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Summary

The increasing deployment of cellular networks across the globe has brought

two issues to the forefront: the energy costs of running these networks and

the associated environmental impact. Cellular base stations (BSs) powered

by renewable energy sources such as solar power have emerged as one of

the promising solutions to these issues. This thesis addresses issues center-

ing around deployment and operation of solar powered base stations.

The thesis starts with addressing the problem of optimally dimensioning

resources (photovoltaic (PV) panels and batteries) for solar powered BSs.

We propose a framework for cost-optimally dimensioning these resources

such BSs. An important input for such dimensioning is the solar energy

data. Cellular networks require a high degree of reliability and thus accu-

rately characterizing the solar energy is imperative for successful resource

dimensioning. To accurately characterize the solar energy, we propose a

multi-state Markov model which combines daily and hourly transitions in

weather conditions which are then used for resource dimensioning. Also,

from the resource dimensioning we present useful insights that may serve

as guidelines for cellular operators planning to deploy solar powered BSs.

One of the fundamental steps in the dimensioning of resources is to eval-

uate the energy outage probability and battery lifetime associated with a

particular configuration of PV panel and battery size. Thus, we propose

vi



an analytic model to evaluate the outage probability and battery lifetime of

a solar powered BS for a particular resource configuration. The proposed

model accounts for hourly as well as daily variations in the harvested solar

energy as well as the load dependent BS power consumption and the bat-

tery levels. The model evaluates the steady state probability of the battery

level which is then used to estimate the outage probability and the battery

lifetime associated with the particular resource configuration.

Next, the thesis develops resource management strategies for off-grid solar

powered BSs aimed towards avoiding energy outages, while simultane-

ously deriving maximum benefit from the green energy harvested in terms

of reducing the traffic latency in the network. We present a methodology

for minimizing the traffic latency, given the constraints on the energy avail-

ability at the solar powered BSs. Our methodology uses a combination of

intelligent energy allocation over time, and green energy and delay aware

downlink power control and user association.

In the last part of the thesis we consider grid connected BSs equipped with

resources to harvest solar energy. The solar energy harvested can reduce

the grid energy consumed, thus bringing cost savings for cellular operators.

Intelligent management of such harvested energy can further maximize the

cost savings. Such management of energy savings has to be carefully cou-

pled with managing the traffic latency so as to ensure customer satisfaction.

We propose a framework for jointly managing the grid energy savings and

the traffic latency which is achieved by downlink transmit power control

and user association reconfiguration. We also show the trade-off between

the grid energy savings and the traffic latency for the proposed scheme.
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Chapter 1

Introduction

With more than six billion subscribers [1], the cellular networking and com-

munications industry is growing rapidly. To support this growth in the

subscriber base, cellular operators have expanded their coverage and ca-

pacity by deploying additional network infrastructure. This in turn has

increased the energy consumption of cellular networks and their contri-

bution to greenhouse gas emissions. With more than three million base

stations worldwide, cellular networks currently contribute to around 3% of

the worldwide energy consumption and 2% of carbon emissions [2]. Also,

it is predicted that the carbon emissions of information and communication

technologies (ICT) will increase from 170 metric-tons in 2014 to 235 metric-

tons by 2020. This increase in the power consumption and carbon footprint

of cellular networks has led to various initiatives for “green” solutions from

telecom providers, government agencies and researchers.

One of the key components of a cellular network is the base station (BS).

A base station provides coverage to the cellular users in its vicinity. BSs

are categorized according to their power consumption and coverage in de-

scending order as: macro, micro, mini and femto. Among these, macro

1



base stations are the primary ones in terms of deployment and have power

consumption ranging from 0.5 to 2 kW/hr. BSs consume around 60% of the

overall power consumption in cellular networks [2]. Thus one of the most

promising solutions for green cellular networks is BSs that are powered

by solar energy. Base stations that are powered by energy harvested from

solar radiation not only reduce the carbon footprint of cellular networks,

they can also be implemented with lower capital cost as compared to those

using grid or conventional sources of energy [3].

There is a second factor driving the interest in solar powered base stations.

In the recent past, the bulk of the growth in the deployment of cellular

base stations has been in parts of the world such as Africa and Asia where

the penetration of cellular communication is still low. For example, the

penetration of cellular networks in rural India is currently estimated to be

30-40%, implying that 200 million people are yet to be connected to cellu-

lar networks [4]. Unfortunately, many of these regions lack reliable grid

connectivity and the telecom operators are thus forced to use conventional

sources such as diesel to power the base stations, leading to higher operat-

ing costs and emissions. For example, studies indicate that of the 400,000

base stations in India, more than 70% face power cuts for more than 8

hours a day [5]. As a result, the telecom industry in India consumes more

than 2 billion litres of diesel per year, spending around US$ 1.4 billion and

producing more than 5 metric-tons of carbon dioxide emissions[5].

Current estimates suggest that there are 320,100 off-grid (i.e. without any

grid connectivity) and 701,000 bad-grid (i.e. connected to a grid supply

with frequent power outages, loss of phase, or fluctuating voltages) BSs

in the world [4]. The off-grid and bad-grid BSs are predicted to grow by

22% and 13% by the year 2020, respectively. This would imply that around

2



Figure 1.1: Worldwide deployment status of solar powered base stations at
the end of 2014.

70,000 off-grid and 90,000 bad-grid BSs will be installed between the years

2014 and 2020. Around 80% of these would be installed in African and

Asian countries. It is noteworthy that although many of the countries in

these regions have poor grid connectivity, they are rich in terms of solar

resources. Consequently, solar powered BSs are a viable and attractive

option in these regions. As can be seen from Figure 1.1 that shows the

status of solar powered BS deployment in the world at the end of 2014 [4],

the vast majority of such BSs are in Asia and Africa. The number in the

circles indicate the number of solar powered BSs in a particular country.

This thesis addresses two key issues in the deployment and operation of a

network of solar powered base stations. The first issue addressed in this

thesis is to determine the cost-optimal configuration of energy harvesting

resources (PV panels and batteries) for such base stations. The second issue

addressed in this thesis is to develop resource management strategies for a

network of solar powered base stations so as to avoid energy outages while

improving the quality of service offered to the users in terms of reducing

the traffic latency. We develop operational strategies for both off-grid as

well as grid connected solar powered base stations.
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1.1 Motivating factors for solar powered BS’s

The rest of this chapter is organized as follows. Section 1.1 describes the

various factors which have motivated the popularity of solar powered base

stations. Section 1.2 describes the key components of a solar powered base

station. Section 1.3 discusses the various configurations for a solar powered

BS. Section 1.4 presents the current status of deployment of solar powered

BSs and a case study. Section 1.5 presents few challenges in the deployment

and operation of solar powered BSs, existing solutions and some un-solved

issues. Section 1.6 presents the thesis outline and the contributions made in

this thesis for addressing the un-solved issues centring around deployment

and operation of solar powered BSs. Section 1.7 presents the bibliographi-

cal note.

1.1 Motivating factors for solar powered BS’s

In addition to the environmental benefits of using renewable energy sources,

solar powered BSs have a number of additional advantages. This section

presents the various advantages and other factors that have motivated the

increasing deployment of solar powered base stations.

1. Cost savings: Although solar powered BSs have a high CAPEX (cap-

ital expenditure), the OPEX (operating expenditure) is much smaller,

leading to cost savings on the long run. Solar powered BSs do not

require the laying of cables for grid connections, which reduces the

CAPEX and also speeds up the deployment. Also, the cost of solar

panels has decreased significantly over the years, with their efficiency

increasing every year. The bulk of the savings in the OPEX comes

from the cost of energy, specially in areas without grid connectivity

where network operators have to rely on diesel generators. The OPEX
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1.1 Motivating factors for solar powered BS’s

for solar powered BSs primarily comprises of the cost of replacing the

batteries (required every 2-8 years based on the battery usage pat-

tern).

2. Greener operation: The use of a renewable energy source implies that

there are no harmful emissions during the operational stage. Conse-

quently, the deployment of solar powered BSs is encouraged by many

governments and telecom operators.

3. Simpler maintenance: BSs powered by diesel generators have greater

maintenance requirements as well as the need to regularly refill the

fuel for the generators. In comparison, solar powered BSs have lower

maintenance needs and such sites can easily be unmanned.

4. Greater disaster resistance: Traditional grid connected BSs fails in

the case of extended grid failure. For example, during the 2011 earth-

quake in Japan followed by a tsunami, more than 6,700 cellular BSs

experienced outages [6]. In contrast, solar powered BSs are immune

to grid outages and can restore their services faster.

5. Government regulations and subsidies: Many countries currently

offer subsidies for promoting the use of solar power that can lower

the CAPEX of installing solar powered BSs. In addition, some gov-

ernments are making it mandatory for telecom operators to have a

certain fraction of their BSs powered by renewable energy (e.g. in

India).

6. New base stations with low power consumption: Large macro base

stations typically have high power consumption, which in turn re-

quires large solar panel dimensions, thereby making solar powered

solutions impractical. However, recent developments in the design
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1.2 Key components of solar powered BSs

Figure 1.2: Key components of a solar powered base station.

of cellular network infrastructure have resulted in macro base sta-

tions that consume around 500-800 W and smaller base stations that

consume around 50-120 W, making solar powered BSs a practical al-

ternative to traditional BSs.

1.2 Key components of solar powered BSs

In this section we describe the various components of a solar powered base

station, with emphasis on the features that differentiate it from a traditional

base station. Figure 1.2 shows a schematic of solar powered BSs. A solar

powered BS typically consists of PV panels, batteries, an integrated power

unit, and the load (e.g transceivers, cooling equipment etc.) and these are

described in detail below.

1.2.1 Base station subsystem (BSS)

Traditional base station:

A traditional base station consumes 0.5-2 kW based on the type. The power

consumption of a traditional base station is shared by the radio equipment

(power amplifier) which consumes around 65% of the overall power, fol-
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1.2 Key components of solar powered BSs

lowed by the cooling equipment and base band processing which consumes

around 17% and 10%, respectively. Rest of the power is used for the con-

trol operations. The cooling is for both the batteries as well as the radio

equipment (which is generally done by air conditioners and in some rare

cases using an ordinary fan) [1].

Next generation base stations:

In contrast to the traditional base stations, as a result of telecom compa-

nies and BTS manufacturers looking for reducing power consumption of

the base station, many new models for base stations have been developed

which are becoming increasingly popular. For example, Nokia Siemens

has introduced flexi BSs which require reduced installation cost and time,

are much more compact and lighter, and achieve upto 70% reduction in

site power [7]. These base stations can be placed either indoor or outdoor

and do not require cooling which contributes a significant part in the power

consumption of a traditional BS. Similarly Ericson’s soltuion Tower Tube has

the radio BS placed at a height which gives better coverage, network, capac-

ity and has lower feeder losses [8]. In addition, it is space efficient and does

not require air-conditioning. There have been many other similar initiatives

like WorldGSM that have developed compact low power consuming base

stations specifically designed for rural areas [9].

1.2.2 Photovoltaic panels

Photovoltaic panels are arrays of solar PV cells to convert the solar energy

to electricity, thus providing the power to run the base station and to charge

the batteries. Photovoltaic panels are given a direct current (DC) rating
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1.2 Key components of solar powered BSs

based on the power that they can generate when the solar power available

on panels is 1 kW/m2. For example, a PV panel with 8 kW DC rating

will produce 8 kW power when the solar power directly falling on it is 1

kW/m2. Further, a 1 kW PV panel is typically 5 m2 in area and the lifetime

of a typical PV panel is more than 25 years [3]. There are various factors

which affect the power produced by a PV panel:

1. DC rating of the PV panel: The solar power generated by a PV panels

is directly proportional to its DC rating.

2. Geographic location (or solar irradiation profile) of the site: A site

with higher solar irradiation will naturally have more solar energy

available for the solar panels, and will thus generate more power.

3. Tilt of the PV panel: The energy harvested by the PV panels also

depends on the tilt angle of the PV setup. If not chosen properly, it

can lead to reduced energy production. The default value of the tilt

angle is generally taken as the latitude of the place.

4. DC-AC loss factor: This comprises of the aggregate of various system

losses such as those due to the presence of diodes, losses due to dirt

on the PV panel, etc.

The current cost of PV panels is around US$ 1000 for a PV panel with

DC rating of 1 kW. Currently PV cells based on mono and poly-crystalline

silicon are common in large scale applications and they have an efficiency

of around 14-19%. The next generation high concentration solar cells (e.g.

based on germanium, gallium arsenide and gallium indium phosphide)

have been shown to reach efficiencies of around 40% [10]. This augurs a

positive future for solar powered applications with increasing efficiencies

and lower costs.
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1.2.3 Batteries

Solar powered BSs are equipped with batteries to power them during peri-

ods without sufficient solar power, such as nights and bad weather periods.

The batteries are charged during the day with the excess energy produced

by the solar panels. The cost of batteries forms a significant part of the

overall cost of a solar powered BS and thus their lifetime is of critical im-

portance.

The lifetime of a battery depends on the conditions in which it operates,

with the depth of discharge (DOD) during each diurnal charge-discharge

cycle playing a dominant role. The DOD refers to the percentage of battery

capacity that has been discharged expressed as a percentage of maximum

capacity. A typical lead-acid battery with a DOD of 60% has an expected

lifetime of 1000 charge-discharge cycles (called cycles to failure). In con-

trast, increasing the DOD to 90% decreases the expected lifetime to 500

charge-discharge cycles. Thus the permissible DOD is one of the important

features to be considered in deciding the battery bank capacity of the BS.

A larger number of batteries avoids deep discharges thereby increasing the

lifetime of the batteries, but increases the capital cost. Since the batteries go

through discharge cycles daily, and they may discharge to very low levels

in bad weather, deep discharge batteries are preferred in telecom applica-

tions.

Various battery types used in cellular BSs and their salient features are

listed in Table 1.1 [11]. Among the existing battery technologies, lead-

acid batteries are the most popular for solar powered BSs because of their

reliability and lower cost. A major disadvantage of lead-acid batteries is

that their disposal is not environmental friendly. Though there is ongoing
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Table 1.1: Battery Technologies.

Battery Type Cost Efficiency Max. No. of cycles Energy density Self-discharge
($/kWh) (%) DOD (%) (at Max. DOD) (Wh/kg) (%/month)

Lead-acid (conventional) 110-140 75-85 70 500-1000 30 1.5-5
Lead-acid (FLA-VRLA) 140-340 80-90 80 1200-1800 30 1.5-5

Nickel-Cadmium 400-900 70-80 100 1500-3000 50 5-20
Nickel Metal Hydride 800-1200 65-70 100 600-900 80 10-25

Lithium-Polymer 950-1650 90-100 80 600 100-150 2-5
Lithium-Ion 1000-1700 95-100 80 1500-3000 90-150 1-5

research on batteries that are environment friendly, they are not widely

used due to cost constraints.

1.2.4 Integrated power unit

The power requirements of a BS include the load offered by the transceiver

equipment, cooling, and other miscellaneous loads (e.g. lights). The power

supply to these loads as well as the conversion and storage of the harvested

solar energy is managed by the integrated power unit (IPU). The IPU in a

solar powered BS typically consists of DC-DC and DC-AC power convert-

ers, battery charger, charge level monitors and regulators, and a power

management unit. The power management unit controls the charging of

the batteries and the supply of power to the loads. The DC-DC converters

are used to supply power to the transceiver equipment and store the power

from the solar panels in the batteries, while the DC-AC converters supply

power to the AC loads such as the cooling equipment. The battery charge

regulator monitors the battery state and disconnects them from the system

when the overall charge goes below a specified DOD (generally 50-80%).

10
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1.3 Configurations for solar powered BSs

Depending on the availability of grid or other power sources, a BS may be

powered solely or partially by solar energy. The following configurations

are common for solar powered BSs:

1. Solar stand alone: The BS is powered solely by solar power and the

batteries.

2. Grid-connected: The BS is powered by energy harvested from PV

panels, but in case it falls short, power from grid is used.

3. Solar-diesel: The BS is powered by solar energy, but in cases of pro-

longed bad weather periods, diesel generators are used to meet the

power the BS.

4. Hybrid: Such a configuration can include a combination of PV arrays,

grid power, diesel generators and other renewable sources such as

wind energy to power the BS.

1.4 Current deployment efforts

As of 2014, estimates suggest that there are roughly 42,951 solar powered

base stations across the globe and Figure 1.1 shows their distribution across

various countries [4]. This section presents some of the ongoing efforts

towards the development and deployment of solar powered BSs. Examples

of ongoing deployment efforts include:

• Zong Pakistan: Zong is a China Mobile owned telecom service provider

in Pakistan that has deployed more that 400 solar powered base sta-

tions. Many of these BSs are deployed in remote and mountainous
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1.4 Current deployment efforts

areas that do not have grid connectivity. With electrification rates of

approximately 70% and frequent outages, using solar powered BSs

is Zong’s approach for expanding cellular networks in off-grid and

rural regions of Pakistan.

• Project Oryx: This is an initiative by the telecom provider Orange

and covers various parts of Asia, Middle East and Africa [12]. By

the end of June 2011, around 1165 solar BSs were deployed in 17

countries under this project, mainly in Africa. Few examples of these

deployments are the solar BSs in countries like Egypt, Kenya and

Armenia.

• Bhutan Telecom Limited (BTL): BTL has partnered with Vihaan Net-

works Limited (VNL), an India based telecom equipment manufac-

turer, to provide cellular connectivity to remote regions of Bhutan

that lack infrastructure and have difficult terrain. The deployed solar

powered BSs are designed for use in rural areas, with ability to han-

dle hundreds of users (in a range of few kms). These BSs require only

between 50-150 W of power and have batteries designed for 3-7 day

backup, aimed at providing autonomy during cloudy days.

• Telkomsel: Telkomsel is the leading telecom operator in Indonesia

and by 2012 had 234 BSs powered by solar energy. An example of

their solar powered BS is in Sangatta which requires an average daily

power of 26 kW. The BS is powered by 60 solar panels each with a

DC rating of 205 W (giving a total rating of 12.3 kW). The BS uses 24

batteries each with rating 2000 Ah thus ensuring autonomy of 4 days.

• Case study

While the examples above only describe a handful of ongoing efforts
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1.4 Current deployment efforts

at deploying solar powered BSs, a number of other initiatives have

been undertaken in emerging telecom markets. To provide a more

comprehensive description of a practical deployment scenario, we

now present a case study of the initial deployment of solar powered

based stations in rural Ghana by the telecom provider Tigo Ghana

[13].

In 2012, 60% of the land area and 20% of the population (5 million

people) of Ghana had no mobile coverage. The primary reasons for

the lack of network access in these areas are: (i) the lack of neces-

sary infrastructure such as reliable grid power and (ii) too low av-

erage revenue per user (ARPU) to justify the deployment costs. As

an initial step to providing network connectivity in these regions, in

2012, Tigo Ghana partnered with network solutions provider K-NET

and telecom equipment manufacturer Altobridge to deploy 10 solar

powered base stations. The base stations from Altobridge optimize

capacity for rural environments and have substantially lower power

consumption than conventional systems. In particular, the deployed

BSs use compression techniques so that voice calls require rates of 4

kbps (compared to 14 kbps in conventional systems) and each cell site

has an average power consumption of 90 W (compared to 130 W or

more). The BSs use satellites for backhaul, have a coverage range of

10 km, and capacity for up to 1500 subscribers. The lowering of costs

brought about by the design optimizations has the capability to bring

in a return on investment for the operator in less than 24 months, as-

suming 600 subscribers with APRU of $4 per month. Table 1.2 shows

some of the specifications of the solar powered base stations used in

this project and the network architecture is shown in Figure 1.3 [14].
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Table 1.2: Altobridge altoPod Specifications.

Feature 2G 3G
Frequency Band GSM 850/900/1800/1900 MHz UMTS 2100 MHz
Capacity 2 TRX (FR/AMR-HR) 16 sessions (voice or data)
RF power output +40 dBm (10W) +40 dBm (10W)
Receiver sensitivity -108 dBm at 2% BER -121 dBm at 0.1% BER for 12 kbps
Data throughput GPRS/EDGE HSPA (14 Mbps downlink, 5.8 Mbps uplink)
Input volatge -48V DC -48V DC
Average power 90 W 90 W
Operating temperature -30 to + 55 deg C -30 to + 55 deg C
Cooling Passive cooling Passive cooling

Figure 1.3: Network architecture based on Altobridge hardware.

Currently there are plans to expand to 300 additional sites, some of

which have already been implemented.

1.5 Challenges, existing solutions and motivations

This section lists some of the current technical as well as non-technical

challenges that stand in the way of widespread deployment of solar powers

BSs. We also review some of the existing solutions addressing these issues

and the various research gaps which we intend to address in this thesis.

1.5.1 Economic challenges

• High CAPEX: Though on the long run solar powered BSs are more

economical due to lower OPEX, the initial installation cost is consid-
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erably higher. However, technical advances such as more efficient and

cheaper solar panels have decreased the CAPEX/TCO (total cost of

ownership) ratio by around 40% between 2009 and 2013 [4]. Also,

government initiatives such as subsidies given in various countries

for the use of renewable energy is effectively reducing the CAPEX

and motivating operators to switch to solar powered BSs.

• Market forces: Increasingly, the industry’s attitude towards green

technologies is changing due to the awareness of environmental is-

sues. In addition, some governments (e.g. India) are enacting rules

making it mandatory for telecom operators to consider green energy.

The market dynamics have also changed with the emergence of an

increasing number of companies specializing in developing technolo-

gies for renewable energy based, off-grid base stations (e.g. Flexen-

closure, VNL, Altobridge).

• Large BSs: For base stations whose power consumption is more than

3 kW, solar power is currently not an attractive option due to the

large PV panel dimensions required, which in turn require a large

area as well as investment for installing them. For example, powering

a macro BS with power consumption of 3 kW would require an area

of around 180 m2 for the PV panels. However, larger BSs can still be

cost effective, e.g. in the presence of government subsidies, though

the payback period is still high (7-10 years) [15].

1.5.2 Geographical limitations

• Regions with poor solar insolation: Solar powered BSs are not very

attractive options for regions with poor solar insolation. However, in
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such regions solar power may be used in conjunction with the grid to

power the BSs.

• Urban deployments: PV panels should ideally be installed in open

areas where shadows from obstructions due to buildings or trees can

be avoided. Although such settings are easier to find in rural scenar-

ios, it may be difficult and expensive to procure such sites in urban

areas.

• Long stretches of bad weather: In areas that are prone to frequent

and prolonged periods of bad weather with accompanying cloud

cover, the required size of the battery banks is very large. This not

only increases the CAPEX, but also increases the possibility of out-

ages during these periods.

1.5.3 Resource provisioning and deployment

• Resource provisioning: The successful deployment of a solar pow-

ered BS requires meticulous planning to determine the appropriate

dimensioning of the PV panels and backup batteries [3, 12]. While

over-dimensioning leads to higher than necessary CAPEX, under-

dimensioning can lead to frequent outages, thus dissatisfying the

customers. Existing works in the literature consider dimensioning

the battery size for a given PV panel size, but a framework for eval-

uating the cost-optimal resource dimensions is missing. To address

this open problem, this thesis presents a dimensioning methodology

which considers a stand-alone solar powered BS. The resource di-

mensioning problem seeks to determine the cost optimal PV panel

and battery size while satisfying the desired threshold on the energy
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outage probability (i.e. the probability that the battery runs out of

energy). The cost to be minimized includes the CAPEX as well as the

OPEX, which consists of the cost of replacing dead batteries.

Another challenge in the dimensioning the resources for a solar pow-

ered BSs is to accurately characterize the solar energy. Inaccuracies

in the solar energy model can lead to under-dimensioning which is

unacceptable for cellular applications which require a high degree of

reliability. Thus, in this thesis, we also propose models which accu-

rately characterize the solar energy.

Dimensioning resources for a solar powered BS include modelling the

dynamics between various system parameters like PV panel size, bat-

teries and the base station load. Existing literature does not have any

analytic models which integrates the modelling of all these system

parameters. We address this issue in this thesis by proposing an an-

alytic model for outage estimation which is further used for resource

dimensioning.

• Choosing a configuration: Section 1.3 presents the different config-

urations for solar powered BSs. The choice of a configuration for a

given location depends on parameters such as the daily grid-outage

period, cost of diesel fuel and generators, location specific solar and

wind speed data etc. Based on these information, the overall cost

(CAPEX + OPEX) for the different configurations for the desired op-

erational period is computed and the cost-optimal configuration is

chosen [5].

• Deploying small cells: Small cells BSs have the advantage of reduced

transmitter to mobile terminal (MT) distance, reduced transmit power
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requirement, higher data rates and low BS power consumption, and

are thus an attractive option for increasing network capacity and spec-

tral efficiency [18]. Further, these BSs are typically placed at the cell

edges so that the quality of experience of the cell edge users is im-

proved. Due to their low power consumption, they can be easily

powered by solar energy.

The main challenges associated with deploying small cell BSs is to

determine the number of BSs to deploy and their locations. Given

the tradeoff between the outage probability and the number of BSs,

recent studies have shown that it is preferable to have more small cell

BSs with less energy harvesting (EH) resources rather than few BSs

with larger EH resources [19]. Due to the complexity of the problem,

the required number of small cell BSs is determined keeping in mind

only the desired outage probability, with other parameters (like the

macro BSs and their location) kept as fixed. The small cell locations

are determined by factors such as the spatial distribution of traffic

hotspots and solar insolation.

1.5.4 Operational strategies for resource management

For energy harvesting BSs, the major resources in the network are: the en-

ergy harvested by the BSs, the transmission power level at which the BSs

choose to operate, and the spectrum available for transmission. Due to

the stochastic nature of the traffic intensity and solar insolation, deciding

operating strategies for the BSs is a challenging problem. In most cases,

weather forecast data and historical traffic models may be required for de-

termining the network’s operating conditions. The most widely explored
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problems in this context aim to minimize the overall energy consumption

of the network through a variety of mechanisms. Existing methodologies

for resource allocation and management consider both centralized (where

a central server acquires the network state information and periodically

updates the resource allocation of the BSs) and distributed mechanisms

(where the BSs share information with each other and the MTs to deter-

mine the operating conditions). Some of the resource allocation strategies

considered in literature are as follows.

• Load balancing: While operating the BSs, the operator has to take

into account the available energy, the expected harvested energy in

the near future, and the traffic load at the BSs, with the objective of

preventing the BSs from running out of energy or being over-loaded.

To ensure continued coverage, BSs may cooperate by dynamically

changing the area covered and traffic handled by each BS, in accor-

dance to the energy available at each BS. There are two main tech-

niques for load-balancing among BSs:

Base station beacon power control: In this approach the BSs either in-

crease or decrease the power of their beacon signals in order to control

the area served by them. This in turn changes the traffic load at the

BSs and thus their rate of energy consumption. The problem of opti-

mally controlling the range of the base stations in order to minimize

the overall energy consumption, under constraints on the minimum

received power at the MTs is NP-hard. Heuristic solutions to the

power control problem usually employ greedy algorithms. For exam-

ple, the algorithm in [20] first obtains the set of BSs with the highest

energy depletion rate. For each BS in this set, the beacon power level

of each BS is iteratively reduced till the constraint on the minimum

19



1.5 Challenges, existing solutions and motivations

received power at the MTs is violated. This process of choosing the

BSs and reducing their power continues till no further decrease is

possible.

Although such a scheme benefits the BSs running out of energy by

offloading the traffic being served by them to other BSs which are

richer in terms of green energy availability, it does not account for the

network latency and thus can lead to quality of service degradation.

Dynamic user association: Since the energy consumption of a BS de-

pends on its traffic load, energy-aware load balancing techniques in-

corporate the BS traffic load and energy availability in the decision

rules for determining which BS a MT would attach itself to. In these

strategies, MTs periodically obtain the load and energy information

from the BSs in their vicinity and then decide which BS to associate

with. However, as MTs associate and direct their traffic at the BSs

with higher energy levels, these BSs may experience traffic conges-

tion. Consequently, user association strategies that optimize the en-

ergy utilization while avoiding congestion have been proposed (e.g.

the GALA scheme discussed in [22]).

Schemes such as those mentioned above are solely based on user-

association reconfiguration. They more or less re-distribute the traffic

among the BSs thus adjusting their power consumption, but do not

bring about significant savings in terms of reducing the overall en-

ergy consumption in the network. Additionally, the above mentioned

schemes consider a snap-shot problem and do not guide in terms of

how to allocate the green energy available over time. Thus to address

these issues in this thesis we propose a framework which intelligently

allocates the green energy over time and uses green energy and delay
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aware downlink power control and user association. This is not only

capable of reducing the traffic latency but can also bring down the

overall energy consumption of the network. We propose such frame-

works for both off-grid as well as grid-connected network of BSs.

• BS on/off strategies: Switching off BSs is a powerful way of achiev-

ing energy savings in a cellular network. Since cellular networks are

provisioned for peak-hour traffic, it may be possible to turn off some

BSs during off-peak hours while maintaining coverage and quality.

Strategies for saving energy by turning off BSs seek to determine the

minimum number of BSs required to serve the area, with the desired

quality of coverage (e.g. blocking probability, delay) as a constraint.

The problem of minimizing the overall energy consumption of a set

of BSs, subject to a limit on the load on any BS, is known to be NP-

complete [23]. This problem is equivalent to determining the small-

est possible set of active BSs subject to the system load constraint.

Heuristics for solving this problem centre on greedily assigning MTs

to BSs with higher loads so that the number of the BSs that have no

associated MTs (and thus can be turned off) is maximized.

The existing BS on/off schemes suffer from the drawback that they

only consider the load at the different BSs whereas the energy avail-

ability at the BSs is not considered while making such switching de-

cisions. Further, the energy savings in the BS on/off schemes are

brought at the cost of degradation in the quality of service offered to

the users (in terms of increase in the traffic latency). In contrast to

this, in this thesis we propose a scheme where the energy savings can

be brought while simultaneously improving the traffic latency.

• Energy and spectrum sharing among BSs: In any cellular network,

21



1.5 Challenges, existing solutions and motivations

the traffic demand and the harvested energy have spatial and stochas-

tic variations which lead to some interesting possibilities regarding

resource usage and sharing. To share resources so that outages are

minimized or the quality of service (QoS) of users is improved, solar

powered BSs may share energy either directly through electrical ca-

bles, or indirectly through power-control/load-balancing/spectrum-

sharing mechanisms [24]. Energy sharing between BSs may be achieved

by two-way energy flows in a smart grid and strategies to develop

such sharing mechanisms may be obtained by modelling the system

as an energy-trading system. Spectrum sharing in solar powered BSs

is motivated by the fact that for a given rate requirement and channel

noise (e.g. in an AWGN channel), the transmit power may be reduced

by increasing the bandwidth, and vice-versa. The problem of energy

and spectrum sharing may also be considered jointly. The sharing

strategies may be developed by modeling the system as a convex op-

timization problem.

• Coordinated multipoint (CoMP): In CoMP, BSs cooperate to jointly

serve MTs and is particularly useful in combating inter-cell interfer-

ence (ICI) in dense deployment scenarios, and enhancing network ef-

ficiency and overall QoS for users. Implementation of CoMP requires

the formation of clusters of transmit points for CoMP transmissions

and the allocation of resources to the transmit points. The extent of

cooperation and which BSs should cooperate to serve the MTs is de-

cided based on the resources available at the BSs and the decisions

are made with the objective to maximize the system performance or

to minimize the energy costs. The cluster formation and resource al-

location problems are tightly coupled and optimization problems to
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solve them jointly generally lead to non-convex formulations.

1.6 Major contributions and thesis outline

Motivated by the above discussion, this thesis addresses two major chal-

lenges in deployment and operation of solar powered base stations namely

(a) Resource provisioning for solar powered BSs and (b) Developing oper-

ational strategies for resource management for a network of solar powered

BSs. Chapters 2 and 3 of the thesis focus on developing frameworks for op-

timally dimensioning resources (PV panels and batteries) for solar powered

BSs whereas Chapters 4 and 5 focus on developing operational strategies

for resource management for a network of solar powered BSs.

1.6.1 Major contributions

The major contributions of this thesis are summarized as follows.

1. Markov models for accurately characterising solar energy

In Chapter 2 we present a multi-state Markov model to accurately

characterise the solar energy. Specifically, we show how accounting

for the day-level weather correlations are critical for dimensioning of

resources for applications requiring a high degree of reliability. We

characterise the days into good weather and bad weather days and

the transition between the two day types is modelled as a two-state

Markov process. Also given a day type we consider a Markov model

for characterising the hourly harvested solar energy. The model can

be used to generate synthetic traces of solar energy data which can

be used for resource dimensioning. We show the accuracy of the pro-
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posed model by comparing the results against those obtained using

empirical traces of solar energy and we also show the superiority of

the proposed model over an existing model [21]. In Chapter 3 we

propose a simpler model for characterising the solar energy where

we characterise the days into 3 day types (i.e. good, bad and very

bad weather days) and the day level transitions are modelled as a

3 state Markov process. Contrary to the approach in Chapter 2, for

simplicity this model uses the average hourly harvested energy pro-

files for a given day type for dimensioning purposes. The Markov

models presented in the thesis provide an insight that it is the series

of bad days coming in succession which predominantly contribute to

energy outages and thus modelling bad weather days is important for

high-reliability dimensioning applications.

2. Framework for resource provisioning and dimensioning for solar

powered BSs and key insights

In Chapter 2, we propose a framework for cost-optimal resource di-

mensioning for solar powered BSs. Also, based on the analysis from

the dimensioning we present insights which may be helpful for cel-

lular operators while dimensioning resources for the solar powered

BSs. Some key results presented in this context in the thesis include

showing how battery lifetime varies with the number of batteries in-

stalled at a BS, how outage probability varies with the number of bat-

teries, and insights from PV-battery configurations for a given outage

threshold.

3. Model for energy outage estimation and battery lifetime evaluation

for solar powered base stations.
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Using synthetically generated traces of solar irradiation for evalua-

tion of the energy outage probability and battery lifetime associated

with a particular configuration of PV panel and battery size (during

resource dimensioning) is computationally very intensive. Addition-

ally, using the same does not give insights into the performance of the

system. Thus, in Chapter 3, we present a framework which integrates

the modelling of solar energy, network traffic and battery levels and

can be used to evaluate the energy outage probability and battery

lifetime associated with a PV panel and battery size. The proposed

model is simple yet accurate and we test its accuracy by comparing

against results from empirical solar energy traces, as well as show its

superiority over an existing benchmark.

4. Green energy and delay aware downlink transmit power control

and user association scheme for off grid solar powered BSs.

Operating a network of stand-alone solar powered BSs has many chal-

lenges associated with them. One of the concerns while operating

such BSs is to avoid energy outages. One of the ways to avoid energy

outages could be by using BS on/off schemes such as those proposed

in [23], but using the same can lead to the degradation of quality of

service offered to the users being served by the BSs, in terms of its

increasing the traffic latency. One of the ways to manage the traffic

latency is to apply user-association reconfiguration which accounts

for the green energy availability at the BSs and the delay [22]. How-

ever, such an approach is not so effective in brining down the power

consumption of the BSs as BSs operate at fixed downlink transmit

power levels. To address the above-mentioned issues, we propose

green energy and delay aware downlink transmit power control and
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user association for the solar powered BSs which is directed towards

avoiding energy outages, while simultaneously improving the traf-

fic latency. We show the superiority of the proposed strategy over

existing state of art strategies. In addition to this, most of the exist-

ing works on BSs powered by renewable energy consider a snapshot

problem (i.e. solving a problem for a given instant of time) and do

not address the issue of green energy allocation over time. We try to

address this issues by proposing an intelligent energy allocation algo-

rithm which allocates green energy in proportion to the load expected

in a given hour during the day.

5. Delay aware resource management for grid energy savings in grid-

connected solar powered BSs.

Careful management of available green energy at the BSs can increase

the grid energy savings. However, during this process, the operator

has to carefully account for the increase in the traffic latency. In Chap-

ter 5, we propose a framework which jointly manages the grid energy

savings and the traffic latency. The framework uses load proportional

energy allocation, downlink transmit power control and optimal user

association policy. We show that the proposed framework can lead to

around 60% grid energy savings and a lower traffic latency as com-

pared to the traditionally existing scheme. We also compare the per-

formance of the proposed framework with the state of art strategies.

1.6.2 Organization of the thesis

The remainder of this thesis is organized as follows. In Chapter 2, we

investigate resource provisioning and dimensioning for solar powered BSs.
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Chapter 3 proposes a framework for energy outage estimation and battery

lifetime evaluation for solar powered BSs and its application to cost-optimal

resource dimensioning for solar powered BSs. In Chapter 4, we propose

a temporal green energy allocation scheme, and green energy and delay

aware downlink power control and user association for stand alone solar

powered BSs whereas in chapter 5 we propose these schemes for a grid

connected network of solar powered BSs. Chapter 6 concludes the thesis

and discusses potential areas of future work.
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Chapter 2

Resource Provisioning and

Dimensioning for Solar Powered

Base Stations

2.1 Introduction

One of the challenges while deploying a solar powered BS is to appropri-

ately provision resources for harvesting and storing the solar energy. The

resources available at the BS for the harvesting and storage of solar energy

are PV panels and batteries, which are installed at the BS site. These re-

sources have to be appropriately dimensioned. Over-dimensioning of these

resources can lead to un-necessarily high cost of deployment, whereas

under-dimensioning can lead to frequent outages which leads to customer

dissatisfaction. Taking into account these two aspects, the cellular operator

has to carefully provision the resources.

To address this issue, in this chapter we consider the problem of cost-
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optimal resource dimensioning for an off-grid solar powered BS. We be-

gin by describing the power consumption of the base station and the solar

energy and battery resources used to harvest and store solar energy. We

describe the procedure for obtaining the solar energy harvested at a given

site and the model for evaluating battery lifetime. For a given PV panel and

battery size, we describe the methodology for evaluating the outage prob-

ability associated with that resource configuration. The outage probability

is evaluated by simulations using long duration traces of BS power con-

sumption and the solar energy. Note that in context of this thesis, we use

outage probability to indicate the energy outage probability. Energy outage

is defined as an event where the BS does not have enough energy at its dis-

posal and is thus shut off. Next, having obtained the outage probabilities

associated with different PV panel and battery configurations, we formu-

late the problem of cost-optimal resource dimensioning. As described in

the introduction to the thesis, we observe the need to accurately model so-

lar irradiation as an important step in dimensioning a solar powered BS.

Thus, next we present a multi-state Markov model to characterize the solar

energy for a given location. The proposed multi-state Markov model can

be used to generate long duration synthetic traces of solar energy data. We

use these solar energy traces in the framework for determining the outage

of the base station to address the cost optimal PV-battery dimensioning

problem for the BS. We compare the cost optimal PV panel and battery

dimensions predicted using the solar energy traces generated from our

multi-state Markov model with the results predicted through dimension-

ing using empirical data to verify our model and also show its superiority

in dimensioning over results using an existing benchmark model [21]. We

also present some key insights into resource dimensioning from the above

mentioned analysis.
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The rest of this chapter is organized as follows. Section 2.2 presents the lit-

erature review. Section 2.3 presents the system model. Section 2.4 presents

the system resources and the methodology for outage estimation. Section

2.5 formulates the problem of cost-optimal resource dimensioning. Section

2.6 presents the proposed multi-state Markov model for characterising the

solar energy. Section 2.7 presents the numerical results for the dimension-

ing of resources as well as the key insights from the analysis, while Section

2.8 concludes the chapter.

2.2 Literature review

With the increasing focus on green energy, there have been a number of

works that deal with the problem of dimensioning resources for reliable

performance of solar powered systems. Guidelines for dimensioning re-

sources for solar powered systems are presented in [25, 26] while [27] pro-

posed the use of the probability of loss of power supply as a reliability

index in dimensioning problems. In [28]-[32] the authors propose method-

ologies for dimensioning of battery size based on the number days of au-

tonomy (i.e. number of consecutive days for which the battery should be

able to power the system even if there is no solar energy harvested). The

size of the PV panels in such an approach is chosen such that with the av-

erage solar irradiation of the worst weather month, the PV panels are able

to harvest energy equivalent to the daily average power consumption. The

storage dimensions in this method are determined by the product of the

days of autonomy and the average daily power consumption. While such

methods are simple and provide a rough approximation, they have a num-

ber of disadvantages: the solution provided is not necessarily cost-optimal,
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the designer has to decide the days of autonomy which requires experience,

and it does not provide any guarantees on the outage probability.

The problem of dimensioning of resources for solar powered systems specif-

ically targeting cellular BSs is considered in [3, 34]. The dimensioning in

[3, 34] is done through simulations by using long-term solar irradiation

data (either real or synthetically generated). However these works do not

consider the problem of cost-optimal dimensioning for the solar powered

base stations. Thus in our work we address this issue by proposing a

framework for cost-optimal resource dimensioning for solar powered BSs.

A critical input that determines the accuracy of the dimensioning results is

the solar irradiance data. While historical long-term solar irradiance data

is available for certain places, such data is usually not available for much

of the developing world where the lack of reliable grid power makes solar

powered systems more important. It is noteworthy that many researchers

(e.g. [3, 36]) and commercial softwares (e.g. HOMER [37]) use typical me-

teorological year (TMY) data for dimensioning resources to avoid using

long term solar irradiation data. TMY data consists of hourly meteoro-

logical data for twelve months and is synthetically generated using long

term meteorological data [38]. Since it is generated using long term data

and uses averaging of various parameters, bad weather days are reduced in

TMY data as compared to real statistical data, thereby leading to more opti-

mistic dimensioning. Thus TMY data is not very suitable when it comes to

developing stand-alone systems for telecommunication applications which

have strict reliability requirements [39]. Thus there is a need for models

which can accurately characterize the solar energy at a given site.

Existing approaches to model the daily/hourly solar irradiance include

Markov models [40, 41], autoregressive moving average (ARMA) models
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[42] - [44], and models based on artificial neural network approach [45,

46]. The Markovian approach assumes the solar irradiance at a given time

(either day or hour) to be dependent only on the solar irradiance at the

last time unit. Further, daily or hourly transition statistics are derived to

characterise the transition from one solar irradiance level to other. The

ARMA approach uses autocorrelation between consecutive days to capture

the nature of the solar radiation. The artificial neural network method for

characterizing solar irradiance has been developed in the recent past [46].

However, their applicability is for the prediction of solar irradiance based

on past observations, and they require long term solar data for training.

It has been shown that Markov models perform better than ARMA models

[47, 48]. While most Markov models focus on daily irradiance levels, some

models exist for modelling the hourly solar irradiation [21] [48]. However,

they lack accuracy since they do not consider the day to day correlations

in the solar irradiance. To address this issue, in this chapter we propose a

Markov model which captures the solar irradiance characteristics both on

an hourly as well as on a daily scale. The proposed model can be used

to generate synthetic traces of solar energy data which can be used for

resource dimensioning of the solar powered BSs.

2.3 System model

For dimensioning resources for a solar powered base station one requires

traces of base station power consumption and the solar energy that can be

harvested. Additionally, one needs to understand how the battery lifetime

is affected by the charging-discharging patterns that a battery goes through.

In this section we describe the methodology for generating traces of BS
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power consumption which have been used for dimensioning resources in

this chapter. We also present the details of how the solar energy data used

in this chapter is obtained and the model adapted to evaluate the battery

lifetime.

2.3.1 Base station power consumption

The base station power consumption comprises of two parts: a fixed part

which is due to air conditioners, losses in cable feeders etc. and a variable

part, which depends on the instantaneous traffic load being handled by

the base station. We consider a Long Term Evolution (LTE) macro BS, the

power consumption for which is given by [49]

L(t) = ΥTRX(P0 + ∆K(t)Pmax), 0 ≤ K(t) ≤ 1 (2.1)

where ΥTRX denotes the number of transceivers, P0 denotes power con-

sumption at zero traffic, ∆ denotes slope of load dependent BS power con-

sumption, K(t) is the normalized traffic at time t and Pmax is the power

amplifier output at maximum traffic. Example values of P0, ∆ and Pmax for

a macro BS are 118.7 W, 2.66 and 40 W respectively [49].

The traffic load at a cellular BS consists of a mix of voice and data. Both

voice and data traffic show diurnal patterns where the traffic peaks are

reached during certain hours of the day and lower levels at nights [50, 51,

52]. In addition, the traffic levels during weekends are lower than week-

days. Given the similarity in their profile, for illustrative proposes we con-

sider a case with only voice traffic and note that the extension to scenarios

with data traffic is similar. In addition, we note that off-grid BSs are pri-

marily being deployed in the African and Asian continents due to their
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Figure 2.1: Normalized traffic at a BS for a week.

lack of reliable grid-connectivity, and the traffic served by the BSs in these

locations is still primarily voice [54].

To model the traffic being served by the BS, we use call based models

as proposed in [55] where the call arrival process is Poisson and the call

durations are exponentially distributed. Based on this model, calls are gen-

erated on a per-minute basis with rate depending on the hour of the day,

with average call duration of two minutes [56]. The normalized traffic at a

given time, K(t), is obtained by normalizing the instantaneous number of

active calls by the maximum number of calls the base station can support.

This calculation assumes that at a given point of time, every active voice call

utilizes the same amount of radio resources of the BS (and hence equally

contributes to the traffic at the BS at that given time instant). The normal-

ized traffic is obtained on a minutely basis (i.e. with a sampling interval of

1 minute) using the above model. However, for simplicity of analysis we

consider the average normalized traffic and corresponding BS power con-

sumption on a hourly time scale (i.e. the average value of the traffic during

the different minutes in the hour is taken as the traffic value for that hour,
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Figure 2.2: BS power consumption for a week.

which is further used to evaluate the power consumption for that hour).

Figure 2.1 shows the hourly normalized traffic generated using the above

model for a period of one week. The hourly average value of K(t) is used

in Equation (2.1) to calculate the average BS power consumption during a

given hour.

The above mentioned model can be used to generate traces of hourly BS

power consumption for any arbitrary time duration. In such traces, the BS

power consumption at time t (where t is the time (in hour) from the begin-

ing of the time-series) is denoted by L(t). An example of the hourly base

station power consumption profile for different days in a week is shown in

Figure 2.2.

2.3.2 Solar energy resource and batteries

For modeling and evaluation, we use statistical solar irradiation data from

the National Renewable Energy Laboratory (NREL), USA [57]. The weather

data files are fed into the System Advisor Model (SAM), a tool developed
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by NREL which gives the hourly solar power generation for a PV panel

with a given rating [58]. We use 10 years of solar data for a given location.

For PV panels, we assume default values for the DC-AC loss factor (as-

sumed to be 0.77) and the tilt of the PV panels (assumed to be the latitude

for the given location) [59].

We assume that the BS uses lead acid batteries for charge storage due to

their popularity and cost advantages over other storage options. The op-

erating conditions of a battery strongly influence the lifetime of a battery

and discharging it to very low values can significantly reduce its lifetime.

To calculate the battery lifetime, we use a model based on the number of

charge cycles to failure for different values of the depth of discharge (DoD)

[60]. DoD is defined as the lowest level a battery hits in a given discharging-

charging cycle. For modeling the battery lifetime, the entire range of DoD

(0-100) is split into M regions. Then, for the operating period (say T years),

the number of cycles corresponding to each DoD region is counted. The

battery lifetime, LBat is then

LBat = T/(
M

∑
i=1

Zi

CTFi
), (2.2)

where Zi is the number of cycles with DoD in region i, and CTFi is the

cycles to failure corresponding to region i [60]. The relationship between

the DoD and cycles to failure is generally provided by the battery manu-

facturer [61] and Figure 2.3 shows the characteristics for a typical lead acid

battery [61]. For simplicity we neglect the degradation with time in the PV

panel and battery efficiency. Also as the PV panels and batteries are at the

BS location, we neglect the leakage in the transmission of energy between

the PV panel and the batteries.
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Figure 2.3: Cycles to failure vs DoD for a typical lead acid battery.

2.4 System resources, outage estimation and bat-

tery lifetime estimation

Given nPV number of PV panels installed in the BS site, each with DC

rating Epanel, the overall DC rating of the PV panels for the site, PVw, is

given by

PVw = nPV Epanel. (2.3)

Similarly, for nb batteries installed, each with capacity given by Ebat, the

battery bank capacity Bcap is given by

Bcap = nbEbat. (2.4)

For a particular combination of PVw and nb, the outage probability can be

calculated by using the energy produced by the PV panels (which depends

39



2.4 System resources, outage estimation and battery lifetime estimation

on the solar insolation profile at that location), BS power consumption

(which is traffic dependent), and the battery charge/discharge dynamics

under the influence of the two previous factors. In this work we analyze

the solar energy resource, base station power consumption and the energy

stored in battery bank on an hourly basis.

For outage and battery lifetime estimation, we require traces of solar energy

generated and traces of the BS power consumption. To obtain traces of

solar energy generated, the solar irradiation data from NREL is processed

through the SAM tool as described in Section 2.3.2. This provides traces of

solar energy generated for a solar panel with DC rating of 1 kW. We denote

the solar energy generated at time t (where t is the time (in hours) from the

begining of the trace) as S(t). For a PV panel with rating PVw, the energy

generated at time t, E(t), can be expressed as

E(t) = PVwS(t). (2.5)

The model described in Section 2.3.1 is used to generate traces of hourly

BS power consumption. In such traces of BS power consumption, we use

L(t) to denote the BS power consumption at time t.

We assume that batteries are initially fully charged. To avoid deep dis-

charges which adversely affect the battery life, we disconnect the battery

from the system when the overall charge level goes below νBcap. Here ν is

the fraction of battery capacity below which the battery is dis-allowed to

discharge to avoid battery degradation. We denote the battery level at the

end of hour t by B(t). Based on these parameters, the estimated state of

the battery power at a given time, Best, is given by
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Best(t) = B(t− 1) + E(t)− L(t). (2.6)

As we have constraints on the battery level which is bound by the limits of

battery capacity and minimum state of charge (i.e. νBcap), the battery level

at a given time is thus given as

B(t) =


Bcap Best(t) ≥ Bcap

B(t− 1) + E(t)− L(t) νBcap < Best(t) < Bcap

νBcap Best(t) ≤ νBcap

(2.7)

with B(0) = Bcap.

Note that as accounted above, the batteries are not allowed to discharge

below νBcap and if the battery level tends to go below that, the batteries are

disconnected and the BS is shut down until there is sufficient solar energy

harvested to power the BS (and additionally to charge the batteries above

that level). Such an occurrence corresponds to energy outage as the BS has

shut down due to lack of sufficient energy to operate it.

Telecom operator desire to avoid such energy outages and thus want that

the probability of occurence of outage to be very low. In existing literature

the outage probability is often captured in terms of the percentage of days

during the operational time when such energy outages happen [27], [62].

Thus we consider the outage probability, denoted by Ω, to be given by

Ω = lim
D→∞

Doutage

D
(2.8)

where Doutage is the number of days that have an energy outage and D is

the total number of days of operation. Note that although to get an accurate
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estimate of the outage probability ideally we require the total number of

days D → ∞. However, in real life scenario we approximate it considering

a reasonably large number of days for the outage probability evaluation

(e.g. of the order of days in a year or more). The methodology adopted for

evaluating the outage probability is explained in the remark at the end of

this section.

The battery level values during the different hours (obtained using the op-

erations in Equation (2.7)) can be used to evaluate the battery lifetime LBat.

The methodology for evaluating the battery lifetime was explained in Sec-

tion 2.3.2 where Equation (2.2) is used to find the value of battery lifetime.

2.5 Cost optimal dimensioning

This section presents a formulation for the cost optimal PV panel and bat-

tery dimensioning problem for a solar powered BS. The cost of the system

depends on the size of the PV panel and the number of batteries required

over the system lifetime. For any given values of PVw and nb, the cost also

depends on the battery lifetime associated with that configuration. For a

target system lifetime of Trun years, the total system cost, C, is given by

C = NBatCB + PVwCPV (2.9)

where CB is the cost of one battery and CPV is the cost of PV panel per kW.

NBat represents the total number of batteries required over system lifetime

of Trun years and is given by

NBat = nb

⌈
Trun

LBat

⌉
(2.10)
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where nb is the number of batteries powering the base station at any given

point in time and LBat is the battery lifetime for the given PV wattage (PVw)

and number of batteries (nb).

The cost optimal resource dimensioning problem is then given by

minimize
PVw,nb

NBatCB + PVwCPV

Subject to: Ω < λ

where λ is the network operator’s specified limit on the tolerable outage

probability. Note that PVw (the PV panel size) and nb (the number of bat-

teries installed at the BS) are the optimization parameters. The framework

to evaluate the outage probability (Ω) corresponding to a certain config-

uration of PV panel and number of batteries installed at the BS has been

already presented in former part of the chapter (Section 2.4) and all one

needs to do is to check which PV panel-Battery size configuration has min-

imum cost while meeting the outage constraint.

Note that in our work we do not have any mathematical expression captur-

ing the functional relationship between the optimization variables and the

constraint. However, there is a close functional relationship between the

optimization parameters and the outage probability. For example if one in-

creases the PV panel size or number of batteries, generally one can expect

the outage probability to reduce by doing so. To solve the optimization

problem we propose the following steps

1. We start by assuming a PV panel with rating of 1 kW and evaluate

the minimum number of batteies required to ensure that the outage

probabiity is below λ. This process is then repeated as the PV panel

size is increased in steps of Epanel. Epanel has been described in Sec-
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tion 2.4 and has been taken as 0.5 kW for the results in this chapter.

The PV-Battery configurations from this exercise are the prospective

configurations to be considered for solving the cost-optimal dimen-

sioning problem. Note that for very low PV panel dimensions (e.g.

< 9 kW), generally the number of batteries required to ensure the

outage probability below λ (when a realistic value of λ i.e. λ < 1%

is taken) is very high, thus increasing the cost associated with the

configuration and thus they generally do not turn out to be solution

for the cost optimization problem. Also, for large PV dimensions, as

one evaluates the minimum number of batteries required to ensure

Ω < λ, one can observe that after a certain point increasing the PV

panel size does not reduce the number of batteries required. Thus,

one no longer needs to evaluate the number of batteries required for

further configurations of PV panels (since such configuration have a

larger PV panel size and it is possible to meet the tolerable outage

with the same number of batteries and a smaller PV panel).

2. The battery lifetime associated with the PV-Battery configurations ob-

tained in the previous step is evaluated and the cost associated with

each of these configurations is computed using Equation (2.9).

3. The configuration with the lowest cost is chosen as the solution for

the cost-optimal resource dimensioning problem.

Note that the parameters used in our modeling and dimensioning frame-

work may change over time. Traffic volumes tend to increase with time

while the efficiency of hardware such as PV panels decreases [64, 65]. Since

cellular network infrastructure is deployed with an intended lifetime of

multiple years, it is standard practice during cellular network planning

and deployment to account for forecasts of the expected rise in traffic and
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other parameter changes. Thus in the proposed dimensioning framework,

the projected traffic at the end of the system lifetime may be used for mod-

eling the system load. Similarly, the projected efficiency of the PV panels

may be used to compute the harvested energy and classify the day types.

Note that this approach means that the system will be over-provisioned

during the initial years of operation. If the network operator desires to

avoid such over-provisioning, an alternative is to repeat the dimensioning

exercise every few years and install additional PV panels and batteries as

needed.

2.6 Multi-state Markov model for characterising

hourly harvested solar energy

In this section we describe our proposed multi-state Markov model [16,

63] to characterize the hourly solar energy harvested at a given location.

The multi-state Markov model is based on a model that combines daily

correlations in weather conditions affecting the solar irradiation with finer-

grained, hourly transitions in solar irradiance levels. Using the proposed

model for solar energy, one can generate synthetic traces of solar energy

harvested which can be used for resource dimensioning.

2.6.1 Model description

The PV panels harvest solar energy during the daytime. While part of the

harvested energy is used to supply the instantaneous power demand of the

BS, the excess energy is stored in the battery bank. During the time of low

or no solar energy which may be either due to bad weather or at night, the
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Figure 2.4: (Left:) Transition between good and bad days. (Right:) Hourly
transition in a good day.

BS is powered by the batteries. The BS load profile and the solar energy

profile play key roles in dimensioning the PV panel and battery resources.

We assume that the telecom operator has a model for the load profile as

well as the historical data to characterize the solar energy profile for a given

location.

It has been shown in previous work that the solar energy profile of any

location may be modelled as a Markov process [21, 48]. This work refines

such models by proposing a multi-state Markov model for the solar energy

resource. In the proposed model, any day is classified as either a “good”

or a “bad” weather day based on the level of energy that is harvested. For

example, sunny days would be classified as good days. The fraction of

all days that are classified as bad is denoted by ξ. Given that a day is

either good or bad, the next day may be either good or bad, depending on

the weather conditions. To capture the occurrence of consecutive good or

bad weather days, the transition is modeled as a two-state, discrete time

Markov process (as shown in Figure 2.4 (Left)). The transition probability
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matrix of this Markov process is given by

T =

 pgg pgb

pbg pbb

 (2.11)

where pgg (resp. pbb) is the probability of transition from a good (bad)

day to a good (bad) day, and pgb = 1− pgg (resp. pbg = 1− pbb) is the

probability of transition from good (bad) day to bad (good) day.

Next, to capture the hourly variations in the solar energy, we categorize

each hour to belong to one of four possible regions. Each region is charac-

terized by its energy level and the four regions for each hour of good and

bad days are different. The overall state of the process representing the

solar energy harvested at any time t is denoted by

St : St ∈ {Gx,y, Bx,y}, x ∈ {1, 2...24}, y ∈ {1, 2, 3, 4} (2.12)

where G and B correspond to the state of solar energy for the good and

bad weather days respectively, x is the hour of the day and y denotes the

region of the solar energy for that hour. Each state has a corresponding

solar energy value which is the average hourly solar energy in that state

as obtained from the empirical data, and is denoted by ESt . An example

of the four regions for each hour of good and bad weather days is shown

in Figure 2.5 and the methodology for obtaining the values of ESt and the

other parameters used in our model is described in Section 2.6.2. Please

note that in Figure 2.5 (left), we show G12,1 which indicates that the solar

energy state corresponds to a good day type (indicated by the use of G in

G12,1), the hour number is 12 (x = 12) and the region of solar energy within

the hour is 1 (y = 1).
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Figure 2.5: Analysis for (Left) good day (Right) bad day

Remark: Note that while more than four states may be used to categorize

any hour of the day, our experimental results show that the marginal im-

provement in accuracy by including additional states does not justify the

increased complexity of the model. Also our experimental results showed

that when less than four states are used to characterize the hourly solar

energy, there is significant loss of accuracy in the subsequent outage esti-

mation using the traces thus generated. Additionally, note that the multi-

state Markov model can be used to generate long-duration traces of solar

energy data to be used for resource dimensioning. In the time series of data

generated using the model, t denotes the time (in hours) of a particular en-

try in this data from the begining of the time-series. St denotes the state

of the solar energy at time t (in hours). Please note that t may vary from

1, 2, · · · , ∞ based on the number of days under consideration; whereas x

just denotes the hour of the day for that time. Say we generate 3000 days

worth of data using the proposed model and let us consider time t = 4000

(i.e. the 4000th hour in the time series). This time corresponds to the 16th

hour on the 167th day. Thus, for this hour we have x = 16. Now, if the 167th

day turns out to be good day type and the solar irradiation during the 16th

hour belongs to the 4th region, then the state for this time is denoted by
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G16,4.

According to the Markovian assumption for the solar energy, the state of

solar energy at any hour only depends on the state of the solar energy in

the previous hour and the transition probability of going from the previous

state to the current state. Thus,

P[St|St−1, St−2, ...S0] = P[St|St−1]. (2.13)

Given that the solar energy is currently in a given state, in the next hour,

the state may transition to any of four states in the next hour (for both bad

and good weather days). This Markov process has been depicted in Figure

2.4 (Right). For a good weather day, the transition probability matrix is

given by

G =


g(1,1)(1,1) · · · g(1,1)(24,4)

... . . . ...

g(24,4)(1,1) · · · g(24,4)(24,4)

 (2.14)

with

g(i,j)(k,l) =


r(i,j)(k,l) k = (i)mod 24+1; j, l ∈ {1, 2, 3, 4}

0 otherwise
(2.15)

where g(i,j)(k,l) is the probability of transition from the j-th region in the

i-th hour to the l-th region in k-th hour on a good weather day. Note that

from a particular region in a given hour, the solar energy can just go to one

of the regions in the next hour. r(i,j)(k,l) denotes the numerical value of the

transition probability and satisfies

4

∑
l=1

r(i,j)(k,l) = 1, k = (i)mod 24+1, j ∈ {1, 2, 3, 4}. (2.16)
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The transition probability matrix for a bad weather day is defined similarly.

The solar energy model defined above provides the solar energy harvested

by a 1 kW PV panel at any given point of time. Thus the solar energy

harvested by a PV panel with capacity PVw for a given state St of the solar

energy at time t is given by

E(t) = PVwESt . (2.17)

2.6.2 Parameter estimation

To obtain the parameters for the model described above, we use histori-

cal data of solar energy, such as that provided by NREL. Due to seasonal

variations, different months in the year have different values for the vari-

ous parameters in the model. To find the parameters for a given month,

we consider the series of data corresponding to the days of that particular

month from all years in the historical solar energy data. This data is then

fed to the SAM tool [17] developed by NREL to generate the hourly har-

vested solar energy by a PV module with DC rating 1 kW. The daily solar

power output for each day in a given month is computed and the days

are sorted as per the total power generated in the day. ξ fraction of the

days with the lowest energy are termed “ bad ” days while the remaining

are termed “good” days. The data is then used to calculate the transition

probabilities of going from a bad day to bad day, and good day to good

day, in order to obtain the transition probabilities pgg, pgb, pbb and pbg for

Equation (2.11).

To obtain the average energy harvested in each of the four possible regions

of each hour, we first analyze the data to record the hourly minimum and
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maximum values of solar energy generated for both good and bad weather

days (Please refer Figure 2.5). The space between the minimum and maxi-

mum solar energy generated for each of these hours is divided by defining

cutoffs that uniformly partition the space into four regions. Each of the four

regions specifies a state of solar energy at that hour and the average hourly

solar energy in each of those states is then obtained from the empirical

data.

2.6.3 Resource provisioning and dimesnioning using multi-

state Markov model for solar energy

The multi-state Markov model described in the previous section can be

used to generate long duration traces of harvested solar energy for a given

location which can be further used for the dimensioning of solar powered

BS. The solar energy harvested by the BS at time t is denoted by Et and is

given by Equation (2.17).

Recall that in Section 2.4 we described the system model for PV panel size

and battery dimensioning. We use the framework described there but now

instead of using the empirical data of the harvested solar energy (from

the NREL website), we use the harvested solar energy traces generated

from our multi-state Markov model. To show the accuracy of the multi-

state Markov model as well as this dimensioning approach, we compare

the various statistical results relating to the PV panel and battery sizing

from harvested solar energy traces from our model against those obtained

using empirical traces. These results have been presented in the following

subsection.
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2.7 Numerical results

In this section we present the numerical results for the dimensioning of

resources for the solar powered BSs. We also validate the accuracy of the

proposed multi-state Markov model for characterising the solar energy by

comparing the results obtained using the same against those obtained using

empirical solar energy traces. We also show its superiority over an existing

benchmark model [21].

For simulations, we consider a LTE base station system with 10 MHz Band-

width and 2× 2 Multi Input Multi Output (MIMO) configuration with ca-

pacity to support 300 calls at any given time instant. We assume 3 sectors

for our macro BS, each with 2 transceivers, thus giving us ΥTRX = 6. We

model the traffic using the methodology described in Section 2.3.1. We

consider call arrival rates during the different hours for different days as

shown in Figure 2.6. Note that the traffic on weekends is lower than that

on weekdays (which has been shown in large scale cellular traffic studies

like [50], [53]). Additionally, as described in Section 2.3.1, we assume the

average call duration of two minutes [56]. We assume Epanel as 0.5 kW. We

assume that the BSs use 12 V, 205 Ah flooded lead acid batteries, each hav-

ing a rating 2.46 kWh. ν, the fraction of total battery capacity below which

the battery is dis-allowed to discharge has been taken as 0.3. To validate the

methodology presented in herein, we consider two locations: Kolkata (In-

dia) and Miami (USA). The solar data for these locations was obtained from

the NREL database and used in the SAM tool to obtain hourly values of the

solar power generated. The various parameters for the solar energy model

are obtained using the statistical solar energy data from NREL database

and the methodology described in Section 2.6.2. We used ξ = 0.15 for both
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Figure 2.6: Call arrival rate considered during the different hours of the day.

the locations. We use seven years of data (2000-2006) for parameter estima-

tion and evaluate the performance using data for years 2007-2009. For the

cost-optimization problem we choose two values of λ (the threshold outage

probability) as 0.5% and 1%.

Following is a brief description of how the results are obtained using the

above-mentioned information.

• For the proposed multi-state Markov model and the model proposed

in [21], we estimate the various modeling parameters using the solar

energy data for year 2000-2006. After obtaining these parameters, the

multi-state Markov model and the model in [21] are used to generate

solar energy data for 50 years. For results using empirical solar energy

traces, we consider the solar energy data for 3 years (2007-09). A

different year range is taken for estimating the modeling parameters

for the proposed model (as compared to that used to obtain resuts

with empirical solar energy traces) to avoid using the same dataset

for model-training and evaluation.

• The traffic model proposed in Section 2.3.1 is used to generate long-

duration traces of BS traffic which further gives the BS power con-

53



2.7 Numerical results

sumption traces for the outage probability evaluation. For the re-

sults using empirical solar energy traces, we generate 3 years worth

of hourly BS power consumption data using the methodology pre-

sented in Section 2.3.1. For the results using the proposed multi-state

Markov model and the model in [21], BS power consumption for 50

years is generated.

• With the solar energy data and the BS power consumption for the

various methodologies in place, we can use the framework proposed

in Section 2.4 to estimate the outage probability for different configu-

rations of PV panel size and the number of batteries.

• As our ojective is to find the cost-optimal PV panel and battery con-

figuration, we use the solution methodology described in Section 2.5

to find the solution of the optimization problem.

Next we present the simulation results to show the efficacy of the pro-

posed methodology in estimating various key parameters required for cost-

optimal dimensioning of resources (i.e. the battery lifetime, outage prob-

ability, PV panel-battery configuration for a given outage constraint, and

finally the cost-optimal configuration).

2.7.1 Battery lifetime

We begin with evaluating how the battery lifetime varies with the num-

ber of batteries installed for a given PV panel size. Please note that the

battery lifetime is an important variable to be estimated for resource di-

mensioning and it appears in Equation (2.10) of Section 2.5 (Cost optimal

dimensioning). For these results, for a given PV panel size, we vary the

number of batteries and observe the resulting battery lifetime. Figure 2.7
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Figure 2.7: Number of batteries vs battery lifetime for the two locations for
PV wattage of 12 kW.

shows the battery lifetime obtained for a PV wattage of 12 kW. We note that

our model predicts the battery lifetime quite accurately for both the loca-

tions. From Figure 2.7 we note that the prediction of the battery lifetime

for the proposed model has accuracy above 98% for Miami and above 95%

for Kolkata (whereas for [21] these values are 95% and 85% respectively).

We also observe that as the number of batteries decreases, the battery life-

time decreases. This is because with fewer batteries, the batteries are more

likely to go through deeper discharge cycles, which reduces their lifetime.

In Figure 2.8 we show the battery lifetime for two different PV panel sizes

for Kolkata to show the effect of PV panel size on the battery lifetime. The

nature of result for Miami is similar. We note that for a lower PV panel size,

the battery lifetime is lower than that for a higher PV panel size. The intu-

ition behind this is that with a lower PV panel size, the energy harvested is

less and thus the batteries go through deeper discharges.
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Figure 2.8: Battery lifetime for two different PV panel sizes: Kolkata.

2.7.2 Battery sizing

Next, we evaluate the battery requirements for achieving a given outage

probability. Note that as described in Section 2.5, for a given PV panel

rating, finding the number of batteries required to ensure the outage prob-

ability being below a certain threshold is an important step in cost-optimal

resource dimensioning. We begin with considering a PV panel of rating

12 kW and show the battery requirements for various outage probabilities

which is shown in Figure 2.9. We note that for very low outage probabil-

ities, the number of batteries required grows very large. This is because a

location may occasionally have very bad weather days in sequence and to

avoid outages during these periods, the BSs require a very big battery bank

size. Next, for two different PV panel sizes (10 kW and 16 kW), we analyse

the outage probability for different number of batteries. The results for the

two locations have been shown in Figure 2.10 and 2.11 respectively. Note
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Figure 2.9: Number of batteries required for a given outage for the two loca-
tions for PV wattage= 12 kW.

that as expected, for a PV panel size of 16 kW, one is able to ensure a par-

ticular outage probability with a fewer number of batteries as compared to

the number of batteries required when the PV panel size is 10 kW. This is

because for a higher PV panel size, the energy harvested is higher and thus

fewer number of batteries are required to ensure the outage probability to

be below a certain value.

2.7.3 PV Wattage requirements

Next we study the the PV wattage requirement as a function of the number

of batteries and outage probability. For Kolkata, Figure 2.12 shows the

required PV wattage for outage probabilities of 0.5 and 1% for various

battery sizes. The nature of the results for Miami is similar. The results

show that as expected, the required PV wattage increases when the number
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Figure 2.10: Energy outage vs number of batteries required for different PV
panel sizes: Miami.

of batteries is reduced. Also, when the number of batteries is reduced

beyond a certain point, the required PV wattage tends to infinity. This

is because while an increase in the PV wattage increases the solar energy

harvested during the day, the small number of batteries implies that there

are not enough batteries to store the energy. Consequently, outages occur

frequently and it is not possible to keep the outage rates below the desired

limit.

2.7.4 PV-Battery configuration for a given outage constraint

For various PV panel dimensions, the number of batteries required to

achieve 0.5% and 1% outage rates for the two locations are shown in Figure

2.13 and 2.14. Note that an outage probability of 1% corresponds to outage

events in roughly 4 days in a year. The PV-battery configurations shown
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Figure 2.11: Energy outage versus number of batteries required for different
PV panel sizes: Kolkata.

in Figure 2.13 and 2.14 are the prospective solutions for the cost-optimal

resource provisioning problem presented in Section 2.5. The results pre-

dicted using our model have a close match with the results from the em-

pirical data. We observe that for smaller PV panel sizes, the number of

batteries required for a given outage is very high. We also observe that the

number of batteries required for a given outage probability decreases as

the PV wattage increases, and after a certain point the required number of

batteries starts saturating. This is because once we have sufficient energy

harvested and stored in the batteries to meet an outage constraint, adding

more batteries is pointless. Thus in these cases if the PV size is further

increased, the energy is wasted. Also, as expected, the required number of

batteries increases as the limit on the outage probability is decreased.
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Figure 2.12: Number of batteries vs PV panel size required for different outage
probabilities (λ): Kolkata.

2.7.5 Cost optimal configuration

Finally we consider the problem of cost-optimal resource provisioning for

the solar powered BS. Note that in Section 2.7.1, we presented the battery-

lifetime estimation results which are an important step in determining the

optimal-cost configuration (it is specifically used in Equation (2.10)). We

also presented results for the number of batteries required for a given PV

panel size in Section 2.7.2 and the prospective candidates for cost-optimal

resource provisioning problem in Section 2.7.4. Next, we consider two

target operational times of Trun = 5 years and Trun = 10 years for the

cost-computation. Also, based on the market statistics, we assume the cost

of PV panels CPV as US$ 1000/kW and the cost of the lead acid batter-

ies CB has been assumed as US$ 280 [66]. The cost associated with the

prospective PV-battery configurations which meet the target outage prob-
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Figure 2.13: PV panel size vs number of batteries required for different outage
probabilities (λ): Kolkata.
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Figure 2.14: PV panel size vs number of batteries required for different outage
probabilities (λ)): Miami.
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Table 2.1: Optimal Configuration for Trun = 5 years.

Location
Empirical [21] Proposed model
PVw nb PVw nb PVw nb

λ = 0.5%
Kolkata 12.5 25 11.5 19 12.5 28
Miami 10 27 10 19 11 23

λ = 1%
Kolkata 11 26 10.5 19 12 23
Miami 10 23 9.5 18 10 22

Table 2.2: Optimal Configuration for Trun = 10 years.

Location
Empirical [21] Proposed model
PVw nb PVw nb PVw nb

λ = 0.5%
Kolkata 16 18 12 18 15 22
Miami 12 22 11 17 13 19

λ = 1%
Kolkata 14.5 18 11 18 14.5 18
Miami 12 19 9.5 18 12 18

ability (obtained as results in Section 2.7.4) were calculated as described in

Section 2.5 (using Equation (2.9)). The cost optimal configuration for the

two different target operational times (for two target outage probabilities

of 0.5% and 1%) has been tabulated in Table 2.1 and 2.2. We note that the

results from the proposed model closely match the optimal configuration

using simulations with empirical data, and outperforms the benchmark

model from [21]. From Tables 2.1 and 2.2 we observe that considering a

larger operational lifetime results in a bigger PV panel size in the cost op-

timal solution. This is because for optimization over a larger operational

time, the cost of replacement of the batteries starts dominating the overall

cost and thus configurations with higher PV panel size that need smaller

number of batteries tend to be more cost optimal.

Remark: As mentioned in Chapter 1 (Section 1.2.2), the size of a PV panel

with rating 1 kW is typically 5 m2. Thus, PV panels with an overall rat-
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Figure 2.15: Off-Grid Solar base station at Sangatta (a. front view, b. side
view) [67]

ing of 10 kW would require an installation area of around 50 m2. Such

dimensions of PV panels for off-grid BSs are not uncommon (e.g. a solar

powered BS owned by the telecom operator Telkomsel in Sangatta, Indone-

sia as shown in Figure 2.15 has a PV panel with an overall rating of 12.3

kW (See Section 1.4 for details). Additionally, existing works which study

resource dimensioning for PV panels also suggest similar dimensions of

the PV panel for off-grid solar powered BS (e.g. [3], [33],[63], [74]).

Also note that the cost optimal resource configuration is chosen considering

the contribution of both the cost of the PV panels and the batteries. Thus,

at times it is possible that for higher outage probabilities, a configuration

with smaller PV panel size but with larger number of batteries may turn

out to be solution for the cost-optimal resource dimensioning problem. For

example in Table 2.2, in the results for [21] for Miami, one can see that

although the PV panel size required for λ = 1% is less than that required

for λ = 0.5%, the number of batteries required for λ = 1% is more as

compared to that required for λ = 0.5%.
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2.8 Conclusion

In this chapter we considered the problem of cost optimal PV panel and

battery sizing for solar powered cellular base stations and we presented a

framework for determining the same. The proposed framework is based

on our model for evaluating the outage probability associated with a base

station that uses historical solar irradiance data as the input. Also we pro-

posed a multi-state Markov model to accurately characterize the solar en-

ergy. The proposed model was evaluated through data collected for two

different geographical locations. Numerical results showed that for a given

PV panel size, the battery lifetime increases as the number of batteries in-

stalled at the BS is increased. Also, the number of batteries required for

very low outage probabilities tends to be very high, thus leading to a high

cost; thus it is advisable for operators to plan resources while allowing for

some outage probability (like 0.5% or 1% as considered in this chapter).

Further we see that for very low PV panel sizes, the number of batteries

required to meet low outage probabilities is very high which leads to a very

high cost for such configurations. We show the cost-optimal configuration

for two different operational periods and the results provide the insight

that considering a larger operational time increases the contribution of the

battery replacements in the cost computation and thus relatively higher PV

panels with fewer batteries tend to be more cost optimal.
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Chapter 3

Energy Outage and Battery

Lifetime Estimation for Solar

Powered Cellular Base Stations

3.1 Introduction

In the previous chapter the problem of cost-optimal resource dimension-

ing for a solar powered BS was discussed. The fundamental step in such

dimensioning is to evaluate the outage probability and battery lifetime as-

sociated with a particular configuration of PV panel and battery size. Al-

though the approach for outage estimation and dimensioning resources

using the solar energy data traces generated using the multi-state Markov

model described in the last chapter has good accuracy, its data complexity

is quite high (because of the need to generate long duration traces of so-

lar energy data). Additionally it lacks an analytic model for the BS power

consumption and the batteries. To address this issue, in this chapter we

propose an analytic model which consists of simpler models to character-
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ize the solar energy, BS traffic as well as the states for the battery bank

(energy) levels, so as to obtain accurate results while avoiding the need to

generate traces of solar energy data (as required in the previous chapter).

The proposed model accounts for hourly as well as daily variation in the

harvested solar energy as well as the load dependent BS power consump-

tion. The model evaluates the steady state probability of the battery level

which is then used to estimate the outage probability. Simulation results

with empirical solar irradiance and BS power consumption for two geo-

graphically diverse locations are used to validate the proposed model and

to demonstrate its accuracy. We also show the superiority of the proposed

model over an existing benchmark [21].

The rest of the chapter is organized as follows. In Section 3.2 we present the

related work and in Section 3.3 we present the background material and

system model. Section 3.4 presents the model for evaluating the energy

outage probability. Section 3.5 presents the methodology for obtaining the

steady state probabilities of the system states and the outage probability.

Section 3.6 describes the problem of cost optimal dimensioning. Finally,

Section 3.7 presents simulation results to validate our methodology and

Section 3.8 concludes the chapter.

3.2 Literature review

The problem of dimensioning of resources for solar powered systems specif-

ically targeting cellular BSs is considered in [3, 34]. The dimensioning in

[3, 34, 16, 63] is done through simulations by using long-term solar ir-

radiation data (either real or synthetically generated). An overview of

commercial software tools used for simulation based dimensioning solar
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powered systems is presented in [68]. Simulation based approaches are

not only computationally intensive, but also do not provide any insights

into the performance of the system. Literature on modeling of solar pow-

ered systems includes [69] and [70] that model solar energy using Beta and

log-normal distributions, respectively, and use these models to dimension

resources for a solar powered system. A Markov chain based model for en-

ergy storage is proposed in [71], but it considers solar irradiation with an

exponential distribution thus assuming the solar irradiation to be memory-

less. Existing literature has shown that the solar energy is better modeled

as a Markov process and these models have been used to dimension stor-

age for solar powered systems in [72, 62]. Further, [21] proposes a Markov

model for solar energy which is used to dimension cost optimal PV panel

and battery sizes. However, a greater accuracy than that offered by the

model in [21] is required in cellular network planning (as also shown by

the results in this chapter).

While existing literature has addressed various individual aspects of di-

mensioning solar-powered systems, there is no work which integrates the

modeling of solar energy, network traffic, and battery levels while being

simple and accurate. Thus in this chapter we present a framework which

incorporates all these factors into the model in order to evaluate the system

performance, and the framework is tailored specifically for dimensioning

resources for solar powered cellular BSs.
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3.3 System description

3.3.1 Base station power consumption

We use the same model for BS power consumption as used in the previous

chapter (Section 2.3.1). We consider a Long Term Evolution (LTE) macro

BS, the power consumption for which is given by [49]

L(t) = ΥTRX(P0 + ∆K(t)Pmax), 0 ≤ K ≤ 1 (3.1)

where ΥTRX denotes the number of transceivers, P0 denotes power con-

sumption at zero traffic, ∆ denotes slope of load dependent BS power con-

sumption, K is the normalized traffic at time t and Pmax is the power am-

plifier output at maximum traffic.

3.3.2 Solar energy resource and batteries

For modelling and evaluation, we use statistical solar irradiation data from

the National Renewable Energy Laboratory (NREL), USA [57]. The method-

ology for obtaining the hourly solar power generation using the statistical

data has been described in Section 2.3.2 of the last chapter. Additionally,

we consider that the BS uses lead acid batteries for charge storage and de-

tails for the same (like the method for battery lifetime evaluation) has been

described in Section 2.3.2 of the last chapter.
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3.4 Model for evaluating BS outage probability

In this section, we present the framework to evaluate the outage probability

of a solar powered BS.

3.4.1 System resources

We denote the number of PV panels installed at the BS by nPV , where each

panel has a DC rating denoted by Epanel. The overall DC rating, PVw, is

then given by

PVw = nPV Epanel. (3.2)

Also, let nb denote the number of batteries used by the BS, each with a

storage capacity denoted by Ebat. Thus the overall battery storage capacity,

Bcap, is given by

Bcap = nbEbat. (3.3)

To prevent deep discharges, the batteries are disconnected when the charge

level drops below νBcap where ν denotes the fraction of the battery capacity

below which batteries are dis-allowed to discharge. Such events correspond

to energy outages at the BS. To calculate the enegy outage probability, we

use discrete time Markov chains to model the solar energy, load, and the

battery level on a daily basis [73], [74]. Next we describe these models in

detail.

3.4.2 Model for harvested solar energy

Daily variations in the solar energy at a location have been shown to be well

modeled as a Markov process [75, 76]. We classify any given day into one
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Figure 3.1: a. Transition between different Solar day types. b. Transition
between different states for BS load

of three solar day types: S1, S2 and S3. Among these, S1 and S2 represent

very bad weather and bad weather days, respectively, while S3 denotes a

good weather day. A given day is classified as one of the three day types

based on the solar energy harvested on that day using a standard PV panel

size (taken as 1 kW in this chapter). Days with daily harvested energy

below γ1 are classified as S1, between γ1 and γ2 are classified as S2, and

all other days are classified as S3. The transition probabilities between the

three day types for a given location is calculated using historical statistical

weather data. The Markov process for the state transitions is shown in

Figure 3.1(a). The transition probability matrix for this Markov process is

given by

TS =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 (3.4)

where p11 is the probability of a day of type S1 remaining the same on the

next day, whereas p12 (resp. p13) is the probability of transition from a day

type S1 to day type S2 (resp. S3) on the next day. The other variables are

defined similarly.
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We also calculate the average hourly solar energy harvested for each of the

day types using the statistical weather data (assuming a PV panel with DC

rating 1 kW). The average harvested energy value for the day is denoted by

the vector Hα which is given as:

Hα = (hα,1, hα,2, · · · , hα,24); α ∈ {1, 2, 3} (3.5)

where α denotes the solar day type. α = 1, 2 and 3 denote S1, S2 and

S3 solar day types, respectively. hα,1 denotes the solar energy harvested

for the first hour of the α day type and so on. Note that based on the

above notation, H1, H2 and H3 are the average harvested energy profiles

for day types S1, S2 and S3, respectively. The procedure for estimating the

transition probabilities and the average solar profile has been presented in

Section 3.5.3. For a PV panel of size PVw, the profile of harvested solar

energy, E is given by

E = PVwHα. (3.6)

Remark: We have used 2 states for bad day types since they are the ones

which have a greater impact on the outage probability. Note that when just

2 states are used for the solar energy (i.e. just bad day type and good day

type) there is an inherent problem. If the threshold to decide whether the

day is a bad day or good day is kept high, then the average solar energy for

bad days becomes large thus leading to a lower outage probability in the

outage estimation process. On the other hand, if the threshold to decide

the bad day is kept very low, there are very few bad weather days and the

transition probability to the bad day type becomes very small. This again

leads to a lower outage probability during the outage estimation process.

We have addressed this issue by using 2 day types for the bad weather days,
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where one of the day types, S1, represents very bad weather day whereas

S2 represents bad weather day. Also, in this chapter three states (S1, S2

and S3) have been used to classify a particular day in terms of the solar

energy harvested. Note that although more than three states can be used

to classify a particular day, through simulations we have observed that the

improvement in the estimation accuracy is outweighed by the increase in

complexity due to the additional states.

3.4.3 Model for BS load

Previous studies have shown that the traffic load at a base station follows

diurnal patterns, and the overall load levels are lower on the weekends

when compared to weekdays [50, 51, 52, 53]. Thus our model considers

two load types: low (L1) and high (L2), that depend on the day of the week.

In this chapter we use the term load to denote the BS power consumption

which is given by Equation (3.1). The transitions between the load day

types is approximated as a two-state Markov process, as shown in Figure

3.1(b). The transition probability matrix of this Markov process is given by

TL =

 q11 q12

q21 q22

 (3.7)

where q11 (resp. q22) is the probability of transition from a low load (high

load) day to a low load (high load) day, and q12 = 1− q11 (resp. q21 =

1− q22) is the probability of transition from low load day to a high load

day. The transition probabilities for the Markov process are chosen such

that on an average, five weekdays are followed by two weekend days.

Similar to the solar energy profile Hα, we define the 24 hour load profile
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vector Lβ as the average load during each hour of the day and it is given as

Lβ = (lβ,1, lβ,2, . . . , lβ,24); β ∈ {1, 2} (3.8)

where β denotes the load day type. β = 1 and 2 denote L1 and L2 load

day types, respectively. lβ,1 denotes the average base station load for the

first hour of β load day type and so on. Based on the above notation, L1

and L2 are the average load profile vectors for a low load and a high load

day, respectively. We present the methodology for estimating Lβ and the

transition probabilities (i.e. q11, q12 etc.) in Section 3.5.3.

3.4.4 Model for battery level

For modeling the battery level at a BS, the overall battery bank capacity,

Bcap, is rounded off to the closest integer value above it. For mathematical

tractability, the possible battery levels are discretized into blocks of 1 kWh.

Thus the number of levels in the battery model, N, is given by

N = dBcape (3.9)

and the battery may be in any one of the N possible levels at any given

point in time.

3.4.5 BS outage probability

There are three important factors which decide if there is an outage on

a given day. These factors are: the solar energy harvested on the day,

the BS power consumption during the day and the battery level when the

day begins. Thus for the estimation of outage probability, we consider the
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Figure 3.2: States of the system

state of the system defined as a 3-tuple consisting of: the solar day type,

the load type and the battery level. Note that a state characterizes the

system’s condition during a day’s period (i.e. a 24 hour period). The solar

day type and the load type determine the solar energy and load profile

during the different hours of the day for the state. Additionally, the battery

level at the beginning of the day is termed as the battery level of the state.

For notational simplicity, the state of the system is denoted by U which is

defined as

U = 2N(α− 1) + β + 2(b− 1) (3.10)

where α ∈ {1, 2, 3} is the solar day type (α = 1 for S1, α = 2 for S2 and

α = 3 for S3), β ∈ {1, 2} is the load day type (β = 1 for low load and β = 2

for high load) and b ∈ {1, 2, ..., N} is the battery level. The state space is

shown in Figure 3.2.

Proposition 3.4.1: The state notation given in Equation (3.8) results in a unique

state number for a day with given day type, load type and battery level.

Proof: The proof of this proposition is given in Appendix A.

The notation in Equation (3.10) gives a uniue state number for a day with

given day type, load type and battery level as shown above. For example let
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us consider a day with solar day type S3, load type as high load and battery

level as 1 kW. Then the state for this day is given by U = 2N(3− 1) + 1

+2(1− 1) = 4N + 1. Note that this state can also be seen as the first state

in the third row in Figure 3.2. There are 6N possible states since there

are three, two and N choices for the solar day type, load type and the

battery level, respectively. Further, each column in the figure (separated

by dashed lines) represents states with a particular battery level (indicated

on the top of the figure). As per our notation defined in Equation (3.10),

the first, second and the third rows corresponds to day type S1, S2 and S3

respectively. Also, the odd positions in each row (shown by empty circles)

denote low load days while the even positions (shown by dark circles)

denote high load days.

The transition in system state is modeled at the beginning of each day

(i.e. every 24 hour period). The state on a given day only depends on the

battery level, solar day type (i.e. energy harvested) and the load day type

(i.e. power consumption) of the previous day. Thus the system state can

be modeled as discrete time Markov chain, whose transition probability

matrix is denoted as

TB =


σ(1,1) · · · σ(1,6N)

... . . . ...

σ(6N,1) · · · σ(6N,6N)

 (3.11)

where σ(U,V) is the probability of transition from state U to V.

The batteries are disconnected from the load when the charge level goes

below νBcap, to prevent deep discharges and the consequent battery degra-

dation. Thus the battery level never goes below νBcap and the states below

this level are not visited in our model. This boundary battery level which
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we denote by N′ is shown in Figure 3.2, and is given by

N′ = dνBcape. (3.12)

Algorithm 1 Battery level evaluation (BLC) Algorithm

1: function BLC(U)
2: if 1 ≤ U ≤ 2N then . Extracting solar energy & battery level

information for state U
3: E = PVwH1;
4: b = dU/2e;
5: else if 2N + 1 ≤ U ≤ 4N then
6: E = PVwH2;
7: b = d(U − 2N)/2e;
8: else
9: E = PVwH3;

10: b = d(U − 4N)/2e;
11: end if
12: if U%2 == 1 then . Extracting load day type information
13: W = L1;
14: else
15: W = L2;
16: end if
17: initialize: b′ = b , Γ(U) = 0
18: E = PVwH; . Profile of energy harvested for the state
19: for t = 1 : 24 do . Evaluating hour by hour battery level
20: b′ = b′ + E(t)−W(t); . next battery level
21: if b′ > Bcap then . ensuring battery level ≤ Bcap
22: b′ = Bcap;
23: else if b′ < νBcap then . ensuring battery level > νBcap
24: b′ = νBcap; Γ(U) = 1; . noting outage event in vector Γ
25: end if
26: btracker(t) = b′; . storing hourly battery level in btracker
27: end for
28: lBat(U) = LE(btracker); . calling LE algorithm for lifetime evaluation
29: Return: round(b′) . Returning battery level after system in state U
30: end function

For a given state U, the next battery level depends on the initial battery

level b, the solar day type α, and the load type β, and can be computed

using function BLC(U) shown in Algorithm 1. The BLC(U) function has 3

purposes as stated below:
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• It gives the battery level of the states to which the state transition from

state U) occurs.

• It stores the information whether state U is an outage state or not (i.e.

is there any energy outage during the day in the given state).

• For state U, it stores the hourly battery level (charging-discharging)

profile which is used later on to evaluate the battery lifetime (which

is required for estimating the cost associated with the particular PV

panel and battery configuration).

The BLC function accepts the state of the system (U) and uses it to extract

the information regarding its battery level (b), solar energy profile (E) and

the load profile (denoted in the algorithm by W). W is L1 if U is a low load

day and is L otherwise. Lines 2-16 in the algorithm extract the information

regarding b, E and W. Specifically, note that as shown in Figure 2.2, the

states from 1 to 2N have solar-day type S1 (and hence the solar energy

harvested profile for them is H1). Additionally, for these states the battery

levels can be given by the simple formula dU/2e. This is becuase for S1

day type α = 1 and substituting it in Equation (3.10) we get b = U+(2−β)
2 .

Now becuase β has only two feasible values given as β ∈ {1, 2}, b can be

found using the simple expression dU/2e. Further, note that the odd states

correspond to low load days whereas the even states correspond to high

load days. We use this fact (using U%2) to infer the load type for a given

state. Further, we store the hourly load profile for that particular day type

in the vector W. The solar energy profile, battery levels and the load type

for the remaining states can be found using similar intuition. Note that b′ is

initialized to the battery level b and then updated for each hour of the next

24 hour period (line 20; note that the sampling interval for this operation

is 1 hour). To prevent battery degradation, we avoid deep discharges by
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preventing b′ from going below a threshold νBcap by disconnecting the

battery (lines 23, 24). Thus if in any hour b′ drops below νBcap, we mark

the state as an outage state, and record it in a vector Γ. Also, the charge

level does not exceed the battery capacity Bcap (lines 21, 22). The function

BLC(U) returns b′ rounded off to the closest integer, since our model only

allows discrete battery levels (line 29). The next battery level can thus be

obtained as

b′ = BLC(U). (3.13)

For any given battery level, there are six possible states (based on the solar

day and load type). Thus the next state can be one of six states with that

battery level. The next battery level is completely determined by the current

state U (using the BLC algorithm). With α and β denoting the solar day

and load type of state U, respectively, the transition probability from state

U to state V is given by

σ(U, V) =



pα1qβ1 V = 2BLC(U)− 1

pα1qβ2 V = 2BLC(U)

pα2qβ1 V = 2BLC(U) + 2N − 1

pα2qβ2 V = 2BLC(U) + 2N

pα3qβ1 V = 2BLC(U) + 4N − 1

pα3qβ2 V = 2BLC(U) + 4N

0 otherwise.

(3.14)

Figure 3.4 shows the 6 different state transitions from state U. The

Remark: Note that given a state U as input, the BLC algorithm returns the

battery level of the states to which the state transition occurs. So, say this

battery level is 10, then (2BLC(U)− 1) would simply be (2 ∗ 10− 1 = 19),
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Figure 3.3: Transition from a given state U.

i.e. the transition is to state 19. Additionally, as described before, α and β

in the state transition probabilies of Equation (3.12) are the solar day type

and load day type for state U.

The steady state probability vector is denoted by π and is computed in the

next section. The vector π can be given as π = [π1, π2...., π6N]
T, where

π1 is the steady state probability of state 1 and so on. Recall that BLC(U)

computes and stores the outage status (0 for no outage and 1 for outage)

for each state in the vector Γ. The outage probability, Ω can be written as

Ω = Γπ (3.15)

We also evaluate the battery lifetime associated with a given state. As it

has been discussed earlier in Section 2.5, estimating the battery-lifetime as-

sociated with a particular PV panel and battery configuration is an impor-

tant step in solving the cost-optimal resource provisioning problem (which
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Algorithm 2 Lifetime Evaluation (LE) Algorithm

1: function LE(btracker)
2: bold = btracker(1), dod = null;
3: for t = 1 : 24 do
4: if btracker(t) > bold then . Capture depth-of-discharge (DoD)

points
5: dod = dod ||

(
1− bold

Bcap

)
; . Store DoD points in vector dod

6: end if
7: bold = btracker(t);
8: end for
9: lbattery = 1

365 /
(

∑
length(dod)
q=1

1
cycles_to_ f ailure(dod(q))

)
. evaluating battery

lifetime using formula presented in Section 2.3.2
10: Return: lbattery . Returning battery lifetime corresponding to the

state
11: end function

is motivation for the outage estimation analysis presented in this chapter).

In our model, we have different states and we estimate the battery lifetime

given that the system is in a particular state. Further, after finding the

steady state probability of being in different states (as discussed in subse-

quent sections in the chapter) which is denoted by π, we can estimate the

battery lifetime associated with the particular configuration of PV panel

and battery size, LBat, which is given as

LBat = lBatπ (3.16)

where lBat is the vector which stores the battery lifetime for the different

states in the BLC algorithm (line 28). The battery lifetime for a given state

is calculated as follows. The battery lifetime is computed in the BLC algo-

rithm by storing the battery level profile in the variable btracker (see line 26)

which is used to evaluate the battery lifetime associated with that state. The

battery lifetime is calculated using the Lifetime Evaluation (LE) Algorithm

(Algorithm 2) (the algorithm is called at line 28 in the BLC algorithm).
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Note that this algorithm uses the methodology for evaluating the battery

lifetime as described in Section 2.3.2. For the given battery level profile

(stored in btracker), it notes the depth of discharge points which are stored

in the vector dod (please see line 5 in the LE algorithm; note that the sym-

bol || denotes the concatenation operator). As described in earlier chapters,

Depth of discharge (DoD) refers to the lowest level the battery reaches in a

discharge-charge cycle. Further using the cycles to failure corresponding to

the entries in the vector dod, using Equation (2.2) we calculate the battery

lifetime lbattery (in years) for the given state (line 9 in the LE algorithm).

Note that as a state denotes the system’s state during a day’s time, T in

Equation (2.2) has been taken as 1/365 years. The relationship between the

DoD and the cycles to failure is generally provided by the battery manufac-

turer and the function cycles_to_failure provides a mapping for the cycles

to failure corresponding to the DoD points stored in the vector dod. For

example, if Figure 2.3 is considered to represent the relationship between

DoD and cycles to failure; and if dod(1) is 0.6 (i.e. 60% depth of discharge),

then the cycles to failure corresponding to it will be 1000.

For any choice of PVw and nb, the associated outage probability and bat-

tery lifetime may be evaluated by using the methodology presented above.

Then, for an operator specified tolerable outage probability λ, the feasible

dimensioning solutions are all configurations of PVw and nb that satisfy

Ω ≤ λ. (3.17)

Section 3.6 addresses the problem of obtaining the cost optimal configu-

ration that selects the PV panel and battery sizes that satisfy the required

outage constraint with minimum cost.
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Figure 3.4: State diagram showing transition from states having battery level
n (for clarity only transition from low load states are shown)

3.5 Steady state probability estimation

This section presents a methodology for obtaining closed form solutions

for the steady state probability of the different states in the system which

is required for evaluating the outage probability and battery lifetime as

explained in the previous section. In the model presented in Section 3.4,

there are different levels of change (i.e. “jumps”) in the battery levels when

there is a transition from one state to another, depending on the solar day

type (S1, S2 or S3), load day type (L1, L2), and PV panel and battery sizes.

These transitions are shown in Figure 3.4 for states with battery level n.

To avoid cluttering, we only show the state transitions for the low load

states. For high load states, we only show the battery levels of the final

states for each transition. The changes in the battery levels when the load

day type is low (L1) for solar day type S1 and S2 are denoted by k1 and k2,

respectively, whereas the changes when BS traffic is high (L2) for solar day

types S1 and S2 are denoted by k′1 and k′2, respectively. The magnitudes

of these changes depend on the PV panel size and can be obtained using

Algorithm 1 by considering a scenario where the change is not bound by

the lower or upper limits. The change in the battery level on a S1 day type

(k1, k′1) are negative for realistic PV panel sizes.
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Table 3.1: Cases for steady state probability estimation of critical states

Case k2 k′2 Case k2 k′2
1 < −1 < −1 5 0 < −1
2 > 0 > 0 6 0 −1
3 > 0 0 7 −1 < 0
4 > 0 < −1 8 > 0 −1

To simplify the model and reduce the state space, we first note that the

battery level does not go below N′ = dνBcape or above N = dBcape. In

addition, the impact of the day and load types on the operation of the BS

results in additional simplifications on the state transitions. To visualize

these simplifications, we consider practical deployment scenarios where

the BSs are provided with sufficient battery capacity and PV panels to en-

dure occasional periods of sustained bad weather. For realistic resource

dimensions, on a S3 (i.e. good) day, the PV panels harvest enough energy

to power the BS and fully charge the batteries (irrespective of the initial

battery level on that day). Thus in the evenings of S3 days, the battery

starts discharging after being charged to N and at the end of the day, the

final battery level depends on whether it is a high or low load day. We

denote the final battery level at the end of 24 hours to be Nsh and Nsl for

high and low load days, respectively. Since S3 days are the best in terms of

energy generation, Nsh and Nsl act as the upper limits of the battery level

at the end of a high/low load day for S1 and S2 days also, and states with

higher energy levels can be eliminated from the state space. The states with

battery level Nsl and Nsh play a critical role in determining the steady state

probabilities of the other states. Therefore they are termed critical states in

the rest of the chapter, and all other states are non-critical states.
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3.5.1 Steady state probability of critical states

To evaluate the steady state probabilities of the critical states, we consider

the structure of the state transition diagram, as shown in Figure 3.4. While

k1 and k′1 are always negative for realistic PV panel dimensions, k2 and k′2

may be positive or negative depending on the PV panel size. The various

possibilities for the values of k2 and k′2 that lead to different structures of

the state transition diagram are shown in Table 4.1. Next we present the

analysis for these cases.

Before considering each case, we present general results on the steady state

probability of being in states with solar day type S1, S2 and S3, denoted by

P1, P2 and P3, respectively. From Figure 3.2 we have

P1 = π1 + π2 + π3 + · · ·+ π2N−1 + π2N

P2 = π2N+1 + π2N+2 + π2N+3 + · · ·+ π4N−1 + π4N

P3 = π4N+1 + π4N+2 + π4N+3 + · · ·+ π6N−1 + π6N.

Let Q1 and Q2 be the steady state probability of being in states with low

and high load days, respectively. We then have

P1Q1 = π1 + π3 + π5 + · · ·+ π2N−1

P1Q2 = π2 + π4 + π6 + · · ·+ π2N

P2Q1 = π2N+1 + π2N+3 + π2N+5 + · · ·+ π4N−1

P2Q2 = π2N+2 + π2N+4 + π2N+6 + · · ·+ π4N

P3Q1 = π4N+1 + π4N+3 + π4N+5 + · · ·+ π6N−1

P3Q2 = π4N+2 + π4N+4 + π4N+6 + · · ·+ π6N.
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Note that P1, P2, P3, Q1 and Q2 are obtained from empirical solar irradiation

and traffic load data as described in Section 3.5.3.

• Case 1: k2 < −1, k′2 < −1

The structure of the state transitions for this case is shown in Figure

3.5. The figure shows states with battery levels between N′ and Nsl,

and their state transitions. To avoid cluttering the figure with a large

number of states, we denote all non-critical states using a representa-

tive battery level n. The transition probabilities have been marked on

the respective lines except for the cases where it is 1. Recall that all

states with solar day type S3 transition to a state with battery level

Nsl or Nsh, depending on the load day type. We use this fact to sim-

plify our analysis. The summations at the bottom of the figure show

the addition of these probabilities which populate the various critical

states. Recall that the probabilities of low and high loads for a solar

day of type S3 are P3Q1 and P3Q2, respectively, and indicated at the

summation symbols in Figure 3.5. To avoid clutter, the transitions

from any state to a battery level, say a, which has non-critical states,

have not been drawn completely and are marked by (a).

Considering the balance equations at various boundaries around the

critical states (denoted by the dotted circles marked A-L in Figure

3.5), the steady state probability for the critical states can be shown to
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Figure 3.5: State diagram for case 1.

be:

π2Nsl−1 = p31q11P3Q1

π2Nsl = p31q12P3Q1

π2N+2Nsl−1 = p32q11P3Q1

π2N+2Nsl = p32q12P3Q1

π4N+2Nsl−1 = p33q11P3Q1

π4N+2Nsl = p33q12P3Q1

π2N+2Nsh−1 = p32q21P3Q2

π2N+2Nsh = p32q22P3Q2

π2Nsh−1 = p31q21P3Q2

π2Nsh = p31q22P3Q2

π4N+2Nsh−1 = p33q21P3Q2

π4N+2Nsh = p33q22P3Q2.

• Case 2: k2 > 0, k′2 > 0 and Case 3: k2 > 0 k′2 = 0

86



3.5 Steady state probability estimation

A

B

C

D

E

F

G

H

I

J

K

L

min(n + k2, Nsl)

min(n + k′2, Nsh)

max(n + k1, N′)

max(n + k′1, N′)

2n− 1

2n

2N + 2n− 1

2N + 2n

4N + 2n− 1

4N + 2n

2Nsh-1

2N+2Nsh-1

4N+2Nsh-1

2Nsh

2N+2Nsh

4N+2Nsh

2Nsl-1

2N+2Nsl-1

4N+2Nsl-1

2Nsl

2N+2Nsl

4N+2Nsl

n : N′ ≤ n < Nsh Nsh NslBattery
level

+

p31q11

p33q12

p32q12

p31q12

p33q11

p32q11

P3Q1
+

p31q21

p33q22

p32q22

p31q22

p33q21

p32q21

P3Q2

(Nsh + k1)

(Nsh + k′1)

(Nsl + k1)

(Nsl + k′1)

+

+

p21q11

p22q11

p23q11

p21q12

p22q12

p23q12

p21q21

p22q21

p23q21

p21q22

p22q22

p23q22

Figure 3.6: State diagram for case 2 and case 3.

We consider Case 2 and Case 3 together because their state transition

diagrams have the same structure. Since k2 and k′2 are non-negative in

these two cases, the critical states with solar day type S2 can also re-

sult in transitions to critical states. More specifically, high load states

with battery level Nsh and Nsl and solar day type S2 may result in

transitions to any of the critical states with battery level Nsh. Simi-

larly, low load states with battery levels Nsh and Nsl and solar day

type S2 may have transitions to critical states with battery level Nsl.

To obtain the steady state probabilities of the critical states for these

cases, we consider the boundaries shown by dotted circles in Figure

3.6. The balance equations for boundaries H and K around states

2N + 2Nsl − 1 and 2N + 2Nsl can be written as

π2Nsl+2N−1= p32q11P3Q1+(π2Nsh+2N−1+π2Nsl+2N−1)p22q11 (3.18)

π2Nsl+2N = p32q12P3Q1+(π2Nsh+2N−1+π2Nsl+2N−1)p22q12. (3.19)
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From the previous two equations we can conclude that

π2Nsl+2N−1

π2Nsl+2N
=

q11

q12
. (3.20)

Similarly, balance equations around boundaries B and E around states

2N + 2Nsh − 1 and 2N + 2Nsh can be written as

π2Nsh+2N−1 = p32q21P3Q2 + (π2Nsh+2N + π2Nsl+2N)p22q21 (3.21)

π2Nsh+2N = p32q22P3Q2 + (π2Nsh+2N + π2Nsl+2N)p22q22 (3.22)

which in turn imply
π2Nsh+2N−1

π2Nsh+2N
=

q21

q22
. (3.23)

From Equations (3.18)-(3.23), we have

π2Nsh+2N−1 =
p32q21P3(Q2 − p22q11Q2 + p22q12Q1)

(1− p22q22 − p22q11 + p2
22q11q22 − p2

22q12q21)

π2Nsl+2N−1 =
p32q11P3(Q1 − p22q22Q1 + p22q21Q2)

(1− p22q22 − p22q11 + p2
22q11q22 − p2

22q12q21)

π2Nsh+2N = (q22/q21)π2Nsh+2N−1

π2Nsl+2N = (q12/q11)π2Nsl+2N−1.

Using the steady state probabilities above, the steady state probabili-
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ties of the other critical states can be obtained as

π2Nsh−1 = p31q21P3Q2 + (π2Nsh+2N + π2Nsl+2N)p21q21

π2Nsh = p31q22P3Q2 + (π2Nsh+2N + π2Nsl+2N)p21q22

π2Nsl−1=p31q11P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p21q11

π2Nsl = p31q12P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p21q12

π2Nsh+4N−1 = p33q21P3Q2 + (π2Nsh+2N + π2Nsl+2N)p23q21

π2Nsh+4N = p33q22P3Q2 + (π2Nsh+2N + π2Nsl+2N)p23q22

π2Nsl+4N−1 = p33q11P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p23q11

π2Nsl+4N = p33q12P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p23q12.

In Cases 2 and 3, some of the non-critical states with day type S2 may

also transition to critical states due to k2 and k′2 being non-negative.

However, these transitions have been neglected due to the following

reasons: (i) the number of non-critical states with solar day type S2

contributing to critical states is very small (due to k2 and k′2 being

small even for large PV panels) and (ii) the overall probability, P2,

of states with solar day type S2 is typically much smaller than those

with solar day type S3. Thus the contribution of the few non-critical

states with solar day type S2 is negligible in comparison of those

with solar day type S3 (where all states contribute to the steady state

probability of critical states). Further, our simulation results show

that this approximation does not have any appreciable effect on the

accuracy of the model. The steady state probabilities of the critical

states for Cases 4-8 can similarly be obtained as shown below.

Note that the steady state probability analysis for the other cases (i.e.

cases 4-8) have been presented in Appendix B.
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Figure 3.7: State diagram for sample example. Only the transitions of interest
to state 5 are shown.

3.5.2 Calculating steady state probability of non-critical states

To obtain the probabilities of the non-critical states, we first define seed

states as [π2Nsl , π2Nsl−1, π2Nsl+2N, π2Nsl+2N−1, π2Nsh , π2Nsh−1, π2Nsh+2N,

π2Nsh+2N−1] (i.e. critical states with day type S1 and S2). The seed states are

the critical states whose steady state probabilities may be used to obtain the

steady state probabilities of all non-critical states. Note that critical states

with solar day type S3 are not seed states for they do not lead to transition

into non-critical states. To present an intuitive idea of our methodology,

consider a simple scenario with just six possible battery levels, as shown

in Figure 3.7. For illustration, we assume k1 = −2, k′1 = −4, k2 = −1 and

k′2 = −3. For simplicity, let us assume that the states with battery level 6

are the critical states and states 11, 12, 23 and 24 are the seed states.

To obtain the steady state probability of a non-critical state, we consider the

balance equations around its boundary. As an example, consider boundary

A around state 5 in Figure 3.7. There may be transitions into state 5 from

states 9, 19 and 24. However, states 9 and 19 (non-critical states) are visited

only as a result of transitions from states 11, 12, 23 and 24 (seed states). The
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probability of all transitions into state 5 (or any non-critical state) can be

expressed in terms of the steady state probabilities of the seed states. For

example, we have

π5 = p11q11π9 + p21q11π19 + p21q21π24

π9 = p21q11π23

π19 = p12q11π11 + p22q11π21

π21 = p22q11π23.

Using the equations above, π5 may be expressed in terms of the steady

state probability of the seed states as

π5 = p21p12q2
11π11 + p21q11((p22q11)

2 + p11q21)π23 + p21q21π24.

Thus, in order to obtain the steady state probability of any non-critical state,

we need to find all possible transition paths to that state, starting from any

of the seed states. To achieve this, we propose a path tracking algorithm

shown in Algorithm 3: PATR(Ns, n, k, φ(·), f (·), g(·), Nsl, Nsh). The inputs

to the algorithm include Ns (the battery level of the seed states, typically Nsl

or Nsh), n (the battery level of the target non-critical state), k = [k1, k′1, k2, k′2],

and the functions φ(·), f (·) and g(·) that track the battery level, solar energy

state and BS load state, respectively, of the intermediate states in the paths

from the seed states to state with battery level n.

Recall that there are no transitions from states with solar day type S3 to

the non-critical states. Thus we have only four state transitions of interest

from a given battery level (from states with solar day type S1 and S2)

and these transitions are to states whose battery levels are different by any
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of the values in k = [k1, k′1, k2, k′2]. The algorithm uses the vectors φ′, f ′

and g′ to track the battery level, solar day type and load day type of the

intermediate states in a path from a seed state to states with battery level

n. The vectors φ, f and g serve as inputs with the (incomplete) paths

discovered so far, and φ, f and g are null vectors when the function PATR

is initially called. From the current state in the path, we consider all four

possible transitions (based on k), and T denotes the battery level after the

transition (line 2). Note that as mentioned earlier, the vectors φ′, f ′ and

g′ which are vectors to track the path save the information regarding the

battery level, solar day type and the load day type of the intermediate states

corresponding to a given transition (i.e. one among the four transitions

corresponding to the different values of k (as k ∈ {k1, k′1, k2, k′2})) (lines 3-

9). Next we ensure that boundary conditions are not violated (lines 11-19).

Specifically, if the intermediate state is a low load state then the next battery

level cannot exceed Nsl whereas if it is a high load state then it cannot

exceed Nsh. Additionally N cannot go below N′. Now, if the resulting

battery level after the transition is n, we add the entire path as an entry in

the global path indicator variables (i.e. Φ, F and G, see lines 20-24). Note

that we also evaluate the number of transitions that have been made in the

current path (stored in variable t, see line 25 in the PATR algorithm). Once

the number of transitions becomes large (typically > 4), the likelihood of

occurrence of that path (which equals the product of the state transition

probabilities between all intermediate states) becomes very small and thus

can be neglected. Thus while the path length is smaller than a threshold

tmax, the PATR algorithm is iteratively called with T as the current battery

level (line 27).

We denote the number of possible paths by s and Ψ denotes all possible
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Algorithm 3 Path Tracking (PATR) Algorithm

1: function PATR(Ns, n, k, φ, f , g, Nsl, Nsh)
2: for i = 1 to 4 do . Different transition paths from given battery

level
3: φ′ = [φ Ns]; . Capture battery level of intermediate state
4: f ′ = [ f ceil(i/2)]; . Capture solar day type of intermediate

state
5: if i = 1 or i = 3 then
6: g′ = [g 1]; . Capture load day type of intermediate state
7: else
8: g′ = [g 2];
9: end if

10: T = Ns + k(i); . next battery level after intermediate state
11: if T > Nsl and (i = 1 or i = 3) then
12: T = Nsl; . Ensuring T≤Nsl if intermediate state has low load
13: end if
14: if T > Nsh and (i = 2 or i = 4) then
15: T = Nsh; . Ensuring T≤Nsh if intermediate state has high

load
16: end if
17: if T ≤ N′ then . Ensuring T ≥ N’
18: T = N′;
19: end if
20: if T = n then . saving path identifiers if T = n
21: Φ = [Φ; φ′];
22: F = [F; f ′];
23: G = [G; g′];
24: end if
25: t = length(φ′); . storing transition path length at current stage
26: if (T < Nsl and T ≥ N′ and t < tmax) then
27: PATR (T, n, k, φ′, f ′, g′, Nsl, Nsh);
28: end if
29: end for
30: end function

93



3.5 Steady state probability estimation

paths from the seed states to states with battery level n. Each element of Ψ

represents a path that is uniquely characterized by the values of Φ, F and

G as

Ψ = {ψ1, ψ2..., ψl, ..., ψs}; ψl = (Φl, Fl, Gl). (3.24)

The vectors Φl, Fl and Gl are of the form

Φl = {φl1, φl2...φlu}

Fl = { fl1, fl2., ..., flu}

Gl = {gl1, gl2..., glu}

where u is the number of intermediate stages in the l-th path and φl1, fl1

and gl1 denote the battery level, solar day type, and load day type of the

initial state, and so on. For example, considering the states with battery

level n = 3 in Figure 3.7, the solution for Ψ is given as

Ψ = {ψ1, ψ2, ψ3, ψ4} (3.25)

with ψ1 = (Φ1, F1, G1) and so on. Note that the different paths are also

indicated in Figure 3.7 for clarity. The various parameters (e.g. Φ1, F1 etc.)

for Figure 3.7 are as follows

Φ1 = {6, 5} F1 = {2, 1} G1 = {1, 1} (3.26)

Φ2 = {6, 4} F2 = {1, 2} G2 = {1, 1} (3.27)

Φ3 = {6, 5, 4} F3 = {2, 2, 2} g3 = {1, 1, 1} (3.28)

Φ4 = {6} F4 = {2} G4 = {2}. (3.29)

Now, let Λl denote the steady state probability of the seed state of the l-th
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path. Then the steady state probability of a state U with battery level n,

solar day type α and load day type β, can be written as

πU =
s

∑
l=1

Λl p fl1 fl2
qgl1gl2 p fl2 fl3

qgl2gl3 · · · p fluαq fluβ. (3.30)

Finally, the steady state probabilities of all the states may be used in Equa-

tion (3.15) to obtain the overall outage probability.

Remark: Our model implicitly assumed that Nsl and Nsh are separated by

a unit difference in the charge levels, which, to a large extent, is a result

of the granularity in the battery levels being taken to be 1 kW. However,

based on the base station type/size, this difference may not be around 1

kW (and can be, say 0.5 kW or 2 kW etc.). In that case, to use the proposed

model, the granularity of the system would need to be adjusted so that

Nsl and Nsh are still separated by a unit charge. Also, the model assumes

that all states with solar day type S3 transition to a state with battery level

Nsh or Nsl. While this assumption is valid in most realistic scenarios, it

does not hold for very small PV panels (e.g. 7 kW or smaller for macro

base stations). However, such small PV panels are not used in practical

scenarios, since the number of batteries required for such scenarios tends

to be too large to be economically and spatially feasible [16]. This can

also be observed from Figures 3.14 and 3.15 which show that as the PV

panel size decreases, the number of batteries required for a given threshold

on the outage probability increases sharply, thereby increasing the capital

cost. Also, note that for every non-critical state, the PATR algorithm starts

from a critical state (which are 8 in number) and searches if the battery

level corresponding to the non-critical state is achieved within tmax hops.

Thus the worst-case computational complexity of the PATR algorithm for

estimating the steady state probability of the non critical state is O(tmaxN).

95



3.5 Steady state probability estimation

3.5.3 Parameter estimation

The state transition probabilities and solar energy profiles for the solar en-

ergy model described in Section 3.4.2 are obtained using historical solar ir-

radiation data. The solar irradiation data is fed to NREL’s SAM tool which

gives the hourly harvested solar energy for a PV panel with DC rating 1

kW as an output. Due to seasonal variations, different months in the year

have different values for the various parameters in the model. To find the

parameters for a given month, we consider the series of data correspond-

ing to the days of that particular month from all years in the historical solar

energy data. This data is then fed to the SAM tool to generate the hourly

harvested solar energy. Next we calculate the solar energy generated for

each day, and use it for categorizing the day into a given type (S1, S2 or S3).

The values of γ1 and γ2 to categorize the days are estimated for a given PV

panel size based on the energy harvested in a day compared to the average

daily BS power consumption, Lavg. For a PV panel with rating PVw, γ1 and

γ2 are given by

γ1 =
0.5Lavg

PVw
, γ2 =

Lavg

PVw
. (3.31)

The intuition behind the choice of thresholds γ1 and γ2 is that S1 and S2

denote very bad and bad weather days, respectively, where the solar energy

harvested during the day is less than the energy required to power the BS

for a day. With this choice of γ1 and γ2, the energy harvested in S1 days

is less than half of the energy required to power the BS over the day, and

while S2 days harvest more energy than S1 days, it is still less than that

required to power the BS during the entire day.

Next, we obtain the hourly harvested solar energy profile for the three day

types by calculating the average hourly harvested energy of the days with
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3.5 Steady state probability estimation

Figure 3.8: a. Average harvested energy profile for 3 day types for Jaipur
(September, PVw =12 kW) b. Average load profiles for the 2 load day types.

that day type. Figure 3.8(a) shows example values of the average harvested

energy profiles for the different day types for Jaipur, India for the month

of September and for PVw = 12 kW. Also, from the statistical data we com-

pute the transition probabilities pij, 1 ≤ i, j ≤ 3, of going from one day

type to another. These state transition probabilities are used to calculate

the steady state probabilities of being in a given solar day type (i.e. the

probabilities P1, P2 and P3). After the parameter estimation is done indi-

vidually for every month of the year, the corresponding outage probability

for that month for a given PV-battery configuration may be evaluated using

the framework developed in this chapter. The outage probability for each

month is averaged to obtain the overall outage probability for the given

PV-battery configuration.

For generating the load profiles we use the model described in Section 2.3.1

to generate call arrivals and their call durations on a per-minute basis. The

call volumes thus obtained are normalized by the maximum number of

users which can be supported by the BS at a given time to give the nor-

malized traffic. This is used in Equation (2.1) to calculate the BS power
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consumption. Note that the call arrival rates are lower on a low load day

thus leading to lower BS power consumption. The traces of BS power con-

sumption (load) thus obtained are averaged on an hourly basis to calculate

the hourly BS load profile for the days. Next, the BS power consumption

profile for a significant number of days (of the order of years) is used to

find the average load profile during a high load day (by averaging the load

on weekdays) and low load day (by averaging the load on weekends). Fig-

ure 3.8(b) shows the average load profiles used in this chapter for the two

load days. The traces are also used to obtain the state transition probability

between a low load day and a high load day (i.e. qij, 1 ≤ i, j ≤ 2), and the

steady state probabilities Q1 and Q2.

3.6 Cost optimal dimensioning

The formulation for the cost optimal PV panel and battery dimensioning

problem for a solar powered BS is as follows

minimize
PVw,nb

NBatCB + PVwCPV

Subject to: Ω < λ

The details of the problem has been described in the previous chapter in

Section 2.5, and is thus omitted. The relationship between Ω (the outage

probability) and the optimization variables (PVw and nb) is explained as

follows. In the model proposed in this chapter, for higher PV panel sizes

(PVw), the probability of days being S3 (good weather days) is higher. Thus

the steady state probability of the states with solar day type S3 is higher.

States with the solar day type as S3 correspond to good weather days and
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thus have lower outage probability. Therefore, for larger PV panel sizes

the outage probability turns out to be lower. Further, for a given PV panel

size, when the battery dimensions (nb) are lower, there is a higher chance

of a state transition occurring from a given state to the cut-off battery level

(N′) during the bad weather days (S1 and S2 days). This contributes to the

higher outage probability when the number of batteries is lower. However,

when the battery dimensions are large, such a probability of transition to

the cut-off battery is lower, thus leading to a lower outage probability.

The way the optimization problem is solved in this chapter is similar to

that described earlier in Section 2.5. However, the difference in the solution

methodology is as follows. In Section 2.5 we had used simulations with

traces of BS power consumption and solar energy for estimating the outage

probability and battery lifetime corresponding to a particular configuration

of PV panel size and number of batteries. However, in this chapter we use

the model proposed in this chapter to estimate these parameters for a given

configuration of PV panel size and number of batteries.

3.7 Numerical results

This section presents results to verify the proposed outage estimation and

battery lifetime evaluation model and the framework for cost optimal sys-

tem dimensioning of solar powered BSs.

We consider a LTE macro base station with 10 MHz bandwidth and 2× 2

Multi Input Multi Output (MIMO) configuration with capacity to support

300 calls at any given time instant. We assume that the BS has three sec-

tors and each sector has two transceivers (thus, ΥTRX = 6). To validate the

proposed framework, we consider two geographically diverse locations:
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San Diego (USA) and Jaipur (India). The various parameters for the so-

lar energy model are obtained using the statistical solar energy data from

NREL database and the methodology described in Section 3.5.3. We use

seven years of data (2000-2006) for parameter estimation and evaluate the

performance using data for years 2007-2009. We assume Epanel as 0.5 kW.

We assume that the BSs use 12 V, 205 Ah flooded lead acid batteries, each

with a capacity of 2.46 kWh. ν, the fraction of total battery capacity below

which the batteries are not allowed to discharge has been taken as 0.3. For

modelling the load profiles we use the methodology described in Section

2.3.1 and the various parameters were calculated as described in Section

3.5.3. We considered call arrival rates during the different hours for the

different days as shown in Figure 2.6 and the average call duration was

taken as 2 minutes [56]. The average BS power consumption during a day,

Lavg, was taken as 22.8 kWh. tmax for the PATR algorithm was taken as 6.

As benchmarks for comparison, we consider results obtained using simula-

tions with empirical traces for the solar energy and the traffic load, as well

as the model proposed in [21].

Following is a brief description of how the results are obtained using the

above-mentioned information:

• The description of how results are obtained using empirical traces

and the benchmark model [21] has been already described in the

results section of the previous chapter (Section 2.7).

• For the model proposed in the paper, we estimate the various mod-

eling parameters (e.g. the solar energy profiles for the different day

types, load profiles for the different load day types, and the transi-

tion probabilities between different solar day and load day types) as

described in Section 3.5.3. Note that the solar energy data for year
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Figure 3.9: Number of batteries vs battery lifetime for the two locations for
PV wattage of 12 kW.

2000-2006 was used for estimating the solar energy parameters.

• With the solar energy and BS load profiles, and the transition proba-

bilities in place, we can use the framework proposed in this chapter

to estimate the outage probability and battery lifetime for a given

configuration of PV panel size and number of batteries.

• As our ultimate ojective is to find the cost-optimal PV panel and

battery configuration, we use the detailed solution methodology de-

scribed in Section 2.5 to find the solution of the optimization problem.

3.7.1 Battery lifetime

We begin with analyzing how the battery lifetime varies with the number

of batteries. Please note that the battery lifetime is an important variable to

be estimated for resource dimensioning and it appears in Equation (2.10)

of Section 2.5 (Cost optimal dimensioning). Figure 3.9 shows the battery

lifetime obtained for a PV panel size of 12 kW installed at the BS site for the

two locations. We note that our model predicts the battery lifetime quite
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Figure 3.10: Battery lifetime for two different PV panel sizes for San Diego.

accurately for both the locations. From Figure 3.9, we note that the predic-

tion of the battery lifetime for the proposed model has accuracy above 90%

for San Diego and above 95% for Jaipur (whereas for [21] these values are

94% and 98% respectively). Note that although the proposed model has

lower accuracy than [21] in terms of predicting the battery lifetime, it by

and large outperforms [21] in terms of outage estimation as shall be shown

in Section 3.7.2. From Figure 3.9 note that as the number of batteries de-

creases, the battery lifetime decreases. This is because with fewer batteries,

the batteries are more likely to go through deeper discharge cycles, which

reduces their lifetime. In Figure 3.10 we show the battery lifetime for two

different PV panel sizes for San Diego to show the effect of PV panel size

on the battery lifetime. The nature of result for Jaipur is similar. We note

that for a larger PV panel size, the battery lifetime is higher than that for

a lower PV panel size. The reason for this is that for a larger PV panel

size, the energy harvested is also larger and thus the batteries go through

fewer deep discharges. Also, the values for the battery lifetime prediction
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Figure 3.11: Outage probability vs number of batteries (PV panel size: 12 kW).

accuracy for these two PV panel sizes for the proposed scheme (as well as

the benchmark scheme) is similar to those discussed while commenting on

the battery lifetime prediction accuracy for Figure 3.9 discussed earlier in

this section.

3.7.2 Energy outage analysis

Next we analyze how the outage probability is affected by the number of

batteries. For both locations, we consider a PV panel with DC rating 12

kW installed at the BS site. The variation in the outage probability with re-

spect to the number of batteries is shown in Figure 3.11. It can be seen that

the outage probability estimated using our model has a close match with

that obtained using simulations with empirical data. Also, the proposed

model outperforms the model proposed in [21] in predicting the outage

probability. Note that when the number of batteries becomes very small,

the outage probability rises sharply. This is on account of batteries being
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Figure 3.12: Outage probability versus number of batteries required for differ-
ent PV panel sizes: San Diego.

too small to hold sufficient charge to power the BS even when there is suf-

ficient energy harvested. Further, we can also observe that the number of

batteries required to meet very low outage probabilities (< 0.25%) becomes

very large. This is because for any location, the outages are usually caused

when there are many bad days at a stretch. These periods of consecutive

bad weather days determine the required battery size and ensuring very

low outage probabilities requires a large number of batteries.

3.7.3 Effect of PV panel size on outage

We consider two PV panel sizes: 10 kW and 16 kW to study the impact

of the PV panel size on the outage probability. The outage probability

corresponding to the different PV panel sizes with respect to the number

of batteries have been shown in Figures 3.12 and 3.13 for San Diego and
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Figure 3.13: Energy outage vs number of batteries required for different PV
panel sizes: Jaipur.

Jaipur, respectively. Note that for a larger PV panel size, the same outage

probability can be met with a lower number of batteries, as compared to

the case of smaller PV panel size. Again, from the plots we can see that

proposed model outperforms the benchmark model from [21] in terms of

predicting the outage probability for a given battery size.

3.7.4 PV-Battery configuration for a given outage constraint

Given a outage constraint, a network operator is usually interested in the

minimum number of batteries required for different PV panel sizes. Note

that these configurations of PV panel and battery sizes are prospective can-

didates for resource dimensioning for the BS, and the configuration with

the lowest cost is selected by the operator. We consider two target outage

values: 0.5% and 1%. Figures 3.14 and Figure 3.15 show these PV panel-
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Figure 3.14: PV panel size vs number of batteries required for different outage
probabilities (λ): San Diego.

battery configurations for achieving the two target outage values for the

two locations.

3.7.5 Cost optimal configuration

In Section 3.7.1 we presented the battery-lifetime estimation results which

are an important step in determining the optimal-cost configuration (it is

specifically used in Equation (2.10)). We also presented results showing the

accuracy of the proposed model in terms of estimating the outage proba-

bility in Sections 3.7.2 and 3.7.3. Outage probability is an important param-

eter to estimate because the cost-optimal resource dimensioning is done so

as to ensure the outage to be below a certain threshold outage value (λ).

Next, results concerning the prospective candidates for cost-optimal re-

source provisioning problem were presented in Section 2.7.4. This section

presents results for the cost-optimal PV and battery configuration.
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Figure 3.15: PV panel size vs number of batteries required for different outage
probabilities (λ)): Jaipur.

Table 3.2: Optimal Configuration for Trun = 5 years.

Location
Empirical [21] Proposed model
PVw nb PVw nb PVw nb

λ = 0.5%
San Diego 10 29 9 22 10.5 27

Jaipur 9.5 19 9.5 18 9.5 20
λ = 1%

San Diego 10.5 24 9 19 10.5 23
Jaipur 9 18 9 17 9 18

The cost associated with the prospective PV-Battery configurations which

meet the target outage probability can be calculated as described in Section

3.6. We consider two target operational times Trun = 5 years and Trun = 10

years. Also, based on the market statistics, we assume the cost of PV panels

CPV as US$ 1000/kW and the cost of the lead acid batteries CB has been

assumed to be US$ 280 [66]. The cost optimal configuration for the two

target operational times (for two target outage probabilities of 0.5% and 1%)

has been tabulated in Tables 3.2 and 3.3. We note that the results from the

proposed model closely match the optimal configuration using simulations
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Table 3.3: Optimal Configuration for Trun = 10 years.

Location
Empirical [21] Proposed model
PVw nb PVw nb PVw nb

λ = 0.5%
San Diego 13.5 22 10 19 14 22

Jaipur 10.5 17 10.5 16 10.5 18
λ = 1%

San Diego 12 21 9.5 18 12 20
Jaipur 9.5 17 9 17 9.5 17

using empirical data and outperforms the benchmark model [21]. From

Tables 3.2 and 3.3 we observe that considering a larger operational lifetime

results in a bigger PV panel size in the cost optimal solution. This is because

for optimization over a larger operational time, the cost of replacement of

the batteries starts dominating the overall cost and thus configurations with

larger PV panel sizes that need smaller number of batteries tend to be more

cost optimal.

Remark: From the above numerical results, we see that for San Diego, the

proposed model has significantly better accuracy than the model proposed

in [21]. This is because our model specifically models the correlations in

the weather patterns of successive days. The analysis shows the impor-

tance of carefully accounting for the bad weather days while developing

models for dimensioning resources for applications requiring high degree

of reliability. We also note that the predictions from the benchmark models

are reasonably accurate for Jaipur, which is a location that has very good

solar insolation. Thus, since Jaipur only has very few bad weather days in

a year, there is limited improvement in the accuracy by using our proposed

model. However, [21] relies on the generation of long term synthetic traces

of solar energy data which is computationally very intensive. Additionally,

[21] does not model the system load and the battery levels. These factors

also contribute to the superiority of our proposed model over the model
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proposed in [21].

Note that the results and trends for the model proposed in this chapter

are similar to those using the model proposed in the previous chapter. For

example, in Figure 3.16 we show the results for the battery lifetime, and PV

panel and number of batteries required for a tolerable outage probability

for the model proposed in chapter 2 and chapter 3. Ch2 and Ch3 in the

legend of Figure 3.16 denote Chapter 2 and Chapter 3, respectively. The

left figure shows the battery lifetime for the location Kolkata for PV panel

size 12 kW. The right figure shows the PV panel and number of batter-

ies configuration to ensure outage to be below 1%. Note that the model

proposed in chapter 3 has slightly lower accuracy as compared to that of

model proposed in chapter 2. However, the model proposed in Chapter 3

has a lower complexity which is primarily because of using fewer states for

solar energy. In Chapter 2 we have a multi-state markov model, where the

solar energy can be in one of 192 possible states (2 day types × (24 hours

× 4 solar state categories per hour)). However in Chapter 3 we have just 3

day types (and the average value of the solar energy profile is considered

for those days). Additionally Chapter 3 simplifies the outage estimation

process in the sense that the proposed framework finds the steady state

probability of being in the different states in the model and identifying

which states are the outage states; and thus it does not require long term

simulation using solar energy traces and BS power consumption like that

required in the model proposed in Chapter 2 and [21].
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Figure 3.16: (Left) Number of batteries vs battery lifetime for Kolkata for PV
wattage of 12 kW, (Right) PV panel size vs number of batteries required for
outage probability λ = 1%: Kolkata.

3.8 Conclusion

In this chapter we proposed an analytic model for estimating the outage

probability and battery lifetime for cellular BSs powered by solar energy.

The harvested solar energy, base station load and the battery levels were

modeled as discrete time Markov processes. We modeled the solar energy

for a given day as a three state markov process whereas the BS load was

modeled as a two state Markov process. The battery level was discretized

for reducing the state space. These models were further used to estimate

the outage probability and battery lifetime associated with a given PV panel

size and battery configuration. Using this estimate, the problem of obtain-

ing the cost optimal PV panel-battery configuration for a solar powered BS

was addressed. The proposed model was verified by comparing against

simulation using empirical traces of solar energy and load data, and was

shown to outperform the current state of the art.
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Chapter 4

Green Energy and Delay Aware

Downlink Power Control and User

Association for Off-Grid Solar

Powered Base Stations

4.1 Introduction

Using renewable resources like solar energy to power the base stations

(BSs) has emerged as a promising solution for greening cellular networks

[77]-[79]. In the last two chapters we addressed the issues related to re-

source provisioning for solar powered BSs. Next in this chapter and in

Chapter 5 we study operational strategies for a network of solar powered

BSs. In this chapter we consider a network of off-grid solar powered BSs.

Such solar powered BSs are carefully provisioned with resources like PV

panels and batteries, taking into account the trade-off between the CAPEX
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(capital expenditure) and quality of service performance (QoS) [16]. Due

to cost constraints, the BSs cannot be over-provisioned beyond a certain de-

gree and thus they require additional effort for managing the green energy

available to them, specifically during bad weather periods. In the absence

of such energy management, the network can experience critical energy

outages during these times. Another key challenge in operating a network

of such BSs is to intelligently manage the green energy available to the

BSs while ensuring low traffic latency. This chapter presents a methodol-

ogy for minimizing the traffic latency, given the constraints on the energy

availability at the solar-powered BSs. In contrast to existing approaches

based on just user association reconfiguration or BS on/off strategies, our

methodology uses a combination of intelligent energy allocation, and green

energy and delay aware BS downlink power control and user association.

We show the performance gains of the proposed methodology over exist-

ing benchmarks through simulations using a real BS deployment scenario

from United Kingdom (UK).

The rest of this chapter is organized as follows. Section 4.2 presents the lit-

erature review. Section 4.3 presents the system model. Section 4.4 presents

the problem formulation. Section 4.5 presents the solution methodology.

Section 4.6 presents the numerical results and Section 4.7 summarizes the

chapter.

4.2 Literature review

Reducing the network energy consumption is one of the ways of solving

the problem of avoiding energy outages at the BSs during bad weather pe-

riods [80]. In related work, [81] introduces the concept of energy saving
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in a network by BS switching (i.e. switching off some of the BSs to reduce

network energy consumption). Some basic issues in dynamic BS switching

are described in [82], [83] and [84]. A framework for BS switching and

transmit power control with the objective of minimizing the energy used

in the network is proposed in [85]. In [86], the authors propose a scheme

(named SWES) for dynamic switching of BSs to minimize the overall en-

ergy consumption. This scheme saves energy by turning off BSs and it

is a greedy heuristic which seeks to determine the minimum number of

BSs required to serve the area, with the desired quality of coverage. The

authors in [87] propose cell breathing techniques for bringing down the

network energy consumption. Cell breathing refers to BSs dynamically re-

configuring the area being served by them based on the network traffic.

The authors in [87] achieve cell breathing by adjusting the transmit power

levels of the BSs. The author in [88] proposes a rate and power control

based energy-saving technique for orthogonal frequency division multiple

access (OFDMA) systems. The authors in [89] propose a scheme which

uses the adaptation of BS transmit power levels and coverage area (based

on the channel condtions and traffic load) to improve the energy efficiency

performance of an OFDMA system. An energy-efficient scheme for re-

source allocation in OFDMA systems with hybrid energy harvesting BSs is

proposed in [90] where a dynamic programming approach for power allo-

cation is used to minimize the network energy consumption. Further, [91]

proposes an algorithm, named ICE, for green energy aware load balanc-

ing to minimize the overall energy consumption, achieved by tuning the

beacon levels of the BSs.

The studies above are primarily focused on minimizing the network en-

ergy consumption. However, these studies do not consider the impact
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of the energy minimization on the network delay performance. Studies

which address network delay performance include [92] which proposes a

distributed user association scheme using a primal-dual formulation for

traffic load balancing. Authors in [93] propose an α-optimal user associa-

tion policy for flow level cell load balancing with the objective of maximis-

ing the throughput or minimizing the system delay. However the above-

mentioned schemes ([92],[93]) consider BSs powered by the grid and thus

do not account for the green energy availability at the BSs. Methodologies

which consider the green energy availability in addition to the delay perfor-

mance of the system include [94] and [95]. The authors in [94] propose the

GALA scheme which accounts for the green energy availability at the BS

while making user-association decisions. The authors formulate the prob-

lem of minimizing the sum of weighted latency ratios of the BSs where the

weights are chosen to account for the green energy availability at the BSs.

Authors in [95] consider BSs powered by hybrid supplies and formulate

the problem of minimizing the weighted sum of the cost of average system

latency and the cost of on-grid power consumption. The approach in [94]

and [95] to manage the available energy and network latency is by recon-

figuring the BS-MT (mobile terminal) user-association. In contrast to such

an approach, this chapter presents a methodology for energy and latency

management based on downlink transmit power control in addition to user

association reconfiguration, and demonstrates its performance gains over

existing approaches.

Also, the above-mentioned studies solve the problem of latency manage-

ment and green energy utilization for a given instant of time and do not

deal with the allocation of the available green energy over time. Thus, in

addition to downlink power control and user association reconfiguration,
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our methodology uses a temporal energy allocation algorithm to intelli-

gently manage the green energy available to the BSs so as to maximize the

benefit derived from it. With this energy allocation in place, this chapter

presents a comprehensive framework for the operation of an off-grid BS,

guiding the energy allocation, downlink power control, as well as user-

association which has been missing in existing literature [98], [99].

An emerging alternative for improving the performance of cellular net-

works is through the use of distributed antennas wherein multiple BSs use

joint transmission and reception [96], [97]. This approach requires a setup

where all baseband signal processing is done at a central processor (the

setup of Cloud-Radio Access Network (C-RAN)), whereas the BSs only

perform the radio frequency (RF) operations. The BSs transfer the informa-

tion to the central processor through high-capacity backhaul links which is

further transferred back to the BSs after signal processing. However, this

paper does not consider such a setup as it requires high capacity back-haul

links to be setup between the BSs and the central processor which may not

be viable due to various geographic and economic reasons, specifically for

off-grid scenarios (e.g. mountainous terrains or developing nations with a

communication infrastructure in its budding phase).

4.3 System model

In this section we describe the traffic model considered in the chapter. We

also describe the formulation of the BS load and the network latency.
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4.3.1 Traffic model, BS load and Network latency

We consider a network of cellular BSs offering coverage to a geographical

region R. We denote the set of the BSs as B and the user locations are

denoted by x ∈ R. For simplicity, in this chapter, we focus only on down-

link communication (i.e. BSs to MTs). We denote the downlink transmit

power vector of the BSs by P. The BSs can only operate at discrete values

of transmit power levels which are denoted by P(j) ∈ {0, ω, 2ω, · · · , Pmax},

where P(j) denotes the power level of the j-th BS, ω is the granularity of

power control, and Pmax is the maximum transmit power level at which the

BSs can operate. We assume that file transfer requests at location x arrive

following a Poisson point process with arrival rate λ(x) per unit area and

an average file size of 1
µ(x) . We define the traffic load density at location x

as γ(x)= λ(x)
µ(x) , where γ(x) captures the spatial traffic variability. Assuming

BS j is serving the users at location x, the rate offered by the BS to the users

can be generally given using the Shannon-Heartley theorem [93] as

cj(x) = BWj log2(1 + SINRj(x)) (4.1)

where BWj is the total bandwidth offered by the j-th BS and SINRj(x) is

given by

SINRj(x) =
gj(x)P(j)

σ2 + ∑m∈Ij
gm(x)P(m)

(4.2)

where gj(x) denotes the channel gain between BS j and the user at loca-

tion x and it accounts for the shadowing loss and path loss, σ2 denotes the

noise power level, and Ij is the set of interfering BSs for BS j. This chapter

assumes perfect information of the channel gain which may be estimated

given the topological details of the terrain, and drive-through site surveys.

Next, we introduce a user association indicator function uj(x) which spec-
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ifies the user association between the BSs and the MTs. This value is 1 if

users at location x are served by BS j and is 0 otherwise. We now define

the BS load ρj, which denotes the fraction of time BS j is busy serving its

traffic requests and is given by [94]

ρj =
∫
R

γ(x)
cj(x)

uj(x)dx. (4.3)

Definition 4.3.1: The feasible set of the BS loads ρ = (ρ1, · · · , ρ|B|) is denoted

by F1 and can be defined as

F1 =
{

ρ | ρj=
∫
R

γ(x)
cj(x)

uj(x)dx,

0 ≤ ρj ≤ 1− ε, ∀j ∈ B,

uj(x) ∈ {0, 1}, ∀j ∈ B, ∀x ∈ R,

|B|

∑
j=1

uj(x) = 1, ∀j ∈ B, ∀x ∈ R
}

,

where ε is an arbitrarily small positive constant.

The MTs attach to the BS based on the scheme described later in the chapter

in Section 4.5.3. Since file transfer arrivals are Poisson processes, the sum

of transfer requests arriving at the BSs is also a Poisson process. Since

the service process at a BS follows a general distribution, the BSs may be

modeled as a M/G/1-processor sharing queue. The average number of

flows at BS j can thus be given by
ρj

1−ρj
[95]. According to Little’s law, the

delay experienced by a traffic flow is directly proportional to the average

number of flows in the system [100]. Thus we take the total number of the

flows in the network as the network latency indicator, D(ρ), which is given
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by [95]

D(ρ) = ∑
j∈B

ρj

1− ρj
. (4.4)

The indicator above has been used in several contemporary studies to quan-

tify the network latency performance (e.g. [22], [86] [93], [94]).

4.3.2 BS power consumption

The base station power consumption consists of a fixed part and a traffic

dependant part. This chapter considers a network of macro BSs. The power

consumption of BS j is denoted as L(j), and is given as [101]

L(j) = P0(j) + ∆P(j)ρj, 0 ≤ ρj ≤ 1, 0 ≤ P(j) ≤ Pmax (4.5)

where P0 is the power consumption at no load (zero traffic) and ∆ is the

slope of the load dependent power consumption.

4.3.3 Solar energy resource and batteries

We use statistical weather data provided by National Renewable Energy

Laboratory (NREL) [17]. This is fed to NREL’s System Advisor Model

(SAM) tool which yields the hourly energy generated by a PV panel with

a given rating. The BSs are assumed to use lead acid batteries to store the

excess energy harvested by the PV panels. These are a popular choice in

storage applications on account of their lower cost and being more time

tested than other alternatives.
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4.4 Problem formulation

Our objective is to maximize the benefit derived from the green energy

available to the BS, in terms of improving the system level latency. While

doing so, we desire to avoid energy outages at the BSs. Thus, we consider

the problem, [P1], as minimizing the total system level latency during the

day, given the harvested solar energy available to the BSs. The problem can

be formulated as

[P1] minimize
Et, Pt, ρ(t)

24

∑
t=1

Dt(ρ
(t))

subject to: ρ(t) ∈ F1, ∀t
24

∑
t=1

Lt(j) ≤ G(j), ∀j ∈ B

where the network latency for the t-th hour of the day is denoted by Dt,

Lt(j) denotes the BS j’s power consumption for the t-th hour, and G(j)

denotes the green energy budget available to the j-th BS during the day.

The methodology for evaluating G(j) is discussed in Section 4.5.1. Note that

the design variables in the above problem are the green energy allocation

(denoted by E), the transmit power levels (P) and the BS loads (ρ). Et, Pt

and ρ(t) denote the value of these variables at time t.

4.5 Solution methodology

To solve the problem formulated in Section 4.4, we propose the Green en-

ergy and delay Aware User association and Resource Allocation (GAURA)

scheme which consists of three parts: (a) temporal energy allocation (b)

BS downlink power control and (c) user association reconfiguration. In
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Section 4.5.1 we propose an algorithm for intelligently allocating the green

energy budget over time. Further, given the energy allocation, in Sections

4.5.2 and 4.5.3 we address the optimization problem by suitably adjusting

the downlink transmit power levels of the different BSs and applying user

association reconfiguration, respectively.

4.5.1 Temporal energy provisioning

The energy available to power the BS on a given day comes from two

sources: (a) the solar energy harvested by the BS during the day and (b)

the charge remaining in the batteries from the previous day. This energy

needs to be intelligently used during the day. Note that it is not advisable

to use up all of this energy as the BSs require some charge in the batteries

to power them during the early morning hours on the next day, as the so-

lar energy is only available after sunrise. Therefore it is required that the

battery level does not go below a certain level at the end of the day, which

we denote by Bcr. Thus the energy budget which is actually available to

the j-th BS for use is given by G(j)= Bini(j) − Bcr(j) + ∑24
t=1 Ht(j) where

Bini(j) denotes the battery level of the j-th BS at the beginning of the day,

and Ht(j) denotes the solar energy harvested by BS j in the t-th hour of

the day. To allocate this energy budget available to the BS during the day,

we propose the TEA (Temporal Energy Allocation) algorithm (Algorithm

4). The green energy allocated to BS j in the t-th hour is given as Et(j).

Note that the green energy is allocated to a given hour in proportion to

the BS power consumption during that hour. Let Bcap denote the battery

capacity. To avoid battery degradation, we assume that the batteries are

disconnected from the BS if the battery level goes below a certain threshold

state of charge, Bc = νBcap, at any point of time.
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Algorithm 4 The TEA Algorithm

1: G(j)= Bini(j)− Bcr(j) + ∑24
t=1 Ht(j), ∀j ∈ B;

2: for t = 1 : 24 do
3: Et(j) = G(j) Lt(j)

∑24
h=1 Lh(j)

;

4: end for

The proposed algorithm requires the information of the solar energy ex-

pected to be harvested during the day. There exist many methodologies

to predict the solar energy generation, usually days and hours in advance.

These could be integrated with weather forecasts to give a more accurate

prediction. Some models for the prediction of solar energy include [102]

and [103]. Additionally, with the increasing number of applications us-

ing renewable energy, there exist many such companies which specialise in

the field of solar energy prediction for such applications (e.g. [104], [105],

[106]). Note that the proposed framework only needs an hourly estimate

of the solar energy generation which makes the task even simpler. We also

assume that the information of traffic profile from previous weeks is avail-

able, which is used to generate the predicted BS power consumption (L)

for the initial energy allocation. Note that this energy allocation is only

an initialization step and is later updated as shown in Section 4.5.2. We

assume that there is a central server which does these operations at the be-

ginning of the day and the decisions made by it guide the temporal energy

allocation during the day.

4.5.2 Green energy and delay aware transmission power con-

trol

We begin this section by with the following proposition that affects down-

link power control.
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Proposition 4.5.1. The network latency (D) is a non-convex function of the BS

power levels.

We use simulations to show that the network delay (D) is a non-convex

function of the BS power levels. We consider a network of BSs as shown in

Figure 4.3, and the simulation settings are as described in Section 4.6. We

consider the BSs operating at 3 p.m. in the afternoon and with BSs 2, 4,

5 and 6 operating at transmit power level 20 W. Next, we vary the power

levels of BS 1 and BS 3 and study the effect of doing so on the network

latency. Figure 4.1 shows the network latency for different values of power

levels for BS 1 and BS 3. From the figure we can easily conclude that the

network latency is a non-convex function of BS power levels.

The problem of power level control of a set of BSs to address the objective

function in [P1] is thus a non-convex optimization problem with respect to

the BS power levels. Finding the global minima of the optimization prob-

lem requires a search over the whole search space of possible power levels,

which has very high computational complexity. For B BS’s, the compu-

tational complexity is given by O(Z|B|T) where Z denotes the number of

power levels a BS can operate at and T denotes the number of hours un-

der consideration. Thus to address the power control problem, next we

propose a greedy heuristic with very low computational complexity.

We assume that a central server does the power control operations at the

beginning of the day and the decisions made by it guide the power levels

of the BSs during the day. The power control decisions are made for a time

granularity of a hour. To facilitate the power control operations, we as-

sume that the central server has the information of the average hourly traf-

fic profile at a given location which is used for evaluating the underlying

user-association based on the user association policy proposed in Section
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Figure 4.1: Latency variation with power control operations on BS 1 and BS 3.

4.5.3. In existing literature, there exist many papers which study, model

and predict traffic in cellular networks (e.g. [53], [107], [108] and [109]).

These models can be used for the real time implementation of the proposed

power control algorithm. Note that such an assumption is not uncommon

and has been considered in many contemporary works like [110] and [111].

The BS load, BS power consumption and the traffic served by a BS are

affected by its transmit power level. For the transmit power level control

operations, it is important to capture the information whether a BS is en-

ergy constrained or not. In order to do so, we define deficiency ratio of BS j

during hour t, Θt(j), as
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Θt(j) =
Lt(j)
Et(j)

. (4.6)

Note that the case when Lt(j) > Et(j) corresponds to a situation where the

power consumption of the j-th BS in the t-th hour is more than the green

energy allocated for that given hour, which indicates that the BS is energy

constrained. While determining power levels for the BSs, two concerns

regarding the operations of the BSs need to be accounted for which are (a)

to avoid energy deficinecy (i.e. Θt(j) > 1) and (b) to avoid traffic overload

at a BS (i.e. ρ
(t)
j > 1). To capture the intensity of these problems faced by a

BS, we define a term strain index which is given by

Ψt(j) = max(0, Θt(j)− 1) + max(0, ρ
(t)
j − 1). (4.7)

Next, we propose the green energy and delay aware power control algo-

rithm (Algorithm 5) which is aimed at eliminating the strain index and

improving the network latency performance. The proposed algorithm is

sequentially carried out for each hour of the day beginning with the first

hour of the day. For a given hour, the BS power control begins by trying

to eliminate the strain index for the BSs. To achieve this, the BS with the

largest value of strain index is identified at every step every step (using

max(Ψ), line 5) and its transmit power level is reduced by ω (line 6). This

reduction in transmit power level contributes to relieving the strain of the

BS in terms of energy deficiency as well as traffic overload. The reason for

this is as follows. When the transmit power level of a BS is reduced, some of

its users are offloaded to nearby BSs which reduces the BS load (ρ). Further,

as the BS load is reduced, the power consumption of the BS which is de-

pendent on the BS load (as shown in (4.5)) is also reduced. After all the BSs
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Algorithm 5 Green Energy and Delay Aware Power Control Algorithm

1: Initialize: Pt(j) = Pmax, ∀j ∈ B

2: Compute Ψt(j), ∀j ∈ B

3: Ψt(j) = max(0, Θt(j)− 1) + max(0, ρ
(t)
j − 1)

4: while max(Ψt) > 0 do . Loop to eliminate strain index
5: a. g : arg max

j∈B
Ψt

6: b. Pt(g) = max(0, Pt(g)−ω) ;
7: end while
8: Latency_reduction = True;
9: while Latency_reduction = True do . Power control for latency

improvement
10: Γold= network latency with power vector P.
11: for j = 1 : |B| do
12: Pcurr = Pt
13: Pcurr(j) = max(0, Pt(j)−ω)
14: Compute network latency for power vector Pcurr and store in

Γpc(j)
15: if max(Θt) > 1 then
16: Poss(j)= False
17: else Poss(j)= True
18: end if
19: end for
20: a. h : index of BS having Poss = True for which power control leads

to minimum network latency (Γpc)
21: b. Set Γnew = Γpc(h)
22: if Γnew < Γold then
23: Pt(h) = max(0, Pt(h)−ω) ;
24: else
25: Set Latency_Improvement = False
26: end if
27: end while
28: for j = 1 : |B| do . Carrying over left-over energy
29: Lt(j) = P0(j) + ∆Pt(j)ρ(t)j
30: Yt(j) = Et(j)− Lt(j)
31: for h = t + 1 : 24 do
32: Eh(j) = Eh(j) + Yt(j) Lh(j)

∑24
m=t+1 Lm(j)

33: end for
34: end for
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have zero strain index, the power control operations are done so as to min-

imize the overall system latency. For this, one by one the BSs reduce their

transmit power by ω and the system latency with the new set of power lev-

els is stored in the vector Γpc (lines 10-19). The BS for which the reduction

of power level leads to the largest reduction in the system latency, while

allowing all BSs to have Θt(j) > 1 (which is tracked by the vector Poss),

updates its transmit power level. This process is continued until there is no

further improvement in the system latency by powering down any of the

BS (lines 20-26). The latency improvement is checked through the status

variable Latency_reduction which is true if the latency reduces as a result

of the power control operation and is set to false otherwise. Note that the

latency improvement brought by the power control operations is because

of the load balancing effect and interference management.

For a given hour, for the transmit power levels determined by the proposed

algorithm, the BSs may not be using all of the energy allocated to them for

that hour. We denote the leftover energy by Y in the algorithm and this

energy is distributed to the subsequent hours in proportion to their respec-

tive traffic loads (lines 28-34). For each hour, the worst case computational

complexity of the proposed algorithm is O((Z− 1)|B|2). The scenario for

the power control operations with the worst case computational complex-

ity is the one where power levels of all BSs fall to 0, starting from an initial

power level of Pmax. We have B BSs and each BS has (Z − 1) transmit

power level transitions possible (i.e. from Pmax to (Pmax −ω), (Pmax −ω) to

(Pmax − 2ω) , · · · , ω to 0). While deciding any of these power level transi-

tions, the value of the objective function for each of the B BSs is evaluated.

This gives the overall computational complexity for the proposed power

control algorithm for a given hour as O((Z− 1)|B|2). Note that with each
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iteration of the power control operations, the load levels at each BS change.

Thus after each iteration (consisting of Algorithm 4 followed by Algorithm

5) we use the new load levels at each BS as the input to Algorithm 1 for the

next iteration. After a few iterations (typically 3-4), solution for transmit

power levels converges. The worst case computational complexity of the

proposed algorithm for T hours of operation is given by O(T(Z− 1)|B|2).

Remark: The power control operations begin with addressing the energy

outage and the traffic overload issue. Once that is addressed, power level

control is done to bring down the network latency. As the problem of min-

imizing the network latency by power control operations is a non-convex

optimization problem, the proposed algorithm obtains a local optimal so-

lution. The proposed algorithm has the rationale of a greedy descent ap-

proach where the BS whose power level decrement leads to the largest

reduction in the delay is powered down. Thus the power levels at any sub-

sequent iteration of power control operation has delay performance better

than that before it. Further, when decrementing the power level of none of

the BSs leads to a reduction in the delay, we return that set of power levels

as the solution of the power level values for that hour.

4.5.3 Green energy and delay aware user association policy

The user-association policy determines the MT-BS association at any point

of time. In this section we propose a green energy and delay aware user

association policy. For any given value of power levels ( coming from the

power control algorithm) and green energy allocation at a given time, the

proposed user association policy contributes to achieving the global opti-

mal of value of the objective function (for that set of power levels). The
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user association policy operates in an iterative way. The BSs periodically

measure their traffic loads and use it to determine their coalition factors

(defined later in this subsection) which are advertised to the MTs. These

coalition factors are used by the MTs to associate with the BSs so as to

minimize the objective function. The BSs and MTs update their associ-

ation until convergence. Note that this can be easily implemented in a

distributed manner where the BSs have to just periodically broadcast their

coalition factors which can be embedded in the beacon signals of the BSs

[112]. Note that the coverage regions of the BSs are overlapping and a user

can choose to associate with any one of the multiple BSs in its reception

range.

For the user-association problem we consider the transformed problem

[P2.1], with an intentionally added barrier function in the problem [P1]

to have delay and energy aware user association. User association is a con-

tinuous phenomenon where the set of active users in the network keeps

changing and the users associate with the BSs based on the proposed user-

association policy. The proposed user-association policy is applicable at all

times and thus we omit the time index t in this subsection. Additionally, we

use D(ρj) to denote the delay indicator for the j-th BS (i.e. D(ρj) =
ρj

1−ρj
).

Note that the constraint corresponding to the energy availability at the

BS has been indirectly incorporated in the transformed objective problem

through the barrier function eΘ(ρj). The problem [P2.1] is defined as follows

[P2.1] minimize
ρ

X(ρ) = ∑
j∈B

(
D(ρj) + eΘ(ρj)

)
subject to: ρ ∈ F1

and its solution involves finding the optimal BS loads (ρ) which minimizes

the value of X(ρ). Note that the value of Θ for BS j is a function of ρj,
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Figure 4.2: Variation of components in the objective problem [P2.1] with its
respective parameters.

as Θ(j) = L(j)
E(j) =

P0+∆P(j)ρj
E(j) . Thus in this subsection, for notational clarity

we denote it by Θ(ρj). The intuition behind choosing the particular barrier

function (i.e. eΘ(ρj)) is as follows. While deciding the user association

policy, we not only want the user association policy to bring about delay

improvement in the network, but also want it to account for the green

energy available at the BS. Θ(ρj), has been defined previously as L(j)
E(j) . When

a BS is running low on energy, the value Θ(ρj) grows large and thus the

users will be discouraged to join that BS (as it increases the value of the

objective function sharply). Further, the barrier function is exponential

with respect to the value of Θ(j). Thus after a certain point when the BS

starts running very low on energy, its contribution to the objective function

increases sharply. Figure 4.2 shows how the two parts in the objective

function in problem [P2.1] vary with their respective parameters for BS j.

Since uj(x) ∈ {0, 1}, the set F1 is not convex. To formulate our problem

[P2.1] as a convex optimization problem, we begin with relaxing the user-
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association indicator function to 0 ≤ uj(x) ≤ 1, where uj can be interpreted

as the probability that a user at location x associates with BS j. We denote

the relaxed set of BS loads as F̃1 and it is given as

F̃1 =
{

ρ | ρj=
∫
R

γ(x)
cj(x)

uj(x)dx,

0 ≤ ρj ≤ 1− ε, ∀j ∈ B,

0 ≤ uj(x) ≤ 1, ∀j ∈ B, ∀x ∈ R,

|B|

∑
j=1

uj(x) = 1, ∀j ∈ B, ∀x ∈ R
}

.

Theorem 4.5.1: The feasible set F̃1 is convex.

Proof. This proof has been taken from [93] and is included here for com-

pleteness. Let us consider two BS load vectors ρa and ρb with ρa 6= ρb.

There exists an associated ua(x) = (ua
1(x), ua

2(x), · · · , ua
|B|(x)) and ub(x) =

(ub
1(x), ub

2(x), · · · , ub
|B|(x)), such that ρa

j =
∫
R

γ(x)
cj(x)ua

j (x)dx and

ρb
j =

∫
R

γ(x)
cj(x)ub

j (x)dx for j ∈ B. Next, we consider a convex combination

of ρa and ρb for 0 < δ < 1, denoted by ρc. For BS j, this combination is

defined as

ρc
j = δρa

j + (1− δ)ρb
j

=
∫

γ(x)
cj(x)

[δua
j (x) + (1− δ)ub

j (x)]dx. (4.8)

Let uc(x) be the association function associated with ρc; then uc
j (x) =

δua
j (x) + (1 − δ)ub

j (x). Note that ρc fulfils all conditions to be in set F̃1.

Thus, the set F̃1 is convex. �

130



4.5 Solution methodology

The problem [P2.2] with the relaxation condition is given by

[P2.2] minimize
ρ

X(ρ) = ∑
j∈B

(
D(ρj) + eΘ(ρj)

)
subject to: ρ ∈ F̃1.

Remark: Note that although we formulate the optimization problem [P2.2]

using F̃1, the user association algorithm which we propose in this chapter

determines the deterministic user association (belonging to F1). This is

shown in Theorems 4.5.2 and 4.5.3, later in this section.

Next we describe the working of the proposed user association algorithm.

The proposed user association algorithm is a distributed MT-BS association

scheme. To guarantee the convergence of the scheme, we assume that traf-

fic arrival and departure processes occur at a faster time scale as compared

to that at which the BSs broadcast their coalition factors. Thus, after the

BSs broadcast their coalition factors, the users are able to make their asso-

ciation decisions based on the broadcast indicators before the next set of BS

coalition factors are broadcast. We also assume that the BSs are synchro-

nized and the coalition factors are broadcast at the same time. We begin

with describing the user side and the BS side algorithms for carrying out

the proposed user association.

1) User side algorithm: The time between two successive BS coalition fac-

tor updates is defined as the time slot in our algorithm. At the start of k-th

time-slot the BSs send their coalition factors to the users through a broad-

cast signal. The users at location x in turn choose the BS they associate with

based on these coalition factors and the rate offered by the BSs at their lo-

cation. We use superscript (k) to denote the value of a particular variable

at the beginning of the k-th time slot. The coalition factor, φ
(k)
j broadcast by
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BS j at the beginning of the k-th time slot is defined as

φ
(k)
j =

∂X(k)(ρ)

∂ρ
(k)
j

=

∂

(
∑j∈B

(
ρ
(k)
j

1−ρ
(k)
j

+ e
L(j)
E(j)

))
∂ρ

(k)
j

=

∂

∑j∈B

 ρ
(k)
j

1−ρ
(k)
j

+ e
P0+∆P(j)ρ(k)j

E(j)


∂ρ

(k)
j

=
1

(1− ρ
(k)
j )2

+
∆P(j)
E(j)

eΘ(k)(j). (4.9)

The MTs associate with a BS based on the following rule

w(k)(x) = arg max
j∈B

cj(x)

φ
(k)
j

, (4.10)

where w(k)(x) is the index of the BS with largest value of
cj(x)

φ(k)(j)
and cj(x) is

the rate offered by BS j at location x. The optimality of the proposed user

association rule in terms of minimizing the objective function has been

proved in the subsequent part of this section. The users update their asso-

ciation functions as

u(k)
j (x) =

 1 if j = w(k)(x)

0 otherwise
. (4.11)

For an individual user, the computational complexity of the proposed user

side algorithm is O(|B|).

2) BS side algorithm: The BSs measure their load levels at the end of the
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Algorithm 6 User Association Algorithm

1: MTs: At the k-th iteration, MTs measure the average transmission rate
cj(x) (∀j ∈ B) and receive the BS coalition factor broadcasted by these
BSs. Then, the MTs select the BS w(k)(x) according to Equation (4.10).

2: BSs: At the end of the k-th iteration, each BS estimates its load and
updates its traffic load ρ

(k+1)
j to be used for evaluating the coalition

factor to be broadcast for the next iteration.

k-th time slot which we denote by Tj(ρ
(k)
j ) and it can be given as

Tj(ρ
(k)
j ) = min

(∫
R

γ(x)
cj(x)

u(k)
j (x)dx, 1− ε

)
. (4.12)

After measuring this traffic load, the BS updates its traffic load to be used

in evaluating the next coalition factor to be broadcast for time slot k + 1 as

[93]

ρ
(k+1)
j = θρ

(k)
j + (1− θ)Tj(ρ

(k)
j ) (4.13)

with 0 < θ < 1 being an averaging exponential factor. The pseudocode for

the user association algorithm mentioned above is given in Algorithm 6.

Next, we present the proofs to show the optimality and convergence of the

proposed user association algorithm.

Lemma 4.5.1. The objective function X(ρ) = ∑j∈B

(
D(ρj) + eΘ(ρj)

)
is convex

in ρ when ρ is defined on F̃1.

Proof. Please refer to Appendix C for the proof. �

Lemma 4.5.2. A unique optimal user association ρ∗ ∈ F̃1 exists which minimizes

X(ρ) = ∑j∈B

(
D(ρj) + eΘ(ρj)

)
.

Proof. This follows from the fact that the objective function X(ρ) is a convex

function of ρ when ρ ∈ F̃1 (as shown in Lemma 4.5.1). �
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Lemma 4.5.3. When ρ(k) 6= ρ∗, then T(ρ(k)) provides a descent direction for

X(ρ(k)) at ρ(k).

Proof. Please refer to Appendix D for the proof. �

In Theorems 4.5.2 and 4.5.3, we prove the convergence and optimality of

the proposed user association scheme, respectively.

Theorem 4.5.2. The traffic load ρ converges to the traffic load ρ∗ ∈ F1 .

Proof. To prove this, we show that ρ(k+1) − ρ(k) is also a descent direction

of X(ρ(k)). For this we consider the following expression

ρ
(k+1)
j − ρ

(k)
j = θρ

(k)
j + (1− θ)Tj(ρ

(k)
j )− ρ

(k)
j

= (1− θ)(T(ρ(k)j )− ρ
(k)
j ). (4.14)

Now, based on Lemma 3, we have already shown that (T(ρ(k)) − ρ(k)) is

the descent direction of X(ρ(k)), and additionally we have (1− θ) > 0 as

0 < θ < 1. Thus even ρ(k+1) − ρ(k) gives the descent direction of X(ρ(k)).

Further, as X(ρ(k)) is a convex function we can easily state that X(ρ(k))

converges to the user association vector ρ∗. Suppose X(ρ(k)) converges to

any point other than X(ρ∗). Then ρ(k+1) again gives a descent direction

so as to decrease X(ρ(k)), which is contradiction to the assumption of con-

vergence. Additionally, as ρ(k) is derived based on (4.10) and (4.11) where

uj(x) ∈ {0, 1}, ρ∗ is in the feasible set F1. �

Theorem 4.5.3. If the set F1 is non-empty and the traffic load ρ converges to ρ∗,

the user association corresponding to ρ∗ minimizes X(ρ).

Proof. Let u∗ ={u∗j (x)|u∗j (x) ∈ {0, 1}, ∀j ∈ B, ∀x ∈ R} and u = {uj(x)|uj(x) ∈

{0, 1}, ∀j ∈ B, ∀x ∈ R} be the user association corresponding to ρ∗ and ρ,
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where ρ is some traffic load vector satisfying ρ ∈ F1. Let ∆ρ∗= ρ − ρ∗.

As X(ρ) is a convex function over ρ, the theorem can be proved by show-

ing < OX(ρ∗), ∆ρ∗ > ≥ 0. In the proof below, we substitute ∂X(ρ∗)
∂ρ∗j

as

φj(ρ
∗
j ) for notational clarity (these expressions are identical as shown in the

derivation leading to (4.9).

< OX(ρ∗), ∆ρ∗ > = ∑
j∈B

φj(ρ
∗
j ) (ρ− ρ∗)

= ∑
j∈B

(∫
R

γ(x)(uj(x)− u∗j (x))

cj(x)φ−1
j (ρ∗j )

dx

)

=
∫
R

γ(x) ∑
j∈B

(uj(x)− u∗j (x))

cj(x)φ−1
j (ρ∗j )

dx.

But as optimal user association is determined by the following rule

u∗j (x) =


1, if j = arg max

j∈B

cj(x)
φj(ρ

∗
j )

,

0, otherwise.
,

we thus have,

∑
j∈B

u∗j (x)

cj(x)φ−1
j (ρ∗j )

≤ ∑
j∈B

uj(x)

cj(x)φ−1
j (ρ∗j )

. (4.15)

Hence, < OX(ρ∗), ∆ρ∗ > ≥ 0 which proves the theorem. �

Algorithm 7 summarizes the sequence of the various operations inovolved

in solving the problem [P1] using the GAURA Algorithm.

The overall worst case complexity of the proposed GAURA scheme for the

centralized server is O(Z|B|2) which results from the operations required

to determine the power levels of the BSs during the different hours for the

day. For the MTs, the complexity is O(|B|) whereas for the BSs it is O(1)

which come from the user-association algorithm.
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Algorithm 7 Sequence of operations: GAURA

1: Perform Green energy allocation for the different hours during the day
using the TEA algorithm.

2: for t = 1 : 24 do
3: while power control convergence do
4: while user association convergence do
5: Solve user association problem for the given hour using the

green energy allocated for that hour and the predicted traffic.
6: end while
7: Solve power control problem for the underlying user-association

determined in the inner while loop.
8: end while
9: end for

Figure 4.3: 3G BS deployment near Southwark (London).

4.6 Numerical results

To validate the performance of the proposed scheme, we consider a 3G BS

deployment by network provider Vodafone near Southwark, London, UK

in an area of 1 km2 with 6 BSs as shown in Figure 4.3. We assume that 12 V,
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205 Ah flooded lead acid batteries are used by the BSs. Each BS is assumed

to be equipped with PV panel of 6 kW DC rating and 10 batteries. We

consider a carrier frequency of 2.5 GHz and 10 MHz bandwidth with full

frequency reuse. We take the noise power to be -174 dBm/Hz. We assume

log normal shadowing with standard deviation 8 dB with the correlation

distance for shadowing taken as 50 m [115]. The path loss, denoted by PL

has been modeled as [114]

PL(dB) = 40(1− 4× 10−3hBS)log10(R)− 18log10(hBS)+ 21log10( f ) + 80

where R is the distance between the BS and the MT, hBS is the base station

antenna height above rooftop and f is the carrier frequency in MHz. Based

on the suggestions from the baseline test scenario mentioned in the IEEE

802.16 evaluation methodology document [115], we take hBS as 15 metres

and the carrier frequency is 2.5 GHz. Thus, the path loss is calculated as

PL(dB) = 130.19 + 37.6 log(R). (4.16)

A homogeneous Poisson point process is used to generate the file trans-

fer requests. The rate of the Poisson process depends on the hour of the

day, with the smallest number of file transfer requests in the morning (2-5

a.m.) with an average of 20 requests per unit area (km2) and the largest

number of requests in the evening (5-7 p.m.) with an average of 200 re-

quests per unit area. To model temporal traffic dynamics, a new spatial

profile of file transfer requests is generated after every 2 minutes. Each file

transfer request is assumed to request 50 KB of data traffic to be served.

The entire area (of 1 km2) is divided into 1600 locations with each location

representing a 25 m x 25 m area. The location based traffic load density
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is calculated based on the traffic model. For performance analysis we con-

sider solar insolation on 12th January of typical meteorological year (TMY)

data for London from the NREL database [17]. The total energy harvested

on this day by a PV panel with 6 kW DC rating is 8.67 kW. P0, Pmax and

∆ for the BSs are taken as 412.4 W, 40 W and 22.6 respectively [101]. Bcr

is taken as the estimated energy required to power the BS to operate for

at least 5 hours during the early morning hours and it has been taken as

0.4Bcap for the numerical simulations. ν, the limiting state of charge which

decides Bc is taken as 0.3. Bini has been randomly chosen for different BSs.

ω, the granularity of the transmit power control has been taken as 5 W. We

assume that a BS is turned off when its transmit power level is 0 W. The

averaging factor for the BS side algorithm θ, has been taken as 0.95, and

with this value the proposed user-association algorithm was observed to

converge to the optimal solution within 20 iterations.

As a benchmark for comparison, we consider a Best-Effort scheme where

all BSs operate with transmit power 20 W and a MT associates with the BS

that has the strongest signal strength at the MT’s location. We also consider

ICE [91] and GALA [94] schemes with BSs operating at transmit power 20

W, and SWES [86] which is a BS on-off scheme with BSs operating at 40 W

when they are switched on. The ICE, GALA and SWES schemes have been

discussed in Section 4.2.

4.6.1 Green energy performance

Figure 4.4 shows the battery discharging-charging profiles for the various

benchmarks and the proposed algorithm. For clarity, battery levels have

been normalized with respect to the maximum battery capacity. It can be
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Figure 4.4: Battery discharging-charging profiles for the different algorithms
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Figure 4.5: Average normalized battery charge for the different schemes.

seen that the Best-Effort scheme can lead to some of the BSs to run very

low on energy at the end of the day. Additionally, one of the BS (BS 4)

faces around 6 hours of energy outage during the day. The ICE scheme

does better than the Best-Effort scheme by trying to equalize the available

green energy. However even in the ICE scheme some of the BSs run low

on battery levels at the end of the day and BS 4 still faces 6 hours of energy

outage during the day. The performance of the GALA scheme in terms

of the battery level profile for the BSs is similar to that of the Best-Effort

scheme and BS 4 faces energy outage for around 6 hours during the day.

Note that the Best-Effort, ICE and GALA schemes lead to some of the

BSs ending up below the critical battery level (Bcr) at the end of the day

which indicates that there would be energy outages in the early morning

hours on the next day. The SWES scheme leads to an un-even discharge of

battery levels (as BSs turn on/off so as to maximize the number of BSs to be

switched off). Although with this scheme there is no energy outage for any
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Table 4.1: Comparison of Averaged Metrics for Different Schemes

Scheme Var(B) Λout Pavg(W) Bavg Davg
Best-Effot 0.86 7.66 544 0.36 6.72

ICE 0.60 7.66 610 0.33 12.73
GALA 0.82 5.55 562 0.34 5.6
SWES 3 2.78 400 0.47 6.85

GAURA 0.43 0 475 0.44 4.96

BS during the day, some of the BSs run very low on energy and face energy

outage at the end of the day. Note that the proposed GAURA scheme

provides a greater capability to avoid uneven discharging. Additionally, it

ensures that the battery level of none of the BSs goes below the critical level

(Bcr) at the end of the day.

Figure 4.5 shows the average values of battery levels for the BSs for the var-

ious schemes, normalized with respect to the battery capacity. Note that

the Best-Effort, ICE and GALA schemes can lead to very low values of av-

erage battery level at the end of the day. SWES achieves a higher average

battery level since some of the BSs have higher battery levels. Additionally,

as discussed earlier, due to un-even discharging some of the BSs can run

very low on energy in the SWES scheme. The average values of battery

levels for the proposed GAURA scheme is greater than the Best-Effort, ICE

and GALA scheme but lower than that of the SWES scheme. However as

discussed earlier, the GAURA scheme has a more even discharging profile

for the various BSs. Table 4.1 summarizes some key parameters quanti-

fying the battery level variations, energy outage probability and the delay

performance of the BSs for the benchmarks and the proposed scheme. To

quantify the even-ness of battery charge levels in the different BSs, we cal-

culate the variance Var(B) which denotes the sum of the variances of the
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normalized battery levels of the BSs over the day. Var(B) is calculated as

Var(B) =
24

∑
t=1

|B|

∑
j=1

(
Bt(j)− B̃t

Bcap

)2

(4.17)

where Bt(j) is the battery level of j-th BS at the end of the t-th hour and

B̃t is the average value of battery levels of the different BSs at the end of

t-th hour. Note that for the SWES scheme this parameter is the highest as

battery charge profiles of different BSs are very un-even. For the proposed

GAURA scheme it is the lowest, indicating comparatively more even dis-

charging among the batteries. Λout denotes the energy outage probability

and is calculated as

Λout =
Hout

24|B| (4.18)

where Hout denotes the number of outage events in the network during the

day (i.e. 24 hours of operation). Note that the energy outage probability

for the proposed GAURA scheme is 0 whereas for all other schemes there

are some energy outage events during the day. Further, we calculate the

average BS power consumption and the average normalized battery level

at the end of the day which are denoted as Pavg and Bavg respectively, and

are given by

Pavg =
1

24B

24

∑
t=1

|B|

∑
j=1

Lt(j) (4.19)

Bavg =
1
B

|B|

∑
j=1

B24(j)
Bcap

. (4.20)

Note that the average BS power consumption for the Best-Effort, ICE and

the GALA schemes are significantly higher than the SWES and GAURA

scheme which lead to lower average normalized battery level at the end

of the day (Bavg). Specifically, we note that the average battery level at the
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end of the day for the GAURA scheme is 22% higher than that using the

traditional Best-Effort scheme.

4.6.2 Delay performance

Figure 4.6 shows the delay performance for the schemes during the differ-

ent hours of the day. It can be observed from the figure that GALA has bet-

ter latency performance as compared to the Best-Effort scheme. However,

as discussed earlier, GALA is unable to avoid energy outages in some of

the BSs and from some of the BSs running very low on energy at the end of

the day. The performance of the ICE and SWES schemes is worse than the

performance of the Best-Effort scheme in terms of the delay performance.

Note that as compared to the Best-Effort scheme, the benefit of more even

discharging of batteries in the ICE scheme and the benefit of higher aver-

age battery levels in the SWES scheme are at the cost of increased delay. In

contrast, the proposed GAURA scheme reduces the system latency while

simultaneously ensuring that the battery levels do not become very low.

The last column in Table 4.1 lists the average delay value, denoted by Davg,

for the different schemes. Davg is calculated as

Davg =
1

24|B|
24

∑
t=1

Dt. (4.21)

Note that the proposed GAURA scheme gives the lowest average delay

followed by GALA, Best-Effort and the SWES scheme, and the value is

largest for the ICE scheme. The average delay for the GAURA scheme is

26% less than the traditionally used Best-Effort scheme.
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Figure 4.6: Delay performance for the different schemes.
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Figure 4.7: Transmit power levels for various BSs during the day (SWES).
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Figure 4.8: Transmit power levels for various BSs during the day (GAURA).

4.6.3 Transmit power levels

Figures 4.7 and 4.8 show the transmit power levels at which the BSs op-

erate during the different hours of the day for the SWES and the pro-

posed GAURA scheme, respectively. The BSs in Best-Effort, ICE and GALA

schemes operate at a fixed transmit power level of 20 W. Note that although

SWES can reduce the energy consumption during morning hours by com-

pletely switching off most of the BSs, the battery levels fall quickly during

afternoon and evening hours on account of most of the BSs being switched

on and operating at full transmit power. While GAURA also switches off

most of the BSs during morning hours, it avoids a quick decrease in the bat-

tery levels during the afternoon and evening hours by adapting the trans-

mit power levels of the BSs to lower values, and the adjustments are done

in such a way that the system latency is improved. BSs with very low en-

ergy shut down during the early morning hours, and further even during

other hours the BSs prefer to operate at lower power levels to save energy.
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Figure 4.9: a. Average normalized battery level for GAURA with prediction
error b. Delay performance for GAURA with prediction error.

Remark: Note that the proposed model assumes perfect knowledge of so-

lar energy and network traffic by the central server. Additional simulations

conducted by us show that the performance degradation is not significant

even in the presence of 5-10% error in the predicted values of solar energy

and network traffic. Figure 4.9 shows these results. The simulation re-

sults correspond to scenarios where the errors in the harvested energy and

traffic load follow independent Gaussian distributions with zero mean and

standard deviation (SD) of 5% and 10% of the actual value. Note that a SD

of 0% represents no prediction error. As can be seen, the presence of errors

does not have much of an impact.

4.7 Conclusion

This chapter proposed a framework for avoiding energy outages and im-

proving the traffic latency for a network of off-grid solar powered BSs. We

formulated the problem of minimizing the network latency given the con-

straints on the green energy availability at the BSs. We first proposed a
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methodology for intelligently allocating the green energy available to the

BSs over time. Next, with the given energy allocation, we addressed the

problem of avoiding energy outages and improving the traffic latency us-

ing the proposed green energy and delay aware power control and user

association algorithm. The proposed framework was evaluated using real

BS deployment data and solar energy traces, and it outperforms existing

benchmarks in terms of reducing energy outages while ensuring good de-

lay performance. From our analysis, we noted that on a bad weather day,

GALA, ICE and Best-Effort schemes can lead to energy outages in some

of the BSs during the day and some of the BSs running very low on en-

ergy at the end of the day (indicating energy outages during the morning

hours of the subsequent day). The GALA scheme, however, has better la-

tency performance than the Best-Effort scheme. The ICE scheme has more

even battery discharging profile for the BSs as compared to the Best-Effort

scheme but at the cost of higher delay. The SWES scheme has an higher

average battery level profile than the Best-Effort scheme, but it is at the

cost of a higher delay. The proposed GAURA scheme has been shown to

perform better than the existing schemes both in terms of avoiding energy

outages and the delay performance.
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Chapter 5

Delay Aware Resource

Management for Grid Energy

Savings in Green Cellular Base

stations with Hybrid Power

Supplies

5.1 Introduction

In the previous chapter we considered strategies for operating a network

of off-grid solar powered BSs where the BSs are solely powered by solar

energy. Locations that are very rich in solar resources can have base sta-

tions completely powered by solar energy. However, for locations with

occasional bad weather periods, the size of harvesters and storage devices

(e.g. PV (photo-voltaic) panels and batteries) required becomes very large
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which leads to very high CAPEX (capital expenditure), thus discouraging

operators from adopting such a solution [16]. In such scenarios and in sce-

narios where the BSs are already connected to the grid, using renewable

energy in conjunction with grid energy is a more viable approach. Pow-

ering the BSs by solar energy can reduce the grid energy consumption.

Intelligent management of the harvested solar energy by such BSs and co-

operation among them can lead to further reduction in the grid energy

consumption in the network. Note that while doing so, the operators also

have to take into account the quality of service (QoS) offered to the users

in terms of the network latency, and have to consider the trade-off between

cost savings and the network latency. Existing literature on joint man-

agement of grid energy consumption and the network latency uses only

user-association reconfiguration to achieve the same. Additionally, some

works propose dynamic BS operation (i.e. BS on/off strategies) which is

also a means of bringing about grid energy savings through network en-

ergy minimization. In contrast to these approaches, we propose the use of

intelligent green energy allocation and the use of down-link power control

and user-association reconfiguration to address the problem. The efficacy

of the proposed methodology has been shown by simulations using real BS

deployment and solar energy traces for London, UK and by comparison

against existing benchmarks. We show that the proposed framework can

lead to around 60% grid energy savings as well as better network latency

performance than the traditionally used scheme [116].

In existing lietrature there exist some studies which consider BSs connected

to the grid and consider dynamic electricity pricing and energy manage-

ment in conetext of a smart grid environment such as [119]-[123] (for details

of smart grids please refer to [124] and [125]). However, in this thesis for
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simplicity of analysis we consider static electricity prices, i.e., the electricity

price does not vary with time.

The rest of this chapter is organized as follows. Section 5.2 presents a

brief overview of related works. Section 5.3 describes the system consid-

ered in the chapter. Section 5.4 presents the problem formulation. Section

5.5 presents the solution methodology. Section 5.6 presents the numerical

results and Section 5.7 summarizes the chapter.

5.2 Literature review

One of the possible ways of bringing grid energy savings in a network of

grid-connected solar-powered BSs is to reduce the energy consumption in

the network [90],[126]. In related work, authors in [81] propose dynamic BS

switching to minimize the network energy consumption. The energy sav-

ings in dynamic BS switching is brought by switching off some of the BSs

during low traffic periods. The authors in [86] present a practical scheme

(named SWES) for the implementation of dynamic BS switching for a net-

work of BSs. The scheme is a greedy heuristic which seeks to determine

the minimum number of BSs to be switched on in order to serve the given

area with a desired quality of covereage. BS switching for renewable en-

ergy powered cellular networks is considered in [117]. The problem of grid

energy minimization is formulated and the BS on/off strategy to solve the

problem is derived through a two-stage dynamic programming algorithm.

Some other works which consider BS on-off include [82], [118] and [126].

In [127] the authors consider the problem of resource allocation and admis-

sion control in an OFDMA network and propose an algorithm for dynamic

power adaptation of femtocells to minimize the overall power consumption
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of the network. The authors in [89] propose a scheme which uses the adap-

tation of BS transmit power levels and coverage area (based on the channel

condtions and traffic load) to improve the energy efficiency performance

of an OFDMA system. An energy-efficient scheme for resource allocation

in OFDMA systems with hybrid energy harvesting BSs is proposed in [90].

The scheme uses a stochastic dynamic programming approach for power

allocation to minimize the network energy consumption. The authors in

[91] propose an algorithm for green energy aware load balancing. The

approach is based on tuning the beacon power levels (and not the actual

transmit power levels) of the various BSs. By doing so, users are discour-

aged from joining BSs running low on green energy. In [128], the authors

propose a Lyapunov optimization approach for bringing grid energy sav-

ings in a network of BSs where some of the BSs are connected to the grid

whereas some are not.

Note that all of the above studies primarily focus on minimizing the overall

network energy consumption and most of them neglect the effect of doing

so on the delay experienced by the users in the network. Some of the recent

studies addressing network delay include [92] which proposes a distributed

user association scheme using primal-dual formulation for traffic load bal-

ancing. Authors in [93] propose an α-optimal user association for the flow

level cell load balancing with the objective of maximizing the throughput

or minimizing the system delay. However the above-mentioned schemes

([92],[93]) do not account for the green energy availability at the BSs.

Methodologies which consider the green energy availability in addition to

the delay performance of the system include [94, 95, 129] and [130]. These

studies address the issue of bringing grid energy savings while managing

the quality of service (in terms of the traffic latency) [131]. The authors in
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[94],[129] propose the GALA scheme which accounts for the green energy

availability at the BS while making user-association decisions. The authors

formulate the problem of minimizing the sum of weighted latency ratios

of the BSs where the weights are chosen to account for the green energy

availability at the BSs. Authors in [95] consider BSs powered by hybrid

supplies and formulate the problem of minimizing the weighted sum of

the cost of average system latency and the cost of on-grid power consump-

tion. The authors of [130] also consider BSs powered by hybrid supplies but

formulate the problem of lexicographic minimization of the on-grid energy

consumption so as to reduce both total and peak on-grid energy consump-

tion. The framework proposed in [130] introduces a penalty function to

account for the network latency. The approach in [94, 95, 129] and [130] to

manage the available energy and network latency is by reconfiguring the

BS-MT (mobile terminal) user-association. In contrast to such an approach,

this chapter presents a methodology for energy and latency management

based on BS downlink transmit power control in addition to user associa-

tion reconfiguration, and demonstrates its performance gains over existing

approaches. The use of intelligent temporal energy allocation has been

shown to have a superior performance in terms of managing the green en-

ergy and delay jointly for an off-grid scenario in the previous chapter. In

this chapter we use insights from the same and propose a temporal energy

allocation scheme for BSs connected to grid.

5.3 System model

In this section we describe the traffic model considered in the chapter. We

also describe the formulation of the BS load and the network latency.
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5.3.1 Traffic model, BS load and Network latency

Let us consider a region R served by a set, B, of BSs. We use x ∈ R to

denote the user location. For simplicity we primarily focus only on down-

link communication (i.e. BSs to mobile terminals (MTs)). We denote the

downlink transmit power levels of the BSs by a vector P where the trans-

mit power levels can take discrete values i.e. P(j) ∈ {0, ω, 2ω, · · · , Pmax},

where j is the index of the BS, ω is the granularity of power control and

Pmax is the maximum transmit power level allowed. File transfer requests

are assumed to arrive following a Poisson point process with an arrival

rate λ(x) per unit area at location x, with average file size of 1
µ(x) bytes.

We define the traffic load density at location x as γ(x) = λ(x)
µ(x) , where γ(x)

captures the spatial traffic variability. The rate offered at location x served

by a BS j can be generally given using the Shannon-Heartley theorem [93]

as

cj(x) = BWj log2(1 + SINRj(x)) (5.1)

where BWj is the total bandwidth offered by the j-th BS and SINRj(x) is

given by

SINRj(x) =
gj(x)P(j)

σ2 + ∑m∈Ij
gm(x)P(m)

(5.2)

where gj(x) denotes the channel gain between the j-th BS and the user

at location x which accounts for the path loss and the shadowing loss, σ2

denotes the noise power level and Ij is the set of interfering BSs for BS j.

This chapter assumes perfect information of the channel gain which may

be estimated given the topological details of the terrain, and drive-through

site surveys. We introduce a user association indicator function uj(x) which

indicates if the user at location x is served by BS j. If that is true then this

variable has the value 1, and 0 otherwise. The BS load ρj, which denotes
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the fraction of time the BS j is busy serving its traffic requests can thus be

given as [94]

ρj =
∫
R

γ(x)
cj(x)

uj(x)dx. (5.3)

Definition 5.3.1. We denote the feasible set of the BS loads ρ = (ρ1, · · · , ρ|B|)

by F2 which can be defined as

F2 =
{

ρ | ρj=
∫
R

γ(x)
cj(x)

uj(x)dx, 0 ≤ ρj ≤ ρth, ∀j ∈ B,

uj(x) ∈ {0, 1}, ∑
j∈B

uj(x) = 1, ∀j ∈ B, ∀x ∈ R
}

,

where ρth is a threshold on the permitted BS load to avoid congestion at a

given BS.

Note that as traffic requests follow a Poisson processes, the sum of such

requests at a given BS is also a Poisson process. Further, as the BS’s ser-

vice time follows a general distribution, its operation can be modeled as a

M/G/1 processor sharing queue. The average number of flows at BS j can

thus be given by
ρj

1−ρj
[95]. According to Little’s law, the delay experienced

by a traffic flow is directly proportional to the average number of flows in

the system [100]. Thus we take the total sum of the flows in the network as

the network latency indicator, D(ρ), which is given by [95]

D(ρ) = ∑
j∈B

ρj

1− ρj
. (5.4)
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5.3.2 BS power consumption

This chapter considers macro BSs where the power consumption for BS j,

denoted by L(j), can be modeled as [101]

L(j) = P0 + ∆P(j)ρj, 0 ≤ ρj ≤ 1, 0 ≤ P(j) ≤ Pmax (5.5)

where P0 is the power consumption at no load (zero traffic) and ∆ is the

slope of the load dependent power consumption.

5.3.3 Solar energy resource and batteries

We consider solar irradiation data provided by National Renewable Energy

Laboratory (NREL) for London, UK [17]. This data is fed to NREL’s System

Advisor Model (SAM), to obtain the hourly energy generated by a PV panel

of a given rating. We assume that the BSs use lead acid batteries to store

the excess energy harvested by the PV panels.

5.4 Problem formulation

This section describes the problem formulation. We begin by describing

the mechanism for green energy allocation over time. This mechanism

is an important pre-requisite before formulating the optimization problem

which jointly manages the grid energy savings and the traffic latency. After

describing the green energy allocation scheme, we formulate the optimiza-

tion problem.
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5.4.1 Green energy allocation

The green energy available to the BSs is in the form of energy stored in

the batteries and the energy harvested during the day. This budget of

green energy available to a BS needs to be intelligently allocated during the

different hours of the day so as to optimize the use of the green energy, and

in turn to minimize the grid energy usage. The green energy allocation for

a given hour is done based on the energy available in the BS’s battery at that

time and the energy expected to be harvested in future hours during the

day. Additionally, to avoid battery degradation, we dis-allow the battery

from discharging below a certain charge level given by νBcap where Bcap

is the battery capacity. The green energy budget Mt at the beginning of

a hour t is the green energy available for allocation from that hour to the

last hour of the day (i.e. t = 24). Please note that we use the subscript

t to denote the value of the variable during the t-th hour throughout this

chapter. Considering the t-th hour of operation for the j-th BS, the green

energy budget at the begining of hour t can be given as

Mt(j) = Bt−1(j)− Bsm(j) +
24

∑
h=t

Hh(j) (5.6)

where Bt−1 denotes the battery level at the end of the previous hour, and Ht

denotes the green energy harvested during the hour t. ∑24
h=t Hh(j) denotes

the sum of the green energy to be harvested during the given hour t and

the coming hours of the day. The battery levels are dis-allowed to go below

state of charge νBcap at any point of time. Because the energy allocation is

done based on the expected energy to be harvested during the day which is

a random process, we add a margin of safety to reduce the likelihood that

the battery level goes below νBcap. Thus we take Bsm = (1 + β)νBcap where
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Algorithm 8 The LPEA Algorithm

1: for j = 1 : B do
2: Mt(j)= Bt−1(j)− Bsm(j) + ∑24

h=t Hh(j);

3: Gt(j) = Mt(j)
At(j)ρ(t)j +P0

At(j)ρ(t)j +Ct(j)
;

4: end for

β is the safety margin. Based on the information of the energy budget

available, we allocate green energy to the given hour in proportion to the

traffic load in the given hour. The green energy allocated by the BS j for

the hour t is denoted by Gt and is given by

Gt(j) =Mt(j)
Lt(j)

Lt(j) + ∑24
m=t+1 Lm(j)

=Mt(j)
P0 + ∆Pt(j)ρ(t)j

P0 + ∆Pt(j)ρ(t)j + ∑24
m=t+1 Lm(j)

(5.7)

where ρ
(t)
j denotes the load of BS j in the t-th hour. For sake of clarity we

use the following notation

At(j) =∆Pt(j) (5.8)

Ct(j) = P0 +
24

∑
m=t+1

Lm(j). (5.9)

Thus the green energy allocated for the hour t is given by

Gt(j) = Mt(j)
At(j)ρ(t)j + P0

At(j)ρ(t)j + Ct(j)
. (5.10)

The methodology for assigning the green energy described above has been

summarized in Algorithm 8 as the load proportional energy allocation

(LPEA) algorithm.
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This chapter assumes that all energy allocation operations are done by a

central server. The central server is assumed to have perfect information

of the renewable energy that is harvested during the day which can be im-

plemented in real life using weather forecasts. In existing literature there

are many methodologies which predict the solar energy generation (e.g.

[102], [103]). Integrating them with weather forecasts can give a more ac-

curate prediction. The proposed algorithm needs only an hourly estimate

of the solar energy generation, making the task even simpler. Also, for the

initial green energy allocation (using the LPEA algorithm), any arbitrary

load profile (like the one in [16] or [86]) can be used. Note that this en-

ergy allocation is just an initialization step and the green energy allocation

is later iteratively updated after the downlink power control operations as

discussed in Section 5.5.2.

The green energy allocated to the BS in a given hour, Gt, is used to power

the BS. If it not sufficient, then additional energy is drawn from the grid.

Thus the grid energy consumed by the network during hour t, denoted by

Et, is given by

Et= ∑
j∈B

max (0, Lt(j)−Gt(j)) . (5.11)

Claim 4.4.1. Grid energy is drawn by BS j in the t-th hour only if the load value

of that BS is greater than Mt(j)−Ct(j)
At(j) .

Proof. Considering BS j, the grid energy drawn by the BS can be written as

Et(j)=max (0, Lt(j)−Gt(j)) . (5.12)
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For energy to be drawn from the grid we need

Lt(j)− Gt(j) > 0. (5.13)

Note that for clarity, we omit the subscript t in the later part of the proof.

From (5.5) and (5.7), substituting the values of L and G we have

P0 + ∆P(j)ρj −M(j)
A(j)ρj + P0

A(j)ρj + C(j)
> 0

⇒ A(j)ρj + P0 −M(j)
A(j)ρj + P0

A(j)ρj + C(j)
> 0

⇒ (A(j)ρj + P0)

(
1− M(j)

A(j)ρj + C(j)

)
> 0. (5.14)

Note that as ρj, A(j) and P0 are all positive, we have (A(j)ρj + P0) > 0.

Thus for the above inequality to be true we require the following

1− M(j)
A(j)ρj + C(j)

> 0

⇒ A(j)ρj + C(j)−M(j) > 0

⇒ ρj >
M(j)− C(j)

A(j)
. (5.15)

This completes the proof of the lemma. �

5.4.2 Problem formulation

We consider the following problem of minimizing the grid energy drawn

and its trade-off with the network latency during the day which is formu-

lated as problem [P3] and given by
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[P3] minimize
Pt, ρ(t)

24

∑
t=1

(
Dt(Pt, ρ(t)) + ηEt(Pt, ρ(t))

)
subject to: ρ(t) ∈ F2, ∀t

where η is a parameter which controls the trade-off between grid energy

savings and the delay performance. Note that for η = 0, the problem re-

duces to minimizing the network latency, whereas for η → ∞ the problem

becomes minimizing the grid energy consumed without considering the

delay performance. We propose to solve the above problem by using BS

downlink transmission power control and user-association reconfiguration

which involves suitably tuning the BS transmit power levels (P) and man-

aging the BS loads (ρ). Pt and ρ(t) denote the BS power level vector and the

load vector at time t.

Remark: Note that for a given hour the value of the network latency indi-

cator (Dt) generally lies in the range {0, 20} whereas the grid energy con-

sumption (Et) for a given hour generally lies in the range {0kW, 20kW}.

Although the units of the two terms being added are different, where the

first term (Dt) is unit-less while the second term has kW as the unit, we

consider the numerical values of these terms while evaluating the opti-

mization problem [P3]. Additionally, note that in existing literature we do

find some studies like [112] which consider a similar problem formulation

where the weighted sum of the network latency indicator and the BS en-

ergy consumption (which have different units) is considered.
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5.5 Solution methodology

This section presents the proposed methodology for addressing the prob-

lem [P3]. We address the problem using BS downlink power control and

user association reconfiguration. The proposed framework for addressing

the problem is named Green energy and Delay aware - Renewable Asset

and resource Management (GD-RAM).

The problem [P3] is very challenging on account of the complexity aris-

ing from the coupling between BS power levels and the resulting user-

association. Thus to make our analysis tractable, we make the assumption

of time scale separation between the user association process and the pe-

riod over which the power level control decisions are made. The user as-

sociation process happens at a much faster time-scale than the time scale

at which the green energy availability and the network traffic load vary.

Studies have shown that the green energy availability and traffic pattern is

nearly constant during a given hour of the day [86]. Further, as the time

scale for determining the power levels of the BSs is of the order of that

of traffic pattern and green energy availability variation (i.e. hours), it is

much greater than that of the user-association process. Hence, with this

assumption we decompose our problem into two sub-problems, in which

the BS power control problem is solved at a slower time scale than the

user association problem. The BS power level decisions are made on an

hourly scale whereas the user-association scheme is periodically updated

on a faster time scale. These sub-problems are given as follows:

1) User association probelm: For BSs operating with power levels speci-

fied by a vector P, the user association problem aims at load balancing

(balancing the BS loads) so as to find the optimal BS load vector ρ that
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Algorithm 9 Sequence of operations: GD-RAM

1: for t = 1 : 24 do
2: while power control convergence do
3: while user association convergence do
4: Perform Green energy allocation for given hour using the

LPEA algorithm (Algorithm 8).
5: Solve user association problem for the given hour using the

allocated green energy and the predicted traffic.
6: end while
7: Solve power control problem for the underlying user-association

determined in the inner while loop.
8: end while
9: end for

minimizes the objective function. This problem is denoted as [P-UA] and

can be expressed as

[P-UA] minimize
ρ(t)∈F2

Dt(ρ
(t), Pt) + ηEt(ρ

(t), Pt). (5.16)

2) BS power control problem: The BSs try to adjust their power levels so

as to minimize the objective function and the problem is denoted by [P-PC]

which can be given as

[P-PC] minimize
Pt⊂P̃

{Qt(Pt) = Dt(Pt) + ηEt(Pt)} . (5.17)

where P̃ is the set of all possible power level vectors and Qt(Pt) is defined

as the solution to the user association problem in (5.16). Next, Section

5.5.1 describes the solution methodology for addressing the user associa-

tion problem whereas Section 5.5.2 describes the solution methodology for

addressing the BS power control problem. Algorithm 9 summarizes the

sequence of operations inovolved in solving problem [P3].

Remark: Note that the problem [P-UA] does not have summation over time

because user-association is a continuous process with the set of active users
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changing with time. However the active users associate with the BSs ac-

cording to the proposed user-association policy so as to minimize the ob-

jective function at a given time instant. Further the problem [P-PC] does

not have summation because it is solved individually for every hour of the

day, with user-association determined using the average traffic profile for

that given hour.

5.5.1 Optimal user association policy

In this section we propose the user association policy which achieves the

global optimal of value of the objective function (with BSs operating at a

given set of power levels).

Since uj(x) ∈ {0, 1}, the set F2 is not convex. Thus, to formulate the prob-

lem [P-UA] as a convex optimization problem, we relax the constraint to

0 ≤ uj(x) ≤ 1. Here uj can be interpreted as the probability that the user

at location x associates with BS j. The relaxed set of BS loads, F̃2, can be

given as

F̃2 =
{

ρ | ρj =
∫
R

γ(x)
cj(x)

uj(x)dx, 0 ≤ ρj ≤ ρth, ∀j ∈ B,

0 ≤ uj(x) ≤ 1,
|B|

∑
j=1

uj(x) = 1, ∀j ∈ B, ∀x ∈ R
}

.

Theorem 5.5.1 The feasible set F̃2 is convex.

Proof. The convexity of F̃2 can be proved following similar steps as in the

proof of Theorem 4.5.1 in the previous chapter. �

The problem [P-UA] with the relaxation condition is denoted as [P-UAR]

and can be given as
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[P-UAR] minimize
ρ∈F̃2

U(ρ) = D(ρ) + ηE(ρ)

Remark: We drop the subscript t throughout this section as user association

is an continuous process where the set of active users in the network keeps

changing, but at all times they associate with the BSs according to the

proposed user-association policy. Additionally, we drop P, as the time-

scale of user-association problem is faster than that of the power control

operations, and thus power levels of the BSs are assumed to be fixed during

the user-association operations. Further for notational simplicity we denote

the optimization function value in the problem [P-UAR] by U(ρ). Note that

although we formulate the optimization problem [P-UAR] using F̃2, the

user association algorithm which we propose in this chapter determines the

deterministic user association (belonging to F2). This is shown in Theorems

5.5.2 and 5.5.3.

The working of the proposed user association algorithm is described as fol-

lows. The proposed user association algorithm operates in an iterative way.

The BSs periodically measure their traffic loads and use it to determine an

operational variable (called coalition factors in this section) and advertise it

to the MTs. The mobile terminals choose which BS to associate with based

on these coalition factors in order to minimize the objective function. The

association between the MTs and the BSs is updated until convergence.

To ensure convergence of the scheme, we assume that the traffic arrival

and departure processes occur at a faster time scale as compared to that at

which the BSs broadcast their coalition factors. This ensures that the users

are able to make their association decisions for the broadcasted coalition

factors before the next broadcast of coalition factors by the BSs. We assume

BSs to be synchronized, thus broadcasting their coalition factors at the same
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time. The proposed user-association scheme can be easily implemented in

a distributed way where the BSs periodically broadcast their coalition factor

that can be embedded in the the beacon signals of the BSs [112] and users

can use them to choose which BSs to associate with as described above.

Next, we begin with describing the user side and the BS side algorithms

for carrying out the proposed user association mechanism.

1) User Side Algortihm: We define the time between two successive BS-

MT association updates as a time slot in our algorithm. At the start of k-th

time slot, the BSs send their coalition factors to the users using a broadcast

signal. The users at location x in turn choose the BSs they associate with

based on the coalition factors. In this section, superscript k is used to denote

the value of a particular variable at the beginning of the k-th time slot. The

coalition factor broadcast by BS j is given as

φ
(k)
j =

∂U(k)(ρ)

∂ρ
(k)
j

=
1

(1−ρ
(k)
j )2

+ηζ j A(j)
(

1−M(j)
C(j)− P0

(A(j)ρ(k)(j)+C(j))2

)
(5.18)

where ζ j is a variable which captures whether BS j is drawing power from

the grid. If the BS is drawing power from the grid then this variable is 1,

else it is set to zero. The MTs update their user association functions as

u(k)
j (x) =


1 if j = arg max

j∈B

cj(x)

φ
(k)
j

0 otherwise.
(5.19)

Note that the association functions (uj(x)) are indicator of which BS the

MTs at location x associate with as discussed in Section 5.3.1. The com-
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putational complexity of the user side algorithm for an individual user is

O(|B|).

2) BS side algorithm: At the end of the k-th time slot, the BSs measure their

load levels which we denote by Tj(ρ
(k)
j ), and is given as

Tj(ρ
(k)
j ) = min

(∫
R

γ(x)
cj(x)

uj(x)dx, ρth

)
. (5.20)

After measuring Tj(ρ
(k)
j ), the BS updates its traffic load which is used to

evaluate the next coalition factor to be broadcast for time slot k + 1 as [93]

ρ
(k+1)
j = θρ

(k)
j + (1− θ)Tj(ρ

(k)
j ) (5.21)

with 0 < θ < 1 being an averaging exponential factor.

Next, the proof of convergence and optimality and convergence of the pro-

posed user association algorithm is presented. We begin with proving the

objective function U to be convex in ρ ∈ F̃2 in Lemma 5.5.1. This leads to

Lemma 5.5.2 which indicates that there is a unique optimal user association

which minimizes the objective function.

Lemma 5.5.1 The objective function U(ρ) = D(ρ) + ηE(ρ) is convex in ρ when

ρ is defined on F̃2.

Proof. Please refer to Appendix E for the proof. �

Remark: Note that as we consider the steady state analysis of the system,

the proof above assumes that
∂ f (ρj)

∂ρg
= 0 , j 6= g ([91], [93], [95]) where

f (ρj) is purely a function of ρj and does not depend on ρg (g 6= j).

Lemma 5.5.2 A unique optimal user association ρ∗ ∈ F̃2 exists which minimizes

U(ρ) = D(ρ) + ηE(ρ).
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Proof. It has been shown in Lemma 5.5.1 that the objective function U(ρ) is

a convex function of ρ ∈ F̃2 . Thus there exists a unique optimal ρ = ρ∗

which minimizes U(ρ). �

Next we prove the convergence of the proposed user-association algorithm.

We begin with proving that Tj(ρ
(k)) gives a descent direction for U(ρ(k)) at

ρ(k) (shown in Lemma 5.5.3). Thus after some iterations the traffic load

converges which is proved in Theorem 5.5.2. Further, in Theorem 5.5.3 we

prove that the trafic load thus obtained minimizes the objective function

U(ρ).

Lemma 5.5.3 For ρ(k) 6= ρ∗, T(ρ(k)) gives a descent direction for U(ρ(k)) at ρ(k).

Proof. Please refer to Appendix F for the proof. �

Theorem 5.5.2 The traffic load ρ converges to the traffic load ρ∗ ∈ F2 .

Proof. The proof of this theorem is similar to the proof of Theorem 4.5.2

in Chapter 4 (with the only difference that here the objective function is U

instead of X). �

Theorem 5.5.3: If the set F2 is non-empty and the traffic load ρ converges to ρ∗,

the user association corresponding to ρ∗ minimizes U(ρ).

Proof. This can be easily proved following the proof of Theorem 4.5.3 in

Chapter 4. �

5.5.2 Base station transmission power control

We assume that the power control operations are decided by the central

server before a day begins and that guides the power levels of the BSs dur-
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ing the day. Further as the power level decisions are made on a time-scale

of an hour, the power control operations just require the average traffic pro-

file at a given location for each hour. We assume that the central server has

this average traffic profile information which is used to evaluate the under-

lying user association for facilitating the power control decisions. There are

a number of existing papers in literature which study, model and predict

cellular network traffic like [107], [109] and [108] . The information/ideas

from these models could be used in real time implementation of our work.

Additionally, such information could be also predicted by the operators

using the traffic pattern during past few weeks/months. Note that the

above-mentioned assumptions have been considered in several contempo-

rary works (e.g. [110], [111]). Next, we show an important observation

about the downlink power control.

Proposition 5.5.1: The objective function Qt(Pt) = Dt(Pt) + ηEt(Pt) is a non-

convex function of the BS power levels.

To verify this proposition using simulations, we consider a network of BSs

as shown in Figure 4.3. The simulation settings are as described in Section

5.6. We consider BSs operating at 3 p.m (t = 15) on January 1st with BSs 2,

4, 5 and 6 operating at transmit power level 20 W. Next, we vary the power

levels of BSs 1 and 3 and study the effect of the same on the objective

function. Figure 5.1 shows the objective function (for η = 2) and from the

figure we can easily conclude that the objective function is a non-convex

function of the BS power levels.

As shown above, the power level control problem to minimize the objective

function is a non-convex optimization problem. Finding the optimal so-

lution for such a problem requires a search over the entire state space and

has a very high computational complexity. The order of such computations
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Figure 5.1: Objective function (Qt) value variation with power control opera-
tions on BS 1 and BS 3 (η = 2, t =15).

increases exponentially with the number of BSs (B) and the hours under

consideration (denoted by T) and is given by O(Z|B|T) where Z denotes

the number of possible power levels the BSs can operate at. To make the

power control approach feasible, we resort to developing a greedy heuristic

for addressing the problem of power control and the proposed downlink

transmit power control algorithm is presented in Algorithm 10.

The proposed algorithm is carried out sequentially for each hour of the

day. The working of the downlink transmit power control algorithm can

be explained as follows. For every hour, all the BSs start with a transmit

power level of Pmax. Next we check for which BS the decrement of power

level brings the largest improvement in the objective function (Q). For this

purpose we introduce a vector Q′ which stores the value of objective func-
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Algorithm 10 Downlink Transmit Power Control Algorithm

1: Initialization
2: Set Pt(j) = Pmax for all j ∈ B

3: Compute Qt(Pt); Set δQ = 1
4: while δQ > 0 do
5: Qold= Qt(Pt) . Storing objective function value before power

control operation
6: for j = 1 : |B| do . Loop to check objective fn value with power

control decrement
7: Pcurr = Pt
8: Pcurr(j) = max(0, Pt(j)−ω) . Reducing BS power level
9: Q′(j) = Qt(Pcurr)

10: if max(ρ(t)) > ρth then . checking system constraint
satisfaction

11: con(j)= 0
12: else con(j)= 1
13: end if
14: end for
15: a. z : index of BS having con = 1 for which power control leads to

minimum objective function value (Q′)
16: b. Set Qnew = Q′(z)
17: δQ = Qold − Qnew
18: if δQ > 0 then
19: Pt(z) = max(0, Pt(z)−ω) ; . BS power level update
20: end if
21: end while

tion after decrement of the power level (i.e Q′(1) would hold the objective

function value when BS1 is powered down by ω). The BS with the largest

reduction in the objective function while satisfying the system constraints

(which is tracked in the algorithm by the variable con) is chosen for trans-

mit power reduction (line 15). This is done until no further improvement

in the objective function can be realized. Note that in a particular iteration,

z is the index of the BS for which power control leads to the minimum ob-

jective function value while satisfying the system constraints (line 15). The

value of the objective function corresponding to powering down this BS is

denoted as Qnew (line 16). The objective function value before the powering

down operation was stored in Qold and if it is higher than Qnew, it means
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that there is an improvement in the delay by the power control operation.

Thus the BS whose powering down leads to least objective function value is

powered down (line 19). The improvement in the delay component of the

objective function in the power control operations is due to its interference

management and load balancing effect. The reduction in the grid energy

consumption is due to the transmit power level of a BS low on green en-

ergy going down, and further, some users being offloaded (which reduces

ρ), thus decrementing the BS power consumption. The worst case compu-

tational complexity of this algorithm for T hours is O(T(Z− 1)|B|2). The

explanation for this worst case computational complexity for this algorithm

is same as that for the worst case computational complexity for the power

control algorithm described in Section 4.5.2. Note that the load levels of the

BSs change after every iteration of power control operations. Thus after this

algorithm is carried out for all the hours of the day, we have different traf-

fic load profiles for the different hours as compared to that used for initial

energy allocation during the day (using Algorithm 8). Consequently, we re-

peat the energy allocation followed by another application of the downlink

transmit power control algorithm for the day. After some iterations of do-

ing this (typically 3-4 iterations) the solution for the downlink power levels

converges. Note that the proposed power control approach does not guar-

antee an optimal solution but gives an local optimal solution. It follows the

intution of greedy descent approach to minimize the objective function.

At a given iteration, the BS for which the power level decrement leads to

maximum delay reduction is chosen to be powered down. Thus the power

levels for the next iteration gives a delay performance better than that at

the previous iteration. Additionally as the number of power levels a BS can

take are limited and lower-bounded by 0, the algorithm is guaranteed to

converge.
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5.6 Numerical results

For performance analysis of the proposed scheme, we consider a 3G BS de-

ployment (shown in Figure 4.3 of Chapter 4) deployed by network provider

Vodafone near Southwark, London, UK with 6 BSs providing coverage to

an area of 1 km2. We assume that the BSs use 12 V, 205 Ah flooded lead

acid batteries. The BSs are assumed to be equipped with PV panel with

DC rating 6 kW and 10 batteries. We consider that the BSs use 12 V, 205

Ah flooded lead acid batteries. The carrier frequency is 2.5 GHz and we

assume 10 MHz bandwidth with full frequency reuse. Log normal shad-

owing with standard deviation 8 dB with the correlation distance for shad-

owing taken as 50m has been considered [115]. We model the path loss,

PL, as [114]

PL(dB) = 40(1− 4× 10−3hBS)log10(R)− 18log10(hBS)+ 21log10( f ) + 80

where R denotes the distance between the MT and the BS, hBS is the base

station antenna height above rooftop and f is the carrier frequency in MHz.

We take hBS as 15 metres and the carrier frequency is 2.5 GHz, based on

the suggestions from the baseline test scenario mentioned in IEEE 802.16

evaluation methodology document [115]. Thus, the path loss is calculated

as PL(dB) = 130.19 + 37.6 log(R). We take the noise power to be -174 dB-

m/Hz [115]. A homogeneous Poisson point process is used to generate the

file transfer request. The rate of the Poisson process depends on the hour

of the day, with the smallest number of file transfer requests during early

morning hours (2-5 am) with an average of 20 requests per unit area (km2)

and the largest number of requests in the evening (5-7 pm) with an aver-

age of 200 requests per unit area. For weekends a lower traffic level with
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minimum and maximum number of file transfer requests (per unit area)

of 10 and 150 respectively, in the corresponding hours have been consid-

ered. For simplicity, we assume that each file transfer request requires 50

KB of data traffic to be served. To model temporal traffic dynamics, a new

spatial profile of file transfer requests is generated after every 2 minutes.

The entire area (of 1 km2) is divided into 1600 locations with each location

representing a 25 m x 25 m area. The location based traffic load density

is calculated based on the traffic model. For simulations we consider solar

energy data obtained from NREL [17] for the month of January of typical

meteorological year (TMY) data for London. Figure 5.2 shows the solar en-

ergy harvested by the PV panels during the different days of this month by

the BSs (with PV panels having DC rating 6 kW). Additionally we assume

that 1st January is Monday (i.e. weekday load profile). The values of P0,

Pmax and ∆ used for the results were 412.4 W, 40 W and 22.6 respectively

[101]. The granularity of power control, ω, was 5 W and ρth used for the

results was 0.85. The value of ν, the limiting state of charge was taken as

0.3, and the safety margin β was taken as 0.1. The initial battery levels

were randomly chosen for the different BSs for 1st January. We take the

averaging factor for the BS side algorithm θ to be 0.95, and with this value

the proposed user-association algorithm was observed to converge to the

optimal solution within 20 iterations.

As a benchmark for comparison, we consider a Best-Effort scheme where

all BSs operate with transmit power 20 W and the MTs associate with the BS

with the strongest signal strength at that location. BSs use green energy as

long as it is available and when it falls short energy is drawn from the grid.

We also consider the GALA [94] scheme with BSs operating at transmit

power 20 W, and the SWES [86] scheme which is a BS on-off scheme with
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Figure 5.2: Solar energy harvested during the day by the BSs (PV panel rating:
6 kW).

BSs operating at 40 W when they are switched on. The GALA and the

SWES scheme have been briefly described in Section 5.2.

5.6.1 Grid energy savings

Figure 5.3 shows the grid energy consumption for the different schemes for

the month of January. It can be seen that the Best-Effort scheme leads to

very high values of grid energy consumption. The GALA scheme shows

significant grid energy savings as compared to the Best-Effort scheme. Note

that the SWES scheme has lower grid energy consumption than the Best-

Effort and the GALA scheme. This is because in this scheme some of the

BSs switch off to reduce the overall network power consumption. The BSs

which are switched off save energy and the energy harvested during this

period is stored in the batteries to be used for future hours, thus reducing
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Figure 5.3: Grid power consumption for the different schemes.

the need to draw energy from the grid. The proposed GD-RAM scheme

allows a wide range of control over the grid energy consumption. Note

that with η = 0, the grid energy consumption is the highest which is com-

parable to the Best-Effort scheme. This is because for this case, the power

control and user association operations are done solely considering the

network delay. For η = 1, we observe that the grid energy consumed is

smaller as compared to the other benchmark schemes. Further, for η = 10

the energy drawn from the grid is even smaller. Note that the grid energy

savings in the SWES scheme and our scheme for η = 10 is at the expense

of an increase in the network latency (Figure 5.4) which is discussed in the

next subsection.
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Figure 5.4: Average latency performance for the different schemes.
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Figure 5.5: Peak network latency performance for the different schemes.
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Figure 5.6: Hourly network latency for the different schemes (25th January).

5.6.2 Delay performance

Figures 5.4 and 5.5 show the average network latency and the peak network

latency for the benchmark schemes and for the proposed scheme for three

different values of the trade-off factor η for the days under consideration.

Note that the proposed algorithm shows delay performance better than

the Best-Effort and the SWES scheme for all three η values. The network

latency performance of the GALA scheme is better than the Best-Effort and

the SWES scheme. Note that for most of the days, the average latency for

η = 1 is smaller than that for η = 0. This is because of the non-convexity

of the objective function with respect to power control operations. Note

that for η = 1, the BS power levels reduce to lower values as compared

to the case for η = 0, so as to bring grid energy savings. Our experiments

show that at lower BS power levels, there is better interference management

through the power control operations, thus also bringing down the network

latency. However, for η = 10, on certain days which have very bad weather,
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the proposed scheme trades the network latency performance for bringing

about grid energy savings. For example, the values of the average delay

and peak delay on 25th January (which is a bad weather day) for η =

10 are significantly higher than that for η = 0 and η = 1. However on

good weather days, like 12th January, the delay performance for η = 10 is

comparable to that for η = 0 and η = 1. Additionally, the results show that

the network latency is lower on weekends as compared to the weekdays.

This is because the traffic to be served on these days is lower than that

on weekdays. Note that the SWES scheme leads to a lower average delay

on weekends as compared to all other schemes. This is because the traffic

to be served during weekends is smaller and therefore most of the BSs

turn off, thus reducing the interference to the BSs that are turned on. This

contributes to reducing the system delay for the SWES scheme on these

days. However on weekdays, as the traffic to be served is higher, turning

off BSs has the effect of increasing the network latency as can be seen from

the results.

Figure 5.6 shows the hourly delay for 25th January. The network latency

is low for all the schemes during the early morning hours due to the low

traffic during those hours. However, during the daytime, the SWES scheme

and the proposed scheme for η = 10 lead to a higher delay than the Best-

Effort scheme. The GALA scheme and our proposed scheme (for η = 0 and

η = 1) have better delay performance than the other benchmarks. Figure

5.7 shows the transmit power levels of the BSs on 25th January for the

GDRAM scheme for three different η values. Note that the power levels

for η = 0 are relatively higher than for the cases when η = 1, 10. This is

because for η = 0 the power control operations are aimed solely on delay

reduction. As η = 1 also accounts even for the grid energy consumption,
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Figure 5.7: Transmit power levels for the GDRAM scheme for different η val-
ues (25th January).

the power levels for this case are lower as compared to those with η = 0.

For the case of η = 10, the power levels are still lower as compared to the

case of η = 1.

5.6.3 Grid energy consumption and delay trade-off

Figures 5.8 and 5.9 show the grid energy consumption and delay trade-off

for the proposed GD-RAM scheme for different trade-off parameter values

and for the benchmark schemes (averaged for the month of January). Fig-

ure 5.8 considers the trade-off between the grid energy consumption and

the average (over 31 days) of the hourly network latency whereas Figure
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Figure 5.8: Tradeoff between grid energy savings and average network latency.

5.9 considers the trade-off between the grid energy consumption and the

average (over 31 days) of the daily peak network latency. We can observe

that for the proposed scheme, as we start increasing η from 0, the average

grid energy consumption reduces sharply while there is no degradation in

the latency. The reason for this phenomenon is the non-convexity of the

objective function with respect to power control operations. Note that by

increasing the η value from 0, the BS power levels reduce to much lower

values so as to bring grid energy savings. However, the power level adjust-

ments are made while accounting for the network latency in addition to

accounting for the grid energy savings (as our objective function accounts

for both the network latency and the grid energy). Figure 5.7 shows trans-

mit power levels for three different η values (η = 0, 1 and 10). We can see

that for η = 1, the transmit power levels for all the BSs is lower as compared

to when η = 0. A reduction in the transmit power level of a BS implies that
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Figure 5.9: Tradeoff between grid energy savings and peak network latency.

the numerator in the SINR expression of the MTs served by it also reduces

(Equation (5.2)). However, because the transmit power levels of the other

BSs also reduce, the interference factor in the denominator of the SINR ex-

pression also reduces. Therefore, with the power levels decreasing with

increasing η (and correspondingly the grid energy consumption decreas-

ing) the SINR (and thus the rate offered by the BSs and in turn the network

latency) does not necessarily degrade. Rather, slightly better latency per-

formance is realized due to better interference management when BSs are

operating at lower transmit power levels. However, for large values of η

(say η = 10), as we can see from Figure 5.7, to save grid energy, the trans-

mit power levels of the BSs are very low and additionally some of the BSs

are switched off even during the peak traffic hours of the day (e.g. hour

16 (4 p.m.) to hour 20 (8 p.m.)). This increases the traffic that is handled
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by the BSs which are switched on and degrades the network latency per-

formance. Additionally, with the active BSs operating at such low transmit

power levels, the impact of the noise power in degrading the SINR (and

hence the rate and delay) is more prominent. These two factors contribute

the degradation of network latency at higher η values. Therefore, for higher

values of η (e.g. η = 10), when η is increased, the energy savings are less

significant whereas the increase in the delay for the marginal savings in the

grid energy is very high. For a η value of 1 we observe that there is around

60% grid energy savings as compared to the traditional Best-Effort scheme

while ensuring a better network latency performance. For real life imple-

mentation of the proposed GD-RAM algorithm by telecom operators, the

operator can estimate the grid energy consumed versus the average/peak

network latency for certain values of η (like those considered in Figure 5.8)

at the beginning of the day. Further, the operator can choose the η value

based on the maximum tolerable average/peak network latency, which in

turn decides how much grid energy would be consumed. For example, if

the operator desires to avoid the average network latency indicator exceed-

ing 4.5 (please see Figure 5.8), he/she can choose η to be 7, which in turn

gives the grid energy consumption as 10 kWh.

5.7 Conclusion

In this chapter we considered a network of grid connected solar powered

BSs. We proposed a methodology for reducing the grid energy consump-

tion while ensuring a low traffic latency. The methodology also gives the

operator the freedom to mange the trade-off between the grid energy sav-

ings and the traffic latency. The objective of reducing the grid energy con-
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sumption while maintaining the traffic latency was achieved by intelligent

temporal energy allocation, BS downlink transmit power control and user

association. A real BS deployment scenario and real solar energy traces

were used to test the performance of the proposed methodology and to

show its superiority over existing benchmark schemes. We considered 3

benchmark schemes: Best-Effort, GALA and SWES. From the numerical re-

sults we observed that while the Best-Effort scheme leads to a higher grid

energy consumption, SWES achieves significant grid energy savings, but at

the expense of an increase in the network latency. The GALA scheme does

better in terms of saving grid energy and the delay performance, however

the proposed GD-RAM scheme has been shown to have superior perfor-

mance than GALA. Compared to existing schemes, the proposed GD-RAM

scheme provides control over trading energy for delay, and for a good

choice of the trade-off factor (η), it can outperform all other benchmark

schemes in terms of minimizing the grid energy required while maintain-

ing lower traffic latency.
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Chapter 6

Conclusion and future work

6.1 Conclusion

Cellular base stations powered by renewable energy like solar power have

emerged as a promising solution to address the issues of reducing the car-

bon footprint of the telecom industry as well as that of the high operational

cost associated with powering such BSs. This thesis has studied and pro-

posed solutions for resource provisioning and dimensioning for such solar

powered BSs and operational strategies for managing the various resources

available to the BSs. We summarize the main contributions of the thesis as

follows.

• In Chapter 2, we proposed a framework for optimally dimension-

ing resources (PV panels and batteries) for solar powered BSs. For

such dimensioning in cellular networks, accurate characterization of

solar energy is crucial to ensure the service requirements. Thus we

proposed a multi-state Markov model to characterize the hourly har-

vested solar energy and the model was based on an approach that
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combined daily correlations in weather conditions affecting the solar

energy with fine-grained, hourly transitions in the solar energy lev-

els. The proposed model was then used for dimensioning resources

for solar powered BS. In the chapter, we also also presented insights

on factors that affect the resource dimensioning.

• In Chapter 3, we addressed one of the key issues in dimensioning

resources for solar powered BS. A fundamental step in dimensioning

of resources for a BS is to evaluate the outage probability and battery

lifetime associated with any given PV panel and battery size configu-

ration. Thus in this chapter, we presented an analytic model to eval-

uate the outage probability and battery lifetime of a solar powered

BS. The proposed model factored in the daily and hourly variations

in the harvested solar energy and the traffic dependent BS load, and

developed a discrete-time Markov process to model the battery level.

We presented the methodology of evaluating the steady state proba-

bility for the different states in the model which were further used to

evaluate the outage probability and battery lifetime associated with

a given configuration of PV panel and battery size. Next, we used

the proposed model to dimension resources for a solar powered BS.

To show the accuracy of the proposed model, we compare the results

obtained using the proposed model against that using real traces of

solar energy and BS power consumption data.

• In Chapter 4, we targeted a network of stand-alone solar powered

BSs. A major concern while operating such BSs is to avoid power out-

ages in the BSs and to strategize cooperation among BSs to improve

the network latency performance. Additionally, the solar energy har-

vested needs to be intelligently allocated over time to address the
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aforementioned requirements. With these issues in mind, we pro-

posed a strategy to intelligently allocate the harvested solar energy

over time. We also proposed green energy and delay aware downlink

power control and user association. Also, we showed the performance

gains of the proposed strategy over the state-of-the-art existing strate-

gies that are solely based on user association reconfiguration and BS

on/off strategies.

• In Chapter 5, we investigated operational strategies for grid con-

nected solar powered BSs. Solely powering BSs by solar energy may

not be viable for certain locations due to several economical and ge-

ographical reasons. In such a scenario, BSs can be provisioned with

certain PV panel and battery resources which can reduce the grid

energy consumption thus bringing cost savings in terms of the oper-

ational expenditure. Such grid energy savings can be increased by in-

telligently allocating the solar energy harvested over time. However,

while doing so care has to be taken in managing the network latency

performance which is imperative for customer satisfaction. There is

a trade-off between the network latency and the grid energy savings.

Thus, in this chapter, we presented a framework which jointly man-

ages the network and the grid energy savings. We used downlink

power control and optimal user association strategy to solve the prob-

lem and showed the trade-off between the QoS and the grid energy

savings for the proposed framework.
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6.2 Future work

In this section, we discuss possible extensions and directions for future

work which we consider worthy of further investigation by extending the

results presented in this thesis.

• For the problem of resource provisioning and dimensioning in Chap-

ter 2, we focussed on the case of an off-grid solar powered BS. It

would be interesting and important to investigate the problem of re-

source provisioning and dimensioning for BSs those have grid con-

nectivity. Another direction of investigation could also be to consider

resource provisioning and dimensioning for BSs which might be us-

ing other renewable resources like wind energy in addition to solar

energy.

• In Chapter 3, we proposed a model for estimating the energy out-

age probability and the battery lifetime associated with a particu-

lar PV-battery size configuration. However, the study was done for

stand-alone solar powered BSs. An interesting direction of further in-

vestigation would be to address these problems for BSs powered by

hybrid supplies (i.e. with other renewable resources like wind energy

or unreliable grid supplies in addition to solar energy).

• In Chapter 4, we proposed a methodology for intelligent energy allo-

cation, and green energy and delay aware power control and user as-

sociation. The proposed methodology requires the centralized server

to carry out the energy allocation and power control decisions. It

would be an interesting direction of further investigation to develop

a distributed approach where the BSs could cooperate with each other

and perform the power control operations. A similar extension could
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be done for such operations for the set-up considered in Chapter 5.

• In Chapter 4 and Chapter 5, we considered a network of macro BSs.

The extension of the proposed methodologies to heterogeneous net-

works (i.e network having micro, femto and pico BSs in addition to

macro BSs) could be investigated.

• In Chapter 4 and Chapter 5, we focussed only on downlink commu-

nication. Nevertheless, it would be interesting to develop operational

strategies which consider not only the downlink traffic, but the uplink

traffic as well.

• The proposed downlink power control is a non-convex optimization

problem and we proposed a greedy heuristic to arrive to a local opti-

mal solution. Although our proposed methodology has been shown

to perform better than existing methodologies in terms of manag-

ing the green energy and network delay, methodologies using power

control which perform better than the one proposed in this thesis

and achieve results closer to the globally optimal solution could be

explored.
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Appendix A

Proof of proposition 3.4.1

We prove this proposition by using proof through contradiction. The in-

tuition behind the proof is to show that no two different set of values of

{α, β, b} can lead to the same value of U. Let U1 be the state corresponding

to {α1, β1, b1}. Thus,

U1 = 2N(α1 − 1) + β1 + 2(b1 − 1). (A.1)

Now, let us assume that there exists an another set {α2, β2, b2} which also

leads to the same state number U1 where {α1, β1, b1} and {α2, β2, b2} sat-

isfy one or more of the following constraints: α1 6= α2, β1 6= β2, b1 6= b2

(i.e. the sets {α1, β1, b1} and {α2, β2, b2} are not identical). Next, we prove

that it is not possible for two such set of values to exist (proof by contradic-

tion). Based on the above assumption that the set {α2, β2, b2} leads to state

number U1, we have

U1 = 2N(α2 − 1) + β2 + 2(b2 − 1). (A.2)
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From, Equation (A.1) and Equation (A.2) we can conclude that

2N(α1 − 1) + β1 + 2(b1 − 1) = 2N(α2 − 1) + β2 + 2(b2 − 1)

⇒ N(α1 − α2) + (b1 − b2) =
(β2 − β1)

2
(A.3)

As the feasible set for β is β ∈ {1, 2}, the possible values which β2− β1 can

take are β2 − β1 ∈ {1,−1, 0}. Now let us consider the following two cases

(which are denoted as C1 and C2 respectively):

C1: β2 − β1 is either 1 or -1

For this case, β2−β1
2 in Equation (A.3) comes out to be a fractional value

(i.e. 0.5 or - 0.5). Note that this is a contradiction as the LHS (left hand

side) in Equation (A.3) cannot be a fractional value. This is because based

on their feasible sets, α and b are discrete values where α ∈ {1, 2, 3} and

b ∈ {1, 2, · · · , N}. Additionally N is also a discrete value.

C2: β2 − β1 is 0.

For this case, the load type for both the sets is the same (as β2 = β1). Next,

we prove that even the solar day type and battery level for this case need

to be the same to ensure the state for the two sets to be identical. With

β2 = β1, Equation (A.3) can be written as

N(α1 − α2) + (b1 − b2) = 0

⇒ (α1 − α2) =
(b2 − b1)

N
(A.4)

As the feasible set for b is b ∈ {1, 2, ...N}, the possible values which b2 −

b1 can take is b2 − b1 ∈ {−(N − 1),−(N − 2), · · · ,−2,−1, 0, 1, 2 · · · , N −

2, N − 1}. Now let us consider the following two cases (which are denoted

as C2.1 and C2.2 respectively)
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C2.1: b2− b1 is non-zero (i.e. b2− b1 ∈ {−(N− 1),−(N− 2), · · · ,−2,−1, 1, 2, · · · , N−

2, N − 1})

For this case, b2−b1
N is a fractional value. Note that this is a contradiction as

the LHS in Equation (A.4) cannot be a fractional value because based on

the feasible set of α, α1 − α2 must be a discrete value.

C2.2: b2 − b1 is zero.

For this case, we have b2 = b1 and thus the battery level for both the states is

the same. Substituting this in Equation (A.4) we get α1 = α2. Thus we have

β1 = β2, b1 = b2 and α1 = α2, thus contradicting our initial assumption

that the sets {α1, β1, b1} and {α2, β2, b2} are not identical. This completes

the proof of the proposition.
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Appendix B

Steady state probability analysis

of critical states: Case 4-8

Following is the steady state probability analysis for the critical states for

cases 4-8 mentioned in the Section 3.5.1.

• Case 4: k2 +ve, k′2 < -1

To find the steady state probability of the critical states for this case

we consider boundaries A-L in Figure B.1.

First, we consider balance equations for boundaries B and E around

states 2N + 2Nsh − 1 and 2N + 2Nsh which can be written as

π2Nsh+2N−1 = p32q21P3Q2 (B.1)

π2Nsh+2N = p32q22P3Q2. (B.2)

Next we consider balance equations for boundaries H and K around
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Figure B.1: State diagram for case 4.

states 2N + 2Nsl − 1 and 2N + 2Nsl which can be written as

π2Nsl+2N−1 = p32q11P3Q1 + p22q11(π2Nsh+2N−1 + π2Nsl+2N−1)

⇒ π2Nsl+2N−1 =
p32q11P3Q1+p22q11π2Nsh+2N−1

1− p22q11
(B.3)

π2Nsl+2N = p32q12P3Q1+(π2Nsl+2N−1 + π2Nsh+2N−1)p22q12. (B.4)

Using the steady state probabilities above, the steady state probability

of the other critical states can be obtained as

π2Nsh−1 = p31q21P3Q2

π2Nsh = p31q22P3Q2

π2Nsl−1 = p31q11P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p21q11

π2Nsl = p31q12P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p21q12

(B.5)
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Figure B.2: State diagram for case 5.

π2Nsh+4N−1 = p33q21P3Q2

π2Nsh+4N = p33q22P3Q2

π2Nsl+4N−1 = p33q11P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p23q11

π2Nsl+4N = p33q12P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p23q12.

• Case 5: k2 = 0 , k′2 < -1

To find the steady state probability of the critical states for this case

we consider the boundaries shown by dotted circles in Figure B.2.

The balance equations for boundaries B abnd H around states 2Nsh +

2N − 1 and 2Nsl + 2N − 1 can be written as

π2Nsh+2N−1 = p32q21P3Q2/(1− q11p22) (B.6)

π2Nsl+2N−1 = (p32q11P3Q1)/(1− p22q11) (B.7)

Using steady state probabilities above, we can find the steady state
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probability of the other critical states as

π2Nsh+2N = p32q22P3Q2 + p22q12π2Nsh+2N−1

π2Nsl+2N = p32q12P3Q1 + p22q12π2Nsl+2N−1

π2Nsh−1 = p31P3Q2q21 + p21q11π2Nsh+2N−1

π2Nsh = p31q22P3Q2 + p21q12π2Nsh+2N−1

π2Nsl−1 = p31q11P3Q1 + p21q11π2Nsl+2N−1

π2Nsl = p31q12P3Q1 + p21q12π2Nsl+2N−1

π2Nsh+4N−1 = p33q21P3Q2 + p23q11π2Nsh+2N−1

π2Nsh+4N = p33q22P3Q2 + p23q12π2Nsh+2N−1

π2Nsl+4N−1 = p33q11P3Q1 + p23q11π2Nsl+2N−1

π2Nsl+4N = p33q12P3Q1 + p23q12π2Nsl+2N−1

• Case 6: k2 = 0 , k′2 = -1

To find the steady state probability of the critical states for this case

we consider the boundaries shown by dotted circles in Figure B.3.

The balance equations for boundaries K and H around states 2N +

2Nsl and 2N + 2Nsl − 1 can be written as

π2Nsl+2N = p32q12P3Q1 + p22q12π2Nsl+2N−1 (B.8)

π2Nsl+2N−1 = p32q11P3Q1 + p22q11π2Nsl+2N−1

⇒ π2Nsl+2N−1 = (p32q11P3Q1)/(1− p22q11). (B.9)

From the previous two equations we can conclude that

π2Nsl+2N

π2Nsl+2N−1
=

q12

q11
. (B.10)
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Figure B.3: State diagram for case 6.

Using the above relation and steady state probability of state π2Nsl+2N−1,

the steady state probability of state π2Nsl+2N can be given as

π2Nsl+2N =
p32q12P3Q1

1− p22q11
(B.11)

Next we consider balance equations around boundaries B and E around

the states 2Nsh + 2N − 1 and 2Nsh + 2N which can be written as

π2Nsh+2N−1 = p32q21P3Q2 + p22q21π2Nsl+2N + p22q11π2Nsh+2N−1

⇒ π2Nsh+2N−1 =
p32q21P3Q2 + p22q21π2Nsl+2N

1− p22q11
(B.12)

π2Nsh+2N = p32q22P3Q2+p22q22π2Nsl+2N+p22q12π2Nsh+2N−1.(B.13)

Using the steady state probabilities above, the steady state probability
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Figure B.4: State diagram for case 7.

of the other critical states can be obtained as

π2Nsh−1 = p31P3Q2q21 + p21q11π2Nsh+2N−1 + p21q21π2Nsl+2N

π2Nsh = p31q22P3Q2 + p21q11π2Nsh+2N−1 + p21q22π2Nsl+2N

π2Nsl−1 = p31q11P3Q1 + p21q11π2Nsl+2N−1

π2Nsl = p31q12P3Q1 + p21q12π2Nsl+2N−1

π2Nsh+4N−1 = p33q21P3Q2 + p23q11π2Nsh+2N−1 + p23q21π2Nsl+2N

π2Nsh+4N = p33q22P3Q2 + p23q11π2Nsh+2N−1 + p23q22π2Nsl+2N

π2Nsl+4N−1 = p33q11P3Q1 + p23q11π2Nsl+2N−1

π2Nsl+4N = p33q12P3Q1 + p23q12π2Nsl+2N−1.

• Case 7: k2 = -1, k′2 < -1

To find the steady state probability of the critical states for this case

we consider the boundaries shown by dotted circles in Figure B.4.

The balance equations around boundaries K and H around states
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2N + 2Nsl and 2N + 2Nsl − 1 can be written as

π2Nsl+2N = p32q12P3Q1 (B.14)

π2Nsl+2N−1 = p32q11P3Q1 (B.15)

Using the steady state probabilities above, the steady state probability

of the other critical states can be obtained as

π2Nsh+2N−1 = p32q21P3Q2 + p22q11π2Nsl+2N−1

π2Nsh+2N = p32q22P3Q2 + p22q12π2Nsl+2N−1

π2Nsh−1 = p31P3Q2q21 + p21q11π2Nsh+2N−1

π2Nsh = p31q22P3Q2 + p21q12π2Nsh+2N−1

π2Nsl−1 = p31q11P3Q1

π2Nsl = p31q12P3Q1

π2Nsh+4N−1 = p33q21P3Q2 + p23q11π2Nsh+2N−1

π2Nsh+4N = p33q22P3Q2 + p23q12π2Nsh+2N−1

π2Nsl+4N−1 = p33q11P3Q1

π2Nsl+4N = p33q12P3Q1.

• Case 8 : k2 +ve, k′2 = -1

To find the steady state probability of the critical states for this case

we consider the boundaries shown by dotted circles in Figure B.5.

The balance equations for boundaries K and H around states 2N +
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Figure B.5: State diagram for case 8.

2Nsl and 2N + 2Nsl − 1 can be written as

π2Nsl+2N = p32q12P3Q1+(π2Nsh+2N−1 + π2Nsl+2N−1)p22q12 (B.16)

π2Nsl+2N−1= p32q11P3Q1+(π2Nsh+2N−1+π2Nsl+2N−1)p22q11. (B.17)

From the previous two equations we can conclude that

π2Nsl+2N

π2Nsl+2N−1
=

q12

q11
(B.18)

Next we consider balance equations for boundaries E and B around

states 2N + 2Nsh and 2N + 2Nsh − 1 which can be written as

π2Nsh+2N−1 = p32q21P3Q2 + p22q21π2Nsl+2N (B.19)

π2Nsh+2N = p32q22P3Q2 + p22q22π2Nsl+2N. (B.20)

From the previous two equations we can conclude that

π2Nsh+2N

π2Nsh+2N−1
=

q22

q21
. (B.21)
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Using Equations (B.16)-(B.21), we can solve for the steady state value

of π2Nsh+2N−1 which can be written as

π2Nsh+2N−1 =
−(p32q12P3Q1p22q21 + p32q21P3Q2 − p32P3Q2q21p22q11

(p2
22q12q21p22q11 − 1 + p22q11 + p2

22q12q21 − p3
22q12q21q11)

.

(B.22)

Note that the steady state probability of π2Nsh+2N−1 (evaluated in

Equation B.22) can be used to obtain the steady state probability of

states π2Nsh+2N, π2Nsl+2N−1 and π2Nsl+2N using the equations and re-

lationship in Equation (B.16)-(B.21). The steady state probability of

the remaining critical states can be obtained as

π2Nsh−1 = p31q21P3Q2 + p21q21π2Nsl+2N

π2Nsh = p31q22P3Q2 + p21q22π2Nsl+2N

π2Nsl−1 = p31q11P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p21q11

π2Nsl = p31q12P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p21q12

π2Nsh+4N−1 = p33q21P3Q2 + p23q21π2Nsl+2N

π2Nsh+4N = p33q22P3Q2 + p23q22π2Nsl+2N

π2Nsl+4N−1 = p33q11P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p23q11

π2Nsl+4N = p33q12P3Q1 + (π2Nsh+2N−1 + π2Nsl+2N−1)p23q12.
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Appendix C

Proof of Lemma 4.5.1

To prove this we show that O2X(ρ) > 0. This can be shown as follows. We

consider the value of our objective function as

X(ρ) = ∑
j∈B

(
D(ρj) + eΘ(ρj)

)
= ∑

j∈B

(
ρj

1− ρj
+ e

L(j)
E(j)

)

= ∑
j∈B

(
ρj

1− ρj
+ e

P0+∆P(j)ρj
E(j)

)
. (C.1)

The first and second order derivatives of the objective function with respect

to ρ are given by

OX(ρ) = ∑
j∈B

(
1

(1− ρj)2 +
∆P(j)
E(j)

e
P0+∆P(j)ρj

E(j)

)

= ∑
j∈B

(
1

(1− ρj)2 +
∆P(j)
E(j)

eΘ(ρj)

)
(C.2)

(C.3)
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O2X(ρ) = ∑
j∈B

(
2

(1− ρj)3 +

(
∆P(j)
E(j)

)2

e
P0+∆P(j)ρj

E(j)

)
.

(C.4)

Note that the term O2X(ρ) above is always positive as it is sum of terms

which are all non-negative and the term 2
(1−ρj)3 is positive for all the BSs.

This proves that the objective function X(ρ) is convex with respect to ρ.

Remark: The proof above is based on the fact that we are considering steady

state analysis of the system and thus we can assume the following [91], [93],

[95]:
∂ f (ρj)

∂ρg
= 0 , j 6= g (C.5)

where f (ρj) is purely a function of ρj and does not depend on ρg (g 6= j).
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Appendix D

Proof of Lemma 4.5.3

As the function X(ρ) is a convex function of ρ when ρ is defined on F̃1, this

lemma can be easily proved by showing < OX(ρ(k)), T(ρ(k)))− ρ(k) >≤ 0

(where < a, b > denotes the inner product of vectors a and b) [113]. Let

uj(x) and uT
j (x) be user association indicators which result in BS traffic ρ

(k)
j

and Tj(ρ
(k)
j ), respectively. Then the inner product is given by

< OX(ρ(k)), T(ρ(k))− ρ(k) >

= ∑
j∈B

 1

(1− ρ
(k)
j )2

+
∆P(j)
E(j)

eΘ(k)(ρj)

(Tj(ρ
(k))− ρ

(k)
j

)

= ∑
j∈B

 1

(1− ρ
(k)
j )2

+
∆P(j)
E(j)

eΘ(k)(ρj)

(∫
R

γ(x)(uT
j (x)− uj(x))

cj(x)
dx

)

=
∫
R
γ(x) ∑

j∈B

(
1

(1−ρ
(k)
j )2

+∆P(j)
E(j) eΘ(k)(ρj)

)
(uT

j (x)−uj(x))

cj(x)
dx.
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Note that

∑
j∈B

(
1

(1−ρ
(k)
j )2

+ ∆P(j)
E(j) eΘ(k)(ρj)

)
(uT

j (x)− uj(x))

cj(x)
≤ 0

holds because uT
j (x) from (4.10) and (4.11) maximizes the value of

cj(x) 1

(1−ρ
(k)
j )2

+
∆P(j)
E(j) eΘ(k)(ρj)

 .

Thus as a result we can claim that < OX(ρ(k)), T(ρ(k))− ρ(k) > ≤ 0 which

proves the lemma.
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Appendix E

Proof of Lemma 5.5.1

This can be proven by showing that O2Ui(ρ) > 0. The objective function

can written in terms of ρ as

U(ρ) = D(ρ) + ηE(ρ)

= ∑
j∈B

(
ρj

1− ρj
+ ηζ j (L(j)− G(j))

)

= ∑
j∈B

(
ρj

1− ρj

)
+ ∑

j∈B

(
ηζ j

(
A(j)ρj+P0−M(j)

A(j)ρj + P0

A(j)ρj+C(j)

))
.

(E.1)

We evaluate the first and second order derivatives of the objective function

with respect to ρ which are given as

OU(ρ) = ∑
j∈B

(
1

(1− ρj)2 + ηζ j A(j)

(
1−M(j)

C(j)− P0

(A(j)ρj + C(j))2

))
(E.2)

O2U(ρ) = ∑
j∈B

(
2

(1− ρj)3 + 2ηζ j A(j)2M(j)
C(j)− P0

(A(j)ρj + C(j))3

)
. (E.3)

Note that all the addition terms in the function above are non-negative, and
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2
(1−ρj)3 is always positive for all the BSs. Thus, the above term is always

positive which proves that the function is convex. Also for the case when

grid energy is not drawn, the component in the objective function for a

particular BS just consists of the first term which is always positive. Thus

even for the case when energy is not drawn from the grid, the objective

function is convex in ρ.
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Appendix F

Proof of Lemma 5.5.3

U(ρ) is a convex function of ρ ∈ F̃2 . Thus the fact that T(ρ(k)) gives

a descent direction to U(ρ(k)) at ρ(k) can be easily proved by showing <

OU(ρ(k), T(ρ(k)))− ρ(k) > ≤ 0 (where < a, b > denotes the inner product

of vectors a and b) [113]. Let uj(x) and uT
j (x) be user association indicators

which result in BS traffic ρ
(k)
j and Tj(ρ

(k)
j ), respectively. Then the inner

product can be written as

< OU(ρ(k)), T(ρ(k))−ρ(k) >

= ∑
j∈B

 1

(1−ρ
(k)
j )2

+ ηζ j A(j)

1−M(j)
C(j)− P0

(A(j)ρ(k)j +C(j))2

(Tj(ρ
(k)
j )− ρ

(k)
j

)

= ∑
j∈B

 1

(1−ρ
(k)
j )2

+ ηζ j A(j)

1−M(j)
C(j)− P0

(A(j)ρ(k)j +C(j))2


×
(∫

R

γ(x)(uT
j (x)− uj(x))

cj(x)
dx

)

=
∫
R
γ(x) ∑

j∈B

(( 1
(1−ρ

(k)
j )2

+ ηζ j A(j)

(
1−M(j) C(j)−P0

(A(j)ρ(k)j +C(j))2

))
cj(x)

(uT
j (x)− uj(x))

)
dx.
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Note that

∑
j∈B

(
1

(1−ρ
(k)
j )2

+ ηζ j A(j)

(
1−M(j) C(j)−P0

(A(j)ρ(k)j +C(j))2

))
(uT

j (x)− uj(x))

cj(x)
≤ 0

holds because uT
j evaluated based on (5.19) maximizes the value of

cj(x) 1

(1−ρ
(k)
j )2

+ηζ j A(j)

1−M(j) C(j)−P0

(A(j)ρ(k)j +C(j))2

 . Thus we have <OU(ρ(k)), T(ρ(k))−ρ(k)>≤

0.
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