
WRITE-INTENSIVE DATA MANAGEMENT

IN LOG-STRUCTURED STORAGE

WANG SHENG

Bachelor of Engineering

Harbin Institute of Technology, China

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2016

DECLARATION

I hereby declare that this thesis is my original work and it has been written

by me in its entirety.

I have duly acknowledged all the sources of information which have been

used in the thesis.
This thesis has also not been submitted for any degree in any university

previously.

WANG Sheng 7 October 2016

ACKNOWLEDGMENT

The completion of this thesis has been the most significant challenge for me.

Without the support and guidance of the following people, the study would not

have been possible. It is now my great pleasure to thank them all.

First, I would like to express my most sincere gratitude to my supervisor

Prof. Beng Chin Ooi. I am so deeply grateful for his continuous support

through my entire PhD life, for his patience, wisdom and immense knowledge.

Without his contributions of time and ideas, I would not be able to complete

the tough PhD study. His guidance taught me not only how to solve a research

problem, but more importantly how to keep a research brain. I also thank him

for offering me the opportunities to visit research labs and collaborate with

excellent researchers.

I would like to thank all my co-authors during my PhD study for their

invaluable support to accomplish my work. A special thank to Prof. David

Maier for his initial idea and continuous guidance to my research topic, and

Prof. Divyakant Agrawal, Prof. Gang Chen and Dr. Hoang Tam Vo.

I would like to thank my thesis advisory committee, Prof. Stephane Bressan

and Prof. Chee Yong Chan, for their constructive comments for this thesis.

I thank all labmates and friends during my PhD journey: Jinyang Gao, Feng

Li, Qian Lin, Xuan Liu, Peng Lu, Meiyu Lu, Yanyan Shen, Wei Wang, Hao

Zhang, Meihui Zhang and many others. I must acknowledge my wife, Yifang

Yin, for her accompany on my hard times.

Finally, I would like to thank my parents for their love, support and en-

couragement throughout my entire life, without whom I would never caught so

many opportunities to pursue my dreamed life.

i

CONTENTS

Acknowledgment i

Abstract vi

1 Introduction 1

1.1 Data is Becoming Write-Intensive 1

1.2 Write-Intensive Log-Structured Storage 4

1.3 Write-Intensive Observational Data 5

1.4 Observational Data in Multi-Dimension 7

1.5 Objectives and Contributions 8

1.6 Overview and Roadmap . 9

2 Literature Review 11

2.1 Data Storage Systems . 11

2.1.1 Non-Overwrite Strategies 12

2.1.2 WAL + Data . 12

2.1.3 Log-Structured Systems 13

2.2 Data Indexing Methods . 14

2.2.1 Bulk Insertion . 14

2.2.2 Adaptive Indexing . 15

2.2.3 Log-Structured Merge Tree 15

2.2.4 Multi-Dimensional Access Methods 16

2.3 Observational Data Management 17

ii

CONTENTS

2.3.1 Streaming Warehouse . 17

2.3.2 Trajectory Indexing . 17

2.3.3 Time-Series Analysis . 18

2.4 Summary . 18

3 A Scalable Log-Structured Data Store 19

3.1 Introduction . 20

3.2 Design and Implementation . 23

3.2.1 Data Model . 23

3.2.2 Data Partitioning . 24

3.2.3 Architecture Overview 25

3.2.4 Log Repository . 27

3.2.5 In-Memory Multiversion Index 30

3.2.6 Tablet Serving . 32

3.2.7 Transaction Management 37

3.2.8 Failures and Recovery 41

3.2.9 Discussion . 42

3.3 Performance Evaluation . 43

3.3.1 Experimental Setup . 43

3.3.2 Micro-Benchmarks . 44

3.3.3 YCSB Benchmark . 47

3.3.4 TPC-W Benchmark . 48

3.3.5 Checkpoint and Recovery 49

3.3.6 Comparison with Log-Structured Systems 50

3.4 Summary . 52

4 Indexing Observational Data in Log Store 53

4.1 Introduction . 54

4.2 Preliminaries . 56

4.2.1 Scientific Data Analysis 56

4.2.2 LogBase . 58

4.3 Storing Observational Data . 59

4.3.1 Logical View . 59

4.3.2 Physical View . 60

4.3.3 Observational Data Locality 61

4.4 Indexing Observational Data . 61

iii

CONTENTS

4.4.1 The CR-index Structure 62

4.4.2 Index Optimization . 65

4.4.3 Dealing with Disordered Records 69

4.4.4 Evaluating Range Queries 70

4.4.5 Analysis of Index Behavior 70

4.4.6 Multi-Attribute Queries 73

4.5 Experimental Results . 74

4.5.1 Data Sets . 75

4.5.2 Experimental Setup . 76

4.5.3 Write Performance . 76

4.5.4 Query Performance . 79

4.5.5 Influencing Factors . 81

4.5.6 Multi-Attribute Queries 83

4.6 Summary . 84

5 Multi-Dimensional Observational Data in Log Store 85

5.1 Introduction . 86

5.2 Preliminaries . 88

5.2.1 Observational Data . 89

5.2.2 Problem Description . 89

5.2.3 Basic Design of SICC Indexes 90

5.3 Index Framework . 91

5.4 Bounding Segment . 92

5.4.1 Continuity among Observations 93

5.4.2 Bounding Segment Format 93

5.4.3 Computing Bounding Segments 94

5.4.4 Matching against a Query 97

5.4.5 Calculating Segment Volume 97

5.5 Indexing and Refining . 98

5.5.1 Index Construction . 98

5.5.2 Index Refinement . 103

5.6 Experimental Evaluation . 108

5.6.1 Data Sets . 108

5.6.2 Methods and Implementations 109

5.6.3 Experimental Setup . 110

iv

CONTENTS

5.6.4 Write Overhead . 111

5.6.5 Query Efficiency . 114

5.6.6 Exploratory Study . 116

5.7 Summary . 118

6 Conclusion and Future Work 120

6.1 Conclusion . 120

6.2 Future Work . 123

Bibliography 124

v

ABSTRACT

Due to the rapid development of information technologies, more and more data

are generated every day. Real-world workloads are becoming write-intensive

and large-scale. On one hand, world-wide applications have large user bases

acting simultaneously. On the other hand, large and cheap storage drives allow

us to capture high-volume data, e.g., user activity logs and sensor readings. This

tend poses new challenges to data management solutions, where databases are

required to provide high throughput for write operations while preserving read

performance.

In this thesis, we work towards designing solutions for managing write-

intensive workloads with the adoption of log-structured techniques. More specif-

ically, we first propose a distributed log-structured storage, providing high

write-throughput for key-value operations. It removes the write bottleneck by

unifying data and log repositories, and supports fast failure recovery. Second,

we design a novel indexing method on top of the log-storage to support efficient

range queries. This method works well for observational data, which is a com-

mon and important type of write-intensive source. It utilizes intrinsic clustering

property in raw data source, and reduces index structure size by orders of mag-

nitude. Lastly, we provide an extended solution for indexing multi-dimensional

observational data. It overcomes the data sparsity in multi-dimensional spaces,

and minimizes space “over-coverage” introduced by conventional spatial index-

ing methods. We evaluate our proposed approaches via extensive experiments

using real and benchmark workloads, and observe that though our approaches

are optimized for write throughput, they still preserve good read efficiency.

vi

LIST OF FIGURES

1.1 Size of total data in entire digital universe studied by IDC [45]. 2

1.2 Falling costs for storing data studied by IDC [45]. 3

1.3 Value-continuity in estuary salinity status, collected by SATURN-

01 [1]. 7

1.4 Over-coverage caused by bounding objects. 8

1.5 System overview. 9

3.1 System architecture. 26

3.2 Multiversion index over the log repository. 30

3.3 Tablet serving of LogBase (left) vs. HBase (right). 32

3.4 Log compaction. 36

3.5 Multiversion serialization graph for write skew. 39

3.6 WAL+Data vs. Log-only. 43

3.7 Write performance. 45

3.8 Random access (without cache). 45

3.9 Random access (with cache). 45

3.10 Sequential scan. 46

3.11 Range scan. 46

3.12 Data loading time. 47

3.13 Mixed throughput. 47

3.14 Update latency. 47

3.15 Read latency. 47

3.16 Transaction latency. 48

vii

LIST OF FIGURES

3.17 Transaction throughput. 48

3.18 Checkpoint cost. 49

3.19 Recovery time. 49

3.20 Sequential write. 51

3.21 Random access. 51

3.22 Sequential scan. 51

3.23 Throughput. 51

4.1 CMOP SATURN-01 salinity trend. 58

4.2 Schema logical view. 59

4.3 Schema physical view. 60

4.4 The CR-index structure. 62

4.5 Abstraction of continuous data in blocks: original data on the

left and block representation on the right. 63

4.6 Cases of Delta Intervals. 66

4.7 Multiple temperatures in a beehive. 68

4.8 Holes in continuous ranges. 68

4.9 Inevitable holes (dashed-rectangles) in 2-dimensional continuous

data sources. 74

4.10 Overall system load time. 77

4.11 Index maintenance cost. 77

4.12 CR-index variants maintenance cost. 78

4.13 Index space consumption. 78

4.14 Overall system query response time. 79

4.15 Index lookup phase cost. 80

4.16 CR-index variants index lookup cost. 80

4.17 Data access phase cost. 81

4.18 CR-index performance affected by different factors. 82

4.19 Multi-dimensional queries response time: (a) 2-dimensional range;

(b) 1-dimensional range for a specific key. 83

5.1 False positives from data sparsity. 87

5.2 SICC index framework. 91

5.3 Observations from an estuary that contain salinity and oxygen

saturation: (a) distribution within a time period; (b) distribution

over time. 93

viii

LIST OF FIGURES

5.4 2d bounding segment visualization. 94

5.5 Different point projections onto the segment axis in 2-dimensions. 96

5.6 Indexing block headers with OR-trees of height 2. 102

5.7 Minor refinement and major refinement. 107

5.8 Overall system-load time. 111

5.9 Index-maintenance cost. (CMOP) 112

5.10 Decomposed SICC maintenance cost for different segmentation

algorithms and header indexes. (CMOP) 113

5.11 Average query-response time. 114

5.12 Decomposed query cost. (CMOP) 115

5.13 Decomposed SICC query cost for different segmentation algo-

rithms and header indexes. (CMOP) 116

5.14 Query selectivity. (CMOP) . 117

5.15 Index performance with increasing number of dimensions. (Syn-

thetic Data) . 118

ix

LIST OF TABLES

4.1 Result Sequences in Datasets 81

5.1 Average number of records in a block with different µ. 110

5.2 Disk Consumption for indexes. 113

5.3 Volume and Access-Cost in the CMOP dataset (with segments

produced by fixed-length segmentation as the baseline) 117

x

CHAPTER 1

INTRODUCTION

In this chapter, we first briefly present the write-intensive trends in our daily ap-

plications and services, and discuss consequent challenges faced by data storage

systems. We overview our solution – a distributed log-structured storage sys-

tem – that meets requirements from write-intensive applications. After that, we

discuss the challenges for observational data which has much higher write-rate

than other sources and is extremely hard to query at low cost. We introduce

our novel index approach on top of log-structured storage, and extend it as a

multi-dimensional access method. Finally, we summarize the contributions of

this thesis and outline the organization.

1.1 Data is Becoming Write-Intensive

Nowadays, data is of great importance to the whole human civilization. Activ-

ities in banks, companies and laboratories all involve processing and analyzing

of data. Data management systems are therefore designed to efficiently store

and query data. Relational database management systems (RDBMS) are most

widely used in both industry and academia, and have been evolved over forty

years. The idea of relational data model was first proposed in E.F.Codd’s 1970

paper [31], and its advent significantly facilitated data modeling and application

programming.

However, due to the rapid development of information technologies, data

1

CHAPTER 1. INTRODUCTION

in real-world applications are becoming write-intensive and large-scale. There

are several facts inducing this situation. First, applications and services need

to generate and collect high-frequency data, such as web activities and mobile

signals. Many world-wide applications have huge user bases, in which millions

of users act simultaneously, producing massive reading and writing messages.

As reported by Facebook in August 2012 1, with more than 950 million users:

300 million photos were uploaded per day; 105 terabytes of data were scanned in

Facebook’s clusters every 30 minutes; and more than 500 terabytes of new data

were ingested into their databases every day. Such high-rate data production

is unimaginable previously but can be observed everywhere now. As for 2014,

in every minute we could see 2:

• Facebook users share nearly 2.5 million pieces of content.

• Twitter users tweet nearly 300,000 times.

• Instagram users post nearly 220,000 new photos.

• YouTube users upload 72 hours of new video content.

• Email users send over 200 million messages.

• Amazon generates over $80,000 in online sales.

As shown in Figure 1.1, this data production rate will keep accelerating, and is

estimated to lead to 50-fold growth of the entire digital universe from 2010 to

2020 [45].

2010 20202012 2014 2016 2018

10,000

20,000

30,000

40,000

Data Volume

in Exabyte

Figure 1.1: Size of total data in entire digital universe studied by IDC [45].

1http://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/
2http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/

2

CHAPTER 1. INTRODUCTION

Second, data generation and access patterns have been shifting towards

write-intensive. As has been observed at Yahoo [78], the ratio of write oper-

ations in their applications was just 10% ∼ 20% in 2010, but this figure had

rapidly reached 50% in 2012. This shift is driven by different types of appli-

cations. For example, social applications, e.g., Facebook and Twitter, accept

many updates from different users and each user later operate a single read

operation to retrieve all new posts. Besides, analytic applications ingest event

logs (such as user clicks and mobile device sensor readings), and later mine the

data by issuing long scans, or targeted range queries.

Third, larger and cheaper storage drives allow service providers to capture

high-volume data, such as detailed user activity logs and high-resolution sensor

device readings, without additional budget concern. For example, in 2015,

Seagate Archive HDD with 8 terabytes capacity was sold at lower than $300 3,

which was just four cents per gigabyte. As shown in Figure 1.2, the composite

cost for storing a gigabyte of data dropped from $4 in 2010 to lower than $1 in

2015.

2010 20202012 2014 2016 2018

$1.00

$2.00

$3.00

$4.00

Storage Cost

per Gigabyte

Figure 1.2: Falling costs for storing data studied by IDC [45].

These trends pose new challenges to modern data management systems.

When facing large write-intensive workloads, the most important aspect is the

capability to persist all inputs. Without strong ingestion power, we have to

drop part of data or block user requests, which will interrupt the service of

applications. This makes traditional RDBMs not an elegant solution, as large-

volume data sources are not initially targeted. With complex built-in query

processing engines, they are cumbersome to handle high-rate data ingestion,

3http://www.seagate.com/sg/en/products/enterprise-servers-storage/nearline-
storage/archive-hdd/

3

CHAPTER 1. INTRODUCTION

incurring prohibitive cost. This situation encourages the advent of NoSQL data

stores, whose design principle is to easily scale to thousands of servers. They

trade complex query functionality and data consistency for better scalability

and availability. Most of them are designed and used by commercial com-

panies, such as Google’s BigTable [27], Facebook’s Cassandra [61], Amazon’s

Dynamo [39] and MongoDB [8]. Though NoSQL data stores have been proved

to be superior for high-volume data, the write-intensive trend has not been

fully addressed by them. Typically, NoSQL data stores handle high-frequent

write operations by distributing workloads among a sufficient number of servers.

However, more servers handling a single workload introduces more coordination

and communication overhead. Besides, it also means more financial cost and

energy consumption. To fully address the write-intensive issue, we might need

to think from a different angle: further improving the write-capacity of each

individual server. It should be much more valuable if the same workload can

be handled by a smaller cluster – hence lower budget and less energy.

In this thesis, we address the problem of designing a storage system with

high per-node write-throughput. Though our main focus is write-throughput,

there are many other issues to consider, i.e., dynamic scalability, efficient data

access and fast failure recovery, before we could have a practical system.

1.2 Write-Intensive Log-Structured Storage

Write-ahead-logging (WAL) [66] is widely adopted in both RDMBS and NoSQL

systems. In this approach, in order to improve system performance while en-

suring data durability, updates are first sequentially recorded into an external

“stable storage” as a log, while application data are buffered in memory, which

will be written back to their own disk-locations in the future. This method

facilitates that similar data can be clustered physically on disk, optimizing for

subsequent read requests. Although it can defer writing of disk data, sooner or

later all data have to be persisted eventually, which would result in unexpected

performance. As discussed in Michael Stonebraker’s blog [82], logging is one

of the biggest bottlenecks with respect to storage performance: everything is

written twice - once to the database and once to the log. The separation of log

and application data nearly doubles I/O operations, which adversely affects the

system severely in write-intensive applications, limiting the write throughput

4

CHAPTER 1. INTRODUCTION

and recovery efficiency.

To remove this bottleneck, log-structured approaches can be adopted. New

arrival application data are directly organized in an append-only manner, like

writing into a log. Later on, out-of-date logs are cleaned and compacted to save

space. This type of approaches has been widely used in many related areas, such

as file systems [79] and memory management systems [77]. From a database

systems’ point of view, log-structured approaches have two direct advantages.

First, data redundancy can be completely eliminated. Application data and

logging data can be managed in a unified repository, where a single copy of

data serves both data access and failure recovery. Second, amortized I/O cost

of write operations can be further reduced. Since both initial persisting and

subsequent compaction all access disk sequentially, the number of expensive

disk seek operations is minimized, compared to other approaches where each

page write needs a disk seek.

Following this idea, we first propose a log-structured data store, named

LogBase, which adopts log-only storage for removing the write bottleneck and

supporting fast system recovery. It can be dynamically deployed on commodity

clusters to take advantage of elastic scaling property of cloud environments.

1.3 Write-Intensive Observational Data

Among the growing write-intensive trends in all types of data source, there

exists a major category of data source that is extremely write-intensive in na-

ture. That is observational data, which is usually generated by sensing devices,

recording the status of objects and the environments. Such data collection is

now ubiquitous in many fields of scientific research and analytics.

There are mainly three facts contribute to the write-intensive nature of ob-

servational data. First, sensor devices appear for measuring a broader range

of entities. Humankind has a rapidly growing ability to digitize the universe.

The entities whose state can be continuously captured span from microscopic to

macroscopic: molecules, cells, electronic devices, wild life, automobiles, dams,

oceans and even distant stars. Second, sensors’ capabilities keep improving in

both sampling frequency and resolution. For example, a single sensor can cap-

ture the velocity of a moving object in units of µ/s at a frequency of 2000Hz.

Hence individual sensors can generate huge amounts of data during a short

5

CHAPTER 1. INTRODUCTION

period. Third, decreasing device prices and increasing power efficiency facil-

itate the deployment of large sensor networks. They may consist of thou-

sands of sensors, producing simultaneous high-frequency observations. All these

trends demand data storage with high write-throughput, to capture observa-

tions in a timely manner. Hence, log-structured storage, e.g., LogBase, should

be amenable to handle such write-intensive ingestion.

Though log storage satisfies high ingestion rate, value-based data access

is still a problem. Unlike most other write-intensive applications, where only

key-based data lookup is involved, analysis on observational data usually re-

quires filtering on attribute values. In order to support such complex queries,

corresponding attributes should be externally indexed by secondary indexes.

However, maintaining multiple index structures, e.g., B+-trees, is too costly

for high-frequency data sources, as index construction may take a few hours

before they are ready to serve queries. Besides, too many system resources

consumed by index construction inversely degrades the throughput for accept-

ing new data. Consequently, low-cost construction is a critical requirement for

indexes managing observational data.

To reduce index maintenance cost, various work has been proposed in the lit-

erature. Examples include bulk-insertion techniques [28, 30, 12] that update the

indexes in a batch manner, which lowers the per-item cost; and log-structured-

merge trees [71, 78, 14] that incur only sequential I/Os for updates; besides,

database cracking [55, 48, 56] gradually constructs indexes during user queries,

which reduces the downtime before the indexed data can be queried. Though

all these methods address index-construction efficiency, they are still maintain-

ing a large number of index entries and re-organizing them frequently, which

can not scale up well when observational data rapidly grow.

We study the characteristics of observational data, and its natural com-

patibility with log-structured storage. We observe several facts from this data

source, and the most interesting one is its value-continuity, i.e., observations

from the same source tend to have similar readings during a short period, as

can be seen in Figure 1.3. This inspires us a new idea called intrinsic clus-

tering : instead of manually re-organizing all indexed data at record-level, we

can somehow rely on local clustering patterns in original data source to provide

reasonable access efficiency. With low-cost sequential scan, we can expect to

retrieve multiple query results from a few consecutive disk pages.

6

CHAPTER 1. INTRODUCTION

Figure 1.3: Value-continuity in estuary salinity status, collected by SATURN-
01 [1].

Based on this idea, we propose a scheme for storing observational data in log-

store while preserving data locality. We then design a novel indexing method,

called CR-index, which is a lightweight structure that is fast to construct and

often small enough to reside in RAM. In particular, it assigns one index entry

for a collection of records and when a query arrives, it relies on partial scans

to access potential results. As a consequence, it provides fast queries without

compromising write throughput.

1.4 Observational Data in Multi-Dimension

In practice, an observational data source usually generates observations with

multiple attributes (i.e., dimensions). For example, observations from underwa-

ter sensors may contain attributes like water temperature, salinity, oxygen satu-

ration and pH. Sometimes, an analysis task may issue queries with several filter

conditions on different attributes. Instead of accessing multiple CR-indexes on

corresponding attributes and joining partial results in an additional phase, it

is much more effective to index all these attributes in a single structure and to

answer multi-dimensional range queries in one step. This demand drives us to

extend CR-index as a multi-dimensional structure.

However, extending one-dimensional structure to multi-dimension is not

trivial. For example, R-tree is an anatomic extension to B+-tree, but they

have different re-balance strategies and operation complexity. Similarly, it is

also challenging to exploit intrinsic clustering property, as used in CR-index,

in multi-dimensional cases. First, data sparsity in multi-dimensional spaces

hurts query efficiency. Bounding objects such as minimal bounding rectan-

gles/boxes/spheres (MBR/MBB/MBS) are widely used in spatial access meth-

7

CHAPTER 1. INTRODUCTION

ods [50, 59] to represent a collection of data items. However, such representa-

tions will introduce “over-coverage”, i.e., portions of indexed spaces that contain

no actual points as shown in Figure 1.4, which causes accessing false-positive

entries. This issue becomes even more severe as the dimensionality increases.

Second, the write-intensive aspect limits resources and opportunities to derive

bounding objects with the least over-coverage. The derivation of index entries

should be extremely fast so that it does not affect the throughput for updates.

MBR

MBS

Observations

Query Range

Figure 1.4: Over-coverage caused by bounding objects.

We address challenges above and propose a multi-dimensional indexing

approach, called SICC, which is a general extension of CR-index for multi-

dimension. Instead of representing collections of points using Minimal Bound-

ing Boxes, we model sets of successive points as hyper-segments, which drasti-

cally reduces over-coverage. To ensure real-time access, we introduce algorithms

for generating segments and data structures for building the index. Its fast

construction guarantees extremely high throughput for data ingestion. We also

design an adaptive refinement mechanism that can improve query performance

over time in the background, based on query execution history.

1.5 Objectives and Contributions

In this thesis, we work towards designing solutions to provide superior storage

throughput for write-intensive applications, while preserving excellent data ac-

cess performance especially for observational data. In particular, we summarize

main contributions as follows:

8

CHAPTER 1. INTRODUCTION

• We design a distributed log-structured database system, called LogBase,

which can be dynamically deployed in a cluster. It provides fast recovery

capability while offering highly sustained throughput for write-intensive

applications.

• We propose a light-weight indexing method, called CR-index, on top

of LogBase, which indexes observational data without affecting system

throughput. It is fast to construct, small to reside in RAM, and performs

quite well for range queries.

• We extend the idea of CR-index and propose a multi-dimensional index-

ing framework, called SICC, which preserves low construction cost. It

optimizes its data representation towards observational data, and con-

quers the data sparsity in multi-dimension.

Though our main focus for write-intensive applications is write throughput,

we evaluate that at the same time our solutions also provide similar data access

efficiency compared to read-optimized approaches.

1.6 Overview and Roadmap

LogBase
Chapter 3

CR-Index
Chapter 4

Key-Based Read/Write

•Web Applications

• Finance Transactions

Value-Based Query

• Sensor Observations

• Scientific Analysis

SICC
Chapter 5

Multi-dimensionSingle-dimension

Figure 1.5: System overview.

The LogBase system targets applications under write-intensive environ-

ments, supporting various data access patterns, such as key-based access (e.g.,

web applications) and value-based access (e.g., analytic tasks). Figure 1.5 shows

9

CHAPTER 1. INTRODUCTION

the system overview from applications’ perspective, displaying how require-

ments are satisfied by different components.

The rest of the thesis proceeds as follows:

Chapter 2 discusses the literature review.

Chapter 3 presents the design of LogBase, which supports high throughput

for write-intensive applications.

Chapter 4 presents the design of CR-index, which improves query efficiency

for observational data while not affecting LogBase’s throughput.

Chapter 5 presents the design of SICC, which is a general multi-dimensional

extension for CR-index.

Chapter 6 concludes the thesis and discusses possible future work.

10

CHAPTER 2

LITERATURE REVIEW

There have been a lot of research work in data management domain that im-

prove write performance. In this chapter, we review work that are closely re-

lated to this thesis. From data storage perspective, we discuss current solutions

to handle data updates in conventional storage; from data indexing perspective,

we introduce existing techniques for reducing index maintenance overhead, for

both single-key indexing and multi-dimentional indexing. We also analyze the

limitation of prior methods when dealing with write-intensive applications. We

also presents other related work from observational data management perspec-

tive.

2.1 Data Storage Systems

In traditional data storage systems, an update operation is mainly processed

by fetching the page containing original data and then propagating the update

back to this page, which is called in-place update. To ensure durability, even

a single byte is changed on a page, the whole page has to be written back to

external disk. Besides, seeking to the specific page position for each update is

quite costly. Hence, a number of non-overwrite strategies were proposed.

11

CHAPTER 2. LITERATURE REVIEW

2.1.1 Non-Overwrite Strategies

Early database systems such as System R [49] use shadow paging strategy to

avoid the cost of in-place updates. In this approach, the database is treated

as a collection of pages and accessed through a page table, which maps page

ids into disk addresses. When a transaction updates a data page, it makes a

copy, i.e., a shadow, of that page and operates on that. When the transaction

commits, it updates the page table by mapping the page ids into the new

addresses. Although this approach does not require logging for data durability,

the overheads of page copying and updating are high for each transaction, and

adversely affect the overall system performance.

Another no-overwrite strategy for updating records is employed in POST-

GRES [83, 84]. In particular, each data page in POSTGRES maintains an

anchor table which is used to retrieve records stored in that page. When a

record is inserted for the first time, space is allocated for the record. For data

modification, instead of performing updating in-place in the page, a delta record

is added to store the changes from the previous version of the record. When

reading a record the system has to traverse and process the whole chain from

the first version of the record. POSTGRES is initially optimized for small

records, and delta records should be on the same page with the initial record.

Although POSTGRES introduces many novel ideas, the performance is lower

than expected due to the way records are stored, which requires read operations

to reconstruct records from the delta chains. Further, POSTGRES uses a force

buffer policy, i.e., all pages modified by a transaction are written into disk at

commit. Such high cost of write operations is inadequate for write-intensive

applications.

2.1.2 WAL + Data

ARIES [66] is an algorithm designed for database recovery and enables no-force,

steal buffer management, and thus improves system performance, as updates

to data can be buffered in memory without incurring “update loss” issues. The

main principle of ARIES is write-ahead-logging (WAL), i.e., any change to a

record is first stored in the log which must be written to “stable storage” before

being reflected into the data structure.

WAL is a common approach in most storage systems ranging from tradi-

12

CHAPTER 2. LITERATURE REVIEW

tional DBMSes, including open source databases like MySQL and commercial

databases like IBM DB2, to the emerging cloud storage systems, a.k.a dis-

tributed key-value stores such as BigTable [27], HBase [4] and Cassandra [61].

One of the main reasons why this approach is popular is that while the log can-

not be re-ordered, the data can be sorted or clustered in any order to exploit

data locality for better I/O performance (e.g., clustering access via clustered

indexes). However, this feature is not necessary for all applications. In addi-

tion, the separation of log and application data in this approach might incur

potential overheads that would reduce the write throughput and increase the

time for system recovery.

In particular, although this design defers writing the application data to

disks in order to guarantee system response time, sooner or later all the data

buffered in memory have to be reflected into the physical storage, which could

result in write bottlenecks. Therefore, the system might not be able to provide

high write throughput for handling a large amount of incoming data in write-

intensive applications. In addition, when recovering from machine failures the

system needs to replay relevant log records and update the corresponding appli-

cation data before it is ready for serving new user requests. As a consequence,

the time to bring the failed machine back to usable state is delayed.

2.1.3 Log-Structured Systems

Log-structured file systems (LFS) pioneered by Ousterhout and Rosenblum [76]

for write-intensive environments have been well studied in the OS community.

More recently, BlueSky [79], a network file system that adopts log-structured

design and stores data persistently in a cloud storage provider, has been pro-

posed. However, to import similar idea into data storage systems, there are

many challenges. That is, we need to provide database abstraction instead of

a file-system abstraction on top of the segmented log; we need to support fine-

grained access to data records instead of data blocks as in LFS; and we need

to take care of the range query performance after frequent updates.

Contemporary log-structured systems for database applications include Berke-

ley DB [70] and PrimeBase [10] (an open source log-structured storage engine

for MySQL). Both systems are developed for single machine environment and

use disk-resident indexes, which restricts system scalability and performance.

13

CHAPTER 2. LITERATURE REVIEW

Storing data in a sequential log is used as a way to maintain historical versions

of data in temporal databases [64]. The log-only principle is also employed

in Vagabond [69], a temporal object database system. These log-structured

temporal database systems are also designed for centralized environments.

Recent research systems for scalable log-structured data management in-

clude Hyder [22] and RAMCloud [72]. Hyder takes advantage of new advent of

modern hardware such as solid-state drives and high-speed network for shared-

flash environments. Similarly, RAMCloud is a DRAM-based storage system

that requires servers with large memory and high-speed network to meet la-

tency goals. It implements a unified log-structured mechanism [77] both for

active data in memory and backup data on disk. OctopusDB [40] is another

research proposal that uses the log as its primary data repository. Embracing

the idea of “one size fits all”. OctopusDB creates various storage views over

the log to serve different applications. Developing an “one size fits all” system,

though interesting, might reduce the needed performance for all applications.

Unfortunately, none of existing designs considers a shared-nothing disk-based

system that is inherently suitable for large-scale commodity clusters.

2.2 Data Indexing Methods

Index structures play an important role in supporting searches. In order to

provide good performance for complex queries, multiple secondary indexes are

required. To guarantee consistency, those indexes are updated whenever the

data changes. However, conventional index methods such as B+-tree [32] entail

expensive maintenance overhead, due to frequent and expensive node splitting.

Such overhead is a critical performance bottleneck, especially for write-intensive

applications. Therefore, a number of methods are proposed to reduce index

maintenance cost.

2.2.1 Bulk Insertion

One simple yet effective solution is bulk-insertion techniques [47, 12]. These

methods buffer and group new insertions, and eventually update indexes in

batch manner. Hence, a bunch of writes on the same page can be done via a

single I/O which reduces per-item cost. To ensure correctness, query operations

14

CHAPTER 2. LITERATURE REVIEW

need to search the buffer structure in addition to original indexes. As this idea

is generally applicable for a wide range of indexes, those structures with high

update cost might benefit much from bulk insertions. For example, generalized

bulk-insertion strategies have been proposed for R-trees [28, 30]. However, such

approaches only alleviate the influence of in-place update, rather than replace

in-place to completely eliminate potential bottleneck.

2.2.2 Adaptive Indexing

Constructing a complete index structure for huge incoming data introduces

hours or days of downtime before those data can be queried. Recently, adaptive

indexing methods, such as Adaptive Merge Trees [48] and Cracker Indexes [55,

52], have been proposed to gradually construct indexes during user queries. At

first, there are no indexes on top of the raw data, and queries are executed

by scanning the whole data. During those executions, adaptive indexes are

automatically constructed by refining data physical representation in response

to incoming queries. Hence, answering a query can also improve subsequent

queries at the same time. Given enough queries that touch all data items,

data representation of an adaptive index can eventually converge to a pre-built

index, such as a B+-tree. The subsequent updates will break the clustering

property built by existing indexes. Hence, the indexes are dropped and rebuilt

periodically. Adaptive indexes reduce the downtime before raw data can be

queried. However, they do not effectively reduce total index construction cost,

(and may incur more overhead sometimes). Therefore, they are mainly used in

read-heavy data warehouses.

2.2.3 Log-Structured Merge Tree

Following no-overwrite strategies introduced by early database systems, log

structured merge tree (LSM-tree [71]), which is a hierarchy of indexes spanning

across memory and disk, is proposed for maintaining real-time indexes at low

I/O cost. All incoming updates are maintained in an in-memory structure.

When the in-memory buffer is full, all updates are sorted and dumped into the

disk. Instead of directly applying updates to existing on-disk trees, these up-

dates are stored as an independent tree sub-component. Hence, random writes

are replaced by sequential I/Os. However, to answer a query, all those on-disk

15

CHAPTER 2. LITERATURE REVIEW

sub-components are forced to be accessed. Periodically, exponential-sized sub-

components are merged to bound the read latency. The log-structured history

data access method (LHAM [67]) is an adaptation of LSM-tree for hierarchical

storage systems that stores a large number of components on archival media.

The bLSM-tree [78], an optimization of LSM-tree that guarantees excellent

read performance against read-optimized B+-trees in common workloads, has

been proposed. It uses Bloom filters [23] to prune unnecessary sub-component

lookups. Besides, it applies spring and gear scheduler and snow-shoveling merg-

ing to bound write latency without impacting throughput. Recently, LSM-

trie [92] adopts LSM strategy to trie-trees to further reduce write amplification,

with the expense of range query capability.

It is also noteworthy that LSM-trees are designed to be compatible with

external write ahead logs. Therefore, although some cloud storage systems,

such as HBase [4] and Cassandra [61], have adopted LSM-trees for maintaining

their data, they have not totally removed potential write bottlenecks since the

separation of log and application data still exists in these systems.

2.2.4 Multi-Dimensional Access Methods

In the area of multi-dimensional indexes, a large number of multi-dimensional

access methods have been proposed over the past three decades. These methods

can be broadly classified into two classes, point access methods (PAMs) and

spatial access methods (SAMs), and are examined in several surveys [44, 13, 65].

In PAMs, the whole space is divided into subspaces, either at a single level, e.g.,

grid files [68], or hierarchically, e.g., kD-trees [18] and quadtrees [42]. Recently,

a space-efficient PH-tree [93] was proposed based on binary PATRICIA-tries

and hypercubes. In contrast, SAMs are designed for objects with geometric

extent. The most well known SAM index is the R-tree [17, 50]. Variants

of the R-tree include the PR-tree [15], which is asymptotically optimal, and

the X-tree [19] which avoids splits that may cause severe overlaps. In SAMs,

bounding objects, e.g., minimum bounding rectangles/boxes/spheres, are used

to approximate the extent of objects and bound the space of subtrees. Such

representations may incur over-coverage, which affects query efficiency. An

earlier work [58] uses polygons to reduce over-coverage. However, its costly

construction is not suitable for the write-intensive scenarios.

16

CHAPTER 2. LITERATURE REVIEW

2.3 Observational Data Management

Powerful sensing devices make observational data write-intensive, demanding

high write-throughput storage and efficient query processing. In this section,

we review the existing solutions for managing observational data in large scale.

We also discuss other research fields that entail similar data characters but with

different focus, such as trajectory indexing and time-series analysis.

2.3.1 Streaming Warehouse

Data and streaming warehouses are a major group of storage systems, some

of which collect observational data. DataDepot [46] is a tool for building and

managing streaming warehouses in an RDBMS, providing fast data loading,

automated view maintenance and data consistency control. SDAF [29], a data

warehouse framework for sensor data, supports spatial queries over objects

relating to location and time. A cloud-based sensor data warehouse method [60]

was proposed on top of the distributed NoSQL database HBase [4]. It provides

a simple key-value data model to manage sensor data in the column-oriented

paradigm.

NoSQL systems [4, 27, 61] can be used as large-scale observational data

storage. One advantage of NoSQL systems is their high write throughput.

In contrast to RDBMS, the data are simply represented as a set of key-value

pairs. Since the data models and schema are more flexible and impose fewer

constraints, the writing cost is substantially reduced. However, a drawback of

such systems is the simple key-based interface, which does not support range

retrieval on values.

2.3.2 Trajectory Indexing

Trajectory indexing over the sequences of positions of moving objects is an

area related to observational data management. A trajectory can be viewed as

continuous observations in exactly two or three dimensions. Trajectory indexes

usually store positions from multiple trajectories in a single structure while still

preserving trajectory-level properties [75]. They are typically tailored for data

in 2 or 3-D spaces with special assumptions [74], e.g., constrained movement

and in-network movement. This case is different from observational data where

17

CHAPTER 2. LITERATURE REVIEW

we have a single long-life entity with many dimensions or attributes. In general,

trajectory indexing focuses on the time dimension, i.e., find all trajectories at

a time-point, while observations focuses on space dimensions, i.e., find all sub-

sequences within a value-range.

2.3.3 Time-Series Analysis

Data-series and time-series analyses [86, 94] index multiple points, i.e., points

in a series, in one index entry similar to the methods proposed in this thesis,

but they are fundamentally different. In time-series analysis, each series is

considered as a whole, thus indexing points together is to facilitate similarity

or k-NN search. However, for observational data, indexing points together

is to reduce maintenance cost, and individual observations are still queried

independently.

2.4 Summary

In this chapter, we have reviewed related work for write-intensive data man-

agement. Log-structured methods are the main direction of effort in literature,

which replace costly in-place updates with sequential writes to minimize disk-

seek operations. Most commercial large-scale storage systems [4, 27, 61] adopt

log-structured methods to satisfy the demand of huge-volume data ingestion.

However, the separation of data and WAL is still the common setting, which

limits the overall system throughput under write-intensive scenarios. To reduce

expensive index maintenance overhead, log-structured merge trees [71, 78, 92]

are the most feasible solutions for write-intensive applications. However, all

existing methods are processing data at the record-level, which is hard to op-

timize when total records are in large scale. Another interesting direction is to

exploit partial order and local clustering in unclustered data [81].

18

CHAPTER 3

A SCALABLE LOG-STRUCTURED

DATA STORE

Numerous applications such as financial transactions (e.g., stock trading) are

write-intensive in nature. The shift from reads to writes in web applications

has also been accelerating in recent years. Write-ahead-logging is a common

approach for providing recovery capability while improving performance in most

storage systems. However, the separation of log and application data incurs

write overheads observed in write-intensive environments and hence adversely

affects the write throughput and recovery time in the system.

In this chapter, we introduce LogBase – a scalable log-structured database

system that adopts log-only storage for removing the write bottleneck and sup-

porting fast system recovery. It is designed to be dynamically deployed on

commodity clusters to take advantage of elastic scaling property of cloud envi-

ronments. LogBase provides in-memory multiversion indexes for supporting ef-

ficient access to data maintained in the log. LogBase also supports transactions

that bundle read and write operations spanning across multiple records. We im-

plemented the proposed system and compared it with HBase and a disk-based

log-structured record-oriented system modeled after RAMCloud. The experi-

mental results show that LogBase is able to provide sustained write throughput,

efficient data access out of the cache, and effective system recovery.

19

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

3.1 Introduction

There are several applications that motivate the design and implementation of

LogBase, such as logging user activity (e.g., visit click or ad click from high

volume web sites) and financial transactions (e.g., stock trading). The desider-

ata for the backend storage systems used in such write-intensive applications

include:

• High write throughput. In these applications, a large number of events

occur in a short period of time and need to be durably stored into the

backend storage quickliest possible so that the system can handle a high

rate of incoming data.

• Dynamic scalability. It is desirable that the storage systems are able to

support dynamic scalability for the increasing workload, i.e., the ability

to scale out and scale back on demand based on load characteristics.

• Efficient multiversion data access. The support of multiversion data

access is useful since in these applications users often perform analytical

queries on the historical data, e.g., finding the trend of stock trading or

users’ behaviors.

• Transactional semantics. In order to relieve application developers

from the burden of handling inconsistent data, it is necessary for the stor-

age system to support transactional semantics for bundled read and write

operations that possibly access multiple data items within the transaction

boundary.

• Fast recovery from machine failures. In large-scale systems, machine

failures are not uncommon, and therefore it is important that the system

is able to recover data and bring the machines back to usable state with

minimal delays.

Storage systems for photos, blogs, and social networking communications

in Web 2.0 applications also represent well-suited domains for LogBase. The

shift from reads to writes has been accelerating in recent years as observed at

Yahoo! [78]. Further, since such data are often written once, read often, and

rarely modified, it is desirable that the storage system is optimized for high

20

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

aggregate write throughput, low read response time, faut-tolerance and cost-

effectiveness, i.e., less expensive than previous designs in storage usage while

offering similar data recovery capability.

Previous designs for supporting data durability and improving system per-

formance, do not totally fit the aforementioned requirements. Copy-on-write

strategy used in System R [49] incurs much overhead of copying and updating

data pages, and therefore affects the write throughput. In POSTGRES [83, 84],

a delta record is added for each update, which would increase read latency since

records have to be reconstructed from the delta chains. In write-ahead-logging

(WAL) [66], in order to improve system performance while ensuring data dura-

bility, updates are first recorded into the log presumably stored in “stable stor-

age”, before being buffered into the memory, which can be flushed into data

structures on disks at later time. We refer to this strategy as WAL+Data ap-

proach. Although this approach can defer writing data to disks, all the data

have to be persisted into the physical storage eventually, which would result

in the write bottleneck observed in write-intensive applications. In addition,

the need to replay log records and update corresponding data structures when

recovering from machine failures before the system becomes ready for serving

new requests is another source of delay.

LogBase instead adopts log-only approach, in which the log serves as the

unique data repository in the system, in order to remove the write bottleneck.

The essence of the idea is that all write operations are appended at the end of

the log file without the need of being reflected, i.e., updated in-place, into any

data file. There are some immediate advantages from this simple design choice.

First, the number of disk I/Os will be reduced since the data only need to be

written once into the log file, instead of being written into both log and data files

like the WAL+Data approach. Second, all data will be written to disk, i.e., the

log file, with sequential I/Os, which are much less expensive than random I/Os

when performing in-place updates in data files. As a consequence, the cost of

write operations with log-only approach is reduced considerably, and therefore

LogBase can provide the much needed high write throughput for write-intensive

applications. Log-only approach also enables cost-effective storage usage since

the system does not need to store two copies of data in both log and data files.

Given the large application and data size, it is desirable that the system

can be dynamically deployed in a cluster environment so that it is capable of

21

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

adapting to changes in the workload while leveraging commodity hardware.

LogBase adopts an architecture similar to HBase [4] and BigTable [27] where

a machine in the system, referred to as tablet server, is responsible for some

tablets, i.e., partitions of a table. However, LogBase is different in that it

leverages the log as its unique data repository. Specifically, each tablet server

uses a single log instance to record the data of the tablets it maintains. LogBase

stores the log in an underlying distributed file system (DFS) that replicates

data blocks across nodes in the cluster to guarantee that the probability of

data loss is extremely unlikely, except catastrophic failures of the whole cluster.

Consequently, LogBase’s capability of recovering data from machine failures is

similar to traditional WAL+Data approach.

Since data, which are sequentially written into the log, are not well-clustered,

it is challenging to process read operations efficiently. To solve this problem,

tablet servers in LogBase build an index per tablet for retrieving the data from

the log. Each index entry is a < key, ptr > pair where key is the primary key

of the record and ptr is the offset that points to the location of that record

in the log. The index of each tablet can be maintained in memory since the

size of an index entry is much smaller than the record’s size. The in-memory

index is especially useful for handling long tail requests, i.e., queries that access

data not available in the cache, as it reduces I/O cost of reading index blocks.

The interference of reads and writes over the log is affordable since reads do

not occur frequently in write-intensive applications. As machines in commodity

environments are commonly not equipped with dedicated disks for logging pur-

pose, most scalable cloud storage systems such as HBase [4] also store both log

and application data in a shared DFS and hence observe similar interferences.

LogBase utilizes the log records to provide multiversion data access since

all data are written into the log together with their version number, which

is the commit timestamp of the transaction that writes the data. To facilitate

reads over multiversion data, the indexes are also multiversioned, i.e., the key of

index entries now is composed of two parts: the primary key of the record as the

prefix and the commit timestamp as the suffix. Furthermore, LogBase supports

the ability to bundle a collection of read and write operations spanning across

multiple records within transaction boundary, which is an important feature

that is missing from most of cloud storage systems [26].

In summary, the contributions of this chapter are as follows.

22

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

• We propose LogBase – a scalable log-structured database system that

can be dynamically deployed in a cluster. It provides similar recovery ca-

pability to traditional write-ahead-logging approach while offering highly

sustained throughput for write-intensive applications.

• We design a multiversion index strategy in LogBase to provide efficient

access to the multiversion data maintained in the log. The in-memory in-

dex can efficiently support long tail requests that access data not available

in the cache.

• We further enhance LogBase to support transactional semantics for read-

modify-write operations and provide snapshot isolation – a widely ac-

cepted correctness criterion.

• We conducted an extensive performance study on LogBase and used

HBase [4] and LRS, a log-structured record-oriented system that is mod-

eled after RAMCloud [72] but stores data on disks, as our baselines. The

results confirm its efficiency and scalability in terms of write and read

performance, as well as effective recovery time in the system.

This chapter proceeds as follows. In Section 3.2, we present the design

and implementation of LogBase. We evaluate the performance of LogBase in

Section 3.3 and summarize the chapter in Section 3.4.

3.2 Design and Implementation

In this section, we present various issues of the design and implementation

of LogBase including data model, partitioning strategy, log repository, mul-

tiversion index, basic data operations, transaction management, and system

recovery method.

3.2.1 Data Model

Cloud storage systems, as surveyed in [26], represent a recent evolution in build-

ing infrastructure for maintaining large-scale data, which are typically extracted

from Web 2.0 applications. Most systems, such as Cassandra [61], HBase [4]

and Dynamo [39], employ key-value model or its variants (e.g., column-based

23

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

storage) and make a trade-off between system scalability and functionality. Re-

cently, some systems such as Megastore [16] adopt a variant of the abstracted

tuples model of an RDBMS where the data model is represented by declar-

ative schemas coupled with strongly typed attributes. Pnuts [33] is another

large-scale distributed storage system that uses the tuple-oriented model.

Since LogBase aims to provide scalable storage service for database-centric

applications in the cloud, its data model is also based on the widely-accepted

relational data model where data are stored as tuples in relations, i.e., tables,

and a tuple comprises of multiple attributes’ values. However, LogBase fur-

ther adapts this model to support column-oriented storage model in order to

exploit the data locality property of queries that frequently access a subset of

attributes in the table schema. This adaptation is accomplished by the parti-

tioning strategy presented in the below section.

3.2.2 Data Partitioning

LogBase employs vertical partitioning to improve I/O performance by clustering

columns of a table into column groups which comprise of columns that are

frequently accessed together by a set of queries in the workload. Column groups

are stored separately in different physical data partitions so that the system

can exploit data locality when processing queries. Such vertical partitioning

benefits queries that only access a subset of columns of the table, e.g., aggregate

functions on some attributes, since it saves significant I/O cost compared to

the approach that stores all columns in the schema into a single physical table.

This partitioning strategy is similar to data morphing technique [53] which

also partitions the table schema into column groups. Nevertheless, the main

difference is that data morphing aims at designing a CPU cache-efficient column

layout while the partitioning strategy in LogBase focuses on exploiting data

locality for minimizing I/O cost of a query workload. In particular, given a

table schema with a set of columns, multiple ways of grouping these columns

into different partitions are enumerated. The I/O cost of each assignment

is computed based on the query workload trace and the best assignment is

selected as the vertical partitions of the table schema. Since we have designed

the vertical partitioning scheme based on the trace of query workload, tuple

re-construction is only necessary in the worst case. Moreover, each column

24

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

group still embeds the primary key of data records as one of its componential

columns, and therefore to reconstruct the tuple, LogBase collects the data in

all column groups using the primary key as selection predicate.

To facilitate parallel query processing while offering scale out capability,

LogBase further splits the data in each column group into horizontal partitions,

referred to as tablets. LogBase designs the horizontal partitioning scheme care-

fully in order to reduce the number of distributed transactions across machines.

In large-scale applications, users commonly operate on their own data which

form an entity group or a key group [16, 36, 87]. By cleverly designing the key

of records, all data related to a user could have the same key prefix, e.g., the

user’s identity. As a consequence, data accessed by a transaction are usually

clustered on a physical machine. In this case, executing transactions is not

expensive since the costly two-phase commit can be avoided.

For scenarios where the application data cannot be naturally partitioned

into entity groups, we can implement a group formation protocol that enables

users to explicitly cluster data records into key groups [36]. Another alternative

solution is workload-driven approach for data partitioning [35]. This approach

models the transaction workload as a graph in which data records constitute

vertices and transactions constitute edges. A graph partitioning algorithm is

used to split the graph into sub partitions while reducing number of cross-

partition transactions.

3.2.3 Architecture Overview

Figure 3.1 illustrates the overall architecture of LogBase. In this architecture,

each machine – referred to as tablet server – is responsible to maintain several

tablets, i.e., horizontal partitions of a table. The tablet server records the data,

which might belong to the different tablets that it maintains, into its single log

instance stored in the underlying distributed file system (DFS) shared by all

servers. Overall, a tablet server in LogBase consists of three major functional

layers, including transaction manager, data access manager, and log repository.

Log Repository. At the bottom layer is the repository for maintaining log

data. Instead of storing the log in local disks, the tablet servers em-

ploy a shared distributed file system (DFS) to store log files and provide

fault-tolerance in case of machine failures. The implementation of Log

25

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

Master

DFS Client

TabletServer

Data Access Manager

Mem index Read cache

Transaction Manager

…

TabletServer

Data Access Manager

Mem index Read cache

Transaction Manager

TabletServer

Data Access Manager

Mem index Read cache

Transaction Manager

ZookeeperClient

… … … …… …

DFS
Data Node

replication

L
o

g
B

a
se

D
F

S

log segments

Log Log Log

Figure 3.1: System architecture.

Repository is described in Section 3.2.4.

Data Access Manager. This middle layer is responsible to serve basic data

operations including Insert, Delete, Update, and Get a specific data

record. Data Access Manager also supports Scan operations for accessing

records in batches, which is useful for analytical data processing such as

programs run by MapReduce [3, 38]. In LogBase tablet severs employ in-

memory multiversion indexes (cf. Section 3.2.5) for supporting efficient

access to the data stored in the log. The processing of data operations is

discussed in Section 3.2.6.

Transaction Manager. This top layer provides interface for applications to

access the data maintained in LogBase via transactions that bundles read

and write operations on multiple records possibly located on different ma-

chines. The boundary of a transaction starts with a Begin command and

ends with a Commit or Abort command. Details of transaction manage-

ment is presented in Section 3.2.7.

The master node is responsible for monitoring the status of other tablet

servers in the cluster, and provides the interface for users to update the meta-

data of the database such as create a new table and add column groups into a

table. To avoid critical point of failures, multiple instances of master node can

26

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

be run in the cluster and the active master is elected via Zookeeper [24, 54], an

efficient distributed coordination service. If the active master fails, one of the

remaining masters will take over the master role. Note that the master node is

not the bottleneck of the system since it does not lie on the general processing

flow. Specifically, a new client first contacts the Zookeeper to retrieve the mas-

ter node information. With that information it can query the master node to

get the tablet server information and finally retrieve data from the tablet server

that maintains the records of its interest. The information of both master node

and tablet servers are cached for later user and hence only need to be looked

up for the first time or when the cache is stale.

Although LogBase employs a similar architecture to HBase [4] and Bigtable [27],

it introduces several major different designs. First, LogBase uses the log as data

repository in order to remove the write bottleneck of the WAL+Data approach

observed in write-intensive applications. Second, tablet servers in LogBase

build an in-memory index for each column group in a tablet to support efficient

data retrieval from the log. Finally, LogBase provides transactional semantics

for bundled read and write operations accessing multiple records.

3.2.4 Log Repository

As discussed in Section 3.1, the approach that uses log as the unique data

repository in the system benefits write-intensive applications in many ways,

including high write throughput, fast system recovery and multiversion data

access. Nevertheless, there could be questions about how this approach can

guarantee the property of data durability in comparison to the traditional write-

ahead-logging, i.e., WAL+Data approach.

Guarantee 1. Stable storage. The log-only approach provides similar ca-

pability of recovering data from machine failures compared to the WAL+Data

approach.

Recall that in the WAL+Data approach, data durability is guaranteed with

the “stable storage” assumption, i.e., the log file must be stored in a stable

storage with zero probability of losing data. Unfortunately, implementing stable

storage is theoretically impossible. Therefore, some methods such as RAID

(Redundant Array of Independent Disks [73]) have been proposed and widely

accepted to simulate stable storages. For example, a RAID-like erasure code is

27

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

used to enable recovery from corrupted pages in the log repository of Hyder [22],

which is a log-structured transactional record manager designed for shared flash.

To leverage commodity hardware and dynamic scalability designed for clus-

ter environment, LogBase stores the log in HDFS [5] (Hadoop Distributed File

System). HDFS employs n-way replication to provide data durability (n is con-

figurable and set to 3-way replication as default since it has been a consensus

that maintaining three replicas is enough for providing high data availability in

distributed environments). The log can be considered as an infinite sequential

repository which contains contiguous segments. Each segment is implemented

as a sequential file in HDFS whose size is also configurable. We set the default

size of segments to 64 MB as in HBase.

Replicas of a data block in HDFS are synchronously maintained. That is, a

write operation to a file is consistently replicated to n machines before returning

to users. This is equivalent to RAID-1 level or mirroring disks [73]. Further,

the replication strategy in HDFS is rack-aware, i.e., it distributes replicas of

a data block across the racks in the cluster, and consequently guarantees that

the probability of data loss is extremely unlikely, except catastrophic failures

of the whole cluster. Therefore, the use of log-only approach in LogBase does

not reduce the capability of recovering data from machine failures compared to

the other systems. Note that HBase also stores its log data (and its application

data) in HDFS.

Each tablet server in LogBase maintains several tablets, i.e., partitions of a

table, and record the log data of these tablets in HDFS. There are two design

choices for the implementation of the log: (i) a single log instance per server

that is used for all tablets maintained on that server and (ii) the tablet server

maintains several log instances and each column group has one log instance.

The advantages of the second approach include:

• Data locality. Since LogBase uses log as the unique data repository, it

needs to access the log to retrieve the data. If a log instance contains only

the data that are frequently access together, e.g., all rows of a column

group, it’s likely to improve the I/O performance for queries that only

access that column group. On the contrary, in the first approach, the

system needs to scan the entire log containing rows of all column groups.

• Data recovery. If a tablet server fails, its tablets will be assigned to other

28

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

servers. In the second approach, one log represents one column group, and

therefore, other servers only need to reload the corresponding index file

and check the tail of that log (from the consistent point immediate after

the latest checkpoint). Otherwise, in the first approach, the log has to be

sorted and split by column group, and then scanned by the corresponding

servers as in BigTable [27] and HBase [4].

However, the downside of the second approach is that, the underlying dis-

tributed file system has to handle many read/write connections that are used

for multiple log instances. In addition, it also consumes more disk seeks to per-

form writes to different logs in the physically storage. Since LogBase aims at

write-intensive applications that require sustained write throughput, we choose

the first approach, i.e., each tablet server uses a single log instance for storing

the data from multiple tablets that it maintains. Moreover, this approach still

can support data locality after the log compaction process (cf. Section 3.2.6)

which periodically scans the log, removes out-of-date data and sorts the log

entries based on column group, primary key of the record, and timestamp of

the write. That is, all data related to a specific column group will be clustered

together after the log compaction.

Note that if each server has only one attached disk, even using a single log

instance will not guarantee minimal disk seeks for writing, due to the mixture

of primary replica of own writes and backup replicas from other servers (by

n-way replication of HDFS). This can be solved by attaching two disks, one for

primary replica and the other for backup replicas.

A log record comprises of two components < LogKey,Data >. The first

component, LogKey, stores the information of a write operation, which includes

log sequence number (LSN), table name, and tablet information. LSN is used to

keep track of updates to the system, and is useful for checkpointing and recovery

process (cf. Section 3.2.8). LSN either starts at zero or at the last known LSN

persisted in the previous consistent checkpoint block. The second component,

Data, is a pair of < RowKey, V alue > where RowKey represents the id of the

record and V alue stores the content of the write operation. RowKey is the

concatenation of the record’s primary key and the column group updated by

the write operation, along with the timestamp of the write. Log records are to

be persisted into the log repository before write operations can return to users.

29

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

3.2.5 In-Memory Multiversion Index

Since LogBase records all writes sequentially in the log repository, there is

no clustering property of data records stored on disks. As a result, access to

data records based on their primary keys is inefficient as it is costly to scan

the whole log repository only for retrieving some specific records. Therefore,

LogBase builds indexes over the data in the log to provide efficient access to

the data.

<a,t2,value> <k,t8,value> <a,t18,value>… … ……

a,t2,p a,t18,p d,t20,p… k,t8,p k,t32,p z,t46,p…

(Log)

Figure 3.2: Multiversion index over the log repository.

In particular, tablet servers build a multiversion index, as illustrated in Fig-

ure 3.2, for each column group in a tablet. LogBase utilizes the log entries to

provide multiversion data access since all data are written into the log together

with their version numbers, i.e., the timestamp of the write. To facilitate reads

over multiversion data, the indexes are also multiversioned. The indexes re-

semble Blink-trees [62] to provide efficient key range search and concurrency

support. However, the content of index entries is adapted to support multiver-

sion data. In our indexes, each index entry is a pair of < IdxKey, P tr >. The

IdxKey is composed of two parts: the primary key of the record as the prefix

and the timestamp as the suffix. Ptr is the offset that points to the location

of a data record in the log, which includes three information: the file number,

the offset in the file, the record’s size.

We design an index entry as a composite value of record id and timestamp

so that the search for current as well as historical versions of particular data

records, which is the major access pattern in our applications, can be done

efficiently. Historical index entries of a given record id, e.g., key a in Figure 3.2,

are clustered in the index and can be found by performing an index search with

the data key a as the prefix. Among the found entries, the one that has the

30

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

latest timestamp contains the pointer to the current version of the data record

in the log.

The ability to search for current and historical versions efficiently is useful for

developing the multiversion concurrency control in LogBase (cf. Section 3.2.7).

Although multiversion indexes can be implemented with other general multi-

version access methods, e.g., Time-Split B-tree (TSB-tree) [63], these methods

are mainly optimized for temporal queries by partitioning the index along time

and attribute value dimensions, which increases the storage space and insert

cost considerably.

The indexes in LogBase can be stored in memory since they only contain the

< IdxKey, P tr > pairs whose size are much smaller than the record’s size. For

example, while the size of records, e.g., blogs’ content or social communications,

could easily exceed 1 KB, the IdxKey only consumes about 16 bytes (including

the record id and timestamp of long data type) and Ptr consumes about 8 bytes

(including the file number and record size as short data type, and the file offset

as integer data type), which makes a total size of 24 bytes each index entry.

Assuming that the tablet server can reserve 40% of its 1 GB heap memory for

in-memory indexes (HBase [4] uses a similar default setting for its memtables),

the indexes of that server can maintain approximately 17 million entries.

There are several methods to scale out LogBase’s index capability. A

straight-forward way is to increase either the heap memory for the tablet server

process or the percentage of memory usage for indexes (or both). Another

solution is to launch more tablet server processes on other physical machines

to share the workload. Finally, LogBase can employ a similar method to log-

structured merge-tree (LSM-tree) [71] for merging out part of the in-memory

indexes into disks, which we shall investigate in the experiments.

A major advantage of the indexes in LogBase is the ability to efficiently

process long tail requests, i.e., queries that access data not available in read

cache. LogBase uses in-memory indexes for directly locating and retrieving

data records from the log with only one disk seek, while in the WAL+Data

approach (e.g., in HBase [4]) both application data and index blocks need to

be fetched from disk-resident files, which incurs more disk I/Os.

The downside of in-memory indexes is that their content are totally lost

when machines crash. To recover the indexes from machine failures, the restarted

server just scans its log and reconstructs the in-memory index for the tablets

31

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

it maintains. In order to reduce the cost of recovery, LogBase performs check-

point operation at regular times. In general, tablet servers periodically flush the

in-memory indexes into the underlying DFS for persistence. Consequently, at

restart time the tablet server can reload the indexes quickly from the persisted

index files back into memory. We describe the details of LogBase’s recovery

technique in Section 3.2.8.

3.2.6 Tablet Serving

Mem index

Write

Op

DFS

Read Op

Update index

Write flow Read flow

Log

File

Log

File

Log

File

Mem
Memstore

Write

Op

DFS

Read Op

Update

memstore

Log

File

WAL

Log

File

Mem

SSTable SSTable……

Data

Figure 3.3: Tablet serving of LogBase (left) vs. HBase (right).

Now we present the details of a tablet server in LogBase, which uses only

log files to facilitate both data access and recovery. As illustrated in Figure 3.3,

each tablet server manages two major components, including (i) the single log

instance (consisting of sequential log segments) which stores data of multiple

tablets maintained by the server, and (ii) the memory index for each column

group which maps the primary key of data records to their location in the

log. Another major component (not shown) is the transaction manager whose

details will be described in the next section.

LogBase differs from HBase [4] on every aforementioned component. More

specifically, HBase stores data in data files which are separate with the log and

uses memtables to buffer recently updated data, in addition to the fact that it

does not support transactional semantics for bundled read and write operations.

The benefits of log-only approach compared to WAL+Data approach when

serving write-intensive applications have been briefly discussed in Section 3.1.

In the following, we shall describe how LogBase performs basic data operations

such as write, read, delete, and scan over the tablets as well as tablet compaction

operation.

32

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

Write

When a write request (Insert or Update) arrives, the request is first trans-

formed into a log record of < LogKey,Data > format, where LogKey contains

meta information of the write such as log sequence number, table name, and

tablet information while Data stores the content of the write, including the

record’s primary key, the updated column group, the timestamp of the write,

and the new value of data. Then the tablet server writes this log record into

the log repository.

After the log record has been persisted, its starting offset in the log along

with the timestamp are returned so that the tablet server subsequently updates

the in-memory index of the corresponding updated column group. This guar-

antees that the index are able to keep track of historical versions of the data

records. The indexes are used to retrieve the data records in the log at later

time.

In addition, the new version of data can also be cached in a read buffer

(not shown in Figure 3.3) so that LogBase can efficiently serve read requests

on recently updated data. While the in-memory index is a major component

and is necessary for efficient data retrieval from the log, read buffer is only an

optional component whose existence and size are configurable parameters. The

read buffer in LogBase is different from the memtable in HBase [4] in that the

read buffer is only for improving read performance while the memtable stores

data and needs to be flushed into disks whenever the memtable is full, which

incurs write bottlenecks in write-intensive applications.

A counter is maintained to record the number of updates that have occurred

to the column group of a tablet. If the number of updates reaches a threshold,

the index can be merged out into an index file stored in the underlying DFS and

the counter is reset to zero. Persisting indexes into index files helps to provide

a faster recovery from failures, since the tablet servers do not need to scan the

entire log repository in order to rebuild the indexes. Note that the DFS with

3-way synchronous replication is sufficient to serve as a stable storage for index

files (as the case of log files and discussed in Section 3.2.4).

33

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

Read

To process a Get request, which retrieves data of a specific record given its

primary key, the tablet server first checks whether the corresponding record

exists in the read buffer. If the value is found, it is returned and the request

is completed. Otherwise, the server obtains the log offset of the requested

record from the in-memory index. With this information, the data record is

retrieved from the log repository, and finally returned to clients. By default, the

system will return the latest version of the data of interest. To access historical

versions of data, users can attach a timestamp tq with the retrieval request. In

this case, LogBase fetches all index entries with the requested key as the prefix

and follows the pointer of the index entry that has the latest timestamp before

tq to retrieve the data from the log.

Meanwhile, the read buffer also caches the recent fetched record for serving

possible future requests. Since there is only one read buffer per tablet server

and the size of the read buffer is limited, an effective replacement strategy

is needed to guarantee the read buffer is fully exploited while reducing the

number of cache misses. In our implementation, we employ the LRU strategy

which discards the least recently used records first. However, we also design the

replacement strategy as an abstracted interface so that users can plug in new

strategies that fit their application access patterns. With the use of read buffer,

LogBase can quickly answer queries for data that have recently been updated

or read, in addition to the ability to process long tail requests efficiently via

in-memory indexes.

Note that the vertical partitioning scheme in LogBase, as discussed in Sec-

tion 3.2.2, is designed based on the workload trace, and therefore most queries

and updates will access data within a column group. In the case where tu-

ple reconstruction is necessary, LogBase collects componential data of a record

from all corresponding column groups.

Delete

A tablet server in LogBase performs a Delete operation given a record primary

key in two steps. First, it removes all index entries associated with this record

key from the in-memory index. By doing this all incoming queries at later time

cannot find any pointer from the index in order to access the data record in the

34

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

log repository. However, in the event of tablet server’s restart after failures, the

index is typically reloaded from the previous consistent checkpoint file, which

still contains the index entries that we have attempted to remove in the first

step.

Therefore, in order to guarantee durable effect of the Delete operation,

LogBase performs a second step which persists a special log entry, referred to

as invalidated log entry, into the log repository to record the information about

this Delete operation. While this invalidated log entry also contains LogKey

similar to normal log entries, its Data component is set to null value in order

to represent the fact that the corresponding data record has been deleted. As

a consequence, during the restart of the tablet server, this invalidated log entry

will be scanned over and its deletion effect will be reflected into the in-memory

index again.

Scan

LogBase supports two types of scan operations, including range scan and full

table scan. A range scan request takes a start key and an end key as its input.

If the query range spans across tablet servers, it will be divided into subranges

which are executed in parallel on multiple servers. Each tablet server process

a range scan as follows. First, it traverses the in-memory index to enumerate

all index entries that satisfies the query range. Then, it follows the pointers in

the qualified index entries to retrieve the data from the log repository. Since

the data in the log are not clustered based on the search key, it is not efficient

when handling with large range scan queries. However, LogBase periodically

performs log compaction operation which will be discussed below. After this

compaction, data in the log are typically sorted and clustered based on the data

key. Therefore, LogBase can support efficient range scan queries, i.e., clustering

access on the primary key of data records, if the log compaction operation is

performed at regular times.

In contrast to range scan queries, full table scans can be performed efficiently

in LogBase without much optimization. Since full table scans do not require

any specific order of access to data records, multiple log segments, i.e., log files,

in the log repository of tablet servers are scanned in parallel. For each scanned

record, the system checks its stored version with the current version maintained

in the in-memory index to determine whether the record contains latest data.

35

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

Compaction

In the log-only approach, updates (and even deletes) are sequentially appended

as a new log entry at the end of the log repository. After a period of time, there

could be obsolete versions of data that are not useful for any query, but they

still consume storage capacity in the log repository. Therefore, it is important

to perform a vacuuming process, referred to as compaction, in order to discard

out-of-date data and uncommitted updates from the log repository and reclaim

the storage resources.

original log
1. Remove out-of-date data

original log

Sorted log

Sorted log

Sorted log’

Compact

2. Sort and merge the log

by <key, timestamp>

Sorted log’

Figure 3.4: Log compaction.

Compaction could be done periodically as background process or more fre-

quently when the system has spare CPU and I/O bandwidth. Figure 3.4 il-

lustrates the compaction process performed by a tablet server in LogBase. In

particular, LogBase performs a MapReduce-like job which takes the current

log segments (some of them are sorted log segments, resulted from the previous

compaction) as its input, removes all obsolete versions of data and invalidated

records, and finally sorts the remaining data based on the following criteria

(listed from the highest to lowest priority): table name, column group, record

id, and timestamp. The result of this job is a set of sorted log segments in

which data are well-clustered. Then, each tablet server builds the in-memory

indexes over these new log segments. After the indexes have been built, the

tablet server now can efficiently answer clients’ queries on the clustered data in

the sorted log segments.

Note that until this time point, old log segments and in-memory indexes

are still in use and all clients’ update requests from the start of the running

compaction process are stored in new log segments which will be used as inputs

in the next round of compaction. That is, LogBase can serve clients’ queries and

updates as per normal during the compaction process. After the compaction

process has finished, i.e., the resulted sorted segments and in-memory indexes

36

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

are ready, the old log segments and in-memory indexes can be safely discarded.

An additional optimization is adopted during the compaction process to de-

crease the storage consumption of log segments and further improve I/O per-

formance for queries. Specifically, since the data in the resulting log segments

are clustered by table name and column group already, it is not necessary to

store this information in every log entries any more. Instead, the tablet server

only needs to maintain a metadata which maps the table name and column

group information to a list of log segments that store its data.

3.2.7 Transaction Management

In the previous section, we have presented LogBase’s basic data operations,

which only guarantee single row ACID properties similar to other cloud storage

systems such as Pnuts [33], Cassandra [61] and HBase [4]. We now present how

LogBase ensures ACID [51] semantics for bundled read and write operations

spanning across multiple records.

Concurrency Control and Isolation

The Rationale of MVCC. Recall that LogBase is designed with a built-

in function of maintaining multiversion data. In addition, the careful design

of the data partitioning scheme in LogBase, which is based on application

semantics and query workload, clusters data related to a user together, and

thus reduces the contention between transactions as well as the number of

distributed transactions. Consequently, we employ a multi-version concurrency

control (MVCC) to implement isolation and consistency for transactions in

LogBase.

A major advantage of MVCC [21] is the separation of read-only and update

transactions so that they will not block each other. In particular, read-only

transactions access a recent consistent snapshot of the database while update

transactions perform on the latest version of the data. Therefore, read-only

transactions always commit successfully, whereas an update transaction after

finishing its read phase has to validate its possible conflicts with other concur-

rently executing update transactions before being allowed to enter the write

phase.

While traditional OCC needs to maintain old write-sets of committed trans-

37

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

actions in order to verify data conflicts, the MVCC in LogBase provides another

advantage that in the validation phase of update transactions, the transaction

manager can use the version numbers of data records to check for conflicts with

other update transactions. In particular, to commit an update transaction T ,

the transaction manager checks whether T ’s write set are updated by other

concurrent transactions that have just committed by comparing the versions

of the records in T ’s write set that T has read before (there is no blind write)

with the current version of the records maintained in the in-memory indexes.

If there is any change in the record versions, then the validation fails and T is

restarted. Otherwise, the validation return success and T is allowed to enter

the write phase and commit.

Validation with Write Locks. To avoid possible conflicts of concurrent

writes, LogBase embeds write locks into the validation phase of MVCC. In

particular, an update transaction first executes its read phase as per normal;

however, at the beginning of validation phase, the transaction manager will

request write locks over the data records for its intention writes. If all the

locks can be obtained and the validation succeeds, the transaction can execute

its write phase, and finally release the locks. Otherwise, if the transaction

manager fails to acquire all necessary write locks, it will still hold the existing

locks while re-executing the read phase and trying to request again the locks

that it could not get in the first time. This means that the transaction keeps

pre-claiming the locks until it obtains all the necessary locks, so that it can

enter the validation phase and write phase safely. Deadlock can be avoided by

enforcing each transaction to request its locks in the same sequence, e.g., based

on the record key’s order, so that no transaction waits for locks on new items

while still locking other transactions’ desired items.

LogBase delegates the task of managing distributed locks to a separate ser-

vice, Zookeeper [54, 11], which is widely used in distributed storage systems,

such as Cassandra [61] and HBase [4], for providing efficient distributed synchro-

nization. In addition, LogBase employs Zookeeper as a timestamp authority to

establish a global counter for generating transaction’s commit timestamps and

therefore ensuring a global order for committed update transactions.

Snapshot Isolation in LogBase. The locking method during validation

ensures “first-committer-wins” rule [20]. Therefore, the MVCC in LogBase pro-

vides similar consistency and isolation level to standard snapshot isolation [20].

38

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

Guarantee 2. Isolation. The scheme of multiversion concurrency control

(MVCC) in LogBase guarantees snapshot isolation.

Proof Sketch: The MVCC in LogBase is able to eliminate inconsistent reads,

including “Dirty read”, “Fuzzy read”, “Read skew” and “Phantom”, and in-

consistent writes, including “Dirty write” and “Lost update”, while still suffers

from “Write skew” anomaly, thereby follows strictly the properties of Snapshot

Isolation. 2

The multiversion histories representing these phenomena when executing

transactions in LogBase are listed below. In our notation, subscripts are used

to denote different versions of a record, e.g., xi refers to a version of x produced

by transaction Ti. By convention, T0 is an originator transaction which installs

initial values of all records in the system.

Dirty read: w1[x1]...r2[x0]...((c1 or a1) and (c2 or a2) in any order)

Fuzzy read: r1[x0]...w2[x2]...((c1 or a1) and (c2 or a2)– any order)

Read skew: r1[x0]...w2[x2]...w2[y2]...c2...r1[y0]...(c1 or a1)

Phantom: r1[P]...w2[y2 in P]...c2...r1[P]...c1

Dirty write: w1[x1]...w2[x2]...((c1 or a1) and (c2 or a2) in any order)

Lost update: r1[x0]...w2[x2]...w1[x1]...c1

Write skew: r1[x0]...r2[y0]...w1[y1]...w2[x2]...(c1 and c2)

T1 T2

rw(y)

rw(x)

Figure 3.5: Multiversion serialization graph for write skew.

Under dependency theory [41], an edge from transaction T1 to transaction

T2 is added into the multiversion serialization graph (MVSG) to represent their

data conflicts in three scenarios: (1) ww-dependency where T1 installs a version

of x and T2 installs a later version of x, (2) wr-dependency where T1 installs a

version of x and T2 reads this (or a later) version of x, and (3) rw-dependency

where T1 reads a version of x and T2 installs a later version of x.

The MVSG of “Write skew”, as depicted in Figure 3.5, contains a cycle be-

tween T1 and T2, showing that the MVCC in LogBase suffers from this anomaly.

On the contrary, the MVSG of the remaining phenomena (not shown) is acyclic,

39

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

which means that LogBase is able to prevent those inconsistent reads and in-

consistent writes. Therefore, LogBase provides snapshot isolation semantics for

read-modify-write transactions.

Since snapshot isolation is a widely accepted correctness criterion and adopted

by many database systems such as PostgreSQL, Oracle and SQL Server, we

hypothesize that it is also useful for large-scale storages such as LogBase. If

strict serializability is required, read locks also need to be acquired by transac-

tions [85], but that will affect transaction performance as read locks block the

writes and void the advantage of snapshot isolation. Another method which

prevents cyclic “read-write” dependency at runtime is conservative and may

abort transactions unnecessarily [25].

Commit Protocol and Atomicity

Guarantee 3. Atomicity. The LogBase’s commit protocol guarantees similar

atomicity property to the WAL+Data approach.

The commit procedure for an update transaction T proceeds as follows.

After executing T ’s read phase, the transaction manager runs the validation

algorithm to determine if T conflicts with other committed transactions or not.

If the validation fails, then T is restarted. Otherwise, the transaction manager

gets a commit timestamp from the timestamp authority and persists T ’s writes

along with the commit record into the log repository. In addition, relevant

in-memory index entries are updated accordingly to reflect the changes, and all

the write locks held by T are released.

Note that if the transaction manager fails to persist the final commit record

into the log repository (due to errors of the log), T is still not completed as in the

WAL+Data approach. Although uncommitted writes could have been written

to the log, they are not reflected in the index and thus cannot be accessed by

users. Scan operations also check and only return data whose corresponding

commit record exists. The uncommitted writes will be totally removed out of

the log when the system performs log compaction. In summary, all or none

of the updates of a transaction are recorded into the system, i.e., LogBase

guarantees similar atomicity property to the WAL+Data approach.

Since the number of distributed transactions has been reduced at most by

the use of smart data partitioning, the costly two-phase-commit protocol only

40

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

happens in the worst case. LogBase further embeds an optimization technique

that processes commit and log records in batches, instead of individual log

writes, in order to reduce the log persistence cost and therefore improve write

throughput.

3.2.8 Failures and Recovery

We have shown how LogBase ensures atomicity, consistency and isolation prop-

erty. In the following, we present the data durability property of LogBase, which

guarantees all modifications that have been confirmed with users are persistent

in the storage.

Guarantee 4. Durability. The LogBase’s recovery protocol guarantees sim-

ilar data durability property to the WAL+Data approach.

When a crash occurs, the recovery is simple in LogBase since it does not

need to restore the data files as in the WAL+Data approach. Instead, the only

instance in LogBase that needs to be recovered is the in-memory indexes. As a

straightforward way, the restarted server can scan its entire log and rebuild the

in-memory indexes accordingly. However, this approach is costly and infeasible

in practice. In order to reduce the cost of recovery, LogBase performs check-

point operation at regular times or when the number of updates has reached a

threshold.

In the checkpoint operation, tablet servers persist two important informa-

tion into the underlying DFS to enable fast recovery. First, the current in-

memory indexes are flushed into index files stored in DFS for persistence. Sec-

ond, necessary information, including the current position in the log and the log

sequence number (LSN) of the latest write operation whose effects have been

recorded in the indexes and their persisted files in the first step, are written into

checkpoint blocks in DFS so that LogBase can use this position as a consistent

starting point for recovery.

With the checkpoint information, recovery from machine failures in LogBase

can be performed fast since it only needs to do an analysis pass from the last

known consistent checkpoint towards the end of the log where the failures oc-

curred. At restart time the tablet server can reload the indexes quickly from the

persisted index files back into the memory. Then a redo strategy is employed to

bring the indexes up-to-date, i.e., the tablet server analyzes the log entries from

41

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

the recovery starting point and updates the in-memory indexes accordingly. If

the LSN of the log entry is greater than the corresponding index entry in the

index, then the pointer in the index entry is updated to this log address. Per-

forming redo is sufficient for system recovery since LogBase adopts optimistic

concurrency control method, which defers all modifications until commit time.

All uncommitted log entries are ignored during the redo process and will be

discarded when the system performs log compaction. In addition, in the event

of repeated restart when a crash occurs during the recovery, the system only

needs to redo the process.

Note that if a tablet server fails to restart within a predefined period after

its crash, the master node will consider this as permanent failures and re-assign

the tablets maintained by this failed server to other healthy tablet servers in

the system. The log of the failed servers, which is stored in the shared DFS,

is scanned (from the consistent recovery starting point) and split into separate

files for each tablet according to the tablet information in the log entries. Then

the healthy tablet servers scan these additional assigned log files to perform the

recovery process as discussed above.

3.2.9 Discussion

We now discuss the advantages of log-only approach for write-intensive appli-

cations. In particular, we look especially at the WAL+Data approach used in

HBase [4] and compare it with the log-only approach used in LogBase. Fig-

ure 3.6 summarizes the comparison in term of various aspects such as storage

overhead, write and read performance, and recovery time.

Both approaches need similar number of I/Os and storage consumption for

logging operation, and similar memory usage (memtables for buffering data in

HBase, and in-memory indexes for locating data in LogBase). Nevertheless,

the WAL+Data approach in HBase eventually incurs more storage overhead

due to the use of additional storage for application data. More importantly,

its frequent flushing of memtables into physical storage, which is the norm in

write-intensive applications, results in write bottlenecks. On the contrary, the

log-only approach in LogBase avoids such cost and therefore is able to provide

the desired high write throughput.

Retrieving data that have recently been updated is fast in both approaches

42

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

WAL+Data (HBase) Log-only (LogBase)

Memory usage Memtables Mem indexes

No. of logs 1 1

No. of data files
O(n)

(n tablets per tablet server)

0

Storage overhead More overhead Less overhead

Read

- Retrieve recently updated data

fast (in memtable)

- Efficient clustering access on key

- Support both recently updated

data (via cache) and long tail

requests (via mem index)

- Similar clustering access after

compaction

Write
Bottleneck in write-heavy apps

due to memtable flushing I/Os
High write throughput

Recovery

Tablet serving delayed until

having finished updating data files

based on log records

Can serve requests immediately

after updating mem indexes

Figure 3.6: WAL+Data vs. Log-only.

since they are cached in memory. However, for long tail requests that do not

query recently updated data, the log-only approach can be more efficient since

it uses in-memory indexes for directly locating and retrieving data from the

log while in the other approach, application data and its index blocks need to

be fetched from data files, which incurs more disk I/Os. Note that after a log

compaction process (cf. Section 3.2.6), data of a table in the log are clustered

based on its primary key, and hence the log-only approach can support similar

data access to the WAL+Data approach.

3.3 Performance Evaluation

3.3.1 Experimental Setup

Experiments were performed on an in-house cluster including 24 machines, each

with a quad core processor, 8 GB of physical memory, 500 GB of disk capacity

and 1 gigabit ethernet. LogBase is implemented in Java, inherits basic infras-

tructures from HBase open source, and adds new features for log-structured

storages including access to log files, in-memory indexes, log compaction, trans-

action management and system recovery. We compare the performance of

LogBase with HBase (version 0.90.3). All settings of HBase are kept as its

43

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

default configuration, and LogBase is configured to similar settings. Particu-

larly, both systems use 40% of 4 GB heap memory for maintaining in-memory

data structures (the memtables in HBase and in-memory indexes in LogBase),

and 20% of heap memory for caching data blocks. Both systems run on top

of Hadoop platform (version 0.20.2) and store data into HDFS. We keep all

settings of HDFS as default, specifically the chunk size is set to 64 MB and the

replication factor is set to 3.

Each machine runs both a data node and a tablet server process. The size

of datasets is proportional to the system size, and for every experiment we

bulkload 1 million of 1KB records for each node (the key of each record takes

its value from 2 ∗ 109 which is the max key in YCSB benchmark [34]). For

scalability experiments, we run multiple instances of benchmark clients, one for

each node in the system. Each benchmark client submits a constant workload

into the system, i.e., a completed operation will be immediately followed by

a new operation. The benchmark client reports the system throughput and

response time after finishing a workload of 5,000 operations. Before running

every experiments, we execute about 15,000 operations on each node to warm

up the cache. The default distribution for the selection of accessed keys follows

Zipfian distribution with the co-efficient set to 1.0.

3.3.2 Micro-Benchmarks

In this part, we study the performance of basic data operations including se-

quential write, random read, sequential scan and range scan of LogBase with a

single tablet server storing data on a 3-node HDFS. We shall study the perfor-

mance of LogBase with mixed workloads and bigger system sizes in the next

section.

Write Performance

Figure 3.7 plots the write overhead of inserting 1 million records into the system.

The results show that LogBase outperforms HBase by 50%. For each insert

operation, LogBase flushes it to the log and then update the memory index. It

thus only writes the data to HDFS once. On the contrary, besides persisting

the log information (which includes the record itself) into HDFS, HBase has

to insert the record into a memtable, which will be written to the data file in

44

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

 0

 10

 20

 30

 40

 50

 60

250K 500K 1M

Number of Tuples

Sequential Write (sec)

LogBase
HBase

Figure 3.7: Write performance.

HDFS when the memtable is full (64 MB as default setting). As a result, HBase

incurs more write overhead than LogBase.

Random Access Performance

 0

 50

 100

 150

 200

0.5K 1K 2K 4K

Number of Tuples

Random Read (sec) without Cache

LogBase
HBase

Figure 3.8: Random access (without
cache).

 1

 2

 4

 8

300 600 1K 1.5K 2K

Number of Tuples

Random Read (sec) with Cache

LogBase
HBase

Figure 3.9: Random access (with
cache).

Figure 3.8 shows the performance of random access without any cache used

in both systems. The performance of LogBase is superior to HBase, because

LogBase maintains a dense in-memory index and each record has a correspond-

ing index entry containing its location in the log. With this information,

LogBase is able to seek directly to the appropriate position in the log and

retrieve the record. In contrast, HBase stores separate sparse block indexes in

different data files, and hence after seeking to the corresponding block in one

data file, it loads that block into memory and scan the block to get the record

of interest. Further, the tablet server in HBase has to check its multiple data

files in order to get the proper data record. Therefore, LogBase can efficiently

support long tail requests that access data not available in the cache.

As shown in Figure 3.9, the performance gap between LogBase and HBase

reduces when the block cache is adopted in the system. The main reason is

45

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

that, if the block containing the record to be accessed is cached from previous

requests, HBase does not need to seek and read the entire block from HDFS.

Instead, it only reads the proper record from the cached block. Note that with

larger data domain size in distributed YCSB benchmark as will be discussed

in the next section, the cache has less effect and LogBase provides better read

latency for the support of in-memory indexes.

Scan Performance

 0

 2

 4

 6

 8

 10

 12

 14

250K 500K 1M

Number of Tuples

Sequential Scan (sec)

LogBase
HBase

Figure 3.10: Sequential scan.

 0

 100

 200

 300

 400

20 40 80 160

Number of Tuples

Range Scan Latency (ms)

LogBase before Compaction
LogBase after Compaction

HBase

Figure 3.11: Range scan.

Sequential scan. Figure 3.10 illustrates the result of sequential scan

the entire data. The performance of LogBase is slightly slower than HBase.

LogBase scans the log files instead of the data files as HBase, and each log

entry contains additional log information besides the data record such as the

table name and column group. As such, a log file has larger size than a data

file and LogBase has to spend slightly more time to scan the log file.

Range scan. The downside of LogBase is that it is not as efficient as HBase

when processing range scan query as shown in Figure 3.11. In HBase, data in

memtables are kept sorted by key order and persisted into data files, and hence

facilitates fast range scan query. LogBase, on the contrary, sequentially writes

data into the log without any clustering property and might need to perform

multiple random access to process a single range scan query. However, it is

notable that after the compaction process, data in the log are well-clustered

and LogBase is able to provide even better range scan performance than HBase

for its ability to load the correct block quickly with the support of dense in-

memory indexes.

46

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

3.3.3 YCSB Benchmark

In the following, we examine the efficiency and scalability of LogBase with

mixed workloads and varying system sizes using YCSB benchmark [34]. The

system size scales from 3 to 24 nodes and two write-intensive mix workloads

(95% and 75% of update in the workload) are tested.

 0

 200

 400

 600

 800

3 6 12 24

Number of Nodes

Insert Time (Sec)

LogBase
HBase

Figure 3.12: Data loading time.

0

20K

40K

60K

3 6 12 24

Number of Nodes

Mixed Throughput (ops/sec)

LogBase 75% update
HBase 75% update

LogBase 95% update
HBase 95% update

Figure 3.13: Mixed throughput.

In the loading phase of the benchmark, multiple instances of clients are

launched to insert benchmark data in parallel. Similar to the result of sequen-

tial write in the micro-benchmark, Figure 3.12 shows that LogBase outperforms

HBase when parallel loading data and only spends about half of the time to in-

sert data. This confirms that LogBase can provide highly sustained throughput

for write-intensive environments.

0.05

0.1

0.15

0.2

0.25

3 6 12 24

Number of Nodes

Update Latency (ms)

LogBase 75% update
HBase 75% update

LogBase 95% update
HBase 95% update

Figure 3.14: Update latency.

0

1

2

3

4

5

3 6 12 24

Number of Nodes

Read Latency (ms)

LogBase 75% update
HBase 75% update

LogBase 95% update
HBase 95% update

Figure 3.15: Read latency.

In the experiment phase, the benchmark client at each node will continu-

ously submit a mixed workload into the system. An operation in this workload

either reads or updates a certain record that has been inserted in the loading

phase. The system overall throughput with different mixes is plotted in Fig-

ure 3.13 and the corresponding latency of update and read operations is shown

in Figure 3.14 and Figure 3.15 respectively. The results show that both LogBase

47

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

and HBase achieve higher throughput with the mix that has higher percentage

of update since both systems perform write operations more efficient than read

operations.

In addition, for each mix, LogBase achieves higher throughput than HBase

for its ability to support both write and read efficiently. In HBase, if the

memtable is full and a minor compaction is required, the write has to wait

until the memtable is persisted successfully into HDFS before returning to users

and hence the write response time is delayed. LogBase provides better read

latency for the support of in-memory indexes as we have shown in the micro-

benchmarks. Although HBase employs cache to improve read performance, the

cache has less effect in this distributed experiment since both data domain size

and experimental data size are large, which affects read performance.

Figure 3.14 and Figure 3.15 also illustrate the elastic scaling property of

LogBase where the system scales well with flat latency. That is, the more

workload can be served by adding more nodes into the system.

3.3.4 TPC-W Benchmark

In this experiment, we examine the performance of LogBase when accessing

multiple data records possibly from different tables within the transaction

boundary. In particular, we experiment LogBase with TPC-W benchmark

which models a webshop application workload. The benchmark characterizes

three typical mixes including browsing mix, shopping mix and ordering mix

that have 5%, 20% and 50% update transactions respectively.

 0

 1

 2

 3

 4

 5

 6

 7

3 6 12 24

Number of Nodes

TPCW Benchmark Latency (ms)

browsing mix
shopping mix
ordering mix

Figure 3.16: Transaction latency.

0

2K

4K

6K

8K

10K

3 6 12 24

Number of Nodes

TPCW Benchmark Throughput (TPS)

browsing mix
shopping mix
ordering mix

Figure 3.17: Transaction throughput.

A read-only transaction performs one read operation to query the details

of a product in the item table while an update transaction executes an order

request which bundles one read operation to retrieve the user’s shopping cart

48

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

and one write operation into the orders table. Each node in the system is bulk

loaded with 1 million products and customers before the experiment. We stress

test the system by using a client thread at each node to continuously submit

transactions to the system and then benchmark the transaction throughput

and latency.

As can be seen in Figure 3.16, under browsing mix and shopping mix,

LogBase scales well with nearly flat transaction latency when the system size

increases and as a result, the transaction throughput (shown in Figure 3.17)

scales linearly under these two workloads. The low overhead of transaction

commit is attributed to this result since in these two workloads, most of the

transactions are read-only and always commit successfully without the need of

checking conflicts with other transactions for the use of MVCC.

3.3.5 Checkpoint and Recovery

 0

 1

 2

 3

 4

 5

250MB 500MB 1GB

Data Size

Checkpoint Cost (sec)

Write checkpoint
Reload checkpoint

Figure 3.18: Checkpoint cost.

 0

 5

 10

 15

 20

600MB 700MB 800MB 900MB

Data Size

Recovery Time (sec)

With checkpoint
Without checkpoint

Figure 3.19: Recovery time.

We now study the cost of checkpoint operation and the recovery time in a

system of 3 nodes. Figure 3.18 plots the time to write a checkpoint and reload

a checkpoint with varying thresholds at which a tablet server performs the

checkpoint operation. LogBase takes less time to write a checkpoint (persist

in-memory indexes) than to reload a checkpoint (reload the persisted index

files into memory) because HDFS is optimized for high write throughput. This

is useful because checkpoint writing is to be performed more frequently in

LogBase, whereas checkpoint loading only happens when the system recovers

from tablet servers’ failures.

The time to recover varying amount of data maintained by a failed tablet

server is shown in Figure 3.19. The checkpoint was taken at a threshold of

500 MB before we purposely killed the tablet server when its amount of data

49

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

reached 600 MB to 900 MB. The results show that the recovery time in the

system with checkpoint is significantly faster than without checkpoint. In the

former approach, the system only needs to reload the checkpoint and scan a

little additional log segments after the checkpoint time to rebuild the in-memory

indexes, whereas in the latter approach the system has to scan the entire log

segments.

LogBase does not support as efficient recovery time as RAMCloud [72] be-

cause the two systems make different design choices for targeting at different

environments. In RAMCloud, both indexes and data are entirely stored in

memory while disks only serve as data backup for recovery purpose. There-

fore, RAMCloud backups log segments of a tablet dispersedly to hundreds of

machines (and disks) in order to exploit parallelism for recovery. In contrast,

LogBase stores data on disks and hence cannot scatter log segments of a tablet

to such scale in order to favor recovery as it would adversely affect the write

and read performance of the system.

3.3.6 Comparison with Log-Structured Systems

Recent scalable log-structured record-oriented systems (LRS) such as RAM-

Cloud [72] and Hyder [22] target at different environments with LogBase.

Specifically, RAMCloud stores its data and indexes entirely in memory while

Hyder scales its database in shared-flash environments without data partition-

ing. Therefore, we cannot compare their performance directly with LogBase.

Here, for comparison purpose as well as exploring the opportunity of scaling the

indexes beyond memory, we examine a system, referred to as LRS, which has

a distributed architecture and data partitioning strategy similar to RAMCloud

and LogBase but stores data on disks and indexes them with log-structured

merge trees (LSM-tree) [71] to deal with scenarios where the memory of tablet

servers is scarce. Particularly, in this experiment we use LevelDB 1, a variant

LSM-tree open source by Google, with all settings kept as default.

The results of comparison between LogBase and LRS in a system of 3 nodes

are shown in Figure 3.20, Figure 3.21, and Figure 3.22 respectively for sequential

write, random access, and sequential scan. The comparison results with varying

system sizes are also plotted in Figure 3.23. Overall, the sequential write and

1http://code.google.com/p/leveldb/

50

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

 0

 5

 10

 15

 20

 25

 30

250K 500K 1M

Number of Tuples

Sequential Write (sec)

LogBase
LRS

Figure 3.20: Sequential write.

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.5K 1K 2K 4K

Number of Tuples

Random Read (sec) without Cache

LogBase
LRS

Figure 3.21: Random access.

 0

 5

 10

 15

 20

 25

250K 500K 1M

Number of Tuples

Sequential Scan (sec)

LogBase
LRS

Figure 3.22: Sequential scan.

0

20K

40K

60K

80K

3 6 12 24

Number of Nodes

Throughput (ops/sec)

LogBase write
LRS write

LogBase read
LRS read

Figure 3.23: Throughput.

random access performance of LRS are only slightly lower than that of LogBase

because LevelDB is highly optimized for a variety of workloads and can provide

efficient write and read performance with moderate write and read buffer (4 MB

and 8 MB respectively in the experiment). This leads us to conclude that it is

possible for LogBase to scale its indexes beyond memory (by the use of LSM-

trees) without paying much cost of reduction in the system throughput.

LogBase also achieves higher sequential scan performance than LRS. Recall

that for each scanned record, the system needs to check its stored version

against the current version maintained in the indexes to determine whether the

record contains the latest data. Such cost of accessing indexes is attributed to

the difference in the scan performance of the two systems. Note that after log

compaction, historical versions of a record are clustered together and hence the

number of version checking with indexes is minimized, which would reduce the

scan performance gap.

51

CHAPTER 3. A SCALABLE LOG-STRUCTURED DATA STORE

3.4 Summary

We have introduced a scalable log-structured database system called LogBase,

which can be elastically deployed in the cloud and provide sustained write

throughput and effective recovery time in the system. The in-memory indexes

in LogBase support efficient data retrieval from the log and are especially useful

for handling long tail requests. LogBase provides the widely accepted snapshot

isolation for bundled read-modify-write transactions. Extensive experiments on

an in-house cluster verifies the efficiency and scalability of the system.

This work has been published as a full research paper in 2012 VLDB Con-

ference [88].

52

CHAPTER 4

INDEXING OBSERVATIONAL DATA

IN LOG STORE

Huge amounts of data are being generated by sensing devices every day, record-

ing the status of objects and the environment. Such observational data is widely

used in scientific research. As the capabilities of sensors keep improving, the

data produced are drastically expanding in precision and quantity, making it

a write-intensive domain. Log-structured storage is capable of providing high

write throughput, and hence is a natural choice for managing large-scale obser-

vational data.

In this chapter, we propose an approach to indexing and querying obser-

vational data in log-structured storage. Based on key traits of observational

data, we design a novel index approach called the CR-index (Continuous Range

Index), which provides fast query performance without compromising write

throughput. It is a lightweight structure that is fast to construct and often small

enough to reside in RAM. Our experimental results show that the CR-index

is superior in handling observational data compared to other indexing tech-

niques. While our focus is scientific data, we believe our index will be effective

for other applications with similar properties, such as process monitoring in

manufacturing.

53

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

4.1 Introduction

Humankind has a rapidly growing ability to digitize the real-world. The va-

riety of entities whose state can be monitored continuously is ever increasing,

and spans from microscopic to macroscopic scales: individual molecules, single

cells, electronic devices, wild life, automobiles, dams, oceans and even distant

stars. More and more sensors are gathering continuous observations of physical

variables such as temperature, humidity and velocity. Such data collection is

now ubiquitous in many fields of scientific research.

Multiple trends contribute to increases in sensor data rates. Sensors are

increasing in resolution temporally, spatially and the bits of precision captured.

Hence individual sensors generate data at higher rates. Further, instrument

packages are carrying more kinds of sensors, as devices appear for measuring

a broader range of physical quantities. Finally, decreasing price and increasing

power efficiency means more sensors can be deployed in more places for longer

periods of time. These trends make observational data management write-

intensive, demanding data storage with high write-throughput, to capture these

records in a timely manner. An additional challenge is indexing newly arrived

data quickly while providing efficient querying.

Log-structured storage (log-store) is amenable to handling such write-intensive

scenarios. A log-store appends newly arrived data to the end of a log file, rather

than seeking specific positions on disk for each record. Compared with in-place-

update storage, log-store provides higher write throughput by avoiding random

I/Os.

This chapter focuses on storing observational data in log-store and indexing

it efficiently by exploiting its traits, including:

• No update. An observational record is inherently immutable. Each

record has an unique observation time attribute. Complete historical

data are required for diverse analysis tasks.

• Continuous change. Most physical variables have values that change

continuously at some maximal rate. If frequent observations are taken,

we expect successive readings to be bounded by some maximal change.

• Potential discontinuities. Though ideal data should be continuous,

gaps could arise from noise, data loss, or combining readings from multiple

sensors.

54

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Index structures play an important role in supporting queries. Traditional

record-level indexes, such as B+-trees [32] and LSM-trees [71], incur significant

index maintenance cost. The random I/Os due to updates render B+-trees

impractical for write-intensive workloads. Although LSM-trees avoid random

I/Os, the cost of maintaining a large number of index entries is still considerable.

Since these structures have not been designed to exploit the characteristics of

observational data and its applications, they may not scale up well.

Current state-of-the-art techniques for storing observational data do not

take high-throughput workloads into account. Some real data observation sys-

tems such as CMOP [1] utilize a combination of RDBMS and netCDF [9] data

files to manage data. Our approach stores the observational data in log-store,

which provides superior performance for write-intensive workloads. In log-store,

records are ordered by arrival time, which correlates strongly with observation

time. Thus, for queries on observation time, access methods based on physical

order perform well (and can be further improved through off-line reorganization

as discussed in Chapter 3). However, queries on observational data will often

include conditions on the measured variables. Because of the data continuity,

their values are locally correlated with observation time (and hence with arrival

time). Our approach exploits this correlation to provide lightweight indexing

on observational data as it is stored. We group successive records into blocks.

Each block is summarized by a value range, which is compact and can be com-

puted quickly. We accommodate the inevitable gaps by detecting them during

query processing and avoiding them on subsequent queries.

Another trait of observational data that we can exploit is spatial correlation

of two readings. The same physical variable sensed in two nearby locations is

likely to be similar. For example, two temperature sensors at the same point in

a river, but at different depths, are likely to report similar readings (or at least

increase and decrease together). Given the large number of sensors in some

deployments, it could negate some of the benefits of log-store if readings for

each are stored in a separate file. Our method gives reasonable performance

if readings from correlated sensors are merged, with gap-detection methods

handling periods of divergence.

Our contributions include:

• We proposed a scheme for storing observational data in log-store that pre-

serves data locality to facilitate indexing. The data organization provides

55

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

optimization opportunities for reducing both write and read I/O costs.

• We designed a novel, lightweight pruning-based index structure for range

queries, tailored for log-store, supporting efficient sequential I/Os. It

lowers maintenance costs by taking full advantage of observational-data

traits.

• We conducted an extensive experimental evaluation on two real-world

observational datasets that compares our solution to traditional record-

level indexes. The results confirm both low write overhead and query

efficiency.

The rest of this chapter is organized as follows. In Section 4.2, we provide

background on observational data and storage choices. Section 4.3 presents a

scheme for storing data. In Section 4.4, we present the design of our indexing

structure. We evaluate the performance in Section 4.5. Summaries are given

in Sections 4.6.

4.2 Preliminaries

This section presents some characteristics and applications of observational

data and common query types. We recall our log-structured storage system,

LogBase, which is the choice of underlying data storage.

4.2.1 Scientific Data Analysis

Many scientific analysis applications entail monitoring of correlations among

multiple physical variables using diverse sensors. For example, coastal-margin

observation deploys multiple underwater sensors at different sites and depths,

gathering information such as water temperature, salinity and oxygen satura-

tion. Scientific data captured in this manner, which we call observational data,

have special traits mentioned previously. Its most distinctive characteristic is

that records’ values are changing continuously. The inherent continuity can be

captured by two key concepts: continuous variable and continuous measure-

ment.

Continuous variable. An observational variable can be expressed as a

function f(x) with respect to time x. If the function f(x) is continuous, for

56

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

any value v where f(x1) ≤ v ≤ f(x2), there exists an x′, x1 ≤ x′ ≤ x2, where

f(x′) = v, by the Intermediate Value Theorem.

Continuous measurement. Continuous measurements are a series of fre-

quent observations on a continuous variable. If the change rate of the variable is

bounded by R and samples are taken every U time units, consecutive measure-

ments will differ by no more than mx = U ·R. Thus, if we have measurements

m1 and m2, we expect to have at least |m1−m2|
mx

intermediate values measured

between them.

These two conditions often hold for observational data from the natural

world, though our index method does not depend on these assumptions for

correctness. As long as jumps and gaps are not too frequent, we maintain

efficiency.

Basic Query Formats

We provide SQL expressions for the basic query formats we address. A time-

range query specifies a time period in which some attributes are requested, for

example:

SELECT T.A FROM Table T

WHERE T.t ≥ startT ime and T.t ≤ endT ime

ORDER BY T.t

Here A is the set of requested attributes and T is the logical table. The result

set provides the trends for observed variables, such as the salinity versus time

plot in Figure 4.1 (from observation station SATURN-01 in the CMOP [1]

observatory). Data might be used for other kinds of analysis, e.g., correlation

tests between two variables.

A value-range query specifies a value range on an attribute, for example:

SELECT T.A FROM Table T

WHERE (T.a ≥ minV and T.a ≤ maxV)

ORDER BY T.t

Here a is the constrained attribute in A. Such a query can be used to monitor

a variable for abnormal ranges, then collect other values from the same periods.

For instance, we can monitor the sensor in Figure 4.1 for salinity above 32.0,

then analyze how such periods of high salinity correlate with oxygen saturation

and acidity.

57

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Figure 4.1: CMOP SATURN-01 salinity trend.

Our work focuses on supporting basic query types. Most complicated multi-

attribute queries are extensions and combinations of basic queries. We will

discuss them in Section 4.4.6.

Secondary Indexes on Observational Data

A typical observational record has a set of attributes representing different

physical variables, in addition to an observation timestamp. In order to provide

good performance for a variety of complicated queries, most attributes should

be indexed. However, maintaining multiple conventional secondary indexes

is costly. We expect our lightweight indexing mechanism to be a superior

choice for keeping a large number of secondary indexes, as it will not consume

much time nor space, while providing significant query acceleration. We also

accommodate joint indexing of correlated sources.

4.2.2 LogBase

For implementing data storage and indexing, we briefly recall the basics of

LogBase. Each machine in the system is a tablet server, responsible for one or

more partitions of a table. Its data model is basically relational, where each

record has a primary key and several attributes. Physically, each record is

decomposed as a set of cells. A cell is the basic writable unit, structured as:

(KEY, ATTRIBUTE, VALUE, TIMESTAMP)

The key, attribute and value fields describe one attribute of a record. Once

a record arrives, its attributes are divided into consecutive cells and appended

to the log. When part of a record is requested, LogBase fetches relevant cells

58

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

via an in-memory primary index on the key field. The timestamp field is hidden

and set by the system for recovery and multi-version control.

In addition, LogBase is column-oriented by providing a logical field group.

Attributes in different groups will be stored in different tablet servers.

4.3 Storing Observational Data

We first present the logical view of observational records in storage, then their

physical organization in files and the benefits of that organization.

4.3.1 Logical View

TIME SENSOR ID GROUP Water GROUP Air

ATTRIBUTE

Salinity

ATTRIBUTE

Oxygen

ATTRIBUTE

Air

temperature

9:01 depth 0m 16.32 3.36 7.05

9:01 depth 2.4m 22.38 3.28

9:02 depth 0m 16.14 6.98

9:02 depth 8m 29.01 2.97

Figure 4.2: Schema logical view.

Observational data in different scenarios might vary in many aspects, such

as the number of variables and active sensors. Figure 4.2 shows an instance

of a generic schema, describing coastal data for a fixed station with sensors at

several depths. The whole data set is viewed as a flat table in which all records

are ordered by observation time. The primary key is the combination of sensor

ID and time. The sensor ID indicates the device from which the record is

collected, distinguishing records from different sensors. In the example, we

identify sensors by depth. Sensors are free to join or leave the system without

affecting the schema.

Records with same sensor ID are identified by the time, which indicates

when they were collected. Thus, a record is the ensemble of all observed vari-

ables for a sensor at a time. In Figure 4.2, some cells are empty. Empty cells are

common, as values could be missing due to environmental conditions or device

failures. For example, a sensor under water cannot detect air temperature.

59

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

The group is optional for column-oriented storage and reflects a column

partition. For example, Salinity and Oxygen might be in the same group, since

they are often queried together. In fact, our index is not limited to such storage.

In record-oriented storage, if only a column subset is involved, the system can

materialize part of the data to optimize access cost. The only worry is that if

record size keeps growing, the access cost might be high. Our goal is to reduce

index-maintenance cost compared to conventional methods. In the case that

the record size is extremely large, the index cost will be relatively lower, and

hence conventional record-level indexes are efficient enough. This situation is

not the application scenario we target.

4.3.2 Physical View

KEY ATTRIBUTE VALUE TIMESTAMP

depth 0m Salinity 16.32 9:01

Oxygen 3.36

depth 2.4m Salinity 22.38 9:01

Oxygen 3.28

depth 8m Salinity 29.01 9:02

Oxygen 2.97

depth 0m Salinity 16.14 9:02

Figure 4.3: Schema physical view.

Recall that LogBase splits records into attribute cells before appending them

to the log, with different groups in different tablets. Figure 4.3 shows the

physical organization of the records in Figure 4.2, for the Water group.

The four fields in a cell make it self-contained, allowing multiple sources

stored in one file. All cells of a record are stored contiguously in one atomic

operation. Thus, it is simple to reassemble a record from its cells. When there

are multiple attributes in a record, only the first cell requires a non-empty key

and timestamp.

Since observational data has a time field and the storage system provides a

similar timestamp component, we extend this component to keep two versions

for each cell: a physical version and a logical version. The physical version

keeps the system time for failure recovery, while the logical version keeps the

observation time from the sensor side. They have different meanings, but are

closely correlated. Assuming records from the same senor always arrive in

60

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

order, for two records r1,r2 that have r1.logicalT ime < r2.logicalT ime, we

have r1.physicalT ime < r2.physicalT ime.

Data from different sources might not strictly adhere to this property. How-

ever, we can still expect them to be roughly ordered. Data disorder will be

discussed in Section 4.4.3.

4.3.3 Observational Data Locality

In general, the append-only strategy hurts read performance, as no data locality

exists. In observational data analysis, however, the data-access pattern has

inherent properties that provide considerable data locality in log-store.

The time-ordered property says that when a record is accessed, the suc-

ceeding records are likely to be requested in (logical) time order. It is implicit

in time-range queries. In log-store, since records are in insertion order, once

the first record is located, the following results will be in subsequent physical

disk blocks. A sequential scan is sufficient to access the entire result set. Se-

quential scan is an efficient process, as it eliminates disk-seek and exploits high

bandwidth.

The value-correlated property states that when a record is accessed, the

records whose values are close to this record’s might also be requested. As ob-

servational data is seldom retrieved by exact equality (because they are floating-

point numbers), we expect values to be returned by range, as in value-range

queries. Due to the continuity trait, once a record is inside the range, sur-

rounding records will also lie in the range with high probability. Therefore,

a log-store provides partial data locality for such range queries. Although the

results are not entirely located together, they are likely clustered into sequences

on the disk.

4.4 Indexing Observational Data

This section presents our indexing method for range queries on attributes of

observational data in a log-store. First, we introduce the idea of a pruning-

based indexing structure, which locates data blocks that may contain data of

interest. After that, we propose optimization on the basic structure. At last,

we discuss the extensions for processing multi-attribute queries.

61

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

4.4.1 The CR-index Structure

The advantage of log-store is its excellent write performance. Therefore, heavy

index maintenance works against the goal of supporting write-intensive work-

loads. To reduce the index cost, we propose a pruning-based index method,

called the Continuous Range Index (CR-index). This light-weight index ex-

ploits the traits in observational data.

The value-correlated property implies that a seek in the log can potentially

yield many results. Therefore, we do not need to locate qualifying records

individually, as long as we can identify regions containing results. Our main

idea is to group successive records into blocks, which are the atomic units for

indexing and retrieval. Each block is summarized by a value range using a

boundary pair. When the value range of a block intersects with a query range,

there is high likelihood of results in the block based on the continuous-change

trait of observational data. In that case, the whole block will be fetched and

scanned.

Interval Indexes

CR Log

Log File

Log-structured Storage

Sequence ID: sid

Boundary Pair: [2.73, 4.21]

Length: 6

Location: (File, Offset)

Next Record : p_next

Hole Information:

Hole 1 (from 2.90 to 3.97)

CR-record

B+Tree Interval Tree

Group A Group B

Candidate CR-record Set

Data Block

KEY VALUE

R1 2.73

R2 2.86

R3 2.90

R4 4.21

R5 4.08

R6 3.97

Figure 4.4: The CR-index structure.

Figure 4.4 shows the CR-index structure for indexing a single attribute.

The lowest level is the abstraction of data blocks in the log file. In the middle

level, we generate a record, called a CR-record, containing brief description for

each block, which we use to prune blocks. CR-records are appended to the

CR-log. The CR-log is much smaller than original data file and may fit in main

62

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

memory in most cases. The upper level is optional and provides interval indexes

to improve the retrieval in disk-based CR-log.

Determining Data Block Size

Data blocks are disjoint groups of successive records in the file. The abstraction

of blocks reduces the number of disk-seeks and utilizes high disk bandwidth.

The CR-index only captures whether some records in a block might be in a

query range, but not the location or identity of such records. Thus, even if

only one record satisfies the query range, the entire block will be fetched and

scanned. Consequently, block length – the number of records in the block – has

important influence on index performance. Intuitively, a larger block length

will make the CR-log smaller (and fit it in memory), but raises the cost of

fetching and scanning a block. Our analysis in Section 4.4.5 will show that

query performance degrades sub-linearly with increasing block length.

Describing Data Blocks

In the CR-log, one CR-record describes a block containing possibly hundreds

of records. It is challenging to describe the contents of so many records using

a small descriptor. Hash-based approaches, such as Bloom Filters [23], provide

a compact means for membership testing. However, hash-based approaches do

not support range conditions naturally.

blocks containing results

range boundary of a query

Figure 4.5: Abstraction of continuous data in blocks: original data on the left
and block representation on the right.

Our approach exploits the continuous nature of observational data. Refer-

ring back to Section 4.2.1, we expect to find records at a certain maximum

spacing between two distinct values. Therefore, a pair of bounding values is

63

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

reasonable to represent block content. Figure 4.5 shows such abstraction at the

block level. In this figure, each block is abstracted as a range of values from

minimum to maximum, represented as a boundary pair [min,max]. Although

we cannot have every value between the pair, it is highly likely that we will find

values in a range that overlaps [min,max]. Conversely, if the query range is

disjoint from [min,max], that block will have no valid records. The boundary

pair can be computed quickly during insertion. Note that if the data source is

not strictly continuous or the query range very small, the boundary pair can

cause false positives.

A CR-record contains several fields, as shown in Figure 4.4:

• Block ID indicates the sequence order of data block.

• Boundary pair abstracts the content of the indexed attribute for records

in the block.

• Block length is the number of records in the block.

• File position indicates the offset of the block location.

• Hole information is maintained for discontinuity optimization. The

details are discussed in Section 4.4.2.

Indexing Data Blocks

Each boundary pair can be treated as an interval. A range query can therefore

be transformed to an intersection-checking problem, i.e., finding all CR-records

that overlap a given interval, then fetching and scanning corresponding data

blocks. The efficiency of intersection-checking is important. If the CR-log

fits in memory, a scan of the entire CR-log may give reasonable performance.

However, if it requires disk storage, we need to index it.

Intersection queries are well studied in the literature and diverse index struc-

tures have been proposed, such as interval trees and segment trees [37]. How-

ever, the query cost using such structures depends heavily on the size of the

query ranges: The larger the range is, the more branches in the tree need to be

traversed, hurting performance.

To solve this problem, we partition the result set into two disjoint groups,

which we retrieve separately but combine before data-block access:

64

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

• Group A: CR-records that have at least one endpoint inside the query

range [a, b].

• Group B: CR-records that completely contain the query range.

We retrieve Group A using a point-tree structure, such as a B+-tree. For

each CR-record, two entries are inserted into the B+-tree, one for each endpoint

of its boundary pair. The endpoint serves as a key, while the associated value

is the CR-record’s reference. For a CR-record in A, at least one endpoint can

be found by a range query on the B+-tree: find the node containing the query’s

left endpoint and traverse the successive nodes up to the one with the right

endpoint. The number of entries in the B+-tree is equal to twice the number

of CR-records in the CR-log.

For retrieving Group B, we need a completely different structure. Recall

that CR-records in B entirely contain the query range. We can simply pick

any point d in the query range to represent the whole query. Hence, we have

transformed an intersection query into a stabbing query, i.e., the queried range

is just a point. (The transformed query might also find CR-records in Group

A.) A stabbing query is fast in interval structures, as it only involves one

path in the tree. Though both segment trees and interval trees are suitable for

stabbing queries, we prefer latter because of the low space demand, enabling

us to cache a large part of the structure in memory.

In summary, a range query will be transformed into two sub-queries: a range

query on the B+-tree and a stabbing query on the interval tree. Each sub-query

traverses only one tree-path, thus minimizing the number of accessed internal

nodes. Sub-query results are combined to remove duplicates. Sfakianakis et al.

apply a similar idea to index intervals using a key-value cloud store [80].

4.4.2 Index Optimization

There are several critical issues when using CR-index in real applications.

• How to make interval indexes small to cache them.

• How to handle occasional discontinuities in the data.

This section presents optimization mechanisms to handle these issues while

preserving index performance.

65

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Index with Delta Intervals

The value of an observational record is expected to be close to that of the

previous one. Therefore, boundary intervals of consecutive blocks might well

overlap. If a query range intersects a block, there is a high chance that it will

intersect following blocks. (We verify this statement using real-world datasets

in Section 4.5.) This observation suggests we need not insert the entire interval

of each CR-record into the interval indexes. We can instead index only non-

overlapping parts of CR-records’ intervals.

(a) (b)

(d)(c)

Previous Interval Current Interval Inserted Intervals

Figure 4.6: Cases of Delta Intervals.

We define the delta interval of a block to be its non-overlapping part with

previous one’s interval. Only delta intervals are inserted in interval indexes.

Figure 4.6 shows four cases of delta intervals, indicated using red segments.

The use of delta intervals can significantly reduce the space consumption of

interval indexes (B+-tree and interval tree). Instead of inserting two endpoints,

only the uncovered endpoints are inserted in the B+-tree. In particular, in Case

(c) no entries are needed. For the interval tree, the lengths of inserted intervals

are reduced. Smaller intervals will be pushed closer to the leaf nodes, thereby

reducing the size of upper-level nodes cached in memory. Although in case (d)

two intervals are inserted, the total length becomes smaller.

To further reduce index size, we extend the delta interval to length k: the

portion of the interval not covered by the previous k blocks. This reduction

on index size comes at the cost of accessing at most k additional CR-records

after a qualifying CR-record. The CR-log is organized sequentially on disk,

therefore accessing additional records is fast. Algorithm 1 shows how to resolve

the complete CR-record set for a query, using the length-k delta intervals. The

list entries identify all CR-records found in interval indexes. For each such

entry, we locate it in the CR-log and set up a counter (lines 3-5). We keep

66

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Algorithm 1: resolveDelta(List entries, Integer K, Range range)

Input: a list of entries entries, a threshold integer K, a query range
range

Output: a list of qualified entries result
1 Set result;
2 Scanner CRlog;
3 for each entry e from entries do
4 Int counter = 0;
5 CRlog.seek(e.position);
6 while counter < K do
7 counter++;
8 Record next = CRlog.next();
9 if next overlaps range then

10 result.add(next);
11 counter = 0;

12 return result;

reading the CR-records until the counter reaches the threshold (lines 6-8), reset

the counter if we find a qualifying record (lines 9-11).

Hole Skipper

CR-indexes exploit data continuity. There are reasons that the continuity as-

sumption might be violated:

Data loss because of sensor failures or network breakdowns, giving a jump

for the missing period.

Abnormal values arising from a natural or man-made disturbance in the

environment, such as sensor fouling or a passing vessel.

Multiple data sources in a single file. Figure 4.7 shows a multi-sensor

data source1, the temperatures at different locations in a beehive. As can be

seen, there are gaps or “holes” between boundary pairs.

Due to such issues, a boundary pair might not accurately describe block’s

content: sub-ranges with no data may exist. Any query on those sub-ranges

will fetch false-positive blocks.

A hole is a sub-range that contains no actual values. We are concerned with

holes whose widths are larger than query ranges. Depending on the cause of

1http://openenergymonitor.org/emon/buildingblocks/sd-card-logging

67

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Figure 4.7: Multiple temperatures in a beehive.

the hole, there might be similar holes in adjacent blocks. Thus, we allow a hole

to have a length, measured in blocks. (Note that if we extend the length of a

hole, its width may shrink.) Figure 4.8 shows three holes over a sequence of 11

data blocks. If a query falls in a hole, we can skip blocks for the length of the

hole. Hole skipper (HS) is a mechanism that tracks a number of holes inside

each CR-record. To limit the space for hole information, HS only keeps the k

largest holes in each CR-record. The size of a hole is defined as width · length.

The larger the hole size is, the higher probability of skipping blocks it will have.

W
id

th

Length

Figure 4.8: Holes in continuous ranges.

We concern the cost of finding largest holes. While there is little overhead

in creating the boundary pair when initially writing a block, detecting holes

incurs more cost. Therefore, HS applies an adaptive strategy to detect holes

during query processing and keep them for future queries. Scanning a false-

positive block means a new hole is detected. This hole is a candidate added to

the corresponding CR-record.

Algorithm 2 shows the details of hole detection. Data blocks are scanned

in order (lines 4-6). If a false positive block is detected (line 7), we extend the

length of current hole (lines 8-13).An extension could make the hole smaller

68

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Algorithm 2: detectHole(List CRrecords, Range range)

Input: a list of entries CRentries, a query range range
Output: a list of qualified entries result

1 Hole currentHole;
2 CRrecord firstR;
3 Scanner logF ile;
4 for each record r in CRrecords do
5 logF ile.seek(r.position);
6 logF ile.readNextBlock();
7 if no results inside range then
8 if r not next to currentHole then
9 firstR.addHole(currentHole);

10 currentHole = new Hole();
11 firstR = r;

12 else
13 currentHole.extendLength();

14 else
15 firstR.addHole(currentHole);
16 currentHole.clear();

17 return result;

because the width might decrease2. Once a hole is completed and in top-k, it

will be attached into the first CR-record that contains it (lines 8-10, 14-16).

The major advantage of applying the adaptive strategy is that it does not

affect throughput in the write phase. In addition, the maintained holes only

involve queried data. It avoids capturing holes that are not of interest to the

users.

4.4.3 Dealing with Disordered Records

We expect that arriving records are ordered on timestamp, but disordered

records can arise due to the network delays. We have to append such records as

they arrive. It could pose problems with respect to data-continuity assumption.

Our approach tolerates a certain amount of disorder. The CR-index does

not care about orders inside a block. On the other hand, disorder between

blocks can extend the scope of boundary pairs, if the delayed record has a

2We actually find the largest empty interval around the query range in each scanned block.

69

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

value beyond the range of the block. This will be managed by HS.

For time-range query, the existence of disorder extends the number of blocks

to cover that range. We maintain a checkpoint list to help determine which

parts of the file are involved. The system periodically adds time points to

the list. For each checkpoint, it maintains: (1) the smallest block id that

contains records later than that time; (2) the largest block id that contains

records earlier than that time. The CR-records will be filtered by the block id

range before actually fetching the corresponding blocks. The checkpoint list is

a memory-based structure, therefore it can be easily updated when a delayed

record arrives.

4.4.4 Evaluating Range Queries

Consider executing a query with conditions on both time and value. The value

condition is used at both the interval-index level and the CR-log level, while

the time condition is used at the CR-log via the checkpoint list. In addition,

hole information will both be consulted and updated. The following are the

main steps in evaluating a query:

1. Access the interval indexes to get CR-records ids: GroupA from B+-trees

and Group B from interval trees.

2. Locate each identified record in the CR-log. Scan the log for additional

CR-records if using delta intervals.

3. Filter CR-records using checkpoint list and hole information.

4. Fetch and scan the data blocks for remaining CR-records. Extract and

return all qualifying results.

5. For any detected false-positive blocks, track the holes and update the hole

information in CR-records.

4.4.5 Analysis of Index Behavior

The effectiveness of the CR-index depends on the data-continuity. To ana-

lyze index behavior, we first introduce metrics to quantify the continuity of a

dataset. With these metrics, we can derive mathematical estimates of index

performance. Finally, the tradeoff between index-maintenance cost and query

cost is discussed.

70

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Continuity of Observational Data

Consider an observational dataset D with ND records, arranged in temporal

order. For each record ri (1 ≤ i ≤ ND), vi denotes the value of the indexed

attribute. We define the continuity distance (dis) for D as:

dis(D) =
1

ND − 1

ND
∑

i=2

disi

disi = |vi − vi−1|

The disi represent the numerical distance between two adjacent records.

The more continuous D is, the lower the dis(D) will be. To calibrate the

continuity distance, the expected range size of queries should also be considered.

For example, suppose the dis(D) is 0.1. D has good continuity when the query

range is [23.2, 25.8], but not if the range is [23.256, 23.259]. Therefore, for any

query Q with range [a, b], we define the degree of continuity (doc) as:

doc(Q,D) =
|b− a|

dis(D)

The larger the doc(Q,D) is, the better continuity quality the dataset possesses

for the given query.

Query Cost

Now we analyze the cost of executing a query Q with range [a, b] and degree

of continuity doc(Q,D). Suppose the result set is R. Since the data values are

continuous, we can expect R to be consist of sequences of contiguously stored

records, whose values in the range [a, b].

Using doc we can estimate the number of sequences in R. We start by

randomly choosing a record in R and estimating the number of records in the

sequence it belongs to. Suppose the chosen record has value x ∈ [a, b]. The

shortest path for a continuous source to enter the query range, reach this value

and then leave the range is when it both enters and exits from the nearer side,

e.g., from point a if |x− a| ≤ |x− b|. Therefore, the shortest path for reaching

x in the range is:

path(x) = 2 ·min (|x− a|, |x− b|)

71

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

We obtain the expected distance of the path by considering all values for x:

path =

∫ b

a

path(x)dx =
|b− a|

2

Thus we can expect path/dis(D) = doc(Q,D)/2 points in the same sequence

as x. Therefore, the number of disjoint sequences Nseq in the result set can be

estimated as:

Nseq = ⌈
2|R|

doc(Q,D)
⌉

Note that this estimate is likely to be on the high side as paths through

x are always larger than the minimum. Let the block length (Lblock) be the

number of records in each data block. For each sequence, at most ⌈doc(Q,D)
2Lblock

+1⌉

blocks are needed to cover it. The total number of records accessed is bounded

by:

B ≤ Nseq · Lblock · ⌈
doc(Q,D)

2Lblock

+ 1⌉

Only Nseq disk seeks are executed while accessing these records. The overall

disk cost of executing query Q is:

COSTQ = Tseek ·Nseq + Ttrans · B

Here Tseek is the time of executing a disk seek and Ttrans is the time of trans-

ferring a single record.

Unlike other indexing methods whose costs are defined in terms of the num-

ber of I/Os and how close it is to the optimal I/O O(logn + #results), our

index separate disk-seek cost and data-transfer cost. The CR-index tries to

reduce costly seeks for a better utilization of disk bandwidth.

Storage Cost versus Query Performance

The key parameter that tunes the trade-off between CR-index storage cost and

query performance is the block length Lblock. The main contribution to the

storage cost is the space for the CR-log. The size of CR-log varies inversely

with Lblock. With the query cost model in Section 4.4.5, disk seek cost is not

affected much by Lblock. By increasing Lblock to Lblock + ∆L, only Nseq · ∆L

additional records are accessed. Thus we can trade a reduction in index size for

a marginal increase in query time. Suppose Lblock is 100 and Nseq for a given

72

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

query is 5. If we increase Lblock to 200, CR-log will consume half the space,

at a cost of possibly reading 500 additional records. The amortized index size

for each record can be just 1 − 5 bytes. Hopefully, tens of MB of space are

adequate for handling observational data on the scale of GB.

4.4.6 Multi-Attribute Queries

In previous sections, we present the details of executing single-attribute range

queries using CR-indexes. Here we discuss the feasibility of utilizing CR-indexes

on multi-attribute range queries as might arise in applications.

Multiple Continuous Attributes

We have argued that CR-index is lightweight in terms of both time and space

cost. The overhead of maintaining secondary indexes on many attributes should

be acceptable. As a result, the set of available indexes can facilitate the process-

ing of complicated queries involving multiple attributes. Conceptually, the idea

of the CR-index is easy to extend to multi-attribute cases. On the other hand,

the conventional indexes, such as B+-tree, cannot efficiently handle queries with

range conditions on more than one attributes.

In detail, the strategy is to break a multi-attribute query into several single-

attribute sub-queries. Each sub-query accesses a CR-index instance and the

returned entries indicate the scope of sub-query results. It is possible to merge

multiple scopes, depending on the OR and AND connectives in query expres-

sions, before we fetch data blocks. For example, we have two blocks from

different CR-indexes: one involving file offsets from 10 to 30 and the other

from 20 to 40. After examining the query, we can directly extract results from

[10,40] or [20,30] for OR or AND respectively. The system thus avoid accessing

redundant and non-satisfying items.

In order to coordinate indexes and provide better efficiency, global data par-

titions can be applied for all indexes in the same table, i.e. the block partitions

are common among all index instances and using global block ids. Compared

to local data partitions in each index, a global partition could significantly re-

duce the index space and computations. The merge of results in multi-attribute

queries could be processed at the level of block id, making merge operations

much more efficient.

73

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Xmin Xmax

Ymin

Ymax

Figure 4.9: Inevitable holes (dashed-rectangles) in 2-dimensional continuous
data sources.

We note that there are inherent holes in multi-dimensional data, even when

each dimension is ideally continuous. In Figure 4.9, we show two sources that

are ideally continuous over time, but where there exist large holes. An advanced

method that addresses this issue will be discussed in Chapter 5.

Primary-Key Attributes

There is a second type of multi-attribute query, which includes a constraint

on primary-key attributes, e.g., the retrieval of data from a specific sensor for

a time period besides a range of salinity. If the number of distinct keys that

will be retrieved is limited, an additional boundary-pair can be added for each

such key. They further filter CR-records before fetching blocks. In the worst

case where there are an excessive number of distinct keys, we still have two

choices in execution: (1) get records using the primary index and filter them

by value-conditions; (2) fetch data blocks by secondary CR-indexes and extract

the results using key constraints. Since the index-lookup cost of CR-index is

extremely cheap, we can get the CR-records before actually making the decision.

Choice (2) is preferred when the number of returned CR-records is small, which

means only a few blocks need to scan. We test such queries in Section 4.5.6.

4.5 Experimental Results

This section presents an experimental study on indexing and querying observa-

tional data with the CR-index. Our objective is to demonstrate the feasibility

of using this lightweight index to provide good query performance, compared

to that of conventional record-level indexes. In addition, we will demonstrate

74

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

its high write throughput, which makes it an excellent choice for write-intensive

applications.

We compare the CR-index with two conventional index structures: B+-trees

and LSM-trees. We use open-source implementations for these alternatives,

namely JDBM3 for B+-tree [6] and LevelDB [7] for LSM-tree. In order to show

the effect of design choices, we also compare variants of the CR-index. The

variants consider the choices of CR-log storage types (disk-based or memory-

based) and access types (interval indexes or brute-force scan).

4.5.1 Data Sets

We use two real sensor datasets for our test, one from scientific observations,

the other from an instrumented sports game. The first dataset is strongly

continuous, while the second one has numerous holes.

CMOP Coastal Margin Data

This dataset contains coastal margin data collected from the CMOP [1] SAT-

URN Observing System. The data were collected between April 2011 and

August 2012 from an observation station in SATURN. It contains diverse phys-

ical variables reflecting ocean and river status, including salinity, temperature

and oxygen saturation. We transform the raw data files into records, each of

which contains values collected at the same time.

Real-time Soccer Game Data

The second dataset is from the DEBS 2013 Grand Challenge [2]. This high-

resolution data was collected from sensors embedded in balls during a soccer

game. Each sensor produces records at 2000Hz. Each record contains sensor id,

timestamp, position, speed as well as velocity and acceleration in 3 dimensions.

The data is the combination of the readings from four balls, used alternately

during the game. The original stream also contained lower-frequency readings

for the players, which we removed in our test.

75

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

4.5.2 Experimental Setup

All experiments were performed on an in-house cluster, where each machine

has a quad-core processor, 8 GB physical memory and 500GB disk capacity.

All indexes (including CR-index, B+-tree and LSM-tree) are implemented in

JAVA and embedded into the LogBase.

We use default settings for both B+-tree and LSM-tree as given in the

open source code. In the CR-index configuration: the data-block length is 64

records; the CR-log is on disk and indexed by in-memory interval indexes; the

delta-interval length is 1; each CR-record holds up to 5 holes.

The secondary index is built on single attributes in both datasets: salinity

in the ocean data (CMOP) and speed in the soccer data (GAME). The CMOP

data has better continuity, since the salinity of water changes slowly while the

speed of balls can change suddenly. The query set contains queries that retrieve

records whose indexed attribute lies in specified value ranges, with no restriction

on time.

In each test, the client uploads a number of records into the system: 13

million for CMOP and 25 million for GAME. Records are managed by a single

tablet server. The length of raw records are around 200 bytes and 100 bytes,

respectively. After each fifth of the records is inserted, 10 queries are issued

from the query set. The average result selectivity of queries is 8.4% for CMOP

and 6.3% for GAME.

4.5.3 Write Performance

This subsection focuses on the data-insertion performance. We compare differ-

ent index approaches on both time and space consumption.

System-Load Time

Figure 4.10 illustrates the write time in loading data, excluding the time of

executing queries. As can be seen, the CR-index (CRI) is extremely lightweight

and raises system time only slightly, by no more than 8%. This low overhead

is suitable for write-intensive scenarios and allows maintaining many secondary

indexes on a table. In contrast, both LSM-tree (LSM) and B+-tree (B+) cause

significant performance reductions. The write-optimized LSM-tree has 45-77%

extra system cost, while the read-optimized B+-tree’s extra cost is 78-124%.

76

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

 0

 100

 200

 300

 400

 500

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

System Load Time (sec)

CRI
LSM

B+
No index

(a) CMOP

 0

 100

 200

 300

 400

 500

 600

5M 10M 15M 20M 25M

Number of Records

System Load Time (sec)

CRI
LSM

B+
No index

(b) GAME

Figure 4.10: Overall system load time.

Since the B+-tree is update-in-place, its split operations bring random I/Os

and thereby make the maintenance not scalable. Note that the GAME data

was collected from an 1-hour game and our system is capable of processing the

data in real-time.

Index-Update Time

 0

 50

 100

 150

 200

 250

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Update Time (sec)

CRI
LSM

B+

(a) CMOP

 0

 100

 200

 300

 400

 500

5M 10M 15M 20M 25M

Number of Records

Index Update Time (sec)

CRI
LSM

B+

(b) GAME

Figure 4.11: Index maintenance cost.

Figure 4.11 presents the index-only cost. We observe that the index update

cost of the CR-index is about an order of magnitude lower than conventional

index structures. The total cost is only 15% of LSM-tree and 9% of B+-tree.

The reduction in index update time comes from the boundary-pair abstraction.

Each block generates only one index entry, much less than in other approaches.

Figure 4.12 provides the detailed index-update overhead of CR-index vari-

ants. The most lightweight variant uses a memory-based CR-log without in-

terval indexes (mCRL), which incurs no I/O. The interval indexes can still be

constructed on a memory-based CR-log (mCRL + index), but updating indexes

add cost. The disk-based CR-log (dCRL) has minimal memory consumption, at

the cost of sequential I/Os. Although the maintenance cost is much higher than

77

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

 0

 5

 10

 15

 20

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Update Time (sec)

mCRL
mCRL + Index

dCRL
dCRL + Index

(a) CMOP

 0

 5

 10

 15

 20

 25

 30

 35

5M 10M 15M 20M 25M

Number of Records

Index Update Time (sec)

mCRL
mCRL + Index

dCRL
dCRL + Index

(b) GAME

Figure 4.12: CR-index variants maintenance cost.

for in-memory variants, it is still an order of magnitude smaller than data-load

time. The most versatile variant is the disk-based CR-log with memory-based

interval indexes (dCRL + index), which is the default variant in other tests.

The interval indexes raise the index cost by up 20-70% than disk-based ap-

proach but consume much less memory than memory-only variants.

Index-Space Consumption

 0

 200

 400

 600

 800

 1000

 1200

CMOP GAME

Data Set

Index Size (MB)

CRI
LSM

B+

Figure 4.13: Index space consumption.

Figure 4.13 summarizes the disk-space consumption of different indexes. We

only sum up the disk space, ignoring any memory usage. In the figure, we can

see that the size of the CR-index is only 10-12% of the LSM-tree and 4-6% of

the B+-tree. We expect that the B+-tree uses more space than the LSM-tree,

since its disk pages are often partially full. With default data-block length,

the number of entries in the CR-index is only 1/64 of that for the record-level

indexes. However, since each entry (CR-record) keeps several fields, such as

hole information, the entry size is larger.

78

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

4.5.4 Query Performance

This subsection focuses on the response time of range queries. We consider

both overall response time and sub-phase execution time.

Query-Response Time

 0

 1

 2

 3

 4

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

System Query Time (sec)

CRI
LSM

B+

(a) CMOP

 0

 3

 6

 9

 12

5M 10M 15M 20M 25M

Number of Records

System Query Time (sec)

CRI
LSM

B+

(b) GAME

Figure 4.14: Overall system query response time.

Figure 4.14 shows the overall query response time with different approaches.

As can be seen, the response time of the CR-index is comparable to that for the

LSM-tree and B+-tree. It performs better on CMOP data, since the ocean’s

salinity provides stronger continuity than the mixture of four balls’ speeds. The

results from both datasets show that the CR-index can replace conventional

indexes on observational data while preserving similar query performance.

Since all these are secondary indexes, they all employ two steps to process

a query: the index-lookup phase accesses the index to get record references (in

B+-tree and LSM-tree) or block references (in CR-index); the data-access phase

reads records or blocks from data files. For both LSM-trees and B+-trees, the

lookup cost is significant. After a record is identified, they access it efficiently

using accurate positional information. On the other hand, the lookup cost on

small-sized CR-index is negligible. Most of the cost is incurred in fetching and

scanning data blocks.

Index-Lookup Cost versus Data-Access Cost

Figure 4.15 examines the index-lookup cost. As can be observed, the CR-index

spends much less time than other approaches in this phase. The total cost is

only 3-7% of that of the LSM-tree and 4-9% of the B+-tree. These values are

not surprising, since the number of entries in the CR-index is only 1/64 that

79

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

 0

 0.5

 1

 1.5

 2

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Lookup Time (sec)

CRI
LSM

B+

(a) CMOP

 0

 1

 2

 3

 4

 5

 6

5M 10M 15M 20M 25M

Number of Records

Index Lookup Time (sec)

CRI
LSM

B+

(b) GAME

Figure 4.15: Index lookup phase cost.

of the other two. Although the efficient lookup comes at the cost of increasing

data-access time, the overall cost of these two phases is still low.

Figure 4.16 shows the lookup cost of different CR-index variants. Since

scanning a disk-based CR-log takes about five times longer than using inter-

val indexes, we discard that variant from the figure. Memory-based variants

(mCRL and mCRL+Index) have excellent lookup performance. Note that using

the interval indexes with a memory-based CR-log actually incurs a performance

penalty. However, for a disk-based CR-log (dCRL+Index), the interval indexes

are necessary to reduce I/Os.

 0

 5

 10

 15

 20

 25

 30

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Lookup Time (ms)

mCRL
mCRL + Index
dCRL + Index

(a) CMOP

 0

 30

 60

 90

 120

 150

5M 10M 15M 20M 25M

Number of Records

Index Lookup Time (ms)

mCRL
mCRL + Index
dCRL + Index

(b) GAME

Figure 4.16: CR-index variants index lookup cost.

Figure 4.17 shows the data-access cost. The LSM-tree and B+-tree have the

identical set of record references. The time of accessing records in data files is

therefore similar. However, for the CR-index, the data-access cost is higher,

because data blocks are fetched. The block length used in our test is 64, but the

data-access time is not 64 times longer. The block-scan only increases the time

by 26-34%, as an accessed block always contains many results and most blocks

are read as part of sequences. Table 4.1 shows the statistics for accessing blocks

in different queries. In GAME data, since the records are from four balls, the

80

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

 0

 0.5

 1

 1.5

 2

 2.5

 3

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Data Access Time (sec)

CRI
LSM

B+

(a) CMOP

 0

 2

 4

 6

 8

5M 10M 15M 20M 25M

Number of Records

Data Access Time (sec)

CRI
LSM

B+

(b) GAME

Figure 4.17: Data access phase cost.

results are diluted by noises from other readings. Hence, the number of blocks

in a sequence is larger while the number of results in a block decreases. Nseq is

the estimated number of sequences, using the analysis in Section 4.4.5, which is

pessimistic. In real datasets, the number of seeks performed is much less than

the theoretical bound.

Table 4.1: Result Sequences in Datasets
Query CMOP1 CMOP2 GAME1 GAME2

Results 503K 1217K 1075K 1595K
Blocks 13815 29524 60754 95142

Sequences 2991 6176 2249 5821
Nseq 28367 62380 6096 18087

Res/Blk 36.4 41.2 17.7 16.8
Blk/Seq 4.62 4.78 27.01 16.34

4.5.5 Influencing Factors

This subsection covers several factors that influence index performance and

allow tuning the trade-off between write and query cost. The data size in

following tests used the full-size configuration (12.9M for CMOP and 25M for

GAME).

Block Length

Block length dominates both the number of generated CR-records and the

block-scan cost. Figure 4.18(a) shows the index-lookup cost with different block

lengths. The lookup time appears proportional to O(n logn), where n refers to

81

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

 0

 100

 200

 300

 400

 500

 600

16 32 64 128 256

Block Length (records)

Index Lookup Time (ms)

CMOP
GAME

(a) Index lookup time relative to block
length.

 0

 2

 4

 6

 8

 10

16 32 64 128 256

Block Length (records)

Block Scan Time (sec)

CMOP
GAME

(b) Block scan time relative to block
length.

 0

 5

 10

 15

 20

5M 10M 15M 20M 25M

Number of Records

System Query Time (sec)

CRI w/ HS
CRI w/o HS

(c) Query time improved by Hole Skip-
per.

 0

 5

 10

 15

 20

3.9% 6.5% 9.4% 12.7% 16.1%

Query Selectivity

System Query Time (sec)

CRI
LSM

B+

(d) Query time relative to selectivity.

Figure 4.18: CR-index performance affected by different factors.

the number of index entries. This pattern is expected due to the retrieval cost

on tree-structured interval indexes.

The data-access time intuitively rises with increasing block length. Fig-

ure 4.18(b) presents this trend. From this figure, we observe that scan cost

increases linearly but slowly with block length. This phenomenon coincides

with the mathematical analysis in Section 4.4.5 and supports our point that

index size and update cost can be reduced significantly with only a moderate

effect on query performance.

Effect of Hole Skipper

Potential discontinuities occur for many reasons. In the GAME dataset, the

gaps in ball speed are produced by nature of the game: only one ball is in play

alternately. Therefore, there are inherent gaps between the speed of the active

ball and that of the other balls. Figure 4.18(c) shows the improvement in query

response time that Hole Skipper provides for GAME data. As can be observed,

it improves the performance by about 40%. HS only helps slightly for CMOP

data because of its good continuity, and we omit the comparison here.

82

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

Query Selectivity

Figure 4.18(d) shows the query response time with different query selectivities

on the CMOP dataset. As can be seen, when the selectivity is low, e.g. 3.9%,

all indexes performs well. However, as the range increases, the CR-index scales

well. In B+-trees, split pages might not be physically contiguous. Therefore, for

large-range queries, randomly located pages are accessed, hurting performance.

In contrast, the CR-index only execute sequential I/Os in both index-lookup

and data-access phases, accessing the CR-log and data files. Therefore, the

CR-index is more scalable than record-level indexes, both in terms of dataset

and result size.

4.5.6 Multi-Attribute Queries

This subsection verifies the feasibility of extending the CR-index to handle

complex multi-attribute queries. The data size is still the full-size configuration.

 0

 5

 10

 15

 20

0.1%1.2% 2.8% 5.7% 9.7%

Query Selectivity

System Query Time (sec)

CRI 2d
CRI s
CRI t

(a) 2D

 0

 10

 20

 30

 40

 50

0.2% 1.9% 3.0% 4.5% 8.5%

Query Selectivity

System Query Time (sec)

CRI
CRI key
Primary

(b) 1D+Key

Figure 4.19: Multi-dimensional queries response time: (a) 2-dimensional range;
(b) 1-dimensional range for a specific key.

Queries on Multiple Observational Attributes

We first consider a 2-attribute range query: retrieval of CMOP records whose

salinity and temperature are in specific ranges. Having an index on only one

attribute results in further filtering of returned records. The query selectivity

is varied by changing the salinity-range while the temperature-range is fixed.

As can been seen in Figure 4.19(a), the response time of indexing salinity(CRI

s) is influenced severely by query selectivity as the number of candidate blocks

increase, compared to indexing temperature(CRI t). When both CR-indexes

83

CHAPTER 4. INDEXING OBSERVATIONAL DATA IN LOG STORE

are available, the pre-filtering of CR-records prevents fetching most of the non-

satisfying data blocks and the consequent improvement is significant (CRI 2d).

The proposed technique is extensible for more than 2 attributes.

Queries with Equality on Primary Key

Second, we consider queries with select-conditions on both key and attributes:

retrieval of GAME records whose velocity is in a specified range and from a

specified sensor. The query selectivity is varied by changing the range while

fixing the key. LogBase provides the key-based primary index, which we can

use to fetch records and then filter by range-conditions. As can be seen in

Figure 4.19(b), this plan (Primary) is not affected by query selectivity. On

the other hand, the CR-index (CRI) on velocity is sensitive to query-range

and could be outperformed by the primary index at some point of selectivity.

This point could be considered as the watershed for the choice of query plan.

Following our discussion in Section 4.4.6, with the improvement where the key

has its own boundary-pair (CRI key), the overall response time could be much

lower.

4.6 Summary

Log-structured storage is a natural choice for storing observational data that

arrives as streams. We designed a novel lightweight index structure called the

CR-index which is small enough to reside in main memory and is fast to con-

struct. It avoids indexing each item, as in conventional indexes, and therefore

achieves high write throughput in write-intensive applications. The index sup-

ports fast location of potential results, followed by a data-scan. The index

exploits several key properties of observational data, most importantly, conti-

nuity. The experimental analysis verifies the feasibility of the CR-index and

confirms that it can provide good query performance compared to existing in-

dexing strategies, while achieving high write throughput. For other application

areas where data is not strictly continuous but values are correlated between

successive records, for example stock prices, our index might also be effective.

This work has been published as a full research paper in 2014 VLDB Con-

ference [89].

84

CHAPTER 5

MULTI-DIMENSIONAL

OBSERVATIONAL DATA IN LOG

STORE

Tremendous amounts of data are being generated by sensing devices each day,

which include large quantities of multi-dimensional measurements. These data

are expected to be immediately available for real-time analytics as they are

streamed into storage. Such scenarios pose challenges to state-of-the-art in-

dexing methods, as they must not only support efficient queries but also fre-

quent updates. In this chapter, we propose a novel indexing method that

ingests multi-dimensional observational data in real time. This method pri-

marily guarantees extremely high throughput for data ingestion, while it can

be continuously refined in the background to improve query efficiency. Instead

of representing collections of points using Minimal Bounding Boxes as in con-

ventional indexes, we model sets of successive points as line segments in hyper-

spaces, by exploiting the intrinsic value continuity in observational data. Such

a representation reduces the number of index entries and drastically reduces

“over-coverage” by entries. Our experimental results show that our proposed

approach handles real-world workloads gracefully, providing both low-overhead

indexing and excellent query efficiency.

85

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

5.1 Introduction

Rapid advances in sensing technologies and devices are creating a new norm

in digitizing our physical world and daily life. The types of entities whose

state can be continuously captured are increasing in tandem, from microscopic

molecules to macroscopic celestial bodies. The range of properties that can be

sensed from monitored entities is growing as well. As a result, the collected

measurements, called observational data, are exploding both in volume and

velocity. On one hand, sensors’ capabilities keep improving in both sampling

frequency and resolution. For example, a single sensor can capture the velocity

of a moving object in units of µm/s at a frequency of 2000Hz. On the other

hand, decreasing device prices and increasing power efficiency facilitate the

deployment of large sensor networks. They may consist of thousands of sensors,

producing simultaneous high-frequency observations. All these trends make

observational data management write-intensive.

To make the collected data ready for querying as soon as they are in-

gested into storage, indexing structures must be efficient for frequent updates.

Various indexing methods have been proposed to address this problem. Ex-

amples include bulk-insertion techniques [28, 30] that update the indexes in

a batch manner, which lowers the per-item cost, and log-structured-merge

trees [14, 71, 78] that incur only sequential I/Os for updates. In the previ-

ous chapter, we proposed an index that exploits the intrinsic value-continuity

of observations. Compared with other indexes where individual records are

indexed, this method assigns one index entry for a collection of records (rep-

resented as a bounding-value pair) to reduce index-construction cost. When a

query arrives, it relies on partial scans to access record collections. However,

that method only addresses data in single dimension.

In this chapter, we study the indexing problem for multi-dimensional obser-

vations. In practice, an observational data flow is usually a continuous collec-

tion of observations with multiple attributes (i.e., dimensions). For example,

observations from underwater sensors may contain water temperature, salinity,

oxygen saturation and pH. Though all these data could be perfectly value-

continuous, it is still challenging to exploit this feature in practice. First, data

sparsity in multi-dimensional spaces hurts query efficiency. Bounding objects

such as minimal bounding rectangles/boxes/spheres (MBR/MBB/MBS) are

86

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

MBR

MBS

Observations

Query Range

Figure 5.1: False positives from data sparsity.

widely used in conventional indexes [13, 50, 59] to represent a collection of

data items. However, such representations will cause “over-coverage”, i.e., por-

tions of indexed spaces that contain no actual points, as shown in Figure 5.1,

where queries overlap with bounding objects, but not with observations. These

structures force us to access false-positive entries. This issue becomes even

more severe as the dimensionality increases. Second, the write-intensive aspect

limits resources and possibilities to derive bounding objects with the least over-

coverage. There is prior work [58] that investigates flexible bounding objects

to reduce over-coverage, but it incurs high construction cost and hence is not

affordable in our case. The derivation of index entries should be extremely fast

so that it does not affect the throughput for updates.

To address challenges above, we propose a novel indexing method called

SICC (Segment-oriented Indexing for Continuously-Changing data), which ex-

ploits value-continuity on observations to support fast and adaptive indexes for

real-time workloads. The index is extremely lightweight for new data inges-

tion, and at the same time ensures query efficiency. Its graceful performance

is derived from the following three important considerations. First, we note

that while data are scattered all over the space in a global view, points col-

lected during a short time period nonetheless can be estimated as a segment in

the hyperspace. This inspires us to represent points concisely with a bounding

segment that minimizes over-coverage. Second, to ensure real-time access, the

index must be constructed as data arrive. The cost for deriving and indexing

bounding segments is expected to be small and constant. Third, the initial

87

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

construction targets massive data ingestion, hence might lead to unsatisfactory

performance on some queries. Index-structures should be able to improve over

time in the background.

The contributions of this chapter include:

• A novel bounding object called a bounding segment that represents points

as a hyperline-segment, exploiting the value-continuity in observational

data. Related operations, such as deriving segments and calculating vol-

umes are provided as well.

• A framework that constructs segment-oriented indexes for continuously

arriving observations. Under this framework, online segmentation algo-

rithms derive bounding segments effectively and efficiently.

• An R-tree variant for indexing bounding segments with low overhead,

while ensuring query efficiency. The structure is adaptive: it can be

continuously improved based on query execution statistics.

• An extensive experimental evaluation on two real-world datasets, com-

paring with baseline approaches. The results confirm that our approach

significantly reduces insertion overhead and at the same time provides

excellent query efficiency.

The rest of this chapter is organized as follows. In Section 5.2, we state

the targeted problem and key concepts in our design. Section 5.3 presents the

overall framework. The details of bounding-segment representation and index

construction are discussed in Sections 5.4 and 5.5, respectively. We evaluate

performance in Section 5.6. Summaries are given in Section 5.7.

5.2 Preliminaries

This section characterizes observational data and provides a description of the

problem we address. We also present key concepts in our design and explain

how they exploit characteristics of observational data.

88

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

5.2.1 Observational Data

Sensing devices are common data sources for analytic applications, especially

scientific tasks. For example, coastal-margin observation [1] deploys underwater

sensors at different sites and depths to gather data, such as water temperature,

salinity and oxygen saturation. We call data collected in such a manner obser-

vational data, as they are in fact observations of an entity (or environment) at

different moments.

In this chapter, we rely on three characteristics of observational data, as in

the previous chapter, that facilitate indexing and querying: 1) Append-only:

Observations are rarely modified after entering the storage, each having its own

observation time. 2) Value-continuity: Observations from the same sensor

inherently tend to have similar readings during a certain period. 3) Sequence

analysis: It is common to analyze series of consecutive observations rather

than individual points. These traits permit us to reduce index information

without compromising query efficiency.

5.2.2 Problem Description

We focus on an online observational data flow, with an unbounded stream of

arriving records. Assume that each record contains d property dimensions as

floating-point values, as well as an observation time. We can represent each

individual record as a point1 in a d-dimensional space Rd (or Rd+1 with the

time dimension).

The major concern is that, upon arrival, each point should be stored and

indexed as quickly as possible. Therefore, the system can provide superior

write-throughput for rapidly generated observations. At the same time, a query

request should be able to acquire up-to-date results. Due to the nature of

observational data and scientific analysis, it is uncommon to perform exact

point queries on high-precision values. Hence, we focus on range queries, which

find all points that lie within a d-dimensional query range r (or with d′ < d

dimensions specified, with other dimensions as infinite ranges). We address the

retrieval of complete query answers, where no approximate or lossy results are

allowed.

1An observation (application level), a record (storage level) and a point (logical level) are
used interchangeably in this chapter.

89

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

This task is indeed an indexing problem, but in a specific context. Con-

sequently, we have to address various issues with respect to the particularities

and opportunities present. For sequence analysis, qualified records are expected

to be returned in observation-time order, since an additional sorting phase is

expensive for results with large cardinality. To provide real-time access, we also

need to support incremental queries, in which results are periodically produced

over just new data.

5.2.3 Basic Design of SICC Indexes

Low Overhead. The traits and challenges of observational data discussed

above drive our index design. Most important is low maintenance overhead.

For write-intensive applications, it is prohibitive to take up too many system

resources to index constantly arriving records at the expense of input through-

put or query speed. We prefer lightweight methods that handles high insertion

rates and concurrent query retrievals, as indexes could be refined later when

the system has available resources.

Log-Structured Storage and Sequential I/Os. Sequence analysis is

common for observational data. For this purpose, we use log-structured stor-

age system as our data storage. Log-structured storage is an ideal platform for

us to store and query data with sequential writes and reads. First, it has higher

write-throughput compared to update-in-place systems. As records are imme-

diately appended into log files, separate WALs are eliminated, and this aspect

fundamentally saves a large number of I/Os for data ingestion. Second, sequen-

tial scans return records in insertion order (which correlates with observation

time). Furthermore, scans are highly efficient, as they reduce random disk seeks

and yield high bandwidth. Given a single disk-head seek (∼5ms), accessing one

record (∼10µs) or hundreds of physically contiguous records have comparable

costs. Therefore, the cost of a data block scan should be comparable to a single

random record access.

Intrinsic Clustering versus Induced Clustering. Traditional index

methods organize records with similar values into the same physical page to

save query I/Os. This arrangement can be called induced data clustering. As

new records arrive, they are always stored nearby similar records. Thus the

physical index organization keeps changing, incurring extra overhead. In con-

90

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

trast, there is intrinsic data clustering in observational data, which provides

a similar effect to induced clustering, but with little overhead. By simply ap-

pending newly arrived records into contiguous disk pages, potential results of

a range query tend to be grouped together. Although not all results of a query

will be adjacent, they are likely clustered into consecutive sequences on the

disk. This phenomenon becomes more attractive in multi-dimensional spaces.

When storing a multi-dimensional point on disk, the “closest” neighbors on

each dimension cannot be all physically nearby [57]. Hence there is no perfect

induced clustering for all dimensions, while intrinsic clustering still provides

reasonable effectiveness.

5.3 Index Framework

In this section, we introduce our SICC framework for indexing observational

data. The architecture is shown in Figure 5.2. Arriving data are stored sequen-

tially in log-structured storage before being indexed. On top of the storage, we

maintain two tiers of index structures.

Observational Data

Data Space (Logical View)

Segmentation

Algorithm
Tier 1

Block Headers

H1 H2 H3 H4 Hk-1 Hk

Log-structured Storage

Log

Files

S1

S2

S3

Header

Indexing
R1

R2

Tier 2

append

ID: Sk

Bounding Segment

Location: (File, Offset)

Length: n

Block Header Format

S1

S2S3

S4

S5

S6

Sk Sk-1

Figure 5.2: SICC index framework.

In the first tier, all records are divided into logical blocks, via a segmentation

91

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

algorithm. A block refers to a number of successive records and is the finest unit

for data access. For any query referring to a certain subset of the records in a

block, the whole block will be fetched as a batch. For each block, we generate

a block header, which keeps necessary information for processing queries, i.e.,

that needed to determine whether and where to access those records. More

specifically, the bounding segment in the header determines if the block possibly

contains query results. Only when the bounding segment intersects the query

range will the system fetch that data block. These headers are generated by

the segmentation algorithm on the fly. Since a group of records share a single

header, index size is reduced.

In the second tier, block headers are organized and indexed, so that we need

test only some of the headers to get the complete result of a query. During fre-

quent data insertion, good organization is essential to ensure query efficiency, as

the number of blocks can quickly grow large. This tier performs as an indexing

structure for bounding segments in the headers. Additionally, the organization

must facilitate sequential scans for data blocks, so that disk bandwidth can be

fully utilized.

Overall, there are three critical issues that dominate the effectiveness and

efficiency of our SICC framework:

• Given a block of records, how do we derive a proper bounding segment,

so that “over-coverage” in multi-dimensional space is minimized? (Sec-

tion 5.4)

• During massive data ingestion, how do we generate bounding segments

and index them without compromising system performance? (Section 5.5.1)

• Given that the system still has available resources after handling data

ingestion and query requests, how can we further refine the index for

better query efficiency? (Section 5.5.2)

5.4 Bounding Segment

In this section, we present the structure of bounding segments. Algorithms

that quickly compute bounding segments, match segments against queries, and

calculate segment volumes are also provided.

92

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

5.4.1 Continuity among Observations

12 14 16 18 20 22 24 26 28 30 32
10

10.5

11

11.5

12

12.5

13

Salinity

O
x
y
g

e
n

 S
a

tu
ra

ti
o

n

(a)

0
1000

2000
3000

4000
5000

10

20

30

40
10

10.5

11

11.5

12

12.5

13

TimeSalinity

O
x
y
g

e
n

 S
a

tu
ra

ti
o

n

(b)

Figure 5.3: Observations from an estuary that contain salinity and oxygen
saturation: (a) distribution within a time period; (b) distribution over time.

For a sequence of d-dimensional observations, the corresponding points form

a continuous path in the d-space, provided that the values in each dimension are

continuous over time. This pattern can be observed in real-world data sources.

Figure 5.3 shows such a situation, where the salinity and oxygen saturation

status of an estuary are expressed in a 2d-space. Although the path is obvi-

ous in Figure 5.3(b), these two dimensions are not completely correlated, as

can be seen in Figure 5.3(a). No global correlation means that it is ineffective

to directly apply dimension-reduction techniques [43] to cut down the dimen-

sionality. However, the path (exhibiting “local correlations”) can be exploited.

For a properly chosen sequence of points, their path can be approximated as a

segment of a hyperline in d-space. This opportunity motivates our design for

bounding segments.

5.4.2 Bounding Segment Format

Here we present the structure of a bounding segment, and visualize the space

bounded by a segment. Assume that we are considering a d-dimensional space.

A bounding segment S consists of three d-dimensional values:

• vb represents the base point of the segment,

• vs represents the segment direction and length, and

93

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

• ve represents the extent of points on the segment.

Figure 5.4 depicts these values and the bounded space, when d = 2. Points

vb and (vb+vs) are the two endpoints of the underlying hyperline segment. The

extent ve only contains non-negative scalars. It can be viewed as a function

mbbe(p) that extends any point p to be an MBB centered at p, with bounding

range [p(i) − ve(i), p(i) + ve(i)].
2

The total extent bounded by a bounding segment S is the union of those

extended MBBs from all points between the endpoints vb and (vb + vs), which

can be expressed as:

ext(S) =
⋃

α∈[0,1]

mbbe(vb + α · vs)

5.4.3 Computing Bounding Segments

A bounding segment S covers a collection of points P if P ⊂ ext(S). However,

unlike MBBs, which are easy to calculate, the optimal bounding segment for a

collection P is harder to discover, due to the many degrees of freedom. First,

the axis vs is hard to determine, as the search space grows exponentially with

increasing dimensionality. Second, even once the axis has been fixed, the extent

ve is still not unique. It is always possible to increase ranges in some dimensions

in order to reduce ranges in other dimensions, as illustrated in Figure 5.5.

Bounded Space

vbve

vs

vb+vs

Figure 5.4: 2d bounding segment visualization.

Considering low overhead, we prefer simple algorithms that find bound-

ing segments with reasonable but not necessarily optimal pruning effectiveness.

Here we provide a linear solution for computing bounding segments in two

2We use x(i) to denote the i
th element of vector x.

94

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

steps: (1) determine the segment axis (direction of vs); (2) determine the seg-

ment extent (vb, ve and scale of vs). In our method, only the segment axis is

maintained incrementally as points arrive. The segment extent is determined

only after all points in the block are available.

Segment Axis

The segment axis is determined using principal-component analysis (PCA) tech-

niques. PCA is a statistical procedure that finds orthogonal axes, so-called prin-

cipal components (PCs), so that points are linearly uncorrelated when aligned

to those components. The first PC has the largest variance, and each suc-

ceeding component has largest variance while being orthogonal to all preceding

components.

In our scenario, a proper segment direction of vs can be considered as the

direction with largest variance, i.e., the first PC. However, calculating the exact

first PC for n d-dimensional points has complexity O(nd2) or O(n2d). To ensure

that the total procedure is linear in the data size, an incremental PCA (IPCA)

algorithm, called CCIPCA [91], is adopted. It approximates the first k PCs in

an incremental manner with only O(kd) complexity per point. Another reason

that an IPCA algorithm is desirable is that the support of incremental updates

facilitates online segmentation (Section 5.5). CCIPCA is used because of its

efficiency and simplicity for implementation, but other IPCA algorithms should

also be applicable.

Note that the effectiveness of the bounding segment S does not depend on

the sequential order of points inside. Once all points are close to the segment

axis, S should have good pruning effectiveness, even if consecutive points are not

always adjacent to each other. Therefore, the bounding segment can tolerate

small discontinuities in the data, e.g., data disorder.

Segment Extent

The segment axis is the line passing through the mean along the direction of

vs. After obtaining the segment axis, we can “project” points onto the axis.

Recall that the extent of a bounding segment is the union of all MBBs of points

between two endpoints. For any point p represented by the bounding segment,

there must exist at least one point p′ on the axis so that p ∈ mbbe(p
′). To derive

95

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

ve, we need to find a p′ for each point p and update ve, such that:

ve(i) = max (ve(i), |p
′
(i) − p(i)|)

However, the projection of p to p′ is not unique, and different projections will

affect ve (and thusmbbe(x) function). Figure 5.5 illustrates the effect of different

projections.

Segment Axis

Bounding Segment

p

p’

p

p’

Figure 5.5: Different point projections onto the segment axis in 2-dimensions.

To simplify this procedure, we project points onto the segment axis along

norm vectors, which are orthogonal to the axis (as shown in the right part of

Figure 5.5). This projection is optimized for the squared error between p and

p′. The projected point p′ can be expressed as:

p′ = omean + θ ·
vs
‖vs‖

θ = (p− omean) ·
vs

‖vs‖

where omean is the mean of all points in the segment. The two endpoints are

also easy to find, by recording the minimal and maximal θ encountered, so as:

vb = omean + θmin ·
vs
‖vs‖

vs = (θmax − θmin) ·
vs

‖vs‖

By this method, all three values in a bounding segment are computed. Note

that the extent ve could be replaced with two values, one for the upper bounds

96

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

and the other for the lower bounds, to further reduce the total extent.

5.4.4 Matching against a Query

The main reason that we record the extent ve aligned to the original axes is

that this choice makes the test against queries extremely simple. The extent

of a bounding segment S can be easily “transferred” to a query, by enlarging

the query range. The intersection check for S (with ve) against the query range

[qmin, qmax] is equivalent to the check of a pure segment (without extent) against

the query range [qmin − ve, qmax + ve].

To test the segment vb to vb + vs against the box [qmin − ve, qmax + ve],

we can decompose this task into multiple 1-dimensional overlap checks. For

each dimension i, we use a pair (li, ui) where 0 ≤ li ≤ ui ≤ 1, to express the

intersected portion:

[vb(i) + li · vs(i), vb(i) + ui · vs(i)]

= [vb(i), vb(i) + vs(i)] ∩ [qmin(i) − ve(i), qmax(i) + ve(i)]

The final test is true only if ∩1≤i≤n[li, ui] 6= ∅.

5.4.5 Calculating Segment Volume

To support online segmentation algorithms (Section 5.5), we need to calcu-

late (or at least estimate) the volume bounded by a segment, especially in an

incremental way.

Once we have a bounding segment S, we can calculate an accurate volume

of the bounded space as:

Vol(S) =

(

n
∏

i=1

2ve(i)

)

·

(

1 +
n
∑

j=1

vs(j)
2ve(j)

)

However, the ve component can only be obtained by processing all points in

the block whenever the segment axis is updated. Hence, the complexity of

getting the up-to-date volume after m points will be O(md). For a sequence

of n points, the total cost of getting the volume of the bounding segment after

each incremental update will be O(n2d), which is likely unaffordable.

We provide here a simple way to estimate the volume. Note that calculating

97

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

the segment volume using the formula above only needs ve and vs. We can

therefore estimate these two values in order to get an approximate volume. For

the extent ve, another value v′e is maintained during incremental update. For

each new point p, we first compute its projection p′ on the current segment

axis, and update the v′e in the same way we calculate ve. As the segment axis

keeps adjusting, v′e will no longer capture the real extent. However, so long as

the segment axis changes only slightly during the updates, v′e will be a good

estimate of ve. Following the same idea, we can estimate vs incrementally.

For each point p, we calculate the distance between p′ and the axis origin.

The approximate v′s is therefore estimated from the two endpoints that are at

maximal distance to the origin in opposite directions.

5.5 Indexing and Refining

This section presents the initial construction of SICC in a lightweight manner

when ingesting new data, in-order to maximize write-throughput. We then dis-

cuss the strategy for continuously refining the index to improve query efficiency.

5.5.1 Index Construction

The SICC can be easily constructed when data records are initially ingested

into log-storage, hence these data are ready for answering queries as soon as

possible. To ensure throughput, the construction is lightweight. We segment

consecutive records into disjoint blocks, each of which are then represented by

a bounding segment.

The bounding segments are based on the insight that a collection of consec-

utive points are close to an “implicit” segment axis. Its effectiveness is more

sensitive to the location of points, compared to that of MBBs, i.e., a point is

less probable to be near a axis than within a box. Therefore, segmentation al-

gorithms that determine the scope of each block (i.e., the start and end record

of a block) are critical. We used an eager segmentation algorithm to take newly

arrived records as input and divide them into logical blocks. For each block, the

algorithm generates a block header as output. Block headers allow us to skip

blocks of data that do not contribute results to a given query. All generated

headers are appended into a header file. To avoid checking all headers for each

98

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

query, we design OR-trees to index them in a write-optimized way.

Block Header

A block header basically contains two types of information: (1) that for block

matching against queries, including a bounding segment; and (2) that for lo-

cating the block contents for retrieval, including the block id, file id, file offset

and count of records. Given a block header and a query, the bounding segment

is first tested against the query range. Only on a positive test will the location

information be used to fetch the data block.

Eager Segmentation

We use an eager segmentation method to segment blocks during data ingestion

due to its simplicity. It is extremely lightweight that requires only a single pass

of data, with amortized O(d) complexity per record. The main idea is that

we maintain one active block to accept incoming records. When a new record

arrives, we immediately decide whether to put it into the active block, or to

close that block and initiate a new one. To guide the decision, we follow a

rule: For answering any query with r results, the number of accessed

records should be less than µ · r, where µ (> 1) is an amplification

factor.

First, we address a sub-problem at the block level: given a block B with

|B| records and rB as the number of expected results in B, how to determine

whether fewer than µ · rB records will be accessed for answering queries. To

make the analysis, pre-knowledge of the query workload is required. For range

queries, the relevant aspects are: (1) the expected range extent of queries; and

(2) the distribution of queries. To simplify the problem, we assume that query

workload has a uniform distribution, and the expected extent of the query range

is l.

We define the query-enlarged area of a point p to be the MBB that has range

[p(i), p(i) + l(i)] for each dimension i. For each point p, the probability that it is

returned as a query result is proportional to the volume of its query-enlarged

area, that is:

Respoint(p) ∼
n
∏

i=1

l(i)

99

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

Hence, for the whole block B, the expected number of results rB it contains

can be expressed as:

rB =
∑

p∈B

Respoint(p) ∼ |B| ·

n
∏

i=1

l(i)

Algorithm 3: Eager Segmentation(Record r)

Input: a newly arrived record r
Output: a new block header or null
/* global variables */

1 Block active;
/* local variables */

2 Header ret = null;
3 Boolean closed = false;
/* check constraint */

4 add r into active and update segment axis;
5 if active.enlargedVol / active.PointsVol ≥ µ then
6 closed = true;
7 remove r from active;

/* check to close the block */

8 if closed is true then
/* create header for the block */

9 compute segment extent of active;
10 ret = new Header(active);
11 active = new Block();
12 active.filePosition = r.position;
13 add r into active;

14 return ret;

Now we consider the expected frequency with which B needs to be fetched

and accessed, which depends on the bounding object representing the block.

More specifically, the frequency is proportional to the query-enlarged area of the

bounding object, which should cover the query-enlarged area of all contained

points. For a block B, we need the query-enlarged segment S ′
B. It should be

the same as bounding segment SB, except that the extent ve is replaced by

ve+
1
2
l. As a result, the access frequency of block B is proportional to Vol(S ′

B).

(See Section 5.4.5 for calculating segment volume.) For each access, the whole

block will be fetched and scanned. Therefore, the expected number of accessed

records is |B| · Vol(S ′
B).

100

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

To ensure that fewer than µ · rB records are accessed, we have the following

constraint:

µ >
number of accessed records in B

number of results in B
=

Vol(S ′
B)

∏n

i=1 l(i)

If every block meets this constraint, the total number of accessed records is

expected to be less than µ · r. Algorithm 3 shows the eager segmentation pro-

cedure. We keep loading new records into the active block until it violates the

constraint for a given µ, and then start a new block. Note that no assumption

on data distribution or continuity is required. To adapt this analysis to arbi-

trary query distributions, all we need is a query histogram containing query

frequencies and range sizes. We replace l with actual range sizes and weight

the query-enlarged areas with the recorded frequencies.

The amplification factor µ controls the trade-off between index-construction

cost and query efficiency. Though it is user-defined, its in-world meaning is

straightforward, i.e, the number of records we can tolerate before getting a

result. There is no clear optimal setting for factor µ in a given workload, as we

can always reduce it so long as the system can handle increased overhead.

Header Indexing

Similar to data stored in log-storage, block headers are also organized sequen-

tially on disk. Generated headers are appended to the end of a headerfile.

When answering a query, the simplest way to check headers is a brute-force

scan of the entire header file. Although such a method is not intelligent, it does

have advantages: it always returns qualified headers in insertion order. This

order facilitates the scan in underlying log-storage, as consecutive qualified data

blocks can be fetched in a single round without extra disk seeks. In addition,

final results can be returned in order as well, which benefits sequence analysis

from a user’s perspective.

Intuitively, we can adopt R-trees [50] to index block headers, using the MBB

of the bounding segment as the spatial key. Although R-trees outperform brute-

force scans on access, their high maintenance cost make them prohibitive for

write-intensive scenarios. If observations come in a high rate, node splits and

re-organizations will be the bottleneck. Also, as index entries are no longer

accessed in insertion order, an additional sorting phase for qualified entries is

101

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

required, if we want to fully utilize bandwidth to access data blocks.

H1 H2 H3Header File

OR-tree 1 OR-tree 2

OR-tree Height

R-tree

Figure 5.6: Indexing block headers with OR-trees of height 2.

To combine the strengths of R-trees and brute-force scans, we propose an

R-tree variant that provides both write throughput and query efficiency. In our

approach, the header file will be indexed by a number of sub-trees, termed OR-

trees, and only their root nodes are put into a global R-tree. Each sub-tree is

organized similarly to a normal R-tree, but constructed in a bottom-up manner

in which block headers are grouped and indexed in insertion order. Hence we

name it Ordered R-tree (OR-tree). Figure 5.6 illustrates this organization. As

consecutive observations are close together, the MBBs of internal nodes in an

OR-tree should be compact and that property ensures its effectiveness. To keep

qualified entries in order, we only need to sort the retrieved OR-tree roots from

the global R-tree. All subsequent traversals inside an OR-tree naturally return

headers in order. The height of the OR-trees reflects the trade-off between

construction cost and effectiveness. In the extreme, we can maintain a single

huge OR-tree to entirely eliminate node splits and sort phases.

Queries with time-range conditions are essential in scientific analysis. The

header file and OR-tree support such queries well. It is straightforward to filter

out an entire OR-tree that is disjoint from the time range, provided that each

header contains temporal information. For supporting incremental queries over

new data, we bypass the OR-tree indexes and directly scan the tail of the header

file. We mark the current end of the header file after each round and then can

continue to scan from the mark later. The specific procedure for answering

range queries can be easily derived from the one-dimensional procedure 4.4.4.

102

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

5.5.2 Index Refinement

Given a bounded amount of system resources, SICC always ensures that all in-

coming data are indexed as soon as possible. The remaining resources can then

be used to answer query requests. During index construction, eager segmenta-

tion relies on estimated query ranges and uniformity assumptions. Hence, query

performance is not guaranteed. In practice, query workloads are complicated

and data of interest may change drastically over time. We avoid the adaption

in initial construction to keep it simple and fast. Instead, the index structure is

continuously refined in the background when the system has available resources.

Refinement Criterion

The performance of recent query requests determines which parts of the index

need to be refined. To collect query statistics, we assign a number of counters

for each accessed block header B, as follows:

• Cfetch: the number of queries that matched B, hence its data block was

fetched.

• Cco−fetch: the number of queries that fetched both B’s data block and the

following block.

• Cresult: the total number of records that are returned as results from B’s

data block over all queries.

These counters are easy to maintain in memory, causing negligible overhead

for queries. We can derive the actual query cost for block B as

cost(B) = Cfetch(B) · |B|

This value is the main characteristic to help us determine if a part of the index

needs to be refined. We can either split a block to improve efficiency, or merge

two consecutive blocks to remove unnecessary index entries. The refinement

frequency depends on the quality of segmentation against active queries. Thus,

it tends to be low when segmentation algorithms are able to provide effective

segments by themselves, or after extended period of similar queries.

103

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

Splitting and Exhaustive Segmentation

Recall that users provide a factor µ to limit expected read amplification (Sec-

tion 5.5.1). With the help of the counters above, we can verify whether a block

satisfies the users expectation. We might need to split a block B when

cost(B)

Cresult(B)
> µ

“Split” means we replace a block’s original header with two or more new head-

ers, each covering a sub-block. Splitting costly blocks into smaller ones can

reduce both scan cost and the false-positive rate. In the case that more than

one block is to be split, we always choose the one with most “potential” benefit

from splitting, i.e., the one with maximum cost(B)− Cresult(B).

To conduct the split, we use exhaustive segmentation, which takes the

records in the original block as input and generates a number of new block

headers as output. Compared to eager segmentation, this algorithm is more

computational-intensive, as it considers every possible choice for splitting the

block. The goal of exhaustive segmentation is to segment a collection of

records into K blocks that minimize the total query cost.

Similar to previous analysis, we use w(B) = |B| ·Vol(S ′
B) as the query cost

of block B, where S ′
B is its enlarged bounding segment. Note that we can use

recent query requests to determine the enlarged area, instead of a pre-defined

range expectation. For a segmentation of a sequence of records into K blocks

B1, B2, ..., BK , our target is to minimize the total query cost W as:

W =

K
∑

i=1

w(Bi) =

K
∑

i=1

|Bi| · Vol(S
′
Bi
)

It is straightforward to solve this problem when K = 2. We just need two

passes, i.e., forward and backward, to compute segments of a partial block and

keep corresponding volumes. The split point can be found by enumeration in

linear time, and we omit the details.

Sometimes a costly block may need to be split into K > 2 pieces. There

are
(

n−1
K−1

)

choices to spit K blocks with n records. It is prohibitive to explicitly

enumerate all options. Fortunately, the problem can be solved efficiently by

dynamic programming.

104

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

Suppose there are n records r1, r2, ...rn. Let B(i,j) denote the block contain-

ing records from ri to rj, and w(i, j) denote the query cost of B(i,j). Let f(k, j)

denote the minimum cost of segmenting r1 to rj into k blocks. Thus, f(k, j)

can be derived recursively as:

f(k, j) =

min
k−1≤i<j

(f(k − 1, i) + w(i+ 1, j)), k > 0

0, k = 0 and j = 0

+∞, k = 0 and j > 0

No more than K · n terms of f need to be computed to obtain f(K, n). The

computational complexity is therefore O(Kn2). During the computation, The

w(i, j)’s are required in advance. They can be pre-processed and stored within

O(dn2) time and O(n2) space. Therefore, the overall cost is O((K+d)n2). The

actual split positions can be found by backtracking through intermediate values.

To further reduce the computation when n is large, we can select a subset of

split positions, e.g., every 10 records, to reduce the search space. Algorithm 4

shows the core of exhaustive segmentation that takes pre-calculated w(i, j)’s

and find the optimal K-way split.

Although exhaustive segmentation is more expensive than eager segmenta-

tion, it happens only on split and minimizes subsequent query cost. If we do

not need optimal performance, a cheaper alternative is multiple passes of eager

segmentation. We choose an amplification factor µ′ (via binary search) before

each pass, and terminate the iteration once we get a µ′ that results in a K-way

split.

Merge

In contrast to the split refinement, merge is used when data are fragmented

into too many pieces through past splits, and those pieces are not so helpful for

the current query workload. Specifically, we detect that a group of consecutive

blocks are always accessed together by most queries. We can simply combine

their index entries without compromising query efficiency. The Cco−fetch counter

helps us find all sequences of co-accessed blocks. Merging two co-accessed blocks

should not introduce too much over-coverage. Hence, for a block B and the

105

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

Algorithm 4: Exhaustive-Core(Matrix w, Integer K)

Input: the query-cost matrix w
Input: the number of target splits K
Output: a list of split positions

1 List<Integer> ret;
2 Integer n = w.size;
3 Double f [0 ... K][0 ... n];
4 set all elements in f to +∞;
5 f [0][0] = 0;
/* compute optimal cost for f[K][n] */

6 for i = 0 to K do
7 for j = i to n-1 do
8 if f [i][j] == +∞ then continue;
9 for k = j + 1 to n do

10 if f [i+ 1][k] > f [i][j] + w(j + 1, k) then
11 f [i+ 1][k] = f [i][j] + w(j + 1, k);

/* backtrack segmented positions */

12 Integer p = n;
13 add p into ret;
14 for l = K downto 1 do
15 find p′ with f [l][p] = f [l − 1][p′] + w(p′ + 1, p);
16 add p′ into ret;
17 p = p′;

18 reverse elements in ret;
/* i-th block is from record ret[i] + 1 to record ret[i+ 1] */

19 return ret;

next block B′, we can estimate the query cost of the merged block as:

merge(B,B′) =(Cfetch(B) + Cfetch(B
′)− Cco−fetch(B))

· (|B|+ |B′|)

Two blocks are allowed to merge when the bound on read amplification

is still met, i.e., merge(B,B′)/(Cresult(B) + Cresult(B
′)) < µ. When multiple

candidates are available, we will choose the pair with least penalty for query

performance, i.e., the one with minimum merge(B,B′) − cost(B) − cost(B′).

The merge procedure is quite simple, as we only need to produce a new block

header for the merged block to replace old ones.

106

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

Minor Refinement v.s. Major Refinement

Based on available system resources and the number of accumulated refine-

operations, we can conduct the index refinement in two different ways, namely

minor refinement and major refinement.

Aminor refinement is preferred when resources are limited and we only need

to change a small number of blocks. In this case, the header log is only slightly

modified. During minor refinement, no locks are required and no queries will

be blocked. For each OR-tree, an additional patch file is maintained to keep

all updates. Generated headers from splits and merges are appended to the

patch file. Afterwards, an atomic modification in the header file is done to tag

old headers and redirect to new ones. The OR-tree is left unchanged, as we

will access the header file as normal but jump to the patch file when a tagged

header is encountered.

A major refinement is needed when the patch file grows too large. A long

patch file causes a chain of jumps before we can get updated headers. During

major refinement, header chains are eliminated by re-writing all updated head-

ers back into the header log, and the patch file is discarded. If there are any

headers that cannot fit in the header file, they will be kept in a new but smaller

patch file. After the re-writing, a new OR-tree is constructed from scratch. We

delete the old OR-tree root from the global R-tree and insert the new one.

H1 H3

OR-tree

H2

Patch File H2a H2b

H4 H5

H5a

H1

new OR-tree

H2a H2b H4 H5aH3

Minor Refinement

Major Refinement

H6

Figure 5.7: Minor refinement and major refinement.

Figure 5.7 shows how minor and major refinement are conducted. In minor

refinement, H2 is split to H2a, H2b and H5, H6 are merged to H5a. In major

refinement, H2a, H2b, H5a in the patch file are written back to the header file,

and a new OR-tree is built. Note that, at all times, underlying data are not

107

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

changed, so we can support time-range queries and sequence analysis efficiently.

Better performance might be obtained by re-clustering the data and building a

new SICC on top of them, we leave that possibility to future investigation.

It might happen that there are no resources for major compaction at times.

As we cannot tolerate data loss by rejecting write requests, we have to stop or

delay the compaction to preserve resources. This situation may affect query

efficiency, possibly limiting query requests. However, we should assume re-

sources for compaction become available some later time, otherwise the system

is under-provisioned.

5.6 Experimental Evaluation

In this section, we evaluate the performance of the proposed SICC index and

alternative methods for indexing and querying multi-dimensional observational

data. We consider two aspects of performance: index-maintenance overhead

and query efficiency.

5.6.1 Data Sets

Experiments are conducted on three real datasets. All of them are observa-

tions collected from sensing devices, but with differing application scenarios

and degrees of value continuity.

• Coastal-Margin Observation (CMOP):

This dataset contains coastal margin observations collected from the CMOP [1]

SATURN observing system. The data were collected between April 2011

and August 2012 from station SATURN-01. Each record contains diverse

variables reflecting ocean and river status, such as salinity, temperature

and oxygen saturation.

• Hi-Tech Equipment Observation (POWER):

This dataset3 contains status observations for a huge hi-tech manufac-

turing installation. Monitoring data is recorded by the manufacturing

equipment itself using an embedded PC and a set of sensors. Each record

contains power consumption and state flags for sub-components. The

3http://www.csw.inf.fu-berlin.de/debs2012/grandchallenge.html

108

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

power consumption may differ significantly due to the change of running

status.

• Real-time Soccer Observation (SOCC):

This dataset4 contains moving-object observations collected by a real-time

location system on a soccer field. The data were generated by senors em-

bedded in balls during a soccer game. Each record contains motion status,

such as position, velocity and acceleration. We concatenate observations

from all balls alternately in play to construct a continuous source.

5.6.2 Methods and Implementations

We compare the SICC index with three baseline methods, based on PH-trees [93]

and R-trees [50]. All methods are implemented as secondary indexes, in which

index entries contain record references to log-storage, and storage accesses are

required for fetching final results. All implementations are in Java, and inte-

grated into LogBase.

• SICC. Our proposed index framework (Section 5.3) using bounding seg-

ments (Section 5.4). It applies eager segmentation and OR-tree header-

indexing (Section 5.3).

• PH-tree. A state-of-the-art point access method based on binary PATRICIA-

tries and hypercubes, reported to outperform other PAMs, such as kD-

trees and critical-bit trees. We index each observation individually in the

PH-tree. We use the implementation provided by its author. Note that

this implementation is memory-based, while other methods we used are

disk-based.

• R-tree. A well known spatial access method. Each observation is indi-

vidually indexed in an R-tree. We use an open-source implementation for

it5.

• R-block. A primitive version of SICC that directly uses MBBs as bound-

ing objects. A fixed number of consecutive records are first grouped as a

4http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
5https://github.com/oschrenk/spatialindex

109

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

block, and the block’s MBB is then indexed in the R-tree. We include it

to measure over-coverage.

In order to evaluate the effect of our design choices, we further compare

SICC with different settings. For the segmentation algorithms, we have: (a)

Fixed: fixed-length segmentation, which segments blocks into equal lengths;

(b) Eager: eager segmentation; and (d) Exhaustive: buffers batches of records

and then applies the exhaustive algorithm to minimize estimated query-cost.

For the block-header indexing methods, we have: (a) HeadLog: no index for

the header log; (b) HeadRtree: an R-tree; and (c)HeadORtree: an OR-tree.

5.6.3 Experimental Setup

All experiments were conducted on a server with a quad-core processor, 8GB

physical memory and 500GB disk capacity. Secondary indexes are built on

three dimensions for each dataset: CMOP (salinity, temperature and oxygen

saturation), POWER (power consumption for three components), SOCC (speed

plus positions in two dimensions).6 Each inserted record contains a string (its

unique key), the indexed fields and other existing fields. The number of records

ingested into storage are 13 million, 32 million and 24 million, respectively.

The total disk space used by the storage system is 2.4GB, 5.6GB and 4.8GB,

respectively. All range queries are pre-generated from a uniform distribution

with 1% expected coverage of the indexed space for each. A group of 100 queries

is issued sequentially, after each fifth of data is ingested.

Table 5.1: Average number of records in a block with different µ.
µ = 1.2 µ = 2 µ = 4 µ = 8

CMOP 24.1 41.8 84.7 181.1
POWER 54.9 117.5 207.8 359.9
SOCC 152.6 325.5 583.4 908.2

We use µ = 4 as the default setting for eager segmentation, which leads to

different block-lengths in each dataset, as shown in Table 5.1. Hence, block-

lengths in fixed-length segmentation (for both SICC and R-block) are configured

differently across datasets to be consistent with the eager segmentation. The

6Here we did not index time dimension, but it is a straightforward extension.

110

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

average block-length quantifies the value-continuity of a dataset, i.e., the longer

the better.

5.6.4 Write Overhead

Index overhead is critical in write-intensive scenarios. This subsection evaluates

that overhead, on both time and space consumption, for different approaches.

System-Load Time

 0

 50

 100

 150

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

System Write Time (sec)

SICC
PH-tree

R-tree
R-block

No index

(a) CMOP

 0

 80

 160

 240

 320

6.5M 12.9M 19.4M 25.9M 32.4M

Number of Records

System Write Time (sec)

SICC
PH-tree
R-block

No index

(b) POWER

 0

 80

 160

 240

 320

4.8M 9.7M 14.5M 19.4M 24.2M

Number of Records

System Write Time (sec)

SICC
PH-tree

R-tree
R-block

No index

(c) SOCC

Figure 5.8: Overall system-load time.

Figure 5.8 shows the total time for loading data into storage and having

them indexed under different workloads. Among all indexes, SICC has the

lowest system-load time for all three workloads. It exhibits indexing overhead

of at most 20% (and only 5% in SOCC), compared to the cost of storing data in

the storage without indexes (No Index). This superior performance is expected,

as the number of index entries is reduced by orders of magnitude compared to

record-level indexes. The R-tree degrades system performance unacceptably,

as frequently inserting new entries causes frequent node splits and index re-

organization. We only succeeded in three rounds of insertions for the POWER

111

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

and SOCC workloads due to its unaffordable cost. PH-tree, a point access

method, exhibits much lower insertion cost compared to R-tree. However, its

overhead is still significant. As can be seen, even the in-memory PH-tree is

worse than the disk-based SICC and R-block. Overall, block-level indexes are

more competitive in loading write-intensive workloads.

Index-Maintenance Cost

 0

 20

 40

 60

 80

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Update Time (sec)

SICC
PH-tree
R-block

R-tree

Figure 5.9: Index-maintenance cost. (CMOP)

By removing the loading time inside storage, Figure 5.9 shows the pure

index cost clearer with CMOP workload. We can see that the SICC has less

than half the cost than any other approach. Though constructing a bounding

segment is a bit costlier than an MBB, with the OR-trees, SICC outperforms

the R-block. On closer examination of the results, we find that about three-

quarters of the cost of R-block comes from R-tree construction. We also observe

that the cost of continuous index refinement is negligible compared to that of

creating initial segments and header indexes, and omit the comparison here.

Maintenance Cost of SICC Components

We further decompose SICC’s cost into segmentation cost and header-indexing

cost. Figure 5.10 contains comparisons of design choices on the CMOP work-

load. As can be observed from Figure 5.10(a), eager segmentation (Eager)

costs only slightly more than naive fixed-length segmentation (Fixed). The

dominant cost for these two methods is the I/O for persisting block headers.

In contrary, exhaustive segmentation (Exhaustive) is dominated by expensive

computations. To get the best segments, it buffers a large number of records

and conducts exhaustive segmentation batch by batch. Such a method is costly

112

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

 0

 20

 40

 60

 80

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Segmentation Time (sec)

Eager
Fixed

Exhaustive

(a) Segmentation

 0

 20

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Header Indexing Time (sec)

HeadORtree
HeadRtree

HeadLog

(b) Header Indexing

Figure 5.10: Decomposed SICC maintenance cost for different segmentation
algorithms and header indexes. (CMOP)

and delays the availability for new data, hence is unaffordable for initial index

construction. However, that segmentation is suitable for continuous refinement

in the background.

Figure 5.10(b), also on CMOP workload, presents the choices for indexing

block headers, i.e., header log. The result shows that indexing header log with

an OR-tree (HeadORtree) is nearly as efficient as just maintaining a header log

(HeadLog), due to the fast construction of append-only sub-trees. However,

the overhead of constructing an entire R-tree (HeadRtree) is considerable.

Index-Space Consumption

Table 5.2: Disk Consumption for indexes.
SICC R-block R-tree PH-tree

CMOP 16.0M 13.6M 739M N/A
POWER 20.2M 17.6M 1.8G N/A
SOCC 5.3M 4.3M 1.5G N/A

Table 5.2 lists the disk-space consumption of different indexing methods.

SICC requires slightly more space than R-block, as the representation of bound-

ing segments is larger than for MBBs, i.e., segment needs three arrays (vb,vs,ve)

while MBB needs just two arrays (lower and upper bounds). As can be seen,

the R-tree consumes much more disk-space in order to index individual records.

Since the PH-tree implementation is totally in-memory, we omit its disk con-

sumption.

113

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

5.6.5 Query Efficiency

This subsection focuses on the evaluation of query performance. We evaluate

the overall query response time for different datasets. Decomposed costs for

data access and index lookup are also analyzed.

Query Execution Time

 0

 0.2

 0.4

 0.6

 0.8

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Average Query Time (sec)

SICC
SICC-r

PH-tree
R-tree

R-block

(a) CMOP

 0

 0.8

 1.6

 2.4

6.5M 12.9M 19.4M 25.9M 32.4M

Number of Records

Average Query Time (sec)

SICC
SICC-r

PH-tree
R-tree

R-block

(b) POWER

 0

 0.3

 0.6

 0.9

 1.2

4.8M 9.7M 14.5M 19.4M 24.2M

Number of Records

Average Query Time (sec)

SICC
SICC-r

PH-tree
R-tree

R-block

(c) SOCC

Figure 5.11: Average query-response time.

Figure 5.11 presents overall query-response time using different indexes. R-

block cannot achieve satisfactory efficiency, due to the over-coverage introduced

by MBRs. Its performance is sensitive to workload distribution. In contrast,

SICC has comparable efficiency to record-level indexes at small scale, and out-

performs them as data grows. R-tree and PH-tree have similar efficiency, since

the dominant costs are the I/O for fetching results from storage. However,

since they cannot return index entries in insertion order, random disk seeks are

unavoidable when fetching data. As the data volume keeps growing, successive

disk accesses are more spread out, raising the disk-seek overhead and limiting

scalability. This issue can be resolved by collecting and sorting disk-offset be-

fore actually accessing the disk, but that requires more memory resources, or

114

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

an external sort in the worst case. When dealing with highly continuous data,

scans with larger blocks can benefit more from high bandwidth. SICC performs

even better when it is continuously refined at the background (SICC-r). This

result verifies our design of bounding segments as well as the concept of intrinsic

clustering in observational data.

Data-Access Cost

 0

 0.2

 0.4

 0.6

 0.8

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Data Access Time (sec)

SICC
SICC-r

PH-tree
R-block

R-tree

(a) Data Access

 0

 20

 40

 60

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Lookup Time (ms)

SICC
SICC-r

PH-tree
R-block

R-tree

(b) Index Lookup

Figure 5.12: Decomposed query cost. (CMOP)

Figure 5.12(a) examines the data-access cost after obtaining block references

(in SICC and R-block) or record references (in PH-tree and R-tree). Fetching

records from storage is often the dominant cost of executing a range query.

Hence, it follows the same trend as query-response time. As shown in the figure,

PH-tree and R-tree have the lowest data-access cost, as both of them only fetch

disk pages that are guaranteed to contain results. SICC and R-blocks may read

disk pages with no results, because of over-coverage by bounding objects. Even

with false-positive accesses, SICC still performs quite well, with the help of

bounding segments.

Figure 5.13(a) presents SICC data access cost under different segmentation

algorithms. Exhaustive segmentation is expected to have superior performance.

With a reasonable amplification factor µ, eager segmentation is also efficient.

Considering its low overhead, the performance is more than satisfactory. Since

the fixed-length segmentation does not consider data distribution, it rarely

achieves good pruning effectiveness.

115

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

 0

 0.2

 0.4

 0.6

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Data Access Time (sec)

Eager
Fixed

Exhaustive

(a) Data Access

 0

 20

 40

 60

 80

 100

2.6M 5.2M 7.7M 10.3M 12.9M

Number of Records

Index Lookup Time (ms)

HeadORtree
HeadRtree

HeadLog

(b) Index Lookup

Figure 5.13: Decomposed SICC query cost for different segmentation algorithms
and header indexes. (CMOP)

Index-Lookup Cost

Figure 5.12(b) presents index-lookup cost. Among all methods, R-block has

the lowest cost, as all block headers are well organized in an R-tree and only

a small number of block headers are tested during a lookup. For SICC, the

higher lookup time is attributed to the ordered OR-trees, which affect the

pruning effectiveness. In addition, checking a bounding segment requires more

computation than checking an MBB. It is not surprising that lookups in the

PH-tree and R-tree are expensive, since both of them contains many more index

entries than block-level indexes. Such performance gaps are wider in workloads

with better value-continuity.

Figure 5.13(b) illustrates the lookup cost in SICC with different header-

indexing methods. The cost of scanning an entire header log is high, as ex-

pected. Overall, OR-tree appears a good choice for indexing headers, as its

maintenance overhead is nearly as low as a pure header log, and its query

efficiency is comparable to the R-tree’s.

5.6.6 Exploratory Study

In this subsection, we explore the effectiveness of bounding objects and the

effect of query selectivity and dimensionality.

Bounding Segments vs. Bounding Boxes

Table 5.3 shows the huge gap between bounding segments and bounding boxes,

in terms of bounded volume and estimated query cost. As can be seen, bounding

116

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

Table 5.3: Volume and Access-Cost in the CMOP dataset (with segments pro-
duced by fixed-length segmentation as the baseline)

Vol/Cost Fixed Eager Exhaustive
Segment 1.00/1.00 0.55/0.92 0.43/0.77
Box 8.64/2.46 6.74/2.19 4.20/1.38

segments reduce over-coverage by an order of magnitude. their query-costs ares

also less than half that of bounding boxes’. We can also confirm the effectiveness

of different segmentations from Table 5.3. The reduction of over-coverage is

also sensitive to workload continuity and distribution. We observed that the

volume reductions in bounding segments are about 12.2× for CMOP, 17.5× for

POWER and 5.8× for SOCC, relative to R-block.

Query Selectivity

 0

 1

 2

 3

 4

3.14% 1.18% 0.32% 0.16% 0.05%

Query Selectivity

System Query Time (sec)

SICC
PH-tree
R-block

Figure 5.14: Query selectivity. (CMOP)

Figure 5.14 shows the effect of query selectivity on SICC, PH-tree and R-

Block. As query selectivity increases, result size decreases. However, the num-

ber of false-positive blocks does not drop as rapidly, so their relative effect is

greater at high selectivities. Thus, PH-tree, which only accesses true-positive

blocks is at an advantage over SICC. Moreover, even for true-positive blocks,

SICC may get only a small fraction of result records from each block. How-

ever, at low selectivities, false-positive blocks are less of a factor, and each

true-positive block is likely to contain many result records, so SICC gains the

edge. SICC is better than R-block at all selectivities, because over-coverage of

the latter means more false-positive blocks.

117

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

Dimensionality

How many dimensions can SICC handle? In high dimension, SICC can capture

correlations from the PCA component to achieve good pruning effectiveness.

To be fair in the comparison, we generate a synthetic dataset, in which each

dimension is independent to minimize correlations. Figure 5.15 illustrates the

results of the study. In each test, we evaluates the overhead of indexing 5 million

records, and the average query time of 100 random queries. In Figure 5.15(a),

we observe that the maintenance overhead is scale well for both PH-tree and

SICC. In fact, insertion cost in PH-tree is proportional to the number of bits

in a record. For SICC, eager segmentation and OR-tree have linear complexity

to the number of dimensions. Figure 5.15(b) shows that the SICC also achieves

the best query scalability among the approaches.

 0

 10

 20

 30

 40

2 6 10

Number of Dimensions

Index Update Time (sec)

SICC
PH-tree
R-block

(a) Maintenance Overhead

 0

 0.5

 1

 1.5

 2

2 6 10

Number of Dimensions

Query Response Time (sec)

SICC
PH-tree
R-block

(b) Query Efficiency

Figure 5.15: Index performance with increasing number of dimensions. (Syn-
thetic Data)

5.7 Summary

It can take large amounts of system resources and time to index write-intensive

observational data that arrives as streams. To reduce index cost, we propose a

lightweight index method, called SICC, that incurs little construction overhead

while efficiently supporting multi-dimensional range queries. Unlike conven-

tional methods that cluster similar points, we exploit the intrinsic data con-

tinuity in observations, and construct indexes on local data sequences. The

bounding segment is proposed to overcome the “over-coverage” problem of

MBBs. It can be derived quickly and readily supports range queries. The

index can be continuously refined in the background to further improve query

118

CHAPTER 5. MULTI-DIMENSIONAL OBSERVATIONAL DATA IN LOG

STORE

performance. Experimental studies verify the feasibility of this index method,

and confirm that SICC is an order of magnitude faster to construct than con-

ventional record-level indexes, while it preserves comparable query efficiency.

This work has been published as a full research paper in 2016 VLDB Con-

ference [90].

119

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Nowadays, data workloads in our daily life are rapidly turning to large-scale

and write-intensive, due to both requirements from modern applications and

supports from cheap storage hardware. Such write-intensive trends pose new

challenges to conventional solutions for both storage and indexing, i.e., high

write-throughput must be guaranteed when handling unpredictably high data

ingestion rate. This thesis studied the research problem for managing write-

intensive data, focusing on system write-throughput and query performance.

In particular, we adopted log-structured techniques in storage to remove write

bottleneck, and we exploited observational data traits in indexing methods to

lower index construction cost and improve query efficiency.

First, we investigated that log-structured storage is an amendable choice for

write-intensive workloads. In most state-of-the-art storage systems, ingested

data are redundantly stored as at least two copies: one in write-ahead-log (to

ensure durability) and another in main data repository (to optimize data access

efficiency). Though such strategies improve query performance, the separation

of log and application data also means nearly doubling of I/O cost, which

limits throughput for write-intensive applications. On the contrary, in log-

structured approaches, newly arrived data are directly written into an append-

only log, which serves both recovery and application queries. For write-intensive

120

CHAPTER 6. CONCLUSION AND FUTURE WORK

workloads, this approach has two direct advantages: first, data redundancy is

completely eliminated; second, amortized write cost can be further reduced by

sequential writes. Besides, recovery from failure does not need additional redo

operations to reflect missing updates from log.

Based on the insights above, we implemented LogBase, a scalable database

system with log-only repository. It is designed to be dynamically deployed in

the cloud environment. It provides similar recovery capability to traditional

write-ahead-logging approach while offering highly sustained throughput for

write-intensive applications. To support fast key-based record access, we de-

signed a multiversion index strategy, which can efficiently serve long tail re-

quests. Further, we enhanced LogBase to support transactional semantics for

read-modify-write operations and provide snapshot isolation. We conducted an

extensive performance study on LogBase. The results confirm its efficiency and

scalability in terms of write and read performance, as well as effective recovery

time during node failure.

Second, we proposed a novel idea for constructing lightweight indexes on

write-intensive observational data, exploiting intrinsic clustering features inside

original data sources. Traditional indexing methods tend to incur prohibitive

overhead when indexed data are write-intensive, due to frequent re-organization

operations, such as node split in B+-trees. That is because they always organize

records with closest values into the same physical page to save future query

I/Os. As records continuously arrive, index organization keeps changing to

put new records nearby similar ones, introducing inevitable overhead. We refer

such arrangement as induced data clustering. In contrast, we found that there

is intrinsic data clustering in many real data sources, such as observational

data, which naturally provides similar effect without extra overhead. By simply

appending new records into contiguous disk pages, potential results of a query

tend to be grouped together. Though such clustering is not perfect, we can still

expect many query results from a single disk read.

Based on this idea, we enhanced LogBase with the capability of ingesting

and querying high-rate observational data. We designed a storage scheme for

storing observational data in log-store that preserves data locality to facili-

tate indexing. On top of this physical organization, we proposed CR-index,

a lightweight pruning-based index structure for range queries tailored for ob-

servational data, using efficient sequential I/Os. It lowers maintenance costs

121

CHAPTER 6. CONCLUSION AND FUTURE WORK

by combining multiple records in a single index entry and representing them

together with a boundary pair. The sequential scan of potential data blocks in

log-store guarantees the correctness and efficiency of index lookup. A number

of optimizations were applied to further reduce index size and utilize disk band-

width. We conducted an extensive experimental evaluation on two real-world

observational datasets that compares to traditional record-level indexes. The

results confirm both low write overhead and query efficiency.

Third, we extended the idea of intrinsic clustering to multi-dimensions.

We believe that this clustering property will become more attractive in multi-

dimensional spaces. As can be proved, when storing a multi-dimensional record

on disk, its closed neighbors on each dimension cannot be all physically nearby.

That means we cannot find a perfect induced clustering for all dimensions even

with exhaustive efforts, but intrinsic clustering can still provide reasonable ef-

fectiveness without affecting system throughput. However, it is not trivial to

extend such an idea to multi-dimensions, due to data sparsity. Unlike bound-

ing pairs, bounding objects in multi-dimension will cause “over-coverage”, i.e.,

portions of indexed spaces containing no data. Accessing such a entry may

introduce a false-positive hit. Hence, a good bounding representation is critical

for query performance, while its complexity of derivation is critical for write

throughput.

As a major contribution, we proposed a novel multi-dimensional indexing

framework, called SICC, which generalizes the exploitation of intrinsic cluster-

ing. To overcome inherent data sparsity, we investigated a new representation

scheme, which represents consecutive observations as a bounding segment in

hyperspaces. Its effectiveness is ensured by the fact that observational points

collected during a short time period nonetheless can be estimated as a segment.

To minimize index overhead, we designed fast algorithms for deriving bound-

ing segments based on incremental principle component analysis techniques,

and proposed an R-tree variant for indexing generated segments. Besides, to

further improve query efficiency at runtime, indexes are continuously refined

based on the results from recent queries. From experimental evaluation on

three real-world datasets, we verified the effectiveness of hyper-segments and

the efficiency of the approach.

In summary, we concluded that log-structured storage is suitable for man-

aging write-intensive workloads, in which write through is of great importance.

122

CHAPTER 6. CONCLUSION AND FUTURE WORK

The utilization of sequential disk access and elimination of separate log improve

system performance gracefully. Its undesirable read performance can be com-

pensated by smart indexing approaches. We showed that intrinsic clustering

in many real workloads is feasible to be exploited by indexing approaches, es-

pecially for write-intensive workloads where there is no resources for building

powerful indexes.

6.2 Future Work

In the future, we plan to investigate the feasibility for applying the intrinsic

clustering property and techniques proposed in Chapter 4 and 5 to general

data sources. Constructing indexes using intrinsic clustering property from

data sources is a novel idea, which has not been studied before. Though in

this thesis, we only show its effectiveness on observational data, we believe that

many other real-world workloads also have somehow different degree of intrinsic

clustering property. For those data sources with only weak clustering property,

it is possible to utilize intrinsic clustering on those parts of data which have,

and create induced clustering on the rest. For example, a hybrid structure of

CR-index and B+-tree can be used to cover the whole spectrum of intrinsic

clustering degree inside different workloads. There would be an interesting

tradeoff between the index construction cost and query efficiency, according to

the degree of intrinsic clustering we want to exploit.

Another possible direction from storage perspective is to utilize large mem-

ory on top of log-structured disk storage to further improve update-intensive

workloads. Unlike pure write-intensive workloads where data are rapidly grow-

ing so that disk repository is necessary, update-intensive workloads will not

have their data volume exploding too fast. As the capacity of DRAM in mod-

ern servers becoming larger, it is feasible to make DRAM as the main repos-

itory for update-intensive workloads, while using log-structured storage as a

durable backend. It is interesting to have a storage system that can handle

both exploding and constant-in-volume write-intensive applications. It should

automatically distribute mixed workloads into the cluster while fully utilize

large memory in each individual server.

123

BIBLIOGRAPHY

[1] CMOP. http://www.stccmop.org/. vii, 7, 55, 57, 75, 89, 108

[2] DEBS 2013 Grand Challenge. http://www.orgs.ttu.edu/debs2013/index.php.

75

[3] Hadoop MapReduce. [Online] http://hadoop.apache.org/mapreduce. 26

[4] HBase. http://hbase.apache.org. 13, 16, 17, 18, 22, 23, 27, 29, 31, 32, 33,

37, 38, 42

[5] HDFS. [Online] http://hadoop.apache.org/hdfs. 28

[6] JDBM3. https://github.com/jankotek/JDBM3. 75

[7] LevelDB. https://github.com/dain/leveldb. 75

[8] MongoDB. http://www.mongodb.org. 4

[9] NetCDF. http://www.unidata.ucar.edu/netcdf. 55

[10] PrimeBase. http://sourceforge.net/projects/pbxt/. 13

[11] Zookeeper. http://zookeeper.apache.org. 38

[12] D. Achakeev and B. Seeger. Efficient bulk updates on multiversion b-trees.

Proc. of VLDB Endow., 6(14):1834–1845, 2013. 6, 14

[13] H. K. Ahn, N. Mamoulis, and H. M. Wong. A survey on multidimensional

access methods. Technical report, HKUST, 2001. 16, 87

124

BIBLIOGRAPHY

[14] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y. Kim, M. J. Carey,

M. Dreseler, and C. Li. Storage management in AsterixDB. Proc. of

VLDB Endow., 7(10):841–852, June 2014. 6, 86

[15] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The priority R-tree: a

practically efficient and worst-case optimal r-tree. ACM Trans. Algorithms,

4(1):9, 2008. 16

[16] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson, J.-M.

Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Providing scalable,

highly available storage for interactive services. In Proc. of CIDR, pages

223–234, 2011. 24, 25

[17] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree:

an efficient and robust access method for points and rectangles. SIGMOD

Rec., 19(2), May 1990. 16

[18] J. L. Bentley. Multidimensional binary search trees used for associative

searching. Commun. ACM, 18(9):509–517, Sept. 1975. 16

[19] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: an index struc-

ture for high-dimensional data. Proc. of Int. Conf. on VLDB, pages 28–39,

1996. 16

[20] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.

A critique of ansi sql isolation levels. In Proc. of SIGMOD, pages 1–10,

1995. 38

[21] P. A. Bernstein and N. Goodman. Multiversion concurrency control: The-

ory and algorithms. ACM Trans. Database Syst., 8(4):465–483, Dec. 1983.

37

[22] P. A. Bernstein, C. W. Reid, and S. Das. Hyder - a transactional record

manager for shared flash. In Proc. of CIDR, pages 9–20, 2011. 14, 28, 50

[23] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970. 16, 63

[24] M. Burrows. The chubby lock service for loosely-coupled distributed sys-

tems. In Proceedings of the 7th symposium on Operating systems design

and implementation, pages 335–350. USENIX Association, 2006. 27

125

BIBLIOGRAPHY

[25] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation for snapshot

databases. In Proc. of SIGMOD, pages 729–738, 2008. 40

[26] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27,

May 2011. 22, 23

[27] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed storage

system for structured data. In Proc. of OSDI, pages 205–218, 2006. 4, 13,

17, 18, 22, 27, 29

[28] L. Chen, R. Choubey, and E. A. Rundensteiner. Bulk-insertions into R-

trees using the small-tree-large-tree approach. Proc. of ACM Int. Symp.

on GIS, pages 161–162, 1998. 6, 15, 86

[29] E. Cheung, S. Nadeau, D. Landing, M. Munson, and J. Casper. Sensor data

& analysis framework (SDAF) data warehouse. Technical report, MITRE,

2007. 17

[30] R. Choubey, L. Chen, and E. A. Rundensteiner. GBI: a generalized R-tree

bulk-insertion strategy. Proc. of Int. Symp. on SSD, pages 91–108, 1999.

6, 15, 86

[31] E. F. Codd. A relational model of data for large shared data banks. Com-

mun. ACM, 13(6):377–387, June 1970. 1

[32] D. Comer. The ubiquitous B-tree. ACM Comput. Surv., 11(2):121–137,

June 1979. 14, 55

[33] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohan-

non, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s

hosted data serving platform. PVLDB, 1(2):1277–1288, 2008. 24, 37

[34] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with ycsb. In Proc. of SoCC, pages

143–154, 2010. 44, 47

[35] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a workload-

driven approach to database replication and partitioning. PVLDB,

3(1):48–57, 2010. 25

126

BIBLIOGRAPHY

[36] S. Das, D. Agrawal, and A. El Abbadi. G-store: a scalable data store

for transactional multi key access in the cloud. In Proc. of SOCC, pages

163–174, 2010. 25

[37] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational

Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa

Clara, CA, USA, 3rd ed. edition, 2008. 64

[38] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large

clusters. In Proc. of OSDI, pages 10–10, 2004. 26

[39] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,

A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:

amazon’s highly available key-value store. In Proc. of SOSP, pages 205–

220, 2007. 4, 23

[40] J. Dittrich and A. Jindal. Towards a one size fits all database architecture.

In Proc. of CIDR, pages 195–198, 2011. 14

[41] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making

snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492–

528, 2005. 39

[42] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval

on composite keys. Acta informatica, 4(1):1–9, 1974. 16

[43] I. K. Fodor. A survey of dimension reduction techniques. Technical report,

2002. 93

[44] V. Gaede and O. Günther. Multidimensional access methods. ACM Com-

put. Surv., 30(2):170–231, June 1998. 16

[45] J. Gantz and D. Reinsel. The digital universe in 2020: Big data, bigger

digital shadows, and biggest growth in the far east. IDC iView: IDC

Analyze the future, 2007:1–16, 2012. vii, 2, 3

[46] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk. Stream ware-

housing with DataDepot. In In Proc. of ACM SIGMOD Int. Conf. on

Management of Data, pages 847–854, 2009. 17

127

BIBLIOGRAPHY

[47] G. Graefe. B-tree indexes for high update rates. ACM SIGMOD Record,

35(1):39–44, 2006. 14

[48] G. Graefe and H. Kuno. Self-selecting, self-tuning, incrementally optimized

indexes. In Proc. of Int. Conf. on EDBT, pages 371–381. ACM, 2010. 6,

15

[49] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Put-

zolu, and I. Traiger. The recovery manager of the system r database man-

ager. ACM Comput. Surv., 13(2):223–242, 1981. 12, 21

[50] A. Guttman. R-trees: a dynamic index structure for spatial searching.

SIGMOD Rec., 14(2):47–57, June 1984. 8, 16, 87, 101, 109

[51] T. Haerder and A. Reuter. Principles of transaction-oriented database

recovery. ACM Comput. Surv., 15(4):287–317, Dec. 1983. 37

[52] F. Halim, S. Idreos, P. Karras, and R. H. Yap. Stochastic database crack-

ing: Towards robust adaptive indexing in main-memory column-stores.

Proceedings of the VLDB Endowment, 5(6):502–513, 2012. 15

[53] R. A. Hankins and J. M. Patel. Data morphing: an adaptive, cache-

conscious storage technique. In Proc. of VLDB, pages 417–428, 2003. 24

[54] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free

coordination for internet-scale systems. In Proc. of USENIX, pages 11–11,

2010. 27, 38

[55] S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR,

volume 3, pages 1–8, 2007. 6, 15

[56] S. Idreos, S. Manegold, and G. Graefe. Adaptive indexing in modern

database kernels. In Proceedings of the 15th International Conference on

Extending Database Technology, pages 566–569. ACM, 2012. 6

[57] H. V. Jagadish. Linear clustering of objects with multiple attributes. SIG-

MOD Rec., 19(2):332–342, May 1990. 91

[58] H. V. Jagadish. Spatial search with polyhedra. Proc. of Int. Conf. on Data

Engineering, pages 311–319, 1990. 16, 87

128

BIBLIOGRAPHY

[59] N. Katayama and S. Satoh. The SR-tree: an index structure for high-

dimensional nearest neighbor queries. ACM SIGMOD Rec., 26(2):369–380,

1997. 8, 87

[60] W. Ku and G. Center. The cloud-based sensor data warehouse. In Proc

of ISGC 2011 & OGF 31, volume 1, page 75, 2011. 17

[61] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage

system. SIGOPS Oper. Syst. Rev., 44(2):35–40, 2010. 4, 13, 16, 17, 18,

23, 37, 38

[62] P. L. Lehman and S. B. Yao. Efficient locking for concurrent operations

on b-trees. ACM Trans. Database Syst., 6(4):650–670, 1981. 30

[63] D. B. Lomet and B. Salzberg. Access methods for multiversion data. In

Proc. of SIGMOD, pages 315–324, 1989. 31

[64] D. B. Lomet and B. Salzberg. Exploiting a history database for backup.

In Proc. of VLDB, pages 380–390, 1993. 14

[65] K. Markov, K. Ivanova, I. Mitov, and S. Karastanev. Advance of the

access methods. Information Technologies and Knowledge, 2(2):123–135,

2008. 16

[66] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: a

transaction recovery method supporting fine-granularity locking and par-

tial rollbacks using write-ahead logging. ACM Trans. Database Syst.,

17(1):94–162, 1992. 4, 12, 21

[67] P. Muth, P. O’Neil, A. Pick, and G. Weikum. The lham log-structured

history data access method. The VLDB Journal, 8(3-4):199–221, 2000. 16

[68] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: an adapt-

able, symmetric multikey file structure. ACM Trans. Database Syst.,

9(1):38–71, Mar. 1984. 16

[69] K. Nrv̊ag. The vagabond approach to logging and recovery in transaction-

time temporal object database systems. IEEE Trans. on Knowl. and Data

Eng., 16(4):504–518, 2004. 14

129

BIBLIOGRAPHY

[70] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley db. In USENIX Annual

Technical Conference, FREENIX Track, pages 183–191, 1999. 13

[71] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-

tree. Acta Inf., 33(4):351–385, 1996. 6, 15, 18, 31, 50, 55, 86

[72] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum.

Fast crash recovery in ramcloud. In Proc. of SOSP, pages 29–41, 2011. 14,

23, 50

[73] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant arrays

of inexpensive disks (raid). In Proc. of SIGMOD, pages 109–116, 1988. 27,

28

[74] D. Pfoser. Indexing the trajectories of moving objects. IEEE Data Eng.

Bull., 25(2):3–9, 2002. 17

[75] D. Pfoser, C. S. Jensen, Y. Theodoridis, et al. Novel approaches to the

indexing of moving object trajectories. In Proc. of VLDB, pages 395–406,

2000. 17

[76] M. Rosenblum and J. K. Ousterhout. The design and implementation of a

log-structured file system. ACM Trans. Comput. Syst., 10(1):26–52, 1992.

13

[77] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured memory

for dram-based storage. In Proceedings of the 12th USENIX Conference

on File and Storage Technologies (FAST 14), pages 1–16, 2014. 5, 14

[78] R. Sears and R. Ramakrishnan. bLSM: a general purpose log structured

merge tree. Proc. of ACM SIGMOD, pages 217–228, 2012. 3, 6, 16, 18,

20, 86

[79] M. Seltzer, K. Bostic, M. K. Mckusick, and C. Staelin. An implementation

of a log-structured file system for unix. In Proc. of USENIX, pages 3–3,

1993. 5, 13

[80] G. Sfakianakis, I. Patlakas, N. Ntarmos, and P. Triantafillou. Interval

indexing and querying on key-value cloud stores. Int. Conf. on Data En-

gineering (ICDE), 0:805–816, 2013. 65

130

BIBLIOGRAPHY

[81] L. Sidirourgos and M. Kersten. Column imprints: a secondary index struc-

ture. Proc. of ACM SIGMOD, pages 893–904, 2013. 18

[82] M. Stonebraker. Sql databases v. nosql databases. Commun. ACM,

53(4):10–11, Apr. 2010. 4

[83] M. Stonebraker and L. A. Rowe. The design of postgres. In Proc. of

SIGMOD, pages 340–355, 1986. 12, 21

[84] M. Stonebraker, L. A. Rowe, and M. Hirohama. The implementation of

postgres. IEEE Trans. on Knowl. and Data Eng., 2(1):125–142, 1990. 12,

21

[85] A. Thomasian. Distributed optimistic concurrency control methods for

high-performance transaction processing. IEEE Trans. on Knowl. and

Data Eng., 10(1):173–189, 1998. 40

[86] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing

multi-dimensional time-series with support for multiple distance measures.

In Proc. of ACM SIGKDD, pages 216–225. ACM, 2003. 18

[87] H. T. Vo, C. Chen, and B. C. Ooi. Towards elastic transactional cloud

storage with range query support. PVLDB, 3(1):506–517, 2010. 25

[88] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi. LogBase: a scal-

able log-structured database system in the cloud. Proc. of VLDB Endow.,

5(10), June 2012. 52

[89] S. Wang, D. Maier, and B. C. Ooi. Lightweight indexing of observational

data in log-structured storage. Proc. of VLDB Endow., 7(7), Mar. 2014.

84

[90] S. Wang, D. Maier, and B. C. Ooi. Fast and adaptive indexing of multi-

dimensional observational data. Proc. of VLDB Endow., 9(14), Sept. 2016.

119

[91] J. Weng, Y. Zhang, and W.-S. Hwang. Candid covariance-free incremental

principal component analysis. IEEE Trans. on PAMI, 25(8):1034–1040,

2003. 95

131

BIBLIOGRAPHY

[92] X. Wu, Y. Xu, Z. Shao, and S. Jiang. Lsm-trie: An lsm-tree-based ultra-

large key-value store for small data items. In 2015 USENIX Annual Tech-

nical Conference (USENIX ATC 15), pages 71–82, 2015. 16, 18

[93] T. Zäschke, C. Zimmerli, and M. C. Norrie. The PH-tree: a space-efficient

storage structure and multi-dimensional index. Proc. of ACM SIGMOD,

pages 397–408, 2014. 16, 109

[94] K. Zoumpatianos, S. Idreos, and T. Palpanas. Indexing for interactive

exploration of big data series. In Proc. of ACM SIGMOD, pages 1555–

1566. ACM, 2014. 18

132

	Acknowledgment
	Abstract
	Introduction
	Data is Becoming Write-Intensive
	Write-Intensive Log-Structured Storage
	Write-Intensive Observational Data
	Observational Data in Multi-Dimension
	Objectives and Contributions
	Overview and Roadmap

	Literature Review
	Data Storage Systems
	Non-Overwrite Strategies
	WAL + Data
	Log-Structured Systems

	Data Indexing Methods
	Bulk Insertion
	Adaptive Indexing
	Log-Structured Merge Tree
	Multi-Dimensional Access Methods

	Observational Data Management
	Streaming Warehouse
	Trajectory Indexing
	Time-Series Analysis

	Summary

	A Scalable Log-Structured Data Store
	Introduction
	Design and Implementation
	Data Model
	Data Partitioning
	Architecture Overview
	Log Repository
	In-Memory Multiversion Index
	Tablet Serving
	Transaction Management
	Failures and Recovery
	Discussion

	Performance Evaluation
	Experimental Setup
	Micro-Benchmarks
	YCSB Benchmark
	TPC-W Benchmark
	Checkpoint and Recovery
	Comparison with Log-Structured Systems

	Summary

	Indexing Observational Data in Log Store
	Introduction
	Preliminaries
	Scientific Data Analysis
	LogBase

	Storing Observational Data
	Logical View
	Physical View
	Observational Data Locality

	Indexing Observational Data
	The CR-index Structure
	Index Optimization
	Dealing with Disordered Records
	Evaluating Range Queries
	Analysis of Index Behavior
	Multi-Attribute Queries

	Experimental Results
	Data Sets
	Experimental Setup
	Write Performance
	Query Performance
	Influencing Factors
	Multi-Attribute Queries

	Summary

	Multi-Dimensional Observational Data in Log Store
	Introduction
	Preliminaries
	Observational Data
	Problem Description
	Basic Design of SICC Indexes

	Index Framework
	Bounding Segment
	Continuity among Observations
	Bounding Segment Format
	Computing Bounding Segments
	Matching against a Query
	Calculating Segment Volume

	Indexing and Refining
	Index Construction
	Index Refinement

	Experimental Evaluation
	Data Sets
	Methods and Implementations
	Experimental Setup
	Write Overhead
	Query Efficiency
	Exploratory Study

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

