour to be predicted.

5.3.2 Forecasting accuracy

To test the accuracy of our hybrid forecasting model, 1 h average solar ir-

radiance data is used. Every 1 h step is predicted and compared with the

actual irradiance data to calculate the errors. The test is repeated over the

whole month and then the average errors of that month are calculated. For

comparison purposes, four other well-established forecasting methods, namely

Autoregressive integrated moving average (ARIMA) model, linear exponential

smoothing model (LES), simple exponential smoothing (SES) model and ran-

dom walk (RW), are also tested in the same way. All the test results are listed

in Table 5.1 to Table 5.6. The column and bar charts of the test results are

shown in Figure 5.4 to Figure 5.9.

Table 5.1 and Figure 5.4 show the normalized root mean square error

comparison of the hourly solar irradiance forecasting accuracy of all the mod-



90

Table 5.1: nRMSE (%) comparison among 5 forecasting methods for Colorado

data. The lowest values are indicated in bold.

Forecast Period Hybrid ARIMA LES SES RW

2013 Jan 23.44 25.61 26.53 25.03 28.36

2013 Feb 23.41 26.39 26.17 26.01 30.18

2013 Mar 24.03 27.59 28.64 30.44 32.69

2013 Apr 24.96 29.11 33.49 30.89 35.10

2013 May 23.11 29.96 28.32 27.01 35.23

2013 Jun 22.65 28.64 28.63 29.17 34.84

2013 Jul 24.84 31.21 32.00 33.92 37.94

2013 Aug 23.33 30.49 30.97 29.96 34.90

2013 Sep 23.98 27.45 29.85 28.73 31.97

2013 Oct 22.77 26.13 29.10 28.42 30.20

Table 5.2: R2 comparison among 5 forecasting methods for Colorado data.

The highest values are indicated in bold.

Forecast Period Hybrid ARIMA LES SES RW

2013 Jan 0.863 0.841 0.834 0.849 0.827

2013 Feb 0.865 0.836 0.838 0.847 0.820

2013 Mar 0.858 0.827 0.825 0.818 0.807

2013 Apr 0.850 0.821 0.803 0.817 0.796

2013 May 0.867 0.819 0.828 0.830 0.794

2013 Jun 0.877 0.825 0.825 0.815 0.800

2013 Jul 0.851 0.817 0.814 0.801 0.785

2013 Aug 0.864 0.816 0.811 0.809 0.803

2013 Sep 0.861 0.826 0.810 0.818 0.811

2013 Oct 0.876 0.829 0.816 0.820 0.813
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Table 5.3: nMBE (%) comparison among 5 forecasting methods for Colorado

data. The lowest absolute values are indicated in bold.

Forecast Period Hybrid ARIMA LES SES RW

2013 Jan -1.41 -1.25 -1.68 -1.22 0.31

2013 Feb -1.52 -3.11 -2.94 -1.61 -0.16

2013 Mar -1.01 -0.98 -0.54 -1.33 -0.25

2013 Apr 1.20 -2.17 -1.32 -1.95 0.53

2013 May 0.52 -1.63 -1.69 -0.26 0.64

2013 Jun 0.12 -1.22 -3.21 -1.93 0.49

2013 Jul -0.63 -0.58 -0.85 -1.54 -0.74

2013 Aug 0.60 -1.49 -0.39 -0.25 0.36

2013 Sep -0.96 -1.33 -0.75 -0.76 -0.86

2013 Oct -1.24 -2.98 -1.64 -0.66 -0.09

Table 5.4: nRMSE (%) comparison among 5 forecasting methods for SERIS

data. The lowest values are indicated in bold.

Forecast Period Hybrid ARIMA LES SES RW

2013 Jan 45.28 47.65 48.12 47.64 54.22

2013 Feb 29.33 31.47 34.93 33.10 36.03

2013 Mar 37.99 39.55 38.91 37.80 41.06

2013 Apr 37.06 38.00 39.41 39.45 42.02

2013 May 35.92 39.26 40.17 37.62 43.61

2013 Jun 41.14 42.32 41.08 39.46 45.93

2013 Jul 29.16 33.24 33.17 32.95 39.74

2013 Aug 33.82 35.51 34.44 35.73 39.70

2013 Sep 35.10 39.11 37.02 37.85 43.12

2013 Oct 38.97 38.76 38.92 40.27 44.19
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Table 5.5: R2 comparison among 5 forecasting methods for SERIS data. The

highest values are indicated in bold.

Forecast Period Hybrid ARIMA LES SES RW

2013 Jan 0.606 0.542 0.510 0.544 0.376

2013 Feb 0.807 0.799 0.778 0.783 0.761

2013 Mar 0.749 0.738 0.744 0.752 0.733

2013 Apr 0.772 0.767 0.742 0.739 0.659

2013 May 0.764 0.743 0.732 0.768 0.624

2013 Jun 0.735 0.712 0.738 0.746 0.575

2013 Jul 0.811 0.768 0.772 0.789 0.744

2013 Aug 0.797 0.763 0.770 0.761 0.749

2013 Sep 0.780 0.739 0.752 0.750 0.623

2013 Oct 0.741 0.752 0.743 0.727 0.601

Table 5.6: nMBE (%) comparison among 5 forecasting methods for SERIS

data. The lowest absolute values are indicated in bold.

Forecast Period Hybrid ARIMA LES SES RW

2013 Jan -0.96 -1.76 -1.38 -1.33 -0.33

2013 Feb -1.21 -1.34 -1.55 -1.27 -0.25

2013 Mar -0.86 -2.61 -0.12 -0.60 -0.36

2013 Apr -0.38 -2.94 -0.73 -0.79 -0.76

2013 May -1.21 -1.39 -2.17 -0.65 0.05

2013 Jun 1.84 -1.11 -1.32 -2.95 -0.11

2013 Jul 1.22 -3.67 -2.14 -0.11 0.26

2013 Aug -0.29 -1.03 -1.20 -1.00 -0.59

2013 Sep 0.42 -1.24 -1.98 -0.91 0.96

2013 Oct 0.61 -1.99 -0.14 -0.34 0.22
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Figure 5.4: nRMSE (%) comparison among 5 forecasting methods for Colorado

data

els in Colorado, USA. The best forecasting accuracy is shown in bold. It is

clear that the hybrid model has better prediction accuracy than the other time

series models based on nRMSE. From January 2013 to October 2013, the hy-

brid model consistently outperforms all other comparison models. On average

the forecasting accuracy of the proposed model has 4% lower error compared

with the best prediction accuracy of all other statistical time series models.

It is noted that the solar irradiance variability in this area is generally low.

The climate in Colorado is cool and dry which is the result of the combination

of high elevation, mid latitude interior continent geography. The thin atmo-

sphere with little clouds allows greater penetration of solar irradiance during

all the seasons. However the thunderstorms often occur in the summer, which

increases the solar irradiance variability. This matches our simulation result.
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Figure 5.5: R2 comparison among 5 forecasting methods for Colorado data

Table 5.2 and Figure 5.5 show the R2 comparison of the hourly solar

irradiance forecasting accuracy of all the models. By comparing Table 5.1 and

Table 5.2 we can observe that the value of the coe�cient of determination

matches the result of normalized root mean squared error, which substantiate

our analysis.

Table 5.3 and Figure 5.6 show the normalized mean bias error compar-

ison of the hourly solar irradiance forecasting accuracy of all the models. The

bias errors for all the models are generally less than 2% with a few exceptions.

These small bias errors indicate that there is no particular bias in our fore-

casting models. It is expected that the benchmark RW model has the smallest

bias error for most of the times since it is based on persistence.

Table 5.4 and Figure 5.7 show the normalized root mean square error

comparison of the hourly solar irradiance forecasting accuracy of all the mod-

els in Singapore. The best forecasting accuracy is shown in bold. In general,
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Figure 5.6: nMBE (%) comparison among 5 forecasting methods for Colorado

data

the hybrid model has better prediction accuracy than the other time series

models based on nRMSE. From January 2013 to October 2013, the hybrid

model outperforms all other comparison models in seven out of ten months.

Compared with the test in Colorado, the accuracy improvement is not very

signi�cant. There are two reasons behind this. Firstly, the solar irradiance

variability in Singapore is much higher than the variability in Colorado due

to the di�erence in climate conditions. Singapore has no clear-cut wet or dry

season and rainfall is experienced in every month. Usually the rainfall occurs

during the day but usually only for a short period of time. The high tempera-

ture and high humidity levels lead to high evaporation which causes frequent

cloud formation and dense cloud cover. Therefore the solar irradiance vari-

ability is high in Singapore. Secondly, the training data in Singapore is only

available from 2010, which is much less than the 17-year training data in Col-
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Figure 5.7: nRMSE (%) comparison among 5 forecasting methods for SERIS

data

orado. The length of the training data is a crucial factor in our neural network

based model. The performance of the model can be a�ected at di�erent scales

depends on the characteristics of the training data.

Table 5.5 and Figure 5.8 show the R2 comparison of the hourly solar

irradiance forecasting accuracy of all the models. By comparing Table 5.4 and

Table 5.5 we can observe that the value of the coe�cient of determination

matches the result of normalized root mean squared error, which substantiate

our analysis. Table 5.6 and Figure 5.9 show the normalized mean bias error

comparison of the hourly solar irradiance forecasting accuracy of all the mod-

els. The bias errors for all the models are generally less than 3% with a few

exceptions. These small bias errors indicate that there is no particular bias in

our forecasting models.
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Figure 5.8: R2 comparison among 5 forecasting methods for SERIS data

5.3.3 Computational complexity

Same as chapter 4, the hybrid model here is also implemented based on Theano

library in Python. Theano is designed to de�ne, optimize, and evaluate mathe-

matical expressions involving multi-dimensional arrays e�ciently. The parallel

computational structure of Theano allows us to have fast training time even

with a quad-core 3.5GHz personal computer. For one year hourly training

data, the hybrid model training can be �nished within 10 minutes.

5.4 Performance comparison of the medium-term

forecasting models

The performances of the mid-term forecasting models are compared using

hourly solar irradiance data in Singapore for the whole year of 2015. The
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Figure 5.9: nMBE (%) comparison among 5 forecasting methods for SERIS

data

nRMSE comparison is shown in Figure 5.10. The nMBE comparison is shown

in Figure 5.11. Among all the models available for mid-term forecasting, the

hybrid SOM-SVR-PSO model (HSVR in the �gure) has the lowest error in

most of the months. The hybrid SOM-SVR-PSO model is also not consis-

tently biased to either positive or negative values.

Unfortunately, the satellite images are not available for the year of 2015.

Hence we are comparing our hybrid satellite-ESSS-MLP model (HMLP in

the �gure) with the other 6 mid-term forecasting models using the satellite

images and solar irradiance data from October 2010 to July 2011. The nRMSE

comparison is shown in Figure 5.12. The nMBE comparison is shown in Figure

5.13. It is apparent that the hybrid satellite-ESSS-MLP model outperforms

other models, except in the month of July 2011 which su�ers from missing

satellite images. Among all the models, the hybrid satellite-ESSS-MLP model
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Figure 5.10: nRMSE (%) comparison of 6 forecasting methods for hourly

Singapore data in 2015

is the only one with additional cloud information input derived from satellite

images. The superior forecasting accuracy also demonstrates the importance

of cloud condition information in solar irradiance forecasting.

The proposed novel models should also be compared with other re-

searchers' models on some benchmark data available to the public. Measure-

ment and Instrumentation Data Center (MIDC) of NREL has done a great job

maintaining many solar irradiance monitoring stations in various states of the

United States of America. Their data are available to the public and served as

benchmarks for many solar irradiance forecasting researchers (Boland, David,

and Lauret, 2016). Two locations are used for results comparison, namely Las

Vegas, Nevada and Oahu, Hawaii. Las Vegas locates at 115.14 West Longi-

tude, 36.17 Latitude, which has a typical sub-tropical inland climate. Oahu
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Figure 5.11: nMBE (%) comparison of 6 forecasting methods for hourly Sin-

gapore data in 2015

locates at 158.08 West Longitude, 21.31 Latitude, which has a typical sub-

tropical island climate. One year of data in 2014 is used for training and the

data in 2015 is used for testing.

Persistence is used as a benchmark model to be compared with the pro-

posed hybrid SVM model without satellite image input and the ESSS model

with Fourier trend preprocessing. Two other forecasting models proposed re-

cently by Prof Boland are also compared (Boland, David, and Lauret, 2016).

One is the arti�cial neural network (ANN) model and the other one is the

ARMA model with Fourier trend preprocessing. The yearly average nRMSE

comparison is shown in Figure 5.14. As can be seen, the proposed hybrid SVM

without satellite image input outperforms all other models.
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Chapter 6

Solar irradiance forecasting using

novel spatial-temporal analysis

6.1 Spatial-temporal covariance structures and

time-forward kriging

Single station solar irradiance forecasts using statistical methods have been

studied intensively in the past few decades. These include time series, autore-

gressive integrated moving average (ARIMA) analyses (Moreno-Muñoz et al.,

2008; Reikard, 2009a; Martín et al., 2010), arti�cial neural networks (ANN)

multi-layer perceptron model (Paoli et al., 2010; Mellit et al., 2010; Martín et

al., 2010), k-Nearest Neighbors' algorithm (Paoli et al., 2010) and Bayesian

inference (Paoli et al., 2010). Although the accuracies of these forecasting

methods can be adequate, they do not provide spatial irradiance information.

Thus in order to plan the electricity generation at power grid level, we require

a large number of monitoring stations over the power grid area. The num-

ber of sensors is generally limited and their distribution is irregular. Thus,

spatial-temporal estimation for solar irradiance is an important step towards
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the forecast required by renewable energy driven cities.

Temporal and spatial behaviours of solar irradiance are related through

complex atmospheric mechanisms. Recent advances in space-time statistics

(Cressie and Wikle, 2011; Le and Zidek, 2006; Finkenstädt, Held, and Isham,

2006) allow us to analyse such environmental processes not only in separate

temporal and spatial domains but as a whole. Little work has been done on

solar irradiance, although (Gueymard and Wilcox, 2011) provides a study on

long term (inter-annual) variability in global radiation. Most studies employ

separate modelling despite aiming to study solar irradiance across time as well

as space (Glasbey, Graham, and Hunter, 2001). We aim to develop statistics

that directly describe the spatial-temporal process. To facilitate our following

discussion, we �rst introduce several statistics.

6.1.1 Some de�nitions

In statistics, covariance is a measure of the extent to which two random vari-

ables vary together. Very often, the covariance between two random variables

can be modelled using a covariance function of space and time, the applica-

tions of which are widely seen in statistical planning and inference (Du and

Ma, 2013; Hyun, Burman, and Paul, 2012).

A random �eld at location si and time ti is denoted as Z(si, ti), Z ∈

Rd×R. We say the random �eld Z has separability if the covariance structure

of Z can be separated into a purely spatial covariance structure and a purely

temporal covariance structure:

cov{Z(si, ti), Z(sj, tj)} = covS{Z(si), Z(sj)} · covT{Z(ti), Z(tj)} (6.1)

where the subscripts S and T are used to denote space and time respectively.

However, most of the environmental data set can not be assumed to be sepa-

rable due to the complex time and space interactions. A more general class of
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spatial temporal processes are the fully symmetric processes. A random �eld

is said to be fully symmetric if:

cov{Z(si, ti), Z(sj, tj)} = cov{Z(si, tj), Z(sj, ti)} (6.2)

Examples of the above covariance functions appear in our case studies,

below. Separability is a special case of full symmetry. Therefore when the

covariance matrix is not fully symmetric, it can not be separable.

Another important property of spatial-temporal data is stationarity. We

say a random �eld exhibits temporal stationary if the covariance function C is

only a function of time separation τ , where τ = ti−tj. A similar de�nition can

be applied to spatial stationarity. A random �eld exhibits temporal stationary

if the covariance function is only a function of spatial separation h, where

h = si − sj. We will show later that h does not necessarily represent the

geographical distance between two observations. In mathematical form, spatial

temporal stationarity is:

cov{Z(si, ti), Z(sj, tj)} = C(h, τ) (6.3)

Stationarity does not imply full symmetry nor separability. A special

case of a separable stationary random �eld is represented by:

cov{Z(si, ti), Z(sj, tj)} = CS(h) · CT (τ) (6.4)

Similarly, fullsymmetry can be de�ned as C(h, τ) = C(h,−τ).

6.1.1.1 Anisotropy and time-forward kriging

The de�nitions introduced above indicate that using statistical prediction

methods requires careful analytical description and analysis of a dataset. Prop-

erties such as stationarity, separability and isotropy are frequently overlooked.
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For example, in geostatistics, 2D linear least squares estimation is often per-

formed using kriging algorithms to construct 2D contour images, such as ir-

radiance maps. Rehman et al. (Rehman and Ghori, 2000) plot monthly ir-

radiance contours for Saudi Arabia; Righini et al. (Righini, Gallegos, and

Raichijk, 2005) develop contours for Argentina; Bland et al. (Bland and Clay-

ton, 1994) for Wisconsin and Bechini et al. (Bechini et al., 2000) for northern

Italy. These authors �rst identify a suitable variogram model (variance ver-

sus distance plot) for the region and then apply weighted spatial smoothing

kriging techniques to perform the spatial prediction.

Spatial resolution, an important consideration in all spatial-temporal

irradiance studies, is often limited by data sparsity. In the context of solar ir-

radiance, it has been shown that the spatial correlation between two locations

converges after the threshold distance (Perez et al., 2012). The dependence

metrics used in kriging, such as dispersion or correlation, must be carefully se-

lected. Previous studies have applied kriging techniques to data from stations

with large geographical separations. As a result, overestimates of the threshold

distance occur, leading to information loss. Furthermore, many authors ignore

the anisotropic nature of atmosphere processes by �tting isotropic variogram

models. The large �tting errors typical in the literatures imply uncertainties

in their following analyses that render them too inaccurate for practical ap-

plications. It is likely that no isotropic variogram model can represent the

anisotropic nature of the spatial variability of solar irradiance (Sampson and

Guttorp, 1992). We show that even within a small island like Singapore (41.8

km ENE-WSW and 22.5 km SSE-NNW), whatever happens in the east is un-

likely to cause any variability change in the west. We therefore aim to take

anisotropy into consideration in this work.
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6.1.2 Temporal stationarity

We consider a time series (a sequence of observations taken sequentially in

time) to be stationary if it has a constant mean level (Box, Jenkins, and Rein-

sel, 1970). Both stationary and non-stationary time series forecasting models

have been developed, including auto-regressive (AR), moving average (MA),

auto-regressive moving average (ARMA), integrated moving average (IMA),

ARIMA and seasonal auto-regressive integrated moving average (SARIMA)

(Box, Jenkins, and Reinsel, 1970). Among these models, AR, MA and ARMA

are commonly used to forecast stationary trends. A test for stationarity is

thus the �rst step to all time series analyses.

Wu et al.(Wu and Chan, 2011) performed the stationarity test for a

typical Singapore irradiance time series using the Augmented Dickey-Fuller

test (Dickey and Fuller, 1981). The time series was found to be non-stationary.

Our aim at this stage is to obtain a stationary time series at each individual

station without assuming spatial-temporal separability. Thus detrend methods

similar to those adopted in time series analyses are considered. We note that

there are other methods to achieve stationarity. The di�erencing technique,

used frequently in ARIMA forecasts, is the transformation of the series to a

new time series where the new values are the di�erences between consecutive

values. Although appropriate for stationary transformation method for single

station forecasts, the coupling between space and time in our 2D data make

this technique less than optimal. Using a purely temporal analysis may not

preserve the data's spatial-temporal covariance structure.

Existing detrend models include those that �t the GHI series with a

Gaussian function (Baig, Achter, and Mufti, 1991), with a cosine function

(Kaplanis, 2006) and with high order polynomials (Al-Sadah, Ragab, and Ar-

shad, 1990a). These formulations describe the trend components of the irra-
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diance time series with bell-shaped curves. There are also more sophisticated

detrend procedures, for example, Yang et al.(Yang, Jirutitijaroen, and Walsh,

2012b) used local polynomial regression �tting (LOESS) to detrend the so-

lar irradiance time series by �rst determining an additive diurnal cycle. Such

techniques can provide location-speci�c stationary time series by �nding the

least squared �tted parameters. Di�erent irradiance monitoring stations do

not necessarily share the same model parameters. For our analyses, spatial-

temporal structures must be preserved, and therefore we cannot invoke such

techniques.

Since Singapore is located near the equator, we only consider the diurnal

trend here. The extraterrestrial irradiance model, which is the level of irradi-

ance received just outside of the atmosphere, is commonly used in irradiance

modelling, and we shall apply it here. We can consider the extraterrestrial

irradiance as a deterministic parameter given by:

E0Isc cos(∠z) (6.5)

where E0 is the eccentricity of the Earth's orbit, Isc is the solar constant and ∠z

is the zenith angle. The clearness index is de�ned as the ratio between global

horizontal irradiance and the extraterrestrial irradiance. We thus transform

our irradiance time series into a clearness index time series.

Trend removal via the clearness index as we have applied it here to di-

urnal phenomena cannot remove the trend completely and therefore does not

make the series perfectly stationary. Therefore we perform the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski, Phillips, and Schmidt, 1992)

to assess stationarity in our detrended series. The KPSS test has a null hy-

pothesis, H0, to imply stationarity, and an alternative hypothesis H1 to imply

a unit root, i.e., non-stationary. The hypothesis testing is based on searching

for a unit root in the time series autocorrelation model. In other words, if
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the observation at time t strongly depends on the observation at time t − 1

with coe�cient larger than 1 (yt = µ + φyt−1, φ > 1), the series is de�ned

to be non-stationary or explosive. The p-value is a measure of the evidence

against H0: the smaller the p-value, the stronger evidence against H0. The

monthly time series at individual stations has a p-value greater than 0.1, which

indicates strong evidence in favour of the null hypothesis (Wasserman, 2003).

We note that all hypothesis tests su�er from the problem of probability of

false declaration. When the number of test points increases, the probability of

falsely declaring signi�cance is likely to increase. However, we disregard this

issue in this work, since we only utilize several weeks' of 2012 November data

in our stationary analyses.

6.1.3 Spatial stationarity

Covariance estimation of spatial processes is fundamental for many problems

of spatial interpolation and design of monitoring networks (Sampson and Gut-

torp, 1992). However, most environmental spatial-temporal processes (Gneit-

ing, 2002; Luna and Genton, 2005) cannot be assumed to be stationary or

isotropic. Studies of geographical data can derive additional physical informa-

tion by appropriate use of spatio-temporal statistics. For instance, the conven-

tional variogram (a function describing the spatial dependence of a random

�eld) is a convenient tool to examine the spatial dispersion versus the geo-

graphical distance in many studies. However it is known that no isotropic

variogram model will accurately re�ect irradiance data (Rehman and Ghori,

2000; Sampson and Guttorp, 1992). Anisotropy is also discovered in the fa-

mous Irish wind data (Haslett and Raftery, 1989). Therefore, a forecasting

method that operates on spatial covariance structures that do not assume sta-

tionarity will perform better than methods that falsely make this assumption.
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6.1.3.1 G plane and D plane

Sampson and Guttorp(Sampson and Guttorp, 1992) proposed a method to

estimate spatial covariance structures using a nonparametric approach. The

method constructs a mapping function between locations in geographic space,

where stationarity of the random �eld is not assumed, to locations in a new

space where isotropy is assumed. Sampson and Guttorp refer to geographic

space as the G plane and the dispersion space (the new space) as D plane.

The distances among stations in the D plane originate from spatial

dispersion which is de�ned as:

d2
ij = ˆvar(Zit − Zjt) (6.6)

where Zit = Z(xi, yi, t) denotes the observation taken at location (xi, yi) at

time t (i = 1, 2, · · · , N and t = 1, 2, · · · , T ). Similar de�nitions can be used for

Zjt at another location j. ˆvar denotes the sample variance of the di�erenced

time series. We can then determine a monotone function δ(dij) to realize the

D plane distance hij through multidimensional scaling (MDS), i.e.:

δ(dij) ≈ hij (6.7)

δ is obtained through iterative monotonic regression.

6.1.3.2 Computation for the D plane representations

Multidimensional scaling provides a �principle components� representation of

the pattern of proximities or dissimilarities (i.e., spatial dispersion) among a

set of objects (in our case the clearness index measurements of the stations).

There are two types of MDS, namely, classical MDS and nonmetric MDS.

Classical MDS takes a matrix of dissimilarities (usually the Euclidean distance

among the higher dimensional objects) as input, and outputs an object map
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in lower dimensions (usually a two dimensional Cartesian coordinate system).

A good way to visualize the classical MDS is to imagine a projection of a three

or higher dimensional structure onto a plane. As the dissimilarities matrix is

always positive de�nite1, the coordinates are given by the square root matrix

of the transformed (double centering transformation) dissimilarities matrix.

The method to solve for the coordinates of projection is eigendecomposition.

The nonmetric MDS methods on the other hand do not consider the

dissimilarities but only their rankings. The input for nonmetric MDS is the

dissimilarity ranking and the output is the stations map. In our application,

this procedure �nds a set of two dimensional vectors (locations of stations) in

the D plane such that the matrix of proximities among them corresponds as

closely as possible to a function of the input matrix (derived using classical

MDS) according to the stress criterion function:

S = min
∑
i,j

[hij − δ(dij)]2

h2
ij

(6.8)

where hij is the Euclidean distance in the D plane, δ is a least square monotone

regression function of hij on dij. δ(dij) is sometimes referred to as disparities.

The purpose of the stress function is to ensure that the stress is invariant

under not only rigid motion (e.g. rotation, translation and re�ection) but also

uniform stretching2. At this stage, in the D plane, since the spatial dispersions

are functions only of hij, we may view the D plane as a transformation of the

G plane de�ned so that the spatial dispersion structure is both stationary and

isotropic.

The stress function is minimized by method of steepest descent. For

1In linear algebra, a symmetric n × n real matrix M is said to be positive de�nite if
zTMz is positive, for any non-zero column vectors z. The dissimilarity matrix is non-zero
and symmetric, thus the eigenvalues are all positive.

2Without the denominator term in Equation (6.8), the stress is only invariant to rigid
motions.
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two dimensional data:

xM+1 = xM −
∂S
∂x
× sl∣∣∂S
∂x

∣∣ (6.9)

where x = (x1, y1, x2, y2, · · · , xN , yN)T , a vector with 2N elements. xM is the

vector of coordinates at Mth iteration. sl is an iteration step length which is

determined by g(SM , SM−1, SM−5), a function of present stress SM , the pre-

vious stress SM−1 and the stress 5 steps ago, SM−5. The iterative method

follows the proposed techniques(Kruskal, 1964a; Kruskal, 1964b). We use the

standard R statistics software (R Development Core Team, 2011) implemen-

tation of the algorithm in this work. The iteration starts with the results from

classical MDS. The implementation of the software is based on (Cox and Cox,

1994). We refer to nonmetric MDS as MDS hereafter.

6.1.3.3 Algebra for thin-plate spline mapping for G and D planes

Once the stations' coordinates in the G plane and the D plane have been es-

tablished, we need to perform a one-to-one mapping between these two planes.

Let the station coordinates in the G plane be denoted by (xi, yi) and those in

the D plane by (x′i, y
′
i); we seek a bivariate function f : R2 → R2 that maps

the coordinates from the G plane to the D plane:x′i
y′i

 = f

xi
yi

 (6.10)

The algorithm determines a function by minimizing a certain rough-

ness/smoothness criterion. For example, in one dimensional cubic spline in-

terpolation, we minimize: ∫
[f ′′(x)]2dx (6.11)

subject to �rst and second order derivative constraints at the knots and at

the boundaries. A cubic spline is a spline constructed of piecewise third-

order polynomials which pass through a set of N control points (knots). The
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minimization constraint �rst considers the continuity at the knots by equating

the gradients (�rst order derivatives) of two polynomials at each knot. The

second order derivative is then minimized using the sum of the square of the

derivative of the gradient (see Equation (6.11)) to ensure the �tted spline is

the smoothest.

Bookstein (Bookstein, 1989) states the generalization of this measure

for a two-dimensional problem:

Jf =

∫∫
R2

[(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2
]
dxdy (6.12)

Jf is the measure of roughness/smoothness which is proportional to the bend-

ing energy of an idealized thin plate of in�nite extent (Sampson and Guttorp,

1992). We show the method to determine the function f in this section.

Consider the function:

z(x, y) = U(r) = r2log(r2) (6.13)

where r is the distance
√
x2 + y2 from the Cartesian origin. Let P1 = (x1, y1),

P2 = (x2, y2), · · · , PN = (xN , yN) be N points in G plane, we can de�ne matrix

K =


0 U(r12) · · · U(r1N)

U(r21) 0 · · · U(r2N)
...

...
. . .

...

U(rN1) U(rN2) · · · 0

 , ∈ RN×N (6.14a)

P =


1 x1 y1

1 x2 y2

...
...

...

1 xN yN

 , ∈ RN×3 (6.14b)

L =

 K P

PT O

 , ∈ R(N+3)×(N+3) (6.14c)
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where rij = |Pi − Pj| (Euclidean norm between the two points) and O is a

3× 3 matrix of zeros. We can also de�ne the matrix:

V =

x′1 x′2 · · · x′N

y′1 y′2 · · · y′N

 , ∈ R2×N (6.15a)

Y =



x′1 y′1

x′2 y′2
...

...

x′N y′N

0 0

0 0

0 0


, ∈ R(N+3)×2 (6.15b)

where each (x′i, y
′
i) is a station location in D plane. The elements of L−1Y

de�ne the thin-plate spline f(x, y) at an arbitrary point (x, y) (Bookstein,

1989), :

f(x, y) = a1 + axx+ ayy +
N∑
i=1

wiU(|Pi − (x, y)|) (6.16)

L−1 is the pseudo inverse of L, which is found through singular value decom-

position.

Matrix V has two rows in our application. As such, two thin-plate

splines, fx(x, y) and fy(x, y), are computed, one for {x′i} and one for {y′i}. The

function fx(x, y) maps arbitrary point (x, y) from the G plane to x-coordinate

of the D plane, x′; while the function fy(x, y) maps arbitrary point (x, y)

from G plane to the y-coordinate of the D plane, y′. A proof is shown by

Kent et al.(Kent and Mardia, 1994) that Equation (6.16) minimizes roughness

expression Jf in Equation (6.12).

This method maps an anisotropic random �eld to an isotropic random

�eld. Together with the temporal stationarity, we obtain a spatial-temporal
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stationary data set. The following section describes the variance-covariance

structures. We further explore the other two properties, namely, full symmetry

and separability in the next sections.

6.1.4 Covariance and Kriging

After trend removal and space deformation, stationary spatial-temporal data

can be obtained. We now introduce some stationary spatial-temporal variance-

covariance structures (can be refer to as covariance structure for simplicity)

which will be used later to forecast the clearness index.

6.1.4.1 Separable model

Recall that for our separable model, the covariance function describing the

random �eld is assumed to be the product of the separated spatial and tempo-

ral covariance functions. Since �tting covariance or correlation will provide the

same kriging results, here we follow the approach of Gneiting et al. (Gneiting,

Genton, and Guttorp, 2007) and �t a purely temporal correlation function of

the Cauchy type:

ρT (τ) = (1 + a|τ |2α)−1 (6.17)

where ρ stands for correlation and a, α are model parameters. For the spatial

correlation function we choose an exponential model with a �nugget� e�ect (a

term derived from from mining geostatistics):

ρS(h) = (1− ν)exp(−c · h) + νIh=0 (6.18)

where ν and c are parameters to be �tted. I is a binary indicator function.

Therefore the separable covariance function is given by:

CSEP (h, τ) = ρT (τ) · ρS(h) ·
√
σ2
i

√
σ2
j (6.19)

where
√
σ2
i and

√
σ2
j are the variance of location speci�ed time series.
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6.1.4.2 Fully symmetric model

We can construct the fully symmetric but generally non-separable correlation

function using the separable model described earlier. Gneiting et al.(Gneiting,

Genton, and Guttorp, 2006) state the theorem:

Theorem. Suppose that ϕ(r), r ≥ 0, is a completely monotone function, and

that ψ(r), r ≥ 0, is a positive function with a completely monotone derivative.

Then

C(h, τ) =
1

ψ(|τ |)d/2
ϕ

(
h2

ψ(|τ |)

)
, (h, τ) ∈ Rd ×R (6.20)

is a stationary covariance function on Rd ×R.

As our speci�c choice of ρT (τ) and ρS(h) satis�es the theorem, we can

conclude that the covariance function in form shown in Equation (6.20) is

stationary and fully symmetric. There are several choices in selecting ψ(r), for

example, ψ1(r) = (ar2α + 1)β, ψ2(r) = ln(ar2α + b)/ ln(b) and ψ3(r) = (ar2α +

b)/[b(ar2α + 1)]. Consider our Cauchy type temporal correlation function, we

select ψ1(r). Thus, we write parametric family:

CFS(h, τ) =
1− ν

(1 + a|τ |2α)β

[
exp

(
− c · h

(1 + a|τ |2α)β/2

)
+

ν

1− ν
Ih=0

]
·
√
σ2
i

√
σ2
j

(6.21)

Note that the parameter β has to satisfy constraint 0 ≤ β ≤ 1 (Gneiting,

2002). β is called space-time interaction parameter. If β = 0 corresponds to a

reduced separable model, we should replace the �rst β in Equation 6.21 by ζ

and ζ = 1.

6.1.4.3 Time-forward kriging

Spatial-temporal kriging technique has been applied in recent studies on high

resolution spatial-temporal processes, and some studies (Inoue, Sasaki, and
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Washio, 2012) have demonstrated its application to irradiance variability mod-

elling. Inoue et al.(Inoue, Sasaki, and Washio, 2012) show that by consider-

ing time evolution, some improvements (on spatial irradiance prediction) over

the traditional spatial kriging can be established using leave-one-out cross-

validation on static maps.

Time-forward simple kriging is used in this study to assess the forecast-

ing ability of the spatial-temporal structures. Kriging is used to estimate the

weights of observed values z (from M temporal lags and N spatial points)

using the known covariance structures. At each spatial location, the simple

time-forward kriging point estimate ẑ(s, t) is thus given by:

ẑ(s, t) = c′0C
−1
z (6.22)

where C is the spatial-temporal variance-covariance matrix, and c′0C
−1 are

the weights. C has dimension RNM×NM, where N is the number of spatial

locations and M is the maximum time lag under consideration:

C =


C0 C1 · · · CM−1

C1 C0 · · · CM−2

...
...

. . .
...

CM−1 CM−2 · · · C0

 , ∈ RNM×NM (6.23)

C|τ | represents the spatial sub-covariance matrix at time lag |τ |:

C|τ | =


C11,|τ | C12,|τ | · · · C1N,|τ |

C21,|τ | C22,|τ | · · · C2N,|τ |
...

...
. . .

...

CN1,|τ | CN2,|τ | · · · CNN,|τ |

 , ∈ RN×N (6.24)

where Cij,|τ | = cov{Z(si, t), Z(sj, t − |τ |)}. We will further illustrate the

variance-covariance matrix construction in the following section. Similar to
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C, we write c0:

c0 =
(
c0,1 c0,2 · · · c0,M

)′
, ∈ RNM×1 (6.25)

and

c0,|τ | =
(
c0,11,|τ | c0,12,|τ | · · · c0,1N,|τ |

)′
, ∈ RN×1 (6.26)

with c0,ij,|τ | = cov{Z(si, t), Z(sj, t − |τ |)}. Lastly, z is the vector with the

observed value from the past M steps from N locations. The arrangement of

z must agree with the arrangement of c0.

Although we can use the Kronecker product to construct variance-

covariance structures, this method is only applicable to separable variance-

covariance structures, i.e., C = CS ⊗ CT, where CS and CT are separate

spatial and temporal variance-covariance respectively. We note that the loca-

tions used to construct c0 need not to be the same as the locations used to

construct C (since c0 only depends on inter-station distances and time lags).

For these reasons, unlike conventional spatial-temporal forecasting methods,

our method is able to forecast arbitrary points in space.

6.2 Transposition and decomposition models for

conversion from tilted to horizontal surface

Accurate local solar irradiance data is required in many aspects of building de-

sign and solar thermal and photovoltaic (PV) systems planning. Increasingly,

such information is also required with high precision for PV systems perfor-

mance evaluation and for solar irradiance forecasting. In most solar power

systems (thermal or PV), modules are installed on a �xed plane to reduce

installation and operation costs compared to tracking systems. To maximize
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array output, the modules are installed at a tilt close to the local latitude, or

at some minimum tilt to ensure self-cleaning by rain.

The output of PV systems above a certain size is generally monitored,

and compared with irradiance as measured by an in-plane sensor in order to

check the system's performance ratio. Thus many large PV systems measure

in-plane irradiance continuously. For many purposes, such as spatial irradi-

ance forecasting in grid integration, however, knowledge of the global hori-

zontal irradiance (GHI) is needed, and its derivation from a tilted measure-

ment is not trivial, owing to the non-isotropic nature of the di�use component

of irradiance. The ability to accurately convert solar irradiance components

between horizontal and tilted planes then becomes a requirement for simula-

tions, performance evaluation and forecasting of solar energy systems. Guey-

mard (Gueymard, 2009) has compared 10 transposition models and various

direct/di�use models for a mid-latitude site in Colorado, USA. Here we com-

pare models against a very di�erent dataset - that of an equatorial site located

in Singapore, which exhibits very di�erent, tropical atmospheric conditions.

Design of PV systems for tropical conditions will be increasingly important in

coming decades, as developing nations in the equatorial zone implement PV

on large scales, in many cases also to reduce their dependency on fossil fuel

imports.

Many transposition models have been proposed in the literature to con-

vert solar irradiance on the horizontal plane to that on a tilted plane. The

global irradiance, It, on a tilted plane of s degrees from the horizontal, can be

evaluated from the standard equation:

It = IDir cos θ + IDifRd + ρIGloRr (6.27)

where IDir is the direct normal solar irradiance (DNI), IDif is the di�use hor-

izontal irradiance (DHI), IGlo is the global horizontal irradiance (GHI), θ is
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the angle of incidence of the sun rays on the tilted plane, Rd is the di�use

transposition factor, ρ is the foreground's albedo, and Rr is the transposition

factor for ground re�ection.

It should be noted that the incidence angle θ of the sun's rays on a

surface with an arbitrary tilt angle s and azimuth is purely geometric; its for-

mulation can be found in standard texts (Du�e and Beckman, 2006). Ground

re�ection is considered as an isotropic process by most studies, and is char-

acterized by Rr, which is a function of tilt angle s (Gueymard, 2009). The

formulations for the di�use transposition factor Rd can be divided into two

schools, namely, isotropic3 (Badescu, 2002; Tian et al., 2001; Koronakis, 1986;

Liu and Jordan, 1962) and anisotropic (Perez et al., 1990; Reindl, Beckman,

and Du�e, 1990b; Skartveit and Olseth, 1986; Temps and Coulson, 1977;

Klucher, 1979; Hay, 1979). Details and mathematical formulations for Rd are

summarized in the papers (Noorian, Moradi, and Kamali, 2008; Evseev and

Kudish, 2009) for both types. The recent paper (David, Lauret, and Boland,

2013) evaluates the performance of various anisotropic transposition models

in a tropical environment.

In order to compute the irradiance on a tilted surface, we need to know

all three irradiance components on a horizontal surface, namely, GHI, DNI

and DHI. The following equation describes a well-known relationship among

the three components.

IGlo = IDir cosZ + IDif (6.28)

where Z is the zenith angle. This relationship implies that we should have

at least two irradiance measurements in order to accurately predict the global

solar irradiance on a tilted plane.

3Isotropic transposition usually refers to Liu and Jordan (1962) model. However, we
consider the classi�cation here helpful to distinguish the models that have no azimuthal
dependence.
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A pyranometer measures the total radiation arriving from all directions,

including both direct and di�use components through one or more thermopiles

(Masters, 2004). By adding a shadow band to temporarily block the direct

beam, the pyranometer can be used to measure just di�use irradiance. Some

pyranometer models, such as the SPN1 Sunshine Pyranometer from Delta In-

struments4, measure both global and di�use irradiance simultaneously. Pyra-

nometers are expensive and may require maintenance: more economic instru-

ments such a simple photosensors which only measure GHI are very commonly

deployed. When only IGlo is obtained from such a photosensor, IDir and IDif

must be individually estimated.

Multi-sensors approaches (Faiman, Feuermann, and Zemel, 1993) are

often used to resolve this issue. When two irradiance sensors are installed at

two di�erent tilts, we can accurately solve for IDir and IDif using simultaneous

equations (use Equation (6.27) twice by having two sets of parameters obtained

from two tilts). Otherwise, decomposition models are used to estimate IDir and

IDif from a single IGlo measurement.

To separate the direct and di�use components from IGlo, many empirical

relationships have been proposed. Instead of relating the irradiance compo-

nents directly, most papers in the literature use the concept of transmittance

or optical depth. Transmittance is a representation of fraction of extraterres-

trial irradiance reaching the ground. Most approaches aim to represent di�use

horizontal transmittance Kd or direct normal transmittance Kn as a function

of the e�ective global horizontal transmittance Kt (Kt is often referred to

as the clearness index) and other predictors. Gueymard (Gueymard, 2009)

suggests that the direct and di�use separation be made dependent on zenith

angle, ambient temperature and relative humidity. Some researchers (Garri-

4http:\delta-t.co.uk

http:\delta-t.co.uk
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son, 1985; Garrison and Sahami, 1995) suggest the separation should consider

solar elevation, surface albedo, atmospheric precipitable water and snow cover.

Reindl's various models (Reindl, Beckman, and Du�e, 1990a) include a mul-

tivariate version which suggests that solar altitude, ambient temperature, and

relative humidity are the predictors for di�use horizontal transmittance. These

multivariate models are complex and the inputs measurements are not always

available.

For the purposes of engineering in tropical locations, we seek simple

empirical models to separate direct and di�use components from global solar

irradiance. Some papers (Erbs, Klein, and Du�e, 1982; Orgill and Hollands,

1977) used univariate approaches, namely, GHI as the only input. Maxwell

(Maxwell, 1987) presented a bivariate model, which converts GHI into DNI

using only GHI and zenith angle as inputs. Reindl also proposed versions

of his model as both univariate and bivariate models (Reindl, Beckman, and

Du�e, 1990a). Another paper (Zhang, 2006) used GHI and elevation angle

(equals to 90◦ − Z) as inputs, decomposition model is then constructed using

the Gompertz function. Although these models are simpler, i.e., using only one

or two input parameters, each correlation is developed from the measurements

taken at some speci�c locations; therefore their accuracy must be carefully

evaluated if they are applied to places di�erent from the ones included in the

databases used for their development (Padovan and Col, 2010).

As seen in Equation (6.27), GHI and DHI are required inputs for trans-

position models. When only GHI measurements are available, transposition

models still can be used with the help of decomposition models. While these

methods for converting solar irradiance from horizontal to tilted planes are

well described, the reverse process, i.e. converting from tilted to horizontal, is

lacking in the literature. PV array power output is often the parameter sought
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for practical applications, together with an estimate of the performance ratio

of the PV system. Therefore, sensors are often installed in the plane of the PV

array, rather than horizontally. Although this con�guration is convenient for

PV systems output prediction, many applications require horizontal irradia-

tion data. For instance, in spatio-temporal forecasting analyses (Yang et al.,

2013), data from various locations must be converted to horizontal irradiance

in order to capture the spatio-temporal dynamics accurately. Such forecasts

are of increasing importance, as variable renewable generation becomes a sig-

ni�cant fraction of electricity generation capacity. Thus, an algorithm which

converts solar irradiance on a tilted plane to horizontal irradiance is proposed

in this chapter, with speci�c application to tropical regions being a consider-

ation.

6.2.1 Model Selection for Tropical Regions

We �rst review available transposition and decomposition models and evaluate

their performance of converting solar irradiance from horizontal to tilt in a

tropical region. This exercise allows us to select the best model for the reverse

process.

6.2.1.1 Background

We note two types of transmittance found in the literature, which link solar

irradiance at the Earth's surface to extraterrestrial irradiance:

IGlo = KtIoh (6.29)

IDir = KnIo (6.30)

Kt and Kn are e�ective global horizontal transmittance and direct normal

transmittance respectively, while Ioh is horizontal extraterrestrial irradiance
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and Io is extraterrestrial direct normal irradiance. The extraterrestrial irradi-

ance is the function of zenith angle Z and day number D (i.e. January 1 is

day 1 while December 31 is day 365 in a non-leap year, 366 in a leap year) as

shown below:

Ioh = (SC)× re cosZ (6.31)

Io = (SC)× re (6.32)

where,

re = 1.00011 + 0.034221 cos ξ + 0.001280 sin ξ

+0.000719 cos 2ξ + 0.000077 sin 2ξ (6.33)

ξ = 2π(D − 1)/365 (6.34)

re is the reciprocal of the square of the Earth radius factor as described by

Maxwell (Maxwell, 1987) or the eccentricity correction factor of earth as de-

�ned in reference (Janjai, Sricharoen, and Pattarapanitchai, 2011). ξ is de�ned

as the eccentric anomaly of the Earth in the orbit around the Sun (Maxwell,

1987) or day angle (Janjai, Sricharoen, and Pattarapanitchai, 2011). SC is

the solar constant, equal to 1362 W/m2.

We discuss the formulation for transposition factors for Rr and Rd in

the following. As Singapore has a latitude of 1.3◦N, the �rule-of-thumb� in-

stallation angle for �xed panels should be 1.3◦. However, in practice, the

installation angle in Singapore is usually chosen to be between 5◦ to 20◦ to

maximize panels' output by promoting self cleaning by rain, without allowing

surface-tension induced accumulation of dust at panels framed edges. A highly

tilted plane introduces anisotropic features into derived Rr values (Gueymard,

2009), but this e�ect is not signi�cant for slopes less than 20◦. As a result, we

use an isotropic approximation for Rr:

Rr = (1− cos s)/2 (6.35)



126

where s is the tilt angle for the plane of incidence.

The di�use transposition factor Rd may be considered isotropic if we

assume that di�use irradiance is constant over the whole sky. However, a plane

of tilt s facing the (occulted) sun receives more di�use radiation than a plane

of the same tilt in the opposite direction. Both isotropic and anisotropic Rd

models are discussed extensively in the literature. We shall compare ten models

in the following section. We consider four isotropic models (Badescu, 2002;

Tian et al., 2001; Koronakis, 1986; Liu and Jordan, 1962) and six anisotropic

models (Perez et al., 1990; Reindl, Beckman, and Du�e, 1990b; Skartveit and

Olseth, 1986; Temps and Coulson, 1977; Klucher, 1979; Hay, 1979). These ten

models are provided in Appendix A.

By combining Equation (6.28) to (6.35), we rewrite Equation (6.27)

using the �K" indices:

It = KnIo cos θ + (Kt −Kn)IohRd + ρKtIoh[(1− cos s)/2] (6.36)

We call Equation (6.36) the target function. In order to �nd It, the global solar

irradiance measurement on tilted plane, we need to know all the parameters

on the right side of Equation (6.36). Among these parameters, θ is purely

geometric and can be easily calculated. Although the foreground's albedo

varies during the day for various reasons throughout the year, we assume that

in tropical regions the variation is small when compared to winters at high

latitude regions, owing to the total absence of snow and ice. We select a �xed

value of 0.2 for ρ as suggested by Gueymard (Gueymard, 2009). As such, the

only unknowns in target function are Kt, Kn and Rd.

We digress to reiterate the symbology used in above discussion. When

we refer to solar irradiance striking a collector, usually we imply global solar

irradiance (It in Equation (6.27)). Global solar irradiance can be represented

by the sum of three separate components, namely, direct beam irradiance (rep-
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resented by IDir cos θ term in Equation (6.27)), di�use irradiance (represented

by IDifRd term in Equation (6.27)) and re�ected irradiance (represented by

ρIGloRr term in Equation (6.27)). When the collector is placed horizontally,

the re�ected irradiance becomes zero as Rr becomes zero (see Equation (6.35)),

and the incidence angle θ is equal to zenith angle Z. Therefore, the direct beam

irradiance is now expressed as IDir cosZ, and IDir is called DNI (direct normal

irradiance). The anisotropic behaviour of di�use irradiance originates from the

scattering mechanism of the atmosphere. It is convenient to express the di�use

component received on a collector plane as a function of tilt and azimuth. We

consider the di�use irradiance on a horizontal plane as the reference; Rd in

Equation (6.27) is unity under this condition. We name di�use irradiance on

a horizontal surface as DHI (di�use horizontal irradiance). Finally, we refer to

global solar irradiance on a horizontal surface as GHI (global horizontal irradi-

ance). The relationship among GHI, DHI and DNI are expressed in Equation

(6.28). Note that Equation (6.28) is a special case of Equation (6.27) when

collector tilt is zero.

When all the irradiance components are known, i.e., measurements for

at least two irradiance components are available, we can evaluate It directly

through Equation (6.27). When only the global horizontal irradiance is known,

we need decomposition models to predict direct and di�use irradiance compo-

nents. We select �ve models which are considered as �universal" models to for-

mulate the relationship between Kt and Kn, namely, Erbs model (Erbs, Klein,

and Du�e, 1982), Orgill model (Orgill and Hollands, 1977), Maxwell model

(Maxwell, 1987), Reindl univariate model and Reindl bivariate model, both

models are described by Reindl et al.(Reindl, Beckman, and Du�e, 1990a).

These models are summarized in Appendix B. With the Kt and Kn relation-

ships shown in B, together with transposition models, we can obtain It value
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using Equation (6.36).

6.2.1.2 Evaluation of Ten Transposition Models

We evaluate the performance of ten transposition models in this section.

Knowledge of Rd is a prerequisite for use of Equation (6.27): we note that

all transposition models are governed by Equation (6.27), the only di�erence

among them being the di�erent formulation for Rd (see Appendix A).

Christophe.inglin@PhoenixSolar.sg 4

Zero-energy  building  is  already  possible  today  …
8.58kWp PV system generates 800-900kWh/month, exceeding average consumption

…  but  not  yet  commercially  viable  at  today’s  costsFigure 6.1: The �rst zero energy house in Singapore. Rooftop panels on the

right and left have inclination of 18.3◦ and 6.1◦; azimuth rotation (north is 0◦)

66◦ NE and 246◦ SW respectively.

The irradiance data used here was obtained from the �rst zero energy

house in Singapore, which is shown in Figure 6.1. The building aims to gener-

ate enough electricity for a six-person household using two PV arrays mounted

on the metal roof (Singapore Energy Market Authority, 2011). The azimuths

(north is 0◦) of the PV arrays are 66◦ NE and 246◦ SW on the east and west
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roof respectively. The inclination angle of the east roof is 18.3◦ and 6.1◦ for

the west roof.

As part of Solar Energy Research Institute of Singapore (SERIS)'s re-

search e�orts in the area of PV systems performance assessment and opti-

mization in tropical regions, we have deployed two calibrated silicon sensors

in the plane of array of each roof. The sensor facing east is named S111a

and the �atter, back roof facing west is named S111b. The silicon sensors are

temperature-corrected and have an accuracy of 5%. Calibration takes place

every year at the Fraunhofer Institute for Solar Energy Systems (ISE) CalLab.

The sampling rate of the setup is 1 Hz with logging rate at one minute. Beside

these two silicon photosensor, a Delta-T SPN1 Sunshine Pyranometer is also

installed horizontally on the roof, which we name S111. From the device's

calibration data sheet, it has an accuracy of 5%. We log it only at �ve min-

utes interval. We average the one minute data to �ve minute in this section.

We use the measurements from S111 as inputs to the transposition models.

The model output is compared to the averaged measurements from S111a and

S111b. We examine the performance of various transposition models using

�ve-minute data from these three stations over a period of one year, namely,

2011.

We can see from Equations (6.28), (6.31) and (6.36) that the zenith

angle Z and incidence angle θ for an arbitrary tilted plane are required to

calculate It. We use the Solar Position Algorithm (SPA) (NREL, 2008) from

National Renewable Energy Laboratory (NREL) to calculate the zenith angle

and the incidence angle. The details of this algorithm can be found in the

open source C program at (NREL, 2008).

We use mean bias error (MBE), relative root mean square error normal-

ized by the mean of the measured values (RMSErel, no bias) and expanded uncer-
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tainty at 95% con�dence interval (U95) as our error metrics for the evaluation.

We note that RMSErel, no bias is not the root mean square error; RMSErel, no bias

is called the coe�cient of variation of the root mean square error. The error

calculations are shown below:

MBE =

[
N∑
i=1

(Ipredicted,i − Imeasured,i)

]
/N (6.37)

where N is number of samples.

RMSErel, no bias =

√√√√ 1

N

N∑
i=1

(Ipredicted,i −MBEi − Imeasured,i)
2

1

N

N∑
i=1

Imeasured,i

(6.38)

and

U95 = k ×

√√√√ 1

N

N∑
i=1

(Ipredicted,i − Imeasured,i)
2

1

N

N∑
i=1

Imeasured,i

(6.39)

where k is the coverage factor, equal to 1.96 for a 95% con�dence level (note

that the calculation for U95 follows the usual RMSE, without subtracting

MBE). Imeasured is a general notation for all the measured quantities. Table 6.1

shows the MBE, RMSErel, no bias and U95 for tilted solar irradiance prediction

using ten transposition models as S111a and S111b.

The results shown in Table 6.1 are separated into all-sky condition and

clear-sky conditions to further elaborate on the errors. We use two indices,

namely, clearness index ε and brightness index ∆, to select data to determine

the clear sky situation. Both ε and ∆ are de�ned by Perez (Perez et al.,

1990). Their formulations are shown in Appendix. We consider the sky to

be clear if ε > 5.0 and brightness index ∆ < 0.12 (Robledo and Soler, 2000).

We can observe from Table 6.1 that all transposition models perform better
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Table 6.1: Performance of ten transposition models (converting from horizontal

to tilted) over a period of one year, 2011. Horizontal irradiance components

measurements from SPN1 are used as input, the output (converted global

irradiance on tilted plane) is compared with silicon photosensor measurements.

Station S111a s = 18.3◦ 66◦ NE S111b s = 6.1◦ 246◦ SW

Model MBE [Wm−2] RMSE [%] U95 [%] MBE [Wm−2] RMSE [%] U95 [%]

All-sky, N=44495

Isotropic

Liu and Jordan 2.99 10.28 20.19 6.69 8.14 16.34

Badescu -2.08 10.13 19.88 6.13 8.13 16.26

Tian -13.15 10.02 20.68 0.46 8.11 15.89

Koronakis 4.78 10.34 20.40 6.88 8.14 16.37

Anisotropic

Hay 6.78 8.55 17.09 5.47 8.17 16.27

Reindl 7.09 8.56 17.13 5.49 8.17 16.27

Temps and Coulson 25.56 10.22 23.64 26.12 9.74 23.39

Klucher 14.36 10.00 20.84 15.88 9.38 20.21

Perez 2.45 8.64 16.99 5.67 8.03 16.03

Skartveit and Olseth 6.27 8.58 17.09 5.41 8.13 16.28

Mean observed [Wm−2] 398.59 369.62

Clear-sky, N=757

Isotropic

Liu and Jordan -5.07 5.40 10.48 8.94 2.11 4.81

Badescu -7.75 5.27 10.52 8.62 2.11 4.76

Tian -13.59 5.20 10.77 5.48 2.11 4.40

Koronakis -4.13 5.32 10.44 9.04 2.11 4.82

Anisotropic

Hay 1.24 3.34 6.53 5.85 2.37 4.91

Reindl 1.35 3.33 6.54 5.86 2.37 4.91

Temps and Coulson 6.86 4.54 9.07 17.97 2.16 6.48

Klucher 6.54 4.56 9.10 17.75 2.16 6.43

Perez 5.54 4.12 8.21 9.45 2.11 5.04

Skartveit and Olseth 1.24 3.33 6.53 5.85 2.37 4.91

Mean observed [Wm−2] 766.17 717.75

under clear-sky conditions due to a relatively isotropic sky and small di�use

components.
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Some strong biases are observed for Klutcher model and Temps and

Coulson model for both sky conditions. We display the scatter plots of mod-

elled versus measured tilted irradiance at S111a and S111b in Figures 6.2 and

6.3 respectively using ten transposition models for all-sky conditions. The

biases shown by the Klutcher model and the Temps and Coulson model are

consistent with those reported in Table 6.1.

Figure 6.2: Scatter plots for modelled versus measured tilted irradiance at

S111a using 10 transposition models for all-sky conditions. 2011 �ve minutes

data are used. Abbreviations: Liu and Jordan (LJ), Badescu (BA), Tian (TI),

Koronakis (KO), Hay (HA), Reindl (RE), Temps and Coulson (TC), Klucher

(KL), Perez (PR) and Skartveit and Olseth (SK).
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Figure 6.3: Scatter plots for modelled versus measured tilted irradiance at

S111b using 10 transposition models for all-sky conditions.
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6.2.1.3 Evaluation of Five Decomposition Models

We use decomposition models to predict DNI and DHI from GHI in situations

when the DNI or DHI measurements are unavailable. Equation (6.28) suggests

that if we know any two irradiance components, we can compute a unique

value for the third component. We only show the prediction results of DHI.

Table 6.2 shows the performance of �ve decomposition models over a period

of one year, 2011. GHI measurements from the SPN1 pyranometer are used

as inputs, and DNI is estimated using the various decomposition models: the

output (predicted DHI) is compared with DHI measurements from the SPN1.

The scatter plots of modelled versus measured DHI are shown in Figure 6.4.

Figure 6.4: Scatter plots for modelled versus measured DHI at S111 using 5

decomposition models.
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Figure 6.5: Scatter plot for Kt, Kd pairs during 2011 January under di�erent

zenith angle ranges. Erbs model is plotted to demonstrate the non-injective

mapping from Kt to Kd.
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Table 6.2: Performance of �ve decomposition models (predicting DHI from

GHI in a tropical region) over a period of one year, 2011. Predicted DHI is

compared to DHI measurements from SPN1 for error calculation.

Model MBE [Wm−2] RMSErel, no bias [%] U95 [%]

All-sky, N=44495

Erbs -13.32 32.02 71.81

Orgill -12.85 34.50 68.80

Reindl (univariate) -13.74 34.71 69.37

Maxwell -13.27 34.94 69.73

Reindl (bivariate) 0.43 31.76 62.26

Mean observed [Wm−2] 195.49

Clear-sky, N=757

Erbs 66.59 24.50 126.57

Orgill 76.26 25.89 143.37

Reindl (univariate) 85.97 22.00 157.21

Maxwell 97.36 43.29 191.07

Reindl (bivariate) 117.46 23.83 211.76

Mean observed [Wm−2] 111.46

The large RMSErel, no bias values obtained in Table 6.2 are consistent

with the results from the many studies of the literature, which mostly use

hourly data. The errors originate from the one-to-many mapping from GHI to

DHI. Recall that GHI and DHI may also be represented using transmittance

Kt and Kd (see Equation (6.29) and (6.30)). Figure 6.5 shows the scatter

plot for Kt, Kd pairs during 2011 January under di�erent zenith angle ranges.

We observe that the possible range of Kd varies from 0.1 to 0.5 for Kt values

greater than 0.1. The range of Kd is weakly dependent on zenith angle. As all

the decomposition models describe a one-to-one mapping between Kt and Kd,

a large RMSErel, no bias is expected. The details of the one-to-many mapping

could be found in the study by Ridley et al. (Ridley, Boland, and Lauret,

2010).

We conclude that more elaborate separation methods (e.g. Maxwell
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and Reindl bivariate models) do not out-perform the simpler ones (e.g. the

Erbs, Orgill and Reindl univariate models). This conclusion is also observed

by Gueymard in his comparison of models with mid-latitude data (Gueymard,

2009).

It is interesting to note that the decomposition models perform worse in

clear sky conditions as compared to all-sky conditions. Large positive MBEs

are observed for all models showing strong over-prediction. This is expected

as: with the same Kt value, Kd is much smaller during a clear sky condition

than cloudy conditions, i.e., clear sky conditions are very likely to be the points

below the curve in Figure 6.5.

6.2.1.4 Combination of Decomposition Models and Transposition

Models

We have shown in the previous section that decomposition models introduce

large errors for DHI prediction. We now examine the e�ect of these errors on

irradiance conversion by assuming DHI measurements are not available, i.e.,

GHI is used as the only input for conversion from horizontal to tilt in this

section.

The four isotropic models used in Section 6.2.1.2 show similar accuracy

for It prediction. Therefore we select the classic Liu and Jordan model to

represent all isotropic models. As the Klucher model and the Temps model

do not perform well, as shown in Table 6.1, we do not use these models in

our analyses. We do not include the Hay model as it can be represented using

the Skartveit and Olseth model when Ω = 0 (see B). We only select three

anisotropic models, namely, those of Perez, Reindl and Skartveit and Olseth.

Table 6.3 shows the MBE, RMSE and U95 for various combinations of

transposition models and decomposition models over a period of one year,
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Table 6.3: Performance of �ve decomposition models with four transposition

models (converting from horizontal to tilted) over a period of one year, 2011.

Only GHI measurements from SPN1 are used as input, DNI and DHI are

estimated using various decomposition models, the output (converted global

irradiance on tilted plane) is compared with silicon photosensor measurements.

Station S111a s = 18.3◦ 66◦ NE S111b s = 6.1◦ 246◦ SW

Model MBE [Wm−2] RMSE [%] U95 [%] MBE [Wm−2] RMSE [%] U95 [%]

Isotropic

Liu and Jordan

+ Erbs 0.86 11.25 22.05 7.18 8.25 16.60

+ Orgill 0.86 11.25 22.06 7.25 8.24 16.61

+ Reindl (univariate) 1.03 11.11 21.79 7.18 8.23 16.57

+ Maxwell 2.17 10.48 20.57 6.85 8.23 16.53

+ Reindl (bivariate) 1.41 11.30 22.16 7.49 8.25 16.66

Anisotropic

Perez

+ Erbs 0.91 10.02 19.65 6.29 8.17 16.36

+ Orgill 0.72 10.01 19.61 6.31 8.16 16.35

+ Reindl (univariate) 0.72 9.89 18.39 6.23 8.15 16.32

+ Maxwell 2.18 9.55 18.76 6.13 8.22 16.44

+ Reindl (bivariate) 0.70 9.93 19.47 6.41 8.16 16.35

Reindl

+ Erbs 4.81 9.84 19.43 6.11 8.30 16.59

+ Orgill 5.12 9.79 19.36 6.16 8.31 16.61

+ Reindl (univariate) 6.27 9.43 18.70 6.97 7.99 16.03

+ Maxwell 8.80 10.05 20.08 6.74 8.12 16.22

+ Reindl (bivariate) 7.92 9.59 19.13 8.03 7.90 15.96

Skartveit and Olseth

+ Erbs 4.02 9.85 19.41 6.04 8.31 16.59

+ Orgill 4.36 9.81 19.34 6.10 8.31 16.61

+ Reindl (univariate) 4.69 9.79 19.32 5.99 8.33 16.63

+ Maxwell 6.19 10.84 21.46 5.38 8.69 17.27

+ Reindl (bivariate) 5.47 10.13 20.03 6.22 8.42 16.83

Mean observed [Wm−2] 398.59 369.62
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2011. For this exercise, we use only GHI measurements from S111 as input

for Equation (6.36). DHI and DNI components are estimated using decom-

position models and the results (converted It values) are compared with the

measurements from S111a and S111b separately.

We observe from Table 6.3, that the best performance using a combi-

nation of transposition models and decomposition models is given by Reindl

plus the Reindl univariate model for S111a, Reindl plus the Reindl bivariate

model for S111b. It is important to note that, for small inclination angles, for

example S111b, the performance of anisotropic models is very similar to those

using the isotropic approximation. We conclude that if various decomposition

models are used to estimate DHI and DNI, there will be a small additional

error (additional to the results from Table 6.1) in predicted It on planes.
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Chapter 7

Conclusion and proposed future

works

7.1 Summary

In this thesis, several novel techniques using statistical analysis and machine

learning were proposed and applied to forecast solar irradiance.

In Chapter 3, a novel time series technique was applied to forecast high

resolution solar irradiance data using an exponential smoothing state space

(ESSS) model. To stationarize the solar irradiance data before applying lin-

ear time series models, an original Fourier trend model was proposed. The

performance of the Fourier trend model was compared with other popular

trend models using residual analysis and Kwiatkowski-Phillips-Schmidt-Shin

(KPSS) stationary test. The KPSS values of the residual series of cosine trend

and Gaussian trend were found to be higher than the critical value, indicating

that the two series are not stationary. The residual series of Fourier trend and

high order polynomial trend were found to be stationary, since their KPSS

values are smaller than the critical value. However, the KPSS value of the
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residual series of Fourier trend is much smaller than that of the high order

polynomial trend, which proves that the residual series of Fourier trend has a

higher probability of obtaining stationarity. Therefore the Fourier trend model

was used for subsequent forecasting. Using the optimized Fourier trend, the

ESSS model was implemented to forecast the stationary residual series of Sin-

gapore and Colorado, USA. The climate of Colorado is temperate semi-arid,

which contrasts to the humid tropical climate of Singapore. To compare the

performance with other time series forecasting models, autoregressive inte-

grated moving average (ARIMA), linear exponential smoothing (LES), simple

exponential smoothing (SES) and random walk (RW) were also tested using

the same data samples. The simulation results showed that the ESSS model

has better performance than the other forecasting models. Finally, in order to

discuss the reliability of the forecasting models in a real application, a com-

plementary study on the forecasting 95% con�dence interval and forecasting

horizon of the ESSS model was performed. The ESSS model 95% con�dence

interval provides forecasting accuracy of around 90%, which indicates a level

of accuracy useful for application by power system utilities. By comparing

the forecasting horizon plots of di�erent models, the ESSS model exhibits the

widest range of low forecasting errors, which indicates the best performance

when using less than 20 minute average data to predict up to 20 minutes ahead.

In Chapter 4, satellite image analysis and a novel hybrid forecasting

technique were applied to forecast hourly resolution solar irradiance data us-

ing both the exponential smoothing state space (ESSS) model and the back

propagation multilayer perceptron model. After analysing the satellite images,

the self-organising map was used to perform the classi�cation of cloud cover

index. Using the derived cloud cover index, the ESSS model was implemented

to forecast the next time step cloud cover index in Singapore and the back
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propagation multilayer perceptron model was applied to derive the solar irra-

diance from the cloud cover index forecast. To compare the performance with

other time series forecasting models, ARIMA, LES, SES, and RW were also

tested using the same data samples. The simulation results showed that the

hybrid model has better performance than other forecasting models.

In Chapter 5, a novel hybrid forecasting technique was applied to fore-

cast hourly resolution solar irradiance data using self-organizing maps, support

vector regression and particle swarm optimization. Self-organizing maps were

applied to partition the whole input space into several disjointed regions with

di�erent characteristic information on the correlation between the input and

the output. Then support vector regression was used to model each disjointed

region to identify the characteristic correlation. In order to reduce the perfor-

mance volatility of support vector machines with di�erent parameters, particle

swarm optimization was implemented to automatically perform the parameter

selection in support vector regression modelling.

In Chapter 6, techniques in spatial-temporal solar irradiance forecast-

ing were proposed. In section 6.1, spatial-temporal covariance structures and

time-forward kriging were introduced: the aim of this chapter was to devise

a methodology to forecast solar irradiance over a wide area, using time series

from a small number of monitoring stations as input. When the forecast irradi-

ance is interpolated over the entire area, and combined with knowledge of PV

systems located within it, short timescale PV power generation forecasts can

be made. Such forecasts will soon be essential for power generation and grid

management companies in Singapore, as the installed base of PV approaches

a signi�cant fraction of overall power generation.

The basis of our method lies in two transformations of the data: we �rst

ensured temporal stationarity by detrending the data and applied a coordinate



143

transformation to obtain spatial stationarity. After the data transformation,

the predictive time-forward kriging can be investigated.

In section 6.2, a comparison of methods to convert solar irradiance

measured at an arbitrary tilt to horizontal (and from horizontal to tilt) in the

tropical region of Singapore was presented. Using observations, we evaluated

the performance of ten transposition models and �ve decomposition models.

Based on these results, we further developed algorithms to convert solar irra-

diance from tilt to horizontal.

Each PV system is likely to possess a simple irradiance measurement

equipment (e.g. silicon sensor) for performance ratio and yield assessments.

Very often, only data from an inclined plane are available. For good forecasts,

data from various locations must be converted to horizontal irradiance in order

to accurately capture the spatio-temporal dynamics. Our conversion algorithm

can be used to transform tilted irradiance measurements to GHI and thus

greatly increase the database for such forecasts, which will soon be essential

for the management of many electricity grids.

7.2 Novel contributions

In Chapter 3, the novel contribution is the proposed ESSS model with Fourier

trend preprocessing to forecast short-term solar irradiance. Compared with

other popular statistical time series models like ARIMA, LES, SES and RW,

the ESSS model has better forecasting accuracy in general for the forecasting

horizon from 5 to 20 minutes. This timescale is one of great interest to power

grid operators. Even a marginal improvement in forecasting accuracy on this

timescale can represent huge cost savings in grid operation. Moreover, our

novel formulation of the Fourier trend model also outperforms other similar

trend models.
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In Chapter 4, the novel contribution is the proposed SOM+ESSS+MLP

hybrid model with satellite image preprocessing to forecast medium-term solar

irradiance. Compared with other popular statistical time series models like

ARIMA, LES, SES and RW, the proposed model has superior forecasting

accuracy for hourly solar irradiance.

In Chapter 5, the novel contribution is the proposed SOM+SVR+PSO

hybrid model to forecast medium-term solar irradiance without satellite im-

ages. To compare the performance with other time series forecasting models,

the hybrid model has generally better performance than other statistical fore-

casting models in hourly solar irradiance forecasting.

In Chapter 6, the novel contribution is the proposed spatial-temporal

solar irradiance analysis. This analysis provides a scienti�c way to predict

solar irradiance at locations without monitoring stations. The methodology

presented here was useful when high spatial resolution irradiance data are

available.

7.3 Proposed future works

All the models in this thesis were developed based on the data available at

di�erent times. SERIS now has additional equipment like total sky imager

(TSI) available for short-term solar irradiance forecasting. The local cloud

cover information can be derived directly from the series of sky images pro-

vided by the TSI. This important additional information input will improve

the forecasting accuracy from our statistical time series analysis based on the

ESSS model. It is also possible to analyse local sky images from TSI together

with satellite images to generate more accurate hourly cloud information and

identify the pattern using machine learning models.

More solar irradiance monitoring stations have also been set up in the
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past 12 months.SERIS now has 25 monitoring stations all across Singapore,

as shown in Figure 7.1. This enables SERIS to analyse spatial-temporal data

more accurately. Even though SERIS have a solid method to achieve both spa-

tial and temporal stationarity, the spatial-temporal forecasting methodology

can still be further investigated and improved by machine learning techniques.

Figure 7.1: 25 solar irradiance monitoring stations in Singapore in 2015

With abundant information input and various forecasting models de-

veloped, it is also possible to investigate the stacking models. Stacking is

a machine learning method to combine several di�erent forecasting models.

These models are trained with the available input data and generate corre-

sponding forecasting outputs. The outputs are then becoming the input of a

stacking learning model to make a �nal prediction.
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Appendix A

Transposition Models

A.1 Isotropic Models

Four isotropic models are accessed in this work. In isotropic approximation,

we assume the di�use radiance were ideally constant over the whole sky hemi-

sphere. Tilt angle s is the only input to these models.

A.1.1 Badescu

Rd = [3 + cos(2s)]/4 (A.1)

A.1.2 Koronakis

Rd = (2 + cos s)/3 (A.2)

A.1.3 Liu and Jordan

Rd = (1 + cos s)/2 = cos2(s/2) (A.3)
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A.1.4 Tian

Rd = 1− s/180 (A.4)

A.2 Anisotropic Models

In reality, a plane of tilt s facing the sun receives more di�use radiation than

a plane of same tilt in the opposite direction. Various parameters such as

irradiance components and zenith angle are considered in the models.

A.2.1 Hay

Rd =
IDif

Ioh

Rb +

(
1− IDif

Ioh

)
[(1 + cos s)/2] (A.5)

where Rb is beam irradiance transposition factor, it is given by cos θ/ cosZ.

A.2.2 Klucher

Rd = cos2(s/2)[1 + F ′ sin3(s/2)][1 + F ′ cos2 θ sin3 Z] (A.6)

where F ′ is Klucher's modulating function de�ned as (1− IDif/IGlo).

A.2.3 Perez

The sky's clearness ε is �rst de�ned by Perez:

ε =

[(
IDif + IDir

cosZ

cos θ

)
1

IDif

+ κ

(
Z × π
180

)3
]
÷

[
1 + κ

(
Z × π
180

)3
]

(A.7)

where κ is constant 1.041 for Z in degrees. The sky's brightness ∆ is give by:

∆ = IDif × AM/Io (A.8)
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The circumsolar brightening coe�cient F1 and horizon brightening co-

e�cient F2 is given by:

F1 = F11 + F12 ×∆ + F13 ×
(
Z × π
180

)
(A.9)

F2 = F21 + F22 ×∆ + F23 ×
(
Z × π
180

)
(A.10)

where F11, F12, F13, F21, F22 and F23 are given according to various ε bins by

table:

ε F11 F12 F13 F21 F22 F23

[1, 1.065) −0.0083 0.5877 −0.0621 −0.0596 0.0721 −0.022

[1.065, 1.23) 0.1299 0.6826 −0.1514 −0.0189 0.066 −0.0289

[1.23, 1.5) 0.3297 0.4869 −0.2211 0.0554 −0.064 −0.0261

[1.5, 1.95) 0.5682 0.1875 −0.2951 0.1089 −0.1519 −0.014

[1.95, 2.8) 0.873 −0.392 −0.3616 0.2256 −0.462 0.0012

[2.8, 4.5) 1.1326 −1.2367 −0.4118 0.2878 −0.823 0.0559

[4.5, 6.2) 1.0602 −1.5999 −0.3589 0.2642 −1.1272 0.1311

[6.2,+∞) 0.6777 −0.3273 −0.2504 0.1516 −1.3765 0.2506

Finally the di�use transposition factor is given by:

Rd = (1− F1)× (1 + cos s)/2 + F1 × a/b+ F2 × sin s (A.11)

where a = max(0, cos θ) and b = max(0.087, cosZ).

A.2.4 Reindl Transposition Model

Rd =
IDif

Ioh

Rb +

(
1− IDif

Ioh

)
[(1 + cos s)/2]

[
1 +

√
IDif

IGlo

sin3(s/2)

]
(A.12)

where Rb is de�ned earlier in Hay model.
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A.2.5 Skartveit and Olseth

Rd =
IDif

Ioh

Rb + Ω cos s+

(
1− IDif

Ioh

− Ω

)
[(1 + cos s)/2] (A.13)

where Ω = max [0, (0.3− 2IDif/Ioh)]

A.2.6 Temps and Coulson

Rd = cos2(s/2)[1 + sin3(s/2)][1 + cos2 θ sin3 Z] (A.14)
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Appendix B

Empirical Models to Relate

Various Transmittance

B.1 Erbs Model

We de�ne di�use horizontal transmittance Kd as:

IDif = KdIoh (B.1)

Combine the above equation with Equation (6.28) to (6.32), we have:

Kd = Kt −Kn (B.2)

together with the correlation which Erbs developed in reference (Erbs, Klein,

and Du�e, 1982; ?):

Kd

Kt

= 1.0− 0.09Kt for Kt ≤ 0.22 (B.3)

Kd

Kt

= 0.9511− 0.1604Kt + 4.388K2
t − 16.638K3

t

+12.336K4
t for 0.22 < Kt ≤ 0.80 (B.4)

Kd

Kt

= 0.165 for Kt > 0.80 (B.5)
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B.2 Orgill Model

Kd

Kt

= 1.0− 0.249Kt for Kt ≤ 0.35 (B.6)

Kd

Kt

= 1.557− 1.84Kt for 0.35 < Kt ≤ 0.75 (B.7)

Kd

Kt

= 0.177 for Kt > 0.75 (B.8)

B.3 Maxwell Model

Kn = Knc −∆Kn (B.9)

Knc = 0.866− 0.122(AM)− 0.0121(AM)2

−0.000653(AM)3 + 0.000014(AM)4 (B.10)

∆Kn = a+ b× exp [c× (AM)] (B.11)

AM = [cosZ + 0.15(93.885− Z)−1.253]−1 (B.12)

Knc is clear-sky direct normal transmittance, AM is air mass. a, b and c are

parameters used to calculate the change in direct normal transmittance ∆Kn

under various values ofKt. a, b and c are related toKt by a piecewise function:

For Kt ≤ 0.6,

a = 0.512− 1.56Kt + 2.286K2
t − 2.222K3

t (B.13)

b = 0.370 + 0.962Kt (B.14)

c = −0.280 + 0.932Kt − 2.048K2
t (B.15)

For Kt > 0.6,

a = −5.743 + 21.77Kt − 27.49K2
t + 11.56K3

t (B.16)

b = 41.40− 118.5Kt − 66.05K2
t + 31.90K3

t (B.17)

c = −47.01 + 184.2Kt − 222.0K2
t + 73.81K3

t (B.18)
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B.4 Reindl Model (Univariate)

Kd

Kt

= 1.020− 0.248Kt for Kt ≤ 0.3 (B.19)

Kd

Kt

= 1.45− 1.67Kt for 0.3 < Kt ≤ 0.78 (B.20)

Kd

Kt

= 0.147 for Kt > 0.78 (B.21)

B.5 Reindl Model (Bivariate)

Kd

Kt

= 1.020− 0.254Kt + 0.0123 sin(α)

for Kt ≤ 0.3 (B.22)

Kd

Kt

= 1.400− 1.749Kt + 0.177 sin(α)

for 0.3 < Kt ≤ 0.78,

Kd/Kt < 0.97 and Kd/Kt > 0.1 (B.23)

Kd

Kt

= 0.486Kt − 0.182 sin(α)

for Kt > 0.78 and Kd/Kt > 0.1 (B.24)

where α is the solar elevation angle. It is given by 90◦ − Z in degrees.
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