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Summary 

  

As drug development is time consuming and costly, compounds that are 

likely to fail should be weeded out early through the use of assays and toxicity 

screens. Computational methods are favourable complementary techniques. 

Nevertheless, it is not exploited to its full potential due to: models that were built 

from small data sets, a lack of applicability domain (AD), not being readily 

available for use, not following the Organisation for Economic Co-operation and 

Development(OECD) quantitative structure-activity relationship(QSAR) 

validation guidelines in developing a QSAR model, and due to static nature of the 

protein structure obtained from X-ray crystallography, difficulties in consistency 

and reproducibility of each docking process and result, and the absence of a 

strong correlation between the predicted binding modes and the actual biological 

activity of the compound in in vitro experiments in docking studies. 

 

 This thesis attempts to address these problems with the following 

strategies. First, the data augmentation approach using putative negatives was 

used to increase the information content of data sets. Second, ensemble methods 

were investigated as the approach to improve accuracies of QSAR models. Third, 

predictive models are to be built from data sets as large as possible, with the 

application of AD to define the usability of these models. Fourth, the QSAR 

models were built according to the guidance set out by the OECD. Fifth, the 
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models were packaged into a free software to facilitate independent evaluation 

and comparison of QSAR models. 

 

 The usefulness of these strategies were evaluated using structure activity 

relationship(SAR) data set in c-Jun N-terminal kinase (JNK) inhibitors. The 

compounds were used in QSAR modeling, docking, pharmacophore mapping and 

molecular dynamics simulations to refine the list of inhibitors. To the best of our 

knowledge, the models are from significantly larger training data with the effects 

of increased AD and reduced false positive hits.  

 

 In structure-based approaches, the compounds obtained from the 

consensus models obtained were docked by using a variety of rigid and flexible 

docking methods, pharmacophore mapping and molecular dynamics simulations 

as well as various modeling algorithms and different docking software to prepare 

the structure of the enzyme and to obtain a consensus of different docking results 

to improve on the correlation between the prediction made by the docking 

software and the actual biological activity of the compound in the in vitro setting. 

The various approaches are useful, to varying extents, for improving the virtual 

screening of potential drug leads for specific pharmacodynamic properties.  

 

 The results of the virtual screening project on JNK inhibitors prioritized 1 

compound targeting the JNK-Interacting Protein 1(JIP1) binding site of JNK1. A 

set of compounds that target the DFG binding site of JNK2 were also tested for 
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inhibitory activity after a docking study. One compound showed 20% inhibition 

on JNK1, and one compound showed 19% inhibition on JNK2 at a concentration 

of 40 µM. 

 

 To further refine and improve on structure-based methods used in this 

project, an in silico study was carried out on a set of approved drugs and one 

chemical compound available at PubChem. The aims of this study are to form a 

prediction model for both human and zebrafish pregnane X receptor (PXR) 

activators and non-activators due to the lower cost and shorter waiting period to 

obtain CYP3A4 gene expression data in zebrafish as decided and advised by 

collaborators. A docking study with simple energy minimization and homology 

modeling techniques was initially carried out. Docked poses would be identified 

using hierarchical clustering. The binding orientation of each compound would be 

identified using this method. 

 

This study would eventually include pharmacophore mapping and 

molecular dynamics simulations to refine the model and provide an additional 

filter mechanism. Through molecular dynamics simulations, the stability of the 

trajectory, protein movement that is predicted to occur in the complex between 

PXR and retinoid X receptor (RXR), the duration of the ligand inside the ligand 

binding domain (LBD) of PXR and the length and duration of hydrogen bonds 

and pi interactions that are formed between the ligand and the receptor are 

obtained in this study. A more accurate prediction model was developed in this 
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phase of the project where zebrafish PXR activators are predicted to form 

interactions with at least one conserved residue that is also present in human PXR, 

and compounds which activate PXR and have similar chemical groups are 

identified.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

List of Tables 

2.1 Performance of consensus model on each validation set and on the entire 

dataset ……………………………………………………………………36 

2.2 Virtual screening of ZINC library using consensus model ……………38 

2.3 Structural diversity of compounds ……………………………………39 

2.4 A selection of ZINC compounds not reported as JNK inhibitors that are 

the most dissimilar from the positive compound BI-78D3 ……………40 

2.5 Descriptors used in the consensus model ……………………………42 

3.1 List of pharmacophore points selected in model ……………………46 

3.2 Docking results using Molecular Operating Environment ……………51 

3.3 Chemical structures of validation compounds ……………………56 

3.4 Chemical structures and docking scores for molecular dynamics 

trajectories of 3 ns duration ……………………………………………58 

3.5 Cluster size and total population of each compound ……………………59 

3.6 Distance between geometric center of aromatic ring in compound and Arg 

127 ……………………………………………………………………70 

3.7 Distance between large atoms in Arg 127 of JNK1 and compound ……75 

4.1 Results of docking scores on various ZINC compounds using different 

docking software ……………………………………………………81 

4.2 KINOMEScan assay results ……………………………………………84 

5.1 List of docked scores ……………………………………………………92 

5.2 Amino acid residues involved in the binding of compounds to human PXR 

…………..………………………………………………………………..94 

 

5.3 Distance between first set of compounds and residue where potential 

hydrogen bond interactions might be present …………………………..102 

6.1 List of amino acid residues that form the ligand-binding domain in human 

PXR and zebrafish PXR …………………………………………..110 

6.2 List of docked scores …………………………………………………..112 



xiv 
 

6.3 Amino acid residues involved in the binding of compounds to human PXR 

 …………………………………………………………………………..113 

6.4 Amino acid residues involved in the binding of compounds to zebrafish 

PXR …………………………………………………………………..114 

 

6.5 Distance between second set of compounds and residue where potential 

hydrogen bond interactions might be present …………………………..145 

 

6.6 Distance between geometric center of aromatic rings in second set of 

compounds and residue where potential pi interactions might be present 

 …………………………………………………………………………..146 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

List of Figures 

1.1 Ribbon diagram of JNK with stick and surface representation of ligand in 

each binding pocket ……………………………………………………10 

 

2.1 Flowchart of steps taken to obtain the training and validation set ……31 

3.1 Ribbon structure of JNK1 with truncated JIP1 ................................45 

3.2 Close-up of truncated JIP1 in binding pocket of JNK1 ……………45 

3.3 Pharmacophore model developed using MOE 2012.10 ……………47 

3.4 Flowchart of steps taken in this virtual screening workflow ……………55 

3.5 Pose of Compound 19 ............…………………………………………....62 

 

3.6 Graph of distance between geometric center of aromatic ring in 

Compound 19 and Arg 127 against instance in trajectory ……………62 

3.7 Graph of distance between geometric center of aromatic ring in 

Compound 25 and Arg 127 against instance in trajectory ……………63 

3.8 Pose of Compound 19 over ribbon diagram of JNK1 ……………63 

 

3.9 Pose of Compound 19 over ribbon diagram of JNK1with polar residues 

 ……………………………………………………………………………64 

3.10 Pose of Compound 19 over ribbon diagram of JNK1 with hydrophobic 

residues ……………………………………………………………64 

3.11 Pose of Compound BI-98A10  ........................................................65 

3.12 Pose of Compound BI-90H8 ……………………………………………65 

3.13 Graph of distance between geometric center of aromatic ring in 

Compound BI-98A10 and Arg 127 against instance in trajectory ……66 

3.14 Graph of distance between geometric center of aromatic ring in 

Compound BI-90H8 and Arg 127 against instance in trajectory ……66 

3.15 Pose of Compound BI-98A10 over ribbon diagram of JNK1 with polar 

residues ……………………………………………………………67 

3.16 Pose of Compound BI-90H8 over ribbon diagram of JNK1 with polar 

residues ……………………………………………………………67 



xvi 
 

3.17 Pose of Compound BI-98A10 over ribbon diagram of JNK1 with 

hydrophobic residues ……………………………………………………68 

3.18 Pose of Compound BI-90H8 over ribbon diagram of JNK1 with 

hydrophobic residues ……………………………………………………68 

3.19 Graph of distance between geometric center of aromatic ring in 

Compound BI-83B3 and Arg 127 against instance in trajectory ……69 

3.20 Graph of distance between geometric center of aromatic ring in 

Compound 3 and Arg 127 against instance in trajectory ……………69 

3.21 Graph of distance between geometric center of aromatic ring in 

Compound 10 and Arg 127 against instance in trajectory ……………70 

3.22 Pose of Compound BI-90H8 ……………………………………………71 

3.23 Graph of distance between large atom in Compound BI-90H8 and Arg 127 

against instance in trajectory ……………………………………………71 

3.24 Graph of distance between large atom in Compound BI-90E2 and Arg 127 

against instance in trajectory ……………………………………………72 

 

3.25 Graph of distance between large atom in Compound BI-90E7 and Arg 127 

against instance in trajectory ……………………………………………72 

3.26 Pose of ZINC03405497 …………………………………………....73

  

3.27 Graph of distance between large atom in ZINC03405497 and Arg 127 

against instance in trajectory ……………………………………………74 

 

3.28 Pose of ZINC03405497 over ribbon diagram of JNK1 with charged 

residues ……………………………………………………………74 

3.29 Pose of ZINC03405497 over ribbon diagram of JNK1 with hydrophobic 

residues ……………………………………………………………75 

5.1 Correlation curve for MM/GBVI binding free energy against fold increase 

in human PXR activity over vehicle control ……………………………93 

5.2 Correlation curve for molecular weight against fold increase in human 

PXR activity over vehicle control ……………………………………93 

5.3 Pose of etravirine ……………………………………………………95 

5.4 Graph of distance between large atom in etravirine and Gln 285 against 

instance in trajectory ……………………………………………………95 

 



xvii 
 

5.5 Pose of etravirine over ribbon diagram of human PXR with hydrophobic 

residues ……………………………………………………………96 

 

5.6 Pose of rilpivirine ……………………………………………………97 

5.7 Graph of distance between large atom in rilpivirine and Gln 285 against 

instance in trajectory ……………………………………………………97 

 

5.8 Pose of rilpivirine over ribbon diagram of human PXR with hydrophobic 

residues ……………………………………………………………98 

 

5.9 Pose of efavirenz ……………………………………………………98 

 

5.10 Graph of distance between large atom in efavirenz and His 407 against 

instance in trajectory ……………………………………………………99 

5.11 Pose of efavirenz over ribbon diagram of human PXR with hydrophobic 

residues ……………………………………………………………99 

 

5.12 Graph of distance between large atom in efavirenz and His 407 against 

instance in trajectory …………………………………………………..100 

5.13 Graph of distance between large atom in PCN and His 407 against 

instance in trajectory …………………………………………………..101 

 

5.14 Graph of distance between large atom in nevirapine and His 407 against 

instance in trajectory …………………………………………………..101 

 

6.1 Amino acid sequence for homology model of zebrafish PXR and human 

PXR using PDB structure 1SKX as template …………………………..106 

 

6.2 Ramachandran plot of X-ray structure of human PXR …………..107 

 

6.3 Ramachandran plot of homology model of zebrafish PXR …………..108 

 

6.4 Graph of distance between large atom in rifampicin and Ser 247 against 

instance in trajectory …………………………………………………..116 

 

6.5 Graph of distance between large atom in rifampicin and Thr 247 against 

instance in trajectory …………………………………………………..116 

 

6.6 Pose of phenytoin in human PXR …………………………………..117 

6.7 Graph of distance between large atom in phenytoin and Gln 285 against 

instance in trajectory …………………………………………………..117 

 



xviii 
 

6.8 Pose of phenytoin over ribbon diagram of human PXR with hydrophobic 

residues …………………………………………………………..118 

6.9 Pose of phenytoin in zebrafish PXR …………………………………..118 

6.10 Graph of distance between geometric center of aromatic ring in phenytoin 

and Phe 288 against instance in trajectory …………………………..119 

6.11 Pose of phenytoin over ribbon diagram of zebrafish PXR with 

hydrophobic residues …………………………………………………..119 

6.12 Pose of carbamazepine in human PXR …………………………..120 

6.13 Graph of distance between large atom in carbamazepine and Ser 247 

against instance in trajectory …………………………………………..121 

6.14 Pose of carbamazepine over ribbon diagram of human PXR with 

hydrophobic residues …………………………………………………..121 

6.15 Pose of carbamazepine in zebrafish PXR …………………………..122 

6.16 Graph of distance between large atom in carbamazepine and Phe 288 

against instance in trajectory …………………………………………..122 

6.17 Pose of carbamazepine over ribbon diagram of zebrafish PXR with 

hydrophobic residues …………………………………………………..123 

6.18 Pose of dexamethasone in human PXR …………………………..124 

6.19 Graph of distance between large atom in dexamethasone and Gln 285 

against instance in trajectory  …………………………………..124 

6.20 Pose of dexamethasone over ribbon diagram of human PXR with 

hydrophobic residues …………………………………………………..125 

6.21 Pose of dexamethasone in zebrafish PXR  …………………..125 

6.22 Graph of distance between large atom in dexamethasone and Met 323 

against instance in trajectory …………………………………………..126 

6.23 Pose of dexamethasone over ribbon diagram of zebrafish PXR with 

hydrophobic residues …………………………………………………..126 

6.24 Pose of nafcillin in human PXR …………………………………..127 

6.25 Graph of distance between large atom in nafcillin and Gln 285 against 

instance in trajectory …………………………………………………..128 



xix 
 

6.26 Pose of nafcillin over ribbon diagram of human PXR with hydrophobic 

residues …………………………………………………………..128 

6.27 Pose of nafcillin in zebrafish PXR …………………………………..129 

6.28 Graph of distance between large atom in nafcillin and Met 323 against 

instance in trajectory …………………………………………………..129 

6.29 Pose of nafcillin over ribbon diagram of zebrafish PXR with hydrophobic 

residues …………………………………………………………..130 

6.30 Pose of efavirenz in zebrafish PXR …………………………………..131 

6.31 Graph of distance between large atom in efavirenz and Met 323 against 

instance in trajectory  …………………………………………..131 

6.32 Pose of efavirenz over ribbon diagram of zebrafish PXR …………..132 

6.33 Pose of pioglitazone in zebrafish PXR …………………………..133 

6.34 Graph of distance between geometric center of aromatic ring in 

pioglitazone and Trp 299 in zebrafish PXR against instance in trajectory 

 …………………………………………………………………………..133 

 

6.35 Pose of pioglitazone over ribbon diagram of zebrafish PXR with 

hydrophobic residues …………………………………………………..134 

 

6.36 Graph of distance between geometric center of aromatic ring in 

pioglitazone and Trp 299 in human PXR against instance in trajectory 

 …………………………………………………………………………..134 

 

6.37 Pose of prednisone in human PXR …………………………………..135 

 

6.38 Graph of distance between large atom in prednisone and Gln 285 against 

instance in trajectory …………………………………………………..136 

 

6.39 Pose of prednisone over ribbon diagram of human PXR with hydrophobic 

residues …………………………………………………………..136 

 

6.40 Pose of prednisone in zebrafish PXR …………………………………..137 

 

6.41 Graph of distance between large atom in prednisone and Met 323 against 

instance in trajectory …………………………………………………..137 

 

6.42 Pose of prednisone over ribbon diagram of zebrafish PXR with 

hydrophobic residues …………………………………………………..138 

 



xx 
 

6.43 Graph of distance between large atom in rufinamide and Ser 247 against 

instance in trajectory …………………………………………………..139 

 

6.44 Graph of distance between large atom in rufinamide and Gln 285 against 

instance in trajectory …………………………………………………..139 

 

6.45 Graph of distance between large atom in rufinamide and His 407 against 

instance in trajectory …………………………………………………..140 

 

6.46 Graph of distance between geometric center of aromatic ring in rufinamide 

and Phe 288 in human PXR against instance in trajectory …………..140 

 

6.47 Graph of distance between large atom in rufinamide and Met 323 against 

instance in trajectory …………………………………………………..141 

 

6.48 Graph of distance between geometric center of aromatic ring in rufinamide 

and Phe 288 in zebrafish PXR against instance in trajectory …………..141 

 

6.49 Graph of distance between geometric center of aromatic ring in rufinamide 

and Trp 299 in zebrafish PXR against instance in trajectory …………..142 

 

6.50 Graph of distance between large atom in acetaminophen and Ser 247 

against instance in trajectory …………………………………………..142 

 

6.51 Graph of distance between large atom in acetaminophen and Gln 285 

against instance in trajectory …………………………………………..143 

 

6.52 Graph of distance between large atom in acetaminophen and His 407 

against instance in trajectory …………………………………………..143 

 

6.53 Graph of distance between geometric center of aromatic ring in 

acetaminophen and Phe 288 in human PXR against instance in trajectory 

 …………………………………………………………………………..144 

 

6.54 Graph of distance between large atom in acetaminophen and Met 323 

against instance in trajectory ………………………………………......144 

 

6.55 Graph of distance between geometric center of aromatic ring in 

acetaminophen and Phe 288 in zebrafish PXR against instance in 

trajectory …………………………………………………………..145 

 

 

 

 



1 
 

Chapter 1 

 

Introduction 

 

 Eukaryotic cells undergo a wide range of metabolic processes in order to 

function effectively. For many of these metabolic processes that occur in 

mammalian and human cells, enzymes are involved to catalyze a wide range of 

chemical reactions that are necessary to bring about changes to the cell. Important 

enzyme families that are currently being studied includes the protein kinase and 

the cytochrome monooxygenase family. 

  

The protein kinase family consists of 518 kinases[1] and due to their 

critical role in phosphorylation of proteins, they played important roles in many 

aspects of cellular physiology which include cell division, proliferation, 

differentiation and apoptosis. Therefore, the design of drugs which inhibit protein 

kinases have been carried out by the pharmaceutical industry for over 20 years. 

There are currently 14 Food and Drug Administation (FDA) approved small 

molecule drugs which target protein kinases on the market, in addition to many 

more kinase inhibitors currently in clinical trials. Furthermore, it is estimated that 

over one quarter of all pharmaceutical drug design targets are protein 

kinases[2,3]. 
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 One class of protein kinase is mitogen-activated protein kinase (MAPK) 

enzymes that are activated in response to external environmental stimuli such as 

stress. Previously named as stress-activated protein kinase (SAPK), MAPK 

enzymes consist of c-Jun N-terminal kinase (JNK) enzymes, p38 enzymes and 

extracellular signal regulating kinase (ERK) enzymes where they catalyze the 

reaction of adenosine triphosphate (ATP) and a protein to adenosine diphosphate 

(ADP) and a phosphoprotein[4-9]. Among these, JNK is particularly interesting as 

it has been linked to several human diseases such as stroke, diabetes, 

atherosclerosis, neurodegenerative diseases, autoimmune and inflammatory 

diseases, multiple sclerosis, asthma, inflammatory bowel disease, psoriasis and 

cancer[10-12]. 

 

 The cytochrome P450 monooxygenase family consists of 57 enzymes and 

may be found in all tissues[13]. Cytochrome P450 enzymes have an important 

role in metabolism, activation and detoxification of various chemical compounds, 

drugs and xenobiotics that are taken in by the human body. Therefore, 

cytochrome P450 induction and inhibition data are required to obtain regulatory 

approval for various drugs and chemical compounds. Human liver cells may be 

used as a biomarker to investigate cytochrome P450 activity[14]. Cytochrome 

P450 enzymes are also present in other species and could potentially be used as an 

alternative biomarker[15,16]. 
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 Expression of the gene that encodes for the cytochrome P450 family 3 

subfamily A polypeptide 4 (CYP3A4) monooxygenase enzyme is strongly 

correlated with activation of Pregnane X Receptor (PXR) and the heterodimer 

being formed between PXR and Retinoid X Receptor (RXR)[17-21]. PXR and 

RXR are nuclear receptors which are part of a superfamily of 48 transcription 

factors[22]. PXR activity has important roles in regulating drug metabolism and 

drug transportation, along with other completely different processes such as 

karyopherin-mediated nuclear import. PXR also has the capacity to accept and 

bind to a very large variety of different drugs and chemical compounds of various 

molecular weights[23]. Therefore, the study of PXR activity is interesting as 

expression of CYP3A4 gene could potentially be used as a screening mechanism 

to predict and reduce drug and xenobiotic metabolism and toxicity.  

 

1.1 Physiology of JNK 

  

 JNKs are serine/threonine protein kinases which fall within the CMGC 

group of protein kinases and consist of three isoforms, JNK1, JNK2 and 

JNK3[24]. JNK1 and JNK2 are found in all parts of the human body[25,26], and 

JNK3 are found predominantly in the brain, heart and testes[27-29]. JNK 

enzymes catalyze the transfer of a phosphate group from adenosine triphosphate 

(ATP) that is present throughout the human body to a protein to form a 

phosphoprotein and adenosine diphosphate (ADP). This protein consists of a c-

Jun component that is present in activator protein-1 (AP-1) which gives JNK its 
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name. c-Jun is the name for the messenger RNA codon which codes for the 

residue and structure of the protein that contains the c-Jun component. The c-Jun 

component of AP-1 has two serine residues which will bind to Thr183, Pro184 

and Tyr185 of JNK (PDB ID: 3ELJ). ATP will bind at the ATP binding site of 

JNK, where a phosphate group from ATP will be transferred over to the c-Jun 

component of AP-1 and similar proteins with a c-Jun component. ATP will 

become ADP, and the protein will become a phosphoprotein. The phosphoprotein 

will then proceed further along the metabolic pathway, where if the 

phosphoprotein is produced constantly in response to stress, it will lead to a wide 

range of metabolic disorders, inflammatory and immune reactions, and 

neurodegenerative disorders. 

  

1.2 Inhibition of JNK 

 

Since JNK was discovered in the 1990s, there have been studies to test the 

effects of inhibiting the enzyme as well as removal of one or more JNK isoform 

through gene knockout on animal studies and on cell studies. The results show 

increased insulin sensitivity on insulin receptors[30], improved arthritic 

scores[31], and improved neural function[32] in mice exposed to high lipid diet, 

inflammatory disease and neurotoxins. In cancer cell lines, there is also a 

reduction in cancer cell growth and size when JNK is inhibited in the in vitro 

setting[33,34]. Inhibition of JNK will cause ATP to bind less easily to the ATP 

binding site. The entire protein will eventually be broken down and removed by 
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an ubiquitin pathway. Hence, by inhibiting this part of the metabolic pathway, it 

could provide benefits in treating and preventing the various human diseases that 

are caused due to activation of the JNK pathway[29]. These diseases include 

stroke[35], type-2 diabetes, atherosclerosis, neurodegenerative diseases including 

Alzheimer's, Parkinson's and Huntington's diseases, autoimmune and 

inflammatory diseases including rheumatoid arthritis, multiple sclerosis, asthma, 

inflammatory bowel disease, psoriasis and cancer[10-12]. 

 

JNK can be inhibited by both competitive and non-competitive methods to 

reduce the activity of the enzyme. A competitive inhibitor occupies the ATP 

binding site to block ATP from binding. A non-competitive inhibitor will bind at 

an allosteric site on the JNK enzyme which causes the tertiary structure of JNK to 

fold and reduce the space of the ATP binding pocket. This increases the amount 

of steric hindrance at the ATP binding pocket, making ATP less likely to bind to 

the ATP pocket. There are currently two known non-competitive sites, one of 

them is the JNK interacting protein (JIP) site where there is a protein that is very 

specific to bind only to JNK at this site, and the other is the DFG site which is 

named after the one letter symbol of the aspartic acid, phenylalanine and glycine 

residues that are present at that binding site in JNK. For all three JNK isoforms, 

the ATP pocket, JIP pocket and DFG pocket have high sequence identity. 

 

X-ray crystal structures of JNK have shown that their binding site residues 

have a high degree of similarity between all three JNK isoforms. This leads to the 
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obstacle in designing relatively selective small molecule inhibitors where the 

electrostatics and shape of the binding site tend to be similar. As a result of the 

highly-conserved structures of functional motifs present in JNKs and kinases in 

general, this makes developing relatively selective inhibitors for JNKs 

difficult[36]. 

 

For competitive inhibition, designing inhibitors that target the ATP site are 

likely to have more potential selectivity and specificity problems since there are 

many kinase enzymes that use ATP as a substrate. This could lead to an increase 

in side effects if the other kinase enzymes that are affected do not contribute to 

the disease process. Designing inhibitors that target the JIP or DFG site are 

expected to be more novel and have a less saturated chemical space to explore,  

hence this research project will attempt to address this knowledge gap. Some 

existing inhibitors, such as the set of compounds published by Chen et al, and the 

drug, imatinib were found to bind to both the ATP binding site, as well as the JIP 

or DFG binding site[37]. 

 

1.2.1 ATP binding site 

 

 The ATP binding site is the most widely studied among the three binding 

site as it was identified when JNK was discovered. The first small-molecule 

inhibitor targeting the ATP binding site was discovered in 2001[38], and more 

than 900 compounds that target this site have since been published and registered 
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on patent databases as a novel inhibitor of JNK. The majority of published studies 

which examine the effects of inhibition of JNK using in silico, in vitro and in vivo 

models also use ATP competitive inhibitors[37,39-54]. The ATP binding site 

consists of 9 hydrophobic residues (Val 40, Ala 53, Ile 86, Met 108, Leu 110, Met 

111, Ala 113, Val 158 and Leu 168) and 2 polar and charged residues (Glu 109 

and Asp 112) from X-ray crystal structure of SP600125 complex with JIP1 and 

JNK1 (PDB entry: 1UKI)[55-58]. Inhibitors which bind at this active site are 

referred to as Type I inhibitors and usually meet the pharmacophore model by 

Traxler[59] as well as by forming hydrogen bonds with Glu 109 and/or Met 111 

at the hinge region. 

 

1.2.2 JIP binding site 

 

The JNK-interacting protein (JIP) binding site has been discovered and 

published in detail where a study by Barr et al have discovered a small and 

truncated form of JIP consisting of only 11 amino acid residues of JIP to be 

sufficient to start the inhibition mechanism of JNK at the JIP active site[60]. JIP1 

is a scaffold protein which binds to JNK1 and reduces the volume of the ATP-

binding site. This produces an inhibitory effect where one unit of ATP cannot 

bind to one unit of JNK1 and activate JNK1. JIP1 was found to bind to JNK1 and 

JNK2, and did not bind to ERK and p38 enzymes. Hence, JIP1 inhibitors that 

target the JIP1 binding site of JNK1 are postulated to have greater selectivity and 

specificity and fewer side-effects[61]. Currently, there are at least 191 compounds 
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targeting the JIP1 binding site of JNK1 with published biological activity data 

since the first small molecule inhibitor targeting this site was published in 

2008[62] and one X-ray crystal structure of the truncated JIP1 structure in 

complex with JNK1[57]. 

 

 The JIP binding site consists of 9 hydrophobic residues (Ala 113, Leu 115, 

Val 118, Met 121, Leu 123, Leu 131, Val 159, Val 323 and Trp 324), 3 polar 

residues (Tyr 130, Ser 161 and Cys 163) and 3 polar and charged residues (Glu 

126, Arg 127 and Glu 329). Inhibitors which bind at this site are Type III 

inhibitors and may bind at any subsite that JIP binds to on JNK which is away 

from the ATP binding site. The binding site is shallow and is exposed to solvent 

to one side. Due to the polar and charged residue Arg 127 having a potential 

effect on conferring selectivity to ligands[63] and the novelty of exploring 

compounds which can bind to this subsite, this research project will attempt to 

screen and identify potential compounds from the ZINC database that can bind to 

the selected subsite using ligand and structure-based methods.  

 

1.2.3 DFG binding site 

 

 The DFG binding site has been identified from studies of the p38 enzyme 

that has the same enzyme classification number of JNK and fulfills a different 

role in metabolic reactions. The DFG binding site consists of a hydrophobic 

pocket adjacent to the ATP binding site. This binding site has an aspartic acid, 
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phenylalanine and glycine amino acid residue which make up the DFG motif 

where the phenylalanine residue can adopt a DFG-in conformation and a DFG-out 

conformation. Different kinase enzymes have different capacity to accept and 

bind to DFG site inhibitors at the DFG-in or DFG-out conformation. For binding 

of small-molecule inhibitors to occur favourably, the DFG binding site in p38 and 

JNK has to be in the DFG-out conformation, where the phenylalanine residue 

partially occupies the ATP site, has one face that helps to shield the DFG-out 

inhibitor, while the other face is exposed to solvent. However, DFG adopts this 

conformation only rarely[64]. Furthermore, the X-ray crystal structure of the 

compound BIRB798 with the JNK enzyme was only produced in 2010 (PDB 

Entry 3NPC). Hence, these factors led to the relatively lack of known DFG 

inhibitors. Inhibitors that bind at this site will block the ATP binding site by 

inducing the DFG-out conformation. This form of partial inhibition of JNK is 

more desirable than the Type I inhibition mechanism by having greater selectivity 

and specificity and fewer side-effects. There is currently a large knowledge gap in 

this area as only one compound has been found to bind to this binding site in 

JNK2 and one X-ray crystal structure of the compound at the DFG binding site of 

JNK2[65].  

 

 The DFG binding site consists of 12 hydrophobic residues (Ile 32, Val 40, 

Ala 53, Leu 76, Leu 77, Ile 86, Met 108, Leu 110, Met 111, Leu 142, Leu 168 and 

Phe 170), 1 polar residue (Gln 37) and 6 polar and charged residues (Lys 55, Arg 

69, Arg 72, Glu 73, Glu 109 and Asp 169). Inhibitors which bind at this site are 
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Type II inhibitors and occupies a deep hydrophobic pocket away from the ATP 

binding site to produce the DFG out conformation, as well as a section of the ATP 

binding site at the hinge region. Hence, this type of inhibition can be considered 

to be competitive by strict definition, and deep pocket binders due to the deep-

pocket interactions where DFG adopts which is away from the hinge region which 

ATP occupies[66]. Figure 1.1 shows each binding site in JNK. 

 

Figure 1.1: Ribbon diagram of JNK with stick and surface representation of 

ligand in each binding pocket. Amino terminal domains are 

coloured in blue and carboxyl terminal domains are coloured in 

red. Bis-anilino-pyrrolopyrimidine inhibitor in ATP binding pocket 

shown as grey stick and surface (PDB ID: 3ELJ). Truncated JIP in 

JIP binding pocket shown as green stick and surface (PDB ID: 

1UKH). BIRB796 in DFG binding pocket shown as pink stick and 

surface (PDB ID: 3NPC). 
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1.3 Physiology of PXR 

 

Human PXR was discovered in 1998 and was termed an orphan nuclear 

receptor[20] and nuclear receptor subfamily 1 group I member 2 (NR1I2)[67]. 

Found mainly in liver and intestinal cells, PXR have important roles in 

maintaining homeostasis and metabolism of bile acids, glucose, lipids, drugs, 

endocrine hormones and xenobiotics with another nuclear receptor Constitutive 

Androstane Receptor(CAR)[68]. Expression of PXR and CAR are activated by 

Glucocorticoid Receptor (GR)[69]. 

 

PXR forms a heterodimer complex with RXR through 21 amino acid 

residues[70]. Activation of PXR and formation of this complex with RXR 

regulates expression of genes that are involved in drug and xenobiotic sensing, 

metabolism and transport which include cytochrome P-450 family 3 subfamily A 

polypeptide 4 (CYP3A4) genes, where approximately 50% of marketed 

prescription drugs are metabolized by CYP3A4[71-73]. Hence, expression of 

CYP3A4 genes are regulated by GR, PXR, RXR and CAR directly or 

indirectly[74].  

 

 PXR activity consists of basal activity which is ligand-independent and 

ligand-dependent activity[75]. Ligand-dependent activity is influenced by the 

presence of ligands which bind to the ligand-binding domain (LBD) of PXR 

where different ligands may exert an agonist[74], antagonist[76] or partial 
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agonist[77] effect on the nuclear receptor. PXR is present in many species and 

may exhibit differences in selectivity of small molecule compounds in its ligand-

binding domain[78]. 

 

1.4 Current drug discovery efforts to identify JNK inhibitors and PXR 

activators 

 

Known JNK inhibitors have limited structural diversity. This is partly due 

to the fact that most are ATP-competitive inhibitors and the ATP binding pocket 

is highly conserved. Another reason for the low structural diversity is that most 

existing JNK inhibitors were discovered through high-throughput screening 

(HTS) followed by lead optimization using traditional medicinal chemistry 

approach. This is a time-consuming process and usually only evaluate a limited 

amount of structural diversity in each study. High-throughput screening (HTS) 

can improve the speed of searching for novel JNK inhibitors but is not practical 

for screening large chemical libraries with millions of compounds which would 

be more expensive. Furthermore, recent studies show that fewer drugs have 

entered the market with fewer compounds passing clinical trials, greater difficulty 

in obtaining approval from regulators and a high dropout rate[79,80]. 

 

Among the JNK inhibitors that were found to target the JIP binding site, 

they were discovered through HTS. In a HTS assay that was carried out to 

discover the first JIP-site inhibitor, it screened a total of 30000 compounds at a 



13 
 

rate of 20 compounds per assay.  From the first lead compound BI-78D3 that was 

discovered as a hit, it was tested in murine models to assess safety and 

efficacy[62]. The subsequent lead and structural modifications would create a list 

of one to three classes of compounds[81-84]. 

 

Issues of compound selectivity and safety remain mainly for competitive 

inhibitors targeting the ATP binding site. This is because it is difficult to design 

small-molecule inhibitors that would only inhibit one isoform of JNK due to the 

highly conserved ATP binding site among all three JNK isoforms and in other 

protein kinases. Hence, the use of these JNK inhibitors beyond in vitro assays 

remain limited[10,11]. Inhibitors that target the JIP binding site and DFG binding 

site are less likely to bind to other kinase enzymes in a panel of related and 

unrelated kinase screening tests. 

 

For PXR activity, there are studies being carried out to determine the type 

of ligand-dependent activity on the nuclear receptor as it could potentially be used 

as a model to assess and predict drug-drug interactions as well as effects of 

xenobiotics such as environmental pollutants and toxins occurring within human 

cells and the human body[17,76,85]. There are also studies being carried out to 

determine the differences in PXR shape and structure among different species, 

and how these differences affect interactions of PXR with various drug and 

chemical compounds[78,86].  
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1.5 Computational methods to screen and validate JNK inhibitors and 

PXR activators 

 

 To screen large chemical libraries that contain millions of compounds to 

test for inhibitory activity on JNK in cell and animal models would be expensive 

and time-consuming. It is also expensive and time-consuming to conduct in vitro 

and in vivo tests for CYP3A4 and PXR activity. Computational methods are a fast 

and cost-effective method for complementing traditional drug development 

methods. With the introduction of computers with higher processing capacity, 

together with X-ray crystallography or nuclear magnetic resonance techniques 

that enable the 3D structures of entire proteins to be identified and recorded into a 

computer database, computational methods can identify the essential features 

required for activity by analyzing existing drug target binders and using this 

information to prioritize compounds for in vitro testing. This will help to improve 

the hit rate of HTS and to form better prediction models to improve safety profile 

of drugs, thereby reducing the cost of finding novel inhibitors or making useful 

lead modifications to existing drugs or chemical compounds. 

 

There are two main approaches for computer-based methods: ligand-based 

and structure-based. Ligand-based methods can be used when there are at least a 

certain number of active and inactive compounds against a biological target. 

These compounds are used to derive a quantitative structure-activity relationship 
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(QSAR) model or a pharmacophore model, which can then be used for virtual 

screening of large chemical libraries for potential active compounds. 

 

In structure-based methods, molecular docking and molecular modeling 

which includes building homology models, screening with target-based 

pharmacophore models and molecular dynamics simulations are used to dock and 

refine the binding orientation of the compound. A method to improve the 

screening efficiency of structure-based methods is to use a ligand-based method 

to perform a preliminary screening of large chemical libraries and reduce the list 

of potential inhibitors to a more manageable number for structure-based 

studies[87-92]. 

 

1.5.1 Ligand-based methods 

 

Quantitative structure-activity relationship (QSAR) 

   

The QSAR approach attempts to identify and quantify various properties 

of different compounds using 1D, 2D, 3D chemical descriptors or fingerprints of 

the compounds to see whether any of these properties have any effect on 

biological activity. The underlying assumption in QSAR is that similar molecules 

should exhibit similar binding properties with respect to a given target. If there is 

a relationship or correlation between any of the descriptors and the compound’s 

biological activity, an equation can be drawn up to quantify the relationship and 
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hence allow some level of prediction to be made for the biological activity of a 

new and structurally different drug compound within a chemical library or a 

related analogue. Since the first QSAR model was published[93], it have been 

used routinely in the early stages of drug design to screen large chemical libraries 

prior to in vitro testing. QSAR has the advantage of being able to screen through 

large chemical libraries very rapidly as it only looks for desirable 1D, 2D, 3D 

descriptors and structural fingerprints of compounds that have been reported in 

the literature to be a positive or negative compound. However, this method is not 

able to determine the binding conformation of the compound in the target site. 

 

Ligand-based pharmacophore modeling 

 

Ligand-based pharmacophore modeling is typically performed by 

extracting common chemical features from 3-dimensional structures of known 

ligands which show essential ligand-macromolecule interactions[94]. The 

common chemical features or pharmacophore elements that are usually used as 

types of the desired interactions are hydrogen-bond interactions, hydrophobic 

interactions and ionic interactions. A pharmacophore is based on the concept of 

similarity between ligands and is used in virtual screening to explore diverse 

chemical compounds in large chemical databases for the purpose of identifying 

novel structural hits. 
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Current studies using ligand-based methods for JNK inhibitors and PXR 

activators 

 

Ligand-based approaches have been used to develop 2-dimensional (2D) 

and 3-dimensional (3D) QSAR models for JNK inhibitors[95-98]. The models 

were used to propose modifications for improving the inhibitory activities of 

existing JNK inhibitors. There are several QSAR models that have been built on 

compounds that target the ATP-binding site, with an overall prediction accuracy 

that is greater than 90%[95], a Matthew’s Correlation Coefficient that is greater 

than 0.7[96], a conventional or cross-validated r2 that is greater than 0.9[97,98]. 

The disadvantage in using these models are that they are used on compounds 

which target the ATP binding site, which may lead to potential selectivity and 

specificity problems. There is currently no QSAR model for inhibitors that bind to 

the JIP binding pocket. 

  

Ligand-based approaches that have been used to predict human PXR 

activators are generally accurate with an overall prediction accuracy that is greater 

than 60%[99,100]. 
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1.5.2 Structure-based methods 

 

Target-based pharmacophore modeling 

  

Today, structure-based methods in pharmacophore modeling have gained 

significant interest in the past 5 years due to the increase in number of protein-

ligand crystal structures. 3D pharmacophore modeling is a well-established in 

silico technique which provide benefits for early drug design. Pharmacophore 

models visualize chemical features that are supposed to be important for protein-

ligand interactions and therefore for biological activity. They aim to be 

complementary to docking procedures, by providing information on possible 

docked poses and require less computational resources than random docking 

alone without pharmacophore models[88,91,101].  

 

Molecular docking 

 

 Docking is a structure-based method where computer software is used to 

assess the complementarity of a ligand to a defined binding site on the drug target. 

The docking program attempts to explore and obtain binding orientations and 

conformations of the ligand within the defined binding site to try to get the best 

fit. 
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Docking may also include calculation of all possible binding interactions 

that may occur within the ligand itself or specified amino acid residues within the 

entire protein, binding interactions between the ligand and the amino acid residues 

within the defined binding site and binding interactions between ligand or amino 

acid residues with X-ray crystallographic or free solvent molecules. Docking may 

also include optimization of the fit between the ligand and the defined binding site 

by modeling flexibility of the surrounding amino acid residues within the defined 

binding pocket and modeling movements of the ligand and solvent molecules 

within the docked pose. 

 

Simpler methods of docking involve overlaying possible ligand 

conformers onto solvent accessible surfaces or Connolly surfaces within the 

defined binding pocket without calculating any possible steric clashes or binding 

interactions. More advanced and computationally demanding methods of docking 

involve finding as many possible poses of the ligand that is predicted to occur 

within the defined binding site and is assigned a docking score to each predicted 

pose that is parameterized using data derived from published X-ray structures. 

This scoring function is derived by assigning a certain number of weights and 

penalties to various different factors that are visible from the experimentally 

determined structures and uses this mathematical model to rank and predict the 

docked compound and its pose as having strong, weak or no binding affinity as a 

surrogate for the binding energy between the ligand and the defined target site. 
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There are two problems associated with molecular docking used in 

structure-based approaches. The first is the identification of accurate poses of the 

ligand in the active site of the protein. Generally, proteins with larger active sites, 

flexible and poorly defined binding sites due to hinge region and chemical 

compounds with a greater number of single bonds that are rotatable are more 

likely to lead to multiple predicted binding modes. This may lead to false 

predictions during virtual screening due to the compound having multiple 

favourable interaction profiles and multiple highly ranked poses. 

 

Another problem is the assigned rank and docking score of compounds 

often have a poor correlation with the actual biological activity of the compound. 

This is due to multiple factors such as the simplistic sampling methods which are 

often based on a rigid frozen snapshot of the entire protein molecule and its active 

site, the use of an empirical scoring function, desolvation, conformational energy 

penalties, choice of force fields being used and removal of solvent molecules that 

may play an important role in the binding of the compound[102-105]. 

 

Molecular dynamics (MD) 

 

Molecular dynamics simulations, in which entire protein-ligand systems 

are allowed to interact for a period of time based on Newton’s equations of 

motion, are widely used computational techniques for the study of protein 

macromolecules and small chemical compounds in solvent medium[106,107]. 
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MD is very useful for understanding the dynamic behavior of the entire protein-

ligand system that is modeled in a solvent medium at a certain temperature and 

pressure, which include internal motions, conformational changes or even protein-

folding processes. Due to limitations from virtual screening methods in docking 

and pharmacophore modeling where the ranking correlation of the compounds 

with published biological activity is poor and inaccurate, molecular dynamics is 

carried out after docking with pharmacophore constraints where the reduced 

number of poses for each compound is more manageable for the molecular 

dynamics study. 

 

 The results from MD simulations can be used to refine models of protein-

ligand systems obtained from docking. Such simulations display flexibility of the 

entire model of the protein-ligand system, and show its relative duration and 

likelihood of binding interactions with respect to time and thus coming closer to 

modeling induced-fit effects more accurately. Incorrectly docked structures and 

poses generated from docking have a higher chance of generating unstable MD 

trajectories leading to the disruption of the complex, which provides an additional 

mechanism to filter for false positives. MD simulations usually include explicit 

solvent molecules-often water with salts as counterions within the model, which is 

very important to understand the role of the particular solvent and its effect on the 

stability of the protein-ligand complexes[88]. In this research project, MD 

simulations will be carried out on selected poses obtained from docking with 

pharmacophore constraints. 
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Current studies using structure-based methods for JNK inhibitors and PXR 

activators 

 

Structure-based approaches are currently used on reported JNK inhibitors 

that bind strongly to JNK after HTS is carried out[65,81-84], and in virtual 

screening of chemical databases[108]. The models are used to explain the binding 

pose and the type of binding interactions that occur between the compound and 

the enzyme. These approaches test a very small subset of compounds from 

chemical databases, hence there is a knowledge gap in identifying JNK inhibitors 

where there is room for novelty by having a less saturated chemical space to 

explore. 

   

There are 9 available X-ray crystal structures of human PXR[75,86,109-

113] and due to the highly flexible nature of the ligand-binding domain in human 

PXR[75,111,112,114], as well as the capacity of the nuclear receptor to bind to a 

very large variety of different chemical compounds of various molecular weights, 

there is considerable interest in studying PXR activity through structure-based 

methods[72,74,85,99,100,115-118]. 
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1.6 Objectives 

 

1.6.1 Objective 1: Identify potent JNK inhibitors that target JIP binding 

site and DFG binding site 

 

In this project, the JIP binding site and DFG binding site were selected as 

the target sites for designing potent JNK inhibitors. The JIP binding site was 

selected because there are known inhibitors that target this site and this will 

facilitate the development of a QSAR model for screening large chemical 

libraries[119]. This will reduce the number of compounds that need to be 

screened using structure-based drug design.  A search through patent databases 

also revealed entire protein macromolecules as the only registered patents that 

target the JIP active site. The DFG binding site was selected because there is only 

one compound that is known to bind to this site currently. Thus there is great 

potential to discover novel potent inhibitors that target these two sites. 

 

The ATP binding site was not selected because of the following reasons. 

Firstly, there are more than 900 compounds that have been published to bind at 

this site, with many new inhibitors being discovered and published every year. 

Thus, there is less novelty for such inhibitors. Secondly, the ATP site is highly 

conserved and is present in many other protein kinases. These factors reduce the 

appeal of discovering novel inhibitors that bind at this site. For these reasons, 
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designing ATP-competitive inhibitors are less attractive and will not be carried 

out in the project[120]. 

 

JNK inhibitors targeting the JIP binding site 

  

This project aims to fill the current research gap by developing a QSAR 

model for the JIP binding site. The QSAR model will address the issue of having 

a limited diversity in the dataset by including an additional 1228 compounds from 

the FDA Orange Book as putative negative compounds to train the QSAR model. 

This QSAR model will also include an additional algorithm that will define 

multiple thresholds for positive and negative compounds to automatically reject 

compounds for which the computational model is not able to make a prediction 

with a certain degree of confidence. This will define the applicability domain of 

the model to ensure that it is not used inappropriately. This QSAR model will also 

include external five-fold cross validation to validate the model more rigorously 

and include a DivEnsemble algorithm to select models to use in each consensus 

model. 

 

In this research project, a QSAR model will be developed to screen the 

ZINC chemical library and used in combination with structure-based methods to 

identify potent inhibitors that target the JIP1 binding site of JNK1. 
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JNK inhibitors targeting the DFG binding site 

 

Currently, there is only one compound known to bind to the DFG binding 

site of JNK2 and p38α. Therefore, there is a large gap in this area. The Type II 

mechanism of inhibition at this active site suggests that inhibitors that target this 

binding site would also be less likely to inhibit other kinase enzymes. Therefore, 

the significance of this objective is that new compound classes that target this site 

could be discovered.  

 

In this research project, docking will be carried out to screen the ZINC 

chemical library to identify inhibitors that target the DFG binding site of JNK2. 

Identified compounds would be tested for biological activity by determining their 

dissociation constant values on two JNK isoforms and one p38 subtype. 

 

1.6.2 Objective 2: Form an in silico model for human and zebrafish PXR 

activators 

 

Since PXR was discovered, there are studies to determine the type of 

compounds that can bind and exert an agonist, antagonist or partial agonist effect 

on the receptor[74,76,77,121]. This is because PXR have been shown to regulate 

several genes which encode drug-metabolizing enzymes and drug 

transporters[23]. Hence, there is interest in studying the mechanism of binding 

and activation in detail as this nuclear receptor may provide valuable insights into 
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the possible metabolism and removal of various xenobiotics including various 

drugs and environmental toxins. 

 

 In order to study the biological effect of various approved drugs on PXR 

activation, the expression of the gene Cytochrome P-450 (CYP)3A4 was chosen 

as the marker to investigate the amount of biological activity and PXR activation 

by collaborators at University of British Columbia at Vancouver and NUS.  This 

is because CYP3A4 gene expression was shown to be upregulated upon PXR 

activation[122-125]. CYP3A4 gene expression levels are obtained from 

Firefly/Renilla luciferase assay on human liver cells or from in vivo study on 

zebrafish Danio rerio as it is able to perform a high-throughput screen compared 

to other larger animal models, less expensive to perform a study on and takes a 

relatively shorter time to obtain results. 

 

 This study will attempt to investigate the mechanism of binding of various 

approved drugs on the ligand-binding domain (LBD) of human PXR and 

zebrafish PXR, attempt to correlate its degree of binding with the selected marker 

for biological activity and attempt to improve on existing structure-based and 

molecular modeling methods to obtain a better correlation.  

 

 There is currently a knowledge gap in this area where there are no 

available 3D structures of zebrafish PXR and there are no structure-based models 

that can correlate zebrafish PXR activity with human PXR activity in the 
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literature. The significance of this objective is that developing a structure-based 

model to predict PXR activity and CYP3A4 gene expression more accurately in 

human and zebrafish will help to reduce time and costs involved with assays 

which use human liver cells. In addition to availability of biological activity data 

on 14 approved drugs and 1 chemical compound from collaborators, there are 

site-directed mutagenesis studies on the ligand-binding domain of human PXR in 

the literature which could help to elucidate the mechanism of binding of various 

ligands in the X-ray crystal structure of human PXR and the homology model of 

zebrafish PXR[85,86,112]. All these factors make the development of structure-

based models for human and zebrafish PXR activity attractive.   

 

As rifampicin was chosen as the positive validation compound and it was 

found to show differences in CYP3A4 gene expression in human and 

zebrafish[126], the study of PXR agonist activity in both human and zebrafish 

PXR will be carried out first in this project. There are also fewer biological 

activity data on zebrafish in the literature and ligand-based methods to investigate 

PXR activity will not be carried out in this project.  
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Chapter 2 

 

Phase 1: Development of QSAR model for JIP binding site inhibitors 

 

2.1 Summary 

 

 A truncated form of JNK interacting protein 1 (JIP1) consisting of 11 

residues 153-163  (RPKRPTTLNLF) has been found to inhibit JNK1 by reducing 

the amount of space for ATP to bind to JNK1[57,60]. A dataset of 191 positive 

and negative compounds are obtained from published sources and are used to 

build a QSAR model. Building a QSAR model has its advantages in the early 

stages of screening large chemical libraries when 3D structural information of the 

protein system is not required, and the model when trained using putative 

negative compounds to augment the dataset, helps to increase its applicability 

domain and is more likely to make more accurate predictions and predict more 

compounds that may be structurally diverse. This QSAR model is then applied on 

the ZINC chemical library to identify a set of compounds that could potentially 

bind to the JIP1 binding site of JNK1.  
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2.2 Methods 

 

2.2.1 Dataset 

 

A total of 191 compounds and their reported IC₅₀ in a LanthaScreen™, 

AlphaScreen™ or kinase assay test for JNK1 inhibition (JIP site binders, Dual-

action ATP-JIP site binders) were collected from published studies[37,62,81-

84,127]. The compounds were then categorized into positive (JNK inhibitors) and 

negative (JNK non-inhibitors) compounds using a cutoff value of IC₅₀ at 10 µM. 

 

A single cutoff value was chosen because a binary classification model 

will have problems in predicting compounds that have biological activity that lie 

between two different IC₅₀ cutoff values where most models do not have a valid 

prediction option to classify these compounds.  Also, if these compounds were 

removed and not included in the dataset, it would reduce the number of 

compounds in the training set to train the model and might potentially impact the 

performance of the model.  

  

An additional 1228 compounds from FDA Orange Book which were not 

known to inhibit JNK1 were added to the total dataset as putative negative 

compounds because this had been shown to reduce the number of false 

positives[128].  The total dataset of 1418 compounds were split into the training 

set data and external validation set data by a stratified sampling method in an 80 
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to 20 ratio to ensure that the number of positive compounds and negative 

compounds were adequately represented in both datasets. The training set was 

used to develop the QSAR model. The validation set was used to evaluate the 

performance of the QSAR model and was not used during the development of the 

model. To rigorously validate the final consensus model, we adopted the 

recommended rigorous validation approach[129]. This is done by repeating the 

entire model development process five times using different training and 

validation sets. The following flowchart in Figure 2.1 describes the gathering and 

splitting of the dataset to form the training set and validation set used in the study. 
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Stratified sampling method 20:20:20:20:20 ratio 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Flowchart of steps taken to obtain the training and validation set. 

Collected JNK1 inhibitors 

87 positives, 104 negatives 

Putative negatives 

1228 negatives 

Merged dataset 

87 positives, 1332 negatives 

Training set 1 

(Subsets A,B,C,D) 

70 positives, 1066 

negatives 

Subset A 

 

17 positives, 

266 negatives 

Subset B 

 

17 positives, 

266 negatives 

Subset C 

 

18 positives, 

266 negatives 

Subset D 

 

18 positives, 

267 negatives 

Subset E 

 

17 positives, 

267 negatives 

Training set 6  

(Subsets A,B,C,D,E) 

87 positives,  

1332 negatives 

Validation set 1 

(Subset E) 

17 positives, 266 

negatives 

Training set 2 

(Subsets A,B,C,E) 

70 positives, 1066 

negatives 

Training set 3 

(Subsets A,B,D,E) 

69 positives, 1066 

negatives 

Training set 4 

(Subsets A,C,D,E) 

69 positives, 1065 

negatives 

Training set 5 

(Subsets B,C,D,E) 

70 positives, 1065 

negatives 

Validation set 2 

(Subset D) 

17 positives, 266 

negatives 

Validation set 3 

(Subset C) 

18 positives, 266 

negatives 

Validation set 4 

(Subset B) 

18 positives, 267 

negatives 

Validation set 5 

(Subset A) 

17 positives, 267 

negatives 
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2.2.2 Calculation of descriptors 

 

All the compounds were drawn using ChemDraw Pro 12.0[130]. A total of 

729 1D and 2D descriptors were calculated by PaDEL-Descriptor 2.12[131]. 3D 

descriptors were not included in the calculation because in some previous QSAR 

studies, it has been shown that including 3D descriptors in a QSAR model did not 

necessarily improve the performance and prediction ability of such a QSAR 

model[132,133]. The descriptors were normalized using range transformation to a 

maximum value of 1 and a minimum value of 0. This is to ensure that all 

descriptors have equal potential to affect the QSAR model. 

 

Irrelevant descriptors, such as constant descriptors were removed. Genetic 

algorithm (GA) was then used to remove the remaining irrelevant and redundant 

descriptors. A population size of 50 and number of generations of 100 was used 

for the GA descriptor selection process. During the GA descriptor selection 

process, QSAR models developed using different descriptor subsets were 

evaluated using five-fold cross-validation. The GA descriptor selection was 

repeated 30 times for each modeling method to generate 30 QSAR models for 

each modeling method. 
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2.2.3 QSAR model development 

 

Two different modeling methods, Naïve Bayes (NB) [134,135] and 

support vector machine (SVM) [136,137]were used to develop the QSAR models. 

For SVM, the cost value is kept constant at a high value of 100000 to simulate a 

hard-margin SVM. The Gaussian radial basis function kernel, which is commonly 

used for QSAR studies, was used as the kernel function in this study since it is 

able to handle non-linear relationships between class labels and descriptor values. 

The optimum γ value was determined by experimenting with the empirical value 

of 1 divided by the number of examples in the training set and 2-5, 2-7, 2-9…….2-15. 

 

2.2.4 Defining the applicability domain with multiple thresholds 

  

An important aspect of QSAR modeling is the definition of a domain of 

applicability for the model. In this study, we adopted the multiple threshold 

algorithm proposed by Fumera et al[138] to define the applicability domain for 

the QSAR models.  

  

The algorithm uses a binary class-related reject threshold (CRT) rule 

where for a classification task with N data classes that are characterized by 

estimated a posteriori probabilities P(𝜔𝑘 | 𝑥), k = 1, …, N.    
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A pattern x is out of the applicability domain of the model if: 

 

 
max

k = 1, …, N  P(ωk | x) = P(ωk | x) < Ti  (1) 

 

while it is within applicability domain of the model and assigned to the class ωi , 

if 

 

 
max

k = 1, …, N  P(ωk | x) = P(ωk | x) ≥ Ti  (2) 

 

The CRTs take on values in the range [0,1].  The determination of the 

optimum threshold values was determined by minimizing the theoretical accuracy 

of the rejected compounds based on five-fold cross-validation[139,140]. 

 

2.2.5 Consensus model 

  

Consensus modeling is carried out to build the final QSAR model. This is 

to enable the many different models, each with similar measures of performance, 

but different set of descriptors, to be used as an ensemble classifier to better 

predict unknown compounds during the actual screening process and to take into 

account random variations in each base model that might have certain descriptors 

being used, and other descriptors being left out of the model building process. 

This will help to improve the classification accuracy[141,142]. In this study, five 

models were selected using a DivEnsemble method to obtain the optimum 
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classification performance[139]. A compound is considered to be within the 

applicability domain of the consensus model if at least one base model considered 

the compound to be within its applicability domain and there are no ties in the 

predictions. 

 

2.2.6 QSAR model validation 

 

The performance of the QSAR models in the GA descriptor selection 

process were assessed by computing true positives (TP), true negatives (TN), 

false positives (FP) and false negatives (FN) from the cross-validated models, 

which were then used to calculate the Matthew’s Correlation Coefficient (MCC) 

= 
TP × TN –FN ×FP

√(TP+FN)(TP+FP)(TN+FN)(TN+FP)
. The MCC value was used to compare the 

performance of the models developed using different descriptor subsets and to 

identify best descriptor subset for each GA descriptor selection run. 

 

The consensus model developed using five selected performing models 

was assessed using the rigorous validation approach. Other than MCC, the 

sensitivity (SE) = 
TP

TP+FN
 x 100%  , specificity (SP) = 

TN

TN+FP
 x 100%  , overall 

prediction accuracy (Q) =  
TP+TN

TP+TN+FP+FN
 x 100%  and Geometric mean (GM) = 

√(SE)(SP)   were also calculated. 
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2.3 Results and discussion 

 

2.3.1 Validation of the consensus model 

 

The consensus model was formed from three SVM models and two NB 

models. The performance of the consensus model assessed using the rigorous 

validation approach are shown in Table 2.1. 

Table 2.1: Performance of consensus model on each validation set and on the 

entire dataset. 
 

Dataset TP FP TN FN Outside 

AD 

SE SP Q GM MCC 

Validation 

set 1 

9 3 260 5 3 positive, 

3 negative 

0.643 0.989 0.971 0.797 0.680 

Validation 

set 2 

11 6 260 5 1 positive 0.688 0.977 0.961 0.820 0.646 

Validation 

set 3 

9 8 249 6 3 positive, 

9 negative 

0.600 0.969 0.949 0.763 0.537 

Validation 

set 4 

9 9 256 5 4 positive, 

2 negative 

0.643 0.966 0.950 0.788 0.541 

Validation 

set 5 

10 3 263 3 4 positive, 

1 negative 

0.769 0.989 0.979 0.872 0.758 

Average N/A N/A N/A N/A N/A 0.669 0.978 0.962 0.808 0.632 

Entire 

dataset 

74 10 1319 11 2 positive, 

3 negative 

0.871 0.993 0.985 0.930 0.868 

 

None of the 10 false positives were from the putative negative dataset. 

Although this may suggest that the consensus model may just be differentiating 

between the compounds with IC50 values and putative negatives rather than 
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learning the actual difference between positive and negative compounds, we do 

not believe this is true. This is because the 10 false positives were just 

approximately 10% of the total true negatives. Thus the majority of true negatives 

were still accurately predicted by the model. In addition, as we will show using 

structural similarity and distribution below, when the consensus model was used 

on a large chemical library, the predicted actives include compounds that were 

structurally different from the positive training compounds. This suggests that the 

model is truly discriminating between positive and negative compound and not 

merely discriminating between compounds with IC50 values and putative 

negatives. Among the false negatives, they have IC₅₀ values of between 0.4 µM 

and 10 µM. This indicates that the false negative predictions are mainly due to the 

compounds being difficult to classify as positive or negative compounds due to 

their IC₅₀ values that are near to the defined threshold cutoff values. 

 

2.3.2 Screening of ZINC chemical library using QSAR model 

 

 The results from using the consensus model to screen the ZINC chemical 

library (Downloaded in March 2010) are shown in Table 2.2[143,144]. 
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Table 2.2: Virtual screening of ZINC library using consensus model. 

Numbers in parenthesis refer to the percentage of compounds in 

their respective columns to the total number of compounds in the 

ZINC chemical library. 

 

Total number of 

compounds 

Number of 

compounds 

predicted as 

positive 

Number of 

compounds 

predicted as 

negative 

Number of 

compounds 

outside AD 

17833934 (100.0) 45673 (0.256) 17409760 (97.622) 378501 (2.122) 

 

The number of identified potential JIP1-binding inhibitors is manageable 

for the subsequent docking study. 

 

2.3.3 Structural similarity and distribution 

 

Structural similarity of the compounds in the dataset and in the ZINC 

compound database is calculated by a fingerprint, FP2 in Open Babel[145]. The 

fingerprints of positive compounds in the dataset, is compared to other 

compounds by using the Tanimoto coefficient, the number of bits in common 

divided by the union of the bits set. 

 

 The data set is more diverse when the diversity index, which is the average 

value of the Tanimoto coefficients between pairs of compounds in the dataset, 

approaches 0. Table 2.3 below lists the Tanimoto coefficients and diversity index 

of each list of compounds. 
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Table 2.3: Structural diversity of compounds. 

 

Type of dataset Lowest average 

Tanimoto 

coefficient 

Highest average 

Tanimoto 

coefficient 

Diversity Index 

JIP site compounds 

(n = 191) 

0.0975 0.892 0.334 

JIP site compounds 

and putative 

negatives 

(n = 1318) 

0.0065 0.355 0.136 

ZINC compounds 

picked out as hits 

(n = 45673) 

0.0223 0.792 0.201 

  

 The average lowest pairwise Tanimoto coefficient for the ZINC 

compounds that were identified as potential actives compared with all the positive 

compounds used in training the model was 0.0223. This suggests that our 

consensus model presented in this work is able to identify novel potential 

inhibitors that are structurally different from currently known inhibitors. Three of 

the most dissimilar compounds are presented in Table 2.4. 
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Table 2.4: A selection of ZINC compounds not reported as JNK inhibitors 

that are the most dissimilar from the positive compound BI-78D3. 

 

Compound 

name 

Structure Tanimoto 

coefficient 

ZINC71819697 

 

 

0.07 

ZINC71831223 

 

 

0.07 

ZINC02854383 

 

 

0.076 
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2.3.4 Molecular descriptors 

 

 A total of 168 descriptors, which are listed in Table 2.5, were included in 

the consensus model to screen through the ZINC chemical library. Details of the 

descriptors can be found in the journal article for PaDEL-Descriptor[131]. 

 

 Statistical analysis of the molecular descriptors between inhibitors and 

non-inhibitors showed that 17 descriptors had statistically significant different 

mean values between inhibitors and non-inhibitors. Inhibitors have higher values 

in terms of hydrogen-bond donors and acceptors, and internal hydrogen bonds 

(nHBd, SHBa, nHBint4 and minHBInt6), molecular electrotopological variation 

(DELS), electronegativity of the extended topochemical atom (ETA_Epsilon_2) 

and Petitjean Number. On the other hand, non-inhibitors have higher Ghose-

Crippen molar refractivity (AMR), Broto-Moreau autocorrelation of the 

topological structure weighted by polarizability (ATSp1 and ATSp3), valence chi 

path cluster (VPC-6), valence chi path (VP-3), sum of weak hydrogen bond 

acceptors (SwHBa), sum of the electronic state of aromatic bonds attached to a 

CH group (SaaCH), sum of the alpha values of all non-hydrogen vertices that is 

connected to only one other non-hydrogen vertex(ETA_AlphaP) and number of 

six-membered rings (n6Ring and nT6Ring)[146-151]. Some of these features are 

consistent with the report by Heo et al[57]. 
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Table 2.5: Descriptors used in the consensus model. 

 

Descriptor type Number Descriptor 

ALOGP 1 AMR 

APol 1 apol 

Atom count 5 nAtom, nHeavyAtom, nF, nP, nI 

Autocorrelation 
(polarizability) 

3 ATSp1, ATSp3, ATSp5 

BCUT 2 BCUTc-1l, BCUTp-1h 

Bond count 1 nBondsD2 

Bpol 1 bpol 

Carbon types 3 C2SP2, C3SP2, C4SP3 

Chi chain 2 VCH-3, VCH-5 

Chi path cluster 3 VPC-4, VPC-5, VPC-6 

Chi path 7 SP-0, SP-3, SP-4, SP-6, VP-0, VP-1, VP-3 

Crippen logP and 
MR 

1 CrippenMR 

Atom type 
electrotopological 
state 

91 nHBd, nwHBd, nwHBa, nHBint4, nHBint5, nHBint7, nHsSH, nHssNH2p, 
nHsssNHp, nHdCH2, nHdsCH, nHCHnX, nHAvin, nsCH3, ndsCH, ndssC, 
naasC, nssssC, nsNH3p, nssNH2p, ndNH, nssNH, ntN, nsssN, nsOH, 
nsOm, nsSH, nsBr, SHBa, SwHBa, SHBint2, SHBint7, SHBint8, SHdNH, 
SHssNH, SHsNH3p, SHdsCH, SHCHnX, SHCsats, SHother, SaaCH, StN, 
SdsN, SsssN, SaasN, SdO, SssO, SdS, SaaS, minHBa, minHBint4, 
minHBint6, minHsOH, minHsNH3p, minHsssNHp, minHtCH, minHdsCH, 
minHAvin, mintCH, mindsCH, mindssC, minsNH2, minssNH2p, 
minaaNH, mintN, minsssNHp, minssO, minsOm, minsF, minsSH, mindS, 
maxHBa, maxHBint8, maxHdNH, maxHsSH, maxHssNH, maxHaaNH, 
maxHtCH, maxHAvin, maxtCH, maxsNH2, maxdNH, maxtN, maxssssNp, 
maxsOm, maxsI, sumI, gmin, MAXDP, DELS, MAXDN2  

Extended 
topochemical 
atom 

15 ETA_Alpha, ETA_AlphaP, ETA_Epsilon_1, ETA_Epsilon_2, 
ETA_Epsilon_3, ETA_Epsilon_5, ETA_dEpsilon_B, ETA_Shape_P, 
ETA_BetaP, ETA_Beta_ns, ETA_dBeta, ETA_Eta_R, ETA_Eta_F, 
ETA_EtaP_L, ETA_EtaP_B 

Hbond acceptor 
count 

1 nHBAcc_Lipinski 

Kappa shape 
indices 

1 Kier1 

Largest chain 1 nAtomLC 

Largest pi system 1 nAtomP 

Longest aliphatic 
chain 

1 nAtomLAC 

Molecular distance 
edge 

7 MDEC-11,MDEC-13,MDEC-33,MDEC-44, MDEO-11, MDEN-11, MDEN-
12 

Molecular linear 
free energy 
relation 

5 MLFER_BH, MLFER_BO, MLFER_E, MLFER_L 

Petitjean number 1 PetitjeanNumber 



43 
 

Ring count 10 n3Ring, n6Ring, nG12Ring, nF7Ring, nF8Ring, nT5Ring, nT6Ring, 
nT7Ring, nT8Ring, nT12Ring 

Weighted path 3 WTPT-1,WTPT-2, WTPT-5 

Zagreb index 1 Zagreb 

 

2.4 Conclusion 

 

 From a dataset of 191 JNK1-JIP1 binding site inhibitors and non-

inhibitors and 1228 putative negative compounds, a consensus model that consists 

of three SVM models and two NB models was developed. This consensus model 

was used to screen the ZINC chemical library that contains 17833934 different 

compounds. A total of 45673 compounds were identified as positive compounds 

based on the consensus model. The identified positive compounds have a high 

degree of diversity from the tested positive compounds and hence there is more 

potential to identify novel compounds that are structurally different from tested 

compounds. The next phase of the research project will use structure-based 

methods to refine the model and prioritize compounds for in vitro testing. 
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Chapter 3 

 

Phase 2: Development of structure-based model for JIP binding site 

inhibitors 

 

3.1 Summary 

 

 The truncated form of JNK interacting protein 1(JIP1) has been found to 

inhibit JNK1 by reducing the amount of space for ATP to bind to JNK1[57,60]. A 

dataset of 45673 ZINC database compounds have been identified by the QSAR 

model to be possible inhibitors that target this binding site. The model is then 

refined using structure-based methods which include docking, pharmacophore 

modeling and molecular dynamics to prioritize compounds for in vitro testing. 

 

3.2 Methods 

 

3.2.1 Preparation of JNK1 structure 

  

The X-ray crystal structure of JNK1 together with the truncated version of 

JIP1 which was discovered to be necessary for inhibition of JNK1 by Barr et 

al[60] was available in the RCSB Protein Databank by Heo et al(PDB ID: 

1UKH)[56,57]. Figures 3.1 and 3.2 show JIP1 in complex with JNK1. The JNK1 

structure was preprocessed by using the structure preparation wizard which 
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includes adding hydrogen atoms to the entire protein, assigning a cap at the 

terminal ends of the protein and assigning protons to the entire structure[152]. 

From the X-ray crystal structure, the following residues are thought to be 

important in binding and inhibitory activity: Arg 127 and Glu 329. 

 

Figure 3.1: Ribbon structure of JNK1 with truncated JIP1 (PDB ID: 1UKH). 

 

Fig 3.2: Close-up of truncated JIP1 in binding pocket of JNK1. Residues of 

JIP1 are labelled. 
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The JIP1 binding site consists of 9 hydrophobic residues (Ala 113, Leu 

115, Val 118, Met 121, Leu 123, Leu 131, Val 159, Val 323 and Trp 324), 3 polar 

residues (Tyr 130, Ser 161 and Cys 163) and 3 polar and charged residues (Glu 

126, Arg 127 and Glu 329) (Figures 3.3 and 3.4).  

 

3.2.2 Virtual screening for potential JNK1-JIP1 inhibitors  

 

Virtual screening of the 45673 compounds identified by the QSAR model 

was carried out using rigid docking methods in MOE 2012.10. A pharmacophore 

model was developed using MOE 2012.10[153] to improve the quality of the 

docked poses. Three interactions were chosen to include in the pharmacophore 

model in Table 3.1 and Figure 3.3. 

Table 3.1: List of pharmacophore points selected in model. 

 

Name of residue(s) in 

JNK1 

Name of residue in 

JIP1 

Type of interaction 

Arg 127 Thr 159 Hydrogen bond 

Ser 161 Leu 160 Hydrogen bond 

Val 118,  Leu 123, Leu 

131, Val 159, Cys 163 

Leu 160 Hydrophobic 

 

 



47 
 

 

Figure 3.3: Pharmacophore model developed using MOE 2012.10. JIP1 is 

displayed as a stick diagram, JNK1 is displayed as a line diagram. 

Residues are labelled. Hydrogen bond donor and acceptor 

interactions are shown as magenta and cyan spheres respectively, 

and hydrophobic interactions are shown as green spheres. Carbon 

atoms are coloured orange or white, nitrogen atoms are coloured 

blue and oxygen atoms are coloured red. 

 

 

During docking, energy minimization of the protein and ligand structures 

was carried out using the AMBER99 forcefield at a gradient of 0.1 

kcal/mol/Å[154]. The Triangle Matcher ligand placement[155], London dG 

scoring function, refinement using AMBER99 forcefield and Generalised Born 
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Volume Integral / Weighted Surface Area (GBVI/WSA) dG rescoring function 

were used in this docking with pharmacophore constraints process[156-158]. 

 

 Molecular dynamics simulations were carried out on selected poses which 

fit alongside the JIP1 binding groove of JNK1, fit the pharmacophore model and 

had the best docking energy score. All topology and parameter files were created 

using the LEaP program included with AMBER. The entire system to be 

simulated consists of the protein surrounded by a truncated octahedron of water 

and sodium ions to maintain charge neutrality. An explicit solvent model was 

used with TIP3P water molecules filling 12.0 Å between the surface of the protein 

and the edge of the box[159]. 

 

The SANDER package within AMBER was used for 1000 steps of 

restrained energy minimization and non-restrained energy minimization. The 

amino acid residues which make up JNK1 were restrained in the first energy 

minimization process. In both energy minimization processes, steepest descent 

minimization was used for the first 500 steps. After 500 steps, the energy 

minimization process is switched to conjugate gradient. The PMEMD module 

from Amber 12.0[160] was then used to model the system to equilibrium by 

including 100 ps of constant volume conditions with heating from 0 to 310 K and 

positional restraints, followed by 100 ps at constant temperature conditions to 

maintain the density at equilibrium before beginning the molecular dynamics 

production run with the NPT ensemble. The MD simulations were carried out 
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with a 2 fs time step using the AMBER 2003 force field[161]. Hydrogen bonds 

were constrained using the SHAKE algorithm[162]. Each molecular dynamics 

production run has a total duration of 3 ns with a time step of 10 ps for every 

frame recorded in its trajectory. 

 

Viewing of the trajectories and clustering of a trajectory was carried out 

using Chimera 1.8[163]. The CPPTRAJ module in Amber 12.0 was also used to 

carry out postprocessing of the trajectory which includes calculating the ligand 

root mean square deviation (RMSD) and an alternative hierarchical agglomerative 

clustering of the trajectory. Trajectories which show a large RMSD value where 

the bound ligand keeps changing conformation throughout the trajectory, moved 

out of the binding pocket or formed many clusters of very small and different 

populations were determined to have an unstable trajectory and the compound 

was removed from the dataset based on this additional filter. Trajectories which 

showed a relatively stable trajectory by remaining within the binding pocket with 

little change in conformation and hence low ligand RMSD values and the most 

populated cluster having the largest population compared to other clusters within 

the trajectory were retained for further analysis.  

 

A redocking experiment was carried out using rigid docking methods in 

MOE 2013.10 where poses with interactions that are consistent with the 

molecular dynamics trajectory data are chosen. The ligand pose is energy 

minimized using the MMFF94 force field[164] and the electrostatics, polar and 
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hydrophobic contact surfaces surrounding the ligand pose are analysed using the 

surface analysis feature in MOE[165]. 

 

3.2.3 Analysis of interaction profiles of identified JNK1-JIP1 inhibitors 

  

After refining the list of compounds based on the results of the ligand-

based and the structure-based studies, the list of compounds were further refined 

for further analysis by identifying poses which meet the pharmacophore 

modeling, molecular dynamics simulations and redocking criteria: 

1) The compound fits into the binding pocket that JIP1 occupies in the X-ray 

crystal structure of JNK1. 

2) The compound forms an electrostatic or polar interaction with Arg 127. 

3) The compound forms hydrophobic non-bonded contacts with Val 118, Leu 

123, Leu 131 and Val 159. 

 

MGLTools[166], Ligplot[167], Discovery Studio Visualizer[55] and MOE 

were used to visually inspect selected binding pose on the protein target and the 

interactions that were formed. Chimera 1.8 was used to analyze each trajectory, 

calculate the root mean-square deviation (RMSD) of the ligand and to carry out 

clustering of the entire trajectory to select representative poses from the most 

populated cluster[163]. The CPPTRAJ module in Amber 12.0 was used to 

monitor the distance between a ligand atom and a residue atom where hydrogen 

bond could potentially be present. If pi interactions could potentially be present, 
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the distance between the geometric center of the aromatic ring of the ligand and 

the residue atom was monitored.  

  

3.3 Results and Discussion 

 

3.3.1 Initial virtual screening using docking with pharmacophore 

constraints 

 

 The structure 1UKH which contains the truncated JIP1 in complex with 

JNK1 was used to obtain and select pharmacophore features. A less strict criteria 

was chosen for the pharmacophore map where the H-bond interaction with Arg 

127 and the non-bonded contact with Cys 163 was chosen to enable a subset of 

the tested JNK1 inhibitors in the literature to meet this docking with 

pharmacophore constraints criteria. The results are briefly summarized in the 

Table 3.2. 

Table 3.2: Docking results using Molecular Operating Environment. 

Compound 

ID 

Reference 

(PubMed ID) 

Published 

IC50 (μM) 

Pharmacophore 

constraints filter 

No. of 

poses 

MM/GBVI 

(kcal/mol) 

BI-78D3 18922779 0.28 Yes 0 - 

No 26 9.13 to -4.59 

25 21458276 1.3 Yes 5 -3.96 to -4.65 

No 20 -0.37 to -4.42 

19 21458276 1.8 Yes 2 -4.01 to -4.29 

No 23 -2.93 to -4.26 



52 
 

BI-98A10 20045647 3.0 Yes 3 -3.12 to -3.78 

No 24 7.09 to -4.29 

1 19243309 3.6 Yes 0 - 

No 28 3.36 to -5.06  

87D12 19282190 3.8 Yes 0 - 

No 19 3.80 to -3.82 

BI-90H10 20045647 5.7 Yes 0 - 

No 27 8.82 to -4.72 

 

BI-90H8 20045647 9.1 Yes 0 - 

No 24 -0.53 to -4.75 

AV-7 19527717 10.0 Yes 0 - 

No 30 3.26 to -4.92 

BI-90E2 20045647 > 25 Yes 3 -3.88 to -4.46 

No 24 6.52 to -4.56 

BI-90E7 20045647 > 25 Yes 4 -3.76 to -4.73 

No 25 8.70 to -4.18 

BI-83B3 18922779 > 100 Yes 0 - 

No 19 2.39 to -4.24 

8e 19271755 > 100 Yes 0 - 

No 28 13.34 to -4.70 

3 21458276 > 100 Yes 2 -3.45 to -3.64 

No 26 4.97 to -4.45 

5a 21458276 > 100 Yes 1 -4.27 

No 28 -2.88 to -4.35 

10 21458276 > 100 Yes 2 -3.86 to -4.28 

No 22 2.82 to -4.07 
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The results from the rigid docking of compounds show a large number of 

different predicted poses and a wide range of docked scores with a molecular 

mechanics generalized born/volume integral (MM/GBVI) binding free energy, 

with some poses having a calculated binding energy that is in the positive range 

and is less likely to bind and form interactions when the pharmacophore 

constraints filter was not used.  

 

Including this pharmacophore constraints filter reduced the number of 

docked poses for each compound from 30 to 5 or less. This suggests that the 

pharmacophore constraints filter is potentially able to remove erroneous poses. 

 

 The docking process was repeated using the same pharmacophore filter on 

identified positive compounds from the QSAR model in Chapter 2 and reduced 

the number of possible compounds from 45673 to 17560. This additional step 

helps to reduce the time needed to dock each compound, and also helps to further 

refine and reduce the number of docked poses for molecular dynamics studies, as 

each molecular dynamics simulation run can take a very long time to complete 

and the starting pose of a compound appears to have an important role in 

producing a stable or unstable trajectory. 
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3.3.2 Refinement of virtual screening using molecular dynamics 

 

 Molecular dynamics using the software package AMBER 12.0 was carried 

out on the top-ranked pose for each compound which meet the docking with 

pharmacophore constraints criteria. Due to the very high computation cost and 

time required to run each molecular dynamics simulation, only the top-ranked 

pose and the pose which fit alongside the JIP-binding pocket identified by the 

pharmacophore model were selected for molecular dynamics simulations. Poses 

which fit perpendicular across the JIP-binding pocket tend to show a less stable 

trajectory and were not selected for molecular dynamics simulations. A total of 9 

validation compounds and 9 ZINC database compounds were selected for 

molecular dynamics simulations.  

 

 A flowchart of steps taken in this phase of the research project is shown in 

Figure 3.4.  
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Figure 3.4: Flowchart of steps taken in this virtual screening workflow. 
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Table 3.3: Chemical structures of  validation compounds drawn using Marvin 

Sketch[168] or obtained from SciFinder[169]. 

 

Compound 

name 

Structure MM/GBVI 

of selected 

pose 

Published 

IC50 

(μM) 

25 

 

-4.65 1.3 

19 

 

-4.29 1.8 

BI-98A10 

 

-3.78 3.0 

BI-90H8 

 

-4.75 9.1 
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BI-90E2 

 

-4.46 > 25 

BI-90E7 

 

-4.73 

 

 

> 25 

BI-83B3 

 

-4.24 > 100 

3 

 

-3.64 > 100 

10 

 

-4.28 > 100 
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Molecular dynamics simulations were carried out on compounds from the 

ZINC database. Three compounds (ZINC11681157, ZINC03405497 and 

ZINC09369056 were retained for further analysis of interaction profiles after 

having a docking score of -5 or less(Table 3.4). 

Table 3.4: Chemical structures and docking scores for molecular dynamics 

trajectories of 3 ns duration. 

 

Compound 

name 

Structure MM/GBVI 

of selected 

pose 

ZINC09369056 

 

-5.2 

ZINC03405497 

 

-5.1 
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ZINC11681157 

 

-5.1 

 

 

3.3.3 Clustering 

 

 The population size of the top 3 clusters in each validation compound and 

three ZINC database compounds are listed in Table 3.5.  A representative pose 

from Cluster 1 is obtained for further analysis. 

Table 3.5: Cluster size and total population of each compound. Numbers in 

parenthesis refer to the percentage of population in their respective 

clusters to the total population available in the trajectory. 

 

Compound 

name 

Cluster 1 Cluster 2 Cluster 3 Total 

population 

25 63 (63.0) 25 (25.0) 12 (12.0) 100 

19 75 (75.0) 11 (11.0) 8 (8.0) 100 

BI-98A10 55 (55.0) 26 (26.0) 17 (17.0) 100 

BI-90H8 47 (47.0) 31 (31.0) 9 (9.0) 100 

BI-90E2 60 (100.0) 0 (0.0) 0 (0.0) 60 

BI-90E7 13 (21.7) 13 (21.7) 8 (13.3) 60 

BI-83B3 11 (18.3) 10 (16.7) 7 (11.7) 60 
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3 80 (80.0) 11 (11.0) 9 (9.0) 100 

10 27 (45.0) 17 (28.3) 14 (23.3) 60 

ZINC11681157 170 (56.7) 118 (39.3) 12 (4.0) 300 

ZINC03405497 299 (99.7) 1 (0.3) 0 (0.0) 300 

ZINC09369056 209 (69.7) 73 (24.3) 6 (2.0) 300 

 

3.3.4 Analysis of interaction profiles 

 

 The hydrogen bond interactions between Thr 159 of JIP1 and Arg 127 of 

JNK1 were chosen to be included in the pharmacophore model and for further 

analysis of interactions. This is based on isothermal calorimetry experiments 

performed by Heo et al to measure dissociation constant (Kd) values of JIP1 to 

bind to wild-type JNK1 with Arg 127 and to mutant JNK1 with Ala 127 where 

the Kd values were 0.42 ± 0.13 μM and 6.4 ± 2.2 μM respectively[57]. 

 

Among each of the listed compounds, they show a relatively stable 

trajectory by maintaining their distance and interaction with Arg 127 throughout 

the entire simulation run.  

 

Analysis of the redocked and selected poses show that for the validation 

compounds, compounds 19(Figure 3.5) and 25 may potentially form pi-cationic 

interactions with Arg 127 through its thiophene carboxamide group and the 

distance between the geometric center of its thiophene group and Arg 127 is 
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maintained within 6 Å throughout most of the trajectory(Figures 3.6 and 3.7). 

Compound 19 potentially forms electrostatic interactions with Arg 127(Figure 

3.8), polar non-bonded contacts with Arg 127 and Ser 161(Figure 3.9) and 

hydrophobic non-bonded contacts with Ala 113, Val 118, Leu 123, Leu 131 and 

Val 159(Figure 3.10). Compounds BI-98A10 and BI-90H8 may potentially form 

pi-cationic interactions with Arg 127 through its thiadiazole group(Figures 3.11 to 

3.14). Both compounds may potentially form polar non-bonded contacts with Arg 

127(Figures 3.15 and 3.16), and form hydrophobic non-bonded contacts with Val 

118, Leu 123, Leu 131 and Val 159(Figures 3.17 and 3.18). For the decoy 

compounds BI-83B3, 3 and 10, when the distance between its aromatic thiophene 

group or 6-member ring is measured, the maximum distance is longer and the 

proportion of the trajectory where the distance is within 6 Å is smaller compared 

to compounds 19 and 25(Figures 3.19 to 3.21 and Table 3.6)[170,171]. 
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Figure 3.5: Pose of Compound 19. Potential interactions are marked by dotted 

lines. 

 

 
 

Figure 3.6: Graph of distance between geometric center of aromatic ring in 

Compound 19 and Arg 127 against instance in trajectory. A 6 

angstrom distance cutoff is shown as a dotted line. 
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Figure 3.7: Graph of distance between geometric center of aromatic ring in 

Compound 25 and Arg 127 against instance in trajectory. A 6 

angstrom distance cutoff is shown as a dotted line. 

 

 
 

Figure 3.8: Pose of Compound 19 over ribbon diagram of JNK1. Charged 

residues within 4.0 Å distance are labelled. Potential electrostatic 

interactions within 4.0 Å distance from ligand with a preference 

for negatively charged atoms are shown as red spheres.  
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Figure 3.9: Pose of Compound 19 over ribbon diagram of JNK1. Polar 

residues within 4.0 Å distance are labelled. Polar contact surfaces 

within 4.0 Å distance from ligand are shown as dotted purple 

spheres. 

 

 
 

Figure 3.10: Pose of Compound 19 over ribbon diagram of JNK1. Hydrophobic 

residues within 4.0 Å distance are labelled. Hydrophobic contact 

surfaces within 4.0 Å distance from ligand are shown as dotted 

green spheres. 
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Figure 3.11: Pose of Compound BI-98A10. Potential interactions are marked by 

dotted lines. 

 

 
 

Figure 3.12: Pose of Compound BI-90H8. Potential interactions are marked by 

dotted lines. 
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Figure 3.13: Graph of distance between geometric center of aromatic ring in 

Compound BI-98A10 and Arg 127 against instance in trajectory. A 

6 angstrom distance cutoff is shown as a dotted line. 

 

 
 

Figure 3.14: Graph of distance between geometric center of aromatic ring in 

Compound BI-90H8 and Arg 127 against instance in trajectory. A 

6 angstrom distance cutoff is shown as a dotted line. 
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Figure 3.15: Pose of Compound BI-98A10 over ribbon diagram of JNK1. Polar 

residues within 4.0 Å distance are labelled. Polar contact surfaces 

within 4.0 Å distance from ligand are shown as dotted purple 

spheres. 

 

 
 

Figure 3.16: Pose of Compound BI-90H8 over ribbon diagram of JNK1. Polar 

residues within 4.0 Å distance are labelled. Polar contact surfaces 

within 4.0 Å distance from ligand are shown as dotted purple 

spheres. 
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Figure 3.17: Pose of Compound BI-98A10 over ribbon diagram of JNK1. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

 
 

Figure 3.18: Pose of Compound BI-90H8 over ribbon diagram of JNK1. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 
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Figure 3.19: Graph of distance between geometric center of aromatic ring in 

Compound BI-83B3 and Arg 127 against instance in trajectory. A 

6 angstrom distance cutoff is shown as a dotted line. 

 

 

 
 

Figure 3.20: Graph of distance between geometric center of aromatic ring in 

Compound 3 and Arg 127 against instance in trajectory. A 6 

angstrom distance cutoff is shown as a dotted line. 
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Figure 3.21: Graph of distance between geometric center of aromatic ring in 

Compound 10 and Arg 127 against instance in trajectory. A 6 

angstrom distance cutoff is shown as a dotted line. 

 

Table 3.6: Distance between geometric center of aromatic ring in compound 

and Arg 127. 

 
Compound 

Name 

Median 

distance (Å) 

Standard 

deviation 

Shortest 

distance (Å) 

Longest 

distance (Å) 

Percentage of 

frames within 

6.0 Å 

19 4.5 0.67 3.6 7.7 96 

25 4.4 0.62 3.4 6.8 98 

BI-98A10 6.8 1.3 3.4 9.3 32 

BI-90H8 4.7 0.83 3.4 7.3 94 

BI-83B3 8.2 3.0 3.3 14 42 

3 5.6 1.9 3.5 12 54 

10 7.5 1.3 5.6 11 3.3 

 

BI-90H8 may potentially form hydrogen bond interactions with Arg 127 

through its thiazole group(Figures 3.22 and 3.23). The decoy compounds BI-90E2 
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and BI-90E7 have a longer maximum distance and the proportion of the trajectory 

where the distance is within 3.5 Å is smaller compared to BI-90H8(Figures 3.24 

and 3.25 and Table 3.7)[172]. 

 

Figure 3.22: Pose of Compound BI-90H8. Potential interactions are marked by 

dotted lines. 

 

 
 

Figure 3.23: Graph of distance between large atom in Compound BI-90H8 and 

Arg 127 against instance in trajectory. A 3.5 angstrom distance 

cutoff is shown as a dotted line. 
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Figure 3.24: Graph of distance between large atom in Compound BI-90E2 and 

Arg 127 against instance in trajectory. A 3.5 angstrom distance 

cutoff is shown as a dotted line. 

 

 
 

Figure 3.25: Graph of distance between large atom in Compound BI-90E7 and 

Arg 127 against instance in trajectory. A 3.5 angstrom distance 

cutoff is shown as a dotted line. 

 

For the ZINC database compounds, they show ZINC09369056 changing 

conformation to point its thiazole sulfur towards the carbonyl after 1.6ns in the 
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simulation. This shows that the molecular dynamics is able to reduce the energy 

state of the ligand and gives valuable insights into the possible binding 

orientations of each ligand. ZINC03405497 is prioritized for in vitro testing after 

showing a very stable trajectory with its amide group remaining within hydrogen 

bond distance throughout the entire trajectory(Figure 3.26, Figure 3.27 and Table 

3.7). ZINC03405497 form potential electrostatic interactions and polar non-

bonded contacts with Arg 127 (Figure 3.28) and hydrophobic non-bonded 

contacts with Val 118, Leu 123, Leu 131, Val 159 and Trp 324(Figure 3.29).  

 

Figure 3.26: Pose of ZINC03405497. Potential interactions are marked by 

dotted lines. 
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Figure 3.27: Graph of distance between large atom in ZINC03405497 and Arg 

127 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 3.28: Pose of ZINC03405497 over ribbon diagram of JNK1. Charged 

residues within 4.0 Å distance are labelled. Potential electrostatic 

interactions within 4.0 Å distance from ligand with a preference 

for negatively charged atoms are shown as red spheres and 

positively charged atoms as blue spheres. 
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Figure 3.29: Pose of ZINC03405497 over ribbon diagram of JNK1. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

Table 3.7: Distance between large atoms in Arg 127 of JNK1 and compound. 

 
Compound 

name 

Median 

distance 

(Å) 

Standard 

deviation 

Shortest 

distance 

(Å) 

Longest 

distance 

(Å) 

Percentage 

of frames 

within 3.5 Å 

BI-90H8 3.6 0.53 2.8 5.6 52 

BI-90E2 4.3 1.2 2.9 7.4 23 

BI-90E7 3.8 0.57 2.9 5.2 37 

ZINC11681157 5.5 0.83 3.7 8.0 0.0 

ZINC03405497 3.0 0.20 2.6 4.4 97 

ZINC09369056 7.5 1.6 3.0 12.7 0.67 
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 From the analysis of interactions in the molecular dynamics trajectories, 

the results are consistent with the reported small molecule inhibitors where 

thiazoles, thiadiazoles and thiophene carboxamides were investigated[82-84], as 

well as the QSAR study where JNK1-JIP1 inhibitors have hydrogen bond donor 

and acceptor properties and do not appear to form interactions through six-

membered rings.  

 

3.4 Conclusion 

 

In doing a virtual screening of ZINC database compounds to identify 

potent compounds that could potentially inhibit JNK1 at the JIP1 binding site, one 

ZINC database compound was identified that could be prioritized for in vitro 

testing. 

  

The entire virtual screening process is less accurate in ranking and 

filtering compounds among the validation compounds in the published JNK1-JIP1 

inhibitors dataset. These challenges remain difficult to address due to the large 

size of the JIP binding pocket where the exact location and binding pose for small 

molecule inhibitors are not known. Future work could include testing the 

identified compounds for biological activity and to refine the model by choosing a 

different part of the JIP1 binding site for docking, molecular dynamics 

simulations and analysis of interactions. 
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Chapter 4 

 

Development of structure-based model for DFG binding site inhibitors 

 

4.1 Summary 

 

 The compound BIRB796 (Doramapimod) has been found to bind to the 

DFG binding site of p38α and JNK2. Virtual screening of a subset of ZINC 

database compounds with a Tanimoto coefficient of up to 0.7 based on 

ChemAxon fingerprints[168] was carried out by docking and analysis of  

interaction profiles. A consensus model that analyzed docking scores using three 

docking software was used to filter and prioritize compounds for in vitro testing. 9 

ZINC database compounds and the positive control compound BIRB796 were 

selected for in vitro testing using the KINOMEScan test from DiscoveRx to 

determine Kd values of the tested compounds on JNK1, JNK2 and p38α. 

 

4.2 Methods 

 

4.2.1  Ranking of DFG inhibitors based on scoring function 

 

 The X-ray crystal structures of JNK2 with the DFG-in and DFG-out 

conformation were available in the RCSB Protein Databank website (PDB 

structures 3E7O and 3NPC respectively)[56,65,173]. The structures were 
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processed by adding hydrogen atoms, assigning tautomer and ionization states to 

the structure and capping terminal ends of the entire protein structure, removing 

water molecules in the structure and carrying out energy minimization of the 

structure using the Assisted Model Building with Energy Refinement 

99(AMBER99)[174] or Chemistry at HARvard Macromolecular Mechanics 

27(CHARMM27) forcefield[154,175]. 

 

A purchasable subset of compounds of up to 0.7 Diversity Index based on 

ChemAxon fingerprints that were compared to the compound within the most 

densely populated cluster in the ZINC chemical database[168,176] were 

downloaded and docking of the compounds was carried out on the DFG binding 

site of JNK2. 

 

The DFG binding site of JNK2 was defined by covering the following 

amino acid residues within the search space of the docking procedure. These 

amino acid residues consist of 12 hydrophobic residues (Ile 32, Val 40, Ala 53, 

Leu 76, Leu 77, Ile 86, Met 108, Leu 110, Met 111, Leu 142, Leu 168 and Phe 

170), 1 polar residue (Gln 37) and 6 polar and charged residues (Lys 55, Arg 69, 

Arg 72, Glu 73, Glu 109 and Asp 169).  
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4.2.2 Analysis of interaction profiles of identified DFG site inhibitors 

 

After refining the list of compounds based on the purchasable compounds 

criteria to enable convenient procurement of the compound from commercial 

vendors,  diversity index metric and the docking score in the structure-based 

study, the list of compounds were further refined for further analysis by 

identifying docked poses which fulfill at least one of the following criteria: 

 

1) The compound fits into the binding pocket that is defined to be the binding 

pocket that the compound BIRB796 occupies in the X-ray crystal structure 

of JNK2. 

2) The compound forms a H-bond interaction with Glu 73 or Asp 168 

 

MGLTools, Ligplot and Discovery Studio Visualizer were used to visually 

inspect the interactions that were formed. The binding poses and interaction map 

profiles were eventually used to select a list of promising compounds for purchase 

through commercial vendors and to determine Kd values of the compounds 

through in vitro testing on the KINOMEScan assay platform by DiscoveRx[177]. 

 

4.2.3 Preparation of compounds for in vitro testing 

 

 The solubility profiles of selected compounds were calculated using MOE 

2011.10 which calculates the LogS values based on the sum of all the atoms and 
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chemical bonds present in the molecule[178]. Compounds with LogS values 

above 4.0 or below -4.0 were not selected for purchase. The chemical structures 

and Chemical Accession Service (CAS) numbers of selected compounds were 

used to obtain permission from the relevant authority to import into the 

country[169]. The compounds were prepared in 100 µL of dimethyl sulfoxide 

(DMSO) solution at 10mM concentration under collaboration with Life Sciences 

Institute and Laboratory of Liver Cancer and Drug-induced Liver Diseases 

Research at National University of Singapore. 

 

4.3 Results and discussion 

 

4.3.1 Consensus scoring functions using different docking software 

 

The docking score and Tanimoto coefficients for each compound 

compared to the positive validation compound BIRB796 are listed in Table 4.1. 

Compounds with a higher docking score in SYBYL and compounds with a more 

negative docking score in MOE or AutoDock Vina indicate a higher chance of 

binding and hence higher potency of the compound.  
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Table 4.1: Results of docking scores on various ZINC compounds using 

different docking software. 

 
ZINC ID Chemical structure SYBYL 

CScore 

MOE 

AMBER99 

Score 

MOE 

CHARMM27 

Score 

AutoDock 

Vina 

Score 

Tanimoto 

Coefficient 

BIRB796 

 

16 -9.6 -14 - - 

ZINC00088624 

 

4.6 -6.8 -7.7 -6.3 0.25 

ZINC00210429 

 

5.1 -6.0 -7.1 -8.2 0.25 

ZINC00344359  

 

5.5 -6.0 -6.9 -8.4 0.16 

ZINC02026664  

 

3.8 -5.9 -6.1 -8.0 0.16 
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ZINC04266305 

 

7.1 -6.4 -7.5 -7.9 0.11 

ZINC05019440 

 

5.7 -7.1 -7.1 -9.3 0.22 

ZINC06320732  

 
 

2.6 -6.1 -6.5 -7.3 0.09 

ZINC06692943  

 

6.4 -6.4 -7.7 -7.4 0.08 

ZINC13118854  

 

7.3 -6.9 -7.8 -8.8 0.16 

ZINC31166436  

 

8.3 -7.7 -6.8 -7.6 0.06 

ZINC05417635 

 

7.0 -7.1 -8.3 -9.4 0.12 

ZINC01718148 

 

5.7 -7.6 -6.6 -7.0 0.24 
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ZINC28541016 

 

6.4 -6.3 -7.9 -7.5 0.12 

ZINC03178796  

 

7.4 -7.4 -7.1 -9.2 0.22 

ZINC08659433 

 

5.1 -6.7 -8.0 -9.8 0.13 

ZINC05799999 

 

7.1 -7.1 -8.0 -8.9 0.12 

ZINC39955766 

 

5.6 -6.5 -7.2 -9.8 0.3 

 

4.3.2 KINOMEScan assay 

 

 The KINOMEScan assay platform by DiscoveRx was used to determine 

the Kd values of selected ZINC database compounds on JNK1, JNK2 and p38α. 

The positive validation control BIRB796 showed significant binding and Kd 

values at nanomolar concentrations on JNK2 and p38α, while all the ZINC 

database compounds did not show any significant binding at concentrations of up 

to 40μM. The percentage inhibition profile for ZINC13118854 was inconclusive 

as one experimental arm showed no change in signal strength and the second 
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experimental arm showed near full reduction in signal strength at 40 μM 

concentration (Table 4.2). 

 

Table 4.2: KINOMEScan assay results. 

Name of 

compound 

JNK1 JNK2 p38α 

BIRB796 / 

Doramapimod 

Kd = 15 μM Kd = 1.8 nM Kd = 4.7 nM 

ZINC00088624 Kd > 40 μM 

% inhibition = 2 % 

Kd > 40 μM 

% inhibition = 19 % 

Kd > 40 μM 

% inhibition = 1 % 

ZINC13118854 Kd > 40 μM 

No inhibition 

Kd > 40 μM 

% inhibition = 7 % 

Kd > 40 μM 

Inconclusive 

ZINC05019440 Kd > 40 μM 

No inhibition 

Kd > 40 μM 

No inhibition 

Kd > 40 μM 

% inhibition = 3 % 

ZINC06692943 Kd > 40 μM 

No inhibition 

Kd > 40 μM 

% inhibition = 3 % 

Kd > 40 μM 

% inhibition = 10% 

ZINC04266305 Kd > 40 μM 

% inhibition = 20 % 

Kd > 40 μM 

% inhibition = 8 % 

Kd > 40 μM 

% inhibition = 9 % 

ZINC02026664 Kd > 40 μM 

No inhibition 

Kd > 40 μM 

% inhibition = 12 % 

Kd > 40 μM 

% inhibition = 3 % 

ZINC00210429 Kd > 40 μM 

No inhibition 

Kd > 40 μM 

% inhibition = 2 % 

Kd > 40 μM 

% inhibition = 1 % 

ZINC00344359 Kd > 40 μM 

No inhibition 

Kd > 40 μM 

% inhibition = 2 % 

Kd > 40 μM 

No inhibition 

ZINC06320732 Kd > 40 μM 

No inhibition 

Kd > 40 μM 

% inhibition = 2 % 

Kd > 40 μM 

% inhibition = 2 % 
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 This shows that random docking even with consensus scoring and analysis 

of interaction fingerprint profile is insufficient to accurately rank and classify 

compounds with a very high chance for false positives and a very low hit rate. 

Further work that includes docking with pharmacophore constraints and 

molecular dynamics simulations will be required to refine the computational 

model. 

 

4.4 Conclusion 

 

 In doing a virtual screening of ZINC database compounds to identify 

potent compounds that could potentially inhibit JNK2 at the DFG binding site, 9 

compounds were found to show no significant binding using the KINOMEScan 

assay platform. Future work could include testing a larger number of identified 

compounds for biological activity. 
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Chapter 5 

 

Structure-based study of human Pregnane X Receptor (PXR) activators 

 

5.1 Summary 

 

 The compound rifampicin has been found to bind to human PXR and an 

X-ray crystal structure of rifampicin in human PXR is available in the Protein 

Databank. A structure-based study was carried out where rifampicin, 5 non-

nucleoside reverse transcriptase inhibitors (NNRTIs) and 1 chemical compound 

pregnenolone carbonitrile were docked in the ligand-binding domain of human 

PXR with molecular dynamics simulations and docking to filter and select poses 

for further study. 

 

5.2 Structures of human PXR 

 

The structures of human PXR consist of a ligand-binding domain, a co-

activator domain and a complex binding interface between PXR and RXR. The 

ligand-binding domain was chosen as the initial site for study in this project as 

there are 9 X-ray crystal structures that are available in the Protein Databank 

database[75,86,109-113], as well as several site-directed mutagenesis studies in 

the literature which help to elucidate the location and mechanism of binding for 

various strong activators within the ligand-binding domain[85,86,112]. 
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Attempting a docking study and molecular dynamics study of various ligands in 

this pocket has several challenges. Due to the very large and highly flexible nature 

of this binding pocket[75,111,112,114], this binding domain has a very high 

capacity to change conformation and accept a wide variety of ligands, with a 

reported ligand promiscuity index of 1.006 for human PXR by using molecular 

quantum number (MQN) distances and ChEMBL activity datasets[23,179]. In 

addition, there is also currently a large knowledge gap in this area where the 

mechanism of binding and the X-ray crystal structure or NMR structure of PXR is 

not known with regard to partial agonists and antagonists that bind to this pocket. 

Hence, the study of agonists or activators of PXR will be carried out in this 

project. 

 

 The interactions that may play a role in activating human PXR occur at the 

following residues: Ser-247, Gln-285, Phe-288, Trp-299, Tyr-306, His-407 and 

Arg-410 as mutagenesis studies have shown changes in human PXR activity on 

hyperforin[112], SR12813, rifampicin[86] or bisphenol A[85].  

 

 The human PXR ligand binding domain consist of 15 hydrophobic 

residues (Val-211, Leu-240, Met-243, Phe-251, Phe-281, Phe-288, Trp-299, Leu-

308, Met-323, Leu-324, Leu-411, Ile-414, Phe-420, Met-425, and Phe-429), four 

polar residues (Ser-247, Cys-284, Gln-285, and Tyr-306), and four charged 

residues (Glu-321, His-327, His-407, and Arg-410))[180].  
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 The co-activator domain functions by accepting co-activators in PXR and 

RXR and increasing the length, duration and stability of binding and activation by 

ligands, as well as by decreasing the possible number of poses that the ligands 

might adopt on binding at the ligand-binding site[111]. Due to the difficulty in 

designing and studying protein-protein docking and interactions, the study of 

possible compounds for co-activators will not be carried out in this project. 

 

5.3 Materials and methods 

 

5.3.1 Biological activity 

  

Biological activity data was obtained from collaboration with Faculty of 

Pharmaceutical Sciences in University of British Columbia at Vancouver. 

Firefly/Renilla luciferase assay was used to obtain CYP3A4 gene expression and 

PXR activation. Rifampicin was used as the positive control, pregnenolone 

carbonitrile (PCN) was used as the negative control, dimethyl sulfoxide (DMSO) 

was used as the vehicle control, and five non-nucleoside reverse transcriptase 

inhibitors (NNRTIs) delavirdine, etravirine, rilpivirine, nevirapine and efavirenz 

were tested for biological activity[181]. 
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5.3.2  Initial docking of compounds 

 

  The X-ray crystal structure of human PXR as a monomer with rifampicin 

as the co-crystal structure (PDB structure: 1SKX) was used in this docking study. 

The structures were processed by adding hydrogen atoms, assigning protons and 

partial charges to the structure and capping terminal ends of the entire protein 

structure[152], removing water molecules in the structure and carrying out energy 

minimization of the structure using the Assisted Model Building with Energy 

Refinement 99(AMBER99)[174] or Chemistry at HARvard Macromolecular 

Mechanics 27 (CHARMM27) forcefield[154,175]. The docking function in MOE 

was used to dock each molecule to human PXR.  The induced-fit docking setting 

was used, due to the highly flexible region of the ligand binding 

site[75,111,112,114].  This setting uses a London dG scoring function, a force 

field refinement scheme to refine the docked molecules and to tether the positions 

of the side chains of the 23 residues surrounding the active site to allow a certain 

degree of movement of each side chain.  The molecular mechanics generalized 

Born/volume integral (MM/GBVI) binding free energy is calculated as a final 

pose rescoring function to refine the docking pose.  One hundred possible poses 

were determined for each molecule[156-158]. 

 

The top-ranked pose with the best MM/GBVI binding free energy was 

selected for analysis of interaction with human PXR if it fulfilled at least one of 

the following criteria[74]:  
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1) the compound fits into the Trp-299 site;  

2)  a H-bond acceptor of the compound interacts with either the His-407 or 

Gln-285 side chain;  

3)  the compound forms an interaction with Ser-247, Phe-288 or Trp-299. 

 

5.3.3 Analysis of interactions 

 

 A similar workflow to Figure 3.4 was carried out where molecular 

dynamics simulations were carried out on the top-ranked docked pose from the 

initial docking study. Compounds which show an unstable trajectory or had a 

docking score that did not meet a cut-off criteria were not included in the 

redocking experiments.  Redocking experiments using MOE 2013.10 were carried 

out for the structure of rifampicin from the PubChem database and for filtered 

compounds. Poses which have hydrogen bond or pi interactions that are consistent 

with molecular dynamics simulations are selected for further analysis of potential 

electrostatic interactions and non-bonded contact surfaces. 
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5.4 Results and discussion 

 

5.4.1 Initial docking results 

 

To validate the docking process, the structure of rifampicin taken from 

PDB database was redocked into the same ligand binding domain and the best 

binding pose was copied and superimposed over the original binding position in 

PDB structure 1SKX and had a RMSD of 1.02 Å.  This shows that the docking 

process was able to dock rifampicin as a positive control accurately onto the 

ligand-binding domain. 

 

Table 5.1 shows the MM/GBVI binding free energy for the top-ranked 

pose of each compound and the various controls. Compared wiith rifampicin 

(positive control), the non-nucleoside reverse transcriptase inhibitors (NNRTIs) 

had weaker binding free energy.  Among the five individual NNRTIs, the rank 

order was delavirdine > etravirine > rilpivirine > nevirapine > efavirenz. This 

shows that the docking process is able to rank the positive compounds rifampicin, 

etravirine and rilpivirine accurately. The docking process is also able to rank the 

negative compounds nevirapine and PCN accurately. Delavirdine was ranked as a 

false positive, and efavirenz was ranked as a false negative. 

 

The correlation curves for MM/GBVI binding free energy or molecular 

weight against observed experimental values are shown in Figures 5.1 and 5.2 
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with a squared correlation coefficient of 0.44 and 0.51 respectively. This shows 

that there is a certain trend and a higher chance to predict higher fold increase in 

human PXR activity with increasing molecular weight and more negative 

MM/GBVI binding free energy values. This could be due to the increased number 

of pharmacophoric features that would be present in larger molecule compounds 

and the inherent capacity for PXR to adopt large changes in conformation within 

its ligand-binding domain and hence having a very high ligand promiscuity index.  

 

Table 5.1: List of docked scores 

 

Name of 

compound 

Molecular 

weight 

(g/mol) 

Human PXR Activity 

(Fold increase in 

Firefly/Renilla 

luciferase assay over 

vehicle control) 

MM/GBVI 

Binding Free 

Energy 

(kcal/mol) 

 

Rifampicin 822.94 20 -13.1 

Delavirdine 456.56 2.0 -9.1 

Etravirine 435.28 17 -7.9 

Rilpivirine 366.42 11.5 -7.9 

Nevirapine 266.30 1.3 -6.6 

Pregnenolone 

carbonitrile 

(PCN) 

341.49 1.5 -6.5 

Efavirenz 315.68 7.0 -6.1 
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Figure 5.1: Correlation curve for MM/GBVI binding free energy (y-axis) 

against fold increase in human PXR activity over vehicle control 

(x-axis). 

 

 
 

Figure 5.2: Correlation curve for molecular weight (y-axis) against fold 

increase in human PXR activity over vehicle control (x-axis). 

 

 

5.4.2 Analysis of interactions 

 

Table 5.2 lists the amino acid residues that are in contact and may form 

interactions with the selected ligand pose. The molecular dynamics and redocking 

results are presented for each compound in this section. 
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Table 5.2: Amino acid residues involved in the binding of compounds to 

human PXR 

  

Compound Hydrophobic residues Polar 

residues 

Figures 

Etravirine Leu 240, Met 243, Phe 281, Phe 288, 

Met 323, Leu 411, Phe 420, Met 425, 

Phe 429 

Gln 285 5.3, 5.5 

Rilpivirine Val 211, Met 243, Phe 288, Trp 299, 

Met 323, Leu 324, Leu 411, Ile 414, 

Phe 420, Met 425, Phe 429 

Gln 285 5.6, 5.8 

Efavirenz Leu 240, Met 243, Phe 288, Trp 299 His 407 5.9, 5.11 

 

Rifampicin 

 

 The X-ray structure of rifampicin in human PXR show potential hydrogen 

bond interactions that may take place between the ester group in rifampicin and 

Ser 247 in human PXR(Table 5.3). The redocking process is less successful in 

docking the larger structure of rifampicin taken from PubChem database where all 

the poses have a RMSD of greater than 2.0 Å. 
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Etravirine 

 

Potential hydrogen bond interactions take place between the nitrile group 

in etravirine and Gln 285(Figures 5.3, 5.4 and Table 5.3).  

 

Figure 5.3: Pose of etravirine. Potential interactions are marked by dotted 

lines. 

 

 

Figure 5.4: Graph of distance between large atom in etravirine and Gln 285 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 5.5 Pose of etravirine over ribbon diagram of human PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

Rilpivirine 

  

Potential hydrogen bond interactions take place between the nitrile group 

in rilpivirine and Gln 285(Figures 5.6, 5.7 and Table 5.3).  
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Figure 5.6: Pose of rilpivirine. Potential interactions are marked by dotted 

lines. 

 

 
 

Figure 5.7: Graph of distance between large atom in rilpivirine and Gln 285 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 5.8: Pose of rilpivirine over ribbon diagram of human PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

Efavirenz 

  

Potential hydrogen bond interactions take place between the amide group 

in efavirenz and His 407 in human PXR(Figures 5.9, 5.10 and Table 5.3). 

 

Figure 5.9: Pose of efavirenz. Potential interactions are marked by dotted 

lines. 
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Figure 5.10: Graph of distance between large atom in efavirenz and His 407 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 5.11: Pose of efavirenz over ribbon diagram of human PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 
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Delavirdine 

 

 No consistent set of hydrogen bond interactions or pi-interactions are 

found among poses obtained through clustering in molecular dynamics 

simulations. The distance between the amide group in delavirdine and His 407 is 

shown in Figure 5.12 and Table 5.3. 

 

Figure 5.12: Graph of distance between large atom in efavirenz and His 407 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

Pregnenolone carbonitrile (PCN) 

  

No consistent hydrogen bond interactions of within 3.5 Å in length or 

aromatic pi interactions are found among the representative poses. The distance 

between the nitrile group in PCN and His 407 is shown in Figure 5.13 and Table 

5.3. 
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Figure 5.13: Graph of distance between large atom in PCN and His 407 against 

instance in trajectory. A 3.5 angstrom distance cutoff is shown as a 

dotted line. 

 

Nevirapine 

 

 No consistent hydrogen bond interactions of within 3.5 Å in length or 

aromatic pi interactions are found among the representative poses. The distance 

between the amide group in nevirapine and His 407 is shown in Figure 5.14 and 

Table 5.3. 

 

Figure 5.14: Graph of distance between large atom in nevirapine and His 407 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Table 5.3: Distance between first set of compounds and residue where 

potential hydrogen bond interactions might be present. 

 
Name of 

compound 

Atom - 

Residue 

Median 

distance 

(Å) 

Standard 

deviation 

Shortest 

distance 

(Å) 

Longest 

distance 

(Å) 

Percentage 

of 

trajectory 

within 3.5 

Å 

Rifampicin O – Ser 

247 

4.6 0.76 2.7 8.1 11 

Etravirine N – Gln 

285 

5.1 1.4 2.9 11.3 8.0 

Rilpivirine N – Gln 

285 

4.1 0.89 2.9 7.9 16 

Efavirenz  O – His 

407 

3.9 1.1 2.7 10 22 

Delavirdine O – His 

407 

10 1.8 4.3 14 0 

Pregnenolone 

carbonitrile 

N – His 

407 

5.3 0.81 3.5 8.6 0 

Nevirapine O – His 

407 

9.6 1.7 3.1 15 0.40 

 

5.5 Conclusion 

 

 A structure-based study was carried out on 5 NNRTIs, one antibiotic and 

one chemical compound on the X-ray crystal structure of human PXR. The 

workflow was able to filter and rank human PXR activators based on a set of 

possible binding orientations and docked scores.  Additional future work will 

refine the model by applying a similar method on a larger set of compounds on 

both human and zebrafish PXR in the next chapter.   
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Chapter 6 

 

Structure-based study on human and zebrafish PXR activators 

 

6.1 Summary 

 

 A homology model of zebrafish PXR was created using templates of 

human PXR from the Protein Databank and the primary structure of zebrafish 

PXR in the UniProt database. A structure-based study was carried out where 10 

approved drugs were docked in the ligand-binding domain of human and 

zebrafish PXR. Molecular dynamics simulations were carried out on the docked 

poses and a separate set of docking experiments were carried out to select poses 

for further analysis of binding surfaces and binding orientations. 

 

6.2 Introduction to zebrafish PXR 

 

 While attempts have been made to develop in vitro assays to profile 

efficiently the effects of new compounds on CYP3A4 expression levels, these 

efforts are made difficult by species-specific effects that have limited the use of 

animal tissues and cells for testing purposes. Since analysis of the effects of 

compounds on CYP3A4 gene expression has been largely restricted to laborious 

assays involving human liver tissue, an alternative in vivo study was carried out 

by Metabolic Profile Research Group in which zebrafish Danio rerio was used to 
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investigate the effects of various approved drugs on CYP3A4 gene expression and 

PXR activation in zebrafish due to the easier accessibility, lower cost and shorter 

waiting period in obtaining zebrafish for testing of biological activity[122,124-

126]. Although human microsomes are available commercially, a zebrafish 

animal model is sufficiently small to be used in small assay well plates for high-

throughput screening. 

 

 Induction of zebrafish CYP3A4 gene expression is similar to human 

CYP3A4 gene expression for most of the tested approved drugs where most of the 

compounds are able to induce an increase in CYP3A4 gene expression[126,182]. 

Two of the tested compounds rifampicin and pioglitazone show differences in 

biological activity between human and zebrafish and acetaminophen does not 

appear to induce increased expression of CYP3A4 in both human and zebrafish. 

Hence, acetaminophen will be used as the negative control compound in this 

study. 

 

6.3 Materials and methods 

 

6.3.1 Biological activity 

 

 Biological activity data was obtained from published studies[182] and 

from collaboration with Metabolic Profiling Research Group in Department of 

Pharmacy, National University of Singapore. CYP3A4 gene expression data was 
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obtained using the P450-GloTM CYP3A4 assay kit.  Rifampicin and 

dexamethasone were used as the positive controls, acetaminophen was used as the 

negative control in this study, and seven approved drugs phenytoin, 

carbamazepine, nafcillin, efavirenz, pioglitazone, prednisone and rufinamide were 

tested for biological activity[126]. 

 

6.3.2 Homology modeling of zebrafish PXR 

 

 There are nine X-ray crystallography structures of human pregnane X 

receptor (PXR)-ligand complexes in the RCSB Protein Data Bank[75,86,109-

113].  As rifampicin was chosen as the positive validation compound for this 

study, the structure (PDB ID: 1SKX) was chosen as that structure has rifampicin 

as the co-crystallized ligand[86].  For zebrafish PXR, only the primary structure is 

available in the UniProt database[183]. Therefore, a homology model of zebrafish 

PXR is created using the PDB structure 1SKX as a template. 

 

Molecular Operating Environment (MOE) 2011.10[153]  was used for 

creating the homology model of zebrafish PXR and for docking the individual 

compounds to the 1SKX structure. 1SKX was first processed by removing bound 

ligand and water molecules.  Hydrogen atoms were then added, and ionization 

states were assigned using the Protonate3D function in MOE[152].  The Assisted 

Model Building with Energy Refinement 99 (AMBER99) forcefield was used to 

create the homology model, and to carry out energy minimization of the 
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homology model and the structure 1SKX[154].  The target sequence has an 

identity value of 41.4%. The Maestro software in Schrödinger 2015-3[184] is 

used to carry out comparison of amino acid sequence between the homology 

model of zebrafish PXR and human PXR(Figure 6.1) and to carry out 

Ramachandran plot of the PDB structures 1SKX(Figure 6.2) and the created 

zebrafish homology model(Figure 6.3). All non-glycine and non-binding site 

residues which do not fulfill the dihedral angle criteria[185] are removed from the 

model where in the zebrafish homology model, the removed residues are Ile 195, 

Lys 228, His 359 and Ser 433. 

 

Figure 6.1: Amino acid sequence for homology model of zebrafish PXR and 

human PXR using PDB structure 1SKX as template. Conserved 

residues are highlighted in green and important residues that are 

reported to activate human PXR are highlighted in blue. 
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Figure 6.2: Ramachandran plot of X-ray structure of human PXR.  
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Figure 6.3: Ramachandran plot of homology model of zebrafish PXR.  

6.3.3 Structure-based study of compounds 

 

  An initial docking process similar to section 5.3.2 was carried out in this 

phase of the research project as it was able to accurately dock the positive 

validation compound rifampicin within 2.0 Å of its X-ray structure and also rank 

the compound accurately as a strong human PXR activator. The molecular 

mechanics generalized born/volume integral (MM/GBVI) binding free energy is 

calculated as a final pose rescoring function to refine the docking pose. Five 

hundred possible poses were determined for each molecule[156-158]. 
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The individual atom coordinates of each ligand’s possible docked pose 

were then recorded and hierarchical clustering using the Ward method[186,187] 

was carried out on each ligand to determine the most likely poses that were 

predicted to occur.  The representative pose from the most populated cluster was 

selected for further analysis. 

  

The pose was superimposed on the binding pocket of zebrafish PXR to 

compare their structural interaction fingerprint. Energy minimization was carried 

out to refine the docked pose if there is a clash with any residue in the binding 

pocket. JMP Version 10[188]  was used to perform the hierarchical clustering to 

choose representative poses from the most populated cluster for each docked 

compound. 

 

Molecular dynamics simulation, docking and analysis of binding site 

surface was carried out similar to the workflow in Figure 3.4. 

 

6.4 Results and Discussion 

 

6.4.1 Structures of human and zebrafish PXR 

 

Table 6.1 below lists the amino acid residues which surround the ligand-

binding domain of human and zebrafish PXR. 
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Table 6.1: List of amino acid residues that form the ligand-binding domain in 

human PXR and zebrafish PXR.  Important residues that are 

reported to activate human PXR are highlighted in bold. 

 

Residue in human PXR Corresponding Residue in zebrafish PXR 

Val 211 Thr 

Leu 240 Leu 

Met 243 Phe 

Ser 247 Thr 

Phe 251 Ile 

Phe 281 Phe 

Cys 284 Ile 

Gln 285 Leu 

Phe 288 Phe 

Trp 299 Trp 

Tyr 306 Tyr 

Leu 308 Met 

Glu 321 Asp 

Met 323 Met 

Leu 324 Met 

His 327 His 

His 407 Tyr 

Arg 410 Gln 

Leu 411 Val 

Ile 414 Ile 
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Phe 420 Glu 

Met 425 Trp 

Phe 429 Ile 

 

6.4.2 Initial docking results 

 

 Due to the large number of poses that were predicted by docking for each 

compound, an analysis of the interaction profile was carried out based on the top-

scoring docked pose, as well as through carrying out hierarchical clustering using 

the Ward method[186,187] to filter and refine the number of docked poses for 

further analysis. To validate the docking and hierarchical clustering process, the 

structure of rifampicin obtained from PDB database was redocked into the same 

ligand binding domain and the top-scoring pose and the binding pose from the 

most populated cluster had a root mean squared distance (RMSD) of 1.0 Å with 

the original binding position in PDB structure 1SKX.  This shows that the 

docking process was able to dock rifampicin as a positive control accurately onto 

the ligand-binding domain. Table 6.2 lists the docked score of the representative 

pose from the most populated cluster. 

 

 

 

 

 

 

 

 

 



112 
 

Table 6.2: List of docked scores 

 

Name of 

compound 

Human PXR Zebrafish PXR 

Activity MM/GBVI 

Binding Free 

Energy 

(kcal/mol) 

Activity MM/GBVI 

Binding Free 

Energy 

(kcal/mol) 

Rifampicin Strong inducer -13.1 Weak/non-

inducer 

-9.2 

Pioglitazone Weak/non-

inducer 

-6.9 Strong 

inducer 

-7.3 

Nafcillin Moderate 

inducer 

-6.7 Moderate 

inducer 

-6.7 

Prednisone Weak/non-

inducer 

-6.7 Weak/non-

inducer 

-6.6 

Dexamethasone Strong inducer -6.4 Strong 

inducer 

-6.4 

Efavirenz Moderate 

inducer 

-6.1 Moderate 

inducer 

-5.5 

Rufinamide Weak/non-

inducer 

-5.4 Weak/non-

inducer 

-5.5 

Phenytoin Strong inducer -5.3 Strong 

inducer 

 

-5.4 
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Carbamazepine Strong inducer -5.1 Strong 

inducer 

-4.7 

Acetaminophen Weak/non-

inducer 

-4.6 Weak/non-

inducer 

-4.6 

 

 The docking and clustering process was able to rank and classify most of 

the compounds as possible activators. However, it ranked certain weak or non-

activators as strong activators and vice versa. Additional further study through 

molecular dynamics simulations and analysis of structural interactions would be 

required. 

 

6.4.3 Analysis of interactions 

 

Table 6.2 lists the amino acid residues that are in contact and may form 

interactions with the selected ligand pose. The molecular dynamics and redocking 

results are presented for each compound in this section. 

 

Table 6.3: Amino acid residues involved in the binding of compounds to 

human PXR. 

  

Compound Hydrophobic residues Polar 

residues 

Figures 

Phenytoin Val 211, Met 243, Phe 281, Phe 288, 

Trp 299, Met 323 

Gln 285 6.6, 6.8 
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Carbamazepine Met 243, Phe 281, Phe 288, Trp 299, 

Met 323, Leu 411, Met 425, Phe 429 

Ser 247 6.12, 6.14 

Dexamethasone Val 211, Leu 240, Met 243, Phe 

251, Phe 281, Phe 288, Trp 299, Met 

323, Leu 411 

Gln 285 6.18 , 6.20 

Nafcillin Val 211, Leu 240, Met 243, Trp 299, 

Leu 308,  Met 323, Leu 324, Leu 

411, Ile 414, Phe 420 

Gln 285 6.24, 6.26 

Prednisone Val 211, Leu 240, Met 243, Phe 

281, Trp 299, Met 323, Leu 324, 

Leu 411, Ile 414 

Gln 285 6.37, 6.39 

 

Table 6.4: Amino acid residues involved in the binding of compounds to 

zebrafish PXR. 

 

Compound Hydrophobic residues Figures 

Phenytoin Phe 243, Phe 288, Trp 299 6.9, 6.11 

Carbamazepine Thr 211, Phe 243, Phe 288, Trp 299, 

Met 323, Met 324 

6.15, 6.17 

Dexamethasone Thr 211, Leu 240, Phe 243, Phe 281, 

Phe 288 

6.21, 6.23 

Nafcillin Thr 211, Let 240, Phe 243, Met 323, 

Met 324 

6.27, 6.29 

Efavirenz Thr 211, Leu 240, Phe 243, Met 

323, Met 324 

6.30, 6.32 
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Pioglitazone Thr 211, Leu 240, Phe 243, Thr 247, 

Trp 299, Val 411, Ile 414, Trp 425 

6.33, 6.35 

Prednisone Thr 211, Leu 240, Phe 243, Trp 299, 

Met 323, Met 324 

6.40, 6.42 

 

 

Rifampicin 

 

The X-ray structure of rifampicin in human PXR show potential hydrogen 

bond interactions that may take place between the ester group in rifampicin and 

Ser 247 in human PXR(Table 5.3). Molecular dynamics simulations show 

rifampicin in human PXR have a larger percentage of instances within hydrogen 

bond distance to Ser 247 in the trajectory(Figure 6.4) compared to rifampicin in 

zebrafish PXR with the equivalent residue Thr 247(Figure 6.5). The redocking 

process is less successful in docking the larger structure of rifampicin taken from 

PubChem database in both human and zebrafish PXR. In human PXR, poses 

which meet a cut-off filter of having a docking score of -5 or less are obtained, 

however all the poses have a RMSD of greater than 2.0 Å. In zebrafish PXR, all 

poses do not meet the cut-off filter and have a docking score of greater than -5. 



116 
 

 

Figure 6.4: Graph of distance between large atom in rifampicin and Ser 247 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 

Figure 6.5: Graph of distance between large atom in rifampicin and Thr 247 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

Phenytoin 

 

Potential hydrogen bond interactions occur between the amide group in 

phenytoin and Gln 285 in human PXR(Figures 6.6 and 6.7) . In zebrafish PXR, 

potential pi interactions occur between the aromatic rings in phenytoin and the 
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conserved residue Phe 288(Figures 6.9 and 6.10) . Hence, phenytoin was 

predicted to activate both human and zebrafish PXR.  

 

Figure 6.6: Pose of phenytoin in human PXR. Potential interactions are 

marked by dotted lines. 

 

 
 

Figure 6.7: Graph of distance between large atom in phenytoin and Gln 285 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 



118 
 

 
 

Figure 6.8: Pose of phenytoin over ribbon diagram of human PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

 
 

Figure 6.9: Pose of phenytoin in zebrafish PXR. 
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Figure 6.10: Graph of distance between geometric center of aromatic ring in 

phenytoin and Phe 288 against instance in trajectory. A 4.0 

angstrom distance cutoff is shown as a dotted line. 

 

 
 

Figure 6.11: Pose of phenytoin over ribbon diagram of zebrafish PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 
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Carbamazepine  

 

Potential hydrogen bond interactions occur between the amide group in 

carbamazepine and Ser 247 in human PXR(Figures 6.12 and 6.13) . In zebrafish 

PXR, potential pi interactions occur between the aromatic rings in carbamazepine 

and the conserved residue Phe 288(Figures 6.15 and 6.16). Hence, carbamazepine 

was predicted to activate both human and zebrafish PXR. 

 

Figure 6.12: Pose of carbamazepine in human PXR. Potential interactions are 

marked by dotted lines. 
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Figure 6.13: Graph of distance between large atom in carbamazepine and Ser 

247 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 6.14: Pose of carbamazepine over ribbon diagram of human PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 
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Figure 6.15: Pose of carbamazepine in zebrafish PXR.  

 

 
 

Figure 6.16: Graph of distance between large atom in carbamazepine and Phe 

288 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 6.17: Pose of carbamazepine over ribbon diagram of zebrafish PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

Dexamethasone 

 

 Potential hydrogen bonds occur between the hydroxyl groups in 

dexamethasone and Gln 285 in human PXR(Figures 6.18 and 6.19). In zebrafish 

PXR, potential hydrogen bonds occur between the hydroxyl groups in 

dexamethasone and the conserved residue Met 323(Figures 6.21 and 6.22). 
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Figure 6.18: Pose of dexamethasone in human PXR. Potential interactions are 

marked by dotted lines. 

 

 
 

Figure 6.19: Graph of distance between large atom in dexamethasone and Gln 

285 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 6.20: Pose of dexamethasone over ribbon diagram of human PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

 
 

Figure 6.21: Pose of dexamethasone in zebrafish PXR. Potential interactions are 

marked by dotted lines. 
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Figure 6.22: Graph of distance between large atom in dexamethasone and Met 

323 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 6.23: Pose of dexamethasone over ribbon diagram of zebrafish PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 
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Nafcillin 

 

 Potential hydrogen bonds occur between the amide group in nafcillin and 

Gln 285 in human PXR(Figures 6.24 and 6.25). In zebrafish, potential hydrogen 

bonds occur between the amide group and Met 323(Figures 6.27 and 6.28). 

 

Figure 6.24: Pose of nafcillin in human PXR. Potential interactions are marked 

by dotted lines. 
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Figure 6.25: Graph of distance between large atom in nafcillin and Gln 285 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 6.26: Pose of nafcillin over ribbon diagram of human PXR. Hydrophobic 

residues within 4.0 Å distance are labelled. Hydrophobic contact 

surfaces within 4.0 Å distance from ligand are shown as dotted 

green spheres. 
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Figure 6.27: Pose of nafcillin in zebrafish PXR. Potential interactions are 

marked by dotted lines. 

 

 
 

Figure 6.28: Graph of distance between large atom in nafcillin and Met 323 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 6.29: Pose of nafcillin over ribbon diagram of zebrafish PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

 

Efavirenz 

 

 In zebrafish PXR, potential hydrogen bonds occur between the amide 

group in efavirenz and the conserved residue Met 323(Figure 6.30 and 6.31). 
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Figure 6.30: Pose of efavirenz in zebrafish PXR. Potential interactions are 

marked by dotted lines. 

 

 
 

Figure 6.31: Graph of distance between large atom in efavirenz and Met 323 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 6.32: Pose of efavirenz over ribbon diagram of zebrafish PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

Pioglitazone 

 

Potential pi interactions occur between the thiazolidinedione group in 

pioglitazone and the conserved residue Trp 299 in zebrafish PXR(Figures 6.33 

and 6.34). In human PXR, this distance is longer during molecular dynamics 

simulations(Figure 6.36). Hence, pioglitazone is predicted to activate zebrafish 

PXR more than human PXR. 
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Figure 6.33: Pose of pioglitazone in zebrafish PXR. 

 

Figure 6.34: Graph of distance between geometric center of aromatic ring in 

pioglitazone and Trp 299 in zebrafish PXR against instance in 

trajectory. A 4.0 angstrom distance cutoff is shown as a dotted line. 
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Figure 6.35: Pose of pioglitazone over ribbon diagram of zebrafish PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

 
 

Figure 6.36: Graph of distance between geometric center of aromatic ring in 

pioglitazone and Trp 299 in human PXR against instance in 

trajectory. A 4.0 angstrom distance cutoff is shown as a dotted line. 
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Prednisone 

 

Potential hydrogen bonds occur between the carbonyl group in prednisone 

and Gln 285 in human PXR(Figures 6.37 and 6.38). In zebrafish PXR, potential 

hydrogen bonds occur between the hydroxyl group in prednisone and the 

conserved residue Met 323(Figures 6.40 and 6.41).   

 

Figure 6.37: Pose of prednisone in human PXR. Potential interactions are 

marked by dotted lines. 
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Figure 6.38: Graph of distance between large atom in prednisone and Gln 285 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 6.39: Pose of prednisone over ribbon diagram of human PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 
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Figure 6.40: Pose of prednisone in zebrafish PXR. Potential interactions are 

marked by dotted lines. 

 

 
 

Figure 6.41: Graph of distance between large atom in prednisone and Met 323 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 6.42: Pose of prednisone over ribbon diagram of zebrafish PXR. 

Hydrophobic residues within 4.0 Å distance are labelled. 

Hydrophobic contact surfaces within 4.0 Å distance from ligand 

are shown as dotted green spheres. 

 

Rufinamide 

 

No consistent set of hydrogen bond or pi interactions are observed in 

human PXR(Figures 6.43 to 6.46) and in zebrafish PXR(Figures 6.47 to 6.49). 
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Figure 6.43: Graph of distance between large atom in rufinamide and Ser 247 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 6.44: Graph of distance between large atom in rufinamide and Gln 285 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 6.45: Graph of distance between large atom in rufinamide and His 407 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 6.46: Graph of distance between geometric center of aromatic ring in 

rufinamide and Phe 288 in human PXR against instance in 

trajectory. A 4.0 angstrom distance cutoff is shown as a dotted line. 
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Figure 6.47: Graph of distance between large atom in rufinamide and Met 323 

against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 6.48: Graph of distance between geometric center of aromatic ring in 

rufinamide and Phe 288 in zebrafish PXR against instance in 

trajectory. A 4.0 angstrom distance cutoff is shown as a dotted line. 
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Figure 6.49: Graph of distance between geometric center of aromatic ring in 

rufinamide and Trp 299 in zebrafish PXR against instance in 

trajectory. A 4.0 angstrom distance cutoff is shown as a dotted line. 

 

Acetaminophen 

 

No consistent set of hydrogen bond or pi interactions are observed in 

human PXR(Figures 6.50 to 6.53) and in zebrafish PXR(Figures 6.54 and 6.55). 

 

Figure 6.50: Graph of distance between large atom in acetaminophen and Ser 

247 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 6.51: Graph of distance between large atom in acetaminophen and Gln 

285 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 

 
 

Figure 6.52: Graph of distance between large atom in acetaminophen and His 

407 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 

 



144 
 

 
 

Figure 6.53: Graph of distance between geometric center of aromatic ring in 

acetaminophen and Phe 288 in human PXR against instance in 

trajectory. A 4.0 angstrom distance cutoff is shown as a dotted line. 

 

 
 

Figure 6.54: Graph of distance between large atom in acetaminophen and Met 

323 against instance in trajectory. A 3.5 angstrom distance cutoff is 

shown as a dotted line. 
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Figure 6.55: Graph of distance between geometric center of aromatic ring in 

acetaminophen and Phe 288 in zebrafish PXR against instance in 

trajectory. A 4.0 angstrom distance cutoff is shown as a dotted line. 

 

Table 6.5: Distance between second set of compounds and residue where 

potential hydrogen bond interactions might be present. 

 
Name of 

compound 

Atom - 

Residue 

Median 

distance 

(Å) 

Standard 

deviation 

Shortest 

distance 

(Å) 

Longest 

distance 

(Å) 

Percentage 

of 

trajectory 

within 3.5 

Å 

Phenytoin 

(Human PXR) 

O – 

Gln 

285 

3.6 2.7 2.8 14 43 

Carbamazepine 

(Human PXR) 

N – 

Ser 

247 

4.2 1.7 2.9 11 23 

Dexamethasone 

(Human PXR) 

O – 

Gln 

285 

4.0 0.92 2.7 7.1 30 

Dexamethasone 

(Zebrafish PXR) 

O – 

Met 

323 

3.7 0.76 2.9 7.0 34 

Nafcillin 

(Human PXR) 

O – 

Gln 

285 

4.3 1.7 2.8 11 20 

Nafcillin 

(Zebrafish PXR) 

N – 

Met 

323 

6.3 0.70 3.2 8.4 0.60 

Efavirenz 

(Zebrafish PXR) 

N – 

Met 

323 

5.6 0.80 3.5 8.3 0.40 
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Prednisone 

(Human PXR) 

O – 

Gln 

285 

 

 

3.5 0.77 2.7 7.1 52 

Prednisone 

(Zebrafish PXR) 

O – 

Met 

323 

5.9 2.2 3.0 13 8.4 

Rufinamide 

(Human PXR) 

N – 

Ser 

247 

9.2 2.8 4.5 18 0.0 

Rufinamide 

(Human PXR) 

O – 

Gln 

285 

 

7.9 2.1 2.6 14 3.7 

Rufinamide 

(Human PXR) 

O – 

His 

407 

9.3 3.0 3.2 18 0.33 

Rufinamide 

(Zebrafish PXR) 

O – 

Met 

323 

6.4 2.4 3.3 14 1.2 

Acetaminophen 

(Human PXR) 

O – 

Ser 

247 

4.6 0.72 2.9 7.8 4.4 

Acetaminophen 

(Human PXR) 

O – 

Gln 

285 

5.4 0.87 2.8 10 1.5 

Acetaminophen 

(Human PXR) 

O – 

His 

407 

5.8 1.1 3.0 9.0 1.7 

Acetaminophen 

(Zebrafish PXR) 

O – 

Met 

323 

5.8 1.9 3.3 12 1.6 

 

Table 6.6: Distance between geometric center of aromatic rings in second set 

of compounds and residue where potential pi interactions might be 

present. 

 
Name of 

compound 

Median 

distance 

(Å) 

Standard 

deviation 

Shortest 

distance 

(Å) 

Longest 

distance 

(Å) 

Percentage 

of 

trajectory 

within 4.0 

Å 

Phenytoin 

(Zebrafish 

PXR) 

 

4.3 0.47 3.4 6.3 23 
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Carbamazepine 

(Zebrafish 

PXR) 

5.0 1.2 3.4 8.7 17 

Pioglitazone 

(Human PXR) 

5.5 0.61 4.4 9.3 0 

Pioglitazone 

(Zebrafish 

PXR) 

3.8 0.33 3.3 5.9 72 

Rufinamide 

(Human PXR) 

8.5 2.3 6.8 11 0 

Rufinamide 

(Zebrafish 

PXR) 

5.9 2.5 3.4 12 5.0 

Acetaminophen 

(Human PXR) 

7.2 0.76 4.7 11 0 

Acetaminophen 

(Zebrafish 

PXR) 

5.4 0.96 3.7 9.2 0.91 

 

 

6.4.4 Molecular dynamics as a filter tool 

 

 An initial docking with pharmacophore constraints was carried out. This 

process was able to filter out poses for molecular dynamics simulations, however 

this method to filter and select poses was less accurate in showing a pose that is 

consistent with molecular dynamics simulations. The selected poses were also 

less likely to show a stable ligand conformer. Hence, molecular dynamics was 

carried out and clustering of each trajectory was carried out to select 

representative poses for further analysis. Initially, attempts were made to correlate 

biological activity with molecular dynamics trajectory data by measuring ligand 

RMSD, all-atoms RMSD, distance between large atoms and distance between 

geometric center of aromatic rings.  Obtaining the distance between large atoms 

where hydrogen bonds could potentially form and distance between geometric 
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center of aromatic rings where pi interactions could potentially form was able to 

obtain a more accurate correlation with the obtained biological activity in human 

and zebrafish PXR. The selection of poses through clustering of a molecular 

dynamics trajectory was less accurate in obtaining stable low-energy conformers 

of the ligand. Attempts were made to redock the ligand on the same binding 

pocket, select poses that are consistent with the molecular dynamics trajectory 

data and fulfill a docking score cut-off criteria between reported PXR activators 

and non-activators and energy minimization of the ligand using a forcefield 

parameterized for small organic molecules was carried out to select and obtain the 

best lowest energy conformers for further analysis of electrostatic, polar and 

hydrophobic surfaces surrounding the ligand. This method of combining 

molecular dynamics simulations with earlier docking methods that include 

pharmacophore modelling, as well as docking for pose prediction with ligand 

energy minimization and analysis of binding site surfaces appear to provide more 

insight on the interactions between the ligand and binding site, and could 

potentially be used as a starting point for future work in studying PXR activity 

using compounds with similar structures to the studied compounds and approved 

drugs. 
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6.5 Conclusion 

 

 From available X-ray crystal structures of human PXR, a homology model 

of zebrafish PXR was developed using the human PXR crystal structure as a 

template. 

 

 A workflow that is similar to the workflow being carried out in chapter 3 

appears to show promising results that could be used as starting points to study 

further human and zebrafish PXR activity as well as to improve on the prediction 

of CYP3A4 activity using computational models. The data are consistent with 

available X-ray structures and site-directed mutagenesis studies on human PXR in 

the literature where three non-conserved polar residues(Ser 247, Gln 285 and His 

407) and three conserved hydrophobic residues(Phe 288, Trp 299 and Met 323) 

could have an effect on human and zebrafish PXR activation and could be used to 

screen other compounds to rank and predict PXR activity. 

 

 Conformational energies and hydrogen bond geometries were not taken 

into account in this research project. This could be a potential future area to 

explore when the need arises. 
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Chapter 7 

 

Conclusion 

 

7.1 Major findings 

 

7.1.1 Ligand-based study 

 

 The QSAR model being developed had a consensus model of 2 Naïve 

Bayes and 3 support vector machine (SVM) modelling methods as these 

modelling methods are less sensitive and hence have a lower capacity for the 

model to be biased due to differences in distance between each object or 

datapoint. 

 

 The model being developed was also able to determine that 1D and 2D 

descriptors were sufficient to build a model that was able to predict the 

compounds in the validation sets well without including additional 3D 

descriptors. 

 

 With the additional criteria of including multiple thresholds to define the 

applicability domain of the model, and to perform a more rigorous 5-fold external 

cross-validation of the model by splitting the dataset into 5 equal parts and using a 

different dataset each time to train the model and test on the validation set, the 
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additional methods were able to predict each compound in the validation set, 

testing set and ZINC chemical library with a certain degree of confidence, and the 

additional results of using a different consensus model to screen through 5 

different validation sets enable a more representative view and analysis of the 

results of the ligand-based study. 

 

 Among the purchasable ZINC database compounds that were screened in 

the ligand-based study, 45673 compounds were identified for further analysis in 

structure-based studies. 

 

7.1.2  Structure-based study of ZINC database compounds on JIP binding 

site 

 

 The X-ray crystal structure of JNK1 with the truncated form of JIP1 was 

used to dock the 45673 compounds from the earlier ligand-based study on the 

JIP1 binding pocket of JNK1. A pharmacophore model was developed where the 

hydrogen bond interactions between Thr 159 in JIP1 with the residue Arg 127 in 

JNK1 was used to rapidly dock 45673 compounds and identify suitable poses as a 

starting point for molecular dynamics simulations. The ligand root-mean square 

deviation is used to measure the stability of the molecular dynamics trajectory and 

clustering of the trajectory was carried out to select a representative pose for 

analysis of binding interactions. A refined list of 1 compound was prioritized for 
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in vitro testing after showing a stable trajectory with potential hydrogen bonds 

that were formed with Arg 127. 

 

7.1.3 Structure-based study of ZINC database compounds on DFG binding 

site 

 

In the docking of DFG site compounds, as there were an insufficient 

number of compounds to perform a ligand-based study, a subset of purchasable 

compounds were chosen based on a diversity cutoff of 0.7 based on ChemAxon 

fingerprints. This became the starting number of compounds to use for the 

structure-based study. The compound list was refined and promising compounds 

were purchased and tested for in vitro activity. 

 

 The selected list of compounds that were tested for inhibitory activity on 

JNK2 did not show any significant binding at concentrations of up to 40µM. 1 

compound showed 19 % inhibition at 40 µM on JNK2, and 1 compound showed 

20 % inhibition at 40 µM on JNK1. 

 

7.1.4 in silico model of human and zebrafish PXR activators 

 

 Using the X-ray crystal structure of human PXR and a homology model of 

zebrafish PXR, an in silico model was developed to correlate the amount of 



153 
 

CYP3A4 gene expression with binding orientation of various approved drugs to 

human and zebrafish PXR. 

 

 Through a workflow process of combining docking with molecular 

dynamics, the binding orientation for 15 compounds were identified where 

structural interactions in each compound and 3 conserved residues in human and 

zebrafish PXR were identified to be important for PXR activation. These results 

could potentially be used to model other drug or chemical compounds in human 

and other species’ PXR to predict the extent of metabolism of the compound and 

CYP3A4 expression and activity and reduce the costs in carrying out in vitro and 

in vivo assays. 

 

7.2 Limitations 

 

 Among the limitations of the ligand-based study, the relative lack of 

positive compounds in the training set and validation set and the unknown 

inhibitory activity profile in the putative negatives dataset affect the accuracy of 

the model and hence, the actual number of true positives and false positives 

identified from screening the ZINC chemical library are not known.  

 

 Structure-based studies were carried out to identify JNK inhibitors and 

PXR activators. Although molecular dynamics are able to form more accurate 

prediction models than docking with and without pharmacophore constraints, it is 
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highly dependent on available 3-dimensional structural information and site-

directed mutagenesis studies that are available in the literature. 

 

7.3 Future work 

 

 The next phase of this research would be to carry out in vitro tests on 

prioritized compounds, and additional molecular dynamics studies on compounds 

which met the docking with pharmacophore constraints filter, but were not 

selected for molecular dynamics studies and in vitro testing due to time and 

budget constraints. As only 1 compound out of the 17833934 compounds in the 

ZINC database were chosen for in vitro tests, with an ever increasing number of 

diverse chemicals being added to the database every month, there remains a very 

large chemical space to sample and a very large knowledge gap with regard to 

identifying potential JNK1 and JNK2 inhibitors, targeting two different active 

sites. 

 

 One possible approach to consider in future work would be to use ligand-

based 3D pharmacophore models as an additional prefiltering tool to refine the 

model and to sample the large and diverse chemical space more accurately as this 

method has been reported in the literature to be useful as a complementary 

method to HTS and existing 2D ligand-based and 3D structure-based 

computational methods[91,101,189,190]. 
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 In addition, as the initial goals of the in vitro tests were to carry out tests 

for biological activity, there remains this knowledge gap where the identified 

positive compounds are not known which active site it binds to and in which 

conformation. Hence, further work might possibly include finding additional 

collaborators to carry out X-ray crystallography studies or nuclear magnetic 

resonance imaging studies to determine the location of the active site and the pose 

that the compound adopts to bind to the protein and induce the biological activity 

for identified JNK inhibitors or PXR activators. 

   

 Another possible further work will also include carrying out similar virtual 

screening studies on different JNK isoforms JNK2 and JNK3 to further screen and 

identify novel selective inhibitors that target only one JNK isoform. This is 

because JNK1, JNK2 and JNK3 are located in varying amounts in different parts 

of the human body as revealed by Northern blot analysis on different mammalian 

cell lines, and current research show that inhibition or gene-knockout of only one 

JNK isoform has a therapeutic effect in reducing the severity of a disease in in 

vitro and in vivo experiments, but gene-knockout of two or more could be lethal 

instead[36,191,192]. Hence, this aspect of research will address the safety aspect 

of developing a selective inhibitor of only one or two JNK isoforms, and hence 

also allow the possibility of having multiple patents being developed at the end of 

the process. 
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 Another additional further work would include working further with 

collaborators to obtain biological activity on PXR to refine and improve on the 

model to be able to predict additional FDA approved drugs or xenobiotics more 

accurately by attempting to determine the amount of agonist or antagonist 

activity, together with the degree of binding and possible binding poses through 

additional docking and molecular dynamics studies. 

 

7.4 Dual-targeting approach and polypharmacology 

 

 The dual-targeting approach based on the concept of polypharmacology is 

gaining more interest in recent years. There are two possible interpretations to this 

approach. The first interpretation refers to the design of compounds that target 

two or more proteins involved in a disease process simultaneously. An example 

would be to design inhibitors that could inhibit both the JNK and p38 enzymes for 

possible treatment of cancer where it involves multiple different enzymes and 

pathways. To consider such an approach for a computational study, a disease must 

be chosen first, and then the docking of compounds must be carried out to several 

proteins involved in the disease. However, docking to several proteins is not a 

trivial task as each protein is unique and requires separate refinement to the 

docking procedure. Thus, based on the time available, the design of inhibitors for 

JNK will be carried out first.  
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The second interpretation refers to the design of compounds that can bind 

to two binding sites in the same protein simultaneously.  Among the 191 

compounds that target the JIP binding site of JNK, the set of compounds 

published by Chen et al[37] were discovered to bind to both the ATP binding site, 

as well as the JIP binding site. Technically, it is possible to design such dual 

targeting drugs in this study. However, unlike the current design approach being 

used in this study, which involves screening of commercially available 

compounds, which could be easily bought and tested using kinase assay kits, 

testing such dual targeting drugs will not be as straightforward due to the need to 

find additional collaborators that are able to synthesize and test the compounds. 

For this reason, this approach is not given priority at this stage in the research 

project. However, this approach might be included in further studies when the 

opportunity arises. 
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