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Summary

The emergence of information technology have changed the scale and scope of information systems
that generate a huge amount of data everyday, opening the area of big data processing and analytics.
Public clouds have become an attractive candidate to meet not only the ever-growing data storage de-
mands but also the heavy and large-scale computation requirements of big data applications. However,
moving data to public clouds for storing and processing raises new challenges that cloud users may have
not experienced when they manage the data in their own local servers. The performance issue such as
the delay in data retrieval or processing is one of the most important issues since it directly affects the
users experience on the quality of services offered by cloud providers. The security issue, particularly
the data privacy, is also hindering the migration of data to public clouds. However, it is very difficult to
achieve the above challenges due to the complexity in architecture of cloud infrastructures, heterogene-
ity of cloud resources, and the multi-tenant characteristic of cloud environment. Thus, new tools and
models are needed to adapt to the diversity of cloud infrastructures and usage.

Focusing on divisible loads, which are widely used in many large-scale and data intensive applica-
tions such as monitoring systems, health care systems and smart home, etc., this thesis applies Divisible
Load Theory to propose novel data management solutions including scheduling strategies for data pro-
cessing and data placement strategies, considering the security requirement. Two scheduling strategies:
a static scheduling strategy (SSS) and a dynamic scheduling strategy (DSS) have been designed for di-
visible load scheduling in multi-cloud systems such that the total data processing time is minimized.
The proposed strategies take into account the topology and capacity of the system network and the het-
erogeneity of computing nodes. While SSS considers an ideal scenario where node availability is known
prior to the scheduling, DSS relaxes this assumption and predicts node availability based on historical
logging information. Furthermore, the thesis proposes a novel data placement algorithm, namely avail-
ability and security-aware data placement algorithm for cloud storage systems (A-SEDuLOUS) that
minimizes the total data retrieval time and satisfies the security requirement by applying the graph the-
ory. In addition, the thesis also considers other alternative approaches such as encryption techniques to
protect data privacy when storing and processing data on public clouds.

The performance studies presented in this thesis were mainly carried out by numerical simulations
to demonstrate the effectiveness of the proposed strategies. We additionally consider a real genomic
application, which imposes both the performance and security issues, to demonstrate the practicality of
the proposed approaches. We designed an entire secure framework for genomic computation on public
clouds to exploit the parallel processing on multiple computing nodes so as to improve the performance.
We concretized the framework and proposed a 3-encryption-scheme model for genomic sequence map-
ping (3EGSM) by combining key-hash function, homomorphic encryption and order-preserving encryp-
tion. The model not only protects genomic sequences, the intermediate and final computation results
but also eliminates as much as possible the heavy computation requirement of fully homomorphic en-
cryption. The simulation and experimental results assess the validity of the proposed strategies against
baseline strategies. The results also provide useful insights on their applicability in realistic scenarios.
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Chapter 1

Introduction

The advent of cloud computing has changed the way of using computer and satisfying IT demands of
both industrial and academic organizations. Cloud computing is capable of elastically scaling services
and infrastructures as well as self-adaptively managing the offered services, thus efficient service pro-
visioning can be obtained to improve not only the quality of service for users’ applications but also
the economic benefit for cloud providers [Moreno-Vozmediano et al., 2013]. Many commercial cloud
providers have joined the market and they are offering users cloud resources including computing, stor-
age and network resources under different service models such as Software as a Service (SaaS), Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS) [Sen, 2013] with a pay-per-use model for the
resource usage cost. Due the virtualization technologies, multiple users’ resource requests can be co-
located on the same set of physical resources without any performance interference, making cloud com-
puting be a multi-tenant computing environment. The flexibility in resource management, high quality
in service provisioning with performance isolation and low resource usage cost make clouds become
an attractive candidate for many large-scale, data-intensive and computing-intensive applications. Many
applications, which were run in dedicated in-house servers, are nowadays migrated to public clouds for
handling a big amount of data generated everyday such as surveillance systems, health care systems,
smart home or environment monitor [Zeng et al., 2016], heralding the area of big data processing in the
clouds. Throughout this thesis, we use “users” to indicate the actors who rent resources or services from
cloud providers, and “providers” to indicate the actors who lease the cloud resources or services.

Considering IaaS clouds where users request resources as a bundle of computing, network and stor-
age resources to deploy their own computing platform, this thesis carried out the studies to provide
users efficient methods to optimize the performance of their systems, taking into account the privacy
issue of the data stored and processed in their systems. Since users are responsible for managing their
own computing platform deployed in the clouds, the performance of the resource manager used in their
systems directly affects the overall performance of the systems, e.g., the total processing time of the
data, load balancing among computing nodes. Having an efficient resource manager helps users reduce
total resource usage time, thereby reducing the resource usage cost paid for providers. However, with
complex resource requirements of modern big data applications and the complexity in the architecture
of the computing platforms deployed to run such applications, the existing approaches may no longer
guarantee the efficiency and may not consider all the features of a cloud computing platform.

1



Introduction Chap. 1

In addition to the performance issue, users also concern about the data privacy issue when moving
data to the clouds for storage and processing. As mentioned earlier, due to the multi-tenant characteristic
of the cloud environment, preventing the data leakage and loss becomes harder and exceeds the capacity
of the current protection standards such as data anonymization or differential privacy. Adversaries on
the clouds being either honest-but-curious or malicious can collect the leaked data and infer useful
information for their own purposes. The resource manager, which assigns data to computing nodes for
processing, or the data placement manager, which assigns the data to storage nodes, need to take into
account the security requirement to protect the data privacy. This thesis therefore aims at providing
cloud users the methods for big data management in cloud storage systems for not only optimizing the
overall performance but also considering the data privacy.

1.1 Key Challenges of Big Data Processing in Clouds

In this section, we analyze the key challenges of big data processing in clouds to motivate the research
carried out in this thesis. Even though many existing works have addressed these challenges, they did not
either provide a complete solution or taking into account sufficient parameters of the systems. Focusing
on the performance issue while considering the security requirement, we show that new methods are
needed to achieve high performance in data processing in the clouds while protecting the data privacy.

1.1.1 Achieving High Performance for Big Data Processing in Clouds

Due to the flexibility in resource provisioning in clouds, the amount of resources requested by users
to deploy their own systems can be elastically adjusted to satisfy the computing requirement and the
volume of data needed to be processed, thus obtaining the desired performance and reducing the re-
source usage cost. Generally, we can refer the amount of work to process data on a computing node
as a load and hereafter, we use the terms “data” and “loads” interchangeably. Since computing re-
sources are used for processing loads, how to efficiently schedule/assign loads to computing resources
is a difficult problem to achieve high performance of the system, e.g., minimize the total processing
time of loads, which in turn can be obtained only when load balancing among computing nodes is guar-
anteed [Fang et al., 2010]. Indeed, load balancing among computing nodes will avoid a scenario that
one node may be assigned very heavy load while other nodes process smaller loads and stay idle after
finishing. However, the load balancing becomes much more complicated since computing nodes are
practically heterogeneous in terms of computing capacity, network link capacity and other aspects such
as software licence, security limitation. Furthermore, due to the nature of loads submitted to the system,
loads may require different amount of computations. For example, one load deals with data compres-
sion and the other deals with data encryption using different key lengths, resulting in different amount of
running time the computing node spends to accomplish the processing. Throughout this thesis, we refer
to this characteristic as computation requirement of a load. Combination of all the above characteristics
makes the problem of load scheduling become challenging that has not been considered in the literature.
We step forward to propose novel scheduling strategies in this thesis.

In general, there are two types of load scheduling approaches: static and dynamic. Static scheduling
approach assigns the loads to computing nodes with the assumption that the information of the whole
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system is available prior to the scheduling process such as computation capacity of the nodes and the
time instant that computing nodes are available for processing loads, denoted as release time of com-
puting nodes. However, having only prior knowledge of nodes does not reflect dynamic changes of
node attributes at run-time, e.g., node crashes and becomes unavailable for processing other loads that
have been assigned to it. Furthermore, static approach is not able to adapt to load changes during run-
time [Nuaimi et al., 2012]. Therefore, this scheme has a limitation when applying to realistic scenarios.
On the other hand, dynamic load scheduling approach considers the dynamic changes in the system such
as the number of computing nodes available for processing at the scheduling instant, number of loads
remaining to be processed on each computing nodes. Computing nodes may be released in the past but
they may not be ready for processing a load since they are busy with others, referred to as ready time of
computing nodes. Since this approach collects run-time properties of nodes, it can dynamically assign
the loads to computing nodes based on up-to-date information of nodes and loads [Nuaimi et al., 2012]
and immediately react to the change of the system. For dynamic load scheduling, it is necessary to
have a monitoring mechanism in order to observe the node status and load progress. The monitoring
mechanism collects information about the state of nodes such as CPU load, running processes, band-
width consumption, etc. Although it is difficult to implement compared to the static approach, dynamic
approach is more accurate and appropriate to apply to large-scale cloud computing infrastructures.

1.1.2 Protection of Data Privacy in Clouds

Although cloud storage systems have become an attractive candidate to meet the ever-growing stor-
age demands from users, ensuring the privacy of data stored in the cloud is major challenge due
to the multi-tenant characteristic of the cloud environment [Factor et al., 2013, Huang et al., 2011b,
Hao and Han, 2011, Itani et al., 2009]. Without the knowledge of physical location of the data, users
concern about the data leakage and loss, which may result in severe consequence for the data
owner [IMEX, 2010] for instance users may be denied to insurance services because of leakage of per-
sonal medical records. In general, data stored in cloud storage systems such as Amazon Simple Storage
Service (Amazon S3) [Amazon S3, 2014] and Google Cloud Storage [Google, 2014] are remained in
plaintext by default. However, insecure storage allows malicious users to be able to access and exploit
the stored sensitive data [Subashini and Kavitha, 2011]. To protect the data privacy, several methods
have been proposed: (i) user-centric authentication, (ii) encryption based approach, and (iii) division of
sensitive information. User-centric authentication approaches verify and confirm the identity of users
who try to access data and password-based authentication scheme is the most widely used by cloud
providers [Moreno-Vozmediano et al., 2013]. However, only using such user-centric authentication ser-
vice may not be sufficient to solve the problem of data privacy protection due to authentication attacks.

Encryption emerged as one of the most effective means to protect sensitive data by making the
original data called plaintext unreadable [Harrin, 2012]. This is done by using an encryption algorithm,
which encodes plaintext to generate the encrypted data called ciphertext so that it can be read by someone
who has legitimate encryption key. With an encryption tool, users can encrypt data on their local machine
before uploading the encrypted data to the cloud. However, this approach introduces an additional
burden for users who may not be expert to manage the encryption key and operate the encryption tool.
Furthermore, users are required to equip local machines, which need to be powerful to be able to handle
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such a compute-intensive task. These issues make the user-side encryption approach difficult to realize
in reality. Thus, a server-side encryption approach is advocated such that cloud providers offer users
such encryption service as an added value or free of charge service. However, the server-side approach
requires that users trust and delegate the encryption process to providers.

While conventional encryption algorithms such as AES and Blowfish can protect the privacy of
the data stored in the clouds, the applications taking this data as an input are not able to perform the
computation with the data encrypted by such algorithms. In other words, the conventional encryp-
tion algorithms can protect only the data stored in the clouds for backup purpose but not involving in
any computation. To protect the privacy of the data involving in computation, Homomorphic Encryption
(HE) [Gentry, 2009], which has been extensively studied in the past few years, can be applied since it en-
ables complex mathematical operations to be performed on encrypted numeric data without decrypting
and any knowledge of the secret decryption key. The intermediate and final results of the computation
are also generated under encrypted format so as only the users who have the legitimate secret key can
decrypt and obtain the plaintext data. This feature makes homomorphic encryption to be used for protect-
ing the privacy of numeric data that involves in the computation performed in untrusted domains without
revealing the original plaintext data. However, most of homomorphic encryption schemes require heavy-
weight computation, leading to the performance degradation [Chung et al., 2010]. We therefore study to
apply different encryption techniques to respective data depending on the computation characteristic of
the data to optimize the overall performance of the system.

In addition to encryption techniques, assuming that sensitive information is spread over the data file,
a division approach can be used to divide the data into multiple fragments (chunks), each will be stored
or processed on a separate storage or computing node. This will protect the privacy of the data since even
a chunk has been attacked, malicious users cannot guess the location of other chunks in a large-scale
system. Depending on the security requirement of the users, the distance between the chunks of the
same data will be defined such as by the number of hops on the network path connecting two nodes. The
further the distance is, the higher the security level of the data that can be guaranteed but the lower the
performance of the system, e.g., the total retrieval time of the data is longer. Furthermore, determining
the size of the chunks stored or processed on each node directly affects the performance since nodes
are heterogeneous in terms of capacity. Thus, deciding a data placement solution (a list of storage or
computing nodes and the size of chunks assigned to respective nodes) is very challenging to satisfy the
security requirement while not sacrificing the overall performance. Motivated by this, we carry out the
research in this thesis to apply not only encryption techniques but also the data division technique to
protect the data privacy and evaluate the performance of each approach in different scenarios.

1.1.3 Guaranteeing Data Availability in Clouds

Not only being concerned about the privacy issue, users are also concerned about the availability of
the data stored in the clouds [Hashem et al., 2015]. While one of the main purposes of using cloud
storage systems is to guarantee the data availability, the large-scale characteristic of cloud storage sys-
tems leads to frequent hardware failures, making data unavailable. For instance, the T-Mobile/Sidekick
incident [Wingfield, 2009] in 2011 experienced temporary lack of availability lasting at least several
hours [Helft, 2009, Dignan, 2008] and noticeable loss of personal customer data. To ensure data avail-
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Figure 1.1: Contributions of thesis and relationship between works.

ability, many cloud providers offer the data replication as a transparent service with multiple data copies
that are stored geographically. However, some of them still suffer the system outage such as Google Mail
and Hotmail [Albanesius, 2012, Cachin et al., 2009]. This shows that only increasing the number of data
copies without considering other aspects such as storage node selections based on network topology will
not guarantee the data availability completely when network links are attacked. In this thesis, we first
revise the existing approaches and then propose a solid data placement solution to not only guarantee
the complete data availability, protect the data privacy but also improve the overall performance of the
system by minimizing the total retrieval time of a data.

1.2 Contributions and Organization of the Thesis

1.2.1 Scope and Contributions of the Thesis

This thesis aims at providing efficient methods for the users of IaaS clouds to manage their own com-
puting platform built up by using the resources reserved from IaaS clouds including storage, network
and computing resources. The scope of the thesis is limited to divisible loads that are assumed to be
divided into multiple chunks with arbitrary size such as text files, video files and genomic sequences.
However, we believe that the contributions made in this thesis can apply to a large category of cloud
applications that require both high performance for processing large volume of data and the security
requirement for protecting the data privacy. In summary, Fig. 1.1 presents the contributions of this thesis
and the relationship between the works carried out in this thesis. We focus on the two main research
directions that directly affect the user’s perception on cloud infrastructures: the overall performance of
the systems and the data privacy. We first carry out different research works on each direction separately
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to provide efficient methods to the users who may have interest in only one of the directions, i.e., the
user objective is only achieving high performance of the systems or protecting the data privacy. We then
combine both objectives in a joint work and algorithmic contributions and demonstrate the effectiveness
of the proposed approach by real experiments of a specific case study.

On the direction of performance optimization, we focus on the scheduling strategies for divisible
loads in multi-cloud systems. We propose novel scheduling strategies that take into account the complex
requirements of users on computing resources, network topology. They consider the dynamic arrival of
loads as well as the availability of computing nodes in a heterogeneous computing environment. The
proposed scheduling strategies aim at minimizing the total processing time of loads so as users can
reduce the resource usage cost paid for cloud providers. On the direction of data privacy, we design and
implement a server-side encryption service for cloud storage systems (ESPRESSO). Though this work
applies existing encryption techniques, its flexibility design allows users to enhance the security of their
cloud storage systems and thus relieving the concern on data leakage and loss.

In several scenarios, users are requiring to achieve both objectives at the same time. We thus consider
the problem of performance optimization while satisfying the security requirement. As a theoretical and
algorithmic contribution, we propose a novel approach for data placement in cloud storage systems to
meet the increasing demands of nowadays big data applications. The proposed approach applies the
divisible load theory to address the performance issue and graph theory for the security issue. As a
practical contribution, we design an entire secure framework for genomic data processing on public
clouds. We implement the framework for a specific genomic application, genomic sequence mapping,
since it is an important step in genomic computation and it handle large amount of data. The propose
framework achieves high performance by exploiting parallel computation on different computing nodes
and protects the data privacy by using advanced encryption technique, homomorphic encryption.

1.2.2 Organizations of the Thesis

The rest of the thesis is organized as follows.

Chapter 2. Chapter 2 describes the state of the art for load scheduling and the protection of data
privacy and availability in clouds. Specifically, we first present divisible load paradigm and existing
approaches for scheduling divisible loads. Then we review existing data privacy protection mechanisms
not only for securing the data stored for backup purpose but also for securing the data involving in
computations in clouds. We also analyze the drawbacks of the existing approaches and show that they
are no longer applicable to new context and requirements. Through the analysis of the state of the art,
we present our motivation for the study made in this thesis.

Chapter 3. In this chapter, we present our contribution on the load scheduling problem in multi-cloud
systems [Kang et al., 2014b, Kang et al., 2016c]. We first design two architectures for a multi-cloud
system: a centralized scheduling architecture and distributed scheduling architecture. Based on theses
architectures, we then develop two scheduling strategies: a Static Scheduling Strategy (SSS), which
assumes that the release time of computing nodes is known prior to the scheduling; and a Dynamic
Scheduling Strategy (DSS), which applies a prediction technique to estimate the release time and ready
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time of computing nodes. Both strategies consider the topology and capacity of the system network,
and the heterogeneity of computing nodes. The proposed scheduling strategies were evaluated through
comprehensive simulations and the results provide useful insights on the applicability of the proposed
architecture and scheduling strategies.

Chapter 4. In this chapter, we present a novel approach for data placement in cloud storage systems
considering the performance, data privacy and data availability [Kang et al., 2016b, Kang et al., 2016d].
We first develop an optimization programming formulation for the problem and then an efficient heuristic
algorithm, which divides a data into multiple chunks, each will be stored in two nodes as primary and
backup nodes. The placement decision is computed in the way that all the primary and backup chunks
of a data satisfy the security and availability requirements, and the total retrieval time is minimized.
We demonstrate the effectiveness of the proposed algorithm through comprehensive simulations and the
results show that the proposed algorithm significantly reduces the retrieval time.

Chapter 5. In this chapter, we design and implement an encryption service namely ESPRESSO (En-
cryption as a Service for Cloud Storage Systems) to protect the users’ data by using advanced encryption
algorithms [Kang et al., 2014a]. With the flexible design, cloud service providers can choose the encryp-
tion algorithm based on their preference, and users can specify the security level of their data. The data
with higher critical level needs to be more securely protected with a longer encryption key.In addition,
our design allows cloud service providers to easily integrate ESPRESSO into their systems without
heavy modification and implementation of their systems during the integration. The real experiments
were conducted and the experimental results assess the performance and effectiveness of ESPRESSO.

Chapter 6. Chapter 6 presents a case study as a proof of concept for all the theoretical contributions
made in this thesis [Kang et al., 2016a]. We design an entire secure framework for big data processing
on public clouds to achieve data privacy, scalability and performance. We choose a genomic application
as a case study since it can be considered as big data application processing huge volume of data and
heavy computation. And genomic application also requires a high security level to protect the privacy
of the owner of medical data. Based on this framework, we also propose a 3-encryption-scheme model
for genomic sequence mapping (3EGSM), which is an initial but important step to process genomic
sequences before they are further analyzed in other domain-specific genomic applications . The model
protects not only genomic sequences but also the intermediate and final computation results when pro-
cessing on public clouds. We implement all the steps to interact with clouds and evaluate the proposed
framework through intensive experiments using real genomic data. The proposed framework reduces the
total processing time by delegating the most compute-intensive tasks to the clouds without any concern
about the privacy of input data as well as computation results.
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Chapter 2

Literature Background

I n this chapter, we introduce existing approaches to
address the problems that are in the scope of the

thesis to motivate the forthcoming study of this thesis:
load scheduling and the protection of data privacy
in clouds. For load scheduling, we describe Divisi-
ble Load Theory that is mainly used for the efficient
load scheduling strategy in this thesis. Then we in-

troduce the literatures for big data scheduling using
divisible load theory. For the protection of data pri-
vacy, we mainly focus on reviewing the existing ap-
proaches for secure data storage and secure compu-
tation in clouds. We additionally discuss the works
related to genomic computation in clouds that will be
used as a case study in the thesis.

2.1 Load Scheduling in Clouds

2.1.1 Divisible Load Theory

Divisible Load Theory (DLT) has been firstly introduced in [Cheng and Robertazzi, 1988]. It assumes
that loads (input data) can be perfectly divided into an arbitrary number of chunks with different sizes,
namely divisible loads. In DLT, each load fraction (chunk) can be independently processed if there is no
precedence relations among them. Indeed, many applications that need to process big data satisfy this
divisibility property including many streaming data applications such as monitoring systems, continuous
write applications as shown in [Zeng et al., 2016].

The advent of clouds as a new model of service provisioning encourages researchers to investigate
the use of DLT to design efficient strategies for scheduling loads. Indeed, DLT has contributed to achieve
minimizing the processing time of loads compared to other approaches. For example, MapReduce that is
a programming model for large-scale data processing splits the data into the identical size of small frac-
tions, i.e., 64 MB [Dean and Ghemawat, 2004]. However, such equal division affects the performance
degradation if computing nodes, corresponding to data nodes in MapReduce, have heterogenous compu-
tation capacities. On the other hand, DLT enables multiple load chunks of a load, each has different size,
to be processed on different nodes by assigning load chunks according to the heterogenous capacities.
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Indeed, this achieves reducing the total processing time by assigning different size of load chunks to
heterogenous computing nodes. Hence, beyond the existing approaches, which consider the computing
capacity of nodes, the size of loads and the computation requirement of loads, it is necessary to apply
the DLT. In the following subsection, we will introduce existing algorithms to address the problem of
scheduling divisible loads.

2.1.2 Scheduling Strategies for Divisible Loads

Big data processing emerges as an important part of applications and many studies [Zhang et al., 2012,
Guo et al., 2012, Mo and Wang, 2012, Jung et al., 2012] are emerging nowadays to explore the possibil-
ity of using cloud computing paradigm for big data processing. Those works are driven by a fact that
big data processing requires scalable and parallel computing resources rather than using traditional data
processing applications [Ji et al., 2012]. Therefore, application of DLT to the problem of scheduling big
data on clouds is ideal for concurrent processing with high performance.

To achieve high performance and high resource utilization, there have been many studies for schedul-
ing multiple divisible loads on distributed computing system. In [Drozdowski and Lawenda, 2008], the
authors presented a scheduling solution for multiple divisible loads on homogeneous computing nodes,
i.e., all the nodes have identical computing capacity, which are connected to the sole load source as a star
network. In a star network, there is one node called originator in the center of the star and the communi-
cation links only the originator with the remaining node. However, this model as well as homogeneous
computing nodes do not reflect a real environment. In [Marchal et al., 2006], the authors presented a
model for wide area network that extends over a large geographical distance and proposed a new model
for deploying and scheduling multiple divisible load applications on large-scale computing platforms.
However, these works considered that there is only one load source, which can distribute loads to all
computing nodes. This assumption is not practical in the cloud environment and modern system archi-
tectures. In such scenarios, loads may arrive from different sources and computing nodes may not be
able to process all types of loads due to the problem of quality of service and software license. Fur-
thermore, to guarantee the quality of service or the deadline constraint, the multi-cloud system must use
dedicated links with stable bandwidth. Such links may not be established from the load sources to all
computing nodes. Yet, computing nodes may have different release times, i.e., they are available for
computation at different moments.

Considering the release times of computing nodes, several previous works have studied this issue.
In [Lin et al., 2007], the authors presented a real-time divisible load scheduling with different proces-
sors’ available times. In [Veeravalli and Wong, 2004], the authors proposed efficient load distribution
strategies for scheduling divisible loads to minimize the total processing time of the entire load submitted
for processing. However, both works assumed that release times of computing nodes are predetermined
and known prior to the start of the scheduling process. This may not be satisfied in a real-life scenario,
e.g., nodes are unavailable for computing unexpectedly. To reflect such dynamic situation, we need to
check respective node’s availability periodically for scheduling divisible loads. Based on this motivation,
we advocate for a dynamic scheduling problem in clouds for processing big data with high performance.
In addition to the performance issue, protecting big data privacy for storage and computation is also our
focus in this thesis as described in Chapter 1. In the following section, we describe existing approaches
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for both secure data storage and secure data computation in clouds.

2.2 Protection of Data Privacy in Clouds

2.2.1 Secure Data Storage

Most of literatures on data encryption have focused on providing a user-side encryption tool, which
allows the owner to share his data with different consumers. [Kang and Zhang, 2010] proposed an
identity-based authentication (IBA) scheme by which the owner can share his encrypted data stored
in the cloud. This scheme divides the sharing users into the same domain and a user only can share
another user’s data if and only if they are in the same domain. In [Huang et al., 2011b], YI Cloud, a
framework for protecting the data privacy in the cloud, is presented. This system allows the users to
encrypt their files in the cloud storage and user’s primary encryption key is shared between trusted en-
tities using secret sharing algorithm. Secret sharing [Shamir, 1979] distributes a secret among a group
of participants, each of them is allocated a share of the secret. The secret can be reconstructed only
when a sufficient number of shares are combined together. The framework includes two components:
a client component, which is deployed on the user’s machine for encryption and key management, and
a server component installed on Sector [Gu and Grossman, 2009] for management of users and storage
nodes. However, both [Huang et al., 2011b] and [Kang and Zhang, 2010] did not provide the flexibility
for providers and users, i.e., choosing encryption algorithm for providers and specifying the critical level
of users’ data.

In [Zhao et al., 2010], a progressive encryption system has been proposed based on elliptic curve
cryptography (ECC). ECC has been introduced as an alternative mechanism for implementing public-
key cryptography. Public-key algorithms create a mechanism for sharing keys among large numbers of
participants or entities. The proposed scheme allows data to be encrypted multiple times with different
keys and produces a final ciphertext that can be decrypted with a single decryption key. Hence, the
system allows the owner to share his encrypted data with other consumers without revealing the plaintext
data to untrusted entities. The work did not present any real experiment but we believe that this approach
involves an intensive computation, thus introduces high latency.

Furthermore, [Zhao et al., 2010] focused on the encryption algorithm and the sharing mechanism
while we aim at providing an entire encryption service, which can be adopted by any existing CSP. Sim-
ilarly, [Yu et al., 2010] proposed a secure and scalable fine-grained data access control scheme for cloud
computing by combining key policy attribute-based encryption (KP-ABE) with techniques of proxy re-
encryption and lazy re-encryption. KP-ABE [Goyal et al., 2006] is a public key cryptography primitive
for one-to-many communications. In KP-ABE, data are associated with attributes for each of which a
public key component is defined. The encryptor associates the set of attributes to the message by encrypt-
ing it with the corresponding public key components. Proxy re-encryption (PRE) [Blaze et al., 1998] is a
cryptographic primitive in which a semi-trusted proxy can convert a ciphertext encrypted under a user’s
public key into another ciphertext, which can be opened by different user’s private key without see-
ing the underlying plaintext. Both [Yu et al., 2010] and [Zhao et al., 2010] considered a different threat
model where users do not trust any third party such as cloud providers. Hence, users must take full
responsibility for the data encryption and key management on their local machines.
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Figure 2.1: Overall genomic computation process.

In [Itani et al., 2009], the authors presented PasS (Privacy as a Service), a set of security protocols for
ensuring the privacy of data stored in the cloud. Although a server-side encryption service is presented,
this work assumed that the encryption service is maintained by a third party that is trusted by users as
well as CSPs. However, the assumption of trusting the third party is not realistic thus we need to propose
a security component, which can be integrated in cloud infrastructures. If such component is proposed,
cloud providers can increase the reputation and help cloud users alleviate the security concerns with the
third party.

2.2.2 Secure Genomic Computation in Clouds

Protection of data privacy in clouds needs to be considered not only data for storage but also data for
computation. There are many types of big data processed on clouds but we focus on genomic data in
this thesis as a secure data computation. This is because the rapid advances in genomic technologies
have changed the scale and scope of genomic data processing. We first present a brief background on
genomic computation and then we introduce existing approaches for secure genomic computation in
clouds.

2.2.2.1 Genomic Computation

Genomic computation has become a new and active application area of computer science for the past ten
years. The explosion of genomic data provides the entire DNA sequences of several organisms including
human for life science research. Computer science plays an important role in genomic computation from
sequencing and assembling of DNA sequences to analyzing genomes in order to locate SNPs, repeat
families, similarities between sequences of different organisms and other applications. We present in
Fig. 2.1 the overall genomic computation process with several domain-specific applications, but are not
limited to.

In order to make genomic data available for analysis on computer systems, the first step is to se-
quence, assemble DNA sequences and produce the strands of nucleotides (A, T, C or G). As shown in
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Fig. 2.1, with the advent of novel sequencing technologies, this step is now carried out in specific se-
quencing machines such as Illumina/Solexa [ER, 2008]. The results of this step is an enormous amount
of short reads, i.e., millions of short nucleotide sequences, which need to pass by an important stage
of aligning to a reference genome, i.e., read mapping, before being further analyzed. Read mapping
is therefore a fundamental step for most genomic analysis such as SNP discovery, genotyping, and per-
sonal genomics [Schuster, 2007]. However, it is also a bottleneck step in genomic processing since it has
to process large amount of data with heavy computations, requiring high accuracy. Read mapping in-
volves computing edit distance, which determines the minimum number of edits (substitution, insertion,
deletion) to change one sequence into another sequence. The edit distance is one of the most important
metrics, which is useful in the genomic research for the diagnosis and treatment of cancer, Alzheimer’s
disease, Schizophrenia, etc [Network and et al., 2012, Taylor et al., 2001, Waddell et al., 2015].

While the sequencing and assembling stages are handled by particular machines, the development of
computer science opens many research directions for the second stage from the aligning step (secondary
genomic data analysis) to various genomic analysis applications (tertiary genomic data analysis) as
shown in Fig. 2.1. This area includes both application and adoption of older genomic methods to run on
different computing infrastructures, and development of novel algorithms for the analysis of genomic
sequences. Restrain the problem a bit more to the read mapping problem, we observed that conventional
read mapping algorithms have been designed to run sequentially on a single computing unit. This is
not scalable when the number of patients increases and clinics are required to finish the process as
fast as possible. The algorithms therefore need to be adapted to enable parallel processing on multiple
computing units. Furthermore, considering the security issue, particularly the privacy of genomic data,
the algorithms also need to be security-aware in the sense that they should not reveal any sensitive
information during the execution on untrusted third party. In this thesis, we present our approach to
address the above challenges, focusing on the read mapping algorithm.

2.2.2.2 Existing Approaches for Secure Genomic Computation in Clouds

Read mapping is one of the important applications of genomic data processing since it is considered
as an initial phase of every genomic application. The well-known read mapping technique is using a
hash function to hash genomic sequences of the read, which is defined as the raw genomic data con-
sisting of millions of short nucleotide sequences (25 - 250 bp), and the reference genome. This allows
one to perform a fast search and also to reduce the size of input data. Many alignment tools such as
BLAST [Altschul et al., 1990], BLAT [Kent, 2002], SOAP [Li et al., 2009], SSAHA [Ning et al., 2001]
and RMAP [Smith et al., 2008] are based on this technique. To allow a number of mismatches between
the read and the matching segment on the reference genome, these tools have implemented the seed-
and-extend algorithm, which divides the read and the reference genome into multiple sub-sequences
called seeds that will be hashed for fast search. Even though these tools use a hash function for hashing
genomic sequences, the main purpose of hashing was not to protect the data privacy, but to accelerate
the speed of searching and alignment. Indeed, such tools were designed to run on the trusted (private)
servers, thus they do not need to consider the security issue. However, the private servers are limited
in terms of storage and computational capacities to operate a huge volume of genomic data produced
by the next generation sequencing machines nowadays. The existing alignment tools therefore need to
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be adopted to be able to perform the read mapping using storage and computational resources of pub-
lic clouds. The adoption is not only in the system design but also in the implementation of mapping
algorithm to protect the data privacy for both input data and computed results when moving to the cloud.

To tackle the problem of revealing genomic data processing on public clouds, several studies have
proposed to separate the computation of non-sensitive data on public clouds and sensitive data on the
private servers [Chen et al., 2012, Wang et al., 2009]. In [Chen et al., 2012], the authors proposed a se-
cure and efficient algorithm to align short sequences to a reference sequence. They implemented the
seed-and-extend algorithm and delegated the seeding and extension steps to the public cloud and the
private trusted servers, respectively. While this work can protect the privacy of genomic sequences by
using a keyed hash function, the matching positions of the seeds on the reference genome are not pro-
tected. This allows adversaries on the public cloud to infer the matching position of the read on the
reference genome and then infer the study of the clinic. In [Wang et al., 2009], the authors proposed a
privacy-protection framework by applying program specialization to distribute a genomic computation
between data provider and data consumer based on the sensitivity levels of the genomic data. This ap-
proach requires much interactions of the data provider during the processing, which may not be practical
in a realistic scenario.

On the other extreme, there also exist several works, which propose to delegate all computations to
public clouds. To protect the data privacy, they apply the homomorphic encryption scheme that allows
one to perform the arithmetic computation on encrypted data. The trusted servers are responsible for
data encryption and keep all secret keys. Several genomic data processing algorithms have been im-
plemented using homomorphic encryption such as edit distance algorithm, Pearson goodness-of-fit test,
and Cochran-Armitage test [Lauter et al., 2014]. However, most of homomorphic encryption schemes
require heavyweight computation, leading to the performance degradation. As another approach for data
privacy protection, secure multi-party computation (SMC) has been used to enable multiple parties to
evaluate a function cooperatively without revealing anything beyond the function’s output to either party.
In [Huang et al., 2011a], the authors presented a generic approach for two-party computation based on
the garbled-circuit technique. In order to achieve the security, i.e., not reveal anything except the func-
tion’s output, SMC requires a complex communication protocol that allows the cooperating parties to
exchange data with each other. Compared to homomorphic encryption techniques, the communication
overhead of SMC may be worse than the computational overhead of HE, especially when the amount of
data needed to be exchanged is large.

When we consider the problem of read mapping in the second part of this thesis, the input data, which
is the short read and the reference genome, is provided by the same owner that is the sole party. Public
clouds play the role of computing infrastructures but they do not provide any input for the computation.
Encryption techniques are therefore an appropriate candidate to protect the data privacy for the read
mapping problem when processing on public clouds.
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Chapter 3

Scheduling Strategies for Handling
Divisible Loads in Multi-Cloud Systems

F ocusing on divisible load scheduling in multi-
cloud systems, this chapter first proposes two

architectures for a multi-cloud system: a centralized
scheduling architecture and a distributed scheduling
architecture. Both architectures can satisfy complex
requirements of users on computing resources, net-
work topology and guaranteed quality of services
for their big data applications, and they are used in
different realistic scenarios depending on the users’
requirements. Based on these architectures, two
scheduling strategies are then proposed: (i) A Static
Scheduling Strategy (SSS), which assumes that the re-
lease time of computing nodes is known prior to the

scheduling; and (ii) A Dynamic Scheduling Strategy
(DSS) relaxes the assumption of SSS by applying a
prediction technique to estimate the release time of
computing nodes. Both strategies take into account
the topology and capacity of the system network, and
the heterogeneity of computing nodes. They were
evaluated through comprehensive simulations. The
simulation results provide useful insights on the appli-
cability of the proposed architectures and scheduling
strategies across a range of realistic scenarios. The
study in this chapter is first-of-its-kind in employing
divisible load paradigm in multi-cloud scenario and
demonstrating its performance.

3.1 Research Motivation and Objectives

Focusing on IaaS clouds where users reserve computing resources represented as virtual machines
(VMs), storage space and network bandwidth for building up their own virtual computing infrastruc-
tures on public clouds, we study the problem of cloud resource management. On one hand, users have
to pay providers for cloud resource usage cost based on the pay-per-use model. On the other hand, they
need to efficiently manage such cloud resources to achieve high performance of their applications, im-
proving the utilization of reserved resources, thereby minimizing the usage cost. Reserving large amount
of cloud resources may result in good performance of the applications but the resource usage cost will
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dominate. Thus, intelligent resource management mechanism is needed to efficiently exploit a sufficient
amount of cloud resources while satisfying the performance requirement of the applications.

With the emergence of information technology and wireless sensor networks, many complex appli-
cations have been migrated to public clouds for running and processing big amount of data. Examples in-
clude surveillance systems, health care systems, smart home or environment monitor [Zeng et al., 2016].
Such applications generate a huge volume of data everyday and the data rate is very dynamic over
time from different geographically distributed data sources. To handle such high volume complex
data, a possible solution for single cloud providers is to scale out their cloud data centers in multiple
geographically distributed locations. However, this increases the Total Cost of Ownership (TCO) as
well as the maintenance service cost. Thus, the current day trend is towards adopting an infrastructure
that spans across multiple clouds and data-centers, referred to as Cloud-of-Clouds or multi-cloud plat-
forms [Truong-Huu and Tham, 2014]. This allows multiple single cloud providers to cooperate with
each other so as to improve the cloud resource utilization and the final revenue. Efficiently managing
the resources in such computing platforms to achieve high performance becomes challenging for cloud
users due to the dynamic arrival of data from different sources. This chapter aims at providing users a
novel approach for resource management for big data processing in multi-cloud systems.

Generally, we can refer to the amount of work to process data on a computing node as a load. For any
realistic cloud computing platform, the number of loads submitted to the system is usually much larger
than the number of available computing nodes. The problem of load assignment to computing nodes is
therefore the most important and challenging since it directly affects the system performance. However,
designing an efficient assignment strategy, which is known as scheduling strategy, faces many challenges
that will be listed below. The first one is rather a required performance metric that a scheduling strategy
needs to achieve while the others are characteristics of the infrastructure components that a scheduling
strategy needs to take into account during the scheduling process.

1. Load balancing among computing nodes. An efficient scheduling strategy should guarantee the
load balancing among computing nodes. This will avoid the scenario that a node may have to
process many loads in a long period while other nodes stay idle. Such scenario prevents users
from achieving high resource utilization and it degrades the overall performance. Users may need
to pay a higher cost due to longer resource usage time when the running time of their applications
is prolonged. The problem will be more difficult when we consider a more complex system
architecture that includes multiple load sources, e.g., a monitoring system with many sensors that
capture the data and send to different storage servers for processing and storing. To minimize the
resource usage cost, in such a system, users may reserve a single pool of computing resources and
share among load sources for processing loads, making the problem of load balancing harder.

2. Availability and heterogeneity of nodes. Computing nodes are frequently unavailable due to
unexpected failures or they are shutdown for maintenance. Knowing the moment when nodes
are available, known as release time, is important to the scheduling strategy since loads can be as-
signed only to released nodes. With priori known release time of computing nodes, the scheduling
strategy can statically assign loads to computing nodes well ahead before the actual load process-
ing. However, with unknown release times, the scheduling strategy needs to react dynamically to
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new released nodes. Furthermore, if it is assumed that nodes are able to process only one load at
a time, the scheduling strategy then needs to be aware of the ready time of nodes, i.e., the moment
when nodes finish the processing of already received loads. Among released nodes, the node with
the earliest ready time is then selected for a new arriving load to achieve load balance.

The ready time of computing nodes depends on the processing time of loads, which in turn de-
pends on the capacity of computing nodes and the nature of loads. Since nodes are usually het-
erogeneous in terms of computing capacity, the processing time of a load may vary on different
nodes. Furthermore, due to the nature of loads submitted to the system, loads may require different
amount of computations. For instance, one load deals with compression and the other deals with
encryption using different key lengths, resulting in different amount of running time. Throughout
this chapter, we refer to this characteristic simply as computation requirement of loads.

3. Network topology and link capacities. Most of existing scheduling strategies do not consider
a specific network topology [Braun et al., 1999, Maheswaran et al., 1999]. They assume that the
data transmission is performed over the Internet or the network is fully connected. The total
processing time of applications including the data transmission time and execution time will be
interfered by other users who are using the Internet or sharing the same network. While the in-
terference is tolerable for some applications, i.e., the running time of applications will last longer
when bandwidth is low due to bandwidth sharing, many applications are requiring a stable band-
width on the links they are using, e.g., Content Delivery Networks, to guarantee the quality of
service (QoS). Such applications have been deployed on a dedicated platform with specific net-
work topology and link capacities such that the QoS is guaranteed. With the development of
virtualization technologies in the cloud environment, such applications are now migrated to pub-
lic clouds. For instance, Netflix1, which is a major online video streaming service provider in
North America, moved its data storage system, streaming servers, encoding engine, and other ma-
jor modules to Amazon Web Services (AWS) in 2010 [Ciancutti, 2010, Adhikari et al., 2012]. It is
thus necessary to consider these parameters in the scheduling problem to reflect realistic scenarios.

Although many previous studies have considered the scheduling problem in a distributed computing
infrastructure [Braun et al., 1999, Maheswaran et al., 1999, Yang et al., 2013], they do not address all
the challenges mentioned above. In this chapter, we present our study that bridges the gap between ex-
isting scheduling strategies and the new challenges in multi-cloud systems. We propose two scheduling
strategies: a Static Scheduling Strategy (SSS) and a Dynamic Scheduling Strategy (DSS). SSS assumes
that the release time of computing nodes is known prior to the scheduling. DSS relaxes the assump-
tion of SSS by applying a prediction technique to estimate the release time of computing nodes. Both
strategies take into account the topology and capacity of the system network, and the heterogeneity of
computing nodes. To achieve a better load balance, beyond the existing approaches, which consider the
computing capacity of nodes, the size of loads and the computation requirement of loads, we further ap-
ply the Divisible Load Theory (DLT), which assumes that loads can be perfectly divided into a number
of chunks with different sizes [Cheng and Robertazzi, 1988]. As shown in [Zeng et al., 2016], divisible
loads have been broadly used in streaming data applications such as monitoring systems, continuous

1Netflix: www.netflix.com
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write applications. Such applications are nowadays migrated to public clouds to handle large amount of
data. Thus, integrating DLT in the scheduling strategies for multi-cloud systems running above applica-
tions is naturally appropriate to achieve high performance and load balancing among computing nodes.
We implement DLT model by adopting the phase-based scheduling approach [Hu and Veeravalli, 2011]
that divides the processing of a load into multiple phases. In each phase, a load chunk will be processed
on a node. Multiple load chunks of a load can be processed in parallel on different available nodes.

As mentioned earlier, our study considers multi-cloud systems in which a pool of computing nodes
are shared among load sources so as to minimize the resource usage cost that users need to pay for cloud
providers. In such environment, since computing nodes may be processing other loads submitted from
different gateways, the ready time of computing nodes is therefore unknown to a scheduler that do not
have the view of the entire system. To compute the ready time of a computing node when it is processing
other loads, we apply existing prediction techniques, which allow the computing node to estimate the
processing time of a certain load chunk based on the historical processing information, i.e., we assume
that there exists on each computing node a training dataset that will be used for prediction model. In a
realistic scenario, the size of this training dataset may be small at the beginning, but it will be enriched
over time along with the arrival and processing of loads.

In summary, the main contributions of this chapter are:

• We propose novel architectures of multi-cloud systems that can satisfy the complex requirements
of users on computing resources, network topology and guaranteed quality of services.

• Based on these architectures, we propose two scheduling strategies employing DLT paradigm
that addresses all challenges and requirements of an efficient scheduling strategy. This is an
important contribution to the design of distributed schedulers for multi-cloud systems in handling
large volume of data in nowadays large-scale applications.

• We apply prediction techniques on computing nodes to estimate their ready time that is a required
information for the scheduling strategy used in the distributed scheduling architecture.

• We evaluate the performance of the proposed scheduling strategies through comprehensive simu-
lations and compare them against baseline strategies to demonstrate the effectiveness of the pro-
posed approach in realistic systems.

3.2 System Architectures

In this section, we present our design for multi-cloud system architectures using two scheduling ap-
proaches: a centralized scheduling approach and a distributed scheduling approach.

3.2.1 Centralized Scheduling System Architecture

The architecture of a multi-cloud system using the centralized scheduling approach can be designed
in the way shown in Fig. 3.1. Each load source is designed as a gateway in the system architecture.
Loads, which are arriving to gateways 1, . . . ,M , are divided into multiple sub-loads (chunks) and are
assigned to computing nodes CN 1,..., CN N . Each gateway may or may not connect to all computing
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Gateway 1 Gateway 2

Gateway 3 Gateway 4
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Figure 3.1: Architecture of multi-cloud system with centralized scheduling approach.

nodes by dedicated links with different bandwidth, e.g., Gateway 1 connects to CN 1, CN 2 and CN 3

but not CN N . The centralized scheduler is responsible for scheduling loads on computing nodes. It
supposes to have all information about loads, capacities of computing nodes and bandwidth of the links.
All these information are used as parameters of the scheduling problem, i.e., meta-data. Based on this
information, the centralized scheduler will run a scheduling strategy that integrates DLT to (i) select a
load, (ii) select a computing node that will process a chunk of the selected load, and (iii) decide the
size of load chunk. After receiving the scheduling decision, the gateway performs the load division and
transmits the load chunk to the computing node for processing.

We note that the deployment of the proposed architecture is feasible with any public cloud such
as Amazon EC2, Google Compute Clusters or Microsoft Azure. Indeed, these cloud providers offer
IaaS such that users will rent a pool of virtual machines to serve as computing resources. Leverage on
network virtualization, network bandwidth is also reserved to establish dedicated links with guaranteed
bandwidth among computing nodes and load sources, i.e., the gateways. With the elasticity of the cloud
computing paradigm, users can elastically adjust the size of their computing infrastructure based on their
monetary budget for resources. Ideally, one may rent many pools of virtual machines, each dedicated to
process loads from a particular gateway. Similarly, bandwidth can also be reserved for a fully connected
network between computing nodes and gateways. However, the resource usage cost may be significant
and resources may be under-utilized due to the dynamic arrival of loads. Thus, the proposed architecture
wherein resources are shared among load sources improves the resource utilization and thereby reducing
the usage cost that users need to pay for cloud providers.

It is worth mentioning that the centralized scheduling architecture proposed above creates a single
point of failure at the scheduler. Since it is responsible for scheduling loads coming from all load
sources, it may be overloaded when loads are submitted to the gateways heavily. Furthermore, in case of
software crashes or shutdown for maintenance, the entire system will be unavailable for a duration since
there is not an alternative scheduler. This motivates us propose a more complex system architecture
using distributed scheduling approach. We present this advanced architecture in the next section.
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Figure 3.2: Architecture of multi-cloud system with distributed scheduling approach.

3.2.2 Distributed Scheduling System Architecture

The architecture of a multi-cloud system supporting the distributed scheduling approach can be designed
in the way as shown in Fig. 3.2. The architecture also comprises multiple gateways that are distributed
geographically across public clouds. At each gateway, a dedicated node, that also has a scheduler, is
responsible for receiving loads. The scheduler in that node is responsible for scheduling the processing
of loads on computing nodes. All the gateways share a common pool of computing nodes that have
heterogeneous computing capacities and they are connected to the gateways with heterogeneous link ca-
pacities. Each gateway may or may not connect to all nodes by dedicated links with different capacities,
e.g., Gateway 1 connects to Node 1 and Node N but not Node 2 and Node 3 as shown in Fig. 3.2. Similar
to the case of the centralized scheduling approach, given our assumption that loads are perfectly divis-
ible, and that the distributed scheduler uses the phase-based scheduling approach [Kang et al., 2014b],
at each processing phase, the scheduler selects a load, decides the size of a load chunk and a computing
node that will process this load chunk. The size of the load chunk is determined based on the computing
capacity of the node, the computation requirement of the load and the capacity of the link connecting
the computing node and the corresponding gateway.

Unlike the case of the centralized scheduling architecture where all computing nodes are managed
by the sole scheduler. Computing nodes in the distributed scheduling architecture receives load chunks
from different gateways (schedulers). A scheduler may not know how many load chunk a computing
node have received for processing to decide whether or not assign a new load chunk to this node. To
serve this purpose, on each computing node, a load manager is also deployed to be responsible for
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receiving, invoking and logging the processing of load chunks assigned to the corresponding computing
node. Following information concerning a load chunk and its processing are logged by the load manager:

• Load type: The application of the load such as encryption, compression, etc. Each type is associ-
ated with a value of computation requirement of this load type that is estimated using a prediction
technique based on historical processing information;

• Load chunk size: The size of the load chunk determined by the scheduler;

• Start transmission instant of load chunk: The time instant when the scheduler starts sending a
load chunk to a computing node. The transmission may not start immediately after assignment
since the computing node may be busy for other transmission, assuming that there is only one
transmission at a time on each node. Otherwise, load transmissions will interfere with each other;

• Transmission time of load chunk: The duration taken to transmit a load chunk from a gateway to
a computing node;

• Start processing instant of load chunk: The time instant when the actual processing of a load
chunk starts on a computing node;

• Processing time of load chunk: The duration taken by a computing node to process a load chunk.

When a load chunk is assigned to a computing node, the timing information of its processing, i.e.,
the last four parameters described above, are not available yet since the computing node might be busy
for another load chunk, assuming that computing nodes are able to receive and process one load chunk
at a time as mentioned earlier. Thus, the actual transmission and processing of current load chunk will
be performed in the future. However, this information is needed for the computing node to estimate its
ready time for receiving and processing a new load chunk, i.e., the time instants when the node finishes
the transmission and processing of all already received chunks. To address this issue, we equip each
node a predictor that implements a prediction technique to estimate the required timing parameters.

While the transmission time of a load chunk is estimated based on the load chunk size and link
capacities, the processing time of a load chunk depends on not only the load chunk size and comput-
ing capacity of the node but also the computation requirement of the load. However, the computation
requirement of a load on a particular computing node is unknown a priori. The computing node there-
fore needs to estimate this parameter using a prediction technique. Furthermore, during the scheduling
process, the scheduler also needs to know the computation requirement of a load to determine an appro-
priate load chunk size for a particular computing node. Thus, when a load is submitted to a gateway, if
the respective scheduler does not know the computation requirement of that load, the scheduler will send
a request to all computing nodes connected to the gateway. All the requested nodes execute a prediction
algorithm and send the results to the scheduler. This process is depicted in Fig. 3.3 from steps 1.1 to 1.4.

When there exists a load to be scheduled for processing at any gateway, the respective scheduler
requests all nodes for their ready time for receiving and processing a new load chunk. All requested
nodes run a prediction algorithm to estimate their ready time and send the results to the respective
scheduler. Based on ready times of all requested nodes, the best computing node is then selected.
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Figure 3.3: Interaction diagram among scheduler, load manager and predictor.

Based on the ready time of the selected node and computation requirement of the load, the scheduler
determines an appropriate load chunk size to guarantee the load balancing among computing nodes.
Taking the scheduling decision, the scheduler performs the load division and transmits the load chunk
to the computing node when the selected node is ready for receiving the load chunk. This scheduling
process is also depicted in Fig. 3.3 from steps 2.1 to 2.9.

3.3 Phase-based Scheduling Approach

In this section, we first describe all the mathematical notations used throughout of this chapter. We then
present the detailed description of the phase-based scheduling approach that applies the divisible load
theory. It is to be noted that similar to the case of the centralized scheduling approach, when applying
the distributed scheduling approach, all schedulers deployed on respective gateways will run the same
scheduling strategy that will be described hereafter. Thus, regardless of the number of gateways, i.e., the
number of schedulers, we omit the index of the scheduler indicated in the following description.

3.3.1 Mathematical Notations and Assumptions

We assume that at the instant when the scheduler runs the scheduling algorithm, there is a total of N
computing nodes. With the static scheduling strategy, we assume that release times of computing nodes
are known to the scheduler. Among these N nodes, some of them have been released and others will be
released in the future. With the dynamic scheduling strategy, we assume that all the N computing nodes
have been released and connected to the gateway. The set of released nodes will be dynamically updated
during the scheduling process when new nodes are released. It is to be noted that several nodes may also
be connected to and receive loads from other gateways. For computing node i, i = 1, . . . , N , let Ti, Wi
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Table 3.1: Mathematical notations
Notation Description

N Number of computing nodes
Ti Release time of node i, i = 1, . . . , N

Wi Computation capacity of node i

Bi Bandwidth of the link between node i and the gateway
Sj Size of load j submitted to the gateway
Sunit
j Size of a unit load of load j

Uj Total number of units of load j, Uj = dSj/S
unit
j e

Cunit
i,j Computation requirement of load j on computing node i

T phase Duration of a processing phase
Nj Number of unallocated units of load j

Ri,j Remaining amount of computation of load j on computing node i

T idle
i Idle time of computing node i

R
pro
i Ready time of node i for processing a new load chunk

T
comp
i Available processing time of node i

Rrec
i Ready time of node i for receiving a new load chunk

Ci,j Number of units of load j assigned to computing node i

Schunk
l Size of load chunk l

T
assign
l Assignment instant of load chunk l

T strans
l Start transmission instant of load chunk l

T trans
l Transmission time of load chunk l

T
sproc
l Start processing instant of load chunk l

T
proc
l Processing time of load chunk l

and Bi denote its release time, computing capacity and the bandwidth of the link between computing
node i and the gateway, respectively. We also assume that all computing nodes are able to process any
load without any technical limitation such as software licenses or libraries.

Assuming that loads are submitted to the gateway with arbitrary arrival rate, load j, j = 1, 2, . . . ,

has a size of Sj , e.g., in MB. We also assume that load j can be divided with the smallest load unit of
size Sunit

j , the total number of load units of load j is then defined as Uj = dSj/S
unit
j e. As mentioned pre-

viously, loads may be of different types, e.g., one load may deal with encryption and the other deals with
compression or encryption with different key lengths. We denote Cunit

i,j as the amount of computation
required to process a unit of load j on computing node i, which is estimated by the predictor deployed
on computing node i. All the mathematical notations are summarized in Table 3.1.

3.3.2 Phase-based Scheduling Approach

The phase-based scheduling approach has been widely used in the literature [Hu and Veeravalli, 2011,
Kang et al., 2014b, Lin et al., 2007, Veeravalli and Wong, 2004]. The basic idea of the phase-based
scheduling approach is dividing the processing of a load into multiple processing phases. In each phase,
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Algorithm 1 Phase-based scheduling approach

Input: Nj , Cunit
i,j , Sunit

j , Ti, Wi, Bi, Rrec
i , Rpro

i and k, i = 1, . . . , N, j = 1, 2, . . .

Output: i⇤, j⇤ and Ci⇤,j⇤ .
1: Ri,j  NjC

unit
i,j , i = 1, . . . , N, j = 1, 2, . . .;

2: Ri,j⇤  max{Ri,j}; /*select a load*/
3: for i = 1! N do
4: T idle

i  (k + 1)T phase �R
pro
i ;

5: end for
6: for i = 1! N do
7: if

�
Ti < (k + 1)T phase� ^ �

T idle
i > 0

�
then

8: Compute the available processing time of node i, T comp
i , as defined in Eq. (3.4);

9: end if
10: end for
11: Select the node with the longest available processing time: i⇤  max{T comp

i }, i = 1 . . . N ;
12: Compute the size of the chunk of load j⇤ to be assigned to node i⇤, Ci⇤,j⇤ , as defined in Eq. (3.9);

a load chunk will be processed on a computing node. Depending on the number of available computing
nodes, multiple load chunks can be assigned to different nodes to be processed in parallel. We assume
that the duration of a processing phase, denoted as T phase, is fixed and pre-defined by the users. In prac-
tice, it depends on the nature of each application, users may need to do a benchmark to determine an
optimal value for the duration of a processing phase [Kang et al., 2014b]. By applying the phase-based
scheduling approach, the scheduler guarantees that load chunks scheduled during phase k, k = 1, 2, . . .,
will be completed before processing phase k + 1 ends.

The phase-based scheduling approach aims at improving the load balancing among computing nodes
and exploiting as much as possible the parallelism for load processing, thereby reducing the total pro-
cessing time of all loads. The main challenging questions are how to determine an appropriate size for
a load chunk that will be assigned to a particular computing node for the corresponding phase; and how
to select a load when there exist many loads to be processed. In this section, we present three steps of
the phase-based scheduling approach: (i) load selection, (ii) node selection, and (iii) determination of
load chunk size. While the load selection method is based on the Most Remaining Load First (MRLF)
policy to ensure the balancing among arriving loads at a certain gateway, the node selection method and
determination of chunk size reflect the heterogeneity of computing nodes in terms of computing and
network capacities. The pseudo code of these steps is briefly presented in Algorithm 1. During each
phase, Algorithm 1 can be run multiple times by the scheduling strategy until all available computing
nodes are utilized or loads are completely processed.

3.3.2.1 Load selection

Assuming that there are many loads that are waiting for being scheduled at the gateway and given that
their computation requirements have been provided by all computing nodes. To achieve balance among
loads, we adopt the Most Remaining Load First (MRLF) policy proposed in [Hu and Veeravalli, 2011].

24



3.3. Phase-based Scheduling Approach

The MRLF policy gives the priority of being processed to the load with the most remaining amounts of
required computations. Let Ri,j be the total remaining amount of computation required for processing
load j on computing node i. Then, Ri,j can be defined as follows:

Ri,j = NjC
unit
i,j , (3.1)

where Nj is the number of unallocated units of load j, initialized by Uj when load j is just submitted.
Determining the most remaining load is done by simply evaluating max{Ri,j}, i = 1, . . . , N and j =

1, 2, . . ., as shown in line 2 of Algorithm 1. At the end of this step, let load j⇤ be the selected load to be
processed in the corresponding processing phase.

3.3.2.2 Node selection

Given that load j⇤ is selected, we determine a computing node that will process a chunk of load j⇤.
Assuming that the index of the current processing phase is k, among the computing nodes that are
connected to the gateway of load j⇤, node i can be selected if it satisfies the two following conditions:

1. Node i is released before processing phase k+1 ends since all computing nodes are scheduled to
finish the load chunks when processing phase k + 1 ends, i.e., Ti < (k + 1)T phase; and

2. Node i has idle time before processing phase k + 1 ends, i.e., the period that node i does not
perform any action including load transmission or processing. We denote T idle

i as the idle time of
node i before processing phase k+1 ends. As shown in line 4 of Algorithm 1, the idle time of node
i is defined as T idle

i = (k + 1)T phase �R
pro
i where R

pro
i is the ready time of node i for processing

a new load chunk. As mentioned earlier, the scheduler does not know the ready time of node i

for processing a new load chunk since it may be assigned load chunks from other schedulers. The
scheduler therefore needs to request node i for this parameter before running Algorithm 1.

Among the feasible computing nodes, we select the node that has the longest available processing
time, i.e., the duration used only for load processing, excluding the time for load transmission. We
denote the available time for processing of node i as T comp

i . To obtain T
comp
i , four constraints should be

considered:

1. Node i can process loads only after it is released, i.e., T comp
i 6 (k + 1)T phase � Ti;

2. Node i can process a chunk of load j⇤ only after it finishes all previously received load chunks.
This implicitly means that T comp

i 6 T idle
i ;

3. Even if node i has been released and it has idle time, necessary load transmission time should be
subtracted from the idle time. This constraint is represented as follows:

T
comp
i 6

BiC
unit
i,j⇤

�
(k + 1)T phase �Rrec

i

�

Sunit
j⇤ Wi +BiC

unit
i,j⇤

, (3.2)

where Rrec
i is the ready time of node i for receiving a new load chunk. This parameter is unknown

to the scheduler that therefore needs to request computing node i before running Algorithm 1; and
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4. The transmission of all load chunks during processing phase k assigned to node i should finish
before processing phase k + 1 starts. This constraint is represented as follows:

T
comp
i 6

BiC
unit
i,j⇤

�
kT phase �Rrec

i

�

Sunit
j⇤ Wi

. (3.3)

Consequently, the available processing time of node i until phase k + 1 ends is defined as follows:

T
comp
i = min{V1, V2, V3, V4}, (3.4)

where

V1 = (k + 1)T phase � Ti, (3.5)

V2 = T idle
i = (k + 1)T phase �R

pro
i , (3.6)

V3 =
BiC

unit
i,j⇤

�
(k + 1)T phase �Rrec

i

�

Sunit
j⇤ Wi +BiC

unit
i,j⇤

, (3.7)

V4 =
BiC

unit
i,j⇤

�
kT phase �Rrec

i

�

Sunit
j⇤ Wi

. (3.8)

After having all T comp
i ’s values, i = 1, . . . , N , determining the best computing node is done by simply

evaluating max{T comp
i }, i = 1, . . . , N . We denote i⇤ as the index of the selected node that has the

longest available processing time to process a chunk of load j⇤.
It is worth mentioning that the formulas above take into account the heterogeneity of computing

nodes in a cloud computing infrastructure. A computing node is selected because not only it necessarily
has a dedicated link to the gateway for data transmission but also it has the highest link capacity, com-
puting capacity, leading to the longest available time for load processing. As mentioned earlier, in an
elastic computing environment like clouds, users may rent as many as possible virtual machines to serve
as computing nodes. They can also reserve as much as possible network bandwidth to create dedicated
links among computing nodes and load sources. However, reserving full computing and network ca-
pacities costs a lot and resources may be under-utilized when computing demand is low during off-peak
hours. Thus, the proposed architecture and methods for load scheduling presented above provide users
means for improving resource utilization and reducing the usage cost of cloud resources.

3.3.2.3 Determination of chunk size

Given the results of the previous steps that a chunk of load j⇤ will be assigned to node i⇤, we now
describe the formula to compute the size of the chunk. Based on the available processing time of node
i⇤, T comp

i⇤ , we can obtain the chunk size, denoted as Ci⇤,j⇤ , which is the number of units of load j⇤:

Ci⇤,j⇤ = bWi⇤T
comp
i⇤

Cunit
i⇤,j⇤

c. (3.9)

If the number of unallocated units of load j⇤, Nj⇤ , is smaller than Ci⇤,j⇤ , then Ci⇤,j⇤ is accordingly
reduced to Nj⇤ . This means that all unallocated units of load j⇤ are assigned to node i⇤.
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3.4 Load Management on Computing Nodes and Prediction Techniques
for Distributed Scheduling Architecture

As discussed in the section of system architectures, with the distributed scheduling architecture, each
computing node is equipped a load manager for receiving, invoking and logging the processing of load
chunks. This section gives the detailed description of the components running on computing nodes
and mathematical models used in prediction techniques. Since these models will be executed on all
computing nodes, we thus generally present the description for a particular computing node, say node i.

3.4.1 Load Management on Computing Nodes

We assume that there exists a number of load chunks that are waiting for being processed on computing
node i and load chunk l is the latest assigned one. As mentioned in Section 3.2.2, to estimate the
ready time for receiving and processing of node i, the load manager deployed on node i stores several
information of load chunk l such as load type, load chunk size, start transmission instant, transmission
time, start processing instant and processing time. While load type and load chunk size are known when
load chunk l is assigned to node i, the timing information are unknown until load chunk l is completely
processed. The estimated values of the timing parameters are however needed to compute the ready time
of nodes for receiving and processing a new load chunk, whereas the actual values obtained after load
chunk is completely processed can be used to enrich the training dataset of the prediction techniques.

Since the capacity of the link connecting node i and the gateway is Bi, the transmission time of a
load chunk assigned to node i is easily computed by dividing the size of the load chunk and the link
capacity. Thus, the transmission time of load chunk l, denoted as T trans

l , is as follows:

T trans
l =

Schunk
l

Bi
, (3.10)

where Schunk
l is the size of load chunk l. Given the estimated transmission time of all previously assigned

chunks to node i, we can infer the start transmission instant of load chunk l, denoted as T strans
l , as follows:

T strans
l = max{T assign

l , T strans
l�1 + T trans

l�1 }, (3.11)

where T assign
l is the assignment instant of load chunk l. This means that at the assignment instant of load

chunk l, if computing node i does not perform any transmission, then it can immediately start receiving
load chunk l. Otherwise, load chunk l should wait until the previously assigned load chunk, load chunk
l � 1, is completely transmitted to start the its transmission.

The processing time and the start processing time instant of load chunk l can be estimated similarly.
However, since the processing time of load chunk l depends on the computation requirement of the
load that is unknown to computing node i, we apply prediction techniques to estimate such parameter.
The prediction models will be presented in the next section. Given the estimated processing time of all
previously assigned load chunks on computing node i, the start processing time instant of load chunk l,
denoted as T sproc

l , is defined as follows:

T
sproc
l = max{T strans

l + T trans
l , T

sproc
l�1 + T

proc
l�1 }, (3.12)
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where T strans
l and T trans

l are the start transmission instant and the transmission time of load chunk l,
respectively. T sproc

l�1 and T
proc
l�1 are the start processing instant and the processing time of the previously

assigned load chunk, load chunk l� 1. This also means that load chunk l can be processed immediately
after finishing its transmission if node i is not busy. Otherwise, load chunk l should wait until the
previously assigned load chunk, load chunk l � 1, is completely processed.

3.4.2 Prediction Techniques

In this section, we will present the prediction techniques used by the predictor deployed on comput-
ing node i to estimate the computation requirement of a load and processing time of load chunks as-
signed to computing node i. It is to be noted that designing a novel prediction technique is out of
scope of our study since there have been lots of fundamental prediction algorithms proposed in the lit-
erature [Zhang et al., 2011, Jiang et al., 2011, Verma et al., 2013, Islam et al., 2012]. Among them, we
adopt the linear regression technique [Islam et al., 2012] because of its simplicity.

3.4.2.1 Computational requirement of load

Assuming that a scheduler requests node i for the computational requirement of load j, the predictor
at node i needs to estimate the computation requirement of load j based on historical processing infor-
mation that is used as the training dataset of the prediction model. We also assume that in the training
data set stored on node i, there are M load chunks, which have the same load type with load j, have
been received from other gateways and completely processed by node i. The computation requirement
of load j on node i, denoted as Cunit

i,j , is estimated as follows:

Cunit
i,j =

PM
l=1

WiT
proc
l Sunit

j

Schunk
l

M
, (3.13)

where Wi is the computing capacity of node i, T proc
l is the processing time of load chunk l, Sunit

j is the
size of a unit of load j, Schunk

l is the size of load chunk l.

3.4.2.2 Processing time of load chunk

Given that load chunk l with size of Schunk
l is assigned to node i, the processing time of load chunk l on

node i is estimated by the linear regression technique as follows:

T
proc
l = �0 + �1S

chunk
l , (3.14)

where �0 and �1 are the linear regression parameters, which are determined by executing the gradient
descent on the training dataset obtained from the historical processing traces. Since the gradient descent
is simple, we omit the description of the method in this chapter.

3.4.2.3 Ready time of node for receiving a new load chunk

If computing node i has never been assigned a load chunk after it is released, it is then ready for receiving
load immediately. However, if node i has been assigned several load chunks, the ready time of node i
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for receiving a new load chunk is the moment when it finishes the transmission of the latest assigned
load chunk. Assuming that load chunk l is the latest assigned load chunk, the ready time of computing
node i for receiving a new load chunk is defined as follows:

Rrec
i =

8
<

:
Ti if node i has never been assigned a load chunk;

T strans
l + T trans

l otherwise.
(3.15)

3.4.2.4 Ready time of node for processing a new load chunk

Similar to the ready time for receiving, if node i has never been assigned a load chunk after it is released,
it is then ready for processing a new load chunk. However, if node i has been assigned several load
chunks, the ready time of node i for processing a new load chunk is the moment when it finishes the
processing of the latest assigned load chunk. Let load chunk l be the latest assigned load chunk, the
ready time of node i for processing a new load chunk is then defined as follows:

R
proc
i =

8
<

:
Ti if node i has never been assigned a load chunk;

T
sproc
l + T

proc
l otherwise.

(3.16)

3.5 Static Scheduling Strategy

By applying the phase-based scheduling approach, we now present the Static Scheduling Strategy (SSS)
with the assumption that the release times of computing nodes are known before the scheduling starts.
This assumption still reflects the realistic scenario where computing nodes are shut down for mainte-
nance or any scheduled plan. Then, they will be turned on and ready for processing at the scheduled
time. In addition, we restrain the application of SSS to the centralized scheduling architecture where the
scheduler also knows the ready time of computing nodes for processing a new load chunk since all the
load chunks assigned to a computing nodes are managed by the same scheduler.

As shown in Algorithm 2, the input of SSS is the release time of computing nodes, network topology
and links’ bandwidths, computation capacity of computing nodes, and size of loads. It is to be noted
that since a computing node may be connected to different gateways with different link bandwidth. We
thus denote the bandwidth of the link connecting node i and gateway g as Bi,g. The output of SSS is the
entire scheduling solution of all loads submitted to all the gateways, including scheduling solutions for
all phases from the moment when the system starts until when all loads are completely processed. It is
also worth mentioning that since the scheduler knows the release time of computing nodes, Algorithm 2
is run only once and the scheduling decisions are stored as a lookup table for the use during each
processing phase. The load chunk transmission can start immediately even a load chunk may not be
processed right after it finishes the transmission.

The algorithm starts by initializing required parameters such as the number of units of each load,
the time instant when CN i, i = 1, . . . , N can start receiving the first load chunk, Rrec

i , 8i, and the time
instant when node i can start processing the fist load chunk, Rproc

i . Both Rrec
i and R

proc
i are initialized by

the release time of computing nodes (see lines 2–4 in Algorithm 2). The main part of SSS is the while
loop. In each iteration, the algorithm produces the scheduling decisions for a processing phase. This
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Algorithm 2 Static Scheduling Strategy
Input: Ti, Bi,g, Wi and Sj,g, 8j, 8g and 8i.
Output: {j⇤}, {i⇤}, {k}, and {Cj⇤,i⇤,k}.

1: k  0; /*index of processing phase*/
2: Uj  dSj/S

unit
j e, 8j;

3: Nj  Uj , 8j; Rrec
i  Ti, 8i;

4: R
proc
i  Ti, 8i;

5: while 9Nj 6= 0, 8j do
6: k  k + 1;
7: stop 0; /*stopping flag for a processing phase*/
8: while stop 6= 0 do
9: {j⇤, i⇤, Cj⇤,i⇤,k} Run Algorithm 1 with Nj , Ti, Rrec

i , Rproc
i , Bi,g, Wi, 8j, 8g, 8i;

10: if {j⇤, i⇤, Cj⇤,i⇤,k} 6= ; then
11: Nj⇤  Nj⇤ � Cj⇤,i⇤,k;
12: Rrec

i⇤  Rrec
i⇤ + Cj⇤,i⇤,kS

unit
j⇤ /Bi⇤,g;

13: Update R
proc
i⇤ as defined in Eq. (3.17);

14: else
15: stop 1;
16: end if
17: end while
18: end while

outer while loop stops only when all loads have been scheduled to be processed on computing nodes. To
compute the scheduling decisions for a processing phase, Algorithm 1 is repeatedly executed as shown
in lines 8–17. In each iteration of this inter while loop, Algorithm 1 selects one load, one computing
node and computes the size of a chunk of the selected load to be processed. Let load j⇤ be selected and
computing node i⇤ process a chunk of size Cj⇤,i⇤,k. The algorithm then updates the number of remaining
units of the selected load j⇤, the new ready time of node i⇤ for receiving a new load chunk and the new
ready time of node i⇤ for processing a new load chunk (see lines 11–13 of Algorithm 2). It is to be noted
that updating Rrec

i⇤ is simply adding up an amount of time as follows:

R
proc
i⇤  R

proc
i⇤ + T add, (3.17)

where T add is defined as follows:

T add
=

8
>><

>>:

Cj⇤,i⇤,kS
unit
j⇤

Bi⇤,g
+

Cj⇤,i⇤,kC
unit
i⇤,j⇤

Wi⇤
if node i⇤ has never been assigned a load chunk;

Cj⇤,i⇤,kC
unit
i⇤,j⇤

Wi⇤
otherwise.

(3.18)

If Algorithm 1 results in an empty solution, it means that no more loads need to be processed or no more
computing nodes are available for processing loads during phase k. The algorithm exits the inter while
loop and starts a new iteration of the outer while loop for new processing phase k + 1 or finishes the
scheduling, i.e., complete Algorithm 2, if no more loads are remaining to be processed.
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3.6 Dynamic Scheduling Strategy

3.6.1 Overview of Dynamic Scheduling Strategy

In this section, we present a Dynamic Scheduling Strategy (DSS), which also uses the phase-based
scheduling approach presented in Section 3.3 to schedule loads on computing nodes. It is an iterative
strategy in which Algorithm 1 is repeatedly run until all loads are completely processed. In practice, it is
obvious that DSS continues to run forever since loads are submitted to the gateway at an arbitrary arrival
rate and time. Thus, the scheduler may stay idle when there is no load for scheduling and becomes active
again when new loads arrive. The dynamic characteristic of the proposed scheduling strategy is twofold.

First, DSS reacts immediately to new released nodes. Knowing that the scheduler is not aware of
the release times of computing nodes, the scheduling decision is dynamically generated and applied to
respective processing phases. On one hand, generating the scheduling decision well ahead of the actual
transmission and processing as carried out in Static Scheduling Strategy [Kang et al., 2014b], results in
poor resource utilization since the computing nodes, which are released after the decision instant, can
be seldom used. On the other hand, since it has been shown in our previous work [Kang et al., 2014b],
late scheduling leads to waste of computing nodes that have been already released and may stay idle.
To address this issue, at the beginning of each processing phase, DSS repeatedly runs Algorithm 1 to
generate the scheduling decision for all computing nodes that have been released before. Furthermore,
during the runtime of the corresponding processing phase, if a new node is released, DSS will immedi-
ately run Algorithm 1 again to assign an appropriate load chunk to this new node to utilize the available
time of that node until the respective processing phase ends. It is worth mentioning that, to achieve this
feature, we assume that there exists a mechanism that allows computing nodes to inform the scheduler
their ready status when they are released, e.g., by sending a “hello” message to the scheduler.

Secondly, DSS dynamically takes into account the ready times of computing nodes for receiving and
processing a new load chunk. As previously mentioned, the distributed scheduling approach enables the
parallel execution of the schedulers deployed on different gateways. This leads to the case that a sched-
uler does not know the ready times for receiving and processing of the computing nodes that are shared
with other schedulers. Requesting the ready times of released nodes whenever running Algorithm 1
allows the scheduler to be aware of their available processing times to assign appropriate chunks. This
results in a better load balancing among computing nodes. It is worth mentioning that while SSS is
limited by the centralized scheduling architecture, DSS can be used in both architectures. In the central-
ized scheduling architecture, DSS reacts dynamically to the release of computing nodes whereas in the
distributed scheduling architecture, DSS additionally applies prediction techniques to estimate the ready
time of computing nodes for receiving and processing a new load chunk.

3.6.2 Detailed Description of DSS

The pseudo code of DSS is presented in Algorithm 3. Since computing nodes are released arbitrarily
during the scheduling process as well as loads are submitted at an arbitrary arrival rate, we omit the
presentation of the input parameters of DSS in Algorithm 3. Instead, the set of released nodes and
existing loads are updated gradually during the scheduling and processing of loads. Furthermore, since
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Algorithm 3 Dynamic Scheduling Strategy
1: k  1; /*index of processing phase*/
2: stop 0; /*stopping flag*/
3: start GetSystemTime();
4: while stop 6= 1 do
5: Update set of released nodes, N;
6: Update set of existing loads, L;
7: for j = 1! |L| do
8: Nj  dSj/S

unit
j e; /*number of load units*/

9: end for
10: for i = 1! |N| do
11: Request node i for ready times, Rrec

i and R
pro
i ;

12: if Cunit
i,j , j = 1, . . . , |L| is not available then

13: Request node i for Cunit
i,j , j = 1, . . . , |L|;

14: end if
15: end for
16: i⇤, j⇤, Ci⇤,j⇤  Run Algorithm 1 with Nj , Cunit

i,j , Sunit
j , Ti, Wi, Bi, Rrec

i , Rpro
i and k, i =

1, . . . , |N|, j = 1, . . . , |L|;
17: if (i⇤ 6= 0) ^ (j⇤ 6= 0) then
18: Subtract load j⇤ with a chunk of size Ci⇤,j⇤ and assign to node i⇤;
19: Sj⇤  Sj⇤ � Sunit

j⇤ Ci⇤,j⇤ ;
20: else
21: if j⇤ = 0 then
22: stop 1;
23: else
24: Stay idle in ⌧ units of time;
25: if GetSystemTime() - start > kT phase then
26: k  k + 1;
27: end if
28: end if
29: end if
30: end while

the output of DSS, i.e., the scheduling decision, is realized immediately during each processing phase,
we therefore do not need to store all scheduling decisions until DSS finishes.

Assuming that DSS starts with the first processing phase, i.e., k = 1, the scheduling process is
enclosed in a while loop in which k will be incremented gradually. The while loop is terminated only
when there are no more loads to be processed, i.e., the stop variable is set to 1. At the beginning of
the while loop, DSS updates the set of released nodes and the set of existing loads including any new
submitted loads and the loads that have been partially processed (lines 5 and 6 in Algorithm 3). Let
N and L denote the set of released nodes and existing loads, respectively. Given the set of existing
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loads, the number of remaining units is then computed for all loads (line 8). For each released node,
the scheduler requests for its ready times for receiving and processing a new load chunk. Furthermore,
if the scheduler does not know the computation requirement of any existing load on this computing
node, it then also requests for this parameter. This is shown from line 10 to line 15. Next, in line 16 of
Algorithm 3, DSS runs Algorithm 1 to obtain a scheduling decision: determining a computing node and
a load of which a chunk will be processed. If DSS successfully obtains node i⇤, load j⇤ and chunk size
Ci⇤,j⇤ , this load chunk will be then assigned to node i⇤ immediately. The size of the selected load, i.e.,
load j⇤, is also updated to a new smaller size (see line 19 of Algorithm 3).

If Algorithm 1 cannot obtain a solution, DSS will check different conditions to perform following
further actions. If there is still available node, i.e., i⇤ 6= 0, however, there is no more loads to be
processed, i.e., j⇤ = 0, DSS then exits the while loop by setting stop = 1. Conversely, if there is no
more available node, i.e., i⇤ = 0, DSS stays idle for ⌧ units of time to wait for new released nodes that
will inform the scheduler their ready status in a parallel process. We can set the value of ⌧ in the order
of several seconds to be able to react when new nodes are released. Furthermore, the scheduler should
check the time for initializing a new processing phase. To do so, we assume that there exists a function
called GetSystemTime() that returns the current time of the system. Before starting the while loop, we
initialize a start variable as the system current time as shown in line 3. Thus, checking to initialize new
processing phase is just to evaluate the elapsed time from the beginning of the scheduling process to the
current instant as shown in line 25 of Algorithm 3.

3.7 Performance Study

3.7.1 Performance of Algorithms in Centralized Scheduling Architecture

3.7.1.1 Simulation Setup

In all simulations, we consider a multi-cloud system with 5 gateways. For all divisible loads arriving to
storage nodes, we uniformly generate their sizes in the large range of [500, 3000] which can be consid-
ered as the size of files (in MB) stored in a cloud storage system. The per unit required computation of
loads is also uniformly generated in the range of [1, 5]. Both parameters assure that loads are heteroge-
neous in terms of size and computation requirement. We set the per unit load size to Sunit

j = 1, 8j (MB).
Without explicitly indicating, we set the number of computing nodes to N = 100 for all simulations.
The network topology is randomly generated. Each computing node can be connected to one or several
CSPs. The bandwidth of dedicated links connecting computing nodes and CSPs is set to 16 or 32 Mbps.
The computing capacity of computing nodes is randomly generated in the range of [10, 50] which also
assures the heterogeneity of computing nodes. All computing nodes are released randomly in the time
interval from 0 to 1000. The phase length is set to T phase

= 200s, except explicitly indicated.
To evaluate the performance of the proposed scheduling algorithms, four simulations were examined.

We measure the total processing time of the system to completely process all loads with respect to:

• The number of computing nodes;

• The number of arriving loads;
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Figure 3.4: Impact of number of computing nodes.

• The phase length; and

• The network topology.

For all simulations, we compare the performance of the proposed algorithms, SSS and DSS, with a
baseline strategy namely Earliest Release Strategy (ERS). ERS assigns the biggest load to the earliest
available computing node. Once decision is made, the whole selected load will be processed by the
selected computing node. If a computing node is selected, its earliest available time for the next load is
the time instant when it finishes the processing of the current load. It is to be noted that ERS has been
widely used in realistic systems such as Amazon EC2 or Google Cluster. This algorithm is simple and
does not need heavy computation before assigning the load to computing nodes. It is considered as the
First Come First Served algorithm. We believe that using a naive algorithm will be better to show the
effectiveness of the proposed algorithm.

3.7.1.2 Analysis of Results

Impact of number of computing nodes: To observe the impact of the number of computing nodes,
we perform the simulation with a total of 100 loads distributed to 5 gateways. We vary the number of
computing nodes from 20 to 300. The additional computing nodes are added to the existing system when
we increase the number of computing nodes. It is to be noted that the release time of new computing
node should be at least the moment they are connected to the system or later. The load sizes and
required computation are kept the same for all runs of the simulation when changing the value of N .
Fig. 3.4 shows the total processing time with respect to the number of computing nodes for all scheduling
strategies. It is expected that with the same number of loads, the larger number of computing nodes, the
shorter the total processing time. However, when the number of computing nodes is more than enough,
the total processing time does not decrease anymore. For instance, with a total of 100 loads, ERS needs
100 computing nodes. Thus, adding more computing nodes which are released later than the first 100
computing nodes does not result in any improvement of the total processing time.
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Figure 3.5: Performance of algorithms with respect to number of loads.

Comparing the performance among strategies, we see that SSS and DSS have better performance
than that of ERS. Due to the use of the phase-base scheduling approach, all computing nodes are utilized
and they all finish processing loads in the same period. ERS has the worst performance since it does
not guarantee the load balance among computing nodes. One node may be heavily utilized while others
process small loads and stay idle until all loads are processed. It is also clear that SSS has better perfor-
mance than DSS since it knows the release time of computing nodes prior to the start of the scheduling
process. However, this assumption may not be realistic and thus we have to use DSS for scheduling
loads. In the ideal case, DSS may have the same performance as SSS, e.g., with 140 computing nodes.
In the worst case, the total processing time with DSS increases 33.33%.

Impact of total number of arriving loads: In this simulation, we evaluate the impact of the number of
loads arriving to the system. We perform the simulation with a total of 100 computing nodes. The total
number of loads arriving to the system is increased from 20 to 200 loads, which are evenly distributed
among gateways. In Fig. 3.5, we present the total processing time of all scheduling strategies with
respect to the total number of loads submitted to the system. It is expected that with a fixed number
of computing nodes, the total processing time increases when there are more loads submitted to the
system. However, the increase is not gradual since new arriving loads can be accommodated within the
idle time of computing nodes after finishing the processing of earlier arriving loads. For instance, the
total processing time keeps unchanged when the number of loads increases from 20 to 80 with DSS. In
any case, SSS always has the best performance and ERS has the worst performance.

Impact of the duration of a processing phase: An important parameter affecting the performance of
SSS and DSS is the length of a processing phase. Choosing a sub-optimal phase length may create a poor
performance of the scheduling strategies. Indeed, we perform the simulation by varying the length of a
processing phase. In the first case, we assume that there is no transition overhead between processing
phases, e.g., additional time to divide loads to multiple chunks, or the transition when computing nodes
change from one load to another. In Fig. 3.6, we present the total processing time with respect to the
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Figure 3.6: Impact of phase length without transition overhead.
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Figure 3.7: Impact of phase length with transition overhead.

length of a processing phase. It is observed that when the phase length is increased, the total processing
time also increases. There are two reasons behind this behavior. First, the time taken in waiting for
communication of load chunks assigned in the first scheduling becomes considerable when there is only
a few processing phases. Second, it is due to the load unbalance at the last processing phase. The first
available computing node may be assigned a larger load chunk to process until the end of the phase
while other computing nodes, being available later, process the remaining small load chunks. Compared
to ERS, we see that ERS performance can be considered as the upper bound of SSS and DSS since ERS
does not use phase-based approach, i.e., the phase length in ERS is T phase

=1.
In the second case, we assume that there is a transition overhead between phases. We define a func-

tion computing the transition overhead with respect to the number of processing phases and total number
of loads as T overhead

= ↵kJ where ↵ is a weighting coefficient, k is the number of processing phases
and J is the total number of loads. In Fig. 3.7, we present the change of the processing time with respect
to the processing phase length. We can observe that when the phase length is too small, the number
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Figure 3.8: Impact of the network topology.

of processing phases is high. Thus, the total processing time dominates due to the transition overhead
between phases. When we increase the phase length, the number of processing phases decreases thereby
decreasing the total processing time. The total processing time is minimized at an optimal value of the
phase length, a value in the interval [50, 80], before increasing again when we increase the phase length.
When implementing SSS and DSS for real-world applications, simulations and/or real experiments can
help users to determine an optimal value of phase length depending on the given parameters such as size,
per unit size and computation requirement of loads.

Impact of the network topology: In the last simulation, we evaluate the impact of the network topol-
ogy: a limited topology (Ltd Topo) where each computing node may not be connected to all gateways
by the dedicated links of 16 or 32 Mbps, and a full topology (Full Topo) where each computing node
is connected to all gateways with the bandwidth of 32 Mbps. This situation reflects the similar case in
real-world that a computing node may or may not able to process all types of loads due to the availabil-
ity of software or license. As shown in Fig. 3.8, for all scheduling strategies, the performance with the
full topology is slightly better than that with the limited topology. This is due to the fact that with the
full topology, the scheduler has more choices to select a computing node for a load of a certain gate-
way. However, even using the highest bandwidth, the improvement is not significant since most of load
transmissions are overlapped with load processing.

3.7.2 Performance of DSS in Distributed Scheduling Architecture

3.7.2.1 Simulation Setting

To evaluate the performance of DSS in the distributed scheduling architecture, our testbed also com-
prises a multi-cloud system with 5 gateways hosting 5 respective schedulers, which operate in parallel
to receive and schedule loads. Without loss of generality, we assume that the schedulers are connected
with 100 computing nodes with two kinds of link bandwidths: 16 Mbps and 32 Mbps, respectively. As
described in earlier sections, as per our distributed design, it is to be noted that many computing nodes
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Table 3.2: Number of Computing Node That a Particular Scheduler can Access
Scheduler Number of Computing Nodes

S1 59

S2 72

S3 73

S4 67

S5 64

are shared among schedulers. In Table 3.2, we present the number of computing nodes that a particular
scheduler can access. For all the simulations, we vary the arrival rate of loads, i.e., the number of loads
that are submitted to each scheduler per minute, and we measure the total processing time of all loads
after 5 minutes of receiving loads. It is also to be noted that while we assume the availability of compu-
tation requirement of loads in the evaluation of SSS, we consider the realistic scenario in this simulation
to evaluate the performance of DSS such that the computation requirement of loads is also unknown
to schedulers and computing nodes, which therefore need to use the prediction technique presented in
Section 3.4 to estimate this parameter when required.

3.7.2.2 Load Setup and Training Dataset for Prediction Algorithm

To the best of our knowledge, there is not any publicly available processing workload traces since such
information is often regarded by providers as being strictly confidential. Recently, Google has published
a dataset pertaining to workloads on Google Compute Clusters [Reiss et al., 2011], which includes the
resource requirements of tasks submitted to a cluster of 12, 000 physical machines over a time period of
29 days. While this workload trace provides information on the timestamp of workloads processed, it
does not provide enough information on the size of tasks, i.e., the size of input data and application type
of each task. This prevents us from adopting this workload trace directly in our work. Fortunately, we
can use the data produced by our previous work [Kang et al., 2014a]. In this work, we designed and im-
plemented an encryption service for cloud storage system to protect the data privacy. The experimental
validation was performed on real servers and data files that are archives of Wikipedia. The processing
traces keep the information of all files sent to the storage server including the file size, the key length
used for encryption algorithm and the time overlap for the encryption service. Note that, in this applica-
tion, i.e., encryption service, the application requires different amount of computation for the same file
when the key lengths are different. The longer key requires longer time to complete the encryption of
the same file. The processing traces were generated with three key lengths: 256, 192 and 128 bits. In
Fig. 3.9, we present the encryption time with 256-bit keys with respect to the file size of input data on
a physical machine with PowerEdge C6220 with Intel(R) Xeon(R) Processor E5-2640 2.50GHz, 24GB
RAM. The file size varies between 41MB and 4.1GB.

3.7.2.3 Analysis of Results

Overall Performance of Proposed System: In this section, we evaluate the overall performance of the
proposed system and algorithms by comparing its performance with that of a baseline scheme, ERS. It
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Figure 3.9: Training data for the prediction algorithm, i.e., encryption time with respect to the file size
with the key length of 256 bits.

is worth mentioning that ERS assigns the biggest load in terms of size to the earliest released computing
node. For each arrival rate, DSS and ERS were executed more than 100 times to obtain the average total
processing time. In Fig. 3.10, we present the total processing time of DSS and ERS with respect to the
arrival rate of loads. Generally, the results show that DSS outperforms ERS and DSS can reduce the total
processing time up to 44.60% compared to ERS. The improvement is more significant when arrival rate
of loads is low, e.g., cases of 2, 4 and 6 loads per minute, since many computing nodes will be wasted
with ERS. These results lead to two following affirmations. First, the use of the phase-based scheduling
approach definitely improves the resource utilization in a computing infrastructure. By dividing loads
into multiple smaller chunks and assigning to different nodes in parallel, it significantly reduces the
total processing time of loads and also efficiently exploits the capacities of computing nodes. Secondly,
without the knowledge on the computation requirement of loads, the use of prediction models effectively
helps the scheduler to assign appropriate chunks to computing nodes depending on their capacities and
the computation requirement of loads. This is one of the important contributions of this chapter.

The above affirmations are further vouched by Fig. 3.11 wherein we plot the scheduling solutions of
DSS and ERS with the arrival rate of loads at 14 loads per minute. The horizontal axis represents the
time and the vertical axis represents computing nodes, i.e., labeled by “CNs”. For each computing node,
two horizontal lines are depicted: one for transmission of load chunks and the other for processing of
load chunks. The color art is just to make difference between the transmission and processing of two
consecutive load chunks assigned to the same node: grey and blue are for transmission and light blue and
red are for processing. It is observed that DSS generates better scheduling solution, shown in Fig. 3.11a,
where all the computing nodes finish processing load chunks almost at the same time. Considering the
case of ERS shown in Fig. 3.11b, the scheduling solution does not result in a good load balance among
computing nodes. While several computing nodes finish the processing of assigned loads early and stay
idle in a long period, other computing nodes suffer heavy loads and prolong the total processing time. It
is to be noted that the use of the phase-based scheduling approach that divides loads into multiple smaller
load chunks, needs an important parameter, namely the computation requirement of loads. As previously
mentioned, this parameter is unknown to schedulers and computing nodes and it is estimated by using
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Figure 3.10: Total processing time of the proposed system using DSS compared to baseline scheme,
ERS, with respect to arrival rate of loads.

a prediction technique. The simulation results further demonstrate the effectiveness of the prediction
technique used in the proposed system. Due to the accuracy of the prediction technique, the size of
load chunks is appropriately determined based on the computation requirement of loads and capacities
of computing nodes. Computing nodes therefore are well balanced and they can finish processing load
chunks almost at the same time at the last phase.

It is to be noted that we do not have a specific balancing index in this work although the load balance
index of the proposed algorithms can be observed from Fig. 3.11. As shown in Fig. 3.11b, nodes are not
well balanced when we apply the baseline algorithm, whereas Fig. 3.11a shows the better load balance
by using the proposed algorithms since all nodes are assigned loads until the last phase evenly.

Effective Utilization of New Released Nodes: In this section, we evaluate the improvement in
DSS compared to the version presented in [Kang et al., 2014b]. As mentioned in Section 3.6.1, at
the beginning of each phase, Algorithm 1 is repeatedly executed until no more computing nodes,
which are available to process load chunks in the corresponding phase. With the version presented
in [Kang et al., 2014b], DSS waits until when the next processing phase starts to run Algorithm 1 again.
It is to be noted that the running time of Algorithm 1 is negligible compared to the duration of a pro-
cessing phase. Waiting until next processing phase makes the computing nodes, which are released after
the scheduling of the corresponding phase finishes, be wasted until the next phase. We improve the
utilization of computing nodes by starting assigning loads to nodes immediately after they are released.
In Fig. 3.12, we present the total processing time with the original version and the improved version
with respect to the arrival rate of loads. It is observed that the improved version of DSS has a better
performance. In the case of the simulation shown in Fig. 3.12 where the duration of processing phase is
100s, the improved DSS can reduce the total processing time by up to 7.14%.

The improvement will be more significant when the duration of processing phase is large. In
Fig. 3.13, we present the total processing time of DSS with and without the improvement when the
duration of processing phase is 200s. The improved DSS can reduce the total processing time by up
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(b) Scheduling solution of ERS.

Figure 3.11: Scheduling solutions of DSS and ERS with arrival rate of loads at 14 loads per minute.

to 30.24%. For better understanding, we show in Fig. 3.14 the scheduling solutions of DSS with and
without the improvement during the period where computing nodes are released. Fig. 3.14a shows the
scheduling solutions of the improved DSS where all the computing nodes are utilized immediately after

41



Scheduling Strategies for Handling Divisible Loads in Multi-Cloud Systems Chap. 3

 500

 1000

 1500

 2000

 2500

 3000

 2  4  6  8  10  12  14  16  18  20

To
ta

l p
ro

ce
ss

in
g 

tim
e 

(s
)

Arrival rate of loads

Improved DSS
Original DSS

Figure 3.12: Total processing time of proposed system using DSS with and without improvement. Du-
ration of processing phase is 100s.
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Figure 3.14: Scheduling solutions of DSS with and without improvement: processing phase is 200s.

they are released whereas Fig. 3.14b shows the scheduling solutions of DSS without the improvement
where computing nodes are utilized only from the next phase. The results show the importance of this
gain in the scheduling algorithm. It eliminates the dependence of the resource utilization on system
parameters, i.e., duration of processing phase that usually varies depending on application types.

Centralized Scheduler vs. Distributed Schedulers: In this section, as a matter of natural curiosity,
we compare the performance of the proposed algorithm, DSS, in the centralized scheduling architec-
ture and the distributed scheduling architecture. It is worth mentioning that, in the case of centralized
scheduler, when loads arrive to the gateways, their information (application type, size, unit size) are
immediately sent to the centralized scheduler. In Fig. 3.15, we present the total processing time of the
proposed system using these two scheduling approaches. It is expected that the centralized scheduling
approach has a better performance than that of the distributed scheduling approach. Since the centralized
scheduler holds the information of the entire system, especially the availability of all computing nodes,
no synchronization is needed during the scheduling process. With the distributed scheduling approach,
a node, that belongs to more than one gateway, has to communicate with all corresponding schedulers.
Therefore, the synchronization is needed to avoid conflict when several schedulers request for ready
time of the node at the same time. This synchronization incurs a delay for load processing. The results
show that the centralized scheduling approach can reduce the total processing time by up to 6.5%.

While the gain in the total processing time is only in the order of 6.5%, the scheduling load posed on
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Figure 3.15: Total processing time of DSS using centralized scheduler or distributed schedulers.

the centralized scheduler increases with the factor of the number of gateways and arrival rate of loads.
Unfortunately, simulating the load at schedulers to measure the scheduling delay is beyond the scope of
the available simulation testbed. We believe that the distributed scheduling approach will dominate due
to its effectiveness in fault-tolerance and load balancing. It will be scalable when realizing the proposed
approach in a realistic system with many gateways and high arrival rate, e.g., a multi-cloud system with
more than 10 gateways and 1000 loads arriving per unit of time.

3.8 Chapter Summary

In this chapter, we presented next generation novel multi-cloud architectures to address heavy cloud
resource requirements from users who want to use cloud infrastructure for their modern and complex
applications. Based on these architectures, two scheduling strategies, which leverage on the divisible
load theory and the phase-base scheduling approach, are then proposed: A Static Scheduling Strategy
(SSS), which assumes that the release time of computing nodes is known prior to the scheduling and A
Dynamic Scheduling Strategy (DSS) relaxes the assumption of SSS by applying a prediction technique
to estimate the release time of computing nodes [Kang et al., 2014b, Kang et al., 2016c]. Both strategies
take into account the topology and capacity of the system network, and the heterogeneity of computing
nodes. This is an important contribution to the design of multi-cloud system schedulers that are capable
of handling multiple large-scale loads. Nevertheless, this chapter addresses only the performance issue
of multi-cloud systems, particularly the problem of scheduling loads to achieve load balancing and to
minimize the total processing time. Moving data to public clouds for storing and processing leads users
to other challenging issues. Among them, the security issue (especially the data privacy and availability)
is the most important since it is hindering the migration of data and its computations to public clouds.
This motivates us to carry out the research on the problem of guaranteeing the data availability and
protecting the data privacy in public clouds. We present our study on these issues in the next chapter.
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Chapter 4

A Security-aware Data Placement
Algorithm for Data Privacy and

Availability in Cloud Storage Systems

I n the previous chapter, we focused only on the
problem of performance optimization for multi-

cloud systems without considering the security re-
quirement to protect the data privacy. In this chap-
ter, we move forward to address both issues in a joint
problem. We consider the problem of data place-
ment in cloud storage systems where the performance
of the system represented by the total retrieval time
of a data should be minimized and the data privacy
should be protected. We first develop an optimiza-
tion programming formulation for the problem whose
objective is minimizing the total retrieval time of a
data and the constraints are the security and avail-

ability requirements. We then develop an efficient
heuristic algorithm, namely Availability and Security-
awarE Data placement algorithm for cLOUd stor-
age Systems (A-SEDuLOUS) to solve the problem. A-
SEDuLOUS divides a data into multiple chunks, each
will be stored in two nodes as primary and backup
nodes. The placement decision is computed in the
way that all the primary and backup chunks of a data
satisfy the security and availability requirements, and
the total retrieval time is minimized. We evaluate the
proposed algorithm through comprehensive simula-
tions on random-network-topology systems and the
Internet2-topology system.

4.1 Research Motivation and Objectives

To meet the ever-growing data storage demands from users, cloud storage systems have become an at-
tractive candidate that provides online services for data storage with immense capacity and high quality
of service but at a low cost [Zeng et al., 2009]. Many commercial cloud storage providers, which in-
clude Amazon Simple Storage Service (S3), Google Cloud Platform, Dropbox, etc., have joined the
cloud market and they provide a simple Web interface that can be used to store and retrieve any amount
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of data at any time and from anywhere on Earth [Wang et al., 2010]. From a user’s point of view, de-
lay in data retrieval and data availability are the two important criterion that evaluate the quality of
service or performance of cloud storage systems. However, providing a fast data retrieval storage ser-
vice is a challenge for any cloud storage provider. The problem is more complex when considering
a large-scale cloud storage system where storage nodes are geographically distributed with heteroge-
neous storage capacity of the nodes and bandwidth of the links connecting the nodes. On the data
availability, many cloud providers offer the data replication with multiple data copies that are stored
geographically. However, some of them still suffer the system outage such as Google Mail and Hot-
mail [Albanesius, 2012, Cachin et al., 2009]. While the replication can address only the attacks on
storage nodes, it may not be able to solve the problem of attacks on the links connecting the storage
nodes to the end-node of users making the data unavailable if there is no alternate network path for data
transmission. The problem of placing the primary copies and backup copies of a data therefore needs
to consider many other parameters to obtain an optimal placement solution that minimizes the retrieval
time and guarantees the data availability regardless of attacks on nodes or links.

In addition to the quality of service issue, moving data from local servers to public cloud storage
systems poses new challenges in security and data privacy. Without the knowledge of physical loca-
tion of data and the control over the storage servers, users are concerned about the leakage of sensitive
data and malicious behaviors of other users sharing the same cloud service. The consequence of re-
vealing sensitive data is very severe in several scenarios such as revealing personal health information
may lead to denied access to insurance services of the data owner. To relieve users’ concerns, several
cloud providers such as Amazon S3 and Google Cloud Platform offer the server-side encryption service,
which encrypts the users’ data according to the security level represented by the length of encryption
key [Kang et al., 2014c]. However, this approach incurs a significant delay due to the encryption pro-
cess and requires an additional effort from users to manage the encryption keys. A novel approach is
therefore needed to guarantee the data security while minimizing the overhead of the security service.

Combination of the performance issue and the security issue makes the problem of data placement
in cloud storage systems become a challenging problem, which has not been considered in the literature
(to the best of our knowledge). We take the first step towards addressing the problem with this work.
Given that an entire data file is divisible and sensitive information is spread over the fragments of the file,
we propose to divide the data into multiple fragments (chunks), each will be stored in a separate node.
The chunks of a particular data are then spread over storage nodes with a certain distance between any
pair of chunks. This ensures that even in case of a successful attack to a particular chunk, no meaningful
information of the entire data file is revealed and malicious users cannot guess the location of other data
chunks. To address the requirement of data availability, we propose to replicate an additional backup
chunk for each primary chunk. The placement of backup chunks has to satisfy not only the security
requirement but also the availability requirement such that the paths from the nodes storing primary
chunk and backup chunk to the access point of end-users must be link-node-disjoint. The entire data
placement problem is then addressed by solving three intertwined sub-problems: decision of number of
chunks, decision of size for each chunk and selection of storage nodes.

We address these three sub-problems by first formulating an optimization programming model that
minimizes the total retrieval time of a data file while satisfying the security and availability requirements.
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Since solving such an optimization problem is computationally hard [Baev et al., 2008], we then develop
an algorithm, namely Availability and Security-awarE Data placement algorithm for cLOUd storage
Systems (A-SEDuLOUS) to solve the problem. It uses a greedy approach that gives the priority for the
nodes, which can faster transfer data to the access point of users. To address the security challenge, we
propose to apply the graph T-coloring approach [Hale, 1980], which ensures that two adjacent nodes are
not assigned the same color. This implicitly means that they should not simultaneously store the chunks
of a data. For each data, A-SEDuLOUS determines the primary placement decision by computing the
number of primary chunks, chunk sizes and selecting primary nodes. Based on the placement decision
of primary chunks, it determines a list of backup nodes and the assignment of chunks to backup nodes.
While the placement of primary chunks needs to satisfy only the security requirement, the placement
of the backup chunks needs to satisfy both security and data availability requirements. We evaluate
the proposed algorithm through extensive simulations on different cloud storage systems using random
network topologies and the realistic Internet2 topology. We compare A-SEDuLOUS against baseline
algorithms to demonstrate its effectiveness.

4.2 System Model

We consider a distributed cloud storage system that consists of M storage nodes. Node i has a total
storage capacity of Ci units. The connections among nodes are represented by symmetric matrix B(M⇥
M) where Bi,j = Bj,i indicates the bandwidth of the bi-directional link between node i and node j.
Thus, the case of Bi,j = Bj,i = 0 means that node i and node j are not connected. The topology of the
system is represented as a graph G(V,E) where V is the set of vertices, i.e., storage nodes, and E is the
set of edges among vertices, i.e., the links that connect the storage nodes. We assume that any storage
node can be considered as an access point of the system where users can submit storage requests and
retrieve their data. This assumption reflects the practical situation of a distributed storage system such
as Amazon S3, in which storage nodes are geographically distributed over the world and some of them
are used as access points of the system at the respective region.

Given a user request that requires to store a volume of data sized D, we assume that the data is
divisible into multiple chunks with arbitrary size, each chunk contains partial important and sensitive
information of the entire data. Thus, revealing the information of a single chunk does not make sense to
malicious users. To address the data availability issue, we also assume that each chunk will be replicated
with an additional copy. The challenging issue is how to store all data chunks including primary chunks
and backup chunks in the storage system to minimize the total retrieval time while satisfying the security
and availability requirements. By satisfying the security requirement, the system guarantees that even
if a successful intrusion to a chunk happens, the attacker cannot guess or infer the locations of other
chunks. By satisfying the availability requirement, the system ensures that in case of attack happening
on any storage node or network link, which connects the storage node and the access point of the user,
the backup chunk of the affected primary chunk is always accessible for data retrieval. It is worth
mentioning that we consider a single attack or failure scenario in our work. This means that at a given
time instant, there is maximum one storage node or network link that are unavailable due to attacks.
This prevents the situation that both primary and backup chunk of a data are unavailable simultaneously
due to two nodes or two links are attacked at the same time.
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Since the security requirement of different users may be different, we define the security level as the
minimum distance between the two nodes storing any pair of chunks of the data. The non-security level
means the whole data file can be stored in the same node. The lowest security level means two different
chunks should be stored on different nodes, which may be two adjacent nodes. We can also define a
default security level such that two chunks should not be stored in two adjacent nodes. We assume that
users are responsible for specifying the security level for their data, depending on the sensitivity of the
data. For instance, medical and financial record data should be stored with higher security level than
normal data such as movies.

4.2.1 Retrieval Time Function

Let (S1, S2, . . . , SM ) denote a feasible placement solution of the primary chunks of a data where Si 6= 0

implies that node i is selected to store a data chunk of size Si and node i satisfies the security requirement
whereas Si = 0 indicates that node i is not selected for storing a data chunk. Obviously,

PM
i=1 Si = D.

We now formulate the function, which computes the retrieval time of the original data upon a read
request. Let node p denote the access point where the user submits his read request. We assume that a
user always use the same access point for storing and retrieving data. Data chunk Si stored on node i is
then transferred to the access point, node p, on a path that connects node i and node p and may traverse
multiple intermediate nodes. We assume that the transmission path of a data chunk is the shortest path
from the storage node to the access point. The shortest path is computed based on the data transmission
time. It is to be noted that there exist in the literature many algorithms, which compute the shortest path
between two nodes in a graph [Goldberg and Harrelson, 2005]. We thus omit the presentation of such
algorithms and assume that Pi,p is the shortest path connecting node i and node p for data transmission.
The total transmission time of a data chunk sized Si from node i to node p is computed as follows:

TSi =

X

l2Pi,p

Si

Bls,le

, (4.1)

where l is a link belonging to path Pi,p, Bls,le is the bandwidth of link l, ls and le are the source and the
sink of link l, respectively. Assuming that node p can perform only one data transmission at a time, the
total transmission time of a data sized D, which is divided into multiple chunks and stored on different
nodes, is defined as follows:

TD =

MX

i=1

X

l2Pi,p

Si

Bls,le

. (4.2)

We assume that the read/write time from/to the storage devices are negligible. We also assume that
network links are bi-directional. Thus, the data transmission time from node i to node p for a read
request will be the same as the time needed for transferring the data from node p to node i for a write
request. Therefore, if we can minimize the total retrieval time of a data, then its total uploading time
will be also minimized.

4.2.2 Problem Statement for Primary Chunk Placement

The formal statement of the primary chunk placement problem is given as follows. “Given a user request
that requires to store a volume of data sized D submitted to node i of a distributed cloud storage system,
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the system is responsible for determining: (i) A list of nodes, each will store a data chunk, satisfying the
required security level of the user; (ii) The size of the data chunk, Si, which will be stored on node i,
such that the total data retrieval time is minimized.” The optimization programming formulation of this
problem is mathematically presented as follows:

Minimize: TD =

MX

i=1

X

l2Pi,p

Si

Bls,le

(4.3)

subject to:
MX

i=1

Si = D, (4.4)

Si > 0, i = 1, . . . ,M (4.5)

Si 6 Smax, i = 1, . . . ,M (4.6)

Si 6 Ci, i = 1, . . . ,M (4.7)

f(Si, Sj , i, j) > K, i, j = 1, . . . ,M. (4.8)

The constraint in (4.4) ensures that the sum of all chunk sizes is equal to the original size of the data. The
constraints in (4.5) and (4.6) ensures that the size of every chunk should not be negative and not exceed
the limit that is defined by the user, denoted as Smax. Obviously, Smax 6 D. We argue that the owner of
the data is the best candidate to specify the chunk size threshold to not reveal much sensitive information
if a chunk is leaked. The constraint in (4.7) ensures that a chunk will be stored in a node, which has
sufficient storage capacity. The constraint in (4.8) ensures that the placement solution guarantees the
required security level, i.e., the minimum distance between the nodes that store two chunks of the same
data, denoted as K. For instance, K = 0 represents the non-security level, K = 1 represents the lowest
security level and K = 2 represents the default security level. We then define function f(Si, Sj , i, j) to
compute such a distance. The function is defined as follows:

f(Si, Sj , i, j) =

8
<

:
D(i, j) if Si 6= 0 and Sj 6= 0;

MaxInt if Si = 0 or Sj = 0.
(4.9)

When Si 6= 0 and Sj 6= 0, the function takes the value, D(i, j), which is computed as the distance, i.e.,
the number of hops, between the two nodes based on the shortest path in the network topology of the
system. In case if Si = 0 or Sj = 0, meaning that either node i or node j is not selected to store any data
chunk, the result of the function is set to a value larger than K, e.g., maximum integer value, MaxInt.

4.2.3 Problem Statement for Backup Chunk Placement

Given the placement solution of primary chunks obtained by solving the optimization problem presented
above, denoted as (S⇤

1 , S
⇤
2 , . . . , S

⇤
M ), we now present the problem formulation of the backup chunk

placement such that the total retrieval time of backup chunks will be minimized. Let (I1, I2, . . . , IH)

denote the indices of the nodes that store a primary chunk of the data, i.e., Ih 2 [1, . . . ,M ] and S⇤
Ih
6= 0.

In other words, the data is divided into H chunks with size S⇤
Ih
, h = 1, . . . , H . We then need to

determine H different storage nodes that will store all H backup chunks such that the total retrieval
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time of backup chunks is minimized, and the security as well as availability constraints are satisfied. Let
(I 01, I

0
2, . . . , I

0
H) denote the indices of the backup nodes. The problem is formulated as follows:

Minimize: T 0
D =

HX

h=1

X

l2PI0
h
,p

S⇤
Ih

Bls,le

(4.10)

subject to:

Ih 6= I 0h0 , h, h0 = 1, . . . , H (4.11)

S⇤
Ih

6 CI0h
, h = 1, . . . , H (4.12)

D(Ih, I
0
h0) > K, h 6= h0, h, h0 = 1, . . . , H (4.13)

D(I 0h, I
0
h0) > K, h 6= h0, h, h0 = 1, . . . , H (4.14)

PIh,p \ PI0h,p
= ;, h = 1, . . . , H. (4.15)

The constraint in (4.11) ensures that backup nodes are different from primary nodes. The constraint
in (4.12) ensures that backup node I 0h has sufficient storage capacity to store chunk of size S⇤

Ih
. The con-

straint in (4.13) guarantees that the distance between a backup node and any primary node satisfies the
security requirement where D(i, j) is computed as the distance, i.e., the number of hops between node
i and node j based on the shortest path between them. Similarly, the constraint in (4.14) guarantees that
the distance among any pair of backup chunks satisfies the security requirement. Finally, the constraint
in (4.15) guarantees the data availability such that the paths from the nodes storing the primary chunk
and the backup chunk to the access point are link-node-disjoint paths where nodes Ih and I 0h are the two
nodes storing the primary and its backup chunk, respectively.

4.2.4 Discussion

It is worth mentioning that we separate the problem formulation of primary chunk placement and that of
backup chunk placement to give the storage priority for the primary chunks. We argue that upon a read
request, the access point will first request the storage nodes storing the primary chunks. Thus, the data
retrieval time will be minimized if all primary chunks are available. In case of attacks on any node or
network link, the access point will then request the node storing the backup chunk. Since the selected
backup nodes minimize the total retrieval time among backup node candidates, the retrieval time of a
particular backup chunk will also be minimized in the event of an attack.

Solving the above problems is computationally hard since it is NP-complete in nature to de-
termine whether there exists a valid placement solution even for a simple and small storage sys-
tem [Baev et al., 2008]. The optimization programming models formulated above give us better de-
scription of the data placement problem and better understanding of the problem complexity. It shows
that it is essential for us to devise efficient heuristic algorithms to solve the problem. However, develop-
ing novel and efficient heuristic algorithms is not a straightforward task. In the next section, we present
A-SEDuLOUS, an Availability and Security-awarE Data placement algorithm for cLOUd storage Sys-
tems, which is a greedy algorithm that satisfies the security and availability requirements of users while
minimizing the data retrieval time.
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4.3 A-SEDuLOUS

4.3.1 T-coloring Problem

Given a graph G = (V,E) that represents the network topology of the storage system, and a set T that
contains non-negative integers including 0, the T-coloring problem is defined as function f : V ! C, a
mapping from set of vertices V to a set of non-negative integers, C, which represent the values used to
color the vertices, such that |f(i) � f(j)| /2 T where i, j 2 V . In other words, the T-coloring problem
assigns a color to a vertex such that the distance between the colors of the adjacent vertices must not
belong to T. When T = {0}, the T-coloring problem reduces to a common vertex coloring problem, in
which two adjacent vertices cannot be assigned the same color.

The T-coloring problem when T = {0} can naturally apply to the data placement problem to ensure
complete security of data. Given that a data can be divided into an arbitrary number of chunks, with
the default security level, i.e., K = 2, two different chunks of the data cannot be stored in two adjacent
nodes. In other words, given a coloring solution of a storage node graph, all the chunks of the same data
can be stored on the storage nodes, which are assigned the same color, since they are not neighboring
nodes in the graph. It is worth mentioning that the number of nodes in a cloud storage system with the
same color is likely much larger than the number of chunks of a particular data. The security of data
is therefore guaranteed since malicious users cannot guess the locations of other data chunks even if a
successful intrusion happened on any node.

It is also worth mentioning that since data is divided into multiple chunks, there should be a node
that keeps track the list of nodes, which store the chunks of a particular data, for data retrieval upon
request. Obviously, the access point where users submit their storage and retrieval requests can maintain
such database. However, since we consider the realistic scenario where every storage node in the system
can be the access point, they also suffer the risk of attacks and the meta-data of a particular data may be
revealed. To overcome this issue, cloud providers can deploy an additional server that is totally isolated
from storage nodes and it is accessible only by network administrator and administration software. This
server maintains the database of meta-data of all data stored in the system such that upon a retrieval
request, the corresponding access point will contact the server via a secure protocol for requesting the
list of storage nodes of the requested data.

The problem is more complex when the required security level is higher than the default level, i.e.,
the distance between two different chunks of a data is required to be larger than 2. To solve this problem,
we propose an algorithm to convert the problem with K > 2 to the problem with K = 2. Given a value
of K and based on the original network topology, the algorithm connects all the pair of nodes whose
distance is less than K, resulting in a virtual network topology. Fig. 4.1 shows an example of the
conversion process when K is set to 3. Fig. 4.1a shows the original graph of the system. Fig. 4.1b shows
the result of the graph conversion algorithm where the added edges are marked as dashed lines. Fig. 4.1c
shows a coloring solution obtained on the generated graph. Given the coloring solution, we obtain a set
of feasible storage node solutions. Based on the example shown in Fig. 4.1c, we can see that a data can
be divided into 2 chunks and stored on feasible pair of nodes such as node 1 and node 6 (red color),
node 2 and node 7 (blue color), node 3 and node 4 (green color) or node 5 and node 9 (purple color).
The pseudo code of the graph conversion is presented in Algorithm 4. Since there exists in the literature
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Figure 4.1: Conversion example with the required security level, K = 3: (a) Original graph. (b) Result
of the conversion where added edges are the dashed lines. (c) A possible coloring solution.

the algorithm for coloring a graph, we omit the presentation of such an algorithm in this paper. We
refer the readers to [Pardalos et al., 1999] for further details of the coloring algorithms. In Section 4.3.3,
we integrate the conversion algorithm into A-SEDuLOUS as an initial step before determining the best
placement solution that minimizes the data retrieval time.

4.3.2 Link-node-disjoint Path for Data Availability

We now present our approach to guarantee the data availability in the event of attacks that happen on
any node or network link in the system. Many works in the literature proposed to replicate multiple
copies of a data such that if one copy of the data is not available, the user can request from the backup
copy. We argue that replication without considering the network topology may not guarantee the data
availability due to attacks on nodes and network links in the system. Fig. 4.2 illustrates the replication
scenarios where the data availability may or may not be guaranteed. The replication shown in Fig. 4.2a
can guarantee the data availability regardless of the security attacks that happen on any node or link of
the system assuming that there is a single attack at a time. The replication shown in Fig. 4.2b cannot
guarantee the data availability if attacks happen on node 6 or the link connecting node 6 and node 9.

At a very fine-grained level, one may suggest to apply an advanced network recovery mechanism at
the network layer to address the attacks on the nodes and links on the path to the access point such as the
local rerouting approach [Murali Mohan et al., 2015]. Such an advanced mechanism allows the nodes
on the path to determine an alternate path to forward the data to the access point if the next-hop node or
link is attacked. However, this mechanism requires that between any pair of storage nodes there must
exist at least two paths connecting them. The network state of the entire system must also be available at
every node. Furthermore, it also requires the computing capacity of storage nodes to be able to compute
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Algorithm 4 Graph Conversion Procedure
Input: G = (V,E), K.
Output: G0

= (V,E0
) /*Graph with new added edges*/

1: for i 2 V do
2: for j 2 V do
3: if (i 6= j) ^ (D(i, j) < K) then
4: Add an edge to E0 to connect i and j;
5: end if
6: end for
7: end for
8: Color graph G0 to obtain set of feasible nodes;
9: return G0;
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Figure 4.2: Replication example: (a) Replication guarantees the data availability. (b) Replication fails
to guarantee the data availability due to security attacks.

the alternate path to the access point. All these assumptions may not be realistic and the approach adds
an additional overhead, i.e., path computation delay, on the storage nodes.

Our proposed approach is much simpler and does not incur any additional overhead at the network
layer to recover from the failures caused by attacks. For every data chunk, a pair of primary and backup
nodes are determined such that the paths from the primary node and backup node to the access point
must be link-node-disjoint. For instance, in Fig. 4.2a, the path from primary node, node 1, to the access
point is 1! 4! 7! 9. This path is link-node-disjoint with the path from backup node, node 3, to the
access point that is 3! 6! 9. Upon a retrieval request, the access point first requests the primary node
to retrieve the chunk. In the event of attack on the primary node, or any node or link on the path from the
primary node to the access point, the access point will switch to request the backup node after a timeout
without the response from the primary node. It is to be noted that while the path from the primary node
to the access point should be the shortest path, to ensure the link-node disjointness of paths, the path
from the backup node to the access point may not necessarily be the shortest one. Thus, given a backup
node that satisfies the security requirement, our approach determines the k-th shortest path that satisfies
the disjointness constraint. If there does not exist any path from the backup node to the access point
such that the path is link-node-disjoint with the primary path, the backup node is then eliminated. In the
next section, we present the integration of the link-node-disjoint path determination into A-SEDuLOUS
for the backup node selection.
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Algorithm 5 A-SEDuLOUS
Input: G = (V,E),K, p,Bls,le , D, Smax, and Ci, i = 1 . . .M .
Output: S⇤ = (S⇤

1 , S
⇤
2 , . . . , S

⇤
M ) and I 0 = (I 01, I

0
2, . . . , I

0
H).

1: Run Algorithm 4 for graph conversion and coloring;
2: Get the set of colors, denoted as C;
3: Run Algorithm 6 to select primary nodes, sizes of primary chunks and the color of the selected

primary nodes;
4: if S⇤ 6= ; then
5: Run Algorithm 7 to select backup nodes;
6: end if
7: if S⇤ 6= ; ^ I 0 6= ; then
8: return S⇤ and I 0;
9: else

10: return ; and ;; /*the request is rejected*/
11: end if

4.3.3 A-SEDuLOUS

In this section, we present the entire algorithm of A-SEDuLOUS to obtain the data placement solution
for a storage request such that the security and availability requirements are satisfied. The pseudo code
of the algorithm is presented in Algorithm 5, which consists of three parts. In the first part, it runs
Algorithm 4 to realize the graph conversion and coloring. Based on the coloring solution, the second
part realizes a greedy algorithm to select a list of primary nodes and to determine the size of data
chunks stored on the selected nodes. If there exists a solution for storing primary chunks of the data,
A-SEDuLOUS runs the third part to determine the list of backup nodes. If there is no either the solution
for the primary or backup nodes, the request is then rejected. We present below the detailed description
of the algorithms for the second and the third part of A-SEDuLOUS.

4.3.3.1 Primary Chunk Determination and Placement

Given a coloring solution, the algorithm, presented in Algorithm 6, starts by counting the number of
colors used to color the graph. The set of colors used for coloring the graph, denoted as C, is then used
in the outer for loop (see lines 3–22) to determine the best placement solution. Precisely, for every color
c in set C, the algorithm first sorts all the nodes, which are colored by c, in the ascending order of the
transmission time of a unit data to the access point. Given the ordered set of storage nodes, denoted as V 0

c ,
the algorithm then assigns a data chunk from the first node with the smallest transmission time. For every
node v in the ordered set, V 0

c , the size of the stored data chunk is determined by min{Smax, Cv, D
temp}.

This means that if the size of the remaining data is large, only a chunk with a maximum size Smax can
be assigned. However, if the available storage space of storage node v is not sufficient, only a smaller
chunk can occupy the remaining available storage space. This step is represented in the inner for loop
(see lines 7–13). When the entire data has been accommodated, the algorithm breaks out the for loop
even though there still exist feasible storage nodes since these nodes are slower in data transmission.
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Algorithm 6 Primary Node Selection and Size Determination of the Primary Chunks
Input: G = (V,E),K, p,Bls,le , D, Smax, Ci, i = 1 . . .M , and C.
Output: S⇤ = (S⇤

1 , S
⇤
2 , . . . , S

⇤
M ) and c⇤, color of primary nodes.

1: T ⇤  1;
2: c⇤  1;
3: for c 2 C do
4: Pick all the nodes that have color c and put them to set Vc;
5: Sort the nodes in Vc in the ascending order of retrieval time to the access point. The result is

stored in set V 0
c ;

6: Dtemp  D;
7: for v 2 V

0
c do

8: Assign a chunk, Sv = min{Smax, Cv, D
temp};

9: Dtemp  Dtemp �min{Smax, Cv, D
temp};

10: if Dtemp
= 0 then

11: break;
12: end if
13: end for
14: if Dtemp

= 0 then
15: Compute the retrieval time, T temp, as defined in Eq. (4.2);
16: if T temp < T ⇤ then
17: T ⇤  T temp;
18: S⇤  {Sv, v 2 V

0
c };

19: c⇤  c;
20: end if
21: end if
22: end for
23: if T ⇤ 6=1 then
24: return S⇤ and c⇤;
25: else
26: return ; and1; /*the request is rejected*/
27: end if

It may also happen that there are not sufficient nodes to store a data, i.e., the for loop already finishes
all feasible nodes with the same color but the data still remains. This assignment solution is infeasible
since the data cannot be accommodated in the system. Thus, only when the entire data is accommodated,
the algorithm then computes the total retrieval time of the placement solution as shown in line 15. If the
total retrieval time of the current solution is smaller than the previous best solution, the algorithm then
updates the best solution for future comparison, using the nodes with different color.

The algorithm stops when it has completely verified all the feasible solutions represented by the set
of colors used for graph coloring. The final solution is the best data placement solution, which not only
satisfies the security requirement but also minimizes the total retrieval time of the data. It may also
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happen that there does not exist a feasible solution if the size of data is too large while all the storage
nodes have been saturated or the number of nodes with the same color is too small. In such a case, the
storage request is then rejected, i.e., an empty set is returned as shown in line 26. Practically, if the
rejection ratio is too high, providers may scale out the system by increasing the number of nodes and
their capacities. On the user side, they can also increase the maximum size of a chunk to reduce the
number of storage nodes required for storing a data while still satisfying the security requirement.

4.3.3.2 Backup Node Selection for Data Replication

In this section, we present the algorithm for backup node determination. The pseudo code of the algo-
rithm is shown in Algorithm 7. Given the decision of node selection and chunk size determination of
primary chunks, obtained by Algorithm 6, we denote I = (Ih|h = 1, . . . , H, S⇤

Ih
6= 0) as the vector of

indices of the primary nodes. As shown in the main while loop of Algorithm 7, it will repeat the process
for determining a backup node for each primary chunk.

For each iteration, the algorithm first selects the largest primary chunk that has not been replicated
(see line 3). We give the priority for the largest chunk to avoid unnecessary runs for smaller chunks
before rejecting the request due to the shortage of storage space or the availability requirement. Given
that S⇤

Ih
is the size of the primary chunk stored in primary node Ih, the algorithm then goes through

all feasible nodes that have sufficient capacity, satisfy the security constraint, and they do not store any
chunk of the data. The list of feasible nodes is determined by line 4. For each feasible node v, the
algorithm determines a k-th shortest path that is link-node-disjoint with the primary path from node Ih

to the access point p as shown in line 7. If such path exists, then node v is considered as a candidate
for replicating chunk S⇤

Ih
. The algorithm computes the retrieval time of chunk S⇤

Ih
from node v to the

access point to compare against that of the ever-best node that has been checked. After exiting the for
loop (lines 6–14), if node v⇤ is the best node in terms of retrieval time, chunk S⇤

Ih
is assigned to node

v⇤ for being replicated. If there does not exist any candidate for chunk S⇤
Ih

, the algorithm will stop the
while loop and the request will be rejected since the system cannot satisfy the availability requirement. If
all the primary chunks have been replicated, the algorithm will stop and return the list of backup nodes.

4.3.4 Complexity of A-SEDuLOUS

The graph conversion algorithm consists of two for loops. Thus, it has a complexity of O(|V |2) where
|V | is the number of nodes in the graph. However, for every pair of nodes, the procedure invokes
an algorithm for determining the shortest path between them. The well-known algorithm for finding
the shortest path between two nodes is the Dijkstra algorithm, which has a complexity of O(|E| +
|V | log |V |) where |E| is the number of edges in the graph. It is noted that the graph conversion also
performs the graph coloring. Since we do not focus on finding the minimum number of colors used for
the graph, a greedy algorithm with a complexity of O(|V |+ |E|) can produce a coloring solution, which
is sufficient to guarantee the security level in the data placement problem. Thus, the overall complexity
of the graph conversion procedure is O(|V |2(|E|+ |V | log |V |)).

To determine the primary nodes and size of primary chunks, Algorithm 6 will run two nested for
loops as shown in line 3 and line 7. To complete these for loops, the worst case will have a complexity
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Algorithm 7 Backup Node Selection for Data Replication
Input: G = (V,E), p, Bls,le , (C1, . . . , CM ), S⇤ = (S⇤

1 , . . . , S
⇤
M ), and c⇤, the color of primary nodes.

Output: I 0 = (I 01, I
0
2, . . . , I

0
H). /*index of backup nodes*/

1: I  (Ih|h = 1, . . . , H, S⇤
Ih
6= 0); stop 0; success 1;

2: while stop = 0 do
3: {S⇤

Ih
, Ih} max{S⇤

Ih
|S⇤

Ih
is not replicated};

4: Pick all the nodes that have color c⇤ and sufficient storage capacity, but do not store any primary
or backup chunk of the data. Add them to set Vc⇤ ;

5: T bak  1; v⇤  1;
6: for v 2 Vc⇤ do
7: Get Pv,p the k-th shortest path that is link-node-disjoint with the primary path PIh,p;
8: if Pv,p exists then
9: Compute the retrieval time, T temp, as defined in Eq. (4.1);

10: if T temp < T bak then
11: T bak  T temp; v⇤  v;
12: end if
13: end if
14: end for
15: if v⇤ 6=1 then
16: Assign chunk S⇤

Ih
to node v⇤ for replication;

17: Add node v⇤ to I 0;
18: Mark chunk S⇤

Ih
as replicated;

19: else
20: stop 1; success 0;
21: end if
22: if All primary chunks have been replicated then
23: stop 1;
24: end if
25: end while
26: if success = 1 then
27: return I 0; /*the list of backup nodes*/
28: else
29: return ;; /*the request is rejected*/
30: end if

of O(|V |2), i.e., every node of the graph has a different color value. In Algorithm 7, the worst case has
the complexity of O(|V |2(|E|+ |V | log |V |)) since the algorithm has to check every pair of primary and
backup nodes and determine the shortest path from the backup node to the access point. As mentioned
earlier, determining the shortest path has the complexity of O(|E|+ |V | log |V |). Since A-SEDuLOUS
runs Algorithm 4, Algorithm 6 and Algorithm 7 sequentially, the complexity of A-SEDuLOUS is there-
fore O(|V |2(|E|+ |V | log |V |)). We believe that this polynomial complexity is affordable for both cloud
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providers and users with respect to the gain that users can obtain in data availability and security. In-
deed, even for a large system, such as the Internet2 topology that spreads over the US, the total number
of nodes in the system is in the order of 50 nodes. This ensures that the algorithm will produce the data
placement solutions in the order of a second. The low complexity of the proposed algorithm will also
guarantee that it will finish the running in a polynomial time with the size of the system is extremely
large with more than 1000 nodes.

4.4 Performance Study

In this section, we present the performance study to demonstrate the effectiveness of the proposed data
placement algorithm. We first describe the simulation setting and then present the analysis of results.

4.4.1 Simulation Setting

The proposed algorithm was tested on the cloud storage systems with random network topologies and
the Internet2 topology [Internet2, 2016]. We run the simulations with different scenarios in which the
security requirement has to be strictly satisfied whereas the availability requirement is optional. We use
the three following performance metrics to evaluate the proposed algorithm:

• Average retrieval time: the total transmission time of all the chunks of a data to the access point,
taking average value of all the accepted requests;

• Number of rejections among storage requests; and

• Average distance, i.e., the number of hops, from the nodes storing data chunks to the access point.

We compare the performance of A-SEDuLOUS against that of the two following baseline algorithms:

• Random Selection of Nodes (RSN) randomly selects a storage node among the nodes that satisfy
the security and availability requirements to store a data chunk whose the size is decided based
on the available storage space of the node, maximum chunk size and the remaining size of the
data. The procedure repeats until the entire data is accommodated or no more storage nodes are
available. Otherwise, the request is rejected;

• Furthest Node First (FNF) selects a node that has the furthest distance to the nodes that have been
selected to store the chunks of the same data. It is also an iterative algorithm that has the same
stopping condition as that of RSN algorithm.

The storage requests are generated such that the size of data in each request is randomly chosen from
the range of [500, 1500] MB. We vary the number of requests from 1000 to 10000 to evaluate the perfor-
mance of the proposed algorithm with different level of loads. The access point of each request is also
chosen randomly among storage nodes.
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Figure 4.3: Performance of algorithms.

4.4.2 Performance without Availability Requirement

In this section, we analyze the performance of the proposed algorithm without requirement of data
availability, i.e., only primary chunks are stored. We run the simulations on the systems with random
network topologies and the Internet2 topology.

4.4.2.1 Performance with Random Network Topologies

We randomly generate network topologies with minimum degree of nodes is set to 2. The capacity
of storage nodes is chosen randomly from [500, 1000] GB. The bandwidth of the links that connect the
storage nodes is chosen randomly from [100, 500] Mbps. Without explicitly indicating, the security level
is set to 3, i.e., the distance between the nodes storing any pair of chunks of the same data regardless of
primary or backup chunks should be at least 3 hops.

Overall Performance of A-SEDuLOUS: In this simulation, the system consists of 30 storage nodes.
In Fig. 4.3, we present the retrieval time resulted by the algorithms with respect to the number of re-
quests. The results show that A-SEDuLOUS has the best performance compared to other algorithms.
In the best case, A-SEDuLOUS reduces the retrieval time by up to 20%. The results also show that
when the number of requests increases, the retrieval time with A-SEDuLOUS slightly increases. It is
due to the fact that A-SEDuLOUS exploits the nearest nodes that satisfy the security constraint when
the number of arriving requests is low. At higher number of requests, all the nearest storage nodes are
saturated, further nodes are then utilized, thereby increasing the retrieval time.

It is also observed that not only having the best performance in terms of retrieval time, A-
SEDuLOUS also has the best performance in terms of total volume of data admitted for storage. We
present the total volume of data admitted for storage in Fig. 4.4 and the number of rejections in Fig. 4.5,
respectively. This implies that A-SEDuLOUS does not sacrifice other performance metrics to achieve
the data security whereas other algorithms incur a trade-off between retrieval time and security.
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Figure 4.4: Total data volume admitted to be stored.
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Figure 4.5: Number of rejections.

Impact of the number of storage nodes: We evaluate the performance of the proposed algorithm
with different network topologies by varying the number of storage nodes from 25 to 50. Fig. 4.6
presents the retrieval time of the algorithms with respect to the number of storage nodes. The results
show that A-SEDuLOUS always has the best performance. The fluctuation in retrieval time resulted by
each algorithm is because of the heterogeneity of the link capacity. In Fig. 4.7, we present the average
distance from the nodes storing data chunks to the access point. The results show that this distance
gradually increases with the increase in the number of storage nodes. FNF has the highest increase
since it always chooses the furthest node for storing data chunks. Nevertheless, A-SEDuLOUS always
outperforms other algorithms while guaranteeing the data security.

Impact of security level: In this simulation, we evaluate the impact of the security level, i.e., the
minimum distance between two nodes that store two different chunks of the same data. We vary the
security level from 2 to 5 and evaluate the performance of the algorithms. In Fig. 4.8, we present the
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Figure 4.6: Performance of algorithms with respect to number of storage nodes.
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Figure 4.7: Number of hops to access point from chunks.

retrieval time with respect to the security level. The results show that the retrieval time increases when
the security level increases. It is because the storage nodes, which are close to the access point, violate
the security constraint. This is shown clearer in Fig. 4.9 with the average number of hops from the
nodes storing data chunks to the access point. This distance increases with the increase in the security
level. In all scenarios, A-SEDuLOUS always has the best performance compared to other algorithms.
It minimizes the retrieval time while satisfying the security requirement. We also observe an interesting
behavior that the performance of A-SEDuLOUS is significantly impacted by the security level whereas
FNF and RSN are not. It is because FNF always chooses the furthest nodes for storing data while RSN
randomly selects the feasible nodes.

61



A-SEDuLOUS Chap. 4

 0.014

 0.015

 0.016

 0.017

 0.018

 0.019

 0.02

 0.021

 2  2.5  3  3.5  4  4.5  5

Re
tri

ev
al

 T
im

e 
(s

)

Security level

A-SEDuLOUS
RSN
FNF

Figure 4.8: Retrieval time with respect to security level.

4.4.2.2 Performance with Internet2 Topology

We also evaluate the performance of the proposed algorithm with a realistic network topology, the Inter-
net2 topology with 36 nodes in US. We set the capacity of all the network links connecting the storage
nodes to 1 Gbps. The capacity of storage nodes is chosen randomly from [500, 1000] GB. We obtain the
same performance behavior as in the case with random topologies. In Fig. 4.10, we present the retrieval
time of the algorithms with respect to the number of requests. The results show that the retrieval time
is quite stable regardless of the number of requests is small (1000 requests) or high (10000 requests).
This is because the storage nodes in the Internet2 topology are well distributed with small node degree
that takes a value among 2 and 3. The results also show that A-SEDuLOUS has the best performance
by reducing the retrieval time by up to 19% and 14% compared to FNF and RSN, respectively.

With the Internet2 topology, A-SEDuLOUS also shows the best performance in terms of the number
of rejections. As shown in Fig. 4.11, even at high number of requests, A-SEDuLOUS does not reject
any request while FNF and RSN reject 400 and 250 requests, respectively. We also evaluate the impact
of the security level with the Internet2 topology. The results in Fig. 4.12 show the same behavior as that
with random topologies. The retrieval time increases with respect to the security level. In all scenarios,
A-SEDuLOUS always shows its effectiveness with a performance gain by up to 19% in reduction of
retrieval time compared to other algorithms.

4.4.3 Performance with Availability Requirement

In this section, we analyze the performance of the proposed algorithm with the availability requirement.
We use random network graphs with 70 nodes to ensure that there are sufficient nodes for both primary
and backup nodes. Every data chunk is replicated on a backup node, guaranteeing that all primary
and backup chunks satisfy not only the security requirement but also the availability requirement. We
consider the two following scenarios:

• The first scenario assumes that no attack happens in the system. Thus, the data retrieval time is
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Figure 4.9: Number of hops to access point from chunks.
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Figure 4.10: Performance of A-SEDuLOUS and other algorithms with Internet2 topology.

computed by using primary chunks; and

• The second scenario assumes that there is an attack that happens on a random node or link in the
system. All the primary chunks stored on the nodes, which use the attacked link or node in the
primary path, will not be available. Thus, the data retrieval time is computed by using the backup
chunks to substitute the unavailable primary chunks.

4.4.3.1 Performance with No Attack

In Fig. 4.13, we present the average retrieval time with respect to the number of requests arriving to
the system. We obtain the same behavior as that in the case without the data availability requirement.
A-SEDuLOUS always has the best performance compared to other baseline algorithms by reducing the
retrieval time by up to 20% compared to RSN and 34% compared to FNF, respectively. This improve-
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Figure 4.11: Number of rejections with Internet2 topology.
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Figure 4.12: Retrieval time with respect to the security level.

ment is much better than that of A-SEDuLOUS in the case without the availability requirement. This
shows that with more constraints in the selection of nodes, A-SEDuLOUS has better improvement. A-
SEDuLOUS also has the best resource efficiency by rejecting the least number of requests as shown in
Fig. 4.14, leading to higher benefit for cloud providers when they charge users for resource usage. It
will also improve the cloud resource utilization since more requests are accommodated.

We present the performance of A-SEDuLOUS with and without the availability requirement in
Fig. 4.15, denoted as A-SEDuOUS-WAR and A-SEDuLOUS-WoAR. It is to be noted that though we
consider the availability requirement, we assume that there is no attack in this simulation. Thus, the
retrieval time of a data is computed as the total retrieval time of the primary chunks even though backup
chunks are also available. It is observed that when considering the data availability requirement, the
average retrieval time is longer and it increases with respect to the increase in the number of arriving
requests. Indeed, without considering the availability requirement, the node with the shortest retrieval
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Figure 4.13: Performance of A-SEDuLOUS (vs) other algorithms with data availability requirement.
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Figure 4.14: Number of rejections with data availability requirement.

time will be selected for storing a chunk. However, when considering the data availability requirement,
this node may not be selected as a primary node because there does not exist another node, which will be
used as backup node that satisfies both security and availability requirements, i.e., a node that is far away
at least K hops according to the security requirement from all the primary nodes as well as other backup
nodes, and it has a link-node-disjoint path to the access point. While the data retrieval time increases
by up to 7%, we believe that the gain of data availability in case of attacks is worth to compensate such
longer retrieval time.

4.4.3.2 Performance with Attack

In this simulation, we assume that there is an attack happening on a node or link that is used in the
paths from primary nodes to the access point. We compute the total retrieval time of a data using the
backup chunks for the unavailable primary chunks as mentioned earlier. Since we consider a single
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Figure 4.15: Performance of A-SEDuLOUS with and without availability requirement and no attacks.
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Figure 4.16: Performance of A-SEDuLOUS with and without availability requirement in case of one
attack that happens on a random node or link.

attack scenario, we run two simulations. The first one is for the link attack scenario, making the attacked
link will be disconnected. The second one is node attack scenario where the attacked node is unavailable
for data retrieval or forwarding in case it is an intermediate node on the path.

In Fig. 4.16, we present the average retrieval time of A-SEDuLOUS considering different scenario
of attacks. We denote A-SEDuLOUS-WAR-NA and A-SEDuLOUS-WAR-LA for the performance of
A-SEDuLOUS with the availability requirement in case of node attack and link attack, respectively.
It is obvious that the retrieval time increases when an attack happens on any node or link used in the
primary paths, since the data retrieval has to use backup path than is longer that the shortest path used
for the primary chunks. However, while the impact of link attack is not very significant, i.e., increasing
the data retrieval time by up to 1% compared to the case without attacks, the impact of node attack is
much significant with an increase in the retrieval time by up to 3%. Compared to the performance of
A-SEDuLOUS in case without the availability requirement, the retrieval time when considering node
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attack increases by up to 9%. From a user’s point of view, we believe that the increase in retrieval time
is completely affordable when considering the gain of data availability such that users can always access
their data regardless of any attack in the system. This simulation results also show that a node attack is
more severe than a link attack since it is used not only for storing primary chunks but also for being an
intermediate node on a primary path.

4.5 Chapter Summary

In this chapter, we addressed the data placement problem in cloud storage systems considering the secu-
rity and availability requirements. We formulated the problem as an optimization programming model
that minimizes the total retrieval time of a data, which is divisible into multiple chunks with arbitrary
size. Given a primary placement solution, we developed a backup placement model such that every
primary chunk is replicated and stored in a backup node, which satisfies the requirement that even if an
attack happens on any link or node in the system, the data is always accessible. Since the optimization
problem is computationally prohibitive, we developed an efficient heuristic algorithm namely Avail-
ability and Security-awarE Data placement algorithm for cLOUd storage Systems (A-SEDuLOUS) to
solve the data placement problem [Kang et al., 2016b, Kang et al., 2016d]. We integrated the T-coloring
approach into A-SEDuLOUS to solve the security issue. The validation was performed through exten-
sive simulations on the cloud storage systems with random network topologies as well as the realistic
Internet2 topology. The simulation results demonstrate the effectiveness of the proposed algorithm by
reducing the retrieval time by up to 34% for random topologies and 19% for the Internet2 topology. The
simulation results also show that while achieving the best performance and guaranteeing the data privacy
and availability, the proposed algorithm does not sacrifice other performance metrics such as the rejec-
tion ratio and retrieval time, thus leading to a higher economic profit for commercial cloud providers.
While this work applies graph theory for addressing the data privacy and availability issues, in the next
chapter, we explore another approach for protecting the data privacy. We study to use the cryptography
approach to encrypt the data before being stored in public clouds.
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Chapter 5

ESPRESSO: An Encryption as a Service
for Cloud Storage Systems

I n this chapter, we continue studying the prob-
lem of protecting data privacy in cloud storage

systems. While the previous chapter applies graph
theory to protect data privacy, this chapter inves-
tigates the traditional method based on encryption
techniques. We design and implement an encryp-
tion service namely ESPRESSO (Encryption as a Ser-
vice for Cloud Storage Systems). The flexible design

and the standalone property of the proposed encryp-
tion service allow cloud providers to easily integrate
it into their infrastructures without heavy modifica-
tion and implementation. We integrated ESPRESSO
into two open-source cloud storage platforms: Open-
Stack/Swift and Nimbus/Cumulus and carry out the
experiments to evaluate the performance and demon-
strate the effectiveness of the proposed approach.

5.1 Research Motivation and Objectives

Many cloud storage systems are providing cloud users high data availability and the flexibility in data
management, and they become the primary storage space for users’ data. Thus, instead of storing
and managing data in local servers, most of users nowadays are moving their data into the cloud
and paying for storage and management service by a pay-per-use model. In this sense, cloud users
are sharing a common storage space offered by Cloud Service Providers (CSPs). This character-
istic raises several challenges, which are hindering the migration of users’ softwares and data into
the cloud [IMEX, 2010]. Among them, the security and data privacy are the most important chal-
lenges needed to be solved to relieve the users’ concerns [Tian et al., 2010]. While consumers have
been willing to trade privacy for the convenience of cloud storage services, this is not the case for
enterprises and government organizations. This reluctance can be attributed to several factors that
range from a desire to protect mission-critical data to regulatory obligations to preserve the confi-
dentiality and integrity of data. The latter can occur when the customer is responsible for keeping
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personally identifiable information (PII), or financial and medical records [Kamara and Lauter, 2010].
Driven by the need to secure growing cloud data storage systems as well as high profile security
breaches, data protection in cloud storage systems has become a hot topic in both academia and indus-
try [Factor et al., 2013, Huang et al., 2011b, Hao and Han, 2011, Itani et al., 2009]. While the current
approaches rely on a user-centric authentication service such as login/password or Two Factor Authen-
tication (2FA), which can be broken by authentication attacks, encryption emerged as one of the most
effective means to protect sensitive data no matter where it lives [Harrin, 2012].

With an encryption tool, users can encrypt data on their local machine before uploading the en-
crypted data to a cloud. However, this approach introduces an additional burden for users to manage
the encryption key and operate the encryption tool. Furthermore, users are required to equip local ma-
chines which are able to handle such a compute-intensive task that incurs a delay and complicates the
data management on the user side. These issues make the user-side encryption approach difficult to
realize, especially when users are using scarce resource devices such as smartphones or mobile devices.
A server-side encryption approach is therefore needed. On one hand, CSPs can provide the encryption
to users as an added value service with minimum additional cost. On the other hand, this encryption
can be offered as a free charge service. It then becomes a competitive advantage of a CSP against other
CSPs to attract users and increase the CSP’s reputation.

Among existing CSPs, only two commercial CSPs: Google Cloud Storage [Google, 2014] and Ama-
zon S3 [Amazon S3, 2014] offer a server-side encryption service. However, the encryption services de-
veloped by Google and Amazon cannot be adopted by many other CSPs, which want to offer the server-
side encryption to users such as Microsoft Azure [Microsoft Azure, 2014], GoGrid [GoGrid, 2014],
RackSpace [RackSpace, 2014]. This observation inspires us to design and implement a standalone en-
cryption service, ESPRESSO, for such CSPs to integrate into their infrastructures without heavy mod-
ification and implementation. Furthermore, we aim at providing a configurable and flexible encryption
service for both CSPs who can choose the encryption algorithm based on their preference, and users who
can specify the critical level of their data. The data with higher critical level needs to be more securely
protected. Last but not least, we aim at providing ESPRESSO as a transparent encryption service, which
makes users perceive no difference between with and without the encryption service in terms of latency
and complexity of data management operations.

5.2 Problem Statement

5.2.1 The System and Threat Model

In this chapter, we consider the CSPs that provide a data storage service. To protect the data privacy,
an encryption service is used to encrypt the data before being stored in the cloud, and decrypt the data
whenever users need to retrieve the data. Depending on the deployment location of the encryption
service, different threat models are introduced and analyzed in the following:

1. The first model applies the user-side encryption approach. Users deploy the encryption software
on their local machine and flexibly operate the service without needing to trust any third party.
However, users are generally not expert in the security domain. The user’s machine therefore suf-
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fers the security risks such as key exposure attacks or attacks from malicious programs. Moreover,
it is not an easy task for non-expert users to take full responsibility of encryption key management
such as key generation, key storage and keeping those keys always safe. Yet, if users are using
scarce resource devices such as mobile devices, performing the data encryption on such devices
may not be possible since the encryption is considered as a compute-intensive task.

2. Users rely on a third party who offers the encryption service. The third party takes full respon-
sibility for managing the data encryption, protecting the encryption server and preventing the
exposure of the users’ encryption keys. Assuming that the encryption service is resistant to the
security risks, users still have the sole concern on the adversarial behavior of the third party. With
the curiosity and economic purpose, the third party might collude with malicious users to harvest
data contents when it is highly beneficial [Yu et al., 2010]. Moreover, this model requires further
effort from users to retrieve the encrypted data from the third party to their local machine before
uploading again to cloud storage servers.

3. CSPs play the role of the third party presented in the second model. CSPs deploy the encryption
software on a server in its trusted domain as one of its components. Users therefore benefit all
advantages but also suffer the security risks as mentioned above. The operation overhead might
be lesser since users do not need to manage the encrypted data. Instead, users upload the plaintext
data to the CSP who will forward the data to the encryption server to encrypt before storing the
encrypted data in storage servers.

As described, each model has advantages and disadvantages. Assuming that users trust the third
party in the second model and the CSP in the third model at the same level, we believe that the third
model brings users the most advantages. Depending on the model, the encryption service is designed
and implemented differently to assure that it efficiently operates at high performance. We present in the
next section the design goals of ESPRESSO, the encryption service for CSPs as we advocate the third
model presented above.

5.2.2 Design Goals

Several design requirements should be carefully considered since the design directly affects the overall
performance of the system.

Architectural requirements: The encryption service should include two main components. The first
component is the encryption key management. To increase isolation among users, a CSP may use
different keys to encrypt different users’ data and a user may have multiple keys for different data. To
prevent leaking one’s key to another, the encryption key must also be encrypted. Additionally, since the
data availability is an important requirement of a cloud storage system, keys need to be replicated to
be available when requested. The second component is the data encryption management. ESPRESSO
needs to provide the flexibility for both CSPs and users. Since ESPRESSO can be used by different
CSPs, it should support multiple encryption algorithms. A CSP may choose its preferred algorithms to
process users’ data, e.g., Swift may use AES while Eucalyptus may use Blowfish. For users, the service
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should allow them to specify a desired critical level for their data. Currently, the CSPs, which offer
server-side encryption, support only a single key length option, e.g., Google Cloud Storage uses 128-bit
keys. However, users may have different levels of security. Financial or medical records need to be more
securely protected using a longer key such as 256-bit keys than entertainment data like musics or movies
using a shorter key such as 128-bit keys.

Choosing supported encryption algorithms and critical levels of data: Given that CSPs offer dif-
ferent encryption algorithms and key lengths, choosing the supported encryption algorithms and critical
levels of data is also important to achieve the flexibility. There exists many encryption algorithms in
the literature including symmetric and asymmetric algorithms with their own advantages and disadvan-
tages. A symmetric algorithm eases the implementation, however, it may not provide high level of
security while an asymmetric algorithm is more complex to manage its key pair. Additionally, an asym-
metric algorithm may take longer time for data encryption and decryption. On the critical level of data,
the longer key length is, the higher security level is guaranteed, however, it also takes longer time for
encryption and decryption of data. Therefore, choosing the key length for each security level should
take into account the tradeoff between the security level and the processing time.

APIs for integration to cloud storage platforms: As a last requirement of ESPRESSO, a well-
designed integration API is also important since this allows CSPs to integrate and to use ESPRESSO
easily without heavy modification of the architecture and implementation of their infrastructure. For
instance, to provide an enhanced encryption service with a flexible critical level, the critical level should
be one of API parameters along with data to be stored and user identification. Depending on the design,
other parameters could be added. However, they should be carefully chosen since it may be difficult for
CSPs to integrate ESPRESSO with redundant parameters.

5.3 System Architecture of ESPRESSO

In this section, we first present the detailed architecture and then describe the method to handle the
flexibility and support multi-user scheme in ESPRESSO.

5.3.1 Architecture of ESPRESSO

The overall architecture of ESPRESSO is depicted in Fig. 5.1 with two components: Data Encryption
Management and Keys Management. The request flow is as follows. Universal API is the gate of
ESPRESSO, which can provide a wide range of interaction protocols allowing multiple CSPs to integrate
ESPRESSO into their infrastructures. After receiving a request, Universal API delivers the request
to Data Encryptor, which is responsible for processing users’ data using algorithms implemented in
Encryption Algorithms. Data Encryptor requests encryption key from Keys Management through Key
Generator that is the starting point of the Keys Management component. Key Generator retrieves the
key stored in Encrypted Key Storage if it already exists, and sends it to Key Encryptor to decrypt using a
master key. If the requested key does not exist in the database, that means the user is new on the system
or the key for that specific critical level is not yet generated, Key Generator creates a new key and sends
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Figure 5.1: ESPRESSO overall architecture.

a key encryption request to Key Encryptor. The new key is then encrypted by the master key and sent
back to Key Generator to store in Encrypted Key Storage. To assure the availability of encryption keys,
encrypted keys are replicated and stored in Backup Keys DB.

5.3.2 Handling the Flexibility and Multi-user Scheme

To provide CSPs the flexibility in choosing a preferred encryption algorithm, ESPRESSO currently
supports two algorithms: AES and Blowfish that are symmetric. By choosing symmetric algorithms,
we eliminate the complexity of managing encryption key pairs, which are supposed to be stored on
different servers. Moreover, they are less intensive than asymmetric algorithms in terms of processing
time. Additional algorithms can also be integrated into the system without breaking the architecture of
ESPRESSO thanks to its agile design.

On the critical level of data, ESPRESSO provides three different critical levels by using three key
lengths: 128, 192 and 256 bits for all supported encryption algorithms. The longer key length guaran-
tees the higher critical level of data. A less than 128-bit key may be broken by the modern machine
while a more than 256-bit key increases the latency of the service. Thus, each user can have up to
three keys corresponding to three critical levels: the highest level uses 256-bit keys and the lowest
level uses 128-bit keys, respectively. For a certain user, all the data with the same critical level are en-
crypted by the same key. Since a CSP serves multiple users, each user is therefore identified by a user
identification. We tie the user identification to the critical level and the encryption key by a tuple of
< user id, critical level, key string > in the encryption key database. Additionally, keys are generated
on request of the CSP for a specific user and critical level.
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Table 5.1: Structure of the encryption keys table in MySQL
Field Type Description
key id Integer Key identification: auto increment field
user id String User identification
critical level Character Critical level of user’s data
key string String Key string for encryption and decryption.

5.4 Implementation of ESPRESSO

We use Python to implement ESPRESSO based on its broad adoption and efficiency. We implement in
Universal API the Web Server Gateway Interface (WSGI), which allows CSPs to deploy ESPRESSO
as a WSGI service. The implementation of Universal API handles the WSGI requests, i.e., extract-
ing user id, critical level and data, and converts them to internal requests, which are then forwarded
to Data Encryptor. There are two functions in Data Encryptor: encrypt data and decrypt data. The
encrypt data function, which has three parameters: user id, critical level and data, prepares the en-
cryption. It includes instructions for requesting the encryption key from Key Generator, initializing the
encryption algorithm instance and finally invoking the execution of the encrypt data function imple-
mented in Encryption Algorithms. The algorithm selected by the CSP is saved in an INI configuration
file with simple format, for example, [algorithm]name = AES. Instead of implementing all encryption
algorithms by ourselves, we use a library namely PyCrypto [Litzenberger, 2014], which provides the
implementation of various algorithms such as AES, DES, RSA, ElGamal.

Since the critical level parameter is needed to retrieve the encryption key for data decryption in
the future; however, users may not remember which level was set for the data in the past, we include
this parameter in the encrypted data. For a data retrieval request, the CSP gets the encrypted data
from the storage server and passes it to ESPRESSO with the user id parameter in a decryption request.
Data Encryptor first extracts the critical level parameter from the encrypted data and then invokes the
decryption by calling the decrypt data function.

To provide users a friendly manner to specify the data critical level, we decode three proposed critical
levels by three letters: A stands for the high level, B stands for the medium level and C stands for the
low level. Theses three symbolic letters hide the complex technical details of critical levels from users
who are not expert in the security domain. The CSPs integrating ESPRESSO should provide a usage
guideline to make their users aware of the trade-off between the strength and required processing time
of each level, i.e., A is the strongest level but it requires longer time to complete the encryption.

Encryption keys are generated by the Random library supported in Python. Each is a string including
alphabet and numbers with length depending on the critical level. All keys are stored in a MySQL
database whose the structure of the key table is shown in Table 5.1. Key Encryptor uses the same
algorithm, i.e., AES or Blowfish, to encrypt the users’ keys with a master key retrieved from Master Key.
The implementation of Encrypted Key Storage and Encrypted Key Replicator handles the interaction
with MySQL database, i.e., formulating the SQL query statements and executing the query.
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Algorithm 8 Encryption and Decryption calls
Input: data, user id and critical level for an encryption; encrypted data and user id for a decryption

request; the ESPRESSO server address: server for both requests.
Output: Encrypted data for an encryption; plaintext data for a decryption request.

1: connection = HTTPConnection(server); /*Create an HTTP/HTTPS connection*/
2: connection.putrequest(’EN’, ”); /*’EN’ for encryption and ’DE’ for decryption*/
3: for header in headers do /*Send all HTTP headers: user id, critical level*/
4: connection.putheader(header name, header value);
5: end for
6: for chunk in data do /*Send data by chunks*/
7: connection.send(chunk);
8: end for
9: response = connection.getresponse(); /*Waiting for response*/

10: Extract encrypted data or plaintext data from the response;
11: return

5.5 Integration of ESPRESSO

We choose Swift [OpenStack, 2014] and Cumulus [Bresnahan et al., 2011] to integrate ESPRESSO.
These systems are open-source cloud platforms and they are widely used in both research community
for experimental purpose and industry for commercial purpose. The integration involves determining a
proper place in the source code of the storage systems where ESPRESSO is connected by using provided
APIs and adding code instructions to realize that connection. The abstract pseudocode for encryption and
decryption invocations from the storage systems is presented in Algorithm 8. Its detailed implementation
depends on the target systems, programming language and supported library, e.g., Swift and Cumulus
use Python while Eucalyptus uses Java. Generally, since ESPRESSO is implemented as a WSGI service,
when a storage server requests for an encryption, a WSGI connection will be established (line 1). User’s
information and the data critical level are then passed by the connection header (lines 3 � 5). The
data file is divided into chunks and sent to ESPRESSO (lines 6 � 7). When the data transmission is
completed, ESPRESSO processes the data on its side while the storage server waits for the result (line
9) and continues the process after receiving data.

5.5.1 Integration of ESPRESSO into Swift

The integration of ESPRESSO into Swift is presented in Fig. 5.2a where we add the ESPRESSO server
as a novel component of the Swift platform. ESPRESSO is deployed on a separate server rather than be-
coming an internal component of Swift. This avoids breaking down the Swift’s code structure. Since the
encryption and decryption happen only when users have downloading, uploading or updating requests,
which correspond to GET and PUT methods in the RESTful API supported by Swift, all of modifi-
cations were made to the swift/proxy/controllers/obj.py module in the proxy server at two functions:
GET(self, req) and PUT(self, req).
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Figure 5.2: Integration of ESPRESSO into cloud storage platforms.

On the user’s side, this integration does not complicate the data management operation. Only the
uploading and updating requests require one more parameter to be added: the data critical level. For
instance, if users use cURL [cURL, 2014] to interact with Swift for data management, the data critical
level will be added as a novel header: -H ’x-critical-level:A’.

5.5.2 Integration of ESPRESSO into Cumulus

ESPRESSO has also been similarly integrated into the Cumulus storage system. The encryption and
decryption invocations, presented in Algorithm 8 are added in the cumulus/cb/pycb/cbRequest.py

module at two classes: cbGetObject(cbRequest) and cbPutObject(cbRequest). Like Swift, the total
number of code lines added is less than 50 for both methods. This assesses the easy and light adoption
of ESPRESSO in any cloud storage platform.

Since Cumulus supports the Amazon’s S3 REST protocol, many client libraries and tools, includ-
ing s3cmd [s3cmd, 2014], boto [boto, 2014] and jets3t [jets3t, 2014] can be leveraged by Cumulus
users. For instance, if user uses s3cmd, a novel header will be added to specify the data critical level:
--add-header "critical-level: A". With the integrated system, if users do not specify
the critical level, ESPRESSO will automatically use the highest level, i.e., A, to encrypt the user’s data.
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5.6 Experiments and Performance Evaluation

5.6.1 Experiment Setup

The integrated storage systems were deployed using two dedicated physical servers on the same rack
of the Communications and Networks Lab (CNL) at the National University of Singapore. Swift
and Cumulus were installed on the server xx.xx.xx.64 and ESPRESSO was installed on the
server xx.xx.xx.65. The servers are PowerEdge C6220 with Intel(R) Xeon(R) Processor E5-
2640 2.50GHz, 24GB RAM. We used real data files which are downloaded from the Wikipedia
archive [Wikipedia, 2014]. The file size varies from several MB to 4GB that allows us to evaluate
the efficiency of the encryption algorithm with different loads. Three following performance metrics
were considered for evaluation:

• Latency of encryption algorithms: To show the efficiency of encryption algorithms, we measured
the encryption time with different key lengths for the same algorithm. In addition, we compared
the encryption time of two different algorithms with the same key length.

• Latency of the integrated system with and without ESPRESSO: To show the transparency of
ESPRESSO, the total operation time, i.e., sum of the data uploading time from the client to the
storage server and the data encryption time of Swift with and without ESPRESSO were compared.

• Impact of network bandwidth: In this experiment, a remote client, which uses the Internet back-
bone for transferring data was deployed. Two different network connections: WiFi and wired
connection were applied.

For each experiment, we performed 5 times to measure the average and standard deviation values of
performance metrics. The second and third experiments were performed on both systems. However, due
to the space limit and to avoid the redundancy, only results on Swift is shown. A comparison of total
operation time between Swift and Cumulus is given in the analysis of the third experiment.

5.6.2 Performance Analysis

Evaluation of Encryption Algorithms: Fig. 5.3a presents the encryption latency of the AES algo-
rithm with respect to the data size. We executed AES with three different key lengths: 128, 192 and
256-bits. It is expected that with the same key length, the larger data volume is, the longer time is
needed to complete the encryption. With the largest file of 4GB, the encryption time with 256-bit key is
93s. Comparing the latency of AES with three key lengths, it is trivial that the longer key needs longer
time to complete but it generates a more robust encryption, i.e., the data is more securely protected.

We also measured the encryption time of Blowfish and observed that there is the same behavior
as AES. In Fig. 5.3b, we present the encryption time of AES and Blowfish with respect to the data
size and with the same key length, 256 bits. The results show that Blowfish needs a longer time to
complete the encryption for the same data compared to that of AES. Indeed, since Blowfish uses a
64-bit block size while AES uses a 128-bit block size, the number of blocks processed by Blowfish
is doubled compared to that of AES. The processing transition between blocks leads to the overhead
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Figure 5.3: Performance of encryption algorithms.

of Blowfish. The results also show the nature of the encryption algorithms that the decryption time is
almost the same as the encryption time as expected. Thus, to avoid the redundancy, we do not present
the results on decryption time here. Additionally, the standard deviation of Blowfish is relatively higher
than that of AES. Comparing the robustness of AES and Blowfish is out of scope of this work. Thus,
choosing AES or Blowfish is based only on the preference of CSPs. This results also show that there
is a large variation in encryption time of big data volume resulted in by the two encryption algorithms
that perform stably with small-sized data. This may be due to the implementation of the encryption
algorithms (AES and Blowfish) that we used the library supporting by Ubuntu.

Integrated System Validation: To validate the integrated system, we run the Swift client on a machine
located in the same LAN to reduce the data transfer time between the client and Swift. The encryption
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Figure 5.4: Uploading time with/without ESPRESSO and details of encryption time.

algorithm is AES and the critical level is A. Fig. 5.4a depicts the total operation time for uploading
requests of Swift with and without ESPRESSO. In the case without ESPRESSO, the total operation
time can be considered as the data transfer time from the client to the Swift server. It is expected
that the total operation time of Swift with ESPRESSO is longer than that without ESPRESSO since an
additional time is needed for data encryption. This overhead includes data transfer time from Swift to
ESPRESSO, the encryption time and the transfer time from ESPRESSO back to Swift for resulted data.
In the worst case, the total operation time increases 63.95%. The details of the encryption time overhead
are presented in Fig. 5.4b. While the data transfer time between the Swift and ESPRESSO servers is
small and not affected by other users since the servers are installed on the same rack, the encryption
time dominates when the file size is large, i.e., larger than 3.5GB. Even though we assume 4GB files as
the worst case scenario, which roughly corresponds to the total content of a single-sided DVD, one may
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Figure 5.5: Upload time from a distant client.

have larger files to store. However, the results show that it is strongly discouraged to store large files to
not significantly degrade the performance of the system.

Impact of Network Bandwidth: In practice, users are not always located nearby the cloud. Therefore,
the data transfer time from the user’s location to the cloud is much larger than that presented in previous
experiment. Indeed, we did the third experiment by running the client machine locating 3 kms from the
Swift/Cumulus servers, using the Internet backbone for transferring data. In Fig. 5.5, we present the
total operation time of Swift for uploading requests when the client uses the WiFi and wired connection.
The average uploading speed is 1.54 Mbps and 6.72 Mbps, respectively. The results show that the data
transfer time from the client to the Swift server dominates in both connections. With the largest file
with the WiFi connection, the total operation time is 37.45 mins while the encryption time overhead
is only 2.75 mins, corresponding to 7.34% of the total operation time. From the point of view of a
user who is sensitive with the latency, he may still not accept such overhead. However, considering the
security aspect that the user’s data is securely protected by CSPs, we believe that the cost represented
by the time overhead is worth for such a security service. Fig. 5.6 presents the comparison of operation
time between Swift and Cumulus when the remote client uses wired connection. The operation times of
both systems are almost the same. While Swift needs longer time for replicating the data with 3 copies,
Cumulus does not provide the replication service. However, this overhead on Swift is compromised by
the fluctuation of the data transfer time.

5.7 Chapter Summary

In this chapter, we proposed ESPRESSO, a standalone and transparent encryption service for cloud stor-
age systems [Kang et al., 2014a]. It provides CSPs the flexibility of choosing their preferred encryption
algorithm by supporting two algorithms: AES and Blowfish. With the flexible design, CSPs can easily
integrate ESPRESSO without heavy modification and implementation of their infrastructures. It is an
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Figure 5.6: Swift vs. Cumulus performance.

important contribution that the integrated system does not require much effort from users to make their
data protected, i.e., users only need to specify one of three data critical levels, which is provided by
ESPRESSO. All these advantages assess the effectiveness of ESPRESSO to be integrated into any CSP
on the production level. Nevertheless, this chapter only addresses the privacy issue for data at rest, i.e.,
the data stored in public clouds only for backup purpose but not for computation and analysis purpose.
Protecting privacy of data in use in public clouds requires advanced methods that enable the computation
on encrypted data without the need of secret key for decrypting data so as to not reveal the plaintext data
during the computation. We present in the next chapter our proposed solution applying to a specific case
study: genomic computation in public clouds.
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Chapter 6

Secure and Fast Mapping of Genomic
Sequences on Public Clouds

T his chapter presents our case study to demon-
strate the need of public clouds for handling

big amount of data and the need of security mech-
anisms to protect the data privacy when processing
in an untrusted computing platform. We consider the
genomic computation, a specific research domain that
is currently facing the exponential growth of genomic
data and also requires the highest level of security for
the data privacy. Furthermore, genomic sequences
are also divisible into multiple chunks so that we can
apply the proposed approaches presented in the pre-

vious chapters to improve the perfomance of genomic
applications. We design and implement an entire se-
cure framework for genomic data processing on pub-
lic clouds. Based on this framework, we propose a 3-
encryption-scheme model for genomic sequence map-
ping (3EGSM), an important phase of genomic com-
putation. The model protects not only genomic se-
quences but also the intermediate and final compu-
tation results when processing on clouds. We evalu-
ate the proposed framework through intensive exper-
iments using real genomic data.

6.1 Research Motivation and Objectives

The rapid advances in genomic technologies have changed the scale and scope of genomic data process-
ing. While the conventional Sanger machine spends an entire year to sequence a human genome, the
next-generation genomic sequencing machines such as 454 Life Sciences, Illumina and Applied Biosys-
tems can sequence a genome in a few days at a lower cost [Shaffer, 2007]. This evolution allows the
research community to generate genomic data more easily and to perform the analysis more efficiently.
Genomic research is therefore progressing at a fast pace and becoming integrated into mainstream
medicine, leading to the share of genomic data among institutions for collaborations. To protect the pri-
vacy of genomic donors, who face the risk of revealing sensitive information such as ethnic heritage, dis-
ease predispositions and many other phenotypic traits, a number of regulations declaring health informa-
tion privacy have been edited and applied in reality such as the US HIPAA [Kulynych and Korn, 2003]
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and the European Data Protection Directive [Robinson et al., 2009]. To comply with these data protec-
tion standards, different approaches have been proposed such as differential privacy and data anonymiza-
tion. While differential privacy guarantees the data security, it reduces the accuracy of genomic compu-
tation due to the external information added [Fienberg et al., 2011]. On the other hand, data anonymiza-
tion, which removes the confidential information, poses the threat of re-identification through examining
individual phenotypes [Zhou et al., 2011]. This drives the need for a novel approach to protect data pri-
vacy more securely while ensuring the accuracy of genomic computation.

While the emergence of genomic technologies eases the sequencing and processing of genomic
sequences, it poses a new challenge concerning the exponential growth of petabyte-scale genomic data.
For instance, the 1000 Genomes Project has aimed to generate about 15 terabytes of sequences using next
generation sequencing technologies [Li et al., 2009]. Storing and processing this huge volume of data
exceed the current capacities of in-house trusted servers of institutions. Scaling up the existing private
infrastructures might be a solution for each institution, but it costs a lot to do so and the infrastructure
may be under-utilized when demand is low. With the immense computational capacities, quasi-unlimited
storage space and guaranteed bandwidth connections, public clouds have become an attractive candidate
for genomic data storage and processing at low usage cost. For instance, taking the advantages of
public clouds, Seven Bridges Genomics has adopted Amazon Web Services cloud to process petabytes
of genomic data for thousands of users since 2012 [Rilak et al., 2014].

Moving genomic data from in-house trusted servers to public clouds for storage and processing
makes the security breach become bigger. With the intrinsic characteristics of public clouds such
as multi-user environment and physical resource sharing among users’ requests, preventing the data
leakage and loss becomes harder and exceeds the capacity of the current protection standards. Ad-
versaries on public clouds being either honest-but-curious or malicious can collect the leaked data and
infer useful information. To solve this problem, several approaches have been studied in the litera-
ture [Bruekers et al., 2008, Jha et al., 2008, Lauter et al., 2014], which proposed to use the cryptographic
solution such as secure multi-party computation (SMC) [Huang et al., 2011a] and homomorphic encryp-
tion (HE) [Gentry, 2009]. While SMC is designed for a secure computation that involves multiple parties
who do not want to reveal their respective input data to others, HE is a more general solution, which
allows one to seal data in a metaphorical vault that can be opened by the owner having the secret key.
In HE, the encrypted data can be processed without the secret key on untrusted servers such as public
clouds. Compared to SMC, HE has a number of advantages since it enables more flexible scenarios and
functionalities. Indeed, it requires less interactions or no interaction is required for single-key encryption
applications, thereby reducing the communication complexity.

Due to recent improvements in HE including the techniques that avoid the costly bootstrapping
procedure for fixed number of computations, we advocate for HE to protect the data privacy in this
work. However, purely using HE may result in very low performance due to its heavy computation,
we therefore propose to use other encryption schemes in the computation where HE is not needed,
thereby improving the performance of the system. For instance, a keyed hash function can be used
to encrypt genome sequences. An order-preserving encryption (OPE) scheme, which preserves the
numerical ordering of plaintexts, can be used to encrypt the position of important nucleotides. A concrete
model, which combines existing approaches, therefore needs to be designed for large-scale and efficient
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computation of genomic data on public clouds while securely protecting the data privacy. We aim at
providing genomic researchers efficient means to carry out their research without any concern about the
technical issue of protection of data privacy and application performance.

In this chapter, we present an entire secure framework for genomic data processing on public clouds.
The framework allows clinics and research institutions to perform computations at large scale and to
handle large amount of genomic data, leveraging on public cloud resources. Based on this framework,
we propose a 3-encryption-scheme model for genomic sequence mapping (3EGSM). The model, which
combines the three encryption schemes mentioned above, protects not only genomic sequences but also
the intermediate and final computation results when processing on public clouds. We focus on genomic
sequence mapping also known as read mapping [Trapnell and Salzberg, 2009] since it is one of the most
important steps in the area of genomic computation. Indeed, after collecting from sequencing machines,
the raw genomic data, which consists of millions of short nucleotide sequences (25–250 bp) called
reads, is featureless if there is no other supplement information. To make reads become meaningful,
researchers need to perform the read mapping that aligns these reads to a reference genome to find the
locations where each read occurs. The results then can be used for further analysis such as paternity test,
personalized medicine, single nucleotide polymorphism (SNP) discovery, etc.

Among existing read mapping algorithms, we advocate for the seed-and-extend algo-
rithm [Baeza-yates and Perleberg, 1992], the most efficient mapping technique [Schbath et al., 2012].
The seeding step finds the sub-sequences (called seeds) that exactly match in both the read and the
reference genome, and the extension step extends these matching seeds into a longer alignment for the
whole read. The length of seeds depends on the number of mismatches allowed between the read and
the segment on the reference genome where the read aligns. While the original design of the seed-and-
extend algorithm considers the case that both seeding and extension steps are run on the same server, to
leverage on public clouds, we need to adopt the algorithm in the way that heavy computations will be
delegated to public clouds. Therefore, we propose to split the mapping procedure along the two steps of
the seed-and-extend algorithm. The seeding step is then performed on public clouds, whereas the exten-
sion step is performed on the trusted server. To reduce the workload on the trusted server, we propose
the technique to reduce as much as possible the number of extensions needed to be performed.

In summary, the contributions of this chapter are as follows.

• We design an entire secure framework for genomic data processing on public clouds. The frame-
work provides means for researchers to perform large-scale computations by leveraging on the
immense and cheap computing resources of public clouds.

• We propose a 3-encryption-scheme model for genomic sequence mapping (3EGSM) to protect
input data, intermediate and final results against adversaries on public clouds. Furthermore, this
fine-grained model allows us to improve the performance of the system.

• We implement and evaluate our prototype through intensive experiments using real genomic data.
The results assess the validity and feasibility of the proposed approach in realistic systems.
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6.2 Threat Model

Moving genomic data for storage and processing on public clouds poses severe security threats. The
main threat is the identification of the genomic sequences. Since the genome is produced by clinical
studies, the identification of its donor, once identified, could be linked to the disease under the study.
The donor then suffers the consequence risks such as denial of access to health insurance, education
and employment. Even though HIPAA has required to anonymize the genomic data before making it
public, this protection approach is not sufficient as re-identification can be performed through examining
individual phenotypes [Zhou et al., 2011]. For the reads, even though they are just short nucleotide
sequences, the donor’s phenotypes could be observable after their locations on the reference genome
are discovered. Thus, it is important to protect not only the genomic sequence itself but also all the
meta-data of the sequence such as mapping locations, i.e., offsets, SNP, etc.

The cloud adversaries, either providers or the users sharing the same infrastructure, can be mali-
cious or honest-but-curious. While a malicious adversary tries to compromise and change the results
of genomic applications, making the results no longer accurate, an honest-but-curious adversary pur-
posely collects the data publicly exposed and then infers useful information from the obtained data. On
the aspect of data integrity and correctness of computation, malicious adversaries cause more signifi-
cant consequences since they can still compromise the data by modifying any bit even though data is
encrypted. Ensuring data integrity and preventing malicious adversary from changing data therefore
require a more complex mechanism, e.g., zero knowledge approach [Chiesa et al., 2015]. In this chap-
ter, since we address the problem of data privacy and leakage issue, we focus on the security threat
coming from honest-but-curious adversaries, which may use the leaked data for their own purpose. For
instance, an insurance company collects sensitive medical data of its clients and performs denial of ac-
cess to services. We propose the solution to prevent the data from being leaked to the honest-but-curious
adversaries and to ensure that the leaked data is not useful for them.

We also assume that there exists a trusted server, which is responsible for performing the computa-
tions involving the secret key such as data encryption/decryption and conversion from one encryption
scheme to another scheme. We argue that the 3EGSM model ensures the confidentiality of genomic data
when storing and processing on public clouds. Indeed, cloud adversaries can only see the encrypted ge-
nomic sequences represented by keyed hash values and computation results, i.e., intermediate and final
results, which are also encrypted by HE or OPE. The adversaries can collect encrypted data and send
to a remote attacker for further actions. However, such an attacker would not have the legitimate secret
key, thus would not be able to decrypt the data. Furthermore, it is infeasible to generate the original
genome sequences from their keyed hash values. Inferring useful information directly from encrypted
data is also impossible since the encryption schemes used in the 3EGSM model are proved not to reveal
any information about the plaintext data due to recent improvements [Menezes et al., 1996]. Finally,
we assume that there exist network security techniques for securely transferring data from the trusted
server to public clouds. This adds another security layer to protect the data even though the data has
been encrypted. Thus, man-in-the-middle attack can collect the data but would not be able to perform
any analysis or inference to retrieve useful information.
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6.3 Data Encryption Techniques

In this section, we give an introductive background on the data encryption techniques used in the 3EGSM
model. We describe how the model can protect the data privacy during computation and the purpose of
each encryption scheme in our proposed framework.

6.3.1 Hash

Cryptographic hash function, i.e., keyed hash function, which uses a secret key to encrypt the data,
has been widely used as one of encryption techniques [Bellare et al., 1996]. As formally defined
in [Bakhtiari et al., 1995], a keyed hash function H(·) is a class of hash functions {hk : k 2 Vn}
indexed by a key k such that function hk(·) : M ! Vm maps an arbitrary length message M to a fixed
length message digest Vm of length m. The larger the value of m, the stronger the hash function against
brute-force attacks [Menezes et al., 1996]. For instance, SHA-1 is more secure when using a 160-bit
hash function compared to a 128-bit one.

In read mapping using the seed-and-extend algorithm, since all seeds from the reads as well as the
reference genome need to be protected when moving to public clouds, keyed hash function becomes
an appropriate technique to encrypt the seeds. Regardless of the length of seeds, keyed hash function
always produces fixed length keyed hash values, which are different for each individual depending on
the secret key. This eases the searching of the exact matches of seeds in both the read and the reference
genome, thereby improving the performance of the entire framework.

6.3.2 Homomorphic Encryption

Homomorphic encryption has been extensively studied in the past few years since it allows com-
plex mathematical operations to be performed on encrypted data without first decrypting the data and
without any knowledge of the secret decryption key. This feature makes homomorphic encryption
to be used for protecting the privacy of data that involves the computation performed in untrusted
domains such as public clouds without revealing the original plaintext data. As formally defined
in [Fontaine and Galand, 2007], an HE scheme has the following correctness property:

8m1,m2 2 µ, E(m1 +µ m2) E(m1) +% E(m2),

E(m1 ⇤µ m2) E(m1) ⇤% E(m2),

where µ is the plaintext space and E is the encryption function; +µ and +% are addition operations in
the plaintext and ciphertext spaces, respectively. Similarly, ⇤µ and ⇤% are multiplication operations in
the plaintext and ciphertext spaces, respectively. This means that the result is directly computed from
input ciphertexts and it is decrypted to obtain the plaintext result only by the legitimate secret key.

In all known homomorphic encryption schemes, ciphertexts inherently contain a certain amount of
noises. This noise accumulates during homomorphic operations. If the noise is too large, the ciphertext
cannot be decrypted even with the correct secret key. Due to this characteristic, the first construc-
tion of homomorphic encryption is a somewhat homomorphic encryption (SWHE) scheme, which can
perform a limited number of operations before the noise grows large enough to cause the decryption
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faillure [Naehrig et al., 2011]. To make SWHE become a fully homomorphic encryption (FHE) scheme
that can evaluate an arbitrary number of additions and multiplications, a technique is needed to refresh
ciphertext constantly to reduce the noise level before the encrypted value is used for another arithmetic
operation. Depending on the construction of the homomorphic encryption scheme, a different technique
is used for this purpose. If the scheme construction is based on the so called “learning with errors”
(LWE) problem [Regev, 2005], the scheme is then bootstrappable. Thus, the bootstrapping technique is
used to refresh the ciphertexts [Brakerski et al., 2014]. If the scheme uses ideal lattices for its construc-
tion, it is not bootstrappable by the bootstrapping technique. The “squashing” technique is then used to
reduce the noise in the ciphertexts [van Dijk et al., 2010].

However, the bootstrapping and squashing techniques are heavily computational, thereby degrad-
ing the overall performance of the system. The leveled fully homomorphic encryption (Leveled FHE)
scheme has been designed to avoid the use of these heavyweight techniques. Leveled FHE allows one
to set the parameters of the scheme so that it can perform the computation of any specified function. It
uses a modulus switching technique to reduce the noise of encrypted data without knowing the secret
key and this method is much simpler than bootstrapping [Brakerski et al., 2014].

During the read mapping process, since the offsets of the seeds on both the read and the reference
genome involve in computations on public clouds where they need to be protected, we use homomorphic
encryption as a solution to encrypt the offsets. However, it is infeasible to perform the comparison be-
tween two plaintext integers by their ciphertexts, we thus apply the order-preserving encryption scheme
to encrypt data when comparison is required. The data therefore needs to be sent back to the trusted
server for conversion from HE to OPE during the mapping process.

6.3.3 Order-Preserving Encryption

Order-preserving encryption (OPE) is a deterministic symmetric encryption scheme that preserves nu-
merical ordering of the plaintexts [Boldyreva et al., 2011]. It was firstly proposed in the database com-
munity to support efficient range queries on encrypted data [Agrawal et al., 2004]. For A,B ✓ N
with |A|  |B|, a function f : A ! B is order-preserving if for all i, j 2 A, f(i) > f(j) iff
i > j. In [Popa et al., 2013], the authors analyzed the security of OPE and proved that the encrypted
values do not reveal additional information about the plaintext values besides their order, i.e., IND-
OCPA [Boldyreva et al., 2009, Popa et al., 2013, Yum et al., 2011]. Therefore, we use OPE to support
the comparison operations during execution of the seed-and-extend algorithm on encrypted data.

6.4 A Secure Framework for Read Mapping on Public Clouds

6.4.1 System Design

Typically, specialized clinics and genome research institutions are the sources of raw genomic se-
quences. These institutions conventionally operate several computers or a small computing cluster for
genomic data storage and analysis. This private infrastructure is usually deployed in the local (trusted)
domain of the institutions. Thus, the data can be processed in the raw (plaintext) format without any
security concern. However, the exponential growth of genomic data makes the storage and computing
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Figure 6.1: Proposed system architecture.

requirements exceed the capacity of the private infrastructure. In the architecture shown in Fig. 6.1, we
propose to delegate all heavyweight computations to the public cloud, which has large-scale storage and
computing resources. The private infrastructure continues to be used for the light computations, which
involve the plaintext data, and data encryption/decryption to protect the privacy before sending to the
public cloud for analysis. The computing platform deployed in the public cloud should compose of
both storage and computing resources. For instance, clinics can request for storage space from Amazon
S31 and virtual machine instances for computing resources from Amazone EC22 to deploy their own
platforms. Depending on the storage and computational requirements, clinics may adjust the amount
of resources requested on the public cloud to achieve the desired performance and to save the cost paid
for cloud providers. As previously mentioned, the connection between the trusted server and the public
cloud can be established by any secure transmission protocol even though all genomic data exchanged
between the trusted server and the public cloud has been encrypted.

Framework Generalization for Other Computations: We believe that the proposed architecture is
generalized not only for read mapping but also for any other large-scale data intensive genomic appli-
cation. On the architectural aspect, any genomic application needs the trusted server to perform compu-
tations that involve plaintext data and encryption keys. The public cloud component is responsible for
heavy computations that involve encrypted data. On the deployment aspect, since the trusted server is
under the administration of the users, deployment of new software and applications is straightforward.
On public clouds, since applications need to be installed on each virtual machine (VM), which will
be released after a reservation period, a VM image that includes all necessary applications needs to be
created to ease the deployment step and to avoid unforced errors. Another effort from users is required
to adapt the application before integration. While most of genomic algorithms have been designed for
running on a single computer, adapting the application to be able to run on two remotely connected
machines (clusters) requires expertise from software designers for the algorithm partition process. Fur-
thermore, the algorithms also need to be adapted and integrated with Hash, OPE and HE to be able to

1Amazon S3: http://aws.amazon.com/s3
2Amazon EC2: http://aws.amazon.com/ec2
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Figure 6.2: Interaction diagram between trusted server and public cloud for read mapping.

handle encrypted data. We also argue that the 3EGSM model is sufficient for any other genomic ap-
plication to protect the data privacy. An application, which manipulates the genomic sequences, just
needs the hash function for protecting the sequences. In case that the application needs to perform the
computation with each single nucleotide, HE is then used to encrypt the encodes of nucleotides, e.g.,
A ! 00, C ! 01, T ! 10, G ! 11. Furthermore, HE and OPE are also used for all mathematical
operations that involve the offset of nucleotides.

6.4.2 Interaction Diagram for Read Mapping

In this section, we describe the detailed interaction between the trusted server and the public cloud for
the entire read mapping process including the data preparation phase.

Hashing Process: As shown in Fig. 6.2, the data preparation phase is performed by the hashing pro-
cess on the trusted server. It composes of three steps from step 1.1 to 1.3 where step 1.1 is performed by
sequencing machines such as Illumina/Solexa. Steps 1.2 and 1.3 are mapping-specific tasks required by
the seed-and-extend algorithm. The trusted server needs to divide the reads and the reference genome
into multiple seeds and encrypt them. The seeds are encrypted by a keyed hash function in step 1.2.
The offsets of seeds, i.e., the position they occur in the corresponding read or reference genome, are
encrypted by homomorphic encryption in step 1.3.

Mapping Process: The mapping process, depicted by step 2.1 to step 2.8 as shown in Fig. 6.2, involves
the public cloud and requires the data communication between the trusted server and the public cloud.
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In step 2.1, the trusted server sends the encrypted data including keyed hash values of seeds and their
offsets on both the read and the reference genome to the public cloud. This step can be performed well
ahead in time of the seeding process and the encrypted data of the reference genome is sent only once,
except there is any change in the length of seeds. For any read that will be mapped, its encrypted data
also needs to be sent to the cloud. Given that all necessary data has been transferred to the public cloud,
step 2.2 will search for the exact matches of seeds in both the read and the reference genome. While the
traditional seed-and-extend implementations perform an extension for every match found even though
the extension may not be successful because of the number of mismatches, we apply the q-gram filtering
method to reduce the number of extensions needed to be performed, thereby reducing the load on the
trusted server. To do so, the read needs to be chopped in the overlapping manner to extract all l-mers,
i.e., a seed with l bp. For instance, in the read of ACTG, the 2-mers will be AC, CT and TG. If a
sufficient number of l-mers map in a small segment of the reference genome, the segment is then chosen
to perform an extension with the read. We refer the reader to [David et al., 2011] for the mathematical
formula to compute such threshold and its detailed description.

To count the number of matches of read seeds in a segment of the reference genome, we compute a
value so called shift, which is the position where the read aligns on the reference genome with respect
to the position of the exact match of the seed. Mathematically, let m and n denote the offsets of the
matching seeds on the read and the reference genome, respectively. The shift value is computed as
s = n�m. If multiple matches have the same shift value, then these matches are in the same segment of
the reference genome. However, since the shift values are computed from the offsets that are encrypted
by HE, we cannot perform the comparison of the shift values to verify whether they are equal or not
(with the current implementation of HE). Therefore, the public cloud has to send the shift values back
to the trusted server for conversion from HE to OPE, which preserves the numerical order of the shift
values. These two steps are shown in step 2.3 and 2.4 in Fig. 6.2.

All the shift values re-encrypted by OPE are sent to the public cloud again for verifying with the
threshold (step 2.5). The public cloud sorts all the shift values in the ascending order, then checks each
shift value for its number of matches (step 2.6). It is worth mentioning that, by using this approach,
one can choose to perform only one extension for the segment of the reference genome, which has
the highest number of matches based on the shift values. Thus, as shown in Fig. 6.2, the public cloud
also sends back the best matching position of the read on the reference genome (step 2.7). The ex-
tension (step 2.8) performed on the trusted server can be done by any dynamic algorithm as presented
in [Schbath et al., 2012]. Obviously, the user needs to extract the segment on the reference genome,
which is in the plaintext format to perform the extension along with the read.

6.5 Security Analysis

In this section, we analyze the security provided by the employed encryption schemes and the proposed
framework. We present an informal proof to show that the integration of the 3EGSM model into the
proposed framework provides complete security for genomic data.

Proposition 6.5.1 The three encryption schemes (keyed hash function, homomorphic encryption and
order-preserving encryption) used in the proposed framework ensure that no sensitive information is
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leaked or publicly exposed in their respective processing step.

Proof:(Sketch.) The three encryption schemes have been well proven in the literature that they are persistent
against attacks. We refer the readers to [Menezes et al., 1996] for the security proof of keyed hash function,
[Fontaine and Galand, 2007] for HE and [Popa et al., 2013] for OPE. Given the “correct” integration of each
scheme into respective programs presented in the previous section, the genomic data including genomic se-
quences, offset values and shift values are then correctly encrypted and they are persistent against attacks. We
argue that the correct integration depends on the behavior of program developers. If the developers behave ma-
liciously or collude with external attackers, this scenario is then out of scope of the paper since the developers
are no longer honest-but-curious users. It is also noted that the encryption process, which involves encryption
keys, is executed in the private trusted server that is assumed to be secure under the administration of the users.
We thus claim that the encryption schemes individually ensure the privacy of the data processed. ⌅

We now analyze the security provided by the entire framework. We show that the combination of all
three encryption schemes into the framework protects the privacy and reveals no sensitive information
during the processing on clouds.

Proposition 6.5.2 Given the correct implementation and integration of the 3EGSM model, the proposed
framework ensures that no data including input data, intermediate and final results, have been leaked
during the processing on clouds.

Proof: Let p = F (r,R) denote the function that takes two input parameters: r as the short read and
R as the reference genome. The function results in p as the position that the short read aligns on the
reference genome. F (r, R) is a combination of all programs that are described in the previous section:
hashing read, hashing genome, seeding, re encrypt ope, sorting, ope decryption and
extension. Given that F (r,R) is correctly implemented according to the protocol presented in Fig. 6.2, we
prove that the execution of F (r,R) will not expose any information to other users on public clouds. Indeed,
let us hypothesize that honest-but-curious adversaries are able to collect sensitive information during the exe-
cution of F (r, R) on public clouds. Since r and R have been encrypted on the trusted server, the data, which
are stored and processed on public clouds, are H(r), H(R), E(offs), E(shifts) and E(p) where H(r) is
the keyed hash value of short read, H(R) is the keyed hash value of the reference genome, E(offs) are the
encrypted values of the offsets of the seeds, E(shifts) are the encrypted values of the shifts, and E(p) is the
encrypted value of the mapping position. Since all data exposed to adversaries are encrypted, the adversaries
can collect meaningful information if and only if one of the three following scenarios happens:

• Adversaries can break the encryption schemes by a particular attack;

• Adversaries have the encryption key and perform decryption of encrypted data; and

• Data is decrypted during the processing on clouds.

If the first scenario happens, it then implies that Proposition 6.5.1 does not hold true. If the second scenario
happens, it implies that the encryption key has been leaked. Since the encryption key is managed by the user
on the trusted server, this scenario is then contradictory with our assumption that the trusted server is secure
and the user is honest to not reveal the encryption key to a third party. If the third scenario happens, it implies
that the implementation of the framework is not correct since all the encryption schemes have been proven to
be able to handle the encrypted data. Furthermore, as we describe in Section 6.6, the input parameters of each
program running on public clouds do not include the encryption key that is then not available on public clouds.
These contradictions confirm that the initial hypothesis must be false, thereby proving Proposition 6.5.2. ⌅
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6.6 System Implementation

In this section, we present the implementation of the proposed framework. We first present the libraries
used in the 3EGSM model to protect the data privacy. We then describe the implementation of the
modules in the system as well as their input/output interfaces. We discuss the challenges raised by the
application of the 3EGSM model into the proposed framework and propose workaround solutions to
overcome these challenges.

6.6.1 Helper Libraries

We implement our system in C/C++, using the following supporting libraries for the encryption purpose.

6.6.1.1 Hash Library

To produce keyed hash value of data, we used HMAC, which has been included as a module of the
openssl library. It provides cryptographic hash functions such as MD5 and SHA-1. In this paper, we
used HMAC-SHA1 that produces a 160-bit hash value from a string with arbitrary length. The secret key
is given by users and the longer secret key makes the hash stronger against the brute-force attack.

6.6.1.2 Homomorphic Encryption with HElib

As far as we know, the most efficient fully homomorphic encryption scheme has been implemented
by the IBM research team conducted by S. Halevi and V. Shoup. The implementation is called
Homomorphic-Encryption Library (HElib) and it can be found at the address: https://github.
com/shaih/HElib. HElib implements the Learning With Errors over Rings (RLWE) encryption
scheme along with many optimizations to make homomorphic evaluations run faster. It is implemented
in C++ and uses the NTL mathematical library. For the detailed description on the design and imple-
mentation of HElib, we refer the reader to [Shoup and Halevi, 2012].

6.6.1.3 OPE Library

For the OPE library, we used the implementation extracted from the CryptDB project [Popa et al., 2011].
It is noted that a more recent version of OPE is shown to be more secure and faster [Popa et al., 2013].
However, we did not use the version in [Popa et al., 2013] due to its non-availability.

6.6.2 Module Implementation

We now present the detailed implementation of each module in the proposed framework. We focus on
the input/output interface of the modules rather than on the integration of the supporting libraries into
each module as many available tutorials have been published to guide the use of the libraries.

6.6.2.1 Hashing of Reads and Reference Genome

As previously mentioned, the seeds of a read and the reference genome need to be hashed before being
sent to public clouds to protect the privacy. The length of a seed depends on the number of mismatches
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Figure 6.3: Division example. (a) Genome and short read. (b) Division without overlapping. (c) Division
with overlapping.

allowed between the read and a segment of the reference genome. This value also known as edit distance
is defined as the minimum number of editing operations including insertion, deletion and substitution,
needed to convert one into the other. Let d denote the allowed edit distance, the length of a seed, denoted
as l, is defined as l = L/(d + 1) where L is the length of the read. A seed of length l is also called
l-mer. To avoid a separate function for determining the length of a seed, we include this process as an
initial step of the read hashing program, namely hashing read. The program therefore takes two
input parameters including the file containing the read sequence and the allowed edit distance.

Given the length of a seed determined by hashing read, the genome hashing program,
hashing genome, also takes two parameters including the length of a seed and the file containing
the genome sequence. As mentioned in the previous section, while we should perform the hashing for
every read needed to be mapped, the hashing of the reference genome is seldom performed since a ref-
erence genome can be used for multiple reads. The genome hashing needs to redo only when the length
of a seed changes due to the changes of the allowed edit distance or the length of the read.

Given all necessary parameters, the hashing process chops the read or reference genome into mul-
tiple identical-sized seeds and invokes HMAC-SHA1 to produce the keyed hash values. As previously
mentioned, the only difference between hashing of the reads and that of the reference genome is that
the reads are not chopped into non-overlapping l-mers but every l-mer is extracted and mapped on the
reference genome. If a sufficient number of l-mers map in a small segment of the reference genome, the
hit is then chosen for the extension step [David et al., 2011]. This improvement significantly reduces the
number of extensions performed on the users servers, thereby improving the overall performance.

6.6.2.2 Encryption of Seed Offsets and Computation of Shift Values with Homomorphic Encryption

In the seed hashing process, we need to store not only their keyed hash values but also their offsets, i.e.,
the position of the seeds on the read or the reference genome. As previously mentioned, the position of
seeds is a sensitive information, which needs to be encrypted to securely protect its privacy. However, we
also need the offsets for computation of the matching position of the read on the reference genome. We
integrate HElib into the two hashing programs presented above to perform encryption of the offsets.

For the HElib context, mainly defined by the plaintext base (p), the security parameter (�) and
the circuit depth (D), we choose the following parameter values: p = 547499, � = 80 and D = 8.

94



6.6. System Implementation

While we can use the default parameters set by HElib for � and D, the plaintext base (p) needs to be
defined by the developer since it represents the range of plaintext values, i.e., the offset values. Since
the larger the p’s value, the longer the execution time of operations performed on encrypted data as
experimented in [Togan and Plesca, 2014], we set the value of p = 547499, the smallest prime number
that is larger than the length of the longest reference genome in our experiment. It is noted that this value
is large enough for representing the seed offsets of the reads, which usually consist of a few tens pairs
of nucleotides. However, it may not be sufficient for the reference genome, which has a million pairs of
nucleotides. To overcome this problem, one of solutions can be division of the reference genome into
multiple short chunks. Two consecutive chunks should have an overlapping region whose size is larger
than the length of reads to avoid the case that reads may be partially mapped on both chunks. Fig. 6.3
illustrates this solution where Fig. 6.3a presents the entire genome with a short read that best maps at
the position of the dashed line. The division without overlapping in Fig. 6.3b makes the mapping failed.
It is because the number of matching seeds of the left part of the read on Chunk 1 may not satisfy the
threshold of q-gram filtering thus extension will not be executed. Fig. 6.3c shows the division with
overlapping that results in a successful mapping.

Another challenging issue concerning the application of HElib is the size of ciphertexts. For each
integer from 0 to 547499, the size of its ciphertext is roughly 2.1 MB. Storing all ciphertexts in memory
(RAM) and sending them to the public cloud is not possible since the required amount of memory is
too large even for a modern server. For instance, storing the offsets of 2000 seeds of the reference
genome requires 6 GB memory. To solve this problem, we save ciphertexts into files stored on external
diskspace. To avoid the overwrite of files, we use the keyed hash values of seeds as filenames. Since a
seed can appear multiple times in a read or the reference genome, a file may contain multiple ciphertexts
of all offsets of the seed. By saving ciphertexts into files, the hashing of the reference genome becomes
a one-time-cost task, and the results can be transferred to the public cloud for future use.

Given that all encrypted data has been transferred to the public cloud where all seeds of the read
are stored in a separate location with that of the reference genome, the seeding step is then securely
performed. We implement seeding that searches for all matches between the seeds of the read and
those of the reference genome by simply finding two files having the same name from the two locations.
seeding also includes HElib to perform the computation of the shift value from two encrypted offset
values. All encrypted shift values are also saved to files, which will be transferred back to the trusted
server for re-encryption with OPE.

6.6.2.3 Sorting Shift Values Re-encrypted by OPE

Since we cannot perform the comparison with data encrypted by HE, all the shift values need to be re-
encrypted with OPE that supports comparison over encrypted values. We implement re encrypt ope

for the re-encryption purpose. For each shift value, re encrypt ope first decrypts the ciphertext
using HElib and then re-encrypts by OPE. Since the shift values encrypted by OPE are also integer, we
store all shift values into the same text file that will be sent to the public cloud for the next step. For the
security parameters of OPE, the secret key is given by the user while the size of plaintext and ciphertext
are set by the default values of OPE, 32 and 64 bits, respectively.

Given all the shift values encrypted by order-preserving encryption, the next step of the mapping
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process is to determine all possible extensions and the best matching positions of the read on the ref-
erence genome. To do so, we sort all the shift values in the ascending order and count for the number
of seed matches that have the same shift values. The shift values of the possible extensions are then
sent back to the trusted server for the extension step. The process is implemented in the program file
sorting. For decrypting the shift values of the possible extensions, we implement a program namely
ope decryption, which takes a file as input containing all the ciphertexts encrypted by OPE and
generates a file containing all the respective shift values in the plaintext format.

6.6.2.4 Extension

The extension step is performed on the trusted server with the plaintext data. The extension program
takes three parameters: the file containing the read, the file containing the reference genome and the file
containing all the shift values, which are the positions where the read aligns on the reference genome.
The program first loads the nucleotide sequences from both the read and the reference genome to mem-
ory. For each shift value, the program extracts the segment on the reference genome and computes the
edit distance between the read and the segment. We implement the dynamic algorithm to compute the
Levenshtein distance [Schbath et al., 2012] between two sequences.

6.7 Performance Evaluation

6.7.1 Experiment Setup

6.7.1.1 System

We deployed the experimental system by using two computers playing the role of the public cloud and
the trusted server, respectively. Both computers are Dell Optilex 990, Intel(R) Core(TM) Processor
i7 � 2600, 3.40GHz, 8 GB RAM. The connection between the trusted server and the public cloud is
established by the Internet backbone with the bidirectional speed of 17 Mbps with the distance of 3 kms.
We carried out 20 runs for each experiment to obtain the average performance metric values.

6.7.1.2 Data

We utilized the public available dataset that contains the Feb. 2009 assembly of the human genome
(hg19, Genome Reference Consortium Human Reference 373). We randomly sampled 10 thousand
reads that are 36 bp long from all chromosomes. Over this dataset, we ran our prototype allowing up
to 3 mismatches to map all reads onto different reference genomes. Thus, all seeds are 9-mers. We
measured the running time of the entire mapping process to evaluate the overall performance as well as
the impact of the 3EGSM model. Due to the limited disk space on both computers, we could not run our
prototype for all 22 available chromosomes. Instead, we selected several chromosomes with different
size to show the change in performance of the proposed framework.

3Experiment Dataset: http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes

96

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/chromosomes


6.7. Performance Evaluation

Table 6.1: One-time Cost for Hashing Reference Genomes with 9-mers, i.e., allowing 3 mismatches.
Chromosome Original Size (KB) #Seeds Required Space (MB) Hashing Time (s)

chr18 8 474 969 83.149

chr21 28 3076 6284 493.193

chr19 160 17686 36124 2653.498

chr9 188 20782 42454 3048.999

chr1 548 60833 124258 9227.129

Total 932 102851 210089 4:18:25

6.7.2 Result Analysis

6.7.2.1 One-time Cost for Hashing Reference Genomes

In the first experiment, we evaluate the one-time cost for hashing reference genomes and encrypting
the offsets of their seeds. For each reference genome, we measure the running time of the program to
complete the hashing process and the size of disk space needed to store offset ciphertexts. In Table 6.1,
we present the results of this experiment. It is obvious that the larger the size of the reference genome,
the higher the number of seeds, therefore the larger the disk space needed to store all ciphertexts of
offsets. With the largest reference genome whose size is 548 KB, the required disk space is 124258 MB,
i.e., 121.35 GB. Even though the required disk space is quite large, the disk drive prices are really cheap
nowadays. Furthermore, the hashing phase can be performed on the trusted server well ahead of the
mapping on the public cloud, the keyed hash values and encrypted offsets can be moved to the public
cloud storage space without suffering any security risk. The occupied disk space on the trusted server
can be then freed for another task if needed.

We obtained the same behavior when considering the running time of the program for hashing the
reference genomes. With the largest reference genome, the running time is 2 hours 33 mins 47 seconds.
Fortunately, this is a one-time cost as a reference genome after being hashed can be used for multiple
reads if the size of reads or the number of mismatches allowed do not change. It is noted that the
running time includes the initialization of HElib, which is about 14.30 seconds. The main portion
of the running time comes from the scanning throughout of the reference genome to hash and encrypt
the offset for every seed. For the largest reference genome, the program needs to process 60833 seeds,
corresponding to almost the same number of files opened on the disk. This prolongs the running time of
the hashing program as the I/O operation is usually time consuming. Comparing with the running time
without offset encryption, which is in the order of few minutes [Chen et al., 2012], the running time with
offset encryption is much longer. Nevertheless, this one-time cost is completely affordable with regards
to the achieved benefit of data privacy protection.

The last row of Table 6.1 shows the summary of the hashing and encrypting process to prepare the
dataset. With 5 reference genomes with a total size of 932 KB, we obtained 102851 9-mers, which
consume more than 205 GB of disk space to store their encrypted offsets and keyed hash values. The
whole process takes more than 4 hours to complete.
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6.7.2.2 Overall Performance

We now evaluate the overall performance of the framework by running the entire mapping process.
Given a reference genome, we map all 10 thousand reads onto the reference genome one by one. We
evaluate the performance of the prototype at a fine-grained level by measuring the execution time of
each step: the hashing of read on the trusted server, seeding on the public cloud, re-encryption of shift
values with OPE on the trusted server, sorting and determining the possible extension positions on the
public cloud, and extension on the trusted server. For the reads of 36 bp corresponding to 28 overlapping
9-mers, the total hashing and encryption time of seed offsets is 18.504 seconds including 14.30 seconds
spent for the initialization of HElib. This initialization is a one time cost, so it can be affordable when
performing the hashing for thousand or even milion of reads.

In Fig. 6.4, we present the average processing time of each step of the mapping process over 10
thousand reads. It is observed that the longer the reference genome, the longer the time needed for each
step in the mapping process, leading to the increase in the overall mapping time. The results show that
the largest portion of the processing time of the mapping process comes from the seeding step. With
the longest reference genome, the seeding spends 53.57% of the total mapping time, excluding the com-
munication time to transfer seed offsets of the read and intermediate results between the trusted server
and the public cloud. The second largest portion of the mapping time is the OPE encryption of the shift
values performed on the trusted server. As the reference genome is longer, the number of occurrences of
seeds on the reference genome increases, i.e., there is a higher probability that there are more matches of
seeds on a longer reference genome. The time spent for sorting and determining the possible extension
positions is less than one second. The extension time on the trusted sever is 0.004s per extension. With
the q-gram filtering method, the number of extensions is reduced significantly, the longest extension
time is only 0.015s. In total, the mapping time of a read on the longest reference genome is 75 seconds
including the hashing time, the time of all steps in the mapping process and the data transmission time.
Compared to a baseline approach [Atallah et al., 2003], which takes about 5 minutes to compute the edit
distance between two 25 bp sequences through fully homomorphic encryption and oblivious transfers,
the proposed framework reduces the processing time by up to 75%.

It is noted that while the seeding step is performed for all reads, the OPE re-encryption and sorting
steps are performed only when there is at least one exact match of the seeds on the reference genome.
The number of extensions is further reduced by the q-gram filtering method since the number of matches
of several reads does not satisfy the threshold. Thus, with the proposed framework, we successfully
delegated the most data-intensive task to the public cloud without any concern about the privacy of input
data as well as computation results, which may be exploited by adversaries to infer useful information.

6.7.2.3 Communication Overhead

When running our prototype on the setup infrastructure, we realized that the communication overhead is
significant in the overall performance. Due to the low connection bandwidth, i.e., relying on the Internet
backbone, as well as the high volume of data transferred to the public cloud, the communication time
increases significantly compared to the case of computation with plaintext data. Concerning the one-
time cost of transferring the reference genome to the public cloud, while the non-secured approach needs
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Figure 6.4: Average processing time (in second) of each step in mapping process over 10 thousand reads
being mapped onto 5 genomes allowing 3 mismatches.

Table 6.2: One-time Cost for Hashing Reference Genomes with 12-mers, i.e., allowing 2 mismatches.
Chromosome Original Size (KB) #Seeds Required Space (MB) Hashing Time (s)

chr18 8 356 733 59.156

chr21 28 2307 4750 309.756

chr19 160 13265 27308 1750.376

chr9 188 15587 32089 2213.414

chr1 548 45625 93926 5929.416

Total 932 77140 158806 2:51:02

to transfer 5.7 GB of keyed hash values of the largest genome in our experiment [Chen et al., 2012], our
proposed approach needs to transfer 121.35 GB. It took roughly 17 hours on the 17 Mbps link. Even
though the amount of data is large, we believe that with a dedicated link with higher bandwidth, e.g.,
large than 100 Mbps, this one-time cost is completely affordable as in reality Amazon routinely receives
terabytes of data through its Import/Export service [AWS, 2015].

For every read, we also need to transfer the keyed hash values and encrypted offsets of its seeds to the
public cloud. With 36 bp reads generating 28 overlapping 9-mers, the amount of data being transferred
to the public cloud is 58.8 MB. It took 17.168 seconds on average to complete the data transmission on
the 17 Mbps link. The size of intermediate and final results is small so that it can be negligible compared
to the overall processing time. It is also noted that the communication overhead could be amortized by
asynchronous communication such that communication and computation are overlapping. In order to
achieve this parallelism, implementing the read mapping application as a workflow-based application is
one of solutions [Rojas Balderrama et al., 2012].
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Figure 6.5: Average processing time (in second) of each step in mapping process over 10 thousand reads
being mapped to 5 genomes allowing 2 mismatches.

6.7.2.4 Impact of Number of Mismatches

In this experiment, we set the number of mismatches allowed to map a read onto the reference genome to
2 and repeated the same experiments as presented in the previous sections. With 2 allowed mismatches,
the length of seeds is 12 bp. Consequently, the processing time, the number of seeds of each read as well
as reference genome, and the required disk space are reduced. In Table 6.2, we present the hashing time
and required disk space when allowing 2 mismatches. The total hashing time is reduced by 1 hour 27
mins. And the total required disk space is now only 158806 MB, i.e., 155.08 GB. The average processing
time of each step also slightly reduces as shown in Fig. 6.5. We did not perform the experiment when
allowing more than 3 mismatches due to the limit of our experimental system. We believe that we will
obtain the same behavior since increasing the number of allowed mismatches leads to the increase in the
number of seeds, the total processing time and the disk space needed for the data.

6.7.2.5 Mapping Speedup with Parallel Execution

Sequential mapping of 10 thousand reads onto a reference genome turned out to be very slow even
though the application of the 3EGSM model has significantly improved the performance of the mapping
process. With the longest reference genome in our experiment, it takes more than 8 days to complete the
task including the data transmission time. Since reads are independent of each other, we can accelerate
the processing by concurrently running the mapping process on different machines, each performs the
mapping for a portion of reads. We deployed multiple virtual machines on the physical server, i.e., from
2 to 5, and ran the mapping process on these virtual machines. Corresponding to the number of virtual
machines, 10 thousand reads are divided evenly into the respective number of portions.

In Fig. 6.6, we present the mapping speedup achieved by the parallel execution. Theoretically, one
can say that the speedup is the number of virtual machines used for the processing. In reality, since
the trusted server has to communicate with multiple virtual machines at the same time, an overhead
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Figure 6.6: Mapping speedup with parallel execution.

therefore incurs. Furthermore, the data transmission becomes the bottleneck since the total bandwidth
of the connection is shared among concurrent transmissions with virtual machines. Thus, the processing
speedup can attain only 3.35 when running the mapping on 5 virtual machines. Compared to the speedup
obtained by CloudBurst [Schatz, 2009], the speedup achieved by the proposed framework is lesser due
to the communication overhead of the larger volume of data. Nevertheless, the results of this experiment
show the effectiveness of the proposed framework to exploit the immense computing capacity of the
public cloud at low resource usage cost. While CloudBurst does not provide the data privacy protection,
the 3EGSM model used in the proposed framework guarantees that no sensitive information will be
leaked when migrating the mapping process to public clouds. Due to the limitted of the experiment
testbed, we did not run the experiments beyond 5 VMs. However, we expect that the speedup will
increase a bit more and then keeping flat due to the concurrent data transmission from the trusted server
to the computing nodes.

6.8 Chapter Summary

In this chapter, we designed an entire secure framework for genomic data processing leveraging on cloud
resources to address the exponential growth of genomic data [Kang et al., 2016a]. Based on this frame-
work, we proposed a 3-encryption-scheme model for genomic sequence mapping (3EGSM) to solve
the security issue. The model uses keyed hash function for genomic sequence matching, homomorphic
encryption for arithmetic computation and order-preserving encryption for numerical comparison. We
concretized the framework and integrated the 3EGSM model into the seed-and-extend algorithm, re-
sulting in a secure prototype for read mapping on public clouds. The results show that delegating the
computation of genomic data to clouds can accelerate the processing depending on the scale of the com-
puting platform deployed on clouds. The contributions of this work facilitate the exploitation of cloud
resources, and protecting a data privacy not only for secure storage but also secure computations.
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Chapter 7

Conclusions and future work

7.1 Conclusions

The work presented in this thesis addressed the problem of performance optimization and data privacy
protection for large-scale (multi-cloud) storage and computing systems. Public clouds provide users
a quasi-unlimited amount of computing, network an d storage resources for dealing with the needs of
heavy and large-scale computation requirements of big data applications. However, moving data to
public clouds for storing and processing raises new challenges, which are addressed in the thesis: (i)
the performance issue, e.g., the delay in data retrieval or processing, and (ii) the security issue, e.g., the
data privacy. Combining with complex requirements in resource requests and in the architecture of the
systems, these challenges drive the needs for novel data management solutions that consider both the
performance and data security issues. Focusing on load scheduling and data placement, the work carried
out in this thesis provided the solutions that address the above challenges not only separately but also in
a joint problem, i.e., optimization of performance while satisfying the security requirement.

Load scheduling strategies in distributed computing systems have been studied for handling large
amount of data with heavy computation. Most of existing approaches do not consider the new features
of multi-cloud systems such as dedicated network resource with specific network topology. Further-
more, they consider the sole load source that is not realistic in nowadays big data applications such as
environment monitoring and health systems. Motivated by this, we proposed a novel architecture for
multi-cloud systems that take into account the network topology, the link capacity, the heterogeneity of
computing nodes in terms of computing capacity and release time. Depending on the size of the infras-
tructure based on the number of load sources, users may decide to use a centralized scheduler or multiple
distributed schedulers. Leveraging on the divisible load paradigm and the phase-based scheduling ap-
proach, we proposed two scheduling strategies that will be run on the schedulers: a Static Scheduling
Strategy (SSS) and a Dynamic Scheduling Strategy (DSS), whose objective is to minimize the total pro-
cessing time of loads. While both SSS and DSS use a number of mathematical formulations to compute
the available time duration of computing nodes to determine the chunk size appropriately, SSS assumes
that the release time of computing nodes is known prior to the scheduling procedure. Given such known
inputs, SSS repeatedly executes the phase-based scheduling algorithm to generate the scheduling deci-
sion for all the loads submitted to the system. The scheduling decision is stored as a lookup table and
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realized once the nodes are released at the known time. SSS may result in poor resource utilization if
the release times of computing nodes are unknown since the nodes, which are released after the moment
when scheduling decision have been made, will be wasted.

Towards a better resource utilization and better overall performance of the system, DSS relaxes
the assumption of SSS and reacts immediately when a new computing node is released. Instead of
generating the scheduling decision for all the loads well ahead to their actual processing, DSS gradually
generates the scheduling solutions along processing phases and additional assigns loads to new released
nodes even at the middle of the processing phase. Running on distributed schedulers, DSS needs to
be aware of the ready time of computing nodes for receiving and processing a new load chunk since
the nodes may be currently busy for other load chunks assigned by other schedulers. We proposed to
apply a prediction technique on computing nodes, which will estimate the processing time of the load
chunks that have been received and they will inform the schedulers during the scheduling process. We
performed extensive simulations to evaluate the performance of the proposed scheduling strategies. We
also used a real world log trace as the training dataset when evaluating DSS. The results show that the
proposed scheduling strategy outperforms the baseline schemes which do not apply divisible load theory
by reducing the total processing time of loads up to 44.60%. The results also provide useful insights on
the applicability of the proposed architecture and scheduling strategy across a range of realistic systems.

While the SSS and DSS focus only on the performance optimization issue with assumption that data
remains in computing nodes for a short duration during the processing, thus suffering lower security risk,
on other extreme, users may want to strictly protect the data privacy when the data is stored in cloud
storage systems for a long duration, e.g., for backup purpose. This motivates us to design and imple-
ment a server-side encryption service for cloud storage systems namely ESPRESSO to protect the data
privacy, using advanced encryption algorithms. Not only protecting the privacy of the data, ESPRESSO
also protects the privacy of the users’ encryption with a secrete master key. Furthermore, ESPRESSO
also guarantees the availability of the users’ encryption keys by replication, thus ensuring that data can
be decrypted whenever users require even in the case the primary key is not available. The proposed
encryption service was integrated into two open-source cloud storage platforms: OpenStack/Swift and
Nimbus/Cumulus as an additional service deployed in a separate server without breaking down their
original code structure. The real experiments were conducted on both Swift and Cumulus storage sys-
tems, and the results show that the introduced encryption latency is negligible compared to the total
operation time of a data management request even with a large data file of 4GB, thereby demonstrating
the effectiveness of the proposed encryption service.

Combining the performance issue and the data privacy issue in a joint problem makes it more com-
plex and hard to achieve. However, many realistic big data applications such as health care systems
require both requirements since users would like not only to optimize the performance for paying less
cloud resource cost but also to protect the data privacy as the data is very sensitive. Focusing on the
data placement in cloud storage systems, we proposed a novel approach to protect the data privacy by
using graph theory. The data is assumed to be divisible and the sensitive information is spread over
multiple chunks such that a compromised chunk will not make sense to malicious users. We develop
a novel data placement algorithm namely Availability and Security-awarE Data placement algorithm
for cLOUd storage Systems (A-SEDuLOUS) that (i) minimizes the total retrieval time of a data by de-
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termining appropriate size of data chunks that will be stored on respective nodes, (ii) protects the data
privacy by selecting the storage nodes that satisfy the security requirement represented by the distance
on the network path between two nodes storing the chunks of the same data, and (iii) guarantees the data
availability regardless of attacks on nodes or links by replicating data chunks on appropriate nodes. We
showed the effectiveness of the proposed algorithm against baseline algorithms by extensive simulations
on different cloud storage systems using random network topologies and the realistic Internet2 topology.
The proposed algorithm reduces the retrieval time by up to 34% for random topologies and 19% for the
Internet2 topology. The results also show that while achieving the best performance and guaranteeing
the data privacy and availability, the proposed algorithm does not sacrifice other performance metrics
such as the rejection ratio of storage requests.

While A-SEDuLOUS was evaluated through numerical simulations, we take another step towards
demonstrating the feasibility of the proposed approaches in this thesis by a practical case study. We
considered a genomic application that represents a big data application, requiring not only to process
a large amount of data with heavy computation but also high level of security for genomic data. We
designed an entire secure framework for genomic computation on public clouds to exploit the parallel
processing on multiple computing nodes so as to reduce the total processing time of the application. We
concretized the framework and proposed a 3-encryption-scheme model for genomic sequence mapping
(3EGSM) by combining key-hash function, homomorphic encryption and order-preserving encryption
to protect not only genomic sequences but also the intermediate and final computation results. The
combination of the above encryption schemes and our adoption into genomic computation significantly
eliminates the performance degradation from fully homomorphic encryption by using key-hash function
and order-preserving encryption for the data that does not involve in the arithmetic operations. The per-
formance of the proposed framework was evaluated through intensive experiments using real genomic
data. Compared to a baseline approach that only uses homomorphic encryption and oblivious transfers,
the proposed framework reduces the total processing time by up to 75%. The results also show that
delegating the computation of genomic data to public clouds can accelerate the processing, achieving
a speedup by 3.35 with only 5 virtual machines compared to sequential processing on a dedicated ma-
chine. The experimental results show that while existing approaches have to sacrifice one for the other,
our proposed approach achieves all the three goals above.

7.2 Future Work

Performance optimization for practical genomic computation. The approach presented in Chap-
ter 6 was evaluated by real experiments using real genome data. Even though we have implemented a
prototype and carried out the experiments to demonstrate the effectiveness of the proposed approach,
the prototype framework was evaluated only for a specific genomic application, genomic sequence map-
ping. It would be an interesting research direction to generalize and implement this framework for all
genomic applications, making the framework become a completed healthcare systems. Furthermore, the
real experiments of this work also showed that the communication overhead is significant and degrades
the overall performance of the system, i.e., prolonging the total processing time. This drives the needs
for novel approaches to improve the performance of the system, taking into account the communica-
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tion overhead. Based on the observation that many large-scale and data-intensive applications usually
compose of multiple sub-tasks that may be executed in sequential or parallel, we can leverage on the
workflow execution approach [Rojas Balderrama et al., 2012] to exploit all the parallelism levels sup-
ported by the workflow engines such as data parallelism, task parallelism or pipelining. Data parallelism
allows the applications to process multiple data items in parallel, e.g., the genomic sequence mapping
can process multiple sequences at the same time on different computing nodes. Task parallel or pipelin-
ing represents the concurrent execution of two independent input data items by two different tasks that
are sequentially connected. For instance, in the genomic sequence mapping with the seed-and-extend
algorithm presented in Chapter 6, the seeding step of a sequence can be executed in parallel with the
extension step of another sequence. With the parallel execution, the communication overhead of a data
item can be amortized by the actual processing of other data items.

Towards practical secure computation with fully homomorphic encryption. On the research direc-
tion for protection of data privacy, this thesis focus on exploiting public clouds for improving the overall
performance of the systems with fully homomorphic encryption (FHE). The parallel computation on
multiple computing nodes significantly reduces the total processing time of the applications. However,
it still dominate the performance of the system when processing with plaintext data even though users
gain the data privacy protection. Thus, bringing the proposed approach to practical computation at the
production level is still far and needs a lot of research effort. Instead of using traditional computing units
provided by public clouds, users can seek to use advance computing system to accelerate the processing
speed. On one hand, users may use commodity high performance GPUs to build up high performance
FHE engine and the proposed framework will be making use of it to improve the performance. On the
other hand, the development of recent instruction set extension for Intel CPUs called SGX allows us to
perform privacy-preserving computations in an untrusted environment while minimizing the effort re-
quired for algorithm adoption. SGX encrypts the data in memory, protects the data integrity, and ensures
that the cloud provider/ OS cannot look into it. We intend to investigate the security properties of this
new hardware and propose security policies according to users requirement.

7.3 List of Publications from this Thesis

7.3.1 Published Papers

1. Kang, S., Aung, K. M. M., and Veeravalli, B. Towards Secure and Fast Mapping of Genomic
Sequences on Public Clouds. In Fourth International Workshop on Security in Cloud Computing
(SCC), Xian, China, May. 2016.

2. Kang, S., Veeravalli, B., and Aung, K. M. M. A Security-aware Data Placement Mechanism
for Big Data Cloud Storage Systems. In IEEE International Conference on Intelligent Data and
Security (IEEE IDS 2016), New York, USA, Apr. 2016.

3. Kang, S., Veeravalli, B., and Aung, K. M. M. Scheduling Multiple Di- visible Loads in a Multi-
cloud System. In 7th ACM/IEEE International Conference on Utility and Cloud Computing
(IEEE/ACM UCC 2014), pages 371-378, London, UK, Dec. 2014.
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