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Summary

This thesis has two parts. In the first part, we study graph properties in the query complexity model.

In particular first we focus on the subgraph isomorphism and subgraph homomorphism problem.

The subgraph isomorphism problem is a generalization of the well-known graph isomorphism

problem, where one asks whether a given graph H is isomorphic to a subgraph of another graph G.

We give new lower bounds for the quantum query complexity of these problems.

The study of the subgraph isomorphism problem motivates the study of a new node-query

setting in the query complexity of graph properties. In chapter 6, we introduce the new node query

setting and study several graph properties in that setting. In particular, we focus on the effect of

removing symmetry from graphs and study how low the query complexity can fall if we take away

the symmetry assumption from the input graph. By taking away the symmetry we mean, first

we ask what is the minimum cost of finding a property in graphs when the graphs have a certain

amount of symmetry. Then we compare it with the cost of finding the property in graphs which

have no such restrictions.

The second part is about communication complexity and communication protocols. In this part

we try to understand the power of quantum proofs and quantum messages in the communication

complexity setting. We study whether having quantum resources gives us any advantage over

having classical resources. As we shall see in certain scenarios the answer is yes, whereas in some

other scenarios the answer is no. We also investigate how computation is affected if we restrict

ourself to a certain class of communication protocols – in particular we focus on the garden-hose

game, which is a memoryless and reversible communication model.



Structure of the Thesis

Below we summarize the results of all the chapters in this thesis.

• The first three chapters are introductory chapters and contain preliminaries needed for the

rest of the thesis. In Chapter 2, we review some relevant aspects of quantum computing

and quantum information which are essential for this thesis. In Section 2.2 of Chapter 2,

the concepts of basic linear algebra, Hilbert space, quantum states, and different quantum

operators are introduced. Section 2.2.6 reviews how to represent quantum states as density

operators. Finally in Section 2.3, we explore some quantum information measures and

properties which will be useful later on.

• In Chapter 3, we introduce query complexity and review different models of it. In Section 3.3,

we explore various query complexity measures which are used to give lower bounds to

different models of query complexity. In Section 3.4, we summarize the relationship between

different complexity measures and query complexity models.

• Chapter 4 introduces different versions of the communication complexity model. In Sec-

tion 4.3, we define Merlin-Arthur protocols, which are the communication complexity

analogue of the Turing machine class MA. For the purpose of this thesis we focus on

one-way Merlin Arthur protocols.

• In Chapter 5, we study the query complexity of the subgraph isomorphism problem and

subgraph homomorphism problem. One of the most intriguing problems in computer science

is the Graph Isomorphism Problem: determining whether two finite graphs are isomorphic.

The graph isomorphism problem is not known to be solvable in polynomial time. It is

also highly unlikely that it will be a NP-complete problem. Thus the problem may be in

the complexity class NP-intermediate. Very recently a quasi-polynomial time algorithm

for Graph Isomorphism problem has been proposed by Babai [Bab15]. The Subgraph

Isomorphism Problem, on the other hand, denoted by fH , is a generalization of the Graph

Isomorphism Problem where one asks whether a graph H is isomorphic to a subgraph of

another graph G. Unlike the graph isomorphism problem this problem is NP-Complete.

Several central computational problems for graphs such as containing a clique, containing

a Hamiltonian cycle, containing a perfect matching can be formulated as instances of the



Subgraph Isomorphism Problem by fixing the H appropriately. We investigate this problem

in the quantum setting and among other results we obtain a quantum query complexity lower

bound for fH , i.e., Q(fH) = Ω(n3/4). Previously a trivial lower bound of Ω(√n) was

known for this problem. In Section 5.3, we study the Subgraph Homomorphism Problem,

denoted by f[H], and show that Q(f[H]) = Ω(n). We also extend both our results to the

3-uniform hypergraphs.

• Chapter 6 is a continuation of the study of graph properties in query complexity. The query

complexity of graph properties is well-studied when the queries are on the edges. We

investigate the same when the queries are on the nodes. In this setting, given a fixed and

known graph the nodes of the graph can be either active or inactive. The set of all active

nodes induces a sub-graph and we can ask whether the induced sub-graph satisfies a certain

property. This model turns out to be combinatorially rich. Our main motivation to study

this model comes from the fact that it allows us to initiate a systematic study of breaking

symmetry in the context of query complexity of graph properties. It turns out that even

with a minimal symmetry assumption on G, namely that of vertex-transitivity, the query

complexity for any hereditary graph property in this setting is the worst possible, i.e., n.

We show that in the absence of any symmetry on G every hereditary property benefits at

least quadratically. Furthermore the query complexity cannot fall exponentially low for any

hereditary property. We study several other important graph properties in this setting.

• From Chapter 7 onwards we focus on communication complexity and communication

protocols. We investigate the relationship between quantum and classical messages. In

Section 7.2, we show how to replace a quantum message in a one-way communication

protocol by a deterministic message, establishing that for all partial Boolean functions

f ∶ {0,1}n × {0,1}m → {0,1} we have DA→B(f) ≤ O(QA→B,∗(f) ⋅m). We also give the

first example of a scenario in which for quantum verifiers quantum proofs lead to exponential

savings in computing a classical Boolean function compared to quantum verifiers using

classical proofs. To do this we exhibit a partial Boolean function f for which a QMA

protocol has cost O(logn), whereas every QCMA protocol for f requires Ω(√n/ logn)

communication (in the one-way setting).

• In Chapter 8 we study a restricted distributed communication model called the garden-

hose model. Chapter 8 contains new results about the garden-hose model. In this chapter
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we investigate how computation is affected if we restrict ourselves to a certain class of

communication protocols – in particular we focus on the recently proposed garden-hose

model [BFSS13], which is a memoryless and reversible communication model. We shall see

that this model has beautiful connections with several other computational models and can

be used to derive new lower bounds for other computational models. Investigation of this

model will also broaden our understanding of time and space complexity and their trade-offs.

• Chapter 9 concludes this thesis and discusses some related open problems.
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Chapter 1

Introduction

1.1 Motivation

One of the most important and central topics in theoretical computer science is to understand

whether some problems are harder than others in terms of the amount of computational resources

needed to solve these problems. For instance, we still don’t know if addition is inherently easier than

multiplication in the Turing machine model. And if yes then why? Currently addition has a linear

time algorithm, but the best algorithm for the integer multiplication, due to De et al. [DKSS13],

works in O(n logn log logn) time. Another intriguing problem is the graph isomorphism problem.

The problem is neither known to be solvable in polynomial time by a Turing machine nor it is

known to be NP-complete. Yet another example is the factorization problem: when using quantum

resources it has a polynomial time algorithm, but it is not known to have a polynomial time

algorithm otherwise. These problems, with the many other such problems, compel us to understand

what is it that makes these problems so different from each other. In general the broader goal of

complexity theory is to classify problems according to these inherent difficulties and resources (e.g.

time, space etc.) needed.

Very often the underlying model of such investigations is the Turing machine model. Turing

machines have a simplistic yet powerful design and the famous Church-Turing thesis hypothesizes

that any physically realizable computing device can be simulated by a universal Turing machine.

Thus Turing machines are at the centre of complexity theory research. A recurrent theme in the

literature is to investigate how computation is affected by the presence or absence of different

resources and to explore the connections between them. One such problem is the biggest open

problem in computer science, namely the P vs. NP problem, which asks whether non-determinism

1



gives any advantage for polynomial time Turing machines. Another important open problem is

the P vs. BPP problem, which asks whether or not randomization helps polynomial time Turing

machines.

Unfortunately it is very difficult to prove good lower bounds for the Turing machine model

and despite much effort, there is no significant lower bound that could be proven. Thus it is worth

looking into simpler models which are easier to analyse and in which it is easier to prove lower

bounds. But the models should be worthy of investigation i.e., studying these models should shed

some more light into why some problems are inherent harder than the others and should broaden

our understanding of the different computational resources, and computation in general.

The query complexity and the communication complexity model perfectly fit into the picture.

Here in these models we can actually prove some lower bounds and exhibit the difference between

different computational resources. Query complexity is the study of how many input bits of an

n-bit input x we need to read in order to find the output of a function f on input x, f(x). For

example, consider the AND-function, which is 1 iff all the input bits are 1. Now in evaluating the

AND-function, if we find a single input bit that is 0, we can immediately stop and output 0. We

don’t have to look at the remaining bits. But in the worst case, if the input consists of all 1s, we

would have to look at all of the input positions before we can be sure that the output is indeed 1.

Because if we only check n − 1 bits and produce the answer, the very last bit (that is not checked)

can potentially flip the answer. Thus AND-function has a deterministic query complexity of n.

In communication complexity model there are two players Alice and Bob who get two n-bit

inputs x and y respectively. Their goal is to compute a predefined function f(x, y). As the players

only know their part of the whole input (x, y), in order to compute the function f(x, y) they will

have to communicate1. We are interested in the minimum amount of communication needed to

accomplish the task for all possible inputs. For example, consider a situation where Alice and Bob

both want to fix a meeting with each other. They both have an n-bit binary string where a 0 entry

at the i-th location of the string denotes that he/she is not free at that particular i-th hour. So their

goal is to find a position j such that both have 1 at the j-th place of their inputs. The question is

how many bits do they need to communicate before they can find a common slot for meeting. In

the literature the decision version of this problem is called the set disjointness problem. It asks

whether there is a common slot for meeting or not2. It can be proved that in worst case they need

1The output of the function f typically depends on both inputs x and y.
2Note that the complexity of the decision version and functional version of this problem are linearly related.
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to send n + 1 bits to find the answer. In Chapter 3 and Chapter 4 we review these models in detail.

1.2 Contributions

This thesis has two parts. In the first part, we study graph properties in the query complexity model.

In particular, first we focus on the subgraph isomorphism and subgraph homomorphism problem.

The subgraph isomorphism problem is a generalization of the well-known graph isomorphism

problem, where one asks whether a given graph H is isomorphic to a subgraph of another graph

G. Several central computational problems for graphs such as containing a Hamiltonian cycle,

containing a clique, containing a perfect matching can be formulated as instances of the Subgraph

Isomorphism Problem by fixing H appropriately. The subgraph isomorphism problem is a NP-

Hard problem. Formally it is defined as follows: Let H be a (non-empty) graph on n vertices

(possibly with isolated vertices) and let G be an unknown input graph (on n vertices) given by

query access to its edges, i.e., queries of the form “Is {i, j} an edge in G?”. We say H ≤ G if G

contains H as a (not necessarily induced) subgraph. Let fH ∶ {0,1}(
n
2
) → {0,1} be defined as:

fH(G) = 1 iff H ≤ G.

We give new lower bound for the quantum query complexity of this problem. Subgraph

Isomorphism problem falls into a very important general class of properties called the monotone

graph properties. A property P is said to be monotone increasing if for every input x ≤ y we have

P(x) ≤ P(y), where x ≤ y denotes xi ≤ yi for all i. Monotone decreasing property is defined

in a similar way. A graph property P is defined to be a property preserved under all possible

isomorphisms of a graphG. In other words, a graph property P is a property of graphs that depends

only on the abstract structure of the graphs, and not on the actual representation, such as particular

labelling of the graphs. For example, containing a triangle (as a subgraph) is a property of a graph

G.

Understanding the query complexity of monotone graph properties has a long history. In the

deterministic setting the Aanderaa-Rosenberg-Karp Conjecture asserts that one must query all

the (n
2
) edges in the worst-case. The randomized complexity of monotone graph properties is

conjectured to be Ω(n2). Yao [Yao87] obtained the first super-linear lower bound in the randomized

setting using graph packing arguments. Subsequently his bound was improved by King [Kin88]

and later by Hajnal [Haj91]. The current best known bound is Ω(n4/3√logn) due to Chakrabarti

and Khot [CK01]. Moreover, O’Donnell, Saks, Schramm, and Servedio [OSSS05] also obtained
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an Ω(n4/3) bound via a more general approach for monotone transitive functions. Friedgut, Kahn,

and Wigderson [FKW02a] obtained an Ω(n/p) bound where the p is the critical probability of the

property. In the quantum setting, Buhrman, Cleve, de Wolf and Zalka [BCdWZ99] were the first

to study quantum complexity of monotone graph properties. Santha and Yao [SY] obtained an

Ω(n2/3) bound for general monotone properties. Their proof follows along the lines of Hajnal’s

proof.

Dietmar [Die92] studied the subgraph isomorphism problem and obtained an Ω(n3/2) bound

for the randomized query complexity of Subgraph Isomorphism. This is currently the best known

bound for the Subgraph Isomorphism Problem.

Until very recently, it was believed that for all total functions the quantum query complexity is

at least the square root of the randomized one [ABDK15]. In this work we address the quantum

query complexity of the Subgraph Isomorphism Problem and obtain the square root of the current

best randomized bound.

In particular we show that for any H ,

Q(fH) = Ω (√αH ⋅ n) ,

where αH denotes the size of a maximum independent set of H on n vertices. For example when

H is a single edge, αH is n − 1 and thus Q(fH) = Ω(n).

Using Q(fH) = Ω (√αH ⋅ n) we derive a lower bound of Q(fH) = Ω(n3/4) for any H . We

also get lower bounds in terms of the average degree of the vertices of H , the chromatic number

of H , and the critical probability [FKW02a] of H: Q(fH) = Ω( n√
davg(H)

) , Q(fH) = Ω ( n√
χH

) ,

Q(fH) = Ω (
√

n
p ) .

We then study the 3-uniform hypergraph version of this problem and obtain an Ω(n4/5)

lower bound which improves the Ω(n3/4) bound obtained (for the 3-uniform hypergraph) via the

minimum certificate size.

The main difference between the previous work and this one is that all the previous work,

including that of Santha and Yao [SY], obtained the lower bounds based on an embedding of a

tribes function [BBC+01] on a large number of variables in monotone graph properties. Recall

that the tribes function with parameters k and `, is a function T (k, `) on k ⋅ ` variables defined

as: ⋁i∈[k]⋀j∈[`] xij . This method yields a lower bound of Ω(k ⋅ `) for the randomized query

complexity and Ω(
√
k ⋅ `) for the quantum. We deviate from this line by embedding a threshold
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function T tn instead of a tribes. Recall that T tn(z1, . . . , zn) is a function on n variables that evaluates

to 1 if and only if at least t of the zi’s are 1. Since the randomized complexity of T tn is Θ(n), this

does not give us any advantage for obtaining super-linear randomized lower bounds. However, it

does yield an advantage for the quantum lower bounds as the quantum query complexity of T tn is

Θ(
√
t(n − t)) [BCdWZ99, Pat92]. Note that as this technique works only in the quantum setting,

the randomized versions of our bounds remain intriguingly open.

We also study a closely related Subgraph Homomorphism Problem. A homomorphism from

a graph H into another graph G is a function h ∶ V (H) → V (G) such that: if (u, v) ∈ E(H)

then (h(u), h(v)) ∈ E(G). We define the homomorphism function f[H] as follows: f[H](G) = 1

if and only if H admits a homomorphism into the graph G. Note that unlike the isomorphism,

the homomorphism need not be an injective function from V (H) to V (G). We show that

for any H , Q(f[H]) = Ω(n). Also, for any 3-uniform hypergraph H on n vertices we show

Q(f[H]) = Ω(n3/2). All our lower bounds of the Subgraph Isomorphism Problem or Subgraph

Homomorphism Problem hold for the approximate degree d̃eg(f). Note that approximate degree

is a lower bound on the quantum query complexity [BBC+01, Amb03]. Please refer to Chapter 5

for more details and the proofs.

Node Query Setting

In the Subgraph Isomorphism Problem (as discussed before) a graph H is known, and access to

another graph G is given only via queries to the edges of G. The goal is to figure out whether G

contains H as its subgraph. Note that it does not have to be induced. Now it is reasonable to ask

what happens if we change the type of query and instead of asking whether an edge ei, i ∈ (n
2
) is

present in G we ask whether a vertex vj , j ∈ [n] is present in G. Thus any vertex can either be

active or inactive. Naturally the set of all active vertices in G forms an induced subgraph. We can

then ask whether the induced subgraph contains the graph H as a subgraph or we can ask whether

it has some property P . Formally it is defined as follows: A graph G = (V,E) and a property P are

fixed. We have access to S ⊆ V via queries of the form “Does i belong to S?”. We are interested in

the minimum number of queries needed in the worst case in order to determine whether G[S] –

the subgraph of G induced on S – satisfies property P , which we denote by cost(P,G). Similar

to the edge query setting this new setting is combinatorially very rich and it opens a new platform

for asking interesting questions.

The node-query setting is also a natural abstraction of scenarios where one is interested in the
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properties of subgraph induced by active nodes in a network. For example, consider a physical

network with several nodes and links between the nodes. The underlying network could be the

network of routers which are physically connected by wires. Some of the routers may go on and

off over time. At any given time, we want to know whether a message can be sent between two

specified nodes via the active routers. This problem can be formulated in our setting as whether the

subgraph induced by the active routers has a path between two specified nodes s and t or not. In

Chapter 6 we discuss similar other examples in more detail.

We call G the base graph for a property P . We say that a vertex i of G is relevant for the

property P if there exists some S ⊆ V containing i such that exactly one of G[S] and G[S − {i}]

satisfies the property P . In a sense, the vertex i is influential for S. We say that the graph G is

relevant for a property P if all its vertices are relevant for P . Note that we are interested in the

relevance of graphs because if there exists a vertex i of a graph G that is not relevant for a property

P then in order to check if G satisfies the property P , we don’t ever have to query the vertex i. The

presence or absence of the vertex i doesn’t influence the outcome.

The minimum possible cost of a property P , denoted by min-costn(P), is defined as follows:

min-costn(P) = minG{cost(P,G) ∣ G is relevant for P & ∣V (G)∣ = n}. Notice that in this

definition we take the minimum over all possible graphs that are relevant. We can define the notion

of G-min-cost(P) where we restrict ourself to only a certain class of graphs G. For example, we

can consider the set of planar graphs or graphs with a certain amount of symmetry and ask what is

the minimum cost of finding a property P , G-min-cost(P).

Formally, G-min-costn(P) = minG∈G{cost(P,G) ∣ G is relevant for P & ∣V (G)∣ = n}.

Similar to the edge query model, there are several lines of investigation that can be done in the

node query setting. We choose to focus on the effect of removing symmetry from graphs and study

how low can the query complexity fall if we take away the symmetry assumption from the input

graph. By taking away the symmetry we mean, first we ask what is the G-minn-cost(P) when G

is a set of graphs with a certain amount of symmetry. Then we compare it with the min -costn(P)

where there is no restriction on the G.

Recall that, a graphG = (V,E) is called symmetric if given any two edges (u1, v1) and (u2, v2)

of the graph G there is an automorphism A from the vertex set V to V such that A(u1) = u2 and

A(v1) = v2. There are many different graph families defined by their automorphisms. The class

of complete graphs has the highest amount of symmetry and the class of transitive graphs have

the weakest form of symmetry [Sym]. Recall that a graph is transitive (or vertex-transitive) if its
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automorphism group acts transitively upon its vertices.

Understanding the effect of symmetry on computation is a very well-studied theme in the

literature. In the context of query complexity, there has been a substantial amount of effort invested

in understanding the role of symmetry on computation. A recurrent theme has been to exploit the

symmetry and/or some other structure [KS13] of the underlying functions to prove good lower

bounds on their query complexity.

One such line of research concerns with the famous Andera-Rosenberge-Karp Conjecture [KSS84]

which asserts that every non-trivial monotone graph property of n vertex graphs (in the edge-query

model) must be evasive, i.e., its query complexity is (n
2
). While a weaker bound of Ω(n2) is

known, the conjecture remains widely open to this date. Even the randomized query complexity

of monotone graph properties is also conjectured to be Ω(n2) [FKW02b] and we are far from

proving it. Thus it make sense to try to prove the conjectures for a certain class of graphs, for

example graphs with symmetry. Sun,Yao, and Zhang [SYZ04a] studied query complexity of graph

properties and several transitive functions in the edge query setting. Their motivation was to

investigate how low can the query complexity fall if we drop the assumption of monotonicity or

lower the amount of symmetry. In this work, we follow their footsteps and ask what happen if we

totally drop the symmetry assumption. In the past, Lovász has also conjectured [Iva] that checking

independence of S exactly in the node query setting is evasive.

Now it turns out that in the node query setting, when G has the highest amount of symmetry,

i.e., when G is the class of complete graphs, then for every hereditary property P , G-min-cost(P)

is nearly the worst possible, i.e., Ω(n). Recall that a hereditary property is a property of graphs,

which is closed under deletion of vertices as well as edges. For instance acyclicity, bipartiteness,

planarity, and triangle-freeness are hereditary properties whereas connectedness and containing a

perfect matching are not. Every hereditary property can be described by a (not necessarily finite)

collection of its forbidden subgraphs. In our setting, every hereditary property is a monotone

Boolean function. It also turns out that one does not require the whole symmetry of the complete

graph to guarantee the Ω(n) bound. Even for weaker symmetry assumptions on graphs i.e., when

G is the class of transitive graphs, for any hereditary property P the G-min-cost(P) would remain

the highest possible, i.e., n. So for the complexity to fall down substantially we let go of the

transitivity of G and take G to be the class of all graphs: G-min-cost(P) =min-cost(P).

So then the question is how low can min-cost(P) fall in the absence of any symmetry? This

is the main question addressed by our work. We show that for any hereditary property P , the
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min-cost(P) falls down at least quadratically, i.e., to O(√n). In particular we show that for any

hereditary graph property P: min-cost(P) = O(n1/(dP+1)), where dP is the minimum degree of

the minimum forbidden subgraph of the property P .

The main question left open by our work is: does there exist a hereditary property P for which

min-cost(P) is exponentially low? In other words:

Question 1.2.1. Is it true that for every hereditary property P there exists an integer kP > 0 such

that

min-cost(P) = Ω(n1/kP )?

As a partial answer to this question we prove that, when H is a graph on k vertices and PH

denotes the property of containingH as a subgraph, then,min-cost(PH) = Ω(n1/k). Furthermore,

a non-constant lower bound holds for any hereditary property i.e., for any hereditary graph property

P , min-cost(P) = Ω ( logn
log logn) .

We study several other specific properties like Triangle-freeness, Independence etc. and proved

tight bounds. We also consider restricted graph classes and prove several new results. A summary

of these results can be found in Table 6.1. Please refer to Chapter 6 for the proofs and many more

related results, which we have omitted in this section.

Communication Protocols

The second part of the thesis is about communication complexity and communication protocols. In

this part we investigate the power of quantum proofs and quantum messages in the communication

complexity settings. We also study a communication model called the Garden-hose model and

explore its relation to other complexity models.

The Power of Quantum Messages

In Chapter 7 we investigate the relationship between quantum and classical one-way protocols. In

this model two players Alice and Bob receive their corresponding inputs x and y respectively. Alice

sends a message to Bob in order to compute the value of a function f ∶ {0,1}n × {0,1}m → {0,1}.

When we add quantum resources in, Alice communicates a quantum state and Bob performs a

measurement, both depending on their respective inputs. They can have shared entanglement which
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helps in their computation. Though very simple, this scenario is not at all fully understood. In fact

the largest complexity gap between quantum and classical protocols of this kind for computing a

total Boolean function is a factor of 2, as shown by Winter [Win04]. But on the other hand, all we

know is that there could be examples where the gap is exponential. And indeed it is for certain

partial functions (i.e., functions that are only defined on a subset of {0,1}n × {0,1}m) [GKK+08].

However, an interesting bound on such speed-ups can be given when we investigate the

effect of replacing quantum messages by classical messages. Suppose a total Boolean function

f has a quantum one-way protocol with communication c, i.e., Alice sends c qubits to Bob, who

can decide f with error 1/3 by measuring Alice’s message. We allow Alice and Bob to share

an arbitrary input-independent entangled state. Extending Nayak’s random access code bound

[Nay99] Klauck [Kla00] showed that QA→B,∗(f) ≥ Ω(V C(f)), where QA→B,∗(f) denotes the

entanglement-assisted quantum one-way complexity of f , and V C(f) the Vapnik-Chervonenkis

dimension of the communication matrix of f . Together with Sauer’s Lemma [Sau72] this implies

that DA→B(f) ≤ O(QA→B,∗(f) ⋅m), where m is the length of Bob’s input. A result such as this is

much more interesting in the case of partial functions. Aaronson showed a weaker result for partial

functions in the following two ways: for all partial Boolean functions f ∶ {0,1}n×{0,1}m → {0,1},

DA→B(f) ≤ O(QA→B(f) ⋅ log(QA→B(f)) ⋅m) [Aar05] and RA→B(f) ≤ O(QA→B(f) ⋅m)

[Aar07].

By considering a more systematic progress measure than in Aaronson’s proof, namely the

relative entropy between the current guess and the target state and by using a different update

rule for Bob’s guess states we get the following improvement: DA→B(f) ≤ O(QA→B,∗(f) ⋅m)

for all partial Boolean functions f ∶ {0,1}n × {0,1}m → {0,1}. We also allow the quantum

communication complexity on the right hand side to feature prior entanglement between the

players Alice and Bob. Although an improvement by a mere logarithmic factor might seem

unimportant, we note that having tight bounds for such basic questions is generally desirable, e.g.,

Nayak’s bound for random access codes [Nay99] is an improvement by a logarithmic factor over

previous work.

The Power of Quantum Proofs

We also study the power of quantum proofs. This is philosophically interesting because interactive

proof systems are a fundamental concept in computer science. Quantum proofs have a number of

disadvantages: reading them may destroy them, errors may occur during verification, verification
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needs some sort of quantum machine, and it may be much harder to provide them than classical

proofs. In the fully interactive setting Jain et al. [JJUW11] showed that the set of languages

recognizable in polynomial time with the help of a quantum prover is equal to the set where

the prover and verifier are classical (i.e., IP=QIP [JJUW11]). Thus in fully interactive setting

quantum proofs do not give any advantages. So a natural question is what happens when we take

away the interaction. Can quantum proofs be verified using fewer resources than classical proofs?

Until now such a hope has not been verified formally. Aharonov and Naveh [AN02] first asked

whether quantum proofs can ever be easier to verify than classical proofs (both times by quantum

machines) in the absence of interaction, i.e., whether the class QMA is larger than its analogue

with classical proofs but quantum verifiers, known as QCMA. An indication that quantum proofs

may be powerful was given by Watrous [Wat00], who described an efficient QMA black-box

algorithm for deciding nonmembership in a subgroup. Aaronson and Kuperberg [AK07], however,

later showed how to solve the same problem efficiently using a classical witness, giving a QCMA

black-box algorithm for the problem. They also introduced a quantum problem, for which they

show that QMA black-box algorithms are more efficient than QCMA black-box algorithms. Using

a quantum problem to show hardness for algorithms using classical proofs seems unfair though,

and a similar separation has remained open for Boolean problems.

We compare the two modes of noninteractive proofs and quantum verification for a Boolean

function in the setting of one-way communication complexity and show that quantum proofs

are exponentially more powerful than the classical proofs in noninteractive setting. We do this

by exhibiting a partial Boolean function f , such that the following holds: f can be computed

in a protocol where a prover who knows x, y can provide a quantum proof to Alice, and Alice

sends quantum message to Bob, such that the total message length (proof plus the message from

Alice to Bob) is O(logn). And in the setting where a prover Merlin (knowing all inputs) sends

a classical proof to Alice, who sends a quantum message to Bob, the total communication is

Ω(√n/ logn). Thus there is a partial Boolean function f such that QMAA→B(f) = O(logn),

whileQCMAA→B,∗(f) = Ω(√n/ logn). Note that this is the first known exponential gap between

computing a Boolean function in a QCMA and a QMA-mode in any model of computation.

Garden-Hose Protocols

We also investigate how computation is affected if we restrict ourself to a certain class of commu-

nication protocols – in particular we focus on the garden-hose game, which is a memoryless and
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reversible communication model. Chapter 8 contains all the detailed results.

Recently, Buhrman et al. [BFSS13] proposed a new measure of complexity for finite Boolean

functions, called the garden-hose complexity. A garden-hose protocol works as follows: Two

player Alice and Bob receive their respective inputs x and y. There are s shared pipes. Alice takes

some pieces of hose and connects pairs of the open ends of the s pipes. She may keep some of the

ends open. Bob acts in the same way for his end of the pipes. The connections Alice and Bob place

depend on their local inputs x, y, and we stress that every end of a pipe is only connected to at most

one other end of a pipe (meaning no Y-shaped pieces of hose may be used to split or combine flows

of water). Finally, Alice connects a water tap to one of those open ends on her side and starts the

water. Based on the connections of Alice and Bob, water flows back and forth through the pipes

and finally ends up spilling on one side. If the water spills on Alice’s side we define the output to

be 0. Otherwise, the water spills on Bob’s side and the output value is 1. It is easy to see that due

to the way the connections are made the water must eventually spill on one of the two sides, since

cycles are not possible. We say that a garden-hose protocol computes f(x, y) if for all x, y water

spills on Alice’s side iff f(x, y) = 0. The garden-hose complexity of f , denoted by GH(f), is the

smallest s such that a garden-hose protocol of size s exists that computes f .

Garden-hose complexity can be viewed as a natural measure of space, in a situation where two

players with private inputs compute a Boolean function cooperatively. Space-bounded commu-

nication complexity has been investigated before [BTY94, Kla04, KŠdW07], and recently Brody

et al. [BCP+13] have studied a related model of space bounded communication complexity for

Boolean functions (see also [PSS14]). In this context the garden-hose model can be viewed as

a memoryless model of communication that is also reversible. A public coin randomized and a

quantum version of the garden-hose model has also be defined [BFSS13].

We prove a number of results in this model. Buhrman et al. [BFSS13] proved that deterministic

one-way communication complexity can be used to show lower bounds of up to Ω(n/ logn) for

many functions. We improve on this by showing that non-deterministic communication complexity

gives lower bounds on the garden-hose complexity of any function f . As an application, consider

the function IP (x, y) = ∑ni=1(xi ⋅ yi)mod 2. It is well known that N(IP ) ≥ n+ 1 [KN97], hence

we get that GH(IP ) ≥ n. The same bound holds for Disjointness.

Buhrman et al. [BFSS13] also showed that any one way communication complexity protocol

with complexityD1(f) can be converted to a garden-hose protocol with 2D1(f)+1 pipes. One-way

communication complexity can be much larger than two-way communication [PS84]. It turns
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out that any 2-way deterministic communication protocol can also be converted to a garden-hose

protocol so that the complexity GH(f) is upper bounded by the size of the protocol tree of the

communication protocol. Thus we show that for any function f , the garden-hose complexity

GH(f) is upper bounded by the number of edges in a protocol tree for f .

We then turn to compare the garden-hose model to another non-uniform notion of space

complexity, namely branching programs. We show how to convert any permutation branch-

ing program to a garden-hose protocol with only a constant factor loss in size. In fact the

inputs to the branching program we simulate can be functions (with small garden-hose complex-

ity) instead of just variables. This allows us to use composition. In particular we show that

GH(g(f1, f2, ..., fk)) = O(s ⋅max(Ci))+O(1), where the permutation branching program size of

g, PBP (g) = s and GH(fi) = Ci and fi ∶ {0,1}n × {0,1}n → {0,1}. The fi do not necessarily

have the same inputs x, y.

The most important application of this simulation is that it allows us to find a garden-hose

protocol for the distributed Majority function, DMAJ(x, y) = 1 iff ∑ni=1(xi ⋅ yi) ≥ n
2 where

x, y ∈ {0,1}n, that has size O(n ⋅ log3 n), disproving the conjecture in [BFSS13] that this function

has complexity Ω(n2).

We also relate GH(f) to the formula size of f . To do so we examine composition of garden-

hose protocols by popular gate functions. In particular we show that for (f1, f2, .., fk), where each

function fi has garden-hose complexity GH(fi): i) GH(⋁ fi) = O(∑GH(fi)), ii) GH(⋀ fi) =

O(∑GH(fi)), iii) GH(⊕fi) = O(∑GH(fi)), iv) GH(MAJ(fi)) = O(∑GH(fi) ⋅ log3 k).

Then by using the fact that formulae over the set of all fan-in 2 function can be efficiently

simulated by branching programs (by Giel [Gie01]) we show the following:

Let F be a formula for a Boolean function g on k inputs made of gates {∧,∨,⊕} of arbi-

trary fan-in. If F has size s and GH(fi) ≤ c for all i, then for all constants ε > 0 we have

GH(g(f1, f2, .., fk)) ≤ O(s1+ε ⋅ c).

In particular it implies that when the fi’s are single variables GH(g) ≤ O(s1+ε) for all

constants ε > 0. Thus any lower bound on the garden-hose complexity of a function g yields a

slightly smaller lower bound on formula-size (all gates of fan-in 2 allowed). The best lower bound

of Ω(n2/ logn) known for the size of formulae over the basis of all fan-in 2 gate function is due

to Nečiporuk [Nec66]. The Nečiporuk lower bound method (based on counting subfunctions)

can also be used to give the best general branching program lower bound of Ω(n2/ log2 n) (see

[Weg87]). Thus our result implies any lower bound larger than Ω(n2+ε) for the garden-hose
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model would immediately give lower bounds of almost the same magnitude for formula size and

permutation branching program size. But proving super-quadratic lower bounds in these models is

a long-standing open problem. Buhrman et al. [BFSS13] argued that a super-polynomial lower

bound for the garden-hose complexity of any explicit function f would be difficult to prove. Our

result yields that even getting larger than Ω(n2+ε) would be difficult for any explicit function f .

In other results we also define private coin randomized garden-hose protocols and time bounded

garden-hose model. Buhrman et al. [BFSS13] have shown how to de-randomize a public coin

protocols at the cost of increasing size by a factor of O(n), so the factor n in the separation

between public coin and deterministic protocols above is the best that can be achieved. This raises

the question whether private coin protocols can ever be more efficient in size than the optimal

deterministic protocol. We show that there are no very efficient private coin protocols for the

Equality function: RGHpri(Equality) = Ω(√n/ logn).

In the time-bounded garden-hose complexity of a function f , where we restrict the number

of times water can flow through pipes to some value k, we have GHk(f) = Ω(2Dk(f)/k), where

GHk denotes the time-bounded garden-hose complexity, and Dk the k-round deterministic com-

munication complexity. This result leads to strong lower bounds for the time bounded complexity

of e.g. Equality, and to a time-hierarchy based on the pointer jumping problem.
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Chapter 2

Basics of Quantum Computation and

Information

2.1 Introduction

In this chapter we review some relevant aspects of quantum computing and quantum information

which are essential for this thesis. In Section 2.2 the concepts of Hilbert space, quantum states and

different quantum operators are introduced. Section 2.2.6 reviews how to represent quantum states

as density operators. Finally in Section 2.3 we explore some quantum information measures and

properties which will be useful later on.

2.2 Quantum Mechanics

All form of digital electronic computers that we use today are governed by classical physics. But

when we consider tiny atomic level systems, Newtonian mechanics, which explains the large

scale systems quite well, fails to explain phenomena properly. A new form of physics called

“quantum physics”, which began to be investigated around 1900, turns out to give much better

explanations of small scale systems. Quantum physics shows that the world actually behaves quite

counter-intuitively. For instance, according to classical mechanics any system can only be in any

one of the many possible states at any given time. Whereas quantum physics tells us that this

intuition is wrong and a system can be simultaneously in a superposition of many possible states at

the same time.

Quantum computation is the branch of computer science which tries to use properties of
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quantum mechanics to develop new quantum algorithms that would outperform any classical

algorithm to solve certain tasks. Similarly, quantum information theory is a branch of information

theory that generalizes classical information theory to the quantum world. It aims to understand

how information is stored or transmitted efficiently in a quantum system. Here in this chapter

we give a brief introduction to all the necessary topics. Reader may refer to the lecture notes by

Watrous [Wat06, Wat11] and the book by Nielsen and Chuang [NC10].

When we consider a single classical bit, it can be either in 0 or 1 state. A single quantum bit or

qubit, however, can be in a superposition of both 0 and 1 state at the same time,

∣φ⟩ = α0∣0⟩ + α1∣1⟩.

Here ∀i, αi is a complex number and ∑i ∣αi∣2 = 1. The notation ∣.⟩, used above, is called the

Direc ”ket” notation, named after its inventor Paul Dirac.

Similarly, a two bit quantum state ∣φ⟩ can be in a superposition of four different classical states:

∣φ⟩ = α00∣00⟩ + α01∣01⟩ + α10∣10⟩ + α11∣11⟩,

such that ∣α00∣2 + ∣α01∣2 + ∣α10∣2 + ∣α11∣2 = 1.

In general a physical system can consist of N different classical states ∣1⟩,⋯, ∣N⟩. Then a

quantum state ∣φ⟩ is a superposition of all such N different possible states:

∣φ⟩ = α1∣1⟩ +⋯ + αN ∣N⟩, where
N

∑
i=1

∣αi∣2 = 1.

2.2.1 Qubits as Vectors in Complex Euclidean Spaces

Let’s denote by CS the set of all possible functions from a set S of size N to C. Then each such

function can be thought of as an N dimensional complex vector and CS forms a vector space of

dimension N . For example when S = {0,1}n we have a 2n dimensional complex vector space

C{0,1}n where the vectors {∣x⟩ ∣ x ∈ {0,1}n} form an orthogonal basis of the vector space.

A quantum state ∣φ⟩ can be thought of as a unit vector of dimension N sitting in an N

dimensional complex Euclidean vector space (equipped with an inner product). A finite dimensional

vector space equipped with an inner product is called a finite dimensional Hilbert space. And we

only use complex/real euclidean spaces in the thesis.
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Thus any quantum state ∣φ⟩ = ∑Ni αi∣i⟩ can be viewed as a unit vector:

∣φ⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1

α2

⋮

αN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.1)

For example, the smallest non-trivial Hilbert space has dimension 2. There can be several ways

of choosing an orthogonal basis for this vector space. One such basis is the set of unit vectors

{∣0⟩, ∣1⟩}. Then a single bit quantum state is a unit vector α0∣0⟩ + α1∣1⟩ in this Hilbert space,

satisfying ∣α0∣2 + ∣α1∣2 = 1.

In this thesis we represent quantum states with vectors. The dimension of a vector representing

a qubit system grows exponentially with the number of qubits. The Dirac notation is often very

useful to represent high dimensional quantum systems.

∣0⟩ =
⎛
⎜⎜
⎝

1

0

⎞
⎟⎟
⎠

(2.2) ∣1⟩ =
⎛
⎜⎜
⎝

0

1

⎞
⎟⎟
⎠

(2.3)

For every ket ∣φ⟩ there is a bra ⟨φ∣. The bra is defined as the conjugate transpose (or adjoint)

(see Section 2.2.5 for the definition ) of ∣φ⟩, i.e., ⟨φ∣ = (∣φ⟩)†.

For example, if the quantum state ∣φ⟩ is the following:

∣φ⟩ =
⎛
⎜⎜
⎝

1√
2

1−i√
2

⎞
⎟⎟
⎠

(2.4)

then its bra ⟨φ∣ is,

⟨φ∣ = ( 1√
2

1 + i√
2
) . (2.5)

2.2.2 Tensor Product, Entangled States

Tensor product of vector spaces

Let’s say we have two vector spaces CS and CS′ of dimension n and m respectively. Then the

tensor product of these two vector spaces denoted by CS ⊗CS′ is an nm dimensional vector space.

Tensor product is useful when we want to combine two separate quantum systems and consider

them together. For example consider a single qubit ∣φ⟩ = α0∣0⟩ + α1∣1⟩ which is a unit vector in a

2-dimensional Hilbert space U . Consider another single qubit ∣ψ⟩ = β0∣0⟩ + β1∣1⟩ which is a unit
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vector in another 2-dimensional Hilbert space V .

Now the state ∣φ⟩⊗ ∣ψ⟩ = ∣φ⟩∣ψ⟩ = ∣φψ⟩ = α0β0∣0⟩∣0⟩ + α0β1∣0⟩∣1⟩ + α1β0∣1⟩∣0⟩ + α1β1∣1⟩∣1⟩

(where ∑i,j ∣αiβj ∣2 = 1) is a combined state that is in Hilbert space U ⊗ V .

However not all quantum states can be written as a tensor product. For instance consider the

following states:

∣φ±⟩ = 1√
2
∣00⟩ ± 1√

2
∣11⟩.

These are examples of entangled states. This type of states are unique to quantum mechanics

and allow us to perform operations such as teleportation which have no classical analogue.

2.2.3 Inner product, Euclidean Norm, `-Norm

Inner Product: Given two vectors ∣φ⟩, ∣ψ⟩ ∈ CS where ∣S∣ = N , the inner product of these two

vectors are defined as ⟨φ∣ψ⟩ = ∑i∈S φ̄iψi. Here by φi we mean the i-th component of the vector

∣φ⟩. And φ̄i represents the conjugate transpose of the i-th component, φi.

Euclidean Norm: The Euclidean norm of ∣φ⟩ is defined by

∣∣∣φ⟩∣∣ =
√

⟨φ∣φ⟩ =
√
∑
i∈S

∣φi∣2.

`p-Norm: The `p-Norm of a vector ∣φ⟩ is defined by

∣∣∣φ⟩∣∣p =
⎛
⎝

√
∑
i∈S

∣φi∣p
⎞
⎠

1/p

.

Thus `2 norm is the Euclidean Norm. And ∣∣∣φ⟩∣∣∞ = max {φi∣i ∈ S}.

2.2.4 Orthogonality and Orthonormality

Orthogonality: A finite non-empty set S of vectors {∣φi⟩∣i ∈ S} form an orthogonal set if the

inner product of any two vectors is 0, i.e., ⟨φi∣φj⟩ = 0 for all i ≠ j ∈ S.

Basis Vectors: A set of vectors {∣φi⟩∣i ∈ S} in a vector space V is said to form a basis, or is called

a set of basis vectors, if the vectors {∣φi⟩∣i ∈ S} are linearly independent and every other vector in

the vector space is a linear combination of the vectors from the set {∣φi⟩∣i ∈ S}.

Orthonormality: An orthogonal set of vectors {∣φi⟩∣i ∈ S} is called orthonormal set if all vectors

∣φi⟩, i ∈ S are unit vectors.
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When an orthonormal set forms a basis for a vector space V it is called a orthonormal basis.

An orthonormal set {∣φi⟩∣i ∈ S}, in some CS′ , forms a basis for CS′ iff the cardinalities of S and

S′ are same, i.e., ∣S∣ = ∣S′∣.

2.2.5 Linear Operators

Linear Operator and Linear Matrix: A linear operator L ∶ CS → CS′ between two vector spaces

CS and CS′ is a linear mapping from CS to CS′ . Note that a function f ∶ A→ B is called a linear

map if for any two vectors x, y ∈ A and any complex number α, f(x + y) = f(x) + f(y) and

αf(x) = f(αx).

Let ∣φ⟩ be described in terms of the basis vectors {∣φi⟩}. ∣φ⟩ = ∑i αi∣φi⟩. Then the operator L

is:

L(∑
i

αi∣φi⟩) =∑
i

αiL(∣φi⟩).

When a linear operator is from CS to CS , we say it is defined on CS . We denote by L(CS) the

set of all linear operators from CS to CS . For any vector space CS an identity operator maps all

elements ∣φ⟩ ∈ CS to ∣φ⟩ itself. The zero operator maps every element of CS to the zero vector.

For a fixed basis any linear operator can be represented by a matrix. For instance, a linear

operator L ∶ CS → CS′ where ∣S∣ = n and ∣S′∣ =m can be represented by an m×n complex matrix

L′m×n. Note that if we multiply this matrix with a vector ∣φ⟩ from CS , this matrix performs the

linear operation L on the vector ∣φ⟩ and transform it to an element, L∣φ⟩, of the vector space CS′ .

Now we go into the details of some different types of operators that are useful for quantum

computation and information. But before that we briefly review conjugate and transpose of a

matrix.

Conjugate, Transpose, and Adjoint

Transpose of a Matrix, MT : Transpose of a Matrix M is a matrix MT which is obtained by

changing the columns of M with rows and rows of M with the column, i.e., any ij-th entry of the

matrix, Aij becomes Aji for all i and j. For example,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3

4 5 6

7 8 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

becomes MT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 7

2 5 8

3 6 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Conjugate of a Matrix, M̄ : Conjugate of a Matrix M is a matrix M̄ which is obtained by

changing each entry of the matrix M to its complex conjugates.

For example,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1√
2

3

4 5 6

7 8 1−i√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

becomes MT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1√
2

3

4 5 6

7 8 1+i√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Adjoint of a Matrix, M†: Adjoint of a Matrix M is a matrix M† which is obtained by taking

both the transpose and conjugate of the matrix M .

Normal Operators: An operator M ∶ CS → CS is normal if and only if it commutes with its

adjoint M†, i.e., MM† =M†M .

Unitary Operators: A normal operator M ∶ CS → CS is called a unitary operator if and only if

MM† =M†M = I .

Hermitian operators: Hermitian operators are a subsets of the Normal operators. An operator

M ∶ CS → CS is called hermitian if it is equivalent to its adjoint, i.e., M = M†. Hermitian

operators have the property that their eigenvalues are all real numbers.

Positive Definite Operators, Positive Semi-definite Operators: An operator M ∶ CS → CS is

said to be a positive semi-definite operator, or PSD operator in short, if for all choice of non-negative

vectors ∣φ⟩ ∈ CS , ⟨φ∣M ∣φ⟩ is a non-negative real number. Alternatively, an operator M ∶ CS → CS

is called a positive semi-definite operators if and only if M is Hermitian and all eigenvalues of A

are non-negative real numbers.

An operator M ∶ CS → CS is said to be a positive definite operator if in addition of being

positive semi-definite it is also invertible. Alternatively, an operator M ∶ CS → CS is called a

positive definite operator if and only if M is Hermitian and all eigenvalues of A are positive [HJ85].

Density Operator

A positive semi-definite operator of trace 1 is called density operator.

The trace of a matrix Mn×n is defined to be the sum of all its diagonal elements.

Tr(M) =∑
i

M(i, i).

We refer the reader to an excellent lecture notes by Watrous [Wat11] for properties of different
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operators.

2.2.6 Quantum State as a Density Matrix or Density Operator

To describe a quantum system using a density matrix, a quantum state in its vector representation

∣φ⟩ ∈ CS (where ∣S∣ = N ) is represented by an N ×N matrix M = ∣φ⟩⟨φ∣ (outer product).

For example, if we have a single qubit ∣φ⟩ = α0∣0⟩ + α1∣1⟩ then in density matrix notation it is

represented as,

∣φ⟩⟨φ∣ =
⎛
⎜⎜
⎝

α0

α1

⎞
⎟⎟
⎠
(ᾱ0 ᾱ1) =

⎛
⎜⎜
⎝

α0ᾱ0 α0ᾱ1

α1ᾱ0 α1ᾱ1

⎞
⎟⎟
⎠
. (2.6)

Given any quantum state in the vector notation this is how we obtain the density matrix or density

operator form. Thus for any quantum state ∣φ⟩, its corresponding density matrix is of the form

∣φ⟩⟨φ∣. When a density matrix has ∣φ⟩⟨φ∣ form we call it a pure state. But note that not all density

matrix have this form. Density matrices are capable of describing an ensemble or mixture of

several quantum states. Below we describe this in detail.

Mixed State (Non-pure State)

A mixture or ensemble of several quantum states can be written as {pi, ∣φi⟩} where each quantum

state ∣φi⟩ occurs with probability pi. Naturally ∑i pi = 1.

The density matrix representing this mixture is

ρ =∑
i

pi∣φi⟩⟨φi∣.

Let us see the following two examples:

A mixed state ρ is defined as follows: With 1/2 probability it is ∣0⟩ and with 1/2 probability it

is ∣1⟩.

Thus

ρ = 1/2∣0⟩⟨0∣ + 1/2∣1⟩⟨1∣

= 1

2

⎛
⎜⎜
⎝

1

0

⎞
⎟⎟
⎠
(1 0) + 1

2

⎛
⎜⎜
⎝

0

1

⎞
⎟⎟
⎠
(0 1)

= 1

2

⎛
⎜⎜
⎝

1 0

0 0

⎞
⎟⎟
⎠
+ 1

2

⎛
⎜⎜
⎝

0 0

0 1

⎞
⎟⎟
⎠
= 1

2
I.

21



Here I is a 2 × 2 identity matrix.

∣±⟩ = 1√
2
(0 ± 1). Now consider another example where ρ = 1/2∣+⟩⟨+∣ + 1/2∣−⟩⟨−∣.

Thus

ρ = 1/2∣+⟩⟨+∣ + 1/2∣−⟩⟨−∣

= 1

2

⎛
⎜⎜
⎝

1√
2

1√
2

⎞
⎟⎟
⎠
( 1√

2

1√
2
) + 1

2

⎛
⎜⎜
⎝

1√
2

− 1√
2

⎞
⎟⎟
⎠
( 1√

2
− 1√

2
)

= 1

2

⎛
⎜⎜
⎝

1
2

1
2

1
2

1
2

⎞
⎟⎟
⎠
+ 1

2

⎛
⎜⎜
⎝

1
2 −1

2

−1
2

1
2

⎞
⎟⎟
⎠
= 1

2
I.

Density Matrix for Different States

Notice that in the above two examples, even thought, the ρs are two different probability dis-

tributions over two different states, their density matrices are same. Thus one density matrix

can represent many different possible state mixtures. So the density matrix notation is a more

unambiguous and more efficient description of a qubit system. If two different quantum ensembles

have a same density matrix then there is no observable difference between these two quantum

ensembles.

Note that the density matrix ρ = ∑i pi∣φi⟩⟨φi∣ is a positive semidefinite matrix as for any

non-negative ∣ψ⟩,

⟨ψ∣ρ∣ψ⟩ = ⟨ψ∣ (∑
i

pi∣φi⟩⟨φi∣) ∣ψ⟩ =∑
i

pi⟨ψ∣φi⟩⟨φi∣ψ⟩ =∑
i

pi∣⟨ψ∣φi⟩∣2 ≥ 0.

It is also easy to see that convex combinations preserve the Trace.

Tr(ρ) = Tr (∑
i

pi∣φi⟩⟨φi∣) =∑
i

piTr(∣φi⟩⟨φi∣) =∑
i

piTr(⟨φi∣∣φi⟩)

=∑
i

pi⟨φi∣φi⟩ = 1.

2.2.7 Partial Trace

If we have a system of joint state space of A = CS and B = CS′ and a density matrix ρAB describes

the system. Then if we want to discard B and only consider A, the operation is called tracing out

the space B.
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ρA = TrB(ρAB) = ∑
x∈S′

(ICS ⊗ ⟨x∣)ρ(ICS ⊗ ∣x⟩).

In other word, a partial trace is a linear map from CS∪S′ → CS that is determined by the above

equation. Note that the partial trace operation is not about destroying some part of the system. It is

about consider a part of the system and solely focusing on that.

If we perform a partial trace on a product state ρAB = ρA ⊗ ρB , then TrB(ρAB) = ρA. No

information about the state in A is lost. However in the case of non-product states, information

may be lost. For example, consider the density operator of the following Bell state:

∣φ+⟩ = 1√
2
∣0A0B⟩ + 1√

2
∣1A1B⟩.

ρAB = 1

2
(∣0A0B⟩ + ∣1A1B⟩)⊗ (⟨0A0B ∣ + ⟨1A1B ∣) .

= 1

2
(∣0A0B⟩⟨0A0B ∣ + ∣0A0B⟩⟨1A1B ∣ + ∣1A1B⟩⟨0A0B ∣ + ∣1A1B⟩⟨1A1B ∣) .

Now, if we take trace over B we will have,

ρA = Tr(ρAB) = 1

2
(∣0A⟩⟨0A∣ + ∣1A⟩⟨1A∣).

It is a maximally mixed state and if we perform the same operation for other Bell states i.e.,

∣φ−⟩, ∣ψ+⟩ or ∣ψ−⟩ we will obtain the same result. Thus the information about which state we have

started with is lost.

2.2.8 Measurements

Quantum measurements are described by a collection of measurement operators {Mi ∣ i ∈ S′} ⊂

L(CS) which acts on the state space being measured. {Mi} must satisfy the condition that the set

S′ can be any finite non-empty set and ∑i∈S′M†
iMi = I .

When a quantum system is in state ρ and being measured the measurement result will be one

of the element of the set S′ with probability Tr(MiρM
†
i ).

And after the measurements the remaining state (or the collapsed state) is MiρM
†
i

Tr(MiρM
†
i )

.
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2.3 Quantum Information

Now we briefly review some relevant tools and techniques of quantum information, which are

needed later on. The theory of quantum information is a generalization of the classical information

theory to the quantum world. The main goal of quantum information is to understand how is

information stored in a quantum system and how efficiently can we transmit information using a

quantum system.

2.3.1 Distance between Two Quantum States

In quantum information very often we want to know how far two given quantum states are?

Total Variation Distance

Classically, the total variation distance is a metric of how distinguishable one distribution is from

another. Given two probability distributions {pi} and {qi} the total variation distance is defined

as:

D(pi, qi) =
1

2
∑
i

∣pi − qi∣.

Similarly in quantum information, the trace distance is a metric of how distinguishable one

density matrix is from another.

Before we define trace distance let us define the trace norm for any Hermitian operator.

Definition 2.3.1. The trace norm of a Hermitian operator ρ is defined as ∣∣ρ∣∣t = Tr
√
ρρ†.

Definition 2.3.2. Given two density matrices ρ and σ the trace distance between them is defined

as follows:

∣∣ρ − σ∣∣t =
1

2
Tr(

√
(ρ − σ)†(ρ − σ)).

Note that if ρ and σ commute then they are diagonal in the same basis, i.e., if ρ = ∑i αi∣i⟩⟨i∣ and

σ = ∑i α′i∣i⟩⟨i∣ for some orthogonal basis {∣i⟩}, then their trace distance ∣∣ρ − σ∣∣t = 1
2Tr(∑i(αi −

α′i)∣i⟩⟨i∣) which is exactly the classical total variation distance between the eigenvalues of ρ and

the eigenvalues of σ.

Fidelity

Fidelity is a measure of the ”closeness” of two probability distributions.
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Given two probability distributions {pi} and {qi} the fidelity between them is defined as:

F (pi, qi) =∑
i

√
pi, qi.

It is very different from the trace distance. Unlike trace distance it is not a metric. Rather it has

a nice geometric interpretation. Given two probability distribution {pi} and {qi}, we can construct

two vectors of unit size with component of
√
pi and

√
qi. Then the fidelity is the inner product

between these two vectors.

Similarly in quantum information theory, the fidelity between two density matrices ρ and σ is

defined by,

F (ρ, σ) = Tr(
√

(√ρ)σ(√ρ)).

Fidelity and the trace distance are related (1 − F (ρ, σ)) ≤ ∣∣ρ − σ∣∣t ≤
√

1 − F (ρ, σ)2.

For pure states, ∣∣ρ − σ∣∣t =
√

1 − F (ρ, σ)2.

2.3.2 Entropy

Entropy is one of the fundamental and most useful concepts in information theory. Before going

into the quantum entropy, let’s review the classical entropy. The reader may refer to a nice book by

Cover and Thomas [CT12] for literature.

Shannon Entropy:

Shannon Entropy, denoted by H(X), of a random variable X measures the amount of information

conveyed by the value of the random variable X .

H(X) = −∑
x

px log2 px.

It is also the minimum number of physical resources required to store each values of the random

variable X on average.

Relative Entropy:

Similar to Fidelity, the relative entropy captures how close two probability distributions {pi} and

{qi} are.

H(pi∣∣qi) =∑
i

pi log
pi
qi

= −H(X) −∑
i

pi log qi.
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The relative entropy is non-negative and H(pi∣∣qi) = 0 iff pi = qi,∀i. Note that relative entropy

is not a metric and it is also not symmetric i.e., H(pi∣∣qi) may not be equal to H(qi∣∣pi).

Von Neumann Entropy:

The Shannon entropy deals with the uncertainty associated to a classical random variable. Von

Neumann entropy captures entropy of quantum states.

Definition 2.3.3. The Von Neumann entropy of a quantum state ρ is defined as,

S(ρ) = −Tr(ρ log ρ).

The logarithm is over base 2. For the ease of calculation the above formula is re-written as

follows [NC10]:

S(ρ) = −∑
i

πi logπi.

Here πi are the eigenvalues of the state ρ.

Relative Von Neumann Entropy:

The relative Von Neumann entropy of quantum states ρ, σ is defined as,

S(ρ∣∣σ) = Trρ log ρ −Trρ logσ if supp ρ ⊆ supp σ,

otherwise, S(ρ∣∣σ) =∞.

Relative Min-Entropy:

The relative min-entropy of ρ, σ is defined as

S∞(ρ∣∣σ) = inf{c ∶ σ − ρ/2c is positive semidefinite}.

It is easy to see that S(ρ∣∣σ) ≤ S∞(ρ∣∣σ), see [Dat09] for a proof.
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Chapter 3

Query Complexity

3.1 Introduction

This chapter is about query complexity. In the next section we introduce query complexity and

review different models of it. In Section 3.3 we explore various query complexity measures

which are used to give lower bounds to different models of query complexity. In Section 3.4 we

summarize the relation between different complexity measures and query complexity models.

3.2 Query Complexity Models

The decision tree model (aka the query model), perhaps due to its simplicity and fundamental

nature, has been extensively studied in the past and still remains a rich source of many fascinating

investigations. In this thesis we focus on Boolean functions, i.e., the functions of the form

f ∶ {0,1}n → {0,1}. This section reviews different models of query complexity.

3.2.1 Deterministic Query Model

A deterministic decision tree Tf for f takes x = (x1, . . . , xn) as an input and determines the value

of f(x1, . . . , xn) using queries of the form “is xi = 1?”.

In any deterministic decision tree Tf for f each internal node is marked with some literal

xi, i ∈ [n] and has two out-going edges labelled with 0 and 1. All the leaves have label 0 or 1.

For any given input x the tree is evaluated from the root and depending on the value of the xi

of the root, either the left sub-tree or the right sub-tree of the root gets evaluated. This process

continues until it reaches some leaf node. The output is the value of the leaf node reached. We say

27



a deterministic decision tree Tf computes a function f correctly if its output on x is same as f(x)

for all x ∈ {0,1}n.

Formally a query can be thought of as a transformation of a three registers tuple (i,b,z), where

i is a logn-bit register that contains a pointer which can point to any location of the input x, b

contains 0 and z is an m-bit register, called the workspace. The query operation O reads the value

of i and adds the value xi to the second register b. The query does not affect the workspace z.

O ∶ (i, b, z)→ (i, b⊕ xi, z).

The register z is used for internal computations which occur in between two queries.

Let C(Tf , x) denote the cost of the computation, that is the number of queries made by Tf on

an input x. The deterministic decision tree complexity (aka the deterministic query complexity) of

f is defined as

D(f) = min
Tf

max
x
C(Tf , x).

Below are the examples of two decision trees one for computing the Equality function and

another for the AND function (see Figure 3.1). The one-bit Equality function EQ(x, y) = 1 iff x =

y. The one-bit AND function AND(x, y) = 1 iff x = 1 ∧ y = 1.

x

y y

01 10

x

y0

0 1

0

0

1

0 1

0 1

0 11

Figure 3.1: Deterministic Decision Tree for One-Bit Equality and One-Bit AND Function

We encourage the reader to see an excellent survey by Buhrman and de Wolf [BdW02] on the

decision tree complexity of Boolean functions.

3.2.2 Randomized Query Model

A randomized decision tree T is simply a probability distribution µ on the deterministic decision

trees {T1, T2, . . .} where the tree Ti occurs with probability µ(Pi). We say that T computes f

correctly if for every input x: Pri[Ti(x) = f(x)] ≥ 2/3. The depth of T is the maximum depth of

a Ti with µ(Ti) ≠ 0. The (bounded-error) randomized query complexity of f , denoted by R(f), is
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the minimum possible depth of a randomized tree computing f correctly on all inputs.

R(f) = min
µ

max
Ti∶µ(Ti)≠0

depth(Ti).

Note that the above notion captures two sided bounded error query complexity models as

the error can be both in 0 inputs as well as in 1 inputs. One can similarly define one sided error

randomized query complexity. In this thesis we shall deal with two sided error model and thus we

omit the definition of the latter.

3.2.3 Quantum Query Model

One can also define the quantum version of the decision tree model. Please refer to Chapter 2 for

some basics of quantum computing.

Recall that unlike the classical input bit which can be in either 0 or 1 state, a quantum bit or

qubit can be in a superposition of both 0 and 1 state.

α0∣0⟩ + α1∣1⟩.

Here ∀i, αi is a complex number and ∑i ∣αi∣2 = 1.

In any classical query algorithm in a single query to the ith location of the input x, the value xi

is revealed. Formally, a query can be thought of as a transformation of a three register tuple (i,b,z).

The query operation O reads the value of i and adds the value xi to the second register b. It does

not affect the workspace z.

O ∶ (i, b, z)→ (i, b⊕ xi, z).

Similarly, a single quantum query Q performs the following transformation.

Q ∶ ∣i⟩∣b⟩∣z⟩→ ∣i⟩∣b⊕ xi⟩∣z⟩.

Unlike the classical case, the registers are now quantum and can be in superposition of different

states. Thus a single query can give us access to more than one location of the input x.

A quantum query algorithm starts with an N -qubit state ∣0⟩ consisting of all zeros. Then it

does two operations alternatively. Performs an unitary transformation U0 to the quantum state.

And makes a quantum query O. Depending on whether the ith bit of the basic state is zero or one,
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the query negates the amplitude of each basic state.

A quantum algorithm with q queries looks like the following:

A = UqOUq−1⋯OU1OU0.

Here Ui’s are the fixed unitary transformations independent of the input x. But the queries

depend on the input x. At the end we measure the final state and produce output.

A bounded-error quantum query algorithm A computes f correctly if the final measurement

gives the correct answer with probability at least 2/3 for every input x. The bounded-error quantum

query complexity of f , denoted byQ(f), is the least q for which f admits a bounded-error quantum

algorithm. We refer the reader to a survey by Buhrman and de Wolf [BdW02] for more literature

on query complexity.

Deutsch’s Algorithm

An example of a quantum query algorithm is Deutsch’s Algorithm. Given a two-bit XOR function

XOR ∶ {0,1}2 → {0,1} the function value is 1 iff only one of the two input bits is 1. It is easy

to see that the deterministic query complexity of this function is 2, i.e., 2 queries are needed to

compute the output of this function.

But Deutsch’s quantum algorithm performs a single query to the input bits and finds out the

answer with probability 1. The algorithm proceeds by performing Hadamard operations on two

quantum registers which were set to ∣01⟩ in the beginning. Then a single query to the input is

performed. Lastly, after discarding the second quantum register and performing a Hadamard

operation on the first register again we get the answer with certainty, i.e., we measure the first

register and the answer is 1 iff the measurement result is 1. Formally, we start with ∣0⟩∣1⟩.
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Ð→ ∣0⟩∣1⟩
HÐ→ 1√

2
(∣0⟩ + ∣1⟩) 1√

2
(∣0⟩ − ∣1⟩)

Ð→ 1
2 ∣0⟩(∣0⟩ − ∣1⟩)+ 1

2 ∣1⟩(∣0⟩ − ∣1⟩)
QÐ→ 1

2 ∣0⟩(∣x0⟩ − ∣1⊕ x0⟩)+ 1
2 ∣1⟩(∣x1⟩ − ∣1⊕ x1⟩)

Ð→ 1
2 ∣0⟩(−1)x0(∣0⟩ − ∣1⟩)+ 1

2 ∣1⟩(−1)x1(∣0⟩ − ∣1⟩)

Ð→ ( 1√
2
((−1)x0 ∣0⟩+(−1)x1 ∣1⟩))( 1√

2
(∣0⟩ − ∣1⟩))

Now by discarding the second register we have

(−1)x0 1√
2
(∣0⟩ + (−1)x0⊕x1 ∣1⟩)

HÐ→ (−1)x0(x0 ⊕ x1).
So if we measure this register we will get (x0 ⊕ x1) as output.

We refer the reader to an excellent lecture notes by Watrous [Wat06] for the details of Deutsch’s

algorithm.

3.3 Query Complexity Measures

3.3.1 Some Classes of Boolean Function

Before we review some of the query complexity measures we first review some classes of Boolean

functions.

3.3.2 Dual of a Function

The dual of a function f , denoted by f∗, is:

f∗(x) ∶= ¬f(¬x),

where ¬x denotes the binary string obtained by flipping each bit in x.

Note that f∗∗ = f and that the deterministic, randomized and the quantum query complexity of

a function f and its dual f∗ are same.

Monotone Function

A Boolean function f ∶ {0,1}n → {0,1} is said to be monotone increasing if for any x ≤ y, we

have f(x) ≤ f(y), where x ≤ y means xi ≤ yi for all i ∈ [n]. Similarly, one can define a monotone

decreasing function.
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An example of a monotone-increasing function is the OR-function. OR(x) = 1 iff ∃i ∈

[n] s.t. xi = 1. Thus as soon as xi = 1 for some i ∈ [n] the OR-function becomes 1.

Note that if a function f is monotone, then so is f∗.

Transitive Function

A Boolean function f(x1, . . . , xn) is said to be transitive if there exists a group Γ that acts

transitively on the variables xis such that f is invariant under the group’s action, i.e., for every

σ ∈ Γ: f(xσ1 , . . . , fσn) = f(x1, . . . , xn).

A simple example of a transitive function is a function whose output is 1 when there are two

consecutive ones in the input bits. Formally, the function f ∶ {0,1}n → {0,1} is defined to be 1

iff ∃i, j such that j = i + 1 (mod n) and xi = xj = 1. This function is invariant under a cyclic

permutation group.

Symmetric Function

A symmetric function is invariant under all permutation of its variables i.e., for all possible

permutation σ: f(xσ1 , . . . , fσn) = f(x1, . . . , xn).

A simple example of a symmetric function is the Majority function:

MAJ(x1, x2,⋯, xn) = 1 iff ∑i xi ≥ n
2 .

Evasive Function

A Boolean function f ∶ {0,1}n → {0,1} is said to be evasive if D(f) = n. So for an evasive

function we cannot save even a single query.

Conjecture 3.3.1 (Evasiveness Conjecture [Lut01]). Any non-constant monotone transitive func-

tion f on n variables has D(f) = n.

Now we review some query complexity measures which we need for this thesis.

3.3.3 Sensitivity

The ith bit of an input x ∈ {0,1}n is said to be sensitive for a function f ∶ {0,1}n → {0,1} if

f(x1, . . . , xi, . . . , xn) ≠ f(x1, . . . ,1 − xi, . . . , xn). Note that 1 − xi flips the value of xi.

The sensitivity of f on x, denoted by sf,x is the total number of sensitive bits of the input x for

f .
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sf,x = ∣{i ∈ [n] ∶ xi of x is sensitive for f }∣.

The sensitivity of f , denoted by s(f), is the maximum of sf,x over all possible choices of x.

s(f) = max
x

sf,x.

The sensitivity of the all-zero input 0n of OR-function is n, because for all-zero input flipping

any single bit would change the function value to 1. Thus the sensitivity of the OR-function,

s(OR) = n.

3.3.4 Block-sensitivity

A block B ⊆ [n] of variables is said to be sensitive for f on input x, if flipping the values of all xi

such that i ∈ B and keeping the remaining xi the same, results in flipping the output of f .

The block sensitivity of f on an input x, denoted by bsf,x is the maximum number of disjoint

sensitive blocks for f on x. The block sensitivity of a function f , denoted by bs(f), is the

maximum value of bsf,x over all possible choices of x.

bs(f) = max
x

bsf,x.

Alternatively, the following integer program exactly captures the definition of block sensitivity

of f on input x,

bsf,x = max
t

∑
j=1

wj

subject to ∑
j∶Bj∋i

wj ≤ 1, ∀i ∈ [n]

wj ∈ {0,1}, ∀j ∈ [t]

(3.1)

The block sensitivity of f is computed by maximizing bsf,x over all possible inputs x ∈ {0,1}n.

It is known that D(f) ≥ R(f) ≥ bs(f) ≥ s(f). For monotone functions, bs(f) = s(f).

Fractional Block Sensitivity

Now by relaxing the above integer program we get something called the fractional block sensitivity.
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fbsf,x = max
t

∑
j=1

wj

subject to ∑
j∶Bj∋i

wj ≤ 1, ∀i ∈ [n]

wj ∈ [0,1], ∀j ∈ [t]

(3.2)

The fractional block sensitivity of f is computed by maximizing fbsf,x over all possible inputs

x ∈ {0,1}n.

3.3.5 Certificate Complexity

A partial assignment A ∶ [n] → {0,1,∗} of a Boolean function f ∶ {0,1}n → {0,1} partially

assigns some values to the input x of the function f . Let ∣A∣ denote the number of values that

the function A assigns to 0 or 1, and A is consistent with an input x if and only if A(i) = xi or

A(i) = ∗, for all i.

Definition 3.3.2. For b ∈ {0,1}, a partial assignment A is a b-certificate for function f for all x if

f ∣A(x) = b.

For b ∈ {0,1}, the b-certificate complexity of f is defined by

Cb(f) = max
x∶f(x)=b

min
A

{∣A∣ ∶ f ∣A(x) = b}.

The certificate complexity of a function f is the maximum of C1(f) and C0(f).

For example C1(AND) = n,C0(AND) = 1 and thus C(AND) = n.

All these measures, sensitivity s(f), block sensitivity bs(f) and certificate complexity C(f)

are related. It is easy to see that s(f) ≤ bs(f) ≤ C(f).

Furthermore it has long been known that,

Lemma 3.3.3 (Gilmer et al. [GSS13]). For all total functions f ,

C(f) ≤ s(f)bs(f) ≤ bs(f)2.

For Chapter 5 we also require the definition of a minimal certificate of a function f .
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3.3.6 Minimal Certificate

A minimal certificate of size s for a monotone increasing function f is an input z such that (a) The

hamming weight of z, i.e., ∣z∣, is s, (b) f(z) = 1, and (c) for any y with ∣y∣ < s, f(y) = 0. Every

minimal certificate z can be uniquely associated with the subset Sz ∶= {i ∣ zi = 1}.

We shall use the minimal certificate size to give lower bounds to the quantum query complexity

of function f .

Lemma 3.3.4 (Minimal Certificate [BdW02]). If f has a minimal certificate of size s then the

quantum query complexity of f ,

Q(f) = Ω(
√
s).

3.3.7 Degree of a Function

Before we go into the definition of degree of a function we first review multi-linear polynomials.

Definition 3.3.5. Multi-linear Polynomials: A multi-linear polynomial p is a polynomial that is

linear in each of its variables i.e., each monomial is a constant times a product of distinct variables.

The degree of a multi-linear polynomial is the maximum over the number of distinct variables in

any monomial.

For any variable xi of a Boolean function f , xi = xki for any k. Thus in a single monomial, of

any polynomial representing a Boolean function, variables do not need to occur more than once.

We need the next well known lemma for the definition of the degree of a function. It says that

if two multi-linear polynomials p and q have same output on every single inputs and they have

degrees at most d, then they are identical to each other (see [BdW02] for the proof).

Lemma 3.3.6. Let p, q ∶ Rn → R be two multi-linear polynomials of degree upper bounded by d.

If p(x) = q(x) for all inputs x ∈ {0,1}n with ∣x∣ ≤ d, then these two polynomials are same, p = q.

Now we define the degree of a function. A function f is represented by a polynomial p ∶ Rn →

R if f(x) = p(x) for all inputs x. Since for Boolean algebra, xk = x,∀k ≥ 1 we can assume that

the representing function is a multi-linear function. Furthermore, because of the previous lemma,

Lemma 3.3.6, the representing polynomial is unique.

f(x1, x2,⋯, xn) = ∑
S⊆[n]

αS∏
i∈S
xi.
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Definition 3.3.7. Degree of a function: The degree of a Boolean function f is the degree of the

unique multi-linear polynomial p that represents f .

For example, the representing polynomial of the AND-function is

AND(x1, x2,⋯, xn) = ∏n
i=1 xi. The polynomial is the monomial x1x2⋯xn itself. And thus the

degree of the AND-function is n.

One might wonder if most Boolean functions have full degrees. Shi and Yao (unpublished)

gave the following lemma which exactly characterises the condition of having full degree (see

[BdW02] for the proof).

Lemma 3.3.8. deg(f) = n if and only if the number of inputs x for which f(x) = 1 and ∣x∣ is even,

is not equal to the number of inputs x for which f(x) = 1 and ∣x∣ is odd. Here ∣x∣ is the hamming

weight of the input x.

It can be calculated that almost all the functions (except a constant fraction of all possible

functions) satisfy the condition of the Lemma 3.3.8 and thus most of the functions have full degrees

[BdW02].

Degree of a function can be significantly lower than the sensitivity and block sensitivity of that

function. Meanwhile it can also be significantly larger than sensitivity, block sensitivity and the

certificate complexity.

In particular the following two lemmas highlights the relationship between block sensitivity

and degree of a function f .

Lemma 3.3.9 (Nisan & Szegedy [NS94]). For all total functions f ,

bs(f) ≤ 2deg(f)2.

Lemma 3.3.10 (Gilmer et al. [GSS13]). For all total functions f ,

deg(f) = Õ(bs(f)3).

Here the Õ(⋅) notation hides a poly(log bs(f)) factor. The AND-OR function (⋀i∈[m]⋁j∈[n] xij)

achieves the following

∃ a total function f, deg(f) = Ω(bs(f)2).
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3.3.8 Approximate Degree of a Function

Sometime, instead of finding the exact polynomial p that represents f , we might want to find

another function f ′ whose representing polynomial p′ has lower degree than that of the polynomial

p and f ′ approximates the function f .

Let Fn = {f ∶ {0,1}n → {0,1}} is the set of all Boolean functions on n variables.

Definition 3.3.11 (Approximate Degree:). Let f ∈ Fn and ε ∈ (0,1/2). The ε-approximate degree

of f , denoted by d̃egε(f), is the smallest d ≥ 1 such that there exist another function f ′ ∈ Fn with

deg(f ′) = d and f ′ approximates f , i.e., ∣f ′(x) − f(x)∣ ≤ ε, for all inputs x ∈ {0,1}n.

Approximate degree can be significantly lower than the degree of the function.

For example, the OR-function has deg(OR) = Ω(n) whereas d̃eg(OR) = O(√n).

While deg(OR) = Ω(n) comes from the fact that OR-function is a symmetric function and for

all symmetric functions f , deg(f) ≥ s(f) = Ω(n) [See Lemma 3.6.2], d̃eg(OR) = O(√n) can

be achieved by using Chebyshev polynomials [See Example 3.11 of [NS94]].

It turns out that if a function f has high sensitivity or high block sensitivity then it also has

high approximate degree.

Lemma 3.3.12 (Nisan & Szegedy [NS94]). for all total functions f ,

i) d̃eg(f) = Ω(
√
s(f)),

ii) d̃eg(f) = Ω(
√
bs(f)).

The OR-function is an example where both bounds of these lemmas are asymptotically tight.

The approximate degree is known to be upper bounded by bs(f)3, i.e., for all total functions f ,

d̃eg(f) = O(bs(f)3).

It is unknown if the same kind of relationship holds between degree of a function and the

sensitivity of the function.

Open 3.3.13. For all total functions f ,

d̃eg(f) = O(s(f)O(1))?
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Resolving this would resolve the following long-standing Sensitivity Conjecture.

Conjecture 3.3.14 (Sensitivity Conjecture, Nisan and Szegedy [NS94]). For all total functions f ,

bs(f) ≤ poly(s(f)).

It turns out that the two measures, degree of a function, deg(f) and the approximate degree of

a function, d̃eg(f) are polynomially related.

Lemma 3.3.15 (Nisan & Szegedy; Beals et al. [NS94, BBC+01]). For all total functions f ,

deg(f) = O(d̃eg(f)6),

and for the AND-function the following holds

∃f, deg(f) = Ω(d̃eg(f)2).

Thus the exact relationship of degree and approximate degree is yet to be known. Readers may

look into a nice survey on the approximate degree of Boolean functions by Shi [Shi07].

3.4 Relationship of Query Complexity and Different Measures

In this section we review the relationship between different complexity measures and different

query complexity models. With a notable exception of the sensitivity, all the complexity measures

such as block sensitivity, degree, approximate degree, certificate complexity etc. and the complexity

classes such as D(f),R(f),Q(f) are all known to be polynomially related.

3.4.1 Deterministic Query Complexity

Deterministic query complexity D(f) of a function f is lower bounded by bs(f) and deg(f). It

turns out that it is also upper bounded by bs(f)3 [BdW02].

For all total functions f ,

D(f) ≤ C1(f)bs(f) ≤ C(f)bs(f) ≤ s(f)bs(f)2 ≤ bs(f)3.

One of the important open problems is to know if the following is true.
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Open 3.4.1. For all total functions f ,

D(f) ≤ bs(f)2?

Solving this open problem would solve several other open problems in query complexity. For

more details of such consequences please look into the Page 5 of [ABDK15].

Deterministic query complexity is also upper bounded in terms of degree and approximate

degree. For all total functions f ,

i) D(f) = O(deg(f)3),

ii) D(f) ≤ 6d̃eg(f)6.

The above upper bounds are not known to be tight. It has been shown that there exists a total

Boolean f such that D(f) = Ω(deg(f)2) [GPW15] and there exist another total Boolean function

f ′ for which D(f ′) = Ω(d̃eg(f ′)4) [ABB+15].

3.4.2 Randomized Query Complexity

Two-sided error randomized query complexity, R(f) is lower bounded by block sensitivity and

approximate degree. For all total functions f ,

i) d̃eg(f) ≤ R(f),

ii) bs(f) ≤ 3R(f).

Deterministic query complexity, D(f), is upper bounded by O(R(f)3) [ABB+15]. In terms

of upper bounds randomized query complexity has the following relationship with degree and

approximate degree: for all total functions f,R(f) = O(deg(f)3) and ∃ a total function f ′, such

that R(f ′) = Ω(deg(f ′)2) [GJPW15] and for all total functions f,R(f) = O(d̃eg(f)6) and there

exists another total function f
′′
, such that R(f ′′) = Ω(d̃eg(f ′′)4) [ABB+15]. Resolving the open

question Open 3.4.1 would make the lower bound tight.
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3.4.3 Quantum Query Complexity

Quantum Query complexity Q(f) of a function f is lower bounded by the approximate degree

d̃eg(f) of the function f . For all total functions f ,

d̃eg(f) ≤ 2Q(f).

An upper bound in terms of approximate degree is known, Q(f) = O(d̃eg(f)6). Very recently

Aaronson et al. [ABDK15] have shown that there exists a total function f which achieves a

forth-power gap between its quantum query complexity and approximate degree, i.e., Q(f) =

Ω(d̃eg(f)4). Note that again resolving the open question Open 3.4.1 would make the above bound

tight.

Although D(f),R(f) and Q(f) are polynomially related the exact relationship between them

is still not known. For instance it is known that R(f) ≤D(f) = O(Q(f)6). On the other hand, in

the recent paper Aaronson et al. [ABDK15] have shown that there exist a total function f for which

R(f) = Ω(Q(f)2.5). Ambainis et al. [ABB+15] also have demonstrated another total function f

for which D(f) = Ω(Q(f)4). Yet again note that resolving the open question Open 3.4.1 would

tighten the above relations.

3.5 Query Complexity for Monotone Functions

For monotone functions, query complexity is much more well understood. The sensitivity con-

jecture (see Conjecture 3.3.14) is true for monotone functions. In fact, for monotone functions

sensitivity, block sensitivity, and certificate complexity all are equivalent.

For all total monotone functions f, s(f) = bs(f) = C(f).

And hence, D(f) ≤ s(f)2 and s(f) ≤ deg(f).

Also, D(f) = O(R(f)2) and D(f) = O(Q(f)4).

3.6 Query Complexity for Symmetric Functions

Recall that a symmetric function is invariant under all permutation of its variables.
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Lemma 3.6.1 (Paturi [Pat92]). Let f be a function on n variables such that f(z) = 0 for all z with

∣z∣ = t − 1 and f(z) = 1 for all z with ∣z∣ = t. Then: d̃eg(f) = Ω(
√
t(n − t)).

Lemma 3.6.2 (Turán [Tur84]). For all total symmetric functions f ,

s(f) ≥ ⌈n + 1

2
⌉.
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Chapter 4

Communication Complexity

This chapter briefly reviews different types of communication complexity models. In Section 4.3

we define Merlin-Arthur protocols which is a communication complexity analogue of the Turing

machine class MA.

4.1 Communication Complexity Models

In the communication complexity model two players Alice and Bob are given two inputs x and

y. Their goal is to compute a predefined function f(x, y). As (usually) the function depends on

both x and y and as Alice and Bob both only know their respective private inputs, they need to

communicate in order to compute the function. Typically we are interested in the minimum amount

of communication to accomplish the job.

The most general model is the two-way communication complexity model where both Alice

and Bob send message to each other. Another well-studied model is the one-way communication

complexity where only either Alice or Bob is allowed to send messages to the other player. The

message receiving player computes the output based on his/her input and the messages received.

Depending on the different resources used for the communication, there are several variants of

communication complexity models such as randomized or quantum communication complexity

where the players are allowed to toss coins (jointly or privately) or use quantum resources. We

shall briefly review all these models in this chapter.
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Figure 4.1: Communication Matrix and its Corresponding Protocol tree

4.1.1 Deterministic (Two-way) Communication Complexity

Definition 4.1.1. Let f ∶ {0,1}n × {0,1}n → {0,1} be a Boolean function. In a communication

complexity protocol two players Alice and Bob receive inputs x and y from {0,1}n respectively.

Their goal is to compute the function f(x, y). In the protocol players exchange messages in order

to compute f(x, y). Such a protocol is represented by a binary tree (a.k.a the protocol tree), in

which vertices, alternating by layer, belong to Alice or to Bob, edges are labelled with messages,

and leaves either accept or reject. The value of the protocol on an input (x, y) is the value of the

corresponding leaf that is reached by traversing the tree, starting from the root of the tree.

We say a protocol P correctly computes the function f(x, y) if for all x, y the output of the

protocol P (x, y) is equal to f(x, y). The communication complexity of a protocol is the maximum

number of bits exchanged for all x, y i.e., the maximum length of the protocol tree.

The communication matrix Mf is a 2n × 2n matrix where the rows are labelled by all x and the

columns are labelled by all y. The value of any (x, y)th entry of the matrix is the value f(x, y).

Any protocol P computing a function f induces a partition of the communication matrix Mf

into monochromatic rectangles (all the entries are either all 0s or all 1s). The number of induced

monochromatic rectangles is the number of leaves in the protocol tree of P . Figure 4.1 illustrates

a communication matrix partition and its corresponding protocol tree.

The deterministic communication complexity D(f) of a function f is the complexity of a best

protocol that computes f for all (x, y).

Every valid protocol for computing a function f yields a valid protocol tree where each leaf

corresponds to a monochromatic partition. And for each (x, y) there is a path from the root of the

tree to some leaf of the tree. Thus every valid protocol yields a monochromatic partition of its

communication matrix Mf . The number of monochromatic rectangles can be used to give lower
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Figure 4.2: Partition Does Not Correspond to Any Valid Protocol

bounds to the deterministic communication complexity of the function f .

Lemma 4.1.2. If any partition of the communication matrix Mf requires t monochromatic rectan-

gles, then D(f) ≥ log t.

However, note that not all partition, of the matrix into monochromatic rectangles, corresponds

to a valid communication protocol. See Figure 4.2 for an example. Although it is a valid partition

of the matrix into several monochromatic sub-matrices, it does not correspond to any protocol.

Any valid partition corresponding to a protocol must have the following property: Given the whole

rectangle it is divided into exactly two halves (two disjoint set of rows). And then these two halves

are recursively partitioned into another two halves (now two disjoint set of columns). This process

continues until we reach a point where all partitions are monochromatic. Notice that for the above

example (Figure 4.2) this is not possible.

In fact very recently a nearly quadratic separation between the deterministic communication

complexity and the logarithm of the partition number has been shown by Ambainis et al. [AKK16].

So the above lemma is not tight.

Furthermore, Aho et al. [AUY83] have shown that for all Boolean function f , D(f) ≤

O(log2 t). Thus the result by Ambainis et al. [AKK16] is essentially tight.

Fooling Set

Fooling set is one of the fundamental technique to give lower bound to the deterministic communi-

cation complexity. Let X and Y be the set of all possible inputs x of Alice and all possible inputs

y of Bob respectively. Then the fooling set is defined as follows:

Definition 4.1.3. Fooling Set: A subset S ⊆ X × Y is called a fooling set if for some b ∈ {0,1}

and for all (x, y) ∈ S, f(x, y) = b and for any two (x, y) and (x′, y′) ∈ S either f(x, y′) ≠ b or

45



f(x′, y) ≠ b.

Lemma 4.1.4. For any function f(x, y), D(f) ≥ log ∣S∣. Here S is the fooling set of the function

f .

For example, the Equality function can be lower bounded by the fooling set method. Equality

is defined as: EQ(x, y) = 1 iff xi = yi∀i ∈ [n].

Now the fooling set S of EQ is: S = {(x, y) ∣ x = y}. Thus ∣S∣ = 2n and D(EQ) ≥ n.

4.1.2 Non-deterministic Communication Complexity

Definition 4.1.5. The non-deterministic communication complexity N(f) of a Boolean function f

is the length of the communication in an optimal two-player protocol in which Alice and Bob can

make non-deterministic guesses, and there are two possible outputs accept,reject. For each

x, y with f(x, y) = 1 there is a guess that will make the players accept but there is no guess that

will make the players reject, and vice versa for inputs with f(x, y) = 0.

Note that the above is the two-sided version of non-deterministic communication complexity.

It is well known [KN97] that N(f) ≤D(f) ≤ O(N2(f)), and that these inequalities are tight.

4.1.3 Randomized Communication Complexity

Definition 4.1.6. In a public coin randomized protocol for f the players have access to a public

source of random bits. And we are required that for all inputs x, y, the randomized protocol gives

the correct output with probability 1 − ε for some ε < 1/2.

A randomized protocol can be though of as a probability distribution µ over the deterministic

protocols {P1, P2,⋯}, where each deterministic protocol Pi occurs with probability µ(Pi) We say

that a randomized protocol computes f correctly if for every input x: Pri[Pi(x) = f(x)] ≥ 1 − ε.

The running time of the randomized protocol is the maximum depth of the protocol tree of a protocol

Pi with µ(Pi) ≠ 0.

The (bounded-error) randomized communication complexity of f , denoted by R(f), is the

minimum possible running time of a randomized protocol computing f correctly on all inputs.

R(f) = min
µ

max
Pi∶µ(Pi)≠0

depth(Pi).

Note that the above defined model is a two-sided error model i.e., the error can be both in

1-inputs and 0-inputs. Similarly, a one-sided error model can also be defined.
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Lemma 4.1.7 (Min-Max Lemma (Yao)). Let µ be a probability distribution on the inputs X ×Y.

Then the distributional complexity of f , Dµ,ε(f) is the cost of the best deterministic protocol

P which gives correct answer on (1 − ε) fraction of all the inputs X × Y. Here the fraction is

calculated based on the distribution µ.

Then,

Rpubε (f) = max
µ

Dµ,ε(f).

This lemma says that in order to give a lower bound to the public coin randomized communica-

tion complexity of any function it suffices to find a hard distribution µ on the input and then give a

lower bound on the deterministic cost Dµ,ε(f).

Private coin protocols are defined analogously (players now have access only to private random

bits), and their complexity is denoted by Rε(f). It can be shown that with an additive logn bits

(when the input size in n) any private coin protocol for computing f can be converted into a public

coin protocol computing the same function f [KN97].

4.1.4 Quantum Communication Complexity (With Entanglement)

In this model the players are quantum and they are allowed to send quantum messages between

each other. Both players Alice and Bob have their private set of qubits. Before the protocol

starts some of the qubits are initialized to the their respective inputs. Other qubits are kept in ∣0⟩

state. They may also have some shared entangled states. In each round of the protocol the players

alternatively perform a unitary operation on the qubits in his/her possession and then send one of

his/her qubits to the other player. Note that the players choose in advance which qubits to send and

which unitary operation to perform in each round. At the end of the protocol one of the player’s

some of the qubits are measured and the output is produced. The complexity of the protocol is the

number of qubits exchanged.

As usual we are interested in the minimum number of qubits exchanged to compute a function

f . The exact quantum communication complexity QE(f) of a function f is the complexity of an

optimal quantum protocol that computes f without any error.

We also define a bounded-error version of the quantum communication complexity denote by

Q(f), where the protocol is allowed to have error, but for all inputs (x, y) the protocol has to be

correct with probability 1 − ε, for ε < 1/2. When we allow shared entanglement we denote the

same by Q∗(f).
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Bounded error quantum communication complexity can be significantly smaller than the

randomized one [BCW98]. For example the Disjointness function (DISJ(x, y) = 1 iff ∄i ∈

[n] s.t. xi = yi = 1) has quantum bounded error communication complexity Θ(√n), whereas the

randomized communication complexity is Ω(n).

Partial Functions

Definition 4.1.8. Partial Functions: A partial Boolean function f is a function which is not defined

for all the inputs. The function f ∶ {0,1}n×{0,1}m×{0,1,�} has three possible outputs, {0,1,�},

where � stands for “undefined” and the output is � for the inputs which are not defined.

A protocol for f is correct, if it gives the correct output for all x, y with f(x, y) ≠ � (with cer-

tainty for deterministic protocols, and with probability 2/3 for randomized and quantum protocols).

4.2 One-way Communication Complexity

One-way Protocols

A protocol is one-way, if Alice sends a message to Bob, who computes the function value, or

vice versa. We denote by DA→B(f) the deterministic one-way communication complexity of a

function f , when Alice sends the message to Bob. Similarly, the randomized complexity is defined

by RA→B(f).

When considering an one-way protocol from Alice to Bob, in order to reduce the message size

Alice needs to map more than one inputs into a single message. Two rows x,x′ of Af are distinct,

if there is a column y, such that f(x, y) = 1 and f(x′, y) = 0 or vice versa, i.e., the function values

differ on some defined input.

Similar to the above, we denote byQA→B(f) the quantum one-way communication complexity

of f with error 1/3. This notion is of course asymptotically robust when it comes to changing

the error to any other constant. QA→B,∗(f) denotes the complexity if Alice and Bob share

entanglement.

4.3 Merlin Arthur Protocols

We now define some more esoteric modes of communication that extend the standard nondetermin-

istic mode to the quantum case. We restrict our attention to one-way protocols.

48



One-way Merlin Arthur Protocols

Definition 4.3.1. In a one-way MA-protocol there are 3 players Merlin, Alice, Bob. Merlin

sends a classical message to Alice, who sends a classical message to Bob, who gives the output.

Alice and Bob share a public coin, which is not seen by Merlin. For a Boolean function f ∶

{0,1}n × {0,1}m → {0,1} the protocol is correct, if for all 1-inputs there is a message from

Merlin, such that with probability 2/3 Bob will accept, whereas for all 0-inputs, and all messages

from Merlin, Bob will reject with probability 2/3. The communication complexity is defined as

usual and denoted by MAA→B(f).

A one-way QCMA-protocol is defined similarly, but whereas Merlin’s message is still classical,

Alice can send a quantum message to Bob, and Alice and Bob may share entanglement. The

complexity with shared entanglement is denoted QCMAA→B,∗(f).

In a one-way QMA-protocol also Merlin’s message may be quantum. The complexity is denoted

by QMAA→B(f) in the case where no entanglement is allowed.

4.4 k-Round Communication Complexity

Definition 4.4.1. The deterministic communication complexity of protocols with at most k messages

exchanged, starting with Alice, is denoted by Dk(f).

4.5 Simultaneous Message Passing (SMP) Model

Definition 4.5.1. In a simultaneous message passing protocol, both Alice and Bob send messages

mA,mB to a referee. The referee, based on mA,mB , computes the output. The simultaneous

communication complexity of a function f , R∣∣(f), is the cost of the best SMP protocol that

computes the function f using private randomness and error 1/3.

For more details about classical communication complexity we encourage the reader to read

the excellent monography by Kushilevitz and Nisan [KN97] and for quantum communication

complexity readers can follow an excellent survey by de Wolf [dW02].
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Chapter 5

Query Complexity of Graph Properties

This chapter is based on the following paper:

• Kulkarni, R., and Podder, S. (2016). Quantum Query Complexity of Subgraph Isomorphism and

Homomorphism. In Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science

(STACS 2016), Pages 48:1–48:13 [KP16]

5.1 Subgraph Isomorphism and Homomorphism Problem

Understanding the query complexity of monotone graph properties has a long history. In the

deterministic setting the Aanderaa-Rosenberg-Karp Conjecture asserts that one must query all (n2)

edges in the worst-case. The randomized complexity of monotone graph properties is conjectured

to be Ω(n2). Yao [Yao87] obtained the first super-linear lower bound in the randomized setting

using graph packing arguments. Subsequently his bound was improved by King [Kin88] and

later by Hajnal [Haj91]. The current best known bound is Ω(n4/3√logn) due to Chakrabarti and

Khot [CK01]. Moreover, O’Donnell, Saks, Schramm, and Servedio [OSSS05] also obtained an

Ω(n4/3) bound via a more generic approach for monotone transitive functions. Friedgut, Kahn,

and Wigderson [FKW02a] obtain an Ω(n/p) bound where the p is the critical probability of the

property. In the quantum setting, Buhrman, Cleve, de Wolf and Zalka [BCdWZ99] were the first

to study quantum complexity of graph properties. Santha and Yao [SY] obtain an Ω(n2/3) bound

for general monotone properties. Their proof follows along the lines of Hajnal’s proof.

In this chapter we focus on two of the most interesting problems among the monotone graph

properties – the Subgraph Isomorphism Problem and the Subgraph Homomorphism Problem.

Below we formally define the Subgraph Isomorphism Problem and prove the related results.
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We shall discuss the Subgraph Homomorphism Problem in Section 5.3 of this chapter. To

briefly define the problem first recall that a homomorphism from a graph H into a graph G is a

function h ∶ V (H)→ V (G) such that: if (u, v) ∈ E(H) then (h(u), h(v)) ∈ E(G). Then given a

graph G the Subgraph Homomorphism Problem asks whether a graph H admits a homomorphism

into G.

5.2 Subgraph Isomorphism Problem

Let H be a (non-empty) graph on n vertices, possibly containing isolated vertices and let G be an

unknown input graph (on n vertices) given by query access to its edges, i.e., queries of the form

“Is {i, j} an edge in G?”. We say H ≤ G if G contains H as a (not necessarily induced) subgraph.

Let fH ∶ {0,1}(
n
2
) → {0,1} be defined as follows:

fH(G) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if H ≤ G

0 otherwise.
(5.1)

The well-known Graph Isomorphism Problem asks whether a graph H is isomorphic to another

graph G. It is not known to be solvable in polynomial time. It is also highly unlikely that it will be

a NP-complete problem. Thus the problem may be in the complexity class NP-intermediate. Very

recently a quasi-polynomial time algorithm for Graph Isomorphism problem has been proposed by

Babai [Bab15].

The Subgraph Isomorphism Problem is a generalization of the Graph Isomorphism Problem

where one asks whether H is isomorphic to a subgraph of G. Unlike the graph isomorphism

problem this problem is NP-Complete. Several central computational problems for graphs such

as containing a clique, containing a Hamiltonian cycle, containing a perfect matching can be

formulated as instances of the Subgraph Isomorphism Problem by fixing H appropriately. Given

the generality and importance of the problem, people have investigated various restricted special

cases of this problem in different models of computation [wik, LRR14]. In the context of query

complexity, in 1992 Dietmar [Die92] studied this problem in the randomized setting and showed

that R(fH) = Ω(n3/2), which is the best known bound to this date. In this chapter we investigate

this problem in the quantum setting.

To the best of our knowledge, the quantum query complexity for the Subgraph Isomorphism

Problem has not been investigated prior to our work when H is allowed to be any graph on n
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vertices. A special case of this problem when H is of a constant size has been investigated before

for obtaining upper bounds [LMS11].

5.2.1 Related Work

Dietmar [Die92] obtained an Ω(n3/2) bound for the randomized query complexity of the Subgraph

Isomorphism. This is currently the best known bound for the Subgraph Isomorphism Problem.

Until very recently1, it was believed that for all total functions the quantum query complexity is at

least the square root of the randomized one. In this work we address the quantum query complexity

of the Subgraph Isomorphism Problem and obtain the square root of the current best randomized

bound.

The main difference between the previous work and this one is that all the previous works,

including that of Santha and Yao [SY], obtained the lower bounds based on an embedding of a

tribes function [BBC+01] on a large number of variables in monotone graph properties2. Recall

that the tribes function with parameters k and `, is a function T (k, `) on k ⋅ ` variables defined as:

⋁i∈[k]⋀j∈[`] xij . This method yields a lower bound of Ω(k ⋅`) for the randomized query complexity

and Ω(
√
k ⋅ `) for quantum. We deviate from this line by embedding a threshold function T tn

instead of a tribes. Recall that T tn(z1, . . . , zn) is a function on n variables that evaluates to 1 if and

only if at least t of the zi’s are 1. Since the randomized complexity of T tn is Θ(n), this does not give

us any advantage for obtaining super-linear randomized lower bounds. However, it does yield an

advantage for the quantum lower bounds as the quantum query complexity of T tn is Θ(
√
t(n − t))

[Pat92], which can reach up to Ω(n) for t = Θ(n). Since this technique works only in the quantum

setting, the randomized versions of our bounds remain intriguingly open.

We now prove the quantum query complexity lower bound for the Subgraph Isomorphism

Problem.

5.2.2 Lower Bound on the Subgraph Isomorphism Problem

This section gives a lower bound on the quantum query complexity of the Subgraph Isomorphism

Problem for H in terms of the maximum independence number of H .

1Very recently this has been falsified by Aaronson et al. [ABDK15].
2Similar tribes-embeddings were used for obtaining lower bounds for matroidal Boolean functions in [KS13].
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Theorem 5.2.1. For any non-empty H ,

Q(fH) = Ω (√αH ⋅ n) ,

where αH denotes the size of a maximum independent set of H on n vertices. For example when

H is a single edge, αH = n − 1 (the independent set consists of one vertex from the edge and rest

of the n − 2 isolated vertices).

The proofs crucially rely on the duality of monotone functions and appropriate embeddings of

tribes and threshold functions. All the lower bounds also hold for the approximate degree d̃eg(f),

which is a lower bound on the quantum query complexity [BBC+01, Amb03].

Before proving Theorem 5.2.1 we first prove two lemmas.

Let Sd denote the star graph with d edges. Then fSd is the property of having a vertex of at

least degree d. First we show:

Lemma 5.2.2. For 1 ≤ d ≤ n − 1,

Q(fSd) = Ω(n).

Proof. We divide the proof into two cases:

Case 1: d > n/2.

Fix a clique on the vertices 1, . . . , ⌊n/2⌋ and fix an independent set on the vertices ⌊n/2⌋ +

1, . . . , n. Note that we still have ⌊n/2⌋ × ⌈n/2⌉ edge-variables that are not yet fixed. Now as soon

as any vertex v from the clique has (d − ⌊n/2⌋ + 1) edges to the independent set present, we have a

d-star. Thus fSd becomes an OR⌊n/2⌋ ○T
(d−⌊n

2
⌋+1)

⌈n/2⌉ function, which has a lower bound of Ω(n) via

the Composition Theorem for quantum query complexity [LMR+11].

Case 2: d ≤ n/2.

A minimum certificate of fSd is a d-star.

Now we have the following lemma due to Yao [Yao87].

Lemma 5.2.3 (Packing Lemma [Yao87]). If z1 is a minimal certificate of P and z2 is a minimal

certificate of P∗ then z1 and z2 cannot be packed together.

By the above Lemma 5.2.3 we know that this d-star cannot be packed with any minimal

certificate of the dual f∗Sd . Thus every vertex in the dual f∗Sd must have degree > n − d. Hence the

minimal certificate size is at least Ω(n2) and Q(f∗Sd) = Q(fSd) = Ω(n).
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Recall that a Threshold function T tn(z1, . . . , zn) is a function on n variables such that T tn

outputs 1 if and only if at least t variables are 1.

Let t denote the smallest integer such that f∗H(Kt) = 1, where Kt denotes the complete graph

on t vertices. Note that t = αH + 1.

Lemma 5.2.4.

Q(fH) ≥ Ω(
√
t(n − t)).

Proof. We embed T tn in f∗H (on inputs of Hamming weight t − 1 and t) via the following mapping:

Let xij ∶= zi ⋅ zj and let f ′(z1, . . . , zn) ∶= f∗H({xij}). Note that f ′ ≡ T tn. Also note3 that

Q(fH) = Q(f∗H) and d̃eg(f ′) ≤ 2 ⋅ d̃eg(f∗H). Since Q(f) ≥ d̃eg(f), it remains to prove the

following:

Claim 5.2.5. d̃eg(f ′) = Ω(
√
t(n − t))

We need the Lemma 3.6.1 due to Paturi [Pat92]: Note that f ′ (≡ T tn) satisfies the condition of

the Lemma 3.6.1.

◻

This finishes the proof of the Lemma 5.2.4.

Now we are ready to prove the Theorem 5.2.1.

Proof of Theorem 5.2.1.

Recall that t denotes the smallest integer such that f∗H(Kt) = 1. We divide the proof into two

cases:

Case 1: t > n/2

In this case, we reduce the fH to fSp for some p = Ω(n). Let νH denote the minimum vertex

cover size of H . Since t > n/2, we have νH ≤ n/2. When νH = 1 the property is trivially a star

property and from the Lemma 5.2.2 we already get Q(fH) = Ω(n). Otherwise we restrict fH by

picking a clique on νH − 1 vertices and joining all the other n − νH + 1 remaining vertices to each

3Since xij = zi.zj , every monomial of f∗H of size d becomes a monomial of size at most 2d in f ′.
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vertex in this clique. The resulting function takes a graph on p = n − νH + 1 vertices as input. Let’s

denote these vertices by S.

As the clique on νH − 1 vertices cannot accommodate all the vertices in the minimum vertex

cover of H , in order to satisfy the property fH at least one vertex v in the vertex cover must occur

among S. This vertex v may have some edges incident on the vertices of the clique and some

edges incident on the vertices of S. In the restriction all the possible edges to the clique are already

present. Thus as soon as we have the remaining edges to the vertices of S the property fH is

satisfied.

Hence the property is now reduced to finding a star graph with d edges, fSd where d is defined

as follows: Let C be a vertex cover. Furthermore let dout(v) denote the number of neighbors of a

vertex v in C that are outside C and dout(C) be the minimum over all such vertices v in C. Then

d is the minimum dout(C) of a minimum vertex cover C of H (minimized over all the minimum

vertex covers). Thus as soon as we have the star graph with d edges, our original restricted fH is

satisfied.

Now from the Lemma 5.2.2 we get Q(fH) = Ω(n).

Case 2: t ≤ n/2

Note that t > αH . And since t ≤ n/2, we have n − t = Ω(n). Hence from the Lemma 5.2.4 we

get the bound of Ω(
√
t(n − t)), which is Ω(√αH ⋅ n).

◻

As a result, we immediately get the following corollaries.

Corollary 5.2.6. For any non-empty H ,

1. Q(fH) = Ω( n√
davg(H)

) ,

2. Q(fH) = Ω ( n√
χH

) ,

3. Q(fH) = Ω (
√

n
p ) ,

where davg(H) denotes the average degree of the vertices of H , χH denotes the chromatic number

of H , and p denotes the critical probability [FKW02a] of H .

Proof. (1) From Turán’s theorem, we have: αH ≥ n/(2 ⋅ davg(H)).

(2) Since αH ⋅ χH ≥ n we have αH ≥ n/χH .

(3) Since the critical probability of H is p, the average degree of H is at most pn. Hence from

Corollary 5.2.6(1), we get the Ω(n/p) bound.
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In particular, we get an Ω(n) bound when the graph H is sparse (∣E(H)∣ = O(n)), or H has

a constant chromatic number, or the critical probability of H is O(1/n). Friedgut, Kahn, and

Wigderson [FKW02a] show an Ω(n/p) bound for the randomized query complexity of general

monotone properties. Quantization of this bound remains open. General monotone properties can

be thought of as the Subgraph Isomorphism for a family of minimal subgraphs. The item 3 above,

gives a quantization of [FKW02a] in the case when the family contains only a single subgraph.

We also get the following corollary.

Corollary 5.2.7. For any non-empty H ,

Q(fH) = Ω(n3/4).

.

Proof. When davg(H) ≥ √
n the Lemma 3.3.4 gives an Ω(n3/4) bound. Otherwise when

davg(H) < √
n we use the Corollary 5.2.6(1), which gives the same bound.

Prior to this work only an Ω(n2/3) bound was known from the work of Santha and Yao [SY]

on general monotone graph properties.

5.2.3 Subgraph Isomorphism for 3-Uniform Hypergraphs

In this section we extend the Ω(n3/4) bound for the Subgraph Isomorphism for graphs to the

3-uniform hypergraphs. In particular, we obtain an Ω(n4/5) bound for the Subgraph Isomorphism

for 3-uniform hypergraphs, improving upon the Ω(n3/4) bound obtained via the minimal certificate

size.

Theorem 5.2.8. Let H be a non-empty 3-uniform hypergraph on n vertices. Then,

Q(fH) = Ω(n4/5).

Before going to the proof of Theorem 5.2.8, we extend the Lemma 5.2.4 to the 3-uniform

hypergraphs. Let t be the smallest such that f∗H(Kt) = 1. Note that t = αH + 1.

Lemma 5.2.9. Let H be a 3-uniform hypergraph on n vertices. Then:

Q(fH) ≥ Ω(
√
t(n − t)).
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Proof. Let T tn(z1, . . . , zn) denote the threshold function on n variables that outputs 1 if and only

if at least t variables are 1. We embed a T tn in f∗H (on inputs of Hamming weight t − 1 and t)

via the following mapping: Let xijk ∶= zi ⋅ zj ⋅ zk. Let f ′(z1, . . . , zn) ∶= f∗H({xijk}). Note that

f ′ ≡ T tn. Also note4 that the d̃eg(f ′) ≤ 3 ⋅ d̃eg(f∗H). Since Q(f) ≥ d̃eg(f), it remains to prove

that d̃eg(f ′) = Ω(
√
t(n − t)), which follows from the Lemma 3.6.1.

Now we give a proof of the Theorem 5.2.8.

γH

αH

H

C i
Gi

Figure 5.1: Structure of H

Proof of Theorem 5.2.8.

We divide the proof into two main cases.

Case 1: αH > n/2.

Let H be a 3-uniform hypergraph on n vertices. Let C denote a minimal vertex cover of H .

Let ∣C ∣ = νH . Note that the hypergraph induced on V − C is empty. For a vertex i ∈ C let Gi

denote the projection graph of the neighbors of i on V −C, i.e., (i, u, v) ∈ E(H) (see Figure 5.1).

Let PH denote the restriction of the fH defined as follows: set the hyper-clique on νH − 1

vertices to be present and add all the hyper-edges incident on the vertices of this clique. Let S

denote the set of remaining n − νH + 1 vertices. The hyper-edges among S are still undetermined.

Note thatPH is a non-trivial property of n−νH+1 vertex hypergraphs, sinceH cannot be contained

in the νH − 1 hyper-clique and edges incident on it as the minimum vertex cover size of H is νH .

4Since xijk = zi ⋅ zj ⋅ zk, every monomial of f∗H of size d becomes a monomial of size at most 3d in f ′.

58



Lemma 5.2.10. If ∃C, ∃i ∶ ∣E(Gi)∣ = O(n7/5), then Q(fH) = Ω(n4/5).

Proof. In this case PH has a certificate of size O(n7/5).

Now we use the following lemma due to Sun et al. [SYZ04b].

Lemma 5.2.11 (Transitive Packing [SYZ04b]). Let f be a monotone transitive function on n

variables. If f has a minimal certificate of size s then every certificate of f∗ must have size at least

n/s.

Hence from the above Lemma 5.2.11 the certificate size of P∗H is Ω( n3

n7/5 ) = Ω(n8/5). Now

from the Lemma 3.3.4 we get Q(fH) = Ω(n4/5).

Hence from now onwards we assume that for all i, ∣E(Gi)∣ = Ω(n7/5). Moreover, we may also

note that νH = O(n1/5), if not we have a minimal certificate for PH of size Ω(n8/5). And hence

from the Lemma 3.3.4 we already get the desired bound of Q(fH) = Ω(n4/5).

Figure 5.2: The Restriction P ′′

Now we obtain a restriction P ′ of PH as follows: divide S into two parts say S1 and S2 of

size n1 and n2 respectively, where we choose n1 = Θ(n1/5) and n2 = Θ(n). Set all the hyper-

edges within S1 to be present and set all the hyper-edges within S2 to be absent. Also set all the

hyper-edges with two endpoints in S1 and one in S2 to be absent. Only possible undetermined

hyper-edges are with one endpoint in S1 and two in S2. Note that even after setting all hyper edges

in S1 to be present we can safely assume that the property remains non-trivial. Otherwise we would

have a certificate for PH of size O(n3/5), hence the dual will have large (≫ Ω(n8/5)) certificates.

Let G be a projection graph among all the Gi’s containing the least number of edges inside

S2. We further obtain a restriction P ′′ by fixing a copy of G inside S2 and allowing only potential
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hyper-edges with one endpoint in S1 and the other two endpoints forming an edge of G (see

Figure 5.2).

Let C be a vertex cover of H of minimum cardinality. Note that in order to satisfy PH , at least

one of the vertices from C must move to S. Let us call a vertex of C that moves to S as pivot.

Let k be the largest integer such that PH has a minimal certificate with k pivots. Note that from

Lemma 5.2.10 each pivot has Ω(n7/5) edges incident on it. Therefore if k > n1/2 then we already

have a minimal certificate whose size is Ω(n8/5). Otherwise: k ≤ n1/2. First we argue that any

pivot must belong to S1. If on the contrary, it were in S2 then the only possible edges incident

on such a pivot v are of the form (v, u,w) where u ∈ S1 and w ∈ S2. But there can be at most

O(n6/5) such edges, which contradicts the fact that any pivot supports at least Ω(n7/5) edges. Let

the degree of a pivot be the number of edges inside S2 that are adjacent to it. Next we choose a

certificate for PH with at most k ≤ n1/2 pivots such that the degree of the minimum degree pivot

is minimum possible. Then we leave aside the minimum degree pivot in this certificate and fix the

k − 1 other pivots and their projection on S2. From each of the remaining n1 − k + 1 vertices we

keep the projection of the minimum degree pivot on S2 as the only possible edges.

Now from minimality of our choice at least one of these vertices must have all these Ω(n7/5)

edges in order for the original graph to contain H . Thus we get an ⋁Ω(n1/5)⋀Ω(n7/5) function as

the restriction.

Since an OR ○AND on m variables admits an Ω(√m) lower bound on the quantum query

complexity we get Q(fH) = Ω(n4/5).

Case 2: αH ≤ n/2.

In this case we use Lemma 5.2.9. Since n − αH ≥ n/2, we immediately get Q(fH) =

Ω(√αH ⋅ n).

Now in order to prove Theorem 5.2.8, we need to show that the above bound always yields an

Ω(n4/5) bound. Thus we further consider two cases based on the average degree. And in fact this

gives us a larger Ω(n5/6) bound for the case 2.

Let d denote the average degree of H .

Case 2a: d > n2/3.

In this case ∣E(H)∣ > Ω(n5/3). Hence from Lemma 3.3.4 we get an Ω(n5/6) bound.

Case 2b: d ≤ n2/3.

Before going into the proof of this case we state the following lemma due to Ajtai et al.

[AKP+82].
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Lemma 5.2.12 (Turán and Extended Turán [AKP+82]). If the average degree of a graph G is d

then G contains an independent set of size at least Ω(n/d).

And if the average degree of a k-uniform hypergraph G is d then G contains an independent

set of size at least Ω(n/d 1
k−1 ).

Here we use the above extension of Turán’s Theorem (see Lemma 5.2.12) to 3-uniform

hypergraphs. Since the average degree is O(n2/3), we get αH ≥ Ω(n2/3). Therefore from

Lemma 5.2.9 we get Q(fH) = Ω(n5/6).

This completes the proof of Theorem 5.2.8.

◻

In the following two sections we study the Subgraph Homomorphism Problem. We first prove

the quantum query complexity lower bounds for graphs and then for 3-uniform hypergraphs.

5.3 Subgraph Homomorphism Problem

We also investigate a closely related Subgraph Homomorphism Problem for graphs and 3-uniform

hypergraphs.

5.3.1 Subgraph Homomorphism Problem for Graphs

Recall that a homomorphism from a graph H into a graph G is a function h ∶ V (H)→ V (G) such

that: if (u, v) ∈ E(H) then (h(u), h(v)) ∈ E(G).

Let f[H] be the function defined as follows: f[H](G) = 1 if and only if H admits a homomor-

phism into G.

Note that unlike the isomorphism, the homomorphism need not be an injective function from

V (H) to V (G).

Here we show the following Theorem for the graphs:

Theorem 5.3.1. For any non-empty H ,

Q(f[H]) = Ω(n).

Proof. Let χ(H) denote the chromatic number of H . Note that H has a homomorphism into Kt

for t = χ(H), i.e., f[H](Kt−1) = 0 and f[H](Kt) = 1.
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We consider the following two cases.

Case 1: t ≥ n/2:

As Kt−1 is a no instance and Kt is an yes instance for the property f[H], the minimum

certificate size, m(f[H]) = Ω(t2) = Ω(n2). Hence from Lemma 3.3.4 we get an Ω(n) lower bound

on the quantum query complexity.

Case 2: t < n/2:

Consider the following restriction: We set a clique Kt−2 on t − 2 vertices to be present and we

also set all the edges from the remaining n − t + 2 vertices to this clique to be present. Now notice

that as soon as there is an edge between any two of the remaining n − t + 2 vertices, we have a

Kt. Hence the property f[H] has become the property of containing an edge among the n − t + 2

vertices. Since t < n/2, this is an OR function on Ω(n2) variables. Thus Q(f[H]) = Ω(n).

Remark 5.3.2. Our proof in fact shows that the minimum certificate size of either f[H] or f∗[H] is

Ω(n2). Hence we also obtain

R(f[H]) = Ω(n2).

.

5.3.2 Subgraph Homomorphism for 3-Uniform Hypergraphs

We now proceed to prove the quantum query complexity lower bound of the Subgraph Homomor-

phism Problem for 3-uniform hypergraph.

Theorem 5.3.3. For any non-empty 3-uniform hypergraph H on n vertices:

Q(f[H]) = Ω(n3/2).

Proof. Proof of this theorem is similar to the proof of the previous theorem, Theorem 5.3.1.

Let χ(H) denote the chromatic number of H . A valid χ coloring of a hypergraph is a coloring

function f ∶ V → [χ] such that no edge of the graph is monochromatic (i.e., all incident vertices

of any edge are of same color). Then the chromatic number χ(H) of the hypergraph H is the

minimum number χ such that a function f ∶ V → [χ] exists.

Note that H has a homomorphism into Kt for t = χ(H), i.e., f[H](Kt−1) = 0 and f[H](Kt) =

1.
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We consider the following two cases.

Case 1: t ≥ n/2:

Unlike the graph homomorphism case, we cannot claim the presence of a Kt in this case.

However we can still use the following fact:

Fact 5.3.4. (Alon [Alo85]) If H is a 3-uniform hypergraph which is not k colorable then

∣E(H)∣ = Ω(k3).

Therefore, the minimum certificate size m(f[H]) = Ω(t3) = Ω(n3). Hence from Lemma 3.3.4

we get an Ω(n3/2) lower bound on the quantum query complexity.

Case 2: t < n/2:

Consider the following restriction: We set a clique Kt−3 on t − 3 vertices to be present and we

also set all the edges from remaining (n − t + 3) vertices to this clique to be present. Now notice

that as soon as there is an edge between any three of the remaining (n − t + 3) vertices, we have a

Kt. Hence the property f[H] has become the property of containing an edge among the n − t + 3

vertices. Since t < n/2, this is an OR function on Ω(n3) variables. Thus Q(f[H]) = Ω(n3/2).
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Chapter 6

Graph Properties in the Node Query

Settings

This chapter is based on the following paper:

• Balaji, N., Datta, S., Kulkarni, R., and Podder, S. (2015). Graph properties in node-query setting:

effect of breaking symmetry. In Proceedings of the 41st International Symposium on the Mathematical

Foundations of Computer Science (MFCS) 2016. [BDKP15]

6.1 Introduction

In the Subgraph Isomorphism Problem (as discussed before) a graph H is known, and access to

another graph G is given only via queries to the edges of G. The goal is to figure out whether G

contains H as its subgraph. Note that it does not have to be induced. Now it is reasonable to ask

what happens if we change the type of query and instead of asking whether an edge ei, i ∈ (n
2
) is

present in G we ask whether a vertex vj , j ∈ [n] is present in G. Thus any vertex can either be

active or inactive. Naturally the set of all active vertices in G forms an induced subgraph. We

can then ask if the induced subgraph contains the graph H as a subgraph or whether it has some

property P . Formally it is defined as follows: A graph G = (V,E) and a property P are fixed.

We have access to S ⊆ V via queries of the form “Does i belong to S?”. We are interested in the

minimum number of queries needed in the worst case in order to determine whether G[S] – the

subgraph of G induced on S – satisfies property P , which we denote by cost(P,G). Similar to

the edge query setting this new setting is combinatorially very rich and it opens a new platform for

asking interesting questions. We investigate this new setting in this chapter.
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6.1.1 Graph Properties in Node-Query Setting

Graph properties in the edge query settings has been vastly investigated. In this chapter , we

investigate the node query settings. It is defined as follows: A graph G = (V,E) and a property P

are fixed. We have access to S ⊆ V via queries of the form “Does i belong to S?”. We are interested

in the minimum number of queries needed in the worst case in order to determine whether G[S] –

the subgraph of G induced on S – satisfies P , which we denote by cost(P,G). One may define a

similar notion of cost for randomized and quantum models.

We call G the base graph for P . We say that a vertex i of G is relevant for P if there exists

some S containing i such that exactly one of G[S] and G[S − {i}] satisfies P . We say that G is

relevant for P if all its vertices are relevant for P . The minimum possible cost of P , denoted by1

min-cost(P), is defined as follows:

min-costn(P) = min
G

{cost(P,G) ∣ G is relevant for P & ∣V (G)∣ = n}.

Note that in the node-query settings the notion of relevance of a graph G for the property P is

important because if any vertex v ∈ G is not relevant then v cannot possibly influence the output of

the function and hence any query algorithm do not need to query it.

Similarly, one can define max-cost(P) as follows:

max-costn(P) = max
G

{cost(P,G) ∣ G is relevant for P & ∣V (G)∣ = n}.

The max-cost is a more natural notion of complexity when one is interested in studying the

universal upper bounds. Investigating the max-cost in our setting is a topic of future research and

we shall discuss this in the conclusion section (see Chapter 9). For the time being, the notion of

min-cost will be more relevant.

Notice that in the definition of min-cost we take the minimum over all possible graphs that are

relevant. We can define the notion of G-min-cost(P) where we restrict ourself to only a certain

class of graphs G. For example, we can consider the set of planar graphs or graphs with a certain

amount of symmetry and ask what is the minimum cost of finding a property P in planar graphs or

for graphs with symmetry, G-min-cost(P).

1We slightly abuse this notation by omitting the subscript n.
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Formally,

G-min-costn(P) = min
G∈G

{cost(P,G) ∣ G is relevant for P & ∣V (G)∣ = n}.

Similar to the edge query model, there are several lines of investigation that can be done in the

node query setting. We choose to focus on the effect of removing symmetry from graphs and study

how low the query complexity can fall if we take away the symmetry assumption from the input

graph. By taking away the symmetry we mean, first we ask what is the G-minn-cost(P) when G

is a set of graphs with a certain amount of symmetry. Then we compare it with the min -costn(P)

where there is no restriction on the G2 3.

6.1.2 Some Practical Applications of Node-Query Setting

It appears that the node-query setting is also a natural abstraction of scenarios where one is

interested in the properties of subgraph induced by active nodes in a network. We discuss three

such examples below.

1. Consider a graph that models the associations in a social network, say the Facebook graph

(where two nodes are adjacent if they are Facebook friends). At any given time, users can be

online or offline. We might be interested in finding out if there is any user who is online and

is influential, in the sense that he/she has many neighbors (friends) who are also online at

that time. This problem can be formulated in our setting as whether the induced subgraph

has a vertex of large degree or not (Section 6.3.3).

2. Consider a physical network with several nodes and links between them. At any given time,

the nodes of the network can be either active or inactive. One way to find out if a node

is active is to ping it (possibly by physically going to the site), which comes with some

fixed cost. For example, the underlying network could be the network of routers which

are physically connected by wires. Some of the routers may go on and off over time. At

any given time, we want to know whether a message can be sent between two specified

nodes via the active routers. This problem can be formulated in our setting as whether the

subgraph induced by active routers has a path between two specified nodes s and t or not.

(Section 6.5.1)
2In our setting, every hereditary property is a monotone Boolean function.
3We would like to highlight that although we didn’t explicitly define min-cost(P) or max-cost(P) for randomized

query model, all our lower bound proofs are based on sensitivity arguments and hence work even for randomized case.
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3. Consider a chemical lab which performs experiments with certain basic ingredients to build

medicines. Suppose a concoction comes out of an experiment and one wants to know

whether it is harmful or not. There are tests available for testing the presence of an ingredient

in the concoction. The lab also has a table of which two ingredients together form a harmful

combination. So the goal is to perform the tests for presence of individual ingredients to

check if any of the harmful combination is present. This problem can be formulated in our

setting as whether the induced subgraph is empty or not. (Section 6.3.3)

To the best of our knowledge, no systematic study of node-query setting has been yet undertaken.

Here we initiate such a line of inquiry for graph properties. In particular, we focus on the role of

presence and absence of symmetry.

Related Work

Understanding the effect of symmetry on computation is a very well-studied theme in the literature.

In the context of query complexity, there has been a substantial amount of effort invested in

understanding the role of symmetry on computation. A recurrent theme has been to exploit the

symmetry and/or some other structure [KS13] of the underlying functions to prove good lower

bounds on their query complexity.

One such line of research concerns with the famous Andera-Rosenberge-Karp Conjecture [KSS84]

which asserts that every non-trivial monotone graph property of n vertex graphs (in the edge-query

model) must be evasive, i.e., its query complexity is (n
2
). While a weaker bound of Ω(n2) is

known, the conjecture remains widely open to this date. Even the randomized query complexity

of monotone graph properties is also conjectured to be Ω(n2) [FKW02b] and we are far from

proving it. Thus it make sense to try to prove the conjectures for a certain class of graphs, for

example graphs with symmetry. Sun,Yao, and Zhang [SYZ04a] studied query complexity of graph

properties and several transitive functions in the edge query setting. Their motivation was to

investigate how low can the query complexity fall if we drop the assumption of monotonicity

or lower the amount of symmetry. In this work, we follow their footsteps and ask what happen

if we totally drop the symmetry assumption. In the past, Lovász has also conjectured [Iva] that

checking independence of S exactly in the node query setting is evasive. The main difference

between the past works and this one is that most of the previous work exploit the symmetry to

prove (or to conjecture) a good lower bound, whereas we investigate the consequences of breaking

the symmetry for the query complexity.
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6.1.3 Effect of Breaking Symmetry

It turns out that in the node query setting, when G has the highest amount of symmetry, i.e.,

when G is the class of complete graphs, then for every hereditary property P , G-min-cost(P)

is nearly the worst possible, i.e., Ω(n). Recall that a hereditary property is a property of graphs,

which is closed under deletion of vertices as well as edges. For instance acyclicity, bipartiteness,

planarity, and triangle-freeness are hereditary properties whereas connectedness and containing a

perfect matching are not. Every hereditary property can be described by a (not necessarily finite)

collection of its forbidden subgraphs. In our setting, every hereditary property is a monotone

Boolean function. It also turns out that one does not require the whole symmetry of the complete

graph to guarantee the Ω(n) bound. Even for weaker symmetry assumptions on graphs i.e., when

G is the class of transitive graphs, for any hereditary property P the G-min-cost(P) would remain

the highest possible, i.e., n. So for the complexity to fall down substantially we let go of the

transitivity of G and take G to be the class of all graphs: G-min-cost(P) =min-cost(P).

So how low can min-cost(P) fall in the absence of any symmetry? This is the main question

addressed by our work. We show that for any hereditary property P , the min-cost(P) falls

down at least quadratically, i.e., to O(√n). For some properties, it can fall even further below

(polynomially down) with polynomials of arbitrary constant degree, In particular we show that

for any hereditary graph property P: min-cost(P) = O(n1/(dP+1)), where dP is the minimum

degree of the minimum forbidden subgraph of the property P .

The main question left open by our work is: does there exist a hereditary property P for which

min-cost(P) is exponentially low? In other words:

Question 6.1.1. Is it true that for every hereditary property P there exists an integer kP > 0 such

that

min-cost(P) = Ω(n1/kP )?

As a partial answer to this question we prove that, when H is a fixed graph on k vertices

and PH denotes the property of containing H as a subgraph, then, min-cost(PH) = Ω(n1/k).

Furthermore a non-constant lower bound holds for any hereditary property i.e., for any hereditary

graph property P , min-cost(P) = Ω ( logn
log logn) .

Here in this chapter we study several other specific properties like Triangle-freeness, Indepen-

dence etc. and proved tight bounds. We also consider restricted graph classes and prove several

69



new results.

Hereditary Graph Properties

Before going any further, we formally recall the definition of Hereditary graph properties.

Definition 6.1.2 (Hereditary graph properties). A property P of graphs is simply a collection of

graphs. The members of P are said to satisfy P and non-members are said to fail P . A property

is hereditary if it is closed under deletion of vertices as well as edges. For instance: acyclicity,

planarity, and 3-colorability are hereditary properties, whereas connectivity and containing a

perfect matching are not. On the other hand, vertex-hereditary is closed only under vertex-deletion

(e.g. being chordal). Every hereditary property P can be uniquely expressed as a (possibly infinite)

family FP of its forbidden subgraphs. For instance: acyclicity can be described as forbidding all

cycles. Given a graph G, the hitting set SG,P for P is a subset of V (G) such that removing SG,P

from G would make the property P present4. Hereditary graph properties in node-query setting

are monotone decreasing Boolean functions. Sometimes we refer hereditary properties by their

negation. For instance: containing triangle.

6.2 Presence of Symmetry: Does it Guarantee Weak-Evasiveness?

Our goal is to study how low can query complexity fall in the absence of any symmetry assumption

of the base graph. First we show how much does the symmetry assumption lift up the complexity.

In edge-query setting, Aanderaa-Rosenberg-Karp Conjecture [KSS84, CKS01] asserts that

any non-trivial monotone graph property must be evasive, i.e., one must query all (n2) edges in

worst-case. The following generalization of the ARK Conjecture asserts that only monotonicity

and modest amount of symmetry, namely transitivity, suffices to guarantee the evasiveness [Lut01].

Conjecture 6.2.1 (Evasiveness Conjecture). Any non-constant monotone transitive function f on

n variables has D(f) = n.

This conjecture appears to be notoriously hard to prove even in several interesting special cases.

Recently Kulkarni [Kul13] formulates:

Conjecture 6.2.2 (Weak Evasiveness Conjecture). If fn is a sequence of monotone transitive

4such that every graph in FP shares a node with SG,P .
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functions on n variables then for every ε > 0:

D(fn) = Ω(n1−ε).

Although Weak EC appears to be seemingly weaker, Kulkarni [Kul13] observes that it is

equivalent to the EC itself. His results hint towards the possibility that disproving Weak EC might

be as difficult as separating TC0 from NC1. However: proving special cases of Weak EC appears

to be relatively less difficult. In fact, Rivest and Vuillemin [RV76] confirm the Weak EC for graph

properties and recently Kulkarni, Qiao, and Sun [KQS15] confirm Weak EC for 3-uniform hyper

graphs and Black [Bla15] extends this result to k-uniform hyper graphs. All these results are

studied in the edge-query setting. It is natural to ask whether the Weak EC becomes tractable

in node-query setting. The monotone functions in node-query setting translate precisely to the

hereditary graph properties. Here we show that it does become tractable for several hereditary

graph properties. But first we need the following lemma [Cha05, SYZ04a]:

Lemma 6.2.3. Let f be a non-trivial monotone transitive function. Let k be the size of a 1-input

with minimal number of 1s. Then: D(f) = Ω(n/k2).

Let GT denote the class of transitive graphs. LetH be a fixed graph. LetPH denote the property

of containing H as a subgraph. The following theorem directly follows from Lemma 6.2.3.

Theorem 6.2.4.

GT -min-cost(PH) = Ω(n).

The above result can be generalized for any finite family of forbidden subgraphs. We do not

yet know how to prove it for infinite family in general. However below we illustrate a proof for one

specific case when the infinite family is the family of cycles. First we need the following lemma:

Lemma 6.2.5. Let G be a graph on n vertices, m edges, and maximum degree dmax. Let C denote

the property of being acyclic. Then,

cost(C,G) ≥ (m − n)/dmax.

Proof. To make G acyclic one must remove at least m−n edges. Removing one vertex can remove

at most dmax edges. Thus the size of minimum feedback vertex set (FVS) is at least (m−n)/dmax.
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The adversary answers all vertices outside this FVS to be present. Now the algorithm must query

every vertex in the minimum FVS.

Theorem 6.2.6.

GT -min-cost(C) = Ω(n).

Proof. Since G is transitive, G is d regular for some d [GR13]. Therefore m = dn/2 and dmax = d.

Hence from Lemma 6.2.5 we get the desired bound for the case when d > 2.

When d = 2 the base graph is a 2-regular graph and any 2-regular graph consists of one or more

(disconnected) cycles. Thus for each vertex in every cycle adversary would keep saying 1 until the

last vertex in that cycle. Thus we need to query all the vertices in the graph.

We also show similar bound for the property of being planar:

Lemma 6.2.7. Let G be a graph on n vertices, m edges, and maximum degree dmax. Let P ′

denote the property of being planar. Then,

cost(P ′,G) ≥ (m − 3n + 6)/dmax.

Proof. To make G planar one has to remove at least (m − 3n + 6) edges from the graph G.

Removing one vertex can remove at most dmax edges. Thus the size of minimum hitting set of G

is at least (m − 3n + 6)/dmax. The adversary answers all vertices outside this minimum hitting set

to be present. Now the algorithm must query every vertex in the minimum hitting set.

Theorem 6.2.8.

GT -min-cost(P ′) = Ω(n).

Proof. Since G is transitive, G is d regular for some d [GR13]. Therefore m = dn/2 and dmax = d.

Hence for d ≥ 7 using Lemma 6.2.7 we get the desired bound. Note that as for this particular proof

to work, we require d ≥ 7, this theorem only holds for a class of transitive graphs with degree more

than or equal to 7.

Following special case of Weak EC remains open:

Conjecture 6.2.9. For any hereditary property P , for any ε > 0:

GT -min-cost(P) = Ω(n1−ε).
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6.3 Absence of Symmetry: How Low Can Query Complexity Fall?

In the previous section we saw that in the presence of a minimum symmetry assumption on the

base graph the query complexity of any hereditary graph property is worst possible, i.e., n. In

this section we shall investigate how much can the query complexity fall in the absence of any

symmetry assumption on the base graph.

6.3.1 A General Upper Bound

Let P be a hereditary graph property and dP denote the minimum possible degree of a minimal

forbidden subgraph for P .

Theorem 6.3.1. For any hereditary graph property P:

min-cost(P) = O(n1/(dP+1)).

⋮

⋮

1

2

3

⋮

⋮

cn1/dp+1 − 1

cn1/dp+1

Figure 6.1: Construction of G for a General Upper Bound

Proof. Let k = c ⋅n1/(dP+1) where we choose the constant c appropriately. Construct a graph G on

n vertices as follows (see Figure 6.1):

• Start with a clique on vertices v1, . . . , vk.

• For every S ⊆ [k] such that ∣S∣ = dP

– add k new vertices uS1 , . . . , u
S
k and

– connect each uSi to every vi ∶ i ∈ S.
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Note that every vertex v of G is relevant for P . Otherwise the algorithm immediately knows

that v cannot possible be a part of the property P and hence skips querying that vertex v. Now we

describe an algorithm (see Algorithm 1) to determine P in O(n1/(dP+1)) queries. Let cP denote

the smallest integer such that the clique on cP vertices satisfies P .

Algorithm 1:

• Query v1, . . . , vk.

• If at least cP of these vertices are present then P must fail.

• Otherwise there are at most cP − 1 vertices present (wlog: v1, . . . , vcP−1).

– For every subset S ⊆ [cP − 1] such that ∣S∣ = dP , query uS1 , . . . , u
S
k .

– If the graph induced on the nodes present (after all these (cP−1
dP

) × k queries)
satisfies P then answer Yes.
Otherwise answer No.

Note that any vertex that is not queried by the above algorithm can have at most dP − 1 edges

to the vertices in the clique v1, . . . , vk. Since dP is the minimum degree of a minimal forbidden

subgraph for P , these vertices now become irrelevant for P . Thus the algorithm can correctly

declare the answer based on only the queries it has made. It is easy to check that the query

complexity of the above algorithm is O(k) which is O(n1/(dP+1)).

Observe that dP ≥ 2 for any non-trivial P . Thus we immediately have the following corollary.

Corollary 6.3.2. For any hereditary graph property P:

min-cost(P) = O(
√
n).

Theorem 6.3.1 and Corollary 6.3.2 show that in the absence of any symmetry on the graph G

the query complexity can fall as low as O(n1/(d+1)) where d denotes the minimum possible degree

of a minimal forbidden sub-graph for P . In particular, every hereditary property benefits at least

quadratically.

We note that the above upper bound does not hold for general graph properties. For instance

Connectivity has cost Θ(n), so does containment of a Perfect Matching, which are both non-

hereditary properties (see Section 6.5.1).
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6.3.2 General Lower Bounds

As a partial answer to the Question 6.1.1 we prove the following theorem.

Theorem 6.3.3. Let H be a fixed graph on k vertices and let PH denote the property of containing

H as a subgraph. Then,

min-cost(PH) = Ω(n1/k).

Moreover it generalizes to any fixed number of forbidden subgraphs each on at most k vertices.

This implies that any hereditary property with finitely many forbidden subgraphs has a lower bound

of Ω(n1/k), for a constant k depending only on the property.

To prove Theorem 6.3.3 we need the following definition of a sunflower.

C

s1

s2s3

⋯

⋯

si
si+1

sp−1

sp

Definition 6.3.4 (Sunflower). A sunflower with core set C and p petals is a collection of sets

S1, . . . , Sp such that for all i ≠ j: Si ∩ Sj = C. Moreover, we want the petals to be non-empty.

We use the following lemma due to Erdös and Rado [ER60].

Lemma 6.3.5 (Sunflower Lemma). Let F be a family of sets of cardinality k each. If ∣F ∣ >

k!(p − 1)k then F contains a sunflower with p petals.

Proof of Theorem 6.3.3: Let G be a graph on n vertices such that every vertex of G is relevant

for the property of containing H . Let

F ∶= {S ∣ ∣S∣ = k & H is a subgraph of G[S]}.

Since every vertex of G is relevant for PH , we have: ∣F ∣ ≥ n/k. Now from Lemma 6.3.5 we can

conclude that F contains a sunflower on at least ∣F ∣1/k/k = Ω(n1/k) petals. Let C be the core of

this sunflower. We consider the restriction of PH on G where every vertex in C is present. Since

∣C ∣ < k, G[C] does not contain H . Now it is easy to check that one must query at least one vertex

from each petal in order to determine PH .
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◻

We note that both Theorem 6.3.1 and Theorem 6.3.3 are not tight. However, we do prove tight

bounds for several hereditary properties. We summarize few such interesting bounds in the Table

below.

Properties With Symmetry Without Symmetry

Fi
ni

te

Independence/Emptiness [Thm. 6.3.7] Θ(n) Θ(√n)

Bounded Degree [Thm. 6.3.10] Θ(n) Θ(√n)

Triangle-freeness [Thm. 6.3.8] Θ(n) Θ(n1/3)

Containing Kt [Thm. 6.3.1][Thm. 6.3.3] Θ(n) Θ(n1/t)

Containing Pt [Thm. 6.3.1][Thm. 6.3.9] Θ(n) Θ(√n)

Containing Ct [Thm. 6.3.1][Thm. 6.3.9] Θ(n) Θ(n1/3)

Containing H: V (H) = k [Thm. 6.2.4][Thm. 6.3.1][Thm. 6.3.3] Θ(n) O(n1/(dmin+1)), Ω(n1/k)

In
fin

ite

Acyclicity [Thm. 6.2.6][Thm. 6.3.1] Θ(n) O(n1/3)

Bi-partiteness [Thm. 6.3.1] Open O(n1/3)

3-colorability [Thm. 6.3.1] Open O(n1/4)

Planarity [Thm. 6.2.8][Thm. 6.3.1] Θ(n)5 O(n1/4)

Table 6.1: Summary of Results for Finite/Infinite Forbidden Subgraphs

Using similar technique we get a non-constant lower bound, which holds for any hereditary

property. Our proof again relies on the Sunflower Lemma.

Theorem 6.3.6. For any hereditary graph property P

min-cost(P) = Ω( logn

log logn
) .

Proof. Let G be a graph on n vertices such that every vertex of G is relevant for P . Let k be the

largest integer such that G contains a minimal forbidden subgraph for P on k vertices. Note that

we consider vertex minimal forbidden subgraph.

Case 1: k ≥ logn
2 log logn .

Since one must query all the vertices of a minimal forbidden subgraph, we obtain a lower

bound of k = Ω(logn/ log logn).

Case 2: k < logn
2 log logn .

5when d(G) ≥ 7.
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Since every vertex of G is relevant for P and all the minimal forbidden subgraphs of P present

in G are of size at most k, every vertex of G must belong to some minimal forbidden subgraph

of size at most k. Consider the property Pk obtained from P by omitting the minimal forbidden

subgraphs of P on k or more vertices. Our simple but crucial observation is that P and Pk are

equivalent as far as G is concerned. Therefore, they have the same complexity. Now we define Fi

for i ≤ k as follows:

Fi ∶= {S ∣ ∣S∣ = i & G[S] ∉ P & ∀T ⊂ S ∶ G[T ] ∈ P}.

Since every vertex of G is relevant for P ≡ Pk, we have: ∣⋃ki=1Fi∣ ≥ n/k. Since Fi and Fj

are disjoint when i ≠ j, we have ∑ki=1 ∣Fi∣ ≥ n/k. Therefore one of the Fis must be of size at least

n/k2. We denote that Fi by F ′.

Now from Lemma 6.3.5 we can conclude that F ′ contains a sunflower on at least ∣F ′∣1/k/k

petals. Let C be the core of this sunflower. We consider the restriction of P on G where every

vertex in C is present. Since ∣C ∣ < i, by definition of Fi we must have G[C] ∈ P . Now it

is easy to check that one must query at least one vertex from each petal in order to determine

P . A simple calculation yields that one can obtain a lower bound of min{k, 2Ω(logn/k)
k }. When

k = logn/(2 log logn), this gives us Ω(logn/ log logn) bound.

6.3.3 Some Tight Bounds

We manage to show that Theorem 6.3.1 is tight for several special properties like Independence,

Triangle-freeness, Bounded-degree etc. In order to prove the tight bounds, we show several

inequalities which might be of independent interest combinatorially. We present one such inequality

in Theorem 6.3.13. But before that we prove tight lower bounds for the above mentioned properties.

Independence/Emptiness

Theorem 6.3.7. Let I denote the property of being an independent subset of nodes (equivalently

the property of being an empty graph). Then,

min-cost(I) = Ω(
√
n).
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Proof. Let G be a graph without isolated vertices. If χ(G) ≤ √
n then from Theorem 6.3.13 we

get Ω(√n) lower bound. Otherwise G must have a vertex of degree Ω(√n). In this case the

adversary answers this vertex to be present. Now the algorithm must query all its neighbours.

Triangle-Freeness

Theorem 6.3.8. Let T denote the property of being triangle-free. Then,

min-cost(T ) = Ω(n1/3).

⋮
⋮

S
d2
max

d1
max

Figure 6.2: Tight Lower Bound for Triangle-Freeness

Proof. Let G be a graph such that every vertex belongs to some triangle. Let S denote a minimal

hitting-set for all triangles, i.e., every triangle must share a vertex with S. Let d1
max denote the

maximum number of triangles supported at a vertex in G, i.e., maximum number of triangles

whose common intersection is that vertex. Similarly, let d2
max denote the maximum number of

triangles supported at an edge in G. We consider the following cases:

Case 1: ∣S∣ = Ω(n1/3). As the set S has large size, the adversary answers all the vertices

outside the hitting set to be present. Note that as no vertices of the hitting set are queried yet, any

triangle is not yet present. Now as soon any of the vertex in S is present we have a triangle. This

gives again Ω(n1/3) bound.

Case 2: ∣S∣ = O(n1/3). As the size of the hitting set S is small there are Ω(n) vertices outside

S. Moreover, as each vertex is relevant for the property each vertex outside S must be part of some

triangle in G. Hence there must be an edge or a vertex inside S that forms triangles with Ω(n2/3)

of the vertices outside S. Thus we have the following two subcases.
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Case 2a: A vertex v ∈ S forms triangles with Ω(n2/3) vertices outside S: Then d1
max ≥

Ω(n2/3). Thus the adversary can answer the vertex v to be present. Now consider the graph

induced on the remaining endpoints of each the d1
max triangles. Note that this graph does not

contain any isolated vertices and number of vertices of this induced graph is also Ω(n2/3). Also

note that this graph contains an edge if and only if we have a triangle in the original graph with the

common vertex. Hence from Theorem 6.3.7 we get a bound of
√
d1
max = Ω(n1/3).

Case 2b: d2
max ≥ Ω(n1/3): The adversary can answer both the endpoints of the common edge

to be present, which would force the algorithm to query each of the remaining d2
max vertices. This

gives Ω(n1/3) bound.

Containing Path of Length t, Pt and Cycle of Size t, Ct

With a similar techniques it is easy to show the following theorem.

Theorem 6.3.9. Let Pt denote the property of containing a path of length t, and let Ct denote the

property of containing a cycle of size t. Then,

min-cost(Pt) = Ω(
√
n) and

min-cost(Ct) = Ω(n1/3).

Bounded Degree

Theorem 6.3.10. Let Bd denote the property of having maximum degree at most d, where d is a

constant. Then,

min-cost(Bd) = Ω(
√
n).

Proof. Let G be a graph such that every vertex belongs to some d-star (d vertices incident on

a single vertex). Let S denote the hitting set for all stars of size d in G. Let dmax denote the

maximum degree of G.

When dmax ≥ √
n/10d: The adversary answers the maximum degree vertex to be present.

Now one must query Ω(dmax) of its neighbors. And when ∣S∣ ≥ √
n/10d: The adversary answers

all vertices outside the hitting set to be present. One must query the entire hitting set. Finally: we

79



claim that one of the above two cases must happen. Otherwise we have at most n/100d2 neighbors

of the hitting set, each of them can have at most d − 1 other neighbours. This leaves some vertex t

not in d-star.

S

∣S∣ < √
n

⋮⋮

⋮⋮

⋮⋮

⋮⋮

< √
n

< d

Figure 6.3: Tight Lower Bound for Bounded Degree

In fact the proof above generalizes to local properties of bounded degree graphs. For a property

P we define PL as follows:

Definition 6.3.11 (Local Property). G satisfies PL if and only if for every vertex of G the graph

induced on its neighbors satisfies P .

For instance: bipartite graphs are locally acyclic. It turns out that PL is hereditary for any

hereditary P . Moreover, every graph in the forbidden family FPL has a universal vertex, i.e., a

vertex adjacent to all other vertices.

Theorem 6.3.12. For any hereditary P

min-cost(PL ∧ Bd) = Ω(
√
n).

Proof. Let G be a graph such that every vertex belongs to some d-star (d vertices incident on a

single vertex) or some H ∈ FPL . Let S denote the hitting set for FPL ∪ {Sd} in G. Let dmax

denote the maximum degree of G.

When dmax ≥ √
n/10d, the adversary answers the maximum degree vertex to be present.

Now one must query Ω(dmax) of its neighbors (since there are dmax/d disjoint blocks). When

∣S∣ ≥ √
n/10d, the adversary answers all vertices outside the hitting set to be present. One must
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query the entire hitting set. Finally: we claim that one of the above two cases must happen. Since

every vertex belongs to some d-star or some H ∈ FPL and every H ∈ FPL has a universal vertex,

we have that every vertex in G is reachable to some vertex in S by a path of length at most 2.

Otherwise we have at most n/100d2 neighbors of the hitting set, each of which can have at most

d − 1 other neighbours. This leaves some vertex t not in FPL ∪ {Sd}.

Lower Bound Based on the Chromatic Number

Theorem 6.3.13. Let I denote the property of being an independent subset of nodes (equivalently

the property of being an empty graph). Then,

G-min-cost(I) ≥ n/χ

where χ is the chromatic number of a graph G ∈ G.

Proof. Let G ∈ G be a graph on n vertices such that every vertex of G is relevant for I, i.e., G

does not contain any isolated vertices. Consider a coloring of vertices of G with χ colors. Let Ci

denote the set of vertices colored with color i. We pick a coloring that maximizes maxi≤χ{∣Ci∣}.

Let Cmax denote such a color class with maximum number of vertices in this coloring. Thus

∣Cmax∣ ≥ n/χ.

When ∣Cmax∣ ≤ (1 − 1
χ)n, the adversary answers all the vertices in Cmax to be present. Since

Cmax is maximal and G does not contain any isolated vertices, every vertex outside Cmax must be

connected to some vertex in Cmax. As long as any of these outside vertices are present there will

be an edge. Hence we get a lower bound of n − ∣Cmax∣ ≥ n/χ.

Now when ∣Cmax∣ > (1 − 1
χ)n, since there are no isolated vertices in G, every vertex in Cmax

must have an edge to some vertex in Ci ≠ Cmax. Furthermore as ∣Cmax∣ > (1 − 1
χ)n, there are at

least (1 − 1
χ)n edges incident on Cmax.

Now the vertices outside Cmax are colored with (χ − 1) colors. Thus there must exists a Ci

such that at least
(1− 1

χ
)n

χ−1 = n/χ edges incident on Cmax are also incident on Ci. Now the adversary

answers all the vertices in that Ci to be present. Then one must check at least n/χ vertices from

Cmax because as soon as any one of them is present we have an edge in the graph.
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6.4 Results on Restricted Graph Classes

Recall that, our setting provides a platform to compare the complexity of P when the base graph G

has a certain property or structure. Recall that, the notion of G-min-cost(P) for a class of graphs

G is obtained by restricting ourselves only to graphs in G.

G-min-costn(P) = min
G∈G

{cost(P,G) ∣ G is relevant for P & ∣V (G)∣ = n}.

Below we consider the class of planar graphs and prove several properties in the node query

settings. Note that it is always possible to consider other class of graphs and study several relevant

properties.

Independence/Emptiness in Planar Graph

Theorem 6.4.1. Let GP be a family of planar graphs on n vertices and I denote the property of

being independent. Then,

GP -min-cost(I) = Ω(n).

Proof. As planar graphs are 4 colorable using Theorem 6.3.13 we can directly conclude this

theorem.

6.4.1 Triangle-Freeness in Planar Graphs

A graph G is called inherently sparse if every subgraph of G on k nodes contains O(k) edges.

Theorem 6.4.2. Let Gs be a family of inherently sparse graphs on n vertices and T denote the

property of being triangle-free. Then,

Gs-min-cost(T ) = Ω(
√
n).

Proof. Let G = (V,E) ∈ Gs be a graph on n vertices such that every vertex in G is part of at

least one triangle in G. Let S ⊆ V be a minimal hitting set for triangles in G. Now consider the

following two cases.

Case 1: ∣S∣ ≥ √
n The adversary answers all the vertices outside S to be present. Hence one

has to check all vertices in S.

Case 2: ∣S∣ < √
n Since G is inherently sparse, there can be at most O(∣S∣) = O(√n) edges
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within S. Moreover each triangle in G must share either one vertex in S or one edge inside S (it

could even be that the whole triangle is inside S). Note that there are Ω(n) vertices outside S

and each of them must belong to some triangle. This implies that either there is at least a vertex

v ∈ S or at least an edge {u, v} ∈ (S
2
) s.t. v or {u, v} supports at least Ω(√n) triangles outside S.

Otherwise all triangles in G are not covered by S. We consider the following two cases:

Case 2a: an edge {u, v} ∈ (S
2
) supports Ω(√n) triangles in V − S.

⋮

S

Ω(√n)

Figure 6.4: Case 2a of Triangle-Freeness in Planar Graphs

The adversary makes the edge {u, v} present. One then has to query Ω(√n) end points of all

Ω(√n) triangles (see Figure 6.4).

Case 2b: a vertex v ∈ S supports Ω(√n) triangles.

⋮

S

Ω(√n)

Figure 6.5: Case 2b of Triangle-Freeness in Planar Graphs

Adversary makes the vertex v present. Then the problem reduces to finding an edge in the

graph induced on neighbors of v. This graph has Ω(√n) non-isolated vertices. (see Figure 6.5).

As the G is inherently sparse the chromatic number of G is constant. The idea is to pick a smallest

degree vertex and recursively color the rest of the graph with constant colors. Use a different color

for the picked vertex. Now we use Theorem 6.3.13 to obtain the Ω(√n) bound.

As a consequence of Lemma 6.4.2 we get the following:

83



Corollary 6.4.3. Let GP be a family of planar graphs on n vertices and T denote the property of

being triangle-free. Then,

GP -min-cost(T ) = Ω(
√
n).

6.4.2 Acyclicity in Planar Graphs

We prove the bounds for acyclicity in 3-connected planar graphs. A connected graph G is called

k-connected if the graph G remains connected even after deleting any k−1 vertices from the graph.

Theorem 6.4.4. Let GP3 be a family of 3-connected planar graphs and C denote the property of

being acyclic. Then,

GP3 −min-cost(C) = Ω(
√
n).

Proof. Let G ∈ GP3 be a graph on n vertices and m edges such that every vertex is relevant for the

acyclicity property. Let dmax denote the maximum degree of G.

Case 1: dmax >
√
n: We use the following fact: In 3-connected planar graphs, removing any

vertex leaves a facial cycle around it. We apply this for the maximum degree vertex. In other words,

we have a (not necessarily induced) wheel with dmax spokes (some spokes might be missing). See

Figure 6.6. The adversary answers the central vertex of the wheel to be present. We can find a

matching of size Ω(√n) among the vertices of the cycle. Hence we have Ω(√n) sensitive blocks

of length 2 each, which can not be left un-queried.

vc

Figure 6.6: A Wheel with dmax Spokes

Case 2: dmax ≤
√
n: We use the fact that every 3-connected graph must have at least 3n/2

edges. Now using Lemma 6.2.5 we obtain a lower bound of (m − n)/dmax ≥ Ω(√n).
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We believe that with similar arguments the above proof can be extended to general planar

graphs.

6.5 Non-Hereditary Properties

So far we have studied hereditary properties and have seen that in the present of minimum

symmetry assumption on the base graph the complexity remains evasive, whereas on the other

hand when we take away any symmetry assumptions from the base graph the complexity falls

down at least quadratically. In this section we study non-hereditary properties and show that they

behave significantly differently.

6.5.1 Global vs. Local Connectivity

Theorem 6.5.1. Let Global-Con denote the problem of testing whether a graph is connected or

not and let Local-Con denote the problem of testing given two specified vertices s and t whether

there is a path between s and t. Then,

(a) min-cost(Local-Con) = Θ(1) whereas

(b) min-cost(Global-Con) = Θ(n).

Proof. This theorem follows directly from Lemma 6.5.2 and Lemma 6.5.3.

Lemma 6.5.2. Let Local-Con denote the problem of testing given two specified vertices s and t

whether there is a path between s and t. Then,

min-cost(Local-Con) = O(1).

Proof. Consider the star graph on n vertices, i.e., a vertex v connected to n−1 vertices u1, . . . , un−1.

It is easy to check that for any s and t we have to check at most one more vertex other than s and t

to determine if there is a path between s and t.

Lemma 6.5.3. Let Global-Con denote the problem of testing whether a graph is connected or not.

Then,

min-cost(Global-Con) = Ω(n).

Proof. The convention we use is that the singleton vertex is connected and graph on 0 nodes is

connected. Let G be a graph on n vertices. We are interested in global connectivity of subgraphs
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of G. If the complement of G has a matching of size Ω(n) then each matching edge is a sensitive

block with respect to empty graph, i.e., the graph with just these two nodes present is not connected.

Hence we get the desired lower bound. If on the other hand the maximum matching size in the

complement of G is at most say n/4 (hence the vertex cover size at most n/2), then G must contain

a clique on at least n/2 vertices.

Now we consider vertices outside this clique. Since the connectivity property is non-trivial on

G, at least one such vertex say v must exist. If v has at most n/4 edges to the vertices of the clique,

we answer this vertex to be present and its neighbors in clique to be absent. Now as soon as any

of the remaining n/4 vertices from the clique are present, we get a disconnected graph. If v has

at least n/4 neighbors in the clique, we take a non-neighbour say u from the clique. Now u and

v have at least n/4 common neighbors. We make u and v to be present. As soon as any of their

common neighbors are present the graph is connected. This gives us Ω(n) bound.

6.5.2 Perfect Matching

Proof of the following theorem is similar to the proof of Theorem 6.5.1 and can be derived easily.

Theorem 6.5.4. Let PM be the property of containing a perfect matching in a graph G on n

vertices then,

min-cost(PM) = Θ(n).
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Chapter 7

The Power of Quantum Messages and

Quantum Proofs in Communication

Protocols

This chapter is based on the following paper:

• Klauck, H., and Podder, S. (2014). Two results about quantum messages. In Proceedings of the 39th

International Symposium on the Mathematical Foundations of Computer Science 2014. Springer

Berlin Heidelberg, 2014. Pages 445-456. [KP14b]

7.1 Introduction

The second part of the thesis is about communication complexity and communication protocols.

In this chapter we try to understand the power of quantum proofs and quantum messages in the

communication complexity setting. The power of using quantum messages over classical messages

is a central topic in information and communication theory. It is always good to understand

such questions well in the simplest settings where they arise. An example is the communication

complexity model, which is rich enough to lead to many interesting results, yet accessible enough

for us to show results about deep questions like the relationship between different computational

modes, e.g. quantum versus classical or nondeterministic versus deterministic.
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7.1.1 One-way Communication Complexity

Perhaps the simplest question one can ask about the power of quantum messages is the relationship

between quantum and classical one-way protocols. Alice sends a message to Bob in order to

compute the value of a function f ∶ {0,1}n × {0,1}m → {0,1}. Essentially, Alice communicates a

quantum state and Bob performs a measurement, both depending on their respective inputs. Though

deceptively simple, this scenario is not at all fully understood. Let us just mention the following

open problem: what is the largest complexity gap between quantum and classical protocols of this

kind for computing a total Boolean function? The largest gap known is a factor of 2, as shown by

Winter [Win04], but for all we know there could be examples where the gap is exponential, as it

indeed is for certain partial functions [GKK+08].

An interesting bound on such speedups can be found by investigating the effect of replacing

quantum by classical messages. Let us sketch the proof of such a result. Suppose a total Boolean

function f has a quantum one-way protocol with communication c, namely Alice sends c qubits to

Bob, who can decide f with error 1/3 by measuring Alice’s message. We allow Alice and Bob to

share an arbitrary input-independent entangled state. Extending Nayak’s random access code bound

[Nay99] Klauck [Kla00] showed that QA→B,∗(f) ≥ Ω(V C(f)), where QA→B,∗(f) denotes the

entanglement-assisted quantum one-way complexity of f , and V C(f) the Vapnik-Chervonenkis

dimension of the communication matrix of f . Together with Sauer’s Lemma [Sau72] this implies

that DA→B(f) ≤ O(QA→B,∗(f) ⋅m), where m is the length of Bob’s input. See also [JZ09] for a

related result where the authors get a bound of DA→B,µ
ε (f) = O((I(X ∶ Y ) + 1) ⋅ V C(f)), for

non-product distributions µ on X ×Y .

A result such as the above is much more interesting in the case of partial functions. The

reason is that for total functions a slightly weaker statement follows from a weak version of the

random access code bound, which can be (and indeed has been [ANTV99]) established by the

following argument: boost the quantum protocol for f until the error is below 2−2m, where m is

Bob’s input length. Measure the message sent by Alice with all the measurements corresponding

to Bob’s inputs (this can be done with small total error) in order to determine Alice’s row of the

communication matrix and hence her input. This is a hard task by standard information theory

facts (Holevo’s bound). When considering partial functions a disaster happens: Bob does not know

for which of his inputs y the value f(x, y) is defined. If Bob measures the message for x with the

observable for y and f(x, y) is undefined any acceptance probability is possible and the message
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state can be destroyed.

Aaronson [Aar05] circumvented this problem in the following way: Bob now tries to learn

Alice’s message. He starts with a guess (the totally mixed state) and keeps a classical description of

his guess. Alice also always knows what Bob’s guess is. Bob can simulate quantum measurements

by brute-force calculation: for any measurement operator Bob can simply calculate the result from

his classical description. Alice can do the same. Since Bob has some 2m measurements he is

possibly interested in, Alice can just tell him on which of these he will be wrong. Bob can then

adjust his quantum state accordingly, and Aaronson’s main argument is that he does not have to

do this too often before he reaches an approximation of the message state. Note that Bob might

never learn the message state if it so happens that all measurements are approximately correct on

his guess. But if he makes a certain number of adjustments he will learn the message state and no

further adjustments are needed.

Let us state Aaronson’s result from [Aar05].

Lemma 7.1.1. DA→B(f) ≤ O(QA→B(f) ⋅ log(QA→B(f)) ⋅ m) for all partial Boolean f ∶

{0,1}n × {0,1}m → {0,1}.

Aaronson later proved the following result, that removes the log-factor at the expense of having

randomized complexity on the left hand side [Aar07].

Lemma 7.1.2. RA→B(f) ≤ O(QA→B(f) ⋅m) for all partial Boolean f ∶ {0,1}n × {0,1}m →

{0,1}.

The first result is the following improvement.

Theorem 7.1.3. For all partial Boolean f ∶ {0,1}n × {0,1}m → {0,1},

DA→B(f) ≤ O(QA→B,∗(f) ⋅m).

Here QA→B,∗(f) denotes the one-way quantum communication complexity of f where the

players have shared entanglements.

Hence we remove the log-factor, and we allow the quantum communication complexity on the

right hand side to feature prior entanglement between Alice and Bob. Arguably, looking into the

entanglement assisted case (which is interesting for the second main result) led us to consider a

more systematic progress measure than in Aaronson’s proof, which in turn allowed us to analyse
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a different update rule for Bob that also works for protocols with error 1/3, instead of extremely

small error as used in [Aar05], which is the cause of the lost log-factor.

We note that this result can be used to slightly improve on the “quantum-classical” simultaneous

message passing lower bound for the Equality function by Gavinsky et al. [GRdW08], establishing

a tight Ω(√n) lower bound on the complexity of Equality in a model where quantum Alice and

classical Bob (who do not share a public coin or entanglement) each send messages to the referee.

The tight lower bound has also recently been established via a completely different and simpler

method [BGK15] (as well as generalized to a nondeterministic setting). Our result (as well as the

one in [BGK15]) allows a generalization to a slightly stronger model: Alice and the referee may

share entanglement.

7.2 Simulating One-way Quantum Messages Protocol Using Deter-

ministic Messages

In this section we prove the Theorem 7.1.3. Our proof holds for partial functions. Note that in the

case of total functions the theorem follows from a result in [Kla00] combined with Sauer’s lemma

[Sau72].

Our proof follows Aaronson’s main approach in [Aar05], in which Bob maintains a classical

description of a quantum state as his guess for the message he should have received, and Alice

informs him about inputs on which this state will perform badly, so that he can adjust his guess.

His goal is to either get all measurement results approximately right, or to learn the message state.

We will refer to these states as the current guess state, and the target state.

We deviate from Aaronson’s proof in two ways. First, we work with a different progress

measure that is more transparent than Aaronson’s, namely the relative entropy between the target

state and the current guess. This already allows us to work in the entanglement-assisted case.

Secondly, we modify the rule by which Bob updates his guess. In Aaronson’s proof Bob

projects his guess state onto the subspace on which the target state has a large projection (because

the message is accepted by the corresponding measurement with high probability). This has the

drawback that one cannot use the actual message state of the protocol as the target state, because

that state usually has considerable projection onto the orthogonal complement of the subspace,

making the relative entropy infinitely large! Hence Aaronson uses a boosted and projected message

state as the target state. This state is close to the actual message state thanks to the boosting, and
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Figure 7.1: Making Quantum Message Deterministic

projection of the guess state now properly decreases the relative entropy, since the target state is

fully inside the subspaces. The boosting step costs exactly the log-factor we aim to remove.

So in the situation where Bob wants to update his guess state σ, knowing that the target state ρ

will be accepted with probability 1 − ε when measuring the observable consisting of subspace Vy

and its complement, we let Bob replace σ with the mixture of 1 − ε times the projection onto Vy

and ε times the projection onto V ⊥y . The main part of the proof is then to show that this decreases

the relative entropy S(ρ∣∣σ) given that Tr(Vyσ) < 1 − 10
√
ε, i.e., in case σ was not good enough

already. Eventually either all measurements can be done by Bob giving the correct result, or the

current guess state σ satisfies S(ρ∣∣σ) ≤ 5
√
ε, in which case ρ and σ are also close in the trace

distance meaning that any future measurement will give almost the same results on both states (see

Figure 7.1).

Let us now give a more formal proof of the Theorem 7.1.3.

Proof. Fix any entanglement assisted one-way protocol with quantum communication q = QA→B,∗(f).

Using standard boosting we may assume that the error of the protocol is at most ε = 10−6 for any

input x, y. This increases the communication by a constant factor at most.

Using teleportation we can replace the quantum communication by 2q classical bits of com-

munication at the expense of adding q EPR-pairs to the shared entangled state. Let ∣φ⟩ denote the

entangled state shared by the new protocol. We can assume this is a pure state, because if this is
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not the case we may consider any purification, and Alice and Bob can ignore the purification part.

Note that we do not restrict the number of qubits used in ∣φ⟩.

In the protocol, for a given input x Alice has to perform a unitary transformation on her part

of ∣φ⟩ (we assume that any extra space used is also included in ∣φ⟩ and that measurements are

replaced by unitaries) and then sends a classical message. Bob first applies the unitary from the

teleportation protocol (which only depends on the classical message). Let’s denote the state shared

by Alice and Bob at this point by ∣φx⟩. Following this Bob performs a measurement (depending on

his input y) on his part of ∣φx⟩. This measurement determines the output of the protocol on x, y.

We may assume by standard techniques that Bob’s measurements are projection measurements,

and that the subspaces used in the projection measurements have dimension d/2, where d is the

dimension of the underlying Hilbert space.

Recall that ∣φ⟩ and ∣φx⟩ are bipartite states shared by Alice and Bob. Let ρ = TrA∣φx⟩⟨φx∣ and

σ1 = TrA∣φ⟩⟨φ∣, i.e., the states when Alice’s part is traced out. Bob wants to learn ρ in order to be

able to determine all measurement results on ρ. We show how to do this with O(m ⋅ q) bits of

deterministic communication from Alice. Note that the state σ1 is known to Bob in the sense that

he knows its classical description.

Since Alice’s local operations do not change Bob’s part of ∣φ⟩⟨φ∣, the difference between ρ and

σ1 is introduced via the correction operations in the teleportation protocol that Bob applies after he

receives Alice’s message. But with probability 2−2q Bob does not have to do anything, i.e., when

Alice’s message is the all 0-s string. This implies that

σ1 =
1

22q
ρ + θ,

for some positive semidefinite θ with trace 1 − 1/22q. Hence we get that

S(ρ∣∣σ1) ≤ S∞(ρ∣∣σ1) ≤ 2q.

In other words, Bobs target ρ and initial guess σ1 have small relative entropy.

We can now describe the protocol. Bob starts with the classical description of σ1. This state

is also known by Alice, since it does not depend on the input. Throughout the protocol Bob

will hold states σi, which will be updated when needed, using information provided by Alice.

Bob also has a set of measurement operators Py, I − Py for all his inputs y. Bob and Alice each

loop over his inputs y, and compute py = Tr(Pyσi). This is the acceptance probability, if σi is
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measured with the measurement for his input y. Alice also computes p′y = Tr(Pyρ) which is the

acceptance probability of the quantum protocol. If py and p′y are too far apart, Alice will notify

Bob of the correct acceptance probability on y (with precision ε2), which takes m +O(1) bits of

communication.

Alice does not send a message if f(x, y) is undefined, because the acceptance probability on

such inputs is irrelevant. Suppose p′y = 1 − εy, where εy ≤ ε is the error on x, y (and f(x, y) = 1),

but py = 1 − a for some 1 > a ≥ 10
√
ε. If this is not the case the measurement for y applied to σi

already yields the correct result and no information from Alice is needed. So if py, p′y are far apart

Alice will send y (using m bits) and εy as a floating point number with precision ε2 (using O(1)

bits).

Bob then adjusts σi to obtain a state σi+1. Suppose he knows the correct εy (the difference

between εy and its approximation sent by Alice will be irrelevant). This means that Tr(Pyσi) = 1−a

but Tr(Pyρ) = 1 − εy. Py is the projector onto a subspace Vy. We have assumed that each Vy has

dimension d/2 if d is the dimension of the underlying Hilbert space. Let Bi denote an orthonormal

basis, in which the first d/2 elements span Vy, and the remaining d/2 span V ⊥y . Furthermore in this

basis the upper left and lower right quadrants of σi are diagonal. Hence σi will look like this:

σi =
⎛
⎜⎜
⎝

A B

B∗ D

⎞
⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗ 0 0 ∗ ⋯ ∗

0 ⋱ 0 ∗ ⋮ ∗

0 0 ∗ ∗ ⋯ ∗

∗ ⋯ ∗ ∗ 0 0

∗ ⋮ ∗ 0 ⋱ 0

∗ ⋯ ∗ 0 0 ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where Tr(A) = 1 − a and Tr(D) = a. We can now define

σi+1 =
⎛
⎜⎜
⎝

1−εy
1−a A 0

0
εy
a D

⎞
⎟⎟
⎠
.

σi+1 is diagonal in our basisBi. Clearly σi+1 would perform exactly as desired on measurement

Py, I − Py. But Bob already knows the function value on y and can carry on with the next y.

Before we continue we have to argue that the case a = 1 can never happen. Since Tr(Pyρ) =

1 − εy > 0 the state ρ has a nonzero projection onto Vy. If a = 1 then σi sits entirely in V ⊥y , and

hence S(ρ∣∣σi) = ∞. But since we start with a finite S(ρ∣∣σ1) and only decrease that value the
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situation a = 1 is impossible.

Coming back to the protocol, it is obvious that Bob will learn the correct value of f(x, y) for

all y such that f(x, y) is defined. Hence the protocol is deterministic and correct. The remaining

question is how many times Alice has to send a message to Bob. We will show that this happens at

most O(QA→B,∗(f)/√ε) times, which establishes our theorem.

The main claim that remains to be shown is the following.

Claim 7.2.1. S(ρ∣∣σi) ≥ S(ρ∣∣σi+1) + a/2 if a ≥ 10
√
ε.

This establishes the upper bound on the number of messages, because the relative entropy,

which starts at 2q is decreased by a/2 ≥ 5
√
ε for each message. After at most 2q/(5√ε) iterations

the protocol has either ended (in which case Bob might never learn ρ, but will still know all

measurement results), or we have

S(ρ∣∣σT ) ≤ 5
√
ε.

To see this assume we are still in the situation of the claim. The claim states that the relative

entropy can be reduced by a/2 as long as a ≥ 10
√
ε. So the process stops (assuming we don’t run

out of suitable y′s) no earlier than when S(ρ∣∣σi) < a/2 ≤ 5
√
ε.

But then we can use the quantum Pinsker inequality [HOT81], see also [KNTSZ01].

Fact 7.2.2.

∣∣ρ − σ∣∣t ≤
√

2 ln 2 S(ρ∣∣σ).

Thus we have that at the final time T : ∣∣ρ − σT ∣∣t ≤
√

10 ln 2
√
ε < 0.1 in the end, and hence for

all measurements their results are close. Hence no more than O(q/√ε) = O(q) messages have to

be sent.

We now finish the proof by showing the claim.

Define another state

σ̃i =
⎛
⎜⎜
⎝

A 0

0 D

⎞
⎟⎟
⎠
,

i.e., the state σi with its upper right and lower left quadrants deleted. It is easy to see that this

is still a density matrix. Indeed σ̃i is the state σi after measuring Py, I − Py. Also define ρ̃ to be

the matrix ρ with its upper left and lower right quadrants replaced by 0, which is again a density
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matrix resulting from measuring ρ. If

ρ =
⎛
⎜⎜
⎝

E F

G H

⎞
⎟⎟
⎠

then ρ̃ =
⎛
⎜⎜
⎝

E 0

0 H

⎞
⎟⎟
⎠
.

We use Uhlmann monotonicity.

Fact 7.2.3. If ρ̃, σ̃ result from measuring ρ, σ then

S(ρ̃∣∣σ̃) ≤ S(ρ∣∣σ).

By Uhlmann monotonicity we have S(ρ∣∣σi) ≥ S(ρ̃∣∣σ̃i), and it suffices to show that S(ρ̃∣∣σ̃i) ≥

S(ρ∣∣σi+1)+a/2. Note that both σ̃i and σi+1 are diagonal in the basisBi. Furthermore S(ρ∣∣σi+1) =

S(ρ̃∣∣σi+1) + S(ρ̃) − S(ρ).

We first bound the term S(ρ̃) − S(ρ). In the basis Bi we may view ρ as a bipartite state ρRQ

consisting of a qubit R (corresponding to membership in Vy) and the remaining qubits Q. In ρ̃

the qubit R has been measured. Consider attaching another qubit T , and instead of measuring R

applying the unitary that “copies”R to T . After the unitary S(ρ) = S(ρQRT ) ≥ S(ρQR)−S(ρT ) =

S(ρ̃) − S(ρT ), due to the Araki-Lieb inequality and because ρQR = ρ̃. But S(ρT ) = H(εy) and

hence S(ρ̃) − S(ρ) ≤H(εy).

We need to compare Tr(ρ̃ log σ̃i) and Tr(ρ̃ logσi+1). Note that σ̃i and σi+1 are both diagonal.

Tr(ρ̃ log σ̃i)

= ∑
j

ρ̃(j, j) log(σ̃i(j, j))

= ∑
j≤d/2

ρ̃(j, j) log(σi+1(j, j) ⋅
1 − a
1 − εy

)

+ ∑
j>d/2

ρ̃(j, j) log(σi+1(j, j) ⋅
a

εy
)

= ∑
j

ρ̃(j, j) log(σi+1(j, j)) + (1 − εy) ⋅ log
1 − a
1 − εy

+ εy ⋅ log
a

εy

= Tr(ρ̃ logσi+1) +H(εy) −H(εy, a),

where H(u, v) = −u log v − (1 − u) log(1 − v).
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Assuming that a ≥ 10
√
ε and εy ≤ ε = 10−6 we can estimate

H(εy, a) ≥ a. (7.1)

If a > 1/2 then (7.1) is true from the term (1 − εy) log(1/(1 − a)) ≥ a. Otherwise for all a ∈ [0,1]

we have − log(1 − a) ≤ a, hence the term in H(εy, a) is at least (1 − εy)a. And for the first term

εy log(1/a) ≥ εy log(2) ≥ εy, so (7.1) is always true.

Also note that H(εy) ≤H(ε) = ε log(ε−1) ≤ √
ε ≤ a/10.

But then

S(ρ∣∣σi)

≥ S(ρ̃∣∣σ̃i)

= −S(ρ̃) −Tr(ρ̃ log σ̃i)

≥ −S(ρ) −H(ε) −Tr(ρ̃ log σ̃i)

≥ −S(ρ) −H(ε) −Tr(ρ̃ logσi+1) + a −H(ε)

= −S(ρ) −Tr(ρ logσi+1) + a − 2H(ε)

≥ S(ρ∣∣σi+1) + a/2.

7.3 Quantum versus Classical Proofs

We now turn to the second result of this chapter, which is philosophically very interesting. In-

teractive proof systems are a fundamental concept in computer science. Quantum proofs have a

number of disadvantages: reading them may destroy them, errors may occur during verification,

verification needs some sort of quantum machine, and it may be much harder to provide them than

classical proofs. The main hope is that quantum proofs can in some situations be verified using

fewer resources than classical proofs. Until now such a hope has not been verified formally. In the

fully interactive setting Jain et al. [JJUW11] have shown that the set of languages recognizable in

polynomial time with the help of a quantum prover is equal to the set where the prover and verifier

are classical (i.e., IP=QIP [JJUW11]).

The question remains open in the noninteractive setting. A question first asked by Aharonov
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Figure 7.2: The Class QMA and QCMA

and Naveh [AN02] and meriting much attention, is whether proofs that are quantum states can

ever be easier to verify than classical proofs (by quantum machines) in the absence of interaction,

i.e., whether the class QMA is larger than its analogue with classical proofs but quantum verifiers,

known as QCMA (see Figure 7.2 for the contentment of the classes QMA and QCMA in other

complexity classes). An indication that quantum proofs may be powerful was given by Watrous

[Wat00], who described an efficient QMA black box algorithm for deciding nonmembership in a

subgroup. However, Aaronson and Kuperberg [AK07] later showed how to solve the same problem

efficiently using a classical witness, giving a QCMA black box algorithm for the problem. They

also introduced a quantum problem, for which they show that QMA black box algorithms are

more efficient than QCMA black box algorithms. Using a quantum problem to show hardness for

algorithms using classical proofs seems unfair though and a similar separation has remained open

for Boolean problems.

In our second main result of this chapter we compare the two modes of noninteractive proofs and

quantum verification for a Boolean function in the setting of one-way communication complexity.

More precisely we exhibit a partial Boolean function f , such that the following holds. f can be

computed in a protocol where a prover who knows x, y can provide a quantum proof to Alice, and

Alice sends quantum message to Bob, such that the total message length (proof plus message Alice

to Bob) is O(logn). In the setting where a prover Merlin (still knowing all inputs) sends a classical

proof to Alice, who sends a quantum message to Bob, the total communication is Ω(√n/ logn).

Result 7.3.1. There is a partial Boolean function f such that QMAA→B(f) = O(logn), while

QCMAA→B,∗(f) = Ω(√n/ logn).

We note that this is the first known exponential gap between computing Boolean functions in a
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QCMA and a QMA mode in any model of computation. Also, the lower bound is not too far from

being tight, since there is an obvious upper bound of O(√n logn) for the problem.

So where does the power of quantum proofs come from in our result? Raz and Shpilka [RS04]

show that QMA one-way protocols are as powerful as QMA two-way protocols. Their proof uses a

quantum witness that is a superposition over the messages of different rounds. We show that for

a certain problem with an efficient QMA protocol there is no efficient one-way QCMA protocol.

Hence the weakness of classical proofs here is the impossibility of compressing interaction as in

the QMA case.

Let us first define the problem for which we prove our separation result.

Definition 7.3.2. The function MajIx(x, I), where I = {i1, . . . , i√n}, each ij ∈ {1, . . . , n}, and

x ∈ {0,1}n is defined as follows:

1. if ∣{j ∶ xij = 1}∣ = √
n then MajIx(x, I) = 1,

2. if ∣{j ∶ xij = 1}∣ ≤ 0.9
√
n then MajIx(x, I) = 0,

3. otherwise MajIx(x, I) is undefined.

The function has been studied in [Kla11], where it is shown that one-way MA protocols for the

problem need communication Ω(√n). Our main technical result here is to extend this to one-way

QCMA protocols.

It is obvious on the other hand, that there is a cheap protocol when Bob can send a message to

Alice.

Lemma 7.3.3. RB→A(MajIx) = O(logn).

Raz and Shpilka [RS04] show that any problem with QMA(f) = c (i.e., QMA protocol where

Alice and Bob can interact over many rounds) has a QMA protocol of cost poly(c) in which Merlin

sends a message to Alice, who sends a message to Bob. By inspection of their proof the polynomial

overhead can be removed in the case of constant rounds of interaction between Alice and Bob.

Lemma 7.3.4. If QMA(f) = c and this cost can be achieved by a protocol with O(1) rounds,

then QMAA→B(f) = O(c).

Proof. The proof of Raz and Shpilka in [RS04] proceeds by showing that a problem LSD is

complete for QMA communication complexity. It is easy to see that LSD can be computed by

a QMA one-way protocol with logarithmic communication. The main difficulty is showing that
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any problem f with QMA(f) = C can be reduced to an instance of LSD of size 2poly(C). Here

we will argue that if the QMA complexity of f is C for protocols that have only O(1) rounds

between Alice and Bob, then the constructed LSD instance has size 2O(C) only, and hence we get

that QMAA→B(f) = O(C).

For the problem LSD (linear space distance), Alice and Bob each receive a subspace of Rn

of dimension n/4. The distance between two subspaces V,W is the minimum over all pairs of

unit vectors from V and W of the Euclidean distance between the vectors. For LSD the promise

is that the spaces given to Alice and Bob are either very close (distance at most 0.1
√

2) or very

far (distance at least 0.9
√

2). The 1-inputs of LSD are the pairs of spaces that are close. Note that

there is a QMA one-way protocol for this problem of logarithmic cost: Merlin sends Alice a vector

that is close to both subspaces as a quantum state, Alice measures the state with the observable

consisting of her subspace and its complement, and if the state projects into her subspace she

sends the projected state to Bob (otherwise she rejects), who measures with his observable. If both

measurements succeed, they accept.

The main lemma in the reduction of [RS04] is the following (their Lemma 19):

Lemma 7.3.5. If f has a QMA protocol with proof length p, communication c, and r rounds and

error 1/r4, then f can be reduced (by local operation by Alice and Bob) to an instance of LSD

where the underlying space is R(r+1)22(c+p)
, and the distance between the two spaces is at least

1/r1.5 in the case of 0-inputs, and at most
√

2/r2.5 in the case of 1-inputs.

This lemma is then combined with standard boosting ideas to improve the gap in the distance,

but for us the fact that amplifying the success probability by parallel repetition in a QMA one-way

protocol is possible suffices. Furthermore, in the case of r = O(1), the LSD instance provided by

the above lemma already has a constant gap and the correct size of 2O(c+p). Reducing a function f

to the LSD instance, and then running O(1) times the protocol for LSD in parallel suffices to get a

one-way QMA-protocol for f .

The Lemma 7.3.4 immediately implies the following.

Theorem 7.3.6. QMAA→B(MajIx) = O(logn).

We now give a self-contained proof of this fact. Our protocol (see Figure 7.3) has completeness

1, hence even the one-sided error version of QMAA→B is separated from QCMAA→B by the

following lower bound.
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Figure 7.3: QMA One-way Protocol for MajIx

Proof. We describe a protocol with constant gap, which can be amplified to have the usual

soundness using standard techniques.

Alice holds a string x ∈ {0,1}n, Bob a set I of
√
n distinct indices. Alice receives a proof

from Merlin, which is supposed to be the uniform superposition ∑i∈I ∣i⟩. Alice attaches one more

qubit, applies the unitary that maps ∣i⟩∣a⟩ to ∣i⟩∣xi ⊕ a⟩, then measures that extra qubit. If the

result is 0 she rejects. Otherwise she discards the extra qubit and sends the remaining state to Bob.

Bob measures this state with the observable that consists of the subspace spanned by the vector

with 1 in all positions i ∈ I and 0 elsewhere, and its orthogonal complement. He accepts, if this

measurement projects onto the first subspace. Note that the communication is logn qubits from

both Merlin and Alice.

If Merlin is honest (and xi = 1 for all i ∈ I), he sends the uniform superposition∑i∈I ∣i⟩. Alice’s

measurement will not change this state (she effectively projects into the space spanned by the ∣i⟩

with xi = 1). Bob’s measurement will accept with certainty. Hence the protocol has completeness

1.

Now assume that at most 0.9
√
n of the i ∈ I satisfy that xi = 1. We may assume that Merlin’s

message is a pure state of the correct dimension. For each mixed state there is a pure state that will

perform at least as well, and states with the wrong dimension will be rejected immediately. Again,

unless Alice rejects, her measurement projects into the space spanned by ∣i⟩ for which xi = 1.

Denote this state by ∣ψ⟩ = ∑i∶xi=1 αi∣i⟩. Bob measures the observable consisting of span(∣φI⟩),

where ∣φI⟩ = ∑i∈I ∣i⟩/n1/4, and its orthogonal complement. The probability of the measurement

accepting is the squared inner product of ∣φI⟩ and ∣ψ⟩. This value is (∑i∈I ∶xi=1 αi/n1/4)2 ≤

(1/√n)(0.9√n)(∑ ∣αi∣2) ≤ 0.9. Hence the protocol has soundness error 0.9, which can be

improved by parallel repetition.

Theorem 7.3.7. QCMAA→B,∗(MajIx) ≥ Ω(√n/ logn).
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Hence we can conclude the following.

Corollary 7.3.8. There is a partial Boolean function f such thatQMAA→B(f) = O(logn), while

QCMAA→B,∗(f) = Ω(√n/ logn).

Proof. Fix any QCMA protocol P for MajIx. Furthermore define a distribution on inputs as

follows. Fix any error correcting code C ⊆ {0,1}n with distance n/4 (i.e., every two codewords

have Hamming distance at least n/4). Such codes of size 2Ω(n) exist by the Gilbert-Varshamov

bound. We do not care about the complexity of decoding and encoding for our code. Furthermore

we require the code to be balanced, i.e., that any codeword has exactly n/2 ones. This can also be

achieved within the stated size bound. For our distribution on inputs first choose x ∈ C uniformly,

and then uniformly choose I among all subsets of {1, . . . , n} of size
√
n. Note that the probability

of 1-inputs under the distribution µ just defined is between 2−
√
n and 2−

√
n−1 due to the balance

condition on the code.

If the cost (i.e., communication from Merlin plus communication from Alice) of P is c, then

there are at most 2c different classical proofs sent by Merlin. We identify such proofs p with the

set of 1-inputs that are accepted by the protocol with probability at least 2/3 when using the proof

p. Hence there must be a proof P containing 1-inputs of measure at least 2−
√
n−c−1, because for

every 1-input there is a proof with which it is accepted with probability 2/3 or more. Furthermore,

given P , no 0-input is accepted with probability larger than 1/3. Note that inputs outside of the

promise, or 1-inputs outside of P can be accepted with any probability between 0 and 1. Denote

by fP the partial function {0,1}n × {0,1}m → {0,1,�}, in which all inputs in P are accepted,

and all 0-inputs of f are rejected, and the remaining inputs have undefined function value (�).

m = Θ(√n logn) is the length of Bob’s input. Denote by M = ( n√
n
) the number of Bob’s inputs.

Obviously fP can be computed by a one-way quantum protocol without prover using com-

munication c (and possibly using shared entanglement between Alice and Bob). Now due to

Theorem 7.1.3 this implies that DA→B(fP ) ≤ O(c ⋅m). We will argue that on the other hand

DA→B(fP ) ≥ Ω(n), and hence c ≥ Ω(n/m) = Ω(√n/ logn), which is our theorem.

Denote by A the communication matrix of fP . A row of A is fat, if it contains more than

M2−
√
n−2c 1-inputs (to fP ). Note that there can be no fewer than ∣C ∣2−c−2 fat rows, because there

are at least ∣C ∣M2−
√
n−c−1 1-inputs in P , the non-fat rows contain together at most ∣C ∣M2−

√
n−2c

1-inputs and each fat row at most M2−
√
n 1-inputs. Let C ′ denote the row set consisting of the fat

rows only, and A′ the matrix A restricted to those rows. We claim that A′ has C ′ distinct rows.
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Recall that for distinct rows there is a column, where one row has a 1 entry and the other a 0 entry.

This means that DA→B(fP ) ≥ logC ′ ≥ log ∣C ∣ − c − 2 ≥ Ω(n) (unless c = Ω(n) already).

To show that all pairs of rows in A′ are distinct consider two of them, named x, y. We identify

the row labelled by x with the set for which x is the characteristic vector. Recall x, y are both

codewords and are both fat. x ∩ y ≤ n(1/2 − 1/8) because x and y have Hamming distance at least

n/4. Let S ⊆ I be the set of I such that (x, I) ∈ P . Then for all I ∈ S we have that all of the i ∈ I

must satisfy xi = 1.

Furthermore let T ⊆ S be the set I ∈ S, such that ∣I ∩ x ∩ y∣ ≥ 0.9
√
n. Then

∣T ∣ ≤
√
n ⋅ (

3n
8

0.9
√
n
) ⋅ (

n
8

0.1
√
n
) ≤ 2−α

√
n ⋅ (

n
2√
n
),

for some constant α > 0. Note that the binomial coefficient on the right hand side is the number of

I ∈ I such that (x, I) is a 1-input. Hence

µ(({x} × T ) ∩ P )
∑I∈I∶MajIx(x,I)=1 µ(x, I)

≤ 2−α
√
n,

i.e., a small fraction of 1-inputs (x, I) in P on row x have I ∈ T , but x is fat and has more 1-inputs.

We can assume that c < α√n/10 and hence 2−2c ≥ 2 ⋅ 2−α
√
n, so that the set T contributes little to

the set of I ∈ I with (x, I) ∈ P . In particular there must be at least one I /∈ T such that (x, I) is in

P , and hence fP (x, I) = 1.

So let us examine the set of all I ∈ S − T (so ∣I ∩ x ∩ y∣ < 0.9
√
n). ∣I ∩ x∣ = √

n and hence

∣y ∩ I ∣ ≤ .9√n, i.e., (y, I) is a 0-input. This gives us the desired column I , such that fP (x, I) = 1

and fP (y, I) = 0, i.e., x, y are two distinct rows in A′.
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Chapter 8

Garden-Hose Protocols

This chapter is based on the following paper:

• Klauck, H., and Podder, S. (2014). New Bounds for the Garden-Hose Model. Foundation of Software

Technology and Theoretical Computer Science. 2014, Page 481. LIPIcs-Leibniz International

Proceedings in Informatics. Vol. 29. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

[KP14a]

8.1 Introduction

In this chapter we shall investigate how computation is affected if we restrict ourself to a certain

class of communication protocols – in particular we focus on the recently proposed garden-hose

model [BFSS13] which is a memoryless and reversible communication model. We shall see that

this model has beautiful connections with several other computational models and can be used to

derive new lower bounds for other computational models. Investigation of this model will also

broaden our understanding of time and space complexity and their trade-offs.

8.1.1 Background: The Garden-Hose Model

Recently, Buhrman et al. [BFSS13] proposed a new measure of complexity for finite Boolean

functions, called garden-hose complexity. This measure can be viewed as a type of distributed

space complexity, and while its motivation is mainly in applications to position based quantum

cryptography, the playful definition of the model is quite appealing in itself. Garden-hose com-

plexity can be viewed as a natural measure of space, in a situation where two players with private

inputs compute a Boolean function cooperatively. Space-bounded communication complexity has
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been investigated before [BTY94, Kla04, KŠdW07] (usually for problems with many outputs),

and recently Brody et al. [BCP+13] have studied a related model of space bounded communication

complexity for Boolean functions (see also [PSS14]). In this context the garden-hose model can be

viewed as a memoryless model of communication that is also reversible.

To describe the garden-hose model let us consider two neighbors, Alice and Bob. They own

adjacent gardens which happen to have s empty water pipes crossing their common boundary.

These pipes are the only means of communication available to the two. Their goal is to compute

a Boolean function on a pair of private inputs, using water and the pipes across their gardens as

a means of communication. It is worth mentioning that even though Alice and Bob choose to

not communicate in any other way, their intentions are not hostile and neither will deviate from a

previously agreed upon protocol.

A garden-hose protocol works as follows: There are s shared pipes. Alice takes some pieces

of hose and connects pairs of the open ends of the s pipes. She may keep some of the ends open.

Bob acts in the same way for his end of the pipes. The connections Alice and Bob place depend

on their local inputs x, y, and we stress that every end of a pipe is only connected to at most one

other end of a pipe (meaning no Y-shaped pieces of hose may be used to split or combine flows

of water). Finally, Alice connects a water tap to one of those open ends on her side and starts the

water. Based on the connections of Alice and Bob, water flows back and forth through the pipes

and finally ends up spilling on one side.

If the water spills on Alice’s side we define the output to be 0. Otherwise, the water spills on

Bob’s side and the output value is 1. It is easy to see that due to the way the connections are made

the water must eventually spill on one of the two sides, since cycles are not possible.

Note that the pipes can be viewed as a communication channel that can transmit log s bits,

and that the garden-hose protocol is memoryless, i.e., regardless of the previous history, water

from pipe i always flows to pipe j if those two pipes are connected. Furthermore computation is

reversible, i.e., one can follow the path taken by the water backwards (e.g. by sucking the water

back).

Buhrman et al. [BFSS13] have shown that it is possible to compute every function f ∶ {0,1}n×

{0,1}n → {0,1} by playing a garden-hose game. A garden-hose protocol consists of the scheme

by which Alice chooses her connections depending on her private input x ∈ {0,1}n and how Bob

chooses his connections depending on his private input y ∈ {0,1}n. Alice also chooses the pipe

that is connected to the tap. The protocol computes a function f , if for all inputs with f(x, y) = 0
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the water spills on Alice’s side, and for all inputs with f(x, y) = 1 the water spills on Bob’s side.

The size of a garden-hose protocol is the number s of pipes used. The garden-hose complexity

GH(f ) of a function f(x, y) is the minimum number of pipes needed in any garden-hose game

that computes the value of f for all x and y such that f(x, y) is defined.

The garden-hose model is originally motivated by an application to quantum position-verification

schemes [BFSS13]. In this setting the position of a prover is verified via communications between

the prover and several verifiers. An attack on such a scheme is performed by several provers,

none of which are in the claimed position. Buhrman et al. [BFSS13] proposed a protocol for

position-verification that depends on a function f ∶ {0,1}n × {0,1}n → {0,1}, and a certain

attack on this scheme requires the attackers to share as many entangled qubits as the garden-hose

complexity of f . Hence all f with low garden-hose complexity are not suitable for this task, and it

becomes desirable to find explicit functions with large garden-hose complexity.

Apart from the applications to position based quantum cryptography, the garden-hose model is

quite appealing in itself. Garden-hose complexity can be viewed as a natural measure of space, in

a situation where two players with private inputs compute a Boolean function cooperatively. And

as we shall see in this chapter it has interesting connections to several other complexity measures

and studying garden-hose model can lead to new lower bounds.

8.1.2 Formal Definition of the Model

We now describe the garden-hose model in graph terminology. In a garden-hose protocol with s

pipes there is a set V of s vertices plus one extra vertex, the tap t.

Given their inputs x, y Alice and Bob want to compute f(x, y). Depending on x Alice connects

some of the vertices in V ∪ {t} in pairs by adding edges EA(x) that form a matching among the

vertices in V ∪ {t}. Similarly, Bob connects some of the vertices in V in pairs by adding edges

EB(y) that form a matching in V .

Notice that after they have added the additional edges, a path starting from vertex t is formed

in the graph G = (V ∪ {t},EA(x) ∪EB(y)). Since no vertex has degree larger than 2, this path is

unique and ends at some vertex. We define the output of the game to be the parity of the length of

the path starting at t. For instance, if the tap is not connected the path has length 0, and the output

is 0. If the tap is connected to another vertex, and that vertex is the end of the path, then the path

has length 1 and the output is 1 etc.

A garden-hose protocol for f ∶ X ×Y → {0,1} is a mapping from x ∈ X to matchings among
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V ∪ {t} together with a mapping from y ∈ Y to matchings among V . The protocol computes

f(x, y) if for all x, y the path has even length iff f(x, y) = 0. The garden-hose complexity of f is

the smallest s such that a garden-hose protocol of size s exists that computes f .

We note that one can form a matrix Gs that has rows labelled by all of Alice’s matchings, and

columns labelled by Bob’s matchings, and contains the parity of the path lengths. A function f

has garden-hose complexity s iff its communication matrix is a sub-matrix of Gs. Gs is called the

garden-hose matrix for size s.

8.1.3 Previous Work

Buhrman et al. [BFSS13] prove a number of results about the garden-hose model:

• Deterministic one-way communication complexity can be used to show lower bounds of up

to Ω(n/ logn) for many functions.

• For the Equality problem they refer to a bound ofGH(Equality) = Θ(n) shown by Pietrzak

(the proof implicitly uses the fooling set technique from communication complexity [KN97]

[personal communication]).

• They argue that super-polynomial lower bounds for the garden-hose complexity of a function

f imply that the function cannot be computed in Logspace, making such bounds hard to

prove for ‘explicit’ functions.

• They define randomized and quantum variants of the model and show that randomness can

be removed at the expense of multiplying size by a factor of O(n) (for quantum larger gaps

are known).

• Via a counting argument it is easy to see that most Boolean functions need size GH(f) =

2Ω(n).

Chiu et al. [CSWX13] improved the upper bound for the Equality function to 1.359n from the

previously known 2n bound [BFSS13].

8.1.4 Garden-Hose Model and Communication Complexity

In this chapter we study garden-hose complexity and establish several new connections with well

studied models like communication complexity, permutation branching programs, and formula

size.
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But before we begin we review some well studied complexity models. First we define Boolean

formulae.

Definition 8.1.1. A Boolean formula is a Boolean circuit whose every node has fan-out 1 (except

the output gate). A Boolean formula of depth d is then a tree of depth d. The nodes are labelled by

gate functions from a family of allowed gate functions, e.g. the class of the 16 possible functions of

the form f ∶ {0,1} × {0,1}→ {0,1} in case the fan-in is restricted to 2. Another interesting class

of gate functions is the class of all symmetric functions (of arbitrary fan-in). The formula size of

a function f (relative to a class of gate functions) is the smallest number of leaves in a formula

computing f .

Now we define branching programs. Our definition of permutation branching programs is

extended in a slightly non-standard way.

Definition 8.1.2. A branching program is a directed acyclic graph with one source node and

two sink nodes (labelled with accept and reject). The source node has in-degree 0. The sink

nodes have out-degree 0. All non-sink nodes are labelled by variables xi ∈ {x1,⋯, xn} and have

out-degree 2. The computation on an input x starts from the source node and depending on the

value of xi on a node either moves along the left outgoing edge or the right outgoing edge of that

node. An input x ∈ {0,1}n is accepted iff the path defined by x in the branching program leads to

the sink node labelled by accept. The length of the branching program is the maximum length of

any path, and the size is the number of nodes.

A layered branching program of length l is a branching program where all non-sink nodes

(except the source) are partitioned into l layers. All the nodes in the same layer query the same

variable xi, and all outgoing edges of the nodes in a layer go to the nodes in the next layer or

directly to a sink. The width of a layered branching program is defined to be the maximum number

of nodes in any layer of the program. We consider the starting node to be in layer 0 and the sink

nodes to be in layer l.

A permutation branching program is a layered branching program, where each layer has the

same number k of nodes, and if xi is queried in layer i, then the edges labelled with 0 between

layers i and i + 1 form an injective mapping from {1, . . . , k} to {1, . . . , k} ∪ {accept,reject}

(and so do the the edges labelled with 1). Thus, for permutation branching programs if we fix the

value of xi, each node on level i + 1 has in-degree at most 1.

We call a permutation branching program strict if there are no edges to accept/reject from
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internal layers. This is the original definition of permutation branching programs. Programs that

are not strict are also referred to as loose for emphasis.

We denote by PBP (f) the minimal size of a permutation branching program that computes f .

We note that simple functions like AND, OR can easily be computed by linear size loose

permutation branching programs of width 2, something that is not possible for strict permutation

branching programs [Bar85].

Lower Bound via Non-deterministic Communication

We start by showing that non-deterministic communication complexity gives lower bounds on the

garden-hose complexity of any function f . This bound is often better than the bound GH(f) ≥

Ω(D1(f)/ log(D1(f))) shown in [BFSS13], which cannot be larger than n/ logn. Thus for

several important functions like Inner Product, Disjointness a lower bound of Ω(n) is achieved.

Theorem 8.1.3. GH(f) ≥ N(f) − 1.

The main idea is that a nondeterministic protocol that simulates the garden-hose game can

choose the set of pipes that are used on a path used on inputs x, y instead of the path itself, reducing

the complexity of the protocol. The set that is guessed may be a superset of the actually used pipes,

introducing ambiguity. Nevertheless we can make sure that the additionally guessed pipes form

cycles and are thus irrelevant.

Proof. Consider a deterministic garden-hose protocol P for f using s pipes. Maybe the most

natural approach to simulate P ’s computation by a non-deterministic communication protocol

would be to guess the path that the water takes, and verify this guess locally by Alice and Bob.

There are, however, too many paths for this to lead to good bounds. Instead we use a coarser guess.

For any given input x, y in a computation of P the water traverses a set W (x, y) of pipes. We refer

to these pipes as the wet pipes in P on x, y. In general a set of wet pipes can correspond to several

paths through the network, which must use only edges from the set.

In the non-deterministic protocol Alice guesses a set S of pipes that is supposed to be W (x, y).

Since ∣W (x,u)∣ is odd if and only if f(x, y) = 1 the size of S immediately tells us whether S is a

witness for 1-inputs or 0-inputs.

Consider an even size set S. Alice computes the connections of the pipes on her side using her

input x (as used in the garden-hose protocol). Her connections are consistent with S, iff the tap is
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connected to a pipe in S, and the other pipes in S are all connected in pairs, except one, which is

open. Note that none of the pipes in S may be connected to a pipe outside of S. Similarly, S is

consistent with Bob’s connections (based on y), if all the pipes in S are paired up (no pipe in S is

open and no pipe in S is connected to a pipe outside S).

For odd size S we use an analogous definition of consistency: Now Alice has no open pipe in

S and all pipes in S are paired up except the one connected to the tap, and Bob has all pipes in S

paired up except one that is open.

Suppose that S is consistent with the connections defined by x, y. Denote by P (x, y) the path

the water takes in the garden-hose protocol. We claim that all the pipes in P (x, y) are in S, and

that the remaining pipes in S form cycles. If this is the case then the non-deterministic protocol is

correct: Since cycles have even length, subtracting them does not change the fact that ∣S∣ is even or

odd, and hence the size of S and P (x, y) have the same parity, i.e., a consistent S determines the

function value correctly. Also note that the communication complexity of the non-deterministic

protocol is at most GH(f)+1, since a subset of the pipes used can be communicated with s bits:

Alice guesses an S that is consistent with her input and sends it to Bob, who accepts/rejects if S is

also consistent with his input, otherwise he gives up (accepting/rejecting takes one additional bit of

communication). Note that for partial functions no consistent S may exist for Alice to choose, but

in that case she can give up without a result.

To establish correctness we have to show that all pipes in P (x, y) are in S (and the remaining

pipes in S form cycles). Clearly the starting pipe (the one connected to the tap) is in S by the

definition of consistency. All remaining pipes in S on Bob’s and Alice’s side are either paired up or

(for exactly one pipe) open. Hence we can follow the flow of water without leaving S. This implies

that P (x, y) is in S, and since removing P (x, y) from S leaves no open pipes all the remaining

pipes in S must form a set of cycles.

As an application consider the function IP (x, y) = ∑ni=1(xi ⋅ yi) mod 2. It is well known

that N(IP ) ≥ n + 1 [KN97], hence we get that GH(IP ) ≥ n. The same bound holds for

Disjointness. These bounds improve on the previous Ω(n/ logn) bounds for these functions

[BFSS13]. Furthermore note that the fooling set technique gives only bounds of size O(log2 n) for

the complexity of IP (see [KN97]), so the technique previously used to get a linear lower bound

for Equality fails for IP .
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GH(f) At Most The Size of a Protocol Tree for f

Buhrman et al. [BFSS13] previously show that any one way communication complexity protocol

with complexityD1(f) can be converted to a garden-hose protocol with 2D1(f)+1 pipes. One-way

communication complexity can be much larger than two-way communication [PS84]. It turns

out that any 2-way deterministic communication protocol can also be converted to a garden-hose

protocol so that the complexity GH(f) is upper bounded by the size of the protocol tree of the

communication protocol.

Theorem 8.1.4. For any function f , the garden-hose complexity GH(f) is upper bounded by the

number of edges in a protocol tree for f .

Proof. Given a protocol tree (with k edges) of a two way communication protocol P for any

function f we construct a garden-hose protocol with at most k pipes.

We describe the construction in a recursive way. Let v be any node of the protocol tree

belonging to Alice, with children u1, . . . , ud belonging to Bob. In the protocol tree rooted at v

a function fv is computed. If none of the ui are leaves, then we assume by induction that we

can construct a garden hose protocol Pi for each of the children, where Pi uses at most si many

pipes, and si is the number of edges in the subtree of ui. The Pi have the tap on Bob’s side. To

find a garden-hose protocol for v, we use d +∑ si pipes. Alice sends the water through pipe i to

communicate the message corresponding to the edge to ui. Furthermore the right end of pipe i is

connected to the tap of a copy of Pi. The number of pipes used (d+∑ si) is at most the number of

edges in the protocol tree. If one or two of the ui are leaves, we use the same construction, except

that for an accepting leaf we use one extra pipe that is open on Bob’s end, and for a rejecting leaf

we just let the water spill at Alice’s pipe. It is easy to see by induction that the garden-hose protocol

accepts on x, y if and only if the protocol tree ends in an accepting leaf.

8.2 Garden-Hose Model and Other Complexity Classes

We now turn to comparing the garden-hose model to another nonuniform notion of space com-

plexity, namely branching programs. In Section 8.2.1 we show how to convert any permutation

branching program to a garden-hose protocol with only a constant factor loss in size.

The most important application of this simulation is that it allows us to find a garden-hose
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protocol for the distributed Majority function,

DMAJ(x, y) = 1 iff
n

∑
i=1

(xi ⋅ yi) ≥
n

2
,

that has size O(n ⋅ log3 n), disproving the conjecture in [BFSS13] that this function has

complexity Ω(n2) (see Section 8.2.2).

Using the garden-hose protocols for Majority, Parity, AND, OR, we show upper bounds on the

composition of functions with these.

Then in Section 8.2.3 we show how to convert any Boolean formula with AND, OR, XOR gates

to a garden-hose protocol with a small loss in size. In particular, any formula consisting of arbitrary

fan-in 2 gates only can be simulated by a garden-hose protocol with a constant factor loss in size.

This result strengthens the previous observation that explicit super-polynomial lower bounds for

GH(f) will be hard to show: even bounds of Ω(n2+ε) would improve on the long-standing best

lower bounds on formula size due to Nečiporuk from 1966 [Nec66]. We can also simulate formulae

including a limited number of Majority gates of arbitrary fan-in, so one might be worried that even

super-linear lower bounds could be difficult to prove. We argue, however, that for formulae using

arbitrary symmetric gates we can still get near-quadratic lower bounds using a Nečiporuk-type

method. Nevertheless we have to leave super-linear lower bounds on the garden-hose complexity

as an open problem.

8.2.1 Relating Permutation Branching Programs and the Garden-Hose Model

Before we begin we need to following notion of spilling pipes.

Definition 8.2.1. In a garden-hose protocol a spilling-pipe on a player’s side is a pipe such that

water spills out of that pipe on the player’s side during the computation for some input x, y.

We say a protocol has multiple spilling-pipes if there is more than one spilling-pipe on Alice’s

side or on Bob’s side.

We now show a technical lemma that helps us compose garden-hose protocols without blowing

up the size too much.

Lemma 8.2.2. A garden-hose protocol P for f with multiple spilling pipes can be converted to

another garden-hose protocol P ′ for f that has only one spilling pipe on Alice’s side and one

spilling pipe on Bob’s side. The size of P ′ is at most 3 times the size of P plus 1.
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Figure 8.1: The Construction in Lemma 8.2.2

Proof. Fix a protocol P that uses s pipes to compute f . In the protocol P Alice makes the

connections on her side based on her input x. Similarly, Bob’s connections are based on his input

y. Denote the set of pipes that are open on Alice’s side by SA and the set of pipes that are open on

Bob’s side by SB .

In the new protocol P ′ Alice and Bob have 3s pipes arranged into 3 blocks of s pipes each.

Let’s call them B1,B2 and B3. The main idea is to use B1 to compute f and then use B2 and B3

to ‘un-compute’ f (to remove the extra information provided by the multiple spilling pipes).

In the construction of P ′ Alice and Bob make their connections on B1,B2 and B3 separately,

exactly the same way they did in P for s pipes. Alice then connects B1’s tap-pipe to the tap and

keeps the tap-pipes of B2,B3 open. They then add the following connections: Alice connects

every pipe i ∈ SA in B1 to pipe i ∈ SA in B2 and Bob connects every pipe i ∈ SB in B1 to pipe

i ∈ SB in B3. Note that those pipes were open before they were connected as they were all spilling

pipes. B1 now does not have any open pipes. The only pipes that will ever spill in B2 and B3 are

their taps (there may be other open pipes but it is easy to see that they never spill). The tap-pipes of

B2 and B3 are both on Alice’s side. Finally, Alice uses one more pipe, and connects the tap-pipe

of B3 to the new pipe. Figure 1 shows an example of the construction.

The size of the new protocol P ′ is exactly 3s + 1, and there is exactly one spilling pipe on each

side, namely the tap pipes of B2 and B3, because the only other open pipes are the SA pipes in B3

and the SB pipes in B2. These cannot be reached by the water. All connections made are done by

Alice and Bob alone. We now argue that the protocol computes f(x, y) correctly.

Notice that if f(x, y) = 0, then water flows through B1 and ends at one of the pipes in SA. This

pipe is connected to the corresponding pipe in B2. So the water follows the same path backwards
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in B2 until it reaches the tap-pipe in B2. This pipe is open on Alice’s side. Hence water spills on

Alice’s side making the output 0 (and it spills at the tap of B2).

Similarly, if f(x, y) = 1, water flows through B1 and ends at one of the pipes in SB on Bob’s

side. Since this pipe is connected to the corresponding pipe in B3 the water flows backwards din

B3 until it reaches the tap-pipe of B3. This is on Alice’s side and connected to the extra pipe. This

makes the water to spill on Bob’s side as desired.

Now we are going to show that it is possible to convert a (loose) permutation branching program

into a garden-hose protocol with only a constant factor increase in size. We are stating a more

general fact, namely that the inputs to the branching program we simulate can be functions (with

small garden-hose complexity) instead of just variables. This allows us to use composition.

Lemma 8.2.3. GH(g(f1, f2, ..., fk)) = O(S ⋅ max(Ci)) + O(1), where PBP (g) = S and

GH(fi) = Ci and fi ∶ {0,1}n × {0,1}n → {0,1}. The fi do not necessarily have the same

inputs x, y.

Proof. In Lemma 8.2.2 we have seen that we can turn a garden-hose protocol with multiple spilling

pipes into a protocol with exactly one spilling pipe per side. Such a protocol acts exactly as a node

in a branching program, except that its decision is based on fi(xi, yi). This observation suffices to

simulate decision trees, but in a branching program nodes can have in-degree larger than 1, and we

cannot pump water from several sources into a single garden-hose protocol.

We now show how to construct a garden-hose protocol for g(f1, f2, ..., fk). Given a loose

permutation branching program for g of size S, we show how to construct a garden-hose protocol.

Let G denote the graph of the branching program. G consists of T layers L0, . . . , LT−1, where

the first layer has just one node (the source), the last layer 2 nodes (the sinks), and all intermediate

layers have W nodes, so the size is S = (T − 2)W + 3. Layer Li queries some variable zi, whose

value is fi(xi, yi). The 1-edges between Li and Li+1 are E1
i , the 0-edges E0

i .

The construction goes by replacing the nodes of each layer by the garden-hose protocols Pi for

fi. Each layer uses 2W copies of Pi, arranged in two layers. We refer to these copies as the upper

and lower copies of Pi, each numbered from 1 to W (and implicitly by their level). Essentially

we need the first layer to compute fi, and the second layer to un-compute, since we only want to

remember the name of the current vertex in G, not the value of fi.

If e = (j, k) ∈ E1
i , then we connect the 1-spill pipe of the upper j-th copy of Pi to the 1-spill

pipe of the lower k-th copy of Pi. Similarly we make the connections for the 0-spill pipes (on
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Figure 8.2: Permutation Branching Program to Garden-Hose Protocol Construction

Alice’s side).

To connect layers we connect the tap-pipes on each lower copy j of a level Li to the tap-pipes

of an upper copy j on level Li+1. On level L0 the tap-pipe of an upper copy is connected to Alice’s

tap according to the branching program.

Figure 8.2 shows an example of the construction, where each block is a garden-hose protocol

to compute fi.

For every edge that goes to the accepting sink of the branching program we use one pipe that is

connected to the corresponding upper copy on Alice’s side, if the corresponding spilling pipe is on

Alice’s side. Otherwise we leave the spilling pipe open. We proceed analogously for edges to the

rejecting sink.

The size of the garden-hose protocol is at most 2W ⋅∑Li=1Ci ≤ maxCi ⋅ 2WL.

A first corollary is the following fact already shown in [BFSS13]. Nonuniform Logspace is

equal to the class of all languages recognizable by polynomial size families of branching programs.

Since reversible Logspace equals deterministic Logspace [LMT00], and a reversible Logspace

machine (on a fixed input length) can be transformed into a polynomial size permutation branching

program, we get the following.

Corollary 8.2.4. Logspace ⊆ GH(poly(n)). This holds for any partition of the variables among

Alice and Bob.

8.2.2 The Distributed Majority Function

In this section we investigate the complexity of the Distributed Majority function.
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Definition 8.2.5. Distributed Majority: DMAJ(x, y) = 1 iff ∑ni (xi ⋅ yi) ≥ n
2 , where x, y ∈ {0,1}n.

Buhrman et al. [BFSS13] have conjectured that the complexity of this function is quadratic,

which is what is suggested by the naı̈ve garden-hose protocol for the problem. The naı̈ve protocol

implicitly keeps one counter for i and one for the sum, leading to quadratic size. Here we describe a

construction of a permutation branching program of size O(n ⋅ log3 n) for Majority, which can then

be used to construct a garden-hose protocol for the Distributed Majority function. The Majority

function is defined by MAJ(x1, . . . , x1) = 1⇔ ∑xi ≥ n/2.

Note that the Majority function itself can be computed in the garden-hose model using O(n)

pipes (for any way to distribute inputs to Alice and Bob), since Alice can just communicate ∑i xi

to Bob. The advantage of using a permutation branching program to compute Majority is that by

Lemma 8.2.3 we can then find a garden-hose protocol for the composition of MAJ and the Boolean

AND, which is the Distributed Majority function. We adapt a construction of Sinha and Thathachar

[ST97], who describe a branching program for the Majority function.

Lemma 8.2.6. PBP (MAJ) = O(n ⋅ log3 n).

Proof. In 1997, Sinha et al. [ST97] described a branching program of size

O( n log3 n
log logn log log logn) for computing Majority. Unfortunately the branching program they construct

is not a permutation branching program. Thus it is not immediately clear how to convert their

construction into a garden-hose protocol.

To describe a permutation branching program for Majority we first need permutation branching

programs for computing the sum of the inputs mod r for small r. Denote by Modr the (non-

Boolean) function Modr(x1, . . . , xn) = ∑i xi mod r. The following is easy to see.

Claim 8.2.7. Modr(x1, . . . , xn) can be computed by permutation branching program of width r

so that each input x with ∣x∣ = i, when starting on the top level at node j ends at node i + j mod r

on the last level.

We call this permutation branching program a modulus-r box. The join of two modulus r1

resp. r2 boxes is a new branching program, in which bottom level nodes of the first box are

identified in some way with top level nodes of the second. We employ the following main technical

result of Sinha et al. [ST97], which describes an approximate divider.

Fact 8.2.8. [ST97] Fix the length M of an interval of natural numbers. There are k ≤ logM prime

numbers r2 < r3 < ⋯ < rk, where r2 > 4 logM and rk < 12 logM and a number r1 = 2t such that
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2M ≤ Π1≤i≤kri and r1 < r2. Set M ′ =M/r2. Consider inputs x such that b ≤ ∣x∣ ≤ b +M − 1.

Then there is a way to join k modulus-ri boxes (in order r1 . . . , rk) into a single branching

program, such that all inputs x reaching the sink nodes named lM ′ mod rk for some 0 ≤ l < rk (in

the last box) satisfy that ∣x∣ belongs to one of r2 intervals of length (k − 1)M ′ in [b, b +M − 1].

The intervals overlap, and each point in [b, b +M − 1] is in k − 1 intervals.

Furthermore, the connections between the boxes are such that every output node of the ri box

is connected to one input node of the ri+1 box, and every input node of the ri+1 box is connected to

at most one output node of the ri box.

The above differs from the presentation in [ST97] in that we require that the ri are increasing

so that we can join them without creating nodes with fan-in larger than 1. This means that every ri

box for i > 1 has a few input nodes that are not used.

Note that our goal is to know whether ∣x∣ is greater than n/2 or not. Effectively this means

there are three kinds of bottom layer nodes in the branching program constructed above (for b = 0):

those where we know that all inputs reaching the sink have n/2 > ∣x∣, at which point we can reject,

those where n/2 < ∣x∣, where we accept, and undecided nodes. A bottom layer node is undecided,

if the interval of possible ∣x∣ reaching that sink contains n/2. At undecided nodes the interval of

possible values of ∣x∣ has been reduced to size (k − 1)M/r2, i.e., a (k − 1)/r2 < 1/4 fraction of

the the original interval. Furthermore, there are k − 1 undecided nodes (since n/2 is in that many

intervals), but the intervals for those nodes stretch to at most (k − 1)M/r2 beyond n/2 on both

sides, hence the union of the intervals of all undecided bottom layer nodes is an interval of size

at most 2(k − 1)M/r2 ≤M/2. Hence, this construction can be iterated (at most logn times) to

decide Majority on all inputs.

Now we need to argue that the whole construction can be made into a permutation branching

program. Obviously any mod-r box can be computed by a strict permutation BP of width r

and length n. The connections between the k boxed are injective mappings. Hence the whole

constructions for the above fact can be made into a permutation branching program, where dummy

nodes need to be added to bring all layers to the same width (rk).

The branching program for Majority is then an iteration of the above construction of permuta-

tion branching programs. In each level of the iteration some nodes accept, some reject, and some

continue on a smaller interval. For all undecided sink nodes we can assume that they continue

using the same interval of size at most M/2. This continues until the intervals are very short

(M ≤ logn), at which the problem can be solved by counting.
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To do the same iteration in a permutation branching program we need to do the following. We

want to turn a building block Bi of the iteration (a permutation branching program as in Fact 8.2.8)

into a permutation branching program that has only 3 sinks reached by inputs (plus some sinks that

are never reached). To do this we first use the original program, followed by 3 copies of the same

program in reverse. We connect the undecided sinks of the upper program into the corresponding

vertices in the first reversed lower program, similarly the accepting and rejecting sinks into the

corresponding vertices of the other two reversed programs. Then each input that is undecided by

Bi will end up at the node corresponding to the starting node of the first reverse copy. Similarly,

inputs that are accepted by Bi will leave the second reverse copy at the node corresponding to

the starting node of Bi etc. Using dummy nodes this program can be extended to a permutation

branching program, with width increased by a factor of 3 and length by 2. Each input leads to one

of three nodes. We can now connect the undecided sink of the above construction to the starting

vertex of the next block Bi+1. To turn the whole construction into a strict permutation branching

program the accepting and rejecting bottom vertices are connected to O(n log2 n) extra vertices

that remember at which layer/vertex the inputs were accepted/rejected.

The whole construction yields a permutation branching program for Majority. The length of

the program is O(logn ⋅ logn ⋅ n), for the logn iterations, the k ≤ logn boxes that have length

n. Each level of the program has width at most O(logM) for the mod ri boxes and the constant

factors to turn things into a permutation BP (plus 2 logn vertices for accepting/rejecting paths)).

Hence the total size of the program is O(n log3 n).

We can now state the result about the composition of functions f1, . . . , fk with small garden-

hose complexity via a Majority function.

Lemma 8.2.9. For (f1, f2, .., fk), where each function fi has garden-hose complexity GH(fi),

we have GH(MAJ(f1, . . . , fk)) = O(∑GH(fi)) ⋅ log3 k).

The lemma immediately follows from combining Lemma 8.2.6 with Lemma 8.2.3. Considering

fi = xi ∧ yi we get

Corollary 8.2.10. The garden-hose complexity of distributed Majority is O(n log3 n).
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8.2.3 Composition and Connection to Formula Size

We wish to relate GH(f) to the formula size of f . To do so we examine composition of garden-

hose protocols by popular gate functions.

Theorem 8.2.11. For (f1, f2, .., fk), where each function fi has garden-hose complexity GH(fi)

• GH(⋁ fi) = O(∑GH(fi)).

• GH(⋀ fi) = O(∑GH(fi)).

• GH(⊕fi) = O(∑GH(fi)).

• GH(MAJ(fi)) = O(∑GH(fi) ⋅ log3 k).

This result follows from Lemma 8.2.9 and Lemma 8.2.3 combined with the trivial loose

permutation branching programs for AND, OR, XOR.

We now turn to the simulation of Boolean formulae by garden-hose protocols. We use the

simulation of formulae over the set of all fan-in 2 functions by branching programs due to Giel

[Gie01].

Theorem 8.2.12. Let F be a formula for a Boolean function g on k inputs made of gates {∧,∨,⊕}

of arbitrary fan-in. If F has size s and GH(fi) ≤ c for all i, then for all constants ε > 0 we have

GH(g(f1, f2, .., fk)) ≤ O(s1+ε ⋅ c).

Proof. Giel [Gie01] shows the following simulation result:

Fact 8.2.13. Let ε > 0 be any constant. Assume there is a formula with arbitrary fan-in 2 gates

and size s for a Boolean function f . Then there is a layered branching program of size O(s1+ε)

and width O(1) that also computes f .

By inspection of the proof it becomes clear that the constructed branching program is in fact a

strict permutation branching program. The theorem follows by applying Lemma 8.2.3.

Corollary 8.2.14. When the fi’s are single variables GH(g) ≤ O(s1+ε) for all constants ε > 0.

Thus any lower bound on the garden-hose complexity of a function g yields a slightly smaller lower

bound on formula-size (all gates of fan-in 2 allowed).

The best lower bound of Ω(n2/ logn) known for the size of formulae over the basis of all

fan-in 2 gate function is due to Nečiporuk [Nec66]. The Nečiporuk lower bound method (based on
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counting subfunctions) can also be used to give the best general branching program lower bound

of Ω(n2/ log2 n) (see [Weg87]).

Due to the above any lower bound larger than Ω(n2+ε) for the garden-hose model would

immediately give lower bounds of almost the same magnitude for formula size and permutation

branching program size. Proving super-quadratic lower bounds in these models is a long-standing

open problem.

Due to the fact that we have small permutation branching programs for Majority, we can even

simulate a more general class of formulae involving a limited number of Majority gates.

Theorem 8.2.15. Let F be a formula for a Boolean function g on n inputs made of gates {∧,∨,⊕}

of arbitrary fan-in. Additionally there may be at most O(1) Majority gates on any path from the

root to the leaves. If F has size s, then for all constants ε > 0 we have GH(g) ≤ O(s1+ε).

Proof. Proceeding in reverse topological order we can replace all sub-formulae below a Majority

gate by garden-hose protocols with Theorem 8.2.12, increasing the size of the sub-formula. Then

we can apply Lemma 8.2.9 to replace the sub-formula including the Majority gate by a garden-hose

protocol. If the size of the formula below the Majority gate is s̃, then the garden-hose size is

O(s̃1+ε′), where the poly-logarithmic factor of Lemma 8.2.9 is hidden in the polynomial increase.

Since every path from root to leaf has at most c = O(1) Majority gates, and we may choose the ε′

in Theorem 8.2.12 to be smaller than ε/c, we get the desired result.

8.2.4 The Nečiporuk Bound with Arbitrary Symmetric Gates

Since garden-hose protocols can even simulate formulae containing some arbitrary fan-in Majority

gates, the question arises whether one can hope for super-linear lower bounds at all. Maybe it is

hard to show super-linear lower bounds for formulae having Majority gates? Note that very small

formulae for the Majority function itself are not known (the currently best construction yields

formulae of size O(n3.03) [Ser14]), hence we cannot argue that Majority gates do not add power to

the model. In this subsection we sketch the simple observation that the Nečiporuk method [Nec66]

can be used to give good lower bounds for formulae made of arbitrary symmetric gates of any

fan-in. Hence there is no obstacle to near-quadratic lower bounds from the formula size connection

we have shown. We stress that nevertheless we do not have any super-linear lower bounds for the

garden-hose model.

We employ the communication complexity notation for the Nečiporuk bound from [Kla07].
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Theorem 8.2.16. Let f ∶ {0,1}n → {0,1} be a Boolean function and B1, . . . ,Bk a partition of the

input bits of f . Denote by Dj(f) the deterministic one-way communication complexity of f , when

Alice receives all inputs except those in Bj , and Bob the inputs in Bj . Then the size (number of

leaves) of any formula consisting of arbitrary symmetric Boolean gates is at least ∑Dj(f)/ logn.

Proof. Fix f and B1, . . . ,Bk and any formula F of size at most n2 computing f consisting of

symmetric gates only. Define Fj to be the subtree of F , whose leaves are the variables in Bj (and

root is the output gate of the formula, and denote by Lj the number of leaves of Fj . Then the size

of F is ∑Lj . We will show that Dj(f) ≤ O(Lj ⋅ logn).

Alice has all the variables except those in Bj , which go to Bob. Alice (and Bob) have to

evaluate all the gates in Fj (this includes the root). They will evaluate the gates in (reverse)

topological order. All the leaves are known to Bob. Denote by P the set of paths in Fj that start at

a leaf or a gate of fan-in at least 2 inside Fj , and end at a gate of fan-in at least 2 inside Fj and

have no such gates in between. Then Lj ≥ ∣P ∣. Also denote by G the set of gates in Fj that have

fan-in larger than 1 inside Fj , again Lj ≥ ∣G∣. We will show that the communication is at most

O(Lj ⋅ logn).

Bob goes over paths p ∈ P and gates in g ∈ G in reverse topological order (i.e., from the leaves

up). Let p = v1, . . . , vt be the vertices of some p in reverse topological order (i.e., the root is last).

Denote by fp the gate at vt−1, the last vertex that has fan-in 1 in p. Alice can tell Bob which

function is computed at vt−1 in terms of the value already computed (by Bob) at v1. This takes

2 bits. Hence the total communication to evaluate paths in P is 2∣P ∣. For each g ∈ G there are at

least 2 inputs in Fj that have already been computed by Bob. Since the gate at g is symmetric, it is

sufficient for Alice to say how many of her inputs to g evaluate to 1, which takes at most 2 logn

bits unless the formula is larger than n2. So the total communication is at most O(∣P ∣ + ∣G∣ logn),

and ∣G∣, ∣P ∣ ≤ Lj , unless F has size larger than n2 already.

The theorem is as good as the usual Nečiporuk bound except for the log-factor, and can hence

be used to show lower bounds of up to Ω(n2/ log2 n) on the formula size of explicit functions like

IndirectStorageAccess [Weg87].
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8.3 Time Bounded Garden-Hose Protocols

We now define the notion of time in garden-hose protocols and prove that for any function

f , if we restrict the number of times water can flow through pipes to some value k, we have

GHk(f) = Ω(2Dk(f)/k), where GHk denotes the time-bounded garden-hose complexity, and Dk

the k-round deterministic communication complexity. This result leads to strong lower bounds

for the time bounded complexity of e.g. Equality, and to a time-hierarchy based on the pointer

jumping problem.

To do this let us define the notion of wet pipes.

Definition 8.3.1. Given a garden-hose protocol P for computing function f , and an input x, y

we refer to the pipes that carry water in P on x, y as the wet pipes. Let TP denote the maximum

number of wet pipes for any input (x, y) in P .

The number of wet pipes on input x, y is equal to the length of the path the water takes and

thus corresponds to the time the computation takes. Thus it makes sense to investigate protocols

which have bounded time TP . Furthermore, the question is whether it is possible to simultaneously

optimize TP and the number of pipes used.

Definition 8.3.2. We define GHk(f) to be the complexity of an optimal garden-hose protocol P

for computing f where for any input (x, y) we have that TP is bounded by k.

As an example consider the Equality function (test whether x = y). The straightforward

protocol that compares bit after bit has cost 3n but needs time 2n in the worst case. On the

other hand one can easily obtain a protocol with time 2, that has cost O(2n): use 2n pipes to

communicate x to Bob. We have the following general lower bound.

Theorem 8.3.3. For all Boolean functions f we have GHk(f) = Ω(2Dk(f)/k), where Dk(f) is

the deterministic communication complexity of f with at most k rounds (Alice starting).

Proof. We rewrite the claim as Dk(f) = O(k ⋅ logGHk(f)).

Let P ′ be the garden-hose protocol for f that achieves complexity GHk(f) for f . The

deterministic k-round communication protocol for f simulates P ′ by simply following the flow of

the water. In each round Alice or Bob (alternatingly) send the name of the pipe used at that time by

P ′.
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Thus for Equality we have for instance that GH√
n(Equality) = Ω(2

√
n). There is an almost

matching upper bound of GH√
n(Equality) = O(2

√
n ⋅√n) by using

√
n blocks of 2

√
n pipes to

communicate blocks of
√
n bits each.

We can easily deduce a time-cost tradeoff from the above: For Equality the product of time

and cost is at least Ω(n2/ logn), because for time T < o(n/ logn) we get a super-linear bound on

the size, whereas for larger T we can use that the size is always at least n.

8.3.1 A Time-Size Hierarchy

The Pointer Jumping Function is well-studied in communication complexity. We describe a slight

restriction of the problem in which the inputs are permutations of {1, . . . , n}.

Definition 8.3.4. Let U and V be two disjoint sets of vertices such that ∣U ∣ = ∣V ∣ = n.

Let FA = {fA∣fA ∶ U → V and fA is bijective} and FB = {fB ∣fB ∶ V → U and fB is bijective}.

For a pair of functions fA ∈ FA and fB ∈ FB define

f(v) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fA(v) if v ∈ U

fB(v) if v ∈ V .

Then f0(v) = v and fk(v) = f(fk−1(v)).

Finally, the pointer jumping function PJk ∶ FA × FB → {0,1} is defined to be the XOR of all

bits in the binary name of fk(v0), where v0 is a fixed vertex in U .

Round-communication hierarchies for PJk or related functions are investigated in [NW93].

Here we observe that PJk gives a time-size hierarchy in the garden-hose model. For simplicity we

only consider the case where Alice starts.

Theorem 8.3.5. For the pointer jumping function PJk ∶ FA × FB → {0,1} we have:

1. PJk can be computed by a garden-hose protocol with time k and size kn.

2. Any garden-hose protocol for PJk that uses time at most k − 1 has size 2Ω(n/k) for all

k ≤ n/(100 logn).

Proof. To show part 1) we use a protocol using nk pipes, organized into k blocks. If Alice has

input fA, then she connects the tap to pipe fA(v1) in block 1. For all even numbered blocks 2j she

connects the ith pipe in block 2j to pipe fA(i) in block 2j + 1. Bob connects for all odd numbered

blocks the ith pipe in block 2j + 1 to pipe fB(i) in block 2j + 2.
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Assume that k is odd. Then the kth vertex of the path is on Bob’s side. If PJk(fA, fB) = 0

then the XOR of fk(v0) is 0 and the water needs to spill on Alice’s side. Hence, in block k, for all

pipes i with even i, Alice leaves the pipe open instead of connecting it to a pipe in block k − 1. She

does make the connections as described above for all odd pipes in block k.

Similarly, if k is even, then the last vertex is on Alice’s side and if fk(v0) is odd the spill needs

to be on Bob’s side. Hence Bob skips all the connections between blocks k − 1 and k for odd

numbered pipes i in block k.

Note that fA and fB are bijective, hence the connections made are legal. In total we use kn

pipes. It is clear that the garden-hose protocol described above computes PJk.

Now we turn to part 2. Take any time k − 1 garden-hose protocol for PJk using s pipes. Due

to the simulation in Theorem 8.3.3 we get a k − 1 round communication protocol (Alice starting)

with communication (k − 1) log s. But Nisan and Wigderson [NW93] show that such protocols

need communication Ω(n) for k ≤ n/(100 logn). Hence s ≥ 2Ω(n/k).

The difficulty in applying their result is that Nisan and Wigderson analyse the complexity of

PJk for uniformly random inputs, not random bijective inputs fA resp. fB . Hence we need to

make some changes to their proof. These changes needed to make the argument work are minor,

however: the uniform distribution on pairs of bijective functions is still a product distribution, and

as long as k = o(n) it is still true that at any vertex in the protocol tree the information about the

next pointer is a small constant. The main difference to the original argument is that conditioning

on the previous path introduces information about the next pointer due to the fact that vertices on

the path can not be used again. This can easily be subsumed into the information given via the

previous communication.

We note that slightly weaker lower bounds hold for the randomized setting.

8.4 Randomized Garden-Hose Protocols

We now bring randomness into the picture and investigate its power in the garden-hose model.

Buhrman et al [BFSS13] have already considered protocols with public randomness. In this section

we are mainly interested in the power of private randomness.

Definition 8.4.1. Let RGHpub(f) denote the minimum complexity of a garden-hose protocol

for computing f , where the players have access to public randomness, and the output is correct
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with probability 2/3 (over the randomness). Similarly, we can define RGHpri(f), the cost of

garden-hose protocols with access to private randomness.

By standard fingerprinting ideas [KN97] we can observe the following.

Claim 8.4.2. RGHpub(Equality) = O(1)

Claim 8.4.3. RGHpri(Equality) = O(n), and this is achieved by a constant time protocol.

Proof. The second claim follows from Newman’s theorem [New91] showing that any public

coin protocol with communication cost c can be converted into a private coin protocol with

communication cost c + logn +O(1) bits on inputs of length n together with the standard public

coin protocol for Equality, and the protocol tree simulation of Theorem 8.1.4.

Of course we already know that even the deterministic complexity of Equality is O(n), hence

the only thing achieved by the above protocol is the reduction in time complexity. Note that due

to the result in the previous section computing Equality deterministically in constant time needs

exponentially many pipes.

Buhrman et al. [BFSS13] have shown how to de-randomize a public coin protocol at the cost

of increasing size by a factor of O(n), so the factor n in the separation between public coin and

deterministic protocols above is the best that can be achieved. This raises the question whether

private coin protocols can ever be more efficient in size than the optimal deterministic protocol.

We now show that there are no very efficient private coin protocols for Equality.

Claim 8.4.4. RGHpri(Equality) = Ω(√n/ logn)

Proof. To prove this we first note that RGHpri(f) = Ω(R∣∣(f)/ logR∣∣(f)), where R∣∣(f) is the

cost of randomized private coin simultaneous message protocols for f (Alice and Bob can send

their connections to the referee). Hence, RGHpri(f) = Ω(R∣∣(f)/ logR∣∣(f)), but Newman and

Szegedy [NS96] show that RGHpri(Equality) = Ω(√n).
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Chapter 9

Conclusion and Open Problems

9.1 Introduction

In this thesis, we have studied two different topics. The first topic is concerned with graph properties

in the query complexity models. The second topic is concerned with communication complexity

and garden-hose protocols. Here we briefly recall the main results of each chapter and list some

related open problems for further study.

9.1.1 Query Complexity of Graph Properties

In Chapter 5 we’ve obtained an Ω(n3/4) lower bound for the quantum query complexity of

Subgraph Isomorphism Problem for graphs, improving upon previously known Ω(n2/3) bound

for the same. We have also extended our result to the 3-uniform hypergraphs by exhibiting an

Ω(n4/5) bound, which improves a previously known Ω(n3/4) bound. Besides the obvious question

of settling the randomized and quantum query complexity of the Subgraph Isomorphism problem,

there are a few interesting questions that might be approachable.

Question 9.1.1. Is it true that for any n-vertex graph H we have:

(a) R(fH) = Ω(αH ⋅ n)?

(b) R(fH) = Ω(n2/dHavg))?

(c) R(fH) = Ω(n2/χH)?

Question 9.1.2. Is it true that for any 3-uniform hypergraph H we have:

Q(fH) = Ω(n)?
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Note that, in the proof of Theorem 5.2.8 we’ve managed to get a slightly stronger Ω(n5/6)

bound for the case 2. Thus an improved lower bound of Ω(n5/6) for the case 1 (when αH > n/2)

would improve the overall bound.

9.1.2 Graph Properties in Node Query Settings

In Chapter 6 we have investigated query complexity of graph properties in the node query settings.

It allowed us to initiate a systematic study of breaking symmetry. We have found that with a

minimal symmetry assumption on G the query complexity for any hereditary graph property in

that setting is the worst possible. We’ve also shown that in the absence of any symmetry on G

every hereditary property benefits at least quadratically. Furthermore it cannot fall exponentially

low for any hereditary property. We’ve also studied several other important graph properties in this

setting. Below we list some of the open problems related to the node query setting.

• Weak-evasiveness in the presence of symmetry: Is it true that every hereditary graph prop-

erty P in the node-query setting is weakly-evasive under symmetry, i.e., GT -min-cost(P) =

Ω(n)? What about the randomized case i.e., is it true that even in the randomized query

complexity settings every hereditary graph property is weakly-evasive?

• Polynomial lower bound in the absence of symmetry: How low can min-cost(P) fall

for a hereditary P in the absence of symmetry? In this thesis we have proved a lower bound

of Ω(logn/ log logn). Is it possible to improve the bound substantially?

• Further restrictions on graphs: While studying restricted graph classes we have given

more stress in planar graphs. Now the question is how low can G-min-cost(P) fall for

hereditary properties P on restricted classes of graphs G such as social-network graphs,

planar graphs, bipartite graphs, bounded degree graphs etc?

• Tight bounds on min-cost: What are the tight bounds for natural properties such as

acyclicity, planarity, containing a cycle of length t, path of length t?

• Extension to hypergraphs: We have studied graph properties in the node query frame-

work. But we have completely untouched the hypergraph regime. It would be very in-

teresting to investigate interesting properties for instance hereditary graph properties for

hypergraphs. For instance, we can even focus on 3-uniform hypergraph and ask what hap-

pens for hereditary properties of (say) 3-uniform hypergraphs in node-query setting? We
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note that min-cost(I) = Θ(n1/3) for 3-uniform hypergraphs. What about other properties?

• Global vs local: Note that global connectivity requires Θ(n) queries whereas the cost of

s-t connectivity for fixed s and t can be as low as O(1). What about other properties such

as min-cut?

• How about max-cost upper bounds? : From algorithmic point of view, it might be

interesting to obtain good upper bounds on the max-cost(P) for some natural properties. It

might also be interesting to investigate G-max-cost(P) for several restricted graph classes

such as social-network graphs, planar graphs, bipartite graphs etc. In our opinion this would

be very interesting topic for future investigations.

9.1.3 Power of Quantum Messages and Proofs in Communication Protocols

Chapter 7 has dealt with quantum messages and quantum proofs. We have investigated the

relationship between quantum and classical messages and shown how to replace a quantum

message in a one-way communication protocol by a deterministic message. Thus we’ve established

that for all partial Boolean functions f ∶ {0,1}n × {0,1}m → {0,1} we have

DA→B(f) ≤ O(QA→B,∗(f) ⋅m).

We have also shown that QMA in one-way communication complexity is exponentially more

powerful than QCMA in communication complexity model by exhibiting a partial Boolean function

f for which a QMA protocol has cost O(logn), whereas every QCMA protocol for f requires

communication Ω(√n/ logn).

Below we discuss some of the very interesting open problems related to this topics:

• Aaronson [Aar07] argued that the bound in Theorem 7.1.3 of Chapter 7 is tight to within

polylogarithmic factors for partial functions. However, a long-standing conjecture is that for

all total Boolean functions f the following is true

RA→B(f) = O(QA→B(f)),

or something weaker might also be true, i.e., for total Boolean functions we can remove the

factor m completely, but possibly at the expense of increasing the dependence on QA→B(f)
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polynomially. An easier problem might be to replace m by something smaller like
√
m for

total functions.

• For many ”nondeterministic” modes of communication complexity one-way communication

is as good as two-way communication, for instance for nondeterministic, QMA, AM-

complexity. We have proved that this is not the case for QCMA protocols (and this was

known previously for MA-protocols [Kla11]). Is there a proper round-hierarchy for QCMA

or MA protocols, i.e., is it true that there is a function that can be computed efficiently in k

rounds but not in k − 1 rounds?

• MA-communication complexity has recently been applied to the analysis of cloud-computing

on data-streams and related topics [CCM+13, CCMT14]. Currently we don’t have lower

bounds larger than
√
n for MA-communication complexity of explicit functions, while

counting arguments show that most functions have complexity Ω(n). This gap is quite

significant in practice. Can larger bounds be shown for an explicit function, at least in the

one-way model, or the even more restricted online one-way model?

• Lower bounds for the AM-communication complexity of any explicit function remain

elusive.

• It would be interesting to separate QCMA- and QMA- communication complexity in the

general two-way communication model. Such a separation could be used in the algebrization

framework [AW09] to argue that showing QCMA=QMA (in the Turing machine world)

would require nonalgebrizing techniques, and might also be thought of as evidence that these

classes are not equal after all.

• A similar problem, and probably less ambitious, is to show that for a Boolean function

f the QMA and QCMA are different in query complexity model. However, while for

communication complexity we have a good candidate for such a separation (the QMA-

complete problem), we are not aware of any good candidate for the query complexity setting.

Is there a complete (promise) problem for QMA-query complexity?

9.1.4 Garden-hose Protocols

In Chapter 8 we have studied the garden-hose model and shown several new connections between

this models and other well-established computational models. Some of the main results includes
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having improved lower bounds based on the non-deterministic communication complexity, as

well as a new O(n ⋅ log3 n) upper bound for the Distributed Majority function and an efficient

simulation of formulae made of AND, OR, XOR gates in the garden-hose model. We have also

studied a time-bounded variant of the garden-hose model and have shown how to simulate any

permutation branching program by a garden-hose protocol. As this is a new computation model

several interesting questions can be studied in this model. In particular we would like to highlight

the following few questions:

• We have argued that getting lower bounds on GH(f) larger than Ω(n2+ε) will be difficult

for any function f . But we know of no obstacles to proving super-linear lower bounds. Thus

it would be very interesting to see if we can achieve super-linear lower bounds on the size of

garden hose protocols.

We think a possible candidates for quadratic lower bounds could be the Disjointness function

with set size n and universe size n2, and the IndirectStorageAccess function [Weg87].

• Consider the garden-hose matrix Gs as a communication matrix. How many distinct rows

does Gs have? What is the deterministic communication complexity of Gs? The best upper

bound is O(s log s), and the lower bound is Ω(s). An improved lower bound would give a

problem, for which D(f) is larger than GH(f).

• We have provedRGHpri(Equality) = Ω(√n/ logn). Is it true thatRGHpri(Equality) =

Θ(n)? Is there any problem where RGHpri(f) is smaller than GH(f)?

• The garden-hose model is a memoryless distributed model, but it is also reversible. Thus

it would be interesting to investigate the relation between the garden-hose model and

memoryless communication complexity, i.e., a variant of communication complexity model

in which, unlike the standard two-way communication complexity (where each message is

generated and sent based on all the previous transcripts and the private input), Alice and Bob

must send messages depending only on their input and the message that they just received.

• The best (known) lower bound on the branching program size of an explicit Boolean function

is Ω(n2/ log2 n), due to Nečiporuk [Nec66]. Of course, by using a counting argument

it is easy to see that there exist functions requiring exponential size branching programs.

Nevertheless the above bound has not been improved for half a century. Is it possible to
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get a larger branching program size lower bound for some explicit function for permutation

branching programs?

9.2 Concluding Remarks

In this thesis we have covered a few topics of two broad areas of complexity theory namely

communication complexity and query complexity. We have also studied garden-hose complexity, a

new promising model. These areas are rich with many fascinating and interesting open questions.

Despite much effort a lot of these questions are still open and need further studies. Investigation

of these questions would lead to new advancement of complexity theory and would broaden our

understanding of time and space complexity and their trade-offs in general. In our opinion these

areas of complexity theory would remain very interesting topics for future research.
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