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Summary 

This work aims developing different kinds of microneedles with various configurations and 

functions for transdermal drug delivery applications. Although the microneedle technology has been 

developed for decades, limited by the process to realize the 3D sharp tip which is critical for skin penetration, 

it is not easy to merge microneedle technique with other functional components and systems to achieve 

more complex functions. Most of the studies only focus on changing the materials and geometries, 

evaluating the performance and finding new applications. Here we developed a very unique technology 

called drawing lithography for the assembly of SU-8 and maltose sharp tips at the final step of the 

fabrication process, which is compatible with most of the conventional thin film technology and allows us 

to explore more possibilities about integrating other functional components and sophisticated system with 

microneedles. A novel Carbon Nanotubes (CNTs) filter, which can be used for selective transport of bio-

molecules, is integrated within the microneedles. Thus, haemagglutinin, single-stranded DNA, glucose and 

insulin can be selectively delivered depending on their different physical dimensions, shapes and polarities 

by controlling the pressure and electric bias applied. We also integrated microneedles with a complex 

system to make a self-powered, flexible microneedle skin patch which is suitable for self-administrated 

insulin delivery. A pneumatic pump and check-valves are designed for manually controlled drug loading 

and delivery. In order to have a precise dose control required by insulin delivery, a delivery volume sensor 

based on triboelectric mechanism is designed and optimized. For powering other functional components to 

be integrated in the future, a low cost power source, which leverages the stacked layer triboelectric energy 

harvester design, is characterized to achieve 33μw output power. Moreover, in order to make the device 

truly wearable, dry adhesive technique is further applied to make the device able to be attached onto any 

part of the body. 
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Chapter 1 Introduction of microneedle 

Drug delivery research has extensively pursed on how to transport proteins, DNA, genes, 

antibodies and vaccines efficiently and safely to human bodies in recent years. The conventional 

drug delivery approaches, such as oral administration and hypodermic injection, have their own 

limitations because a drug may be inactive through phase I metabolism during oral delivery [1], 

while the hypodermic injection requires trained personnel [2]. In order to overcome these 

drawbacks, transdermal drug delivery has been taken as a safe, easily accessible and patient 

friendly approach [3]. The normal biomolecules, however, cannot passively diffuse through the 

dermal layers of skin due to their unfavorable hydrophilicity and macro size [4].  With the help of 

microneedles which can create microchannels on the skin surface by penetrating the outmost layer, 

i.e. stratum cornuem (SC), biomolecules can permeate into the tissue under the skin locally [5]. 

Since these microneedles are only a few hundred micrometers in length, the penetration depth is 

superficial enough not to touch nerve receptors in the lower reticular dermis, which leads the whole 

administration to be painless [6]. It is promising that this microneedle-based transdermal delivery 

approach will offer a self-management, patient-friendly and efficient administration route for drug 

delivery. 

Since the first papers were published on drug delivery using microneedles in the late 1990's, 

research activity has grown exponentially (Figure 1.1), which has led to published clinical trials, 

approved products and an active community of academic and industry researchers in the field today. 

[7] 
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Figure 1.1 1 Cumulative number of publications on microneedles. The number of publications 
was determined by searching the PubMed database (http://www.ncbi.nlm.nih.gov/pubmed/) and 
Web of Science (http://apps.webofknowledge.com) on 25 November 2011 using the search terms 

“microneedle”, “microfabricated needle”, and “nanopatch”. Conference proceedings were 
excluded. 

1.1 Conventional microneedles with different structures and configurations 
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Figure 1.2 2 Methods of drug delivery to the skin using microneedles (MN). [8] 

For an optimized delivery effect, microneedle chips are particularly desired to remain in the 

precise location and maintain the fluid communication with the tissues beneath the SC layer for an 

extended period. However, the skin is contoured and deformable. Conventional microneedle 

patches with a rigid and planar substrate which is made by silicon, stainless steel or nickel may 

encounter a difficulty to be attached tightly on the skin surface. Flexible microneedle patch has 

been developed to integrate polymer microneedles on a on a flexible substrate to solve this problem. 

Since fabricating tapered shape is not a standard process in the conventional MEMS technology, 

microneedles fabrication becomes the most critical part in the flexible microneedle patch. In 

general, these microneedles can be categorized as solid microneedles for tissue pretreatment, drug-

coated microneedles, dissolving microneedles and hollow microneedles. As shown in 

schematically in Figure 1.2, each of these microneedles enable drug delivery by different 

mechanisms.  

1.1.1 Solid Microneedles  
Solid microneedles are patterned into sharp geometry which can be used to create microchannel 

on the skin. The drug is usually loaded into a flexible substrate under the microneedle array. When 

the flexible skin patch is applied on the skin, the microneedles penetrate into the skin and drugs 
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can be used either for local effect or uptake by capillaries for systemic treatment. The development 

of polymer microneedles has focused on providing sufficient mechanical strength through different 

materials, including polylactic acid (PLA) [9], polymethylmeth-acrylate (PMMA)[10], SU-8 [11] and 

maltose [12].  

Solid polymer microneedles are normally patterned with unconventional process due to their 

tapered 3-dimensional structures.  The most common way for this tapered structure fabrication is 

inclined ultraviolet (UV) exposure technology [13]. When a photomask and a negative thick 

photoresist coated substrate are fixed together, its holding stage is tilted and rotated to a UV source. 

The reflected UV at the interface between the resist and the substrate is exploited as well as the 

incident UV. With the control of tilted degree and exposure dosage, the polymer photoresist can 

be patterned into sharp tips. Except UV source, deep X-ray exposure is also deployed to fabricate 

the microneedle structures, known as the lithography, electroplating and molding (LIGA) 

technique [14]. It can be used to fabricate polymer microneedles as tall as a few millimeters with a 

high aspect ratio using standard contact lithography equipment, which is a challenging in the UV 

rage due to the low optical absorption rate of the polymers. Moreover, a two-photon-initiated 

polymerization method is utilized to fabricate microneedles structure. A near-infrared ultrashort-

pulsed laser is focused into a photocurable resin to form three-dimensional (3D) microstructures 

using a sequential layer-by-layer fabrication technique [15] (Figure 1.3).  
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Figure 1. 3 (a) Out-of-plane polycarbonate microneedle sheets produced by the hot embossing 
process [16]. (b)Array of polylactic acid microneedles made by thermal molding[17]. (c) PMMA 
microneedle fabricated by deep X-ray exposure[10]. (d) SU-8 microneedle fabricated by RIE 
etching[18]. 

1.1.2 Coated Microneedles 
    Microneedles not only can be used for penetration purpose, but also as vehicles to carry and 

deposit drug within the skin or other tissue. Drugs can be coated on the microneedle surface and 

subsequently diffuse into tissues. In this way, the desired dose of drugs is delivered into tissue 

quickly upon insertion of the microneedles. Microneedles have been coated by a variety of 

processes. The most common way is dipping or spraying the microneedles using an aqueous 

solution often has increased viscosity to retain more of the formulation on the microneedles [19]. It 

can be achieved by dipping microneedles once or repeal into a large reservoir [20] or microcells [21] 

of coating solutions.  Layer-by-layer coating techniques have also been applied into microneedle 

coating [22]. DNA or protein are demonstrated to be coated onto microneedles by alternately 

dipping into two solutions containing oppositely charged solutes. The negatively charged DNA 

and positively charged polymer can form a polyelectrolyte multi-layer. In addition to optimizing 

coating formulations, microneedle design and its advanced fabrication technique are also critical 
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to facilitate coated microneedle performance. For example, 3D groove-embedded microneedle has 

been reported to increase coating formulation amounts [23]. Microneedles with pocketed structure 

are demonstrated to facilitate better drug targeting in skin and to administer liquid coatings [24].  

1.1.3 Dissolving Microneedles 
Compared with coated microneedles, polymer microneedles also have been developed to 

completely dissolve in the skin and thereby leave behind no biohazardous sharps waste after usage. 

Biocompatible and water-soluble materials, such as sugars, are used to fabricate these dissolvable 

microneedles. Except that the dissolvable microneedles can penetrate skin surface as solid 

microneedles, drugs also can be mixed with the microneedle fabrication materials or encapsulated 

inside the microneedles to release into the skin.  

Dissolving microneedles usually are fabricated by micro-molds. Micro-molds with specified 

tapered structure are filled with melted polymers. After these polymers are solidified or 

polymerization in the mold, microneedles with sharp tips are integrated with drug formulations. 

Various materials including carboxymethylcellulose (CMC) [25], chondroitin sulfate [26], 

polyvinylpyrrolidone (PVP) [27],  polylactic acid co-polymers (PLGA) [28], and fibroin [29] have 

been deployed to fill into the mold cavities to form microneedles. Since the microneedles may not 

be entirely inserted into the skin, the drug is desired to be only encapsulated into the tip part for 

higher efficiency. It can be achieved by a particle-based molding method [30], forming multiple-

layered microneedles [31] or adding an air bubble at the microneedle base [32].   
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Figure 1.4 Dissolving microneedles made by (a) bovine serum albumin [33](b) chondroitin 
sulfate[31] (c) polyvinylpyrrolidone [34](d) polyvinyl alcohol [35]. 

1.1.4 Hollow Microneedles 
Hollow microneedles provide a conduit for drug delivery into the skin or other tissues. The most 

obvious advantage of hollow microneedles is that it allows pressure driven-flow of large dosage 

solution. Similar to conventional hypodermic injections, the pressure applied to hollow 

microneedles can modulate drug flow rate. It enables a rapid bolus injection, a slow infusion or a 

time-varying delivery rate with a single flexible microneedle patch. Generally there are two types 

of hollow microneedle designs. One of them mimics the traditional hypodermic needle with a 

single microneedle [36]. The other type is an array of multiple hollow microneedles [37]. The 

advantage for hollow microneedle array device is that it can deliver liquid formulation to a wide 

area, which even enables a quicker delivery than subcutaneous injection [38].   
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Figure1. 5 Hollow microneedle fabricated by microinjection molding [39], X-ray exposure [40], UV 
lithography [41] and two photon polymerization [42].  

Even though hollow microneedles have been fabricated directly from a rigid substrate using 

standard MEMS techniques including deep reactive ion etching [43], wet chemical etching [44] and 

laser micromachining [37],  innovative fabrication methods are developed to make polymer hollow 

microneedles for flexible devices. Polyphenylsulfone polymer is shown to be drilled and milled to 

create beveled tip shape and hollow structure [45]. A digital micro mirror stereo lithography 

instrument is used to fabricate hollow polymer microneedles by polymerization of liquid resin [46]. 

The LIGA technique is utilized to form hollow microneedles by exposing X-ray through a mask 

onto PMMA [47]. Direct tow-photon polymerization in a laser based rapid prototyping system is 

also used to form hollow polymer microneedles [48] (Figure 1.5).  

1.2 Microneedle made by drawing lithography process 

1.2.1 Theory of drawing lithography 
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Drawing lithography technology is based on the viscous property of a polymer in the glass 

transition to realize a 3D structure. The glass transition is a kinetic process between a solid state 

and liquid state of any amorphous polymer material. When a melted liquid polymer cools down to 

Tg, the amorphous portion of the polymer gradually becomes a more viscous and glassy liquid 

because thermal molecular motions decrease. As temperature decreases below Tg, the glassy liquid 

turns into a solid state because of the structural rearrangements with little relative mobility.  

 

Figure 1. 6 Viscosity change with temperature and drawing point [49]. 

When a drawing plate is induced to form microneedles structure, drawing lithography is 

characterized by an elastic deformation of polymer materials in the glassy transition. Initially, a 

polymer material with glassy state is placed between a substrate and drawing plate. A liquid-plate 

interfacial adhesion is initiated when the drawing plate contact the glassy liquid on the substrate. 

Subsequently, the polymer with glassy state is elongated by drawing the plate. A glassy structure 

is generated between the substrate and substrate. Since the gravitational force and inertial force are 

negligible, the geometry of the glassy structure is mainly modulated by the extensional strain force 

from the drawing plate and the fixed coating plate (Figure 1.7). This glassy structure is stretched 

by the drawing plate and fixed coating plate from opposite directions. Since the contact area with 

coating plate is much larger than the contact area with drawing plate, the stretching force is 
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stronger from the fixed coating plate. As the drawing plate rise up, the glassy structure under the 

stretching force will extensional deform. The radius in the top curvature near the drawing plate is 

smaller than that near the fixed coating plate, which induces a wasp-waist-shape bridge. As a result 

of the temperature gradient through the glassy structure and change of drawing speed, the 

difference of stretching force in the opposite directions become so large that the extension 

deformation cannot remain a steady-state. The breakage of the glassy structure will form a tapered 

microneedle.   

Previously, this drawing lithography process has been applied to fabricate 3 types of 

microneedles: continuous drawing for an ultra-high aspect ratio (UHAR) hollow microneedle, 

stepwise controlled drawing for a dissolving microneedle and drawing with antidromic isolation 

for a hybrid electro-microneedle (HEM).  

 

Figure 1. 7 Extensional deformation from the fixed coating surface in the glass transition. The 
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position of narrow necking is situated in the upper part of the intermediate liquid bridge by the 
axial difference of surface tension [50]. 

1.2.2 UHAR hollow microneedle 
The UHAR hollow microneedle can be fabricated from a SU-8 based drawing lithography 

process as shown in Figure 1.8. SU-8 polymer is used as the drawing material because its viscosity 

was easily controlled by temperature. The non-exposed SU-8 has a Tg of 50-55 ̊C[51] showing 

significant increase of viscosity by the temperature cooling down to Tg from high 

temperature(Figure1.8). SU-8 presents a possibility as a drawing substrate, and a hollow 

microneedle was fabricated by drawing lithography in the glass transition. 
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Figure 1. 8 Continuous drawing to produce a 3D UHAR microneedle mold. (A) The glass 
transition history of the SU-8 polymer in the cooled-down temperature. The inset shows a drawing 
system with patterned pillars for drawing lithography. (B) After the SU-8 contacted the patterned 
pillar, drawing lithography was performed. (C) Drawing caused the appearance of an extended 
conical-shaped bridge between the plate and pillar in the glass transition. (D) The desired liquid 
bridge was cured to generate a rigid structure. (E) The separation of the 3D microstructure bridge 
at the narrow necking position by isolation drawing produced the UHAR solid microneedle molds. 

The hollow metallic microneedle is produced by nickel electroplating using the fabricated 

3D microneedle mold, thus, its geometry depends on the shape of the mold. For nickel 

electroplating, a seed layer was deposited in the microneedle mold using Tollens’ reaction (Figure 

1.9(A)) [52,53]. The upper end of the mold was subsequently protected using enamel as a 
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metalplating resistor (Figure 1.9(B), see inset). The nickel electroplating was performed until the 

desired wall thickness was obtained by controlling the plating time (Figure 1.9(C)). Next, the SU-

8 microneedle mold and enamel were eliminated using an SU-8 remover (Figure 1.9(D)), 

producing a hollow metallic microneedle array. Although negative photoresist substances such as 

SU-8 are typically difficult to remove after UV irradiation due to chemical changes [54], in drawing 

lithography, the non-exposed SU-8 is easily eliminated by SU-8 removal. 

 
Figure 1. 9 The fabrication of hollow metallic microneedles from solid microneedle molds. (A) 
Chemical deposition on the solid microneedle molds. (B) The upper portion of the microneedle 
mold was coated with an electroless material using a drawing system. The inset shows the tip 
protection with enamel. (C) Nickel electroplating on conducted solid microneedle molds. The 

inset shows specific nickel electroplating on the conductive seed layer. (D) The hollow metallic 
microneedle array was created upon elimination of the electroless protection and the SU-8 

microneedle mold. 

Scanning electron microscopy revealed the microneedle mold had a tapered conical shape 

with a 20 µm flat tip diameter and a 300 µm base, yielding an aspect ratio over 100 (Figure 

1.10(A)). The size of the hole in the hollow microneedle corresponded to the diameter of the mold 
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at the top. A 20 µm needle diameter is large enough to allow passage of molecules such as target 

drugs while minimizing skin damage. Furthermore, the conical shape of the 300 µm base provides 

support for penetration of the skin barrier. Although the hollow metallic microneedle was shorter 

than the mold due to the enamel coating of the mold which occupied 200 µm of the mold, the 

UHAR hollow microneedles had a length of 2 mm (Figure 1.10(B)). 

 

Figure 1. 10 UHAR solid microneedle molds and hollow metallic microneedles. (A) The 
microneedle mold had a tapered conical shape with a 20 μm flat tip diameter, a 300 μm base, and 
an aspect ratio over 100. (B) A 3 by 3 array of hollow UHAR microneedles with a length of 2000 
μm and an inner diameter of 20 μm. 

1.2.3 Stepwise controlled drawing for a dissolving microneedle 
Maltose has been widely used as a safe polymer for the encapsulation of biomolecules[55], and 

is dissolved easily by the hydrolytic cleavage of maltose-glucoamylase in the skin [56]. In particular, 

maltose can be used as a structural material for the fabrication of dissolving microneedles because 

the glass transition of the maltose, thus the viscosity, was easily regulated by manipulating 

temperature during drawing. Maltose became liquid at temperatures over its Tm (102~103 ̊C), and 

the viscosity of the liquid maltose progressively increased with cooling until Tg (95±4 ̊C) [57,58] and 

then further cooling past the Tg induced a solid state. The viscosity change in the maltose glass 

transition provided the conditions for the drawing lithography.  
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The maltose, however, showed a dramatic change of viscosity in the glass transition in a short 

temperature range as shown in Figure 1.11(A) and the continuous drawing of maltose showed the 

different shapes of the dissolving microneedle depended on the maltose viscosity. When the 

drawing was performed at Tm, a 3D structure was not produced even at a low drawing rate, 

resulting in drawing failure, because the surface tension was more than the tensile stress of the 

extending maltose during drawing. Although drawing at a slightly lower temperature 

approximating Tm can elongate a glassy maltose quickly, the temporary extensional deformation 

can become a capillary break-up by quick self-thinning. 

This break-up can be prevented when drawing is applied between Tm and Tg at drawing point 

b due to increase in the shear viscosity which increased the initial planar extensional viscosity of 

maltose, and axial drawing of 400 µm/s for 3 s created a bat shape (Figure 1.11(B)). The general 

position of narrow necking from a coated polymer in a glass transition is settled into the upper part 

of the intermediate liquid bridge because surface tension in the bottom region is bigger than in the 

top region. However, extensional deformation in the short glass transition of maltose showed an 

entirely different aspect from the normal extensional deformation model. The short-term of the 

glass transition induced a relatively fast alteration to the solid at the top region of the liquid bridge, 

and strain-hardening of the top region had no direct influence from surface tension. Consequently, 

the bottom region near the fixed coating surface presented a local surface tension within the total 

extensional structure, resulting in the lower narrow necking position than the intermediate liquid 

bridge. Local surface tension in the bottom region led to irregular bat-shaped extensional 

deformation. Therefore, the fabrication yield of the bat shape was low due to the breakage at the 

narrow necking near the bottom during isolation drawing. 
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As another approach, extensional deformation in drawing point c produced a cylinder shape 

with a blunt tip of 200 µm diameter, which is the same as the pillar diameter shown in Figure 

1.11(C). The surface tension at Tg is suddenly reduced as the fluid like response above Tg 

transitions to solid-like response below Tg. As a result, the drawing at Tg formed a cylinder column 

without narrow necking by homogeneous extensional flow without direct influence from surface 

tension as an ideal extensional deformation model. Although continuous drawing lithography 

suggested the possibility of the direct fabrication of a dissolving microneedle from maltose, a blunt 

cylinder was not applicable as a microneedle for transdermal drug delivery because the shape 

rendered skin penetration difficult; precise control of the drawing was required for the fabrication 

of a sharp microneedle capable of penetrating the skin. 

Finally, stepwise controlled drawing lithography was designed to shape a particular sharp-

conical microneedle by combining the above 2 continuous drawings (Figure 1.11(D)). The 

primary drawing of 400 µm/s for 1 s produced a wasp-waist bridge with a bat shape between the 

pillar and the maltose surface with a diameter of 60 µm at drawing point b by the irregular 

extensional deformation model. Because the main drawing (400 µm/s speed for 3 s) was performed 

at drawing point c after the wasp-waist bridge was produced, the wasp-waist bridge behaved like 

a pillar resulting in a sharp cylinder column with a total height of 1500 µm. After curing the 

structure, the upper site of narrow necking in the bridge structure was separated from the sharp-

conical cone microneedle by isolation drawing. Using this stepwise controlled drawing, the bat 

and cylinder shape, which were not suitable as a microneedle structure, were avoided and a sharp 

conical cone shape was produced from the drawn 3D wasp-waist bridge (Figure 1.11(D)) with 

1200 µm length, and 60 µm flat tip diameter. Additionally, the authors’ proposed stepwise 

controlled drawing technique can flexibly change the length of a dissolving microneedle by 
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controlling the drawing rate and time. This length flexibility of a microneedle can facilitate the 

local delivery of a drug to the specific clinical point of skin [59-60], and thus overcome the limitation 

of the micro-casting method that restricted the free modification of length. 
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Figure 1.11 The stepwise controlled drawing lithography for fabrication of a dissolving 
microneedle. (A) The viscosity change with temperature and drawing point in the glass transition 
history of maltose. Drawing point a at Tm, drawing point b at the middle of Tm and Tg, and drawing 
point c at Tg. After sub-Tg, elongated structures became cured solid. (B) Bat shapes were produced 
by continuous drawing at drawing point b. (C) Cylinder shapes were fabricated by continuous 
drawing at drawing point c. (D) Sharp-conical cone shapes were fabricated by stepwise controlled 
drawing, primary drawing at drawing point b and main drawing at drawing point c. After curing 
was completed, the fabricated 3D structures were separated from narrow necking by additional 
isolation drawing at sub-Tg. 

 

1.2.4 Monolithic fabrication of a HEM 
The monolithic fabrication of a HEM was possible by using an electrode as the pillar 

resulting in the integration of a dissolving microneedle on an electrode as shown in Figure 1.12(A). 

An electrode with a diameter of 300 µm, a lift-up of 300 µm, and a pitch of 1mm was made in a 

5×5 array in a 1 cm circle from an aluminum plate using a computerized numerical control machine. 

The HEM electrode contacted the coated liquid maltose at a temperature greater than the Tm of 

maltose. Because the dramatic change in maltose viscosity in the glass transition (Tm ~ Tg) 

provides a critical condition for the successful elongation of dissolving microneedles by drawing 

lithography. Drawing of the electrode was performed at the middle of the glass transition to 

produce a 3D elongated structure with a bat shape by irregular extensional deformation (Figure 

1.12(B)). These elongated bat-shape structures were cured by cooling the maltose to a temperature 

lower than the Tg (at 80 C̊), and liquid maltose perfectly became solid maltose (Figure 1.12(C)). 

Subsequently, the bottom of the cured bat-shape structures was isolated from the fixed coating 

surface by remelting the maltose coating at a temperature greater than the Tm. This antidromic 

technique with remelting created the bell-shaped dissolving microneedle with an ultra-sharp tip 

diameter, and facilitated the monolithic hybrid assembly of a dissolving microneedle on an 

electrode (Figure 1.12(D)). The dissolving microneedle of the HEM had a geometric bell shape 

with an ultra-sharp tip diameter of 5 µm and a length of 400 µm (Figure 1.12(E)). Dissolving 
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microneedles and electrodes were integrated into monolithic HEMs of a 5 × 5 array (Figure 

1.12(F)). 

 

Figure 1. 12 The monolithic fabrication of the HEM by drawing lithography with antidromic 
isolation. (A) Liquid maltose, melted at a temperature greater than its Tm, was coated on a planar 
surface, and contacted with the 5 × 5 array electrodes of the HEMs as a drawing pillar. (B) The 
glassy maltose in glass transition between Tm and Tg was elongated by drawing of electrodes. (C) 
After lowering the temperature to sub-Tg, the elongated 3D structures were cured to a solid state. 
(D) The coating surface was melted at a temperature greater than Tm to isolate elongated 3D 
structures from the 2D coating surface and this antidromic isolation fabricated the dissolving 
microneedles of the HEMs. (E) A bell-shaped dissolving microneedle of the HEM had an ultra-
sharp tip diameter of 5 µm and a length of 400 µm. A dissolving microneedle and an electrode 
were integrated into a monolithic HEM. (F) A 5 × 5 array of fabricated HEMs. 

 

1.3 Motivation of integrate microneedles with functional components 

In summary, microneedle device has been demonstrated with all kinds of materials and 

processes for different applications. For the conventional microneedles, the process to make the 

whole microneedle device is affected by the process to realize the sharp tip either by molding or 

etching. Because the process to realize the 3D sharp tip is normally not compatible with other thin 

film processes. Thus, it is difficult to integrate the microneedle with other functional components 

to realize other specific applications.  

However, by leveraging the drawing lithography process, the sharp tip assembly can be the last 
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step of the microneedle device. It means that the compatibility of the process to make the sharp tip 

is not a main concern in the design of the microneedle device. Therefore, more functional 

components, such as microfluidic control system and nanofilters, are feasible to be integrated with 

microneedle.  

Moreover, microneedle is just a key component for a wearable medical device which is suitable 

for self-managed drug delivery.  With the quickly increasing number of aging people all around 

the world, such one stop medical care solution, including disease detection and drug delivery, is 

desired more than ever.  A complete wearable medical device should include the functions of skin 

penetration, fluidic control system for drug loading, drug delivery and volume control, disease 

symptom sensor for result feedback, energy source enabling self-powering and self-fixation onto 

skin. However, such integrated system is still uninvestigated.  The challenge mainly comes from 

how to realize mechanical structure for the functions such as fluidic control, energy harvester by 

soft and bio-compatible materials required for medical application. Initiating the system-level 

integration of all the functional components is meaningful for the future development of wearable 

drug delivery skin patch. 

In this thesis, we will explore the feasibility of integrating the microneedles by drawing 

lithography with other functional components to realize a drug delivery system for specific 

applications which are not demonstrated before. In Chapter 2, we will first improve the drawing 

lithography process and assemble both maltose and SU-8 sharp tips onto hollow micro-tubes to 

realize a continuous drug delivery. Based on the microneedle configuration with SU-8 sharp tips 

mentioned in Chapter 2, in Chapter 3, we integrated CNT nanofilters within to realize a selective 

drug delivery. Different drug molecules in the same solution can be delivered by applying different 

conditions. This technique will enable a programmable drug delivery by using microneedle device 
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in the future. To realize a wearable drug delivery device which is strongly desired, we plan to make 

a whole microneedle device flexible. However, the needle breakage during the skin penetration 

causes problems for the microneedle assembled onto soft substrates. To overcome this issue, in 

Chapter 4, a bendable microneedle is developed. This bendable microneedle can adapt the curvy 

skin surface and avoid the needle breakage during skin penetration. By using this bendable 

microneedle, we further realize a sophisticated skin patch in Chapter 5. In this skin patch, we add 

the triboelectric energy harvester (TEH) as a power source for the active component to be 

integrated in the future. Another major issue for the microneedle skin patch is that the volume of 

the drug delivered cannot be well controlled. Previously the delivery volume can be controlled by 

syringe pump. However, as a standalone device, a volume sensor is necessary to measure how 

much drug to be delivered, especially for the application of insulin delivery. In Chapter 6, we use 

the similar TEH demonstrated in Chapter 5 as a liquid volume sensor and integrate it within the 

skin patch to realize a manually controlled drug delivery.  
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1. Chapter 2 Drawing Lithography Technology for 

fabrication of bio-dissolvable and non-bio-dissolvable 

microneedles  

Microneedles fabrication is the most critical part in the development of flexible microneedle 

patch. As we addressed in the chapter 1, conventional fabrication for microneedles are time 

consuming and expensive. Drawing lithography technology is an innovative maskless approach in 

which a 3D polymer structure is directly extended from 2D viscous polymer materials to form 

ultrahigh-aspect-ratio microneedles. The straightforward process does not need any special 

equipment and is compatible to the other MEMS fabrication procedures. It is a new technique to 

overcome the drawbacks in conventional fabrication technologies and able to develop 

microneedles with various materials on the flexible microneedle patch. In this chapter, we will 

introduce two different kinds of microneedles based on this drawing lithography process.  

2.1   Drawing Lithography Technology for Making Flexible and Biodissolvable 
Microneedle patch 

In transdermal drug delivery, the delivery performance strongly depends on the molecular size 

of the drug. Delivery of large molecular drugs such as insulin has been already found to encounter 

an efficiency problem [61]. Combining dissolvable microneedles with microfluidic components is 

a promising way since this method can apply pressure on the drug solution to facilitate the large 

molecular drug diffusion process. We will demonstrate a new method based on drawing 

lithography technology to achieve this purpose. In order to overcome the barrier of SC layer, sharp 

dissolvable maltose tips are created on top of SU-8 vertical microtubes. After the maltose tips 
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penetrate into the skin and are dissolved by body fluid, a large volume of the desired drug will be 

delivered through SU-8 microtubes. 

2.1.1 Design and Fabrication 

2.1.1.1 Design Considerations 

   In this flexible device, we leverage the unique features of maltose based microtips, i.e., high 

mechanical strength and biodissolvability, and validate the feasibility of integration of sharp 

maltose tips on top of SU-8 microtubes in the present study (Figure 2.1). After sharp maltose tips 

perforating the SC layer of the skin, maltose tips will be dissolved in the body fluid within a few 

minutes subsequently and drugs can be delivered through the SU-8 microtubes. Since the drugs 

are driven by pressure through microtubes in a continuous manner, the large molecular drug can 

also be delivered in an efficient way.  

 

Figure 2.1 13 Schematic illustration of the SU-8 microneedles. (a) Top view of the device structure. 
(b) A 5×5 SU-8 microneedles array. (c) Cross section of the device structure. (d) Single 
microneedle structure.   
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   An array of 5×5 SU-8 microtubes was patterned on a 140 µm thick, 2.5cm×2.5cm SU-8 

membrane (Figure 2.1 (a)). Each SU-8 microtube was 350 µm high. The inner diameter of the 

SU-8 microtube is 150 µm, while the outer diameter is 300 µm (Figure 2.1 (d)). Maltose needles 

of 1000 µm height were integrated on the SU-8 microtubes to ensure the ability of transdermal 

perforation. Two PDMS layers and the 2.5cm×2.5cm SU-8 membrane were bonded together to 

form a sealed chamber for retaining drugs from the connection tube during delivery process. The 

2.5cm×2.5cm size of the device was designed on purpose in order to conceptualize a flexible skin 

patch kind of drug delivery device. However, the critical area comprising the SU-8 microneedles 

at the center was only 6mm×6mm. The large marginal space offered sufficient area to achieve 

good bonding between SU-8 layer and PDMS layer, i.e., tolerating higher pressure to drive drugs 

into tissues during the delivery process. 

2.1.1.2 SU-8 Microtubes Fabrication  
    As shown in Figure 2.2, SU-8 microtubes fabrication started from a layer of Polyethylene 

Terephthalate (PET, 3M USA) film pasted on the Si substrate by sticking the edge area with kapton 

tape (Figure 2.2 (a)). The PET film, a kind of transparent film not sticky at the both side, was used 

as a sacrificial template to dry release the final device from the Si substrate because of the poor 

adhesion between PET film and SU-8. Before the dry releasing process, all the following SU-8 

processes would not make the device fall apart from the PET layer. Although in the work presented 

by Fernández et al [62], only the kapton film was used for the release purpose, we found that when 

the SU-8 patterned area on the kapton film was large, tearing off the film from the kapton film 

without damaging the device required extreme delicacy. This was because both the patterned SU-

8 layer and Si substrate were rigid layers. However, in our process, the sticky kapton film which 

just applied along the edges of samples could be easily removed after the device developed in SU-
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8 developer. The PET film with the SU-8 layer was separated from the Si substrate. Then SU-8 

layer could be dry released from the PET film just by slightly bending the PET film. 

 

Figure 2.2 14Fabrication process for SU-8 microtubes. 

A 140 µm thick SU-8 layer was deposited on the fixed PET film (Figure 2.2 (b)). To ensure a 

smooth SU-8 surface, this deposition was conducted in two steps of coating with 70 µm layer each. 
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In each step, SU-8 2050 was spun at 2000 rpm for 30 seconds, followed by prebaking steps at 

65 °C for 10 minutes and 95 °C for 30 minutes. After the prebaking steps, this SU-8 layer was 

exposed under 450 mJ/cm2 UV energy to define the membrane structure on this layer (Figure 2.2 

(c)). After exposure baking steps at 65 °C for 5 minutes and 95 °C for 15 minutes, another 350 µm 

SU-8 layer was directly deposited on this layer in two steps without development (Figure 2.2 (d)). 

If the first layer was developed to get patterns, the surface would not be smooth enough to achieve 

a uniform second SU-8 layer on it. With careful alignment (alignment accuracy is 20µm), an 

exposure of 650 mJ/cm2 energy was performed on the second layer to get the pattern of SU-8 

microtubes, which were precisely above the holes patterned on the first layer (Figure 2.2 (e)). 

After post exposure baking steps at 65 °C for 10 minutes and 95 °C for 30 minutes, then the SU-8 

device with PET film were released from the silicon substrate by the same method described before 

(Figure 2.2 (f, g)). After soaking in an ultrasonic cleaner for 30 minutes, the SU-8 microtubes 

array on the membrane was developed (Figure 2.2 (h)).  

2.1.1.3 PDMS Bonding 
   To bond the PDMS layer with SU-8, PDMS with mixing ratio of prepolymer base and curing 

agent in 10:1 was prepared firstly. After degassing, PDMS was cured and cut into small pieces. 

Then the first PDMS layer with square ring structure was treated with N2 plasma to introduce 

amino groups on one side. When this PDMS surface was contacted with the bottom side of SU-8 

surface having epoxy groups on surface, interfacial amine-epoxide chemical reaction took place 

at an elevated temperature. Therefore, after cured at 120 °C for 15 minutes, PDMS was 

permanently bonded with SU-8 layer.  

After the SU-8 membrane was released from the PET film, it bent during the developing process 

(Figure 2.3 (b)), due to residue stress gradients in SU-8 membrane. Here a homemade stage was 
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used to reduce this effect. As shown in Figure 2.3 (a), two akryl plates were applied to clamp SU-

8 membrane bonded with PDMS layer. Other two PDMS layers were used as soft buffer layers to 

protect the device. This stage offered a flat surface and uniform pressure on the SU-8 membrane. 

When put into the 120 °C oven, the SU-8 membrane will slightly deform because the bonded 

PDMS layer had a thermal expansion at this high temperature. Such effect relieved the previous 

bended layers and leads to a flatter surface (Figure 2.3 (c)). This flat surface was critical for the 

following maltose tips drawing process. Then oxygen plasma was performed on the opposite side 

of the first PDMS layer and one side of the second PDMS layer. After attaching these two surfaces 

together, two PDMS layers were bonded firmly together to form a fluidic chamber for the drug to 

flow into microtubes. 

 

Figure 2.3 15 (a) Schematic illustration of the homemade stage to ensure flat SU-8 membrane 
surface. (b) SU-8 membrane bends after development. (c) After bonded with PDMS and clamped 
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in the stage, the membrane becomes flat. 

2.1.1.4 Drawing Process of Maltose Tips 

    Maltose needles were integrated on the SU-8 microtubes by the drawing lithography technology. 

Lee et al encapsulated the drugs in maltose and patterned the maltose tips by drawing 

lithography[63]. Since the temperature in this method must be higher than 100 °C, a large group of 

drugs cannot stand at this temperature and will be degenerated. In our device, drugs will be 

delivered through SU-8 microtubes and the maltose is just used as sharp tips for skin penetration. 

Without facing the high temperature effect, our device is a generic platform to administer various 

kinds of drugs.  

 

Figure 2.4 16 Fabrication process for maltose tips. (a) Expelling water at 140 °C. (b) Immersing 
microtubes into the maltose at 140 °C. (c) Drawing the tips at end of the microtubes when the 
temperature increases up to 160 °C. (d) Increasing drawing speed to form sharp tips. 
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    As shown in Figure 2.4, fabrication of maltose tips on top of SU-8 microtubes was divided into 

four steps. First, concentrated maltose solution containing Methylene blue, which was used for a 

better inspection during penetration process, was dripped on a glass slide. The slide was kept at 

140 °C on the hotplate until the water inside maltose solution completely vaporizes and maltose 

becomes liquid state (Figure 2.4 (a)). Secondly, device of SU-8 microtubes was fixed on a 

precision stage which can control the position of SU-8 microtubes in three-dimension. Then we 

immersed the SU-8 microtubes into the liquid maltose at 140 °C and maltose liquid coated on the 

SU-8 microtubes’ surface (Figure 2.4 (b)). Thirdly, we gradually increased the temperature of 

liquid maltose and start drawing SU-8 microtubes away from interface of the liquid maltose and 

air (Figure 2.4 (c)). Finally, when the temperature rise up to 160 °C the drawing speed was 

increased. Since the maltose liquid was less viscous at higher temperature, the connection between 

the SU-8 microtubes and surface of the liquid maltose became individual maltose bridge and 

shrunk gradually, and then broke. The end of shrunk maltose bridge formed a sharp tip on top of 

each SU-8 microtube when the connection was collapsed (Figure 2.4 (d)).  Figure 2.5 showed the 

final drug delivery device containing SU-8 microtubes integrated with maltose tips and 

microfluidics, e.g. channels and the chamber formed by PDMS. 

 

Figure 2.5 17 Optical image for the finished SU-8 microneedles. (b) Detailed illustration image 
for the microneedles array. 
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2.1.2 Results and Discussion 

2.1.2.1 Optimization of Spacing Between Maltose Tips 

  To ensure the stronger and shorter maltose tips of a mircroneedle array for an easier skin 

penetration, experiments are conducted to optimize parameters in the drawing process. 

Temperature of melted maltose during drawing step and drawing speed are identified as the key 

parameters to get up to 1000 µm tall maltose sharp tips on the SU-8 microtubes. Although the 

maltose tip can be easily and routinely formed on top of SU-8 microtubes at 140 °C and optimized 

drawing speed, the formation of uniform maltose tips array also depends on the spacing between 

two adjacent SU-8 microtubes. 

Table 1.11 Ratio of individual maltose tips to clustered maltose tips among a 5x5 microneedles 
array 

 

 

Height of Microtubes 

Spacing Between two SU-8 Microtubes 

300µm 600µm 600µm 1200µm 

150μm 0/25 5/20 15/10 25/0 

250μm 0/25 13/12 21/4 25/0 

350μm 0/25 17/8 25/0 25/0 
 

   When the maltose melted at 140 °C, the planar extensional viscosity in maltose easily leads 

adjacent maltose tips to clusters. We have investigated various spacing between two adjacent 

maltose tips to get the minimum spacing. The height of microtubes changed from 150µm to 350 

µm with the interval of 100µm while the spacing changed from 300µm to 1200µm with the interval 

of 300µm. There were in total 12 different dimensions. Four chips were tested for each dimension 

as a group and the total trails were 48. Since there were 25 microneedles on each chip, there were 

in total 100 microneedles on 4 chips in each group. After the drawing process, the results for each 
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group were counted and converted as the ratio on a single 5×5 array for an average. Table 2.1 

showed the observed data about the ratio of formed individual maltose tips over the formed 

clustered tips in these 48 samples. We concluded that individual maltose tips were successfully 

derived from samples of microtubes with the height beyond 350µm and the spacing larger than 

900µm. As a result, we prepared many samples of SU-8 microtubes of 350µm height and 1000µm 

spacing for further maltose integration experiment in our study. 

2.1.2.2 Mechanical Strength of the Microneedles  
    To ensure both the adequate adhesion property between the maltose tip and SU-8 microtubes, 

and the sufficient stiffness of the SU-8 microtubes for successful penetration, the mechanical 

strength of microneedles was studied. As shown in Figure 2.6 (a), Instron Microtester 5848 

(Instron, USA) was used for the stiffness testing. A typical result was shown in Figure 2.6 (b). 

During the testing, the breakage of microneedles only occurred at the interface when the exerting 

load was larger than the threshold value. However, the SU-8 microtubes were strong enough to 

stand the pressure. After characterization of 20 samples, the average threshold value was 

7.36±0.48N for the microneedles (300µm at microneedle base and 1000µm high). Since the 

minimal force required for a successful penetration was reported to be less than 1 N with the similar 

microneedle dimension[64], the device was reliable during the penetration process.   
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Figure 2.6 18 (a) Testing setup for the microneedle mechanical testing. (b) A typical microneedle 
stiffness testing result 

2.1.2.3 Characterization of Penetration 

 

Figure 2.7 19 Penetration testing results on the porcine cadaver skin. 

    Figure 2.7 (a) shows the insertion result of a 5×5 microneedles array into a porcine cadaver 

skin. After the insertion, maltose tips were rapidly dissolved once inserted in the tissue. Methylene 

blue was added into the maltose for inspection purpose. Ten minutes after insertion, 25 blue traces 

were easily found, which matched the pattern of the microneedle array. The optical microscope 

image in Figure 2.7 (b) showed a hole perforated in the skin after we cleaned the dissolved maltose 

mixed with Methylene blue from the skin surface. During the insertion experiment, we had to 

avoid the shear force influence caused by deformed skin surface on the individual maltose tip in 
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order to get successful microneedle penetration for the whole array. We used precision stages to 

hold the microneedle device substrate and control the relative position of device substrate and skin 

sample.  

2.1.2.4 Dissolving of Maltose Tips and Demonstration of Injection via SU-8 Microtubes 

    

Figure 2.8 20 Maltose tips dissolving process. (a) The original sharp maltose tip. (b) Maltose tip 
after inserted into skin for 3minutes(c) 6minutes and (d) 9minutes.  

    In order to check whether the maltose tips could be dissolved once inserted in the tissue, four 

chips with the same maltose tips height were inserted into the skin and taken out one by one with 

3 minutes interval. Maltose tips were gradually dissolved versus increased time as shown in Figure 

2.8. After 9 minutes, the maltose tips were totally dissolved and the lumens of SU-8 microtubes 

were observed from the top view. Different from the traditional dissolvable needles which 

encapsulated drugs into the needles, this microneedle array was expected to allow large volume of 

drugs to pass through via the remaining SU-8 microtubes inside the skin.  
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Figure 2.9 21 Microfluidic testing for SU-8 microtubes. 

    Moreover, blue dyed water was ejected through the lumens in SU-8 microtubes to the beaker 

containing fresh water such that we could demonstrate the hollow tubes formed in individual 

microtube during the fabrication process. This microfluidic testing was performed in fresh water 

as shown in Figure 2.9. Visual inspection of the ejection proved that there was no blockage inside 

the microtubes. Because of the good bonding quality between each layer, there was no obvious 

damage on the device in this experiment even though the syringe pump was increased to its 

maximum speed at 3.3mL/min for 6mL syringe.  
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2.1.2.5 Injection Florescent Solution into Skin Sample 

 

Figure 2.1022 Images of confocal microscopy of the site where one microneedle inserted shows 
that the fluorescent solution is delivered into the tissue underneath the skin surface. Optical section 
depths are (a) 30μm, (b) 60μm, (c) 90μm, (d) 120μm, (e) 150 μm, (f) 180μm below the skin surface.  

    To verify that the drug solution can be delivered into tissue, a fluorescent solution was delivered 

through the SU-8 microtubes after the pure maltose tips were dissolved. The representative results 

were then investigated via a confocal microscopy (Figure 2.10). The permeation pattern of the 

solution along the microchannel confirms the solution delivery results. The black area served as a 

control area without any diffused solution. In contrast, the tissues stained by fluorescence 

illustrated the diffused area. The focus depth was up to 180µm with the interval of 30µm. Since 

the microchannel was created by the conical maltose tips, the diameter of the microchannel 

decreased as the focus depth increases. The following diffusion area was dependent on the 

microchannel dimension and also decreased accordingly.  
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2.2 Double Drawing Lithography Technology for Making Flexible Microneedle 
Patch with Lower Breakage Risk 

Even though the microneedles device with dissolving tips enables a large volume delivery of 

big molecular drugs, in practical experiments it is found that the planar shear force induced by skin 

deformation may break the microneedles device from the interface between SU-8 microtubes and 

maltose tips. In order to solve this problem, we propose an optimized design for the microneedles 

strucutre. The SU-8 microtubes are fabricated into beam stuctures. Gaps between these beams  act 

as anchors to reinforce the mechanical strength of the interfaces, which avoids microneedles 

beakage under planar shear force. The standard drawing lithography technology demonstrated 

before requires that the drawing frames need to be regular cylinders, which is not proper for our 

devices. To solve the problem, the optimized double drawing lithography is developed to create 

sharp SU-8 tips on the top of four SU-8 pillars for penetration purpose. Drugs can flow through 

the sidewall gaps between the pillars and enter into the tissues. 

2.2.1 Design and Fabrication 
    An array of 3×3 SU-8 supporting structures was patterned on a 140 µm thick, 6mm×6mm SU-

8 membrane (Figure 2.11 (a)). Each SU-8 supporting structure included four SU-8 pillars and was 

350 µm high. The four pillars were patterned into a tube like shape on the membrane (Figure 2.11 

(b)). The inner diameter of the tube was 150 µm, while the outer diameter was 300 µm. SU-8 

needles of 700 µm height were created on the top of SU-8 supporting structures to ensure the 

ability of transdermal perforation. Two PDMS layers were bonded with SU-8 membrane to form 

a sealed chamber for storing drugs from the connection tube. Once the microneedles penetrated 

into the tissue, drugs could be delivered into the body through the sidewall gaps between the pillars 

(Figure 2.11 (c)).   
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Figure 2.11 23 Schematic illustration of the SU-8 microneedles. (a) Overview of the whole device; 
(b) SU-8 supporting structures made of 4 SU-8 pillars; (c) Enlarged view of a single SU-8 
microneedle.  
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Figure 2.12 24 Fabrication process for SU-8 microtubes. (a) Attaching a PET film on the Si 
substrate; (b) Exposing the first layer of SU-8 membrane without development; (c) Depositing and 
patterning two continuous SU-8 layers as sidewall pillars; (d) Releasing the SU-8 structure from 
the substrate and bonding it with PDMS; (e) Drawing hollowed microneedles on the top of 
supporting structures; (f) Baking and melting the hollowed microneedles to allow the SU-8 flow 
in the gaps between pillars; (g) Drawing second time on the top of the melted SU-8 flat surface to 
get microneedls. 
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 The fabrication process of SU-8 microneedles is shown in Figure 2.12.  The SU-8 

supporting structure is fabricated as the same method of SU-8 microtubes fabrication shown before 

(Figure 2.12 (a)-(c)). However, since the frame used to conduct drawing process in present study 

is a four-pillars structure rather than a microtube, the conventional drawing process can only make 

a hollowed tip but not a solid tip structure (Figure 2.13). This kind of tip was fragile and could not 

penetrate skin in practical testing process. To solve the problem, we developed an innovative 

double drawing lithography process. After bonding released SU-8 structure with PDMS layers 

(Figure 2.12 (d)), we used it to conduct first time stepwise controlled drawing lithography and got 

hollowed tips (Figure 2.12 (e)). After the hollowed tips were formed in the first step drawing 

process, the whole device was baked on the hotplate to melt the hollowed SU-8 tips. Melted SU-8 

reflowed into the gaps between four pillars and the tips became domes (F Figure 2.12 (f)).     

 

Figure 2.13 25 A hollowed SU-8 microneedle fabricated by single drawing lithography technology 
(Scale bar is 100 µm). 

Then a second drawing process was conducted on the top of melted SU-8 to form sharp and solid 

tips (Figure 2.12 (g)). The final fabricated device is shown in Figure 2.14. 
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Figure 2.14 26 Optical images for the SU-8 microneedle patch. 

2.2.2 Characterization for Microneedles Fabricated by Double Drawing Lithography Technology 
    During the double drawing process, as long as the heated time and temperature were controlled, 

the SU-8 flow-in speed of SU-8 inside the gaps could be precisely determined.  The relationship 

between baking temperature and flow-in speed was studied. As shown in Figure 2.15, the flow-in 

speed is positive related to the baking temperature. The explanation for this phenomena is that the 

SU-8’s   viscosity decreases when the baking temperature increases. When the baking temperature 

is larger than 120 °C, the flow-in speed will increase sharply. But if the baking temperature is 

higher, the SU-8 will reflow in the gaps too fast, which makes the flow-in depth hard to be 

controlled. There is a high chance that the whole gaps will be blocked and no drugs can flow 

through these gaps any more. Considering that the total SU-8 supporting structure is only 350 µm 

high, we choose 125 °C as baking temperature for proper SU-8 flow-in speed and easier SU-8 

flow-in depth control.   

   To ensure the adequate stiffness of the SU-8 microneedles in vertical direction, mechanical 

testing was conducted as described before. As shown in Figure 2.16, the vertical buckling force 

was as much as 8.1N, which was much larger than the reported minimal required penetration force. 

However, in previous practical testing experiments, even though the microneedles were strong 

enough in vertical direction, the planar shear force induced by skin deformation might also break 
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the interface between SU-8 pillars and top tips. In our new device with four pillars supporting 

structure, the SU-8 could flow inside the sidewall gaps between the 

pillars to form anchors. These anchors could enhance microneedles’ mechanical  strength and 

overcome the planar shear force problems. Moreover, the anchors strength could be improved by 

controlling the SU-8 flow-in depth. Figure 2.17 shows that the flow-in depth increases when the 

baking time increases as the baking time increases at 125 °C. The corresponding planar buckling 

force can be improved to be larger than 1 N by increasing flow-in depth (Figure 2.16 (b)). Some 

spacing in sidewall gaps at bottom is kept on purpose for drugs flow, hence the flow-in depth is 

chosen as 200 µm. 

 

Figure 2.15 27 The relationship between flow-in speed and baking temperature. 
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Figure 2.16 28 (a) Measurement of the vertical buckling force. (b) The planar buckling force 
varies under different flow-in depth (I, II, III, IV corresponding to the certain images in Figure 

2.17). 



63 
 

 

Figure 2.17 29 Different flow-in depth inside the gaps between SU-8 pillars. (a) 0 µm; (b) 100 
µm; (c) 200 µm; (d) 350 µm (Scale bar is 100 µm).  

The penetration capability of the SU-8 microneedles is also characterized by conducting 

the insertion experiment at porcine cadaver skin. 10 microneedles devices were tested and all of 

them were strong enough to be inserted into the tissue without any breakage. Histology images of 

the skin at the site of one microneedle penetration were derived to prove that the sharp conical tip 

was not broken during the insertion process (Figure 2.18). It also shows penetration evidence 

because the shape of the microchannel is the same as the sharp conical tip. 

 

Figure 2.18 30 Histology image of individual microneedle penetration (Scale bar is 100 µm). 
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Due to the uneven surface of deformed skin, there is always tiny gap happened between 

tips of some microneedles and local surface skin. The microneedles could not be entirely inserted 

into the tissue. Drugs might leak to the skin surface through the sidewall gaps under certain driven 

pressure. Hydrogel absorption experiment was conducted to quantify the delivery rate (i.e., the 

ratio of solution delivered into tissues in the total delivered volume) and to optimize the delivery 

speed. Gelatin hydrogel was prepared by boiling 70 mL DI (Deionized) water and mixing it with 

7g of KnoxTM original unflavored gelatin powder. The solution was poured into petri dish to 1cm 

high. Then the petri dish was put into a fridge for half an hour. Gelatin solution became collagen 

slabs. The collagen slabs were cut into 6mm×6mm sections. A piece of fully stretched Parafilm 

(Parafilm M, USA) was tightly mounted on the surface of the collagen slabs. This parafilm was 

used here to block the leaked solution further diffused into the collagen slab in the delivery process. 

Then the microneedles were penetrated the parafilm and went into the collagen slab. Controlled 

by a syringe pump, 0.1 mL 0.5mg/mL glucose solution was delivered into the collagen slab under 

different speeds. Methylene Blue (Sigma Aldrich, Singapore) was mixed into the solution for 

better inspection purpose (Figure 2.19 (a)).  Then the collagen slabs were digested in 1mg/mL 

collagenase (Sigma Aldrich, Singapore) at room temperature (Figure 2.19 (b)). It took around 1h 

that all the collagen slabs could be fully digested (Figure 2.19 (d)). 

The solution was collected to measure the glucose concentration with Glucose  Detection kit 

(Abcam, Singapore). Briefly, both diluted glucose standard solution and the collected glucose 

solution were added into a series of wells in a well plate. Glucose assay buffer, glucose enzyme 

and glucose substrate were mixed with these samples in the wells. After incubation for 30 minutes, 

their absorbance were examined by using a microplate reader at a wavelength of 450nm. By 

comparing the readings with the measured concentration standard curve (Figure 2.20 (a)), the 
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glucose concentration in the hydrogel, the glucose absorption rate in the hydrogel and the solution 

delivery rate by microneedles could be measured and calculated. As shown in Figure 2.20 (b), 

when the delivering speed for a single microneedle increased from 0.0001mL/min to 0.002mL/min, 

the glucose absorption rate also increased. Most of the glucose solution from microneedles could 

go into the hydrogel. The delivered rate could be as high as 71%. The rest solution leaked from 

sidewall gaps and blocked by parafilm. However, when the delivered speed for a single 

microneedle was larger than 0.002mL/min, the hydrogel absorption rate was saturated. More and 

more solution could not go into the hydrogel but leak from the sidewall gaps. Then the delivered 

rate decreased. Therefore, 0.002ml/min was chosen as the optimized delivery speed for the 

microneedle. However, due to the nature of transdermal drug delivery which the drug is not 

directly injected into the vein, the absorption rate of skin will has a certain limitation. Currently 

the maximum skin absorption rate by microneedle is 16mg/day[143] by a microneedle array of 

480 microneedles. Thus the maximum delivery rate of each microneedle should be around 

33µg/day. Considering the density of the drug solution will be quite close to the density of water, 

thus the maximum delivery rate for an individual microneedle should be 0.023µL/min.  Thus the 

maximum deliver rate of the microneedle we fabricated is far more than the maximum absorption 

rate of skin. It means in real application, only a very low deliver rate is required. 
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Figure 2.19 31 Glucose solution could be delivered into the hydrogel and the collagen stabs were 
dissolved by collagenase. 
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Figure 2.20 32  (a) Standard curve for glucose detection; (b) Glucose absorption rate and 
solution delivery rate in a single needle corresponding to different delivery speed.  

2.3 Conclusion 

Based on the drawing lithography technology, we designed and developed two different kinds 

of flexible microneedle patches. Both of them are hollow microneedles which can be used for the 

delivery of drugs with big molecules. The flexible microneedle patch with dissolvable sharp tips 

is able to deliver drugs with large volume while four beams structure with SU-8 tips enhance the 
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microneedle stiffness. The proposed fabrication process is scalable, reproducible and inexpensive. 

Penetration testing and diffusion testing prove their function to deliver drugs to the tissues under 

the skin. In the hydrogel absorption experiment, by controlling the delivery speed under 

0.002mL/min per microneedle, the delivery rate provided the microneedle is as high as 71%. 
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Chapter 3 Polymer Microneedle Array Integrated with 

CNT Nanofilter for Selective Drug Delivery 

 

Currently none of microneedles developed have integrated functions for controlled drug release 

with mechanical valves such as CNT nanofilters. However, such a drug control releasing function 

is desirable for long term drug delivery and could expand the applications of microneedles. In this 

chapter, a unique process which utilizes a membrane based vertically grown carbon nanotubes 

(CNTs) as nanofilters for mass transport study is presented first. By leveraging the double drawing 

lithography process, the CNT nanofilters are integrated with the SU-8 microneedles. With the 

CNTs nanofilters, the delivery of drugs of different molecular dimensions could be controlled by 

pressure and an electric field. 

The design of the microneedle array integrated with CNT nanofilters is shown in Figure 3.1. 

An array of SU-8 microneedles was patterned above a SU-8 membrane(Figure 3.1 (a)). Every SU-

8 microneedle has two parts: four-beam sidewalls at the bottom and a sharp tip at top as shown in 

Figure 3.1 (c). The four-beam sidewalls (brown parts in Figure 3.1 (a)) are patterned by photo 

lithography. The gaps along the sidewalls are the outlets of the microneedles. The sharp tips above 

the four-beam structure (green parts in Figure 3.1 (a)) are assembled and patterned by double 

drawing lithography. Above them, a layer of gold surface electrode was deposited onto the whole 

surface. This surface electrode allows us to apply an electric field in the test. Inside the four-beam 

structures, vertical grown CNT bundles (black parts in Figure 3.1 (a)) were embedded in the SU-

8 membrane to form the CNT nanofilters. Fig. 1(d) shows the SEM image of one CNT bundle. 
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Underneath the SU-8 membrane, there a SU-8 chamber layer to support the SU-8 membrane layer 

and form a solution chamber. PDMS layers (the blue part in Figure 3.1 (a)) are bonded to the SU-

8 chamber layer for tube connection in the test. Solution could be loaded in the chamber under the 

CNT bundles, pass through the CNT bundles and finally through the SU-8 microneedles into the 

tissue. The optical image of the microneedle array with the gold surface electrode is shown in 

Figure 3.1 (b). For applying the electric field across the CNT nanofilters in the test, one electrode 

will be bonded onto the surface electrode and another electrode will be inserted into the PDMS 

chamber as shown in Figure 3.2. When the solution is loaded in the drug reservoir and flow 

through the CNT nanofilters, two electrodes would be connected by the solution and an electric 

field is generated across the CNT nanofilters. 

Before the integration of microneedle with CNT nanofilters, we made a detailed study and 
characterization of the CNT nanofilters first.  
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Figure 3.1 33  (a) 3D schematic drawing of the microneedle device integrated with CNT 
nanofilters; (b) Optical image of the microneedle array with gold surface electrode, scale bar is 
1000μm; (c) SEM image of single SU-8 microneedle with four-beam sidewalls and a sharp tip, 
scale bar is 80μm; (d) SEM picture of a CNT bundle embedded inside the microneedle, scale bar 
is 10μm. 

 



72 
 

 

Figure 3.2 34 Working principle of the microneedle array integrated with CNT nanofilters for 
transdermal drug delivery. 

3.1 Development of CNTs Nanofilters Using Patterned Array of Vertically Grown Carbon 
Nanotubes  

3.1.1 Structure and fabrication process of the CNTs nanofilters 

Figure 3.4 shows the experimental steps for the fabrication of membrane based nanofilters 

shown in Figure 3.3 using patterned CNT bundles. A substrate with arrays of vertically aligned 

CNTs  patterns (Figure 3.5 (a)) is first reinforced by CVD grown parylene (Scheme 1,step 1) so 

that parylene molecules are infiltrated into the intertube space (Figure 3.5 (b)). The parylene layer 

together with patterned CNTs array is then peeled off from the substrate and the catalyst layer on 

the backside is etched off by oxygen plasma (Scheme 1, step 2).  The backside catalyst layer is 

shown in Figure 3.5 (c). After oxygen plasma, the catalyst layer is etched away (Figure 3.5 (d)). 

The released parylene layer is then attached to a prebaked SU-8 substrate. The Su-8 substrate is 

baked and cooled to achieve the bonding with parylene (Figure 3.4, step 3). Vertical microfluidic 
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channels under CNTs bundles shown in Figure 3.5 (b) are patterned by stand lithography (Figure 

3.4, step 4). The bottom side of the CNTs bundle is open. The top side of the CNTs bundles are 

open by oxygen plasma etching (Figure 3.4, step 5).  Figure 3.4 (d) shows the CNTs bundle with 

top open. Figure 3.4 (e) shows the 3D schematic drawing of the open CNTs bundle for a better 

understanding. The whole parylene layer is etched off due to no mask in the etching process. The 

parylene sidewall is remained due to the anisotropic property of plasma etching. These parylene 

sidewalls provide the bonding which make the CNTs bundles be fixed onto SU-8 substrate. Two 

PDMS layers are further bonded at the bottom of the device for tubing and tests (Figure 3.4 (a) 

and (b)).  The detailed fabrication process can be found in Appendix 1. 

 The bonding strength between parylene and SU-8 is very strong. The detachment between 

parylene and substrate[1] will not occur here. Because of that we use CNT bundles of small patterns 

instead of whole CNT forests of large area, the CNT forests will not break by applying pressure. 

These two differences make our device could stand high pressure. 
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Figure 3.3 35 (a) 3D schematic drawing of detailed layer structure of the devices.; (b) SEM picture 
taken from the back side of the SU-8 layer showing a hole under a CNTs bundle on SU-8 layer. (c) 
3D Schematic drawing of the device (d). SEM picture of the CNTs bundle with top end open; (e) 
3D schematic drawing of the CNTs bundle with top end open. The scale bars for (b) and (d) are 10 
um. 
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Figure 3.4 36 Schematic representation of the experimental steps showing the fabrication of 
membrane based nanofilters. 

 

Figure 3.5 37 (a) An individual CNTs bundle grows from catalyst layer, the diameter of the CNTs 
bundle is 50 μm, the height of the CNTs bundle is 50 μm; (b) An individual CNTs bundle reinforced 
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by parylene, the thickness of the parylene layer is 10 μm; (c) catalyst layer seals the bottom of the 
CNTs bundle; (d) The catalyst layer is etched by oxygen plasma; (e) TEM picture showing the 
inner diameter of the CNTs is 10 nm; the scale bars for (a) to (d) are 10 um and the scale bar for 
(e) is 10nm. 

 

3.1.2 Characterization of CNTs nanofilters 

3.1.2.1 Ions transport test 

The mass transport of ions and biomolecules of nanofilter samples of different dimension is 

measured by applying electric field and pressure based on the test setup in Figure 3.6 (a). 

A Ti electrode penetrated the PDMS layer and connected the solution inside the PDMS chamber. 

Bias could be applied via this electrode.  Test solution of very small volume was pre-loaded in the 

device chamber and part of the tube. This preloading is necessary to get rid of the air in the device 

chamber and make the solution in touch with the surface of CNTs bundles. The tube connected 

the device with a syringe and a pressure sensor. The syringe could be driven by a syringe pump to 

give air pressure and the air pressure is calibrated by the pressure senor. 

Based on our observation, the CNTs nanofilters are able to sustain under a pressure level of 

40kPa, but for some samples, leakage between the interface of PDMS and SU-8 was detected at a 

pressure level higher than 25kPa. Thus, the pressure level was limited within 25kPa in our 

experiments. The device was loaded in the beaker. The liquid surface in the beaker should be kept 

lower than the exposed part of the electrode inserted in PDMS. This was to avoid the two electrodes 

being shorted by the solution connection. Another Ti electrode was immersed in the solution in 

the beaker. 

The two electrodes were connected to a semiconductor characterization system (KEITHLEY 

4200) which could apply bias and measure the current simultaneously. Resultant solution was 

sampled from the solution inside the beaker. 



77 
 

 

Figure 3.638 Test setup for applying electric field and pressure; (b) Schematic drawing of the 
ion diffusion and ion depletion in the device chamber. 

 

Figure 3.7 39 (a) The ionic current through the CNTs membranes as a function of time in different 
NaCl concentrations; (b) The ionic current as a function of time under square wave bias in different 
NaCl concentrations . The green line and pink line indicate the difference between peak values of 
ionic current. (c) The pH value of the NaCl solution with different concentrations as a function of 
time; (d) The pH value of the HCl solution under different driving pressure as a function of time. 
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In the study of driving ions by electric field, NaCl solution was loaded in both the beaker and 

the tube. The solution volume in the beaker was 60 ml and in the tube was about 0.2 ml. A bias of 

5 V was applied between the two Ti electrodes for 160 min. The electrode in the beaker was 

grounded and the electrode in the tube was positively biased. No air pressure is applied. No obvious 

electrolysis of water is observed. Two concentrations of NaCl solution, 1mol/L and 0.1mol/L, were 

employed to study the relation between the ion concentration and ionic current. The experiments 

were carried out at room temperature (~26ºC). The solution in beaker was sampled for pH 

measurement at 10, 20, 40, 80 and 160 min. The change of ionic current was recorded as shown 

in Figure 3.7 (a). The ionic current quick dropped down as a function of time. The peak values of 

the ionic current of NaCl concentration 0.1 mol/L and 1mol/L were 9.5×10-5A and 2.4×10-5A. The 

large peak value difference suggests that the main transport mechanism under electric field is 

electrophoresis[66]. The drop of the ionic current may due to two possible reasons. First, the change 

of pH value altered the property of the CNTs inner wall surface which enhanced the interaction 

between ions and CNTs inner wall surface. This pH value change was caused by electrolysis of 

NaCl solution. The reaction in beaker is : 

2NaCl+2H2O+2e-→2NaOH + H2↑+2Cl-; 

so the solution will be alkaline and pH value will rise. And the reaction in the tube is: 

2NaCl+2H2O→2Na++HCl+HOCl+2e-; 

so the solution will be acidic and pH value will drop. The change of the pH value is shown in 

Figure 3.7 (c). The NaCl solution of higher concentration had a higher pH value which means a 

faster reaction rate. And the difference of pH value inside the beaker and tube increased with time. 

However, according to Figure 3.7 (a), the ionic current tends to stabilize with time. So the change 

of the pH value should not be the reason for the drop of ionic current. It is also reported that the 



79 
 

pH value of the solution does not significantly affect the ionic current and the conductance of 

CNTs[65]. The second possible reason is the depletion of the ions at the PDMS chamber. The high 

peak values of the ionic currents stand for fast ion transport. This fast ion transport may cause 

depletions which cannot be compensated by the ion diffusion from other regions. As shown in 

Figure 3.6 (b), the geometry of device chamber connecting to the CNTs bundles is very limited. 

One possible reason is that ions cannot efficiently diffuse from other places to this region when 

ions at this region quickly pass through the CNTs bundles. Then the depletion of the ion in the 

DPMS chamber causes the drop of the ionic current. We carried out an experiment to prove it. The 

5 V bias was applied in a square wave mode with duty cycle of 1 min on and 1 min off. This square 

wave mode bias was applied for several cycles and the recorded ionic current is shown in Figure 

3.7 (b). The ionic current dropped when bias was on. When bias was not off, the solution in the 

device chamber got replenishment of ions by the diffusion from other regions. Thus, when bias 

was on again, the peak value of ionic current recovered to a certain level. But due to 1 min time 

duration was insufficient for the recovery of ion concentration in the device chamber to its initial 

value, the peak value of ionic current still had a slightly drop. The green line shows the drop of 

peak values  from about 1.5×10-5A to about 1.4×10-5A  for 1mol/L NaCl concentration. 

In the study of driving ions by pressure, 0.2 ml 3.7% HCl solution was preloaded in the tube. 60 

ml DI water was loaded in the beaker. Air pressure of 10kPa and 20kPa was applied for 80 min to 

study the relation between pressure and permeability with a zero biasing voltage. Solution in the 

beaker was sampled at 10, 20, 40 and 80 min. The pH value of solution samples was measured by 

pH meter (CORNING Pinnacle, Model: 530) as shown in Figure 3.7 (d). The line of 20kPa 

pressure shows a greater pH value drop than that of 10kPa. At 80 min, the pH values of solution 

after applying 10kPa and 20kPa were 4.25 and 3.97. According to the definition of pH value: 
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pH=-log[H+]; ([H+] refers to the H+ concentration.) 

The ratio of H+ concentration is [H+]20kPa/[H+]10kPa =104.25/103.97=1.9. The ratio of H+ 

concentration was almost the same as the ratio of pressure level. This result suggests a linear 

relation between mass transport rate and pressure level, which is consistent with result reported[65]. 

3.1.2.2 Bio-molecules transport test 

In the study of large molecule translocation through CNTs membrane, ss-DNA and 

Haemagglutinin were employed to study CNTs bundles' function of filter. The inner diameter of 

the CNTs in this study is 10 nm (Figure 3.5 (e)). The ss-DNA whose cross sectional dimension is 

smaller than 10nm was expected to pass through CNTs membranes just by applying pressures. 

And Haemagglutinin, whose shape is like a cylinder and dimension is approximately 13.5 nm long 

that are larger than the inner diameter of the CNTs, was expected not to pass through CNTs 

membranes by applying pressure. The preparation of ss-DNA can be found in Appendix 2. 

A medley of pressure and electric field driven method could drive ss-DNA through CNTs is 

reported[66]. In the experiment of ss-DNA, 60 ml DI water was loaded in the beaker, a droplet of 

ss-DNA solution was preloaded in the tube. Pressure of 25 kPa was applied for 7 hours. The 

solution in the beaker was sampled after the experiment. The absorbance spectra were shown by 

FTIR (Fourier transform infrared spectroscopy Cary 660-FT-IR). DI water was used as 

background to show the absorbance in Figure 3.8 (a). The green line shows that ss-DNA could 

pass through CNTs membranes just by applying pressure. The absorbance shown in Figure 3.8 

(a) suggests that more ss-DNA could pass through CNTs by the additional electric field. 

 In the case of Haemagglutinin under pressure driven condition, no absorbance observed in 

spectra of samples carried out at applied pressure of 10, 15 and 20kPa for 7 hours. Figure 3.8 (b) 

shows the measured spectrum under 25 kPa for the above samples with additional 15 hours. Again 
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there is no absorbance observed. Then a pressure level of 25kPa and a bias of 5V was applied 

together. The measured spectrum indicates a weak absorbance as shown in Figure 3.8 (b). It 

suggests that Haemagglutinin could pass through CNTs when pressure and electric field were 

applied together. But the translocation rate was relatively low compared to that of ss-DNA. This 

is because the dimension of Haemagglutinin is much larger than that of ss-DNA. The test result 

shows that permeability decreases with the increase of dimension of molecule. 

To confirm CNTs nanofilters could block all the micro-scale substance, we further tried passing 

bacterium through CNTs nanofilters. In this experiment, PBS and BPSM (Bordetella pertussis, 

streptomycin resistant) are employed. The test setup is as shown in Figure 3.6 (a). 0.1 ml mixed 

solution was loaded in the device and PBS was loaded in the beaker. A medley of pressure and 

electric field driven method was used to drive the PBS through the CNTs nanofilters. The pressure 

is 20kPa and the electric bias is 5V. To detect the bacterium of very low concentration, the solution 

should be sampled for cell culture and enrichment. To ensure the bacterium were viable in ambient 

temperature during the experiment, the test was conducted for 2 hours. The solution sampled in 

the beaker was cultured on blood agar plates for 5 days to see whether bacteria passed through the 

CNTs nanofilters. Solution with bacteria loaded in the device chamber was also cultured as control 

group for comparison. Figure 3.9 (a) shows the result of bacterial culture of the solution sampled 

from the device chamber. After 5 days of culture, bacterial colonies were observed. Figure 3.9 (b) 

shows the result of bacterial culture of the solution sampled in the beaker. No bacterial colony was 

found which confirms a perfect bacterium blockage.  
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Figure 3.840  (a) IR spectra of ss-DNA in the beaker after applying 25kPa pressure and after 
applying both 25kPa pressure and 5V bias; (b) IR spectra of Haemagglutinin in the beaker after 
applying 25kPa pressure and after applying both 25kPa pressure and 5V bias. 

 

 

Figure 3.9 41 (a) Result of bacterium culture of the solution sampled from the device chamber, 
bacterial colonies were observed; (b) Result of bacterium culture of the solution loaded in the 
beaker, no bacterial colony was found. 

In conclusion, we propose a new fabrication process for a stretchable membrane based 

nanofilters using patterned array of vertically grown carbon nanotubes bundles. The functionality 

is proved by pumping ions through CNTs membranes either by applying pressure or applying 

electric field. A linear relation between mass transport rate and driving pressure is observed. The 

ss-DNA could pass through the CNTs membranes by applying high pressure and an additional 
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electric field can further enhance the permeability. However, Haemagglutinin whose dimension is 

close to the inner diameter of the CNTs cannot pass through the CNTs membranes just by applying 

pressure but an additional electric field could make it pass through. It proves that the permeability 

through CNTs nanofilters is highly dependent on molecular weight and physical dimension. 

Micro-scale bacterium would be totally blocked which confirms device’s high quality and 

reliability. The test results prove that the CNTs membranes could be deployed as nanofilters 

working at high pressure which is not reported yet. The CNTs nanofilters of patterned CNTs 

bundles on the flexible polymer materials enable a further integration with other microfluidics for 

chemical and pharmaceutical applications. These results also indicate the device could be used for 

size matching molecular sieving. Just by using the same process on CNTs of different inner 

diameters, the devices could be used for different kinds of chemical separation. It is also possible 

to involve surface functionalization to enhance the capability of chemical separation. 

3.2 Integration between Microneedle and CNTs nanofilters for selective drug delivery 

3.2.1 Fabrication process 

 Figure 3.10 illustrates the fabrication process. The process began with thermal oxidation 

of single crystal silicon substrate to form a etch stop oxide layer. After the CVD of polycrystalline 

silicon as a sacrificial layer, a 5 nm thickness of Fe film, which acted as the catalyst film for the 

selective growth of CNTs, was patterned onto the silicon substrate (Figure 3.10(a)). As illustrated 

in Figure 3.10(b), the vertical aligned CNT bundles of 50 μm in height were grown via pyrolysis 

of acetylene at 800ºC with an Ar/NH3 flow for 15 min. As illustrated in Figure 3.10(c), the CVD 

parylene-C was employed to fill into vertically aligned CNTs and then to reinforce the inter-tube 

binding at room temperature. Thus, the top side of CNTs was covered with parylene-C, and the 

discrete CNTs were bound together by parylene-C as show in Figure 3.11(a). This step was the 

most critical process for forming the mechanical supporting layer for CNT bundles. The thickness 
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of the flexible parylene-C layer was determined by the CVD process. To achieve reliable 

mechanical strength for the following process, a 10 μm thick parylene layer was deployed. The 

parylene layer was peeled off together with CNT bundles from the substrate. As shown in Figure 

3.10(d), the parylene film was attached onto a thin glass slide. Then a layer of 50μm SU-8 was 

deposited onto the parylene layer. The thickness of this SU-8 layer was the same as the height of 

CNT bundles. Due to the transparency of the glass slide and parylene layer, the SU-8 layer was 

exposed from the back side of the glass slide. The catalyst layer under the CNT bundles could act 

as mask in this lithography step. The SU-8 above the CNT bundles would not be exposed. After 

development of SU-8, the parylene top of CNT bundles would not be covered by SU-8 as shown 

in Figure 3.10(e) and Figure 3.11(b). Such a SU-8 layer deposited above the parylene layer could 

act as hard mask for plasma etching. The sealed parylene top of CNT bundles could be etched by 

oxygen plasma as shown in Figure 3.10(f) and Figure 3.11(c). Then the parylene layer was 

released together with the SU-8 cover layer from the glass slide and bonded onto an unexposed 

SU-8 layer deposited on another thin glass slide as shown in Figure 3.10(g). In this process, a 

layer of SU-8 was spin coated and pre-baked on a thin glass slide first. After cooling, the released 

parylene layer was attached onto the SU8 layer then re-bake the SU-8 layer to make it molten. 

After cooling, a good bonding was formed between the parylene layer and the SU-8 layer. The 

sample was exposed from the backside of the glass slide to form a drug reservoir under the parylene 

layer as shown in Figure 3.10(h). The size of the drug reservoir should be slightly larger than the 

dimension of the CNT bundle array. The catalyst layer at the backside of CNT bundles was etched 

off by oxygen plasma and a thin PDMS layer was bonded at the backside as shown in Figure 

3.10(i). For the bonding between PDMS and SU-8, the PDMS layer should be treated with nitrogen 

plasma then be attached onto the SU-8 layer and baked at 120ºC for 30 minutes. Then a 30μm 
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thick SU-8 membrane was patterned on the front layer of sample as shown in Figure 3.10(j) to 

reinforce the structure. On this membrane layer, holes aligned with the CNT bundle array were 

patterned. As shown in Figure 3.10(k), array of SU-8 four-beam sidewalls array was further 

aligned and patterned above the membrane layer. As shown in Figure 3.10 (i), a thick PDMS layer 

with a center hole was bonded at the backside. This PDMS layer was used for tubing purpose. The 

center hole was for the insertion of the tube. Then SU-8 sharp tips were assembled onto the four-

beam sidewalls array by double drawing lithography as shown in Figure 3.10 (m). Finally, a gold 

surface electrode was deposited onto the whole surface by evaporation as shown in Figure 3.10 

(n). The detailed structure of a single microneedle integrated with a CNT nanofilter is shown in 

Figure 3.10 (o). 
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Figure 3.1042 Fabrication process for microneedle array integrated with CNT nanofilters: (a) 
Pattern Fe catalyst layer; (b) Grow vertical CNT bundles; (c) Reinforce the CNT with parylene 
and dry release; (d) Attach the released sample onto a glass slide; (e) Deposit a layer of SU-8 and 
expose from backside; (f) Dry release the sample from glass slide; (g) Bond the release sample 
onto an unexposed SU-8 deposited on a glass slide; (h) Expose from backside to form the drug 
reservoir; (i) Bond a thin PDMS layer with a large central hole at the backside of the sample; (j) 
Pattern a SU-8 membrane layer to reinforce the sample; (k) Pattern a SU-8 four-beam array aligned 
to the CNT bundle array; (l) Bond a thick PDMS layer with a central hole at the backside; (m) 
Assemble the microneedle array by double drawing lithography; (n)deposit a gold layer onto the 
whole surface by thermal evaporation; (o) Detailed structure of single microneedle integrated with 
CNT nanofilters. 
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Figure 3.1143 (a) CNT bundle coated with parylene, the scale bar is 10μm; (b) CNT bundle with 
parylene top embedded in SU-8 layer, the scale bar is 10μm; (c)CNT bundle embedded in SU-8 
layer after oxygen plasma etching, the scale bar is 10μm. 

3.2.2 Characterization of CNT nanofilters within microneedles 
In the fabrication process, the both ends of CNT bundle need to be opened by oxygen 

plasma. Initially the bottom end of CNT bundle is sealed by Fe catalyst layer. Fig 5(a) shows the 

exposed CNTs at the bottom side after oxygen plasma treatment. The infiltration depth of the 

parylene by CVD is limited by the nano-scale gap between the individual CNTs, the inner part of 

the CNT bundle cannot be reinforced by parylene. Thus there is no parylene at the central bottom 

area of the CNT bundles. Fig 5(b) shows the detailed image of the exposed CNTs at the bottom 

end of a CNT bundle after oxygen plasma etching. There is no parylene between the CNTs.  

In the process of etching the top parylene layer, the proper dose of oxygen plasma is critical 

to make the CNTs exposed. Figure 3. 12 (c) shows the top of CNT bundle with the proper dose of 

oxygen plasma. Figure 3. 12 (d) shows the detailed image of the exposed CNTs. In the images, 

tops of individual CNTs could be seen embedded within the parylene reinforcement. No cracks 

between CNT and parylene were observed. The SU-8 layer around the CNT bundle was very rough 

after the oxygen plasma etching. Figure 3. 12 (e) shows the CNT bundles with the over dose 

oxygen plasma treatment. The CNTs were fully exposed and the parylene between CNTs are 

totally etched off. The connection between CNT bundles and parylene sidewalls became very weak. 
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By applying an air pressure from the backside, the whole CNT bundle would be blown away as 

shown in Figure 3. 12 (f). To ensure the CNT bundles are etched with the proper dose of oxygen 

plasma, the whole etching process was divided into several cycles. The samples were checked by 

SEM after every cycle until only the tops of CNTs were exposed as shown in Figure 3. 12 (d). 

 

Figure 3.12 44 Backside of the CNT bundle. The catalyst layer is etched by oxygen plasma. The 
scale bar is 10μm. (b) The detailed image of the backside exposed CNTs. The scale bar is 2μm. (c) 
Top of the CNT bundle with proper etching dose. The scale bar is 20μm. (d) The detailed image 
of the top exposed CNT. The scale bar is 2μm. (e) Top of the CNT bundle with over etching dose. 
The scale bar is 20μm. (f) After applying an air pressure, the CNT bundle within the parylene 
sidewall is blown away. The scale bar is 20μm. 

3.2.3 Nanoparticles blockage test 
By having the CNT nanofilters, nano-scale substance whose dimension is larger than the inner 

diameter of the CNT nanotube should be blocked. However, micro-scale and nano-scale cracks 

may occur in the parylene reinforced CNT bundles which will cause the device failure. It is 

necessary to verify there is no crack in the CNT nanofilters device. Because the whole device is 
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made of polymer which is not suitable for TEM imaging, we leveraged fluorescent nanobeads to 

confirm whether the samples were crack free or not in this study. 

Texas red (Sigma Aldrich, Singapore) whose molecular weight is 606.71 and fluorescent 

nanobead (Sigma Aldrich, Singapore) whose dimension is 80nm were mixed and delivered into 

the mouse skin by the microneedle devices with and without CNT nanofilters. The fluorescent 

images are shown in Figure 3. 13. For the device without CNT nanofilters, both Texas red and 

fluorescent nanobeads are delivered into skin as shown in Figure 3. 13 (a). The color of the mixed 

fluorescent is violet. For the device with CNT nanofilters, the skin shows red color rather than 

violet as shown in Figure 3. 13 (b), which indicates only Texas red is delivered and fluorescent 

nanobeads are blocked. The results confirm that the CNT nanofilters could block nanobeads and 

there was no nano-scale crack in the CNT nanofilters. On the other hand, it has been reported that 

out-of-plane microneedles are not able to be inserted entirely into the skin [67-69]. During the process 

of delivering drug into the skin, we found that there were micrometer scale tiny gaps between 

bottom edge of each microneedle and skin surface due to the skin deformation as depicted in 

Figure 3. 13 (c). The concave skin surface around the edge of microneedle sidewall leaves a tiny 

gap at bottom part of microneedles. To investigate efficacy of microneedles in delivering drug 

even with the existence of these micrometer scale gaps, hydrogel absorption experiments were 

conducted to quantify the delivery rate and the relation between pressure and transport rate of 

drugs. 
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Figure 3.13 45 Fluorescent images of mouse skin: (a) Texas red and nano-fluorescent beads are 
delivered with microneedle device without CNT nanofilters; (b) Texas red and nano-fluorescent 
beads are delivered with microneedle device with CNT nanofilters; (c) The micrometer scale gaps 
occur between skin and bottom edge of a microneedle due to skin deformation. 

3.2.4 In Vitro Drug Delivery Test 
Gelatin hydrogel was prepared by boiling 70 mL DI (Deionized) water and mixing it with 

7g of gelatin powder (KnoxTM original unflavored). After cooling down, the solution was poured 

into a petri dish to 1cm high. Then the petri dish was put into a fridge for half an hour. The Gelatin 

solution became collagen slabs. The collagen slabs were cut into 6mm×6mm sections. A piece of 

fully stretched Parafilm (Parafilm M, USA) was tightly mounted on the surface of the collagen 

slabs. This parafilm was used here to block further diffusion of leaked solution into the collagen 

slab in the delivery process. Then the microneedles penetrated the parafilm and went into the 

collagen slab as shown in Figure 3.14. The drug could be delivered through microneedles and 

absorbed by the hydrogel. 
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Figure 3.14 46 Scheme describing experimental setup to test microneedle device in an in vitro 
hydrogel skin model. Mironeedles penetrate parafilm and collagen hydrogel to subsequently 
deliver drugs with controlled pressure and electric field. 

In the test of glucose delivery, glucose solution was delivered into the collagen slab under 

different pressure and duration. Then the collagen slabs were digested in 1mg/mL collagenase 

(Sigma Aldrich, Singapore) at room temperature. It took around 1h for all the collagen slabs to be 

fully digested. The solution was collected to measure the glucose concentration with Glucose 

Detection kit (Abcam, Singapore). By comparing the readings from the kit with the measured 

concentration standard curve[70], the concentration of the glucose in hydrogel was measured. 

According to the glucose concentration, the absorption rate and solution delivery rate of the 

glucose in the hydrogel were calculated. 

Figure 3. 15 shows that the transport rate of glucose is proportional to the given pressure and 

the duration of the tests. When the pressure is lower than 1 kPa, no glucose could be detected. It 

indicates that the CNT nanofilters could be used as a pressure valve for the delivery of glucose. 

The delivery rate is around 70% for all the test data. It means around 30% of the drug would leak 
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to the surface. More importantly, after the pathways are created through the stratum corneum layer 

by microneedles, the drug which leaked to the skin surface eventually diffused into a deeper layer 

under the stratum corneum layer [71]. 

 

Figure 3.15 47 Glucose delivery quantity as a function of pressure. 

 
We conducted the same hydrogel absorption experiment for insulin. Insulin is a peptide hormone 

and central for regulating carbohydrate and fat metabolism in the body. Due to the poor absorption 

or enzymatic degradation of insulin in the gastrointestinal tract and liver, the transdermal delivery 

has been so far the preferred method of insulin administration. The molecular radius of insulin is 

1.34nm[72] which is smaller than the inner diameter of the CNTs in the device. It could pass through 

the CNTs just by applying pressure. Since the insulin molecules are positively charged in the 

solution, the transport rate could be tuned by applying electric field.  

The insulin solution of 1mg/ml concentration was preloaded in the drug reservoir. Air pressure 

levels in the range from 5kPa to 20kPa were applied for 30mins. The resultant solution samples 

were analyzed by FTIR as shown in Figure 3. 16 (a). The peak value indicates the concentration 
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of insulin in the sampled solutions. From the test results, the concentration of insulin is 

proportional to the pressure level which means the transport rate of insulin through CNTs is linear 

to the pressure level.  

Then the test was repeated by applying bias ranges from -10V to +10V and air pressure ranges 

from 5kPa to 20kPa. The peak value of IR spectra at 4.7μm wavelength was recorded in Figure 3. 

16 (b). The positive bias could facilitate the transport of insulin and negative bias could decrease 

the transport rate. For the line of -7.5V and -10V, when the pressure was lower than 10kPa, the IR 

spectra at 4.7μm wavelength was lower than the noise level thus no insulin was detected. This 

result indicates that the CNT nanofilters could be used as both pressure valve and electric switch 

for the delivery of insulin. And a sufficient reverse bias could balance the air pressure, realizing a 

zero delivery of insulin.  
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Figure 3.16 48 Insulin delivery test result: (a) IR spectra of insulin by applying different pressure; 
(b) The peak value of IR spectra by applying different pressure and bias of electric field. 

Hemagglutinin is a type of antibody that agglutinates red blood cells. It is a cylindrical molecule 

whose longitudinal dimension and diameter are is 13.5 and 6.5nm, respectively [73]. Because the 

length of the molecule, 13.5nm, is larger than the inner diameter of the CNT nanotubes, 10nm, the 

Hemagglutinin cannot pass through the CNT just by applying pressure. 

According to our previous study [74], Hemagglutinin can pass through the CNTs when both 

electric field and pressure are applied together. This is because the cylindrical molecule can be 

aligned by the DEP force. 
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In the test, we applied 5V bias for 1 hour. The pressure changes from 5kPa to 20kPa. The 

sample solution was analyzed with FTIR. The IR spectra were shown in Fig. 3. 17. Due to that we 

used a water based s0olution as background for FTIR analysis, some negative peaks occurred in 

the spectra meaning the absorption was lower than water at that wavelength. The peak value was 

not in proportion to the pressure which indicates that the transport rate of large molecules is not 

proportional to the pressure. No heamagglutinin was detected when no electric field was applied. 

Therefore, the CNT nanofilters could act as an electric switch for the delivery of heamagglutinin. 

 

 

Figure 3.1749 IR spectra of Hemagglutinin by applying different pressure. 

The transport conditions of glucose and Hemagglutinin through CNT nanofilters are different. 

So if glucose and Hemagglutinin are mixed together, a selective transport could be realized by 

controlling the pressure and electric field applied. Then we mixed the glucose and Hemagglutinin 

together and conducted the test again. In one test, only 20kPa pressure was applied. In another test 

5V bias and 20kPa pressure were applied. The duration of both tests was one hour. The IR spectra 
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were shown in Figure 3.18. The green line is the reference of Hemagglutinin and the brown line 

is the reference of glucose. For Hemagglutinin, there is a negative peak at 3.5μm. For glucose, 

there is a positive peak at 4.3μm. When only pressure was applied, only glucose was detected. The 

blue line shows the similar curve as the brown line without the negative peak at 3.5μm. When both 

pressure and electric field were applied, both Hemagglutinin and glucose could be detected. The 

red line indicates both the negative peak at 3.5μm. and positive peak at 4.3μm. This result confirms 

that by controlling the conditions, Hemagglutinin could be selectively delivered while glucose 

could always be delivered. 

 

Figure 3.18 50 IR spectra of mixture solution of difference conditions. 

3.3 Conclusion 

A microneedle array integrated with CNT nanofilters for realization of controlled and selective 

drug delivery has been reported. The SU-8 tips made by the double drawing lithography process 

are sharp and stiff enough to penetrate skin. Nanobeads of 80 nm diameter were blocked in the 

test. It indicates there were no nano-scale cracks in the device and the CNT nanofilters could block 
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all substance larger than its inner diameter. The device could be used for controlled selective 

transdermal drug delivery. The transport rate of glucose and insulin of low molecular weight is 

proportional to the pressure given. But the transport rate of Hemagglutinin, i.e., a large molecule, 

is not in proportion to the pressure. The transport rate of charged molecule such as insulin could 

be tuned by an electric field. For the molecule which could be aligned by DEP force to pass through 

the CNT inner channel, CNT nanofilters could be used as an electrical switch. When the molecule 

is much smaller than the inner diameter of the CNTs, CNT nanofilters could be used as a pressure 

valve. The function of drug administration could be implemented by having the CNT nanofilters 

in microneedle array. It could expand the application of microneedles for a long term automatically 

disease monitoring and drug delivery system. 
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Chapter 4 Bendable microneedle  

Currently the safety issue caused by needle breakage after skin penetration step is the main 

concern for clinically relevant applications. High aspect ratio and sharp tips made of rigid materials 

are necessary for conventional microneedles to provide a successful and reliable skin penetration 

[76-77]. Normally, microneedles made of materials of high Young's modulus such as nickel [78-79], 

stainless steel [80-81] and silicon [82-83], can avoid this needle breakage. However, these materials 

lack of biocompatibility, which is a key requirement for medical devices. On the other hand, 

microneedles made of bio-compatible polymers or natural fibers suffer from low mechanical 

strength. The consequent needle breakage can be induced either by very high buckling force 

attributed to the deformable skin surface during the skin penetration or by the lateral movement 

between the microneedle patch and the skin surface during the drug administration.  

Thus, a novel bendable microneedle is proposed in this chapter to avoid the needle 

breakage during the drug administration. This bendable microneedle array with a soft base and a 

rigid sharp tip can tolerate the deformation associated with skin stretching without breakage when 

the skin patch is applied on the joint such as elbow and knuckle for osteoporosis treatment. In other 

cases, such as diabetes, for which microneedle patches are normally applied on the arm or abdomen, 

a lateral movement between the microneedle patch and skin surface may occur due to either the 

occasional touch or friction. In such case, the bendable microneedle will be dragged out of the skin 

instead of leaving a broken needle in the skin when lateral movement occurs. The sharp tips 

assembled onto the soft bases can be either non bio-dissolvable, i.e., made of SU-8 [84], or bio-

dissolvable, i.e. made of maltose [85]. For the configuration with SU-8 sharp tips, the outlets of the 

microneedles, connecting with the drug reservoirs, are always exposed to air. Both water-soluble 
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and lipophilic drugs can be immediately delivered just after skin penetration. For the configuration 

with maltose sharp tips, the outlets can be fully encapsulated by maltose to inhibit the solvent 

evaporation of lipophilic drug formulation [86]. The drug can be delivered when the maltose tips 

are melted after skin penetration. However, the microneedle with maltose tip is not suitable for 

application of water-soluble drug formulation [87]. The evaporation of water in solvent will cause 

maltose tip melting. Therefore, the water-soluable drug formulation can only be stored in patches 

with SU-8 sharp tips. 

4.1 Configuration and Demonstration of the bendable microneedle 
In order to solve the needle breakage issue after skin penetration, a unique bendable 

microneedle design is proposed here. The bendable microneedle consists of two parts: a soft four-

beam-pillar base made of PDMS and a stiff SU-8 sharp tip. The material of the sharp tips can be 

either SU-8 (Figure 4.1(a)) or maltose (Figure 4.1(b)). These sharp tips were assembled onto the 

four-beam-pillar structured array, which has four vertical gaps along the sidewalls (Figure 4.1(a2) 

and Figure 4.1(b2)). These four vertical gaps serve two functions: firstly, because the sharp tips 

made of SU-8 are not bio-dissolvable, the drug could be delivered out through these gaps; secondly, 

during the drawing lithography process, the sharp tips could form an anchor shape in these gaps to 

enhance the adhesion between sharp tips and four-beam-pillar base. Due to the flexibility of the 

PDMS pillars, the needle will bend when the lateral force applied onto the microneedle exceeds 

the threshold. These anchors of the rigid sharp tips in the gaps could fix the sharp tips onto the 

PDMS pillar and protect them from detaching the PDMS pillars when the whole microneedle is 

bent. Figure 4.1(a3) and Figure 4.1(b3) show the demonstrations of the bendable needle when a 

glass slide pushes the microneedle array from a lateral direction. These needles will bend when 

the lateral force is applied. They will recover to the initial state as long as the force is removed. 

After skin penetration, the relative movement between the microneedle patch and skin is inevitable 
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during the manual operation, which is one the major reasons for needle breakage. The soft PDMS 

pillars at the bottom of the microneedles will bend to absorb the mechanical strain caused by lateral 

movement and further prevent the breaking when this relative movement occurs. Figure 4.1(a4) 

shows a demonstration when the relative movement between skin and microneedle occurs after 

skin penetration. The dash line indicates the contour profile of needle position inside skin; from 

(a4-i) to (a4-iii), the needle penetrated the skin, the whole sharp tip was into the skin; from (a4-

iv) to (a4-v), a lateral movement occurred, the needle had a displacement from its original position. 

The PDMS pillars beneath the SU-8 tip bended and the SU-8 tip still remained within the skin(a4-

vi);  the needle was taken out of the skin and recovered to its original shape without breakage. This 

demonstration confirms that when the relative movement occurs, the needles will bend to match 

the new position of the skin. If the relative movement is too large, then the needles will be dragged 

out the skin and recover the initial state. 
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Figure 4.1 51 Demonstration of the bendable microneedle array. (a1) Optical image of the 
microneedle array with SU-8 sharp tips; (a2) Detailed optical image of an individual bendable 
microneedle with SU-8 sharp tip; (a3) Demonstration of the bendable microneedle array with SU-
8 sharp tips when an lateral force is applied; (i): A glass slide began pushing the needle array from 
a lateral direction, part of the needle array bent; (ii): All the needle array was pushed by the glass 
slide and bended; (iii): The glass slide was removed, all the needles recovered to their original 
shape without breakage; (a4) Demonstration of the bendable microneedle when relative movement 
between skin and microneedle occurs after skin penetration. The dash line is used to indicate the 
contour profile of needle position inside skin;(i) A bendable needle is out of skin before the 
penetration; (ii) The microneedle pressed to penetrated the skin; (iii) The whole needle is into the 
skin; (iv) Al lateral movement occurs, the skin moves rightwards. The need is bent to adapt the 
lateral movement; (v) The distance of the lateral movement exceeds the threshold of the bendable 
needle, then the microneedle is out of the penetration hole; (vi) Lower the skin sample and make 
the bendable microneedle separate from skin surface. The needle recovers to its initial shape; (b1) 
Optical image of the microneedle array with Maltose sharp tips; (b2) Detailed optical image of an 
individual bendable microneedle with maltose sharp tip; (b3) Demonstration of the bendable 
microneedle array with maltose sharp tips when an lateral force is applied. The process is similar 
as in (a3). 
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4.2 Characterization and optimization of the bendable microneedles 
Due to the elasticity of PDMS, the bottom part of the microneedles, which is represented 

by the PDMS pillars, will bend when the force applied onto the microneedles exceeds the buckling 

force. To realize a successful skin penetration, the stiffness of the PDMS pillars are expected to be 

as high as possible. Thus, we conducted a study of the stiffness of the PDMS by tuning the mix 

ratio of elastomer and curing agent. The PDMS with higher concentration of curing agent can have 

a higher stiffness. Here we tested the samples with mix a ratio of 1:4, 1:6, 1:8 and 1:10 for 

microneedles with both SU-8 and maltose sharp tips. Individual microneedles with PDMS base 

and SU-8 sharp tips were subjected to load in order to study their mechanical stability. The 

variation of measured bending force versus displacement was recorded. Figure 4.2(a) shows the 

measured curve of one sample. There are three parts: non-contact region, contact region and bend 

point, as indicated in this curve. The sharp drop of the force after the bend point confirms that the 

needles will not bend when the applied force is below the threshold. The forces of bend points of 

all the samples with different mix ratio of PDMS are shown in Figure 4.2(b). For each mix ratio, 

10 needles were tested. As shown in Figure 4.2(b), for the mix ratio of 1:4, the bending force is 

about 0.8N for SU-8 sharp tips and 1.14N for maltose sharp tips. The bending force decreases with 

the decrease of the mix ratio. The buckling force of needle with maltose sharp tip is higher than 

that of the needle with SU-8 sharp tip because of the different shapes of the sharp tips. As shown 

in Figure 4.1(a2) and (b2), the SU-8 sharp tip is slimmer than the maltose needle. This is because 

the viscosity of SU-8 is lower than that of maltose. During the drawing lithography process, the 

SU-8 sharp tip tends to have a slim central part while maltose sharp tip tends to have a thicker and 

stronger central part. Thus the force to make the needle with SU-8 sharp tip bent is lower than that 

of the needle with maltose sharp tip. Based on previous research[144], the force required for skin 

penetration ranges from 0.1N to 3N for an individual microneedle. The bending force of the 
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microneedle cannot be higher than the maximum force required for skin penetration, which is 3N. 

Thus our bendable microneedle may not able to realize a stable skin penetration.  Here we 

conducted the skin penetration tests with samples of different PDMS ratio to check the 

performance of skin penetration. A 3x3 microneedle array was applied onto skin and the number 

of penetrated holes created by needles was recorded and the results are shown in Figure 4.2(c) and 

recorded in Table 1. For the samples with a mix ratio of 1:4, there are 8 Figure 4.2(i-1) and 6 

Figure 4.2(i-2) penetrated holes on skin for needles with SU-8 sharp tips and maltose sharp tips 

respectively. For the samples with mix ratio of 1:6, there are 4 Figure 4.2(ii-1) and 3 Figure 4.2(ii-

2) penetrated holes on skin for needles with SU-8 sharp tips and maltose sharp tips respectively. 

For the samples with a mix ratio of 1:8, there is no penetrated hole that can be found on skin for 

both needle configurations, as shown in Figure 4.2(iii-1) and Figure 4.2(iii-2). Thus, we could 

conclude that, in order to ensure a good skin penetration, the mix ratio of 1:4 is desirable for the 

device fabrication. The success penetration rate of the needle with maltose sharp tip is lower than 

that of needle with SU-8 sharp tip when the test results of buckling force show an inverse trend. 

Although the maltose needle can stand a higher buckling force, it also requires higher force to 

penetrate the skin. This is because the thicker needle body of maltose sharp tip will affect a wider 

surface area during skin penetration, thus resulting in a higher possibility to get bent during skin 

penetration. Figure 4.2(d) shows the histology image of skin penetration by needles with SU-8 

sharp tip and maltose sharp tip. The micro-channel created by the maltose sharp (Figure 4.2(d-i-

2))  tip is broader than that of the SU-8 sharp tip(Figure 4.2(d-i-1)), which confirms that the 

maltose sharp tip requires more force to penetrate skin. Another parameter that may affect the 

buckling force of the bendable microneedles is the angular of the PDMS pillars beneath the rigid 

sharp tips. When the angular of the pillars decreases from 60°to 30° and the angular of gaps 
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between pillars increases from 30° to 60°, the anchor of the rigid sharp tip will take a higher ratio, 

making the needle more rigid and enhancing the buckling force. However, for the assembly of SU-

8 sharp tips by double drawing lithography, the baking time to melt the SU-8 tip assembled by the 

first step drawing cannot be well controlled to realize a partially filled gap for the samples with 

pillar angular lower than 55°. Because of the large gap angular, once melted, the SU-8 always fills 

the whole gap, leaving no outlet for the drug to be delivered. Therefore, for the needles with SU-

8 sharp tips, we only use the pillars of 60°pillar angular. The drawing process to assemble maltose 

sharp tip is not limited by the pillar angular, thus the buckling force of needle with maltose needle 

by changing the pillar angular is evaluated and reported in Figure 4.2(f). For each pillar angular, 

9 needles were tested. When the pillar angular decreases from 60° to 30° (Figure 4.2(e)), the 

buckling force of the individual needle increases from 0.43N to 0.92N because the whole 

microneedle becomes more rigid. However, the contact area between maltose and PDMS pillars 

also decreases with the decrease of the pillar angular. Thus the maltose sharp tip cannot be well 

fixed within the PDMS pillars and tends to break or detach from the PDMS pillars when the 

vertical force is applied to make the microneedle bent. For the case of 30° pillar angular, 8 of 9 

needles showed sharp tip breakage. The possibility of the needle breakage decreases with the 

increase of pillar angular. For the needles of pillar angular more than 50°, no needle breakage was 

observed in the buckling force tests. As a conclusion, to avoid needle breakage and have buckling 

force as high as possible, pillar angular of 50° is the optimum value for microneedles with maltose 

sharp tips. 

 
Table 1. Details of success rate of skin penetration for needles with SU-8 and maltose sharp tips 
when the mix ratio of PDMS changes from 1:4 to 1:10.  

       Mix ratio 

Needle type 
1:4 1:6 1:8 1:10 

SU-8 sharp 
tips 

8/9 4/9 0/9 0/9 
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Maltose sharp 
tips 

6/9 2/9 0/9 0/9 

 

 

Figure 4.252 Optimization of PDMS stiffness and pillar angular of bendable microneedles for 
higher buckling force and success rate of skin penetration. (a) A representative example of the 
buckling force test result for bendable microneedle; (b) A representative example of the buckling 
force test result for bendable microneedle; (c) (c) Skin penetration results of microneedle with 
PDMS mix ratio of 4:1, 6:1 and 8:1 for needles with SU-8((i-1), (ii-1) and (iii-1)) and maltose((i-
2), (ii-2) and (iii-2)) sharp tips: (i-1) and (i-2): The mix ratio is 4:1 and the number of penetrated 
holes are 8 and 6 respectively ; (ii-1) and (ii-2): The mix ratio is 6:1 and the number of penetrated 
holes are4 and 3 respectively; (iii-1) and (iii-2): The mix ratio is 8:1 and there is no penetration 
holes on the skin; (d) Histology image of skin penetration by needles with SU-8 sharp tip(i-1) and 
maltose sharp tip(i-2). The scale bar is 200μm; (e) Optical image of the PDMS pillar of angular 
changing from 60° to 30°; (f) Buckling force test and possibility of needle breakage of needle with 
maltose sharp tip by changing the pillar angular from 60° to 30°. 
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4.3 Conclusion 

A unique bendable microneedles were proposed to overcome the safety issue associated 

with the microneedle breakage during the application. The PDMS mix ratio and pillar spacing are 

optimized for a maximum buckling force to enhance the skin penetration success rate. To adapt 

the applications for water-soluble and lipophilic drug formulations, two kinds of microneedle 

configurations are developed. Microneedles with SU-8 sharp tips are more suitable for the storage 

of water-based drugs while microneedles with maltose sharp tips are more suitable for the storage 

of lipid-based drugs. Such bendable microneedle can be integrated onto other flexible skin patch 

for transdermal drug delivery. 
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Chapter 5 Self-powered Wearable Adhesive Skin Patch 

with Bendable Microneedle Array for Transdermal 

Drug Delivery 

Wearable flexible electronic medical devices have received major attention recently owing 

to their considerable practicability for several applications [88-97], including health monitoring and 

drug delivery for disease treatment [98-100]. The bendable microneedle introduced in the last chapter 

is promising to be integrated with flexible electronic device to realize a wearable drug delivery 

function. 

Moreover, one key feature for wearable medical device is the fixation method. Acrylic 

medical bandage is widely used for medical patches. However, aging skin is more sensitive and 

vulnerable to a prolonged exposure to Acrylic medical bandage which is skin irritating and non-

bio-compatible. Dry adhesive, which is inspired by the hierarchical structure on Gecko foot hair 

[101-102], possesses several advantages compared with conventional acrylic medical bandages: First, 

it shows repeatable and restorable adhesion with surface cleaning after each usage. Second, the 

physical structure to generate adhesive force is less affected by surface contamination, oxidation 

and other environmental stimuli. Third, the space between the pillars for ventilation of air should 

provide better bio-compatibility. Hence, we also adopt the dry adhesive for the fixation of the 

whole device on the skin.  

To construct a complete drug delivery system for home healthcare monitoring, it is 

important to have feedback control function of the delivered drug. It can alert patients and provide 

the guidance when the dose of the drug to be delivered should be accurately controlled [103-106]. 
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Currently, several wearable sensors for health monitoring have been explored, including devices 

that measure hydration [107], strain [108], glycaemia [109-111], metabolic acid [112] and cardiorespiratory 

signals [113]. For a further integration of diversified sensors mentioned above and construct a 

standalone wearable drug delivery skin patch with capability of health monitoring, signal process 

and interfacing with external cloud computing apparatus, a built-in energy source is inevitable to 

power components such as integrated circuits(ICs), microprocessor, liquid-crystal display(LCD) 

reading panel. Triboelectric energy harvester (TEH) typically using patterned PDMS is compatible 

with the fabrication process of flexible skin patch with microneedles. Thus, TEH is the most 

promising technique to fulfil the above-mentioned requirements.  

In this chapter, the bendable microneedles were integrated on a wearable skin patch. The 

micro-patterns of the dry adhesives can provide the adhesive force.  Meanwhile, the same 

microstructure of the dry adhesive are used for triboelectric patch to harvest energy from the 

contact with human skin, which has not been reported yet. Considering the locations for patch 

attached can be on flat skin surface like arm and abdomen or on joints like elbow and knuckle in 

different applications, we studied and developed two kinds of configurations to adapt these two 

situations for energy harvesting. 

5.1 Configuration and fabrication process of the microneedle skin patch 
We propose a stretchable adhesive flexible microneedle skin patch attached onto flat skin 

surface or joint parts, i.e., s elbow and knuckle, as shown in Figure 5.1 (a). The whole skin patch 

consists of four functional components: bendable microneedle patch; dry adhesive patch; 

triboelectric energy harvester patch and drug delivery system with pump and drug reservoirs 

connected to the bendable microneedle skin patch. The detailed structure is depicted in Figure 5.1 

(b). The microneedle and triboelectric patches are connected with three dry adhesive patches to 
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make the whole wearable device able to be fixed onto the curved skin surface. The microfluidic 

control system with pump and drug reservoirs [113] can be assembled at the backside of the 

microneedle patch to control the drug delivery after the skin penetration. The detailed working 

principle of the pump system will be introduced in Chapter 6. 

The structure of an individual bendable microneedle is shown in Figure 5.1 (c) where it 

consists of a bendable four-beam-pillar base and a rigid sharp tip. The bendable pillar base is made 

of PDMS with optimized stiffness to ensure a high success rate of skin penetration, while certain 

volume deformation is allowed. A rigid sharp tip for skin penetration can be assembled onto the 

four-beam-pillar base structure by using double drawing lithography process. The gaps between 

the pillars can be partially filled with the same materials to form microneedles during the drawing 

lithography step. It provides anchoring between the sharp tip and soft base in order to fix the sharp 

tip onto the soft base and protect it from breakage when the whole microneedle is bent. Another 

functional component is the TEH patch for energy harvester. The triboelectric contact surface with 

PDMS micro-patterned structure can enhance the performance. Here we used the micro-pillar 

array with and without mushroom top, which is obtained from the same fabrication process of the 

dry adhesive patch, as the surface micro structure for TEH patch. Meanwhile, we also tested the 

sample with pyramid micro structure, which is normally used for TEH [114-117], as a comparison.  

Two methods were developed to generate power from the TEH patch by applying the skin 

patch on different locations of the human body. When the patch is attached to the elbow of a 

straight forearm, the spacing between two dry adhesive patches is slightly shorter than the length 

of the TEH patch. Thus the TEH patch is bent and has no contact with skin surface at this initial 

state. Then when the joint is bent, the TEH patch is stretched and in contact with the skin. 

Thereafter, when the joint is straight again, the spacing between two dry adhesive patches is 
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compressed to make the TEH bent and separate from skin. Power can be harvested by repeating 

this cycle as illustrated in Figure 5.1 (g).  

For the case in which the patch is applied onto a flat skin surface like arm and abdomen, 

power can be generated by pressing and releasing the TEH patch to induce contact and separation 

between TEH patch and skin surface as illustrated in Figure 5.1 (f). However, due to the sticky 

surface of PDMS, once the triboelectric contact surface is pressed onto skin, it cannot 

automatically separate from skin when the pressing is released. To solve this problem, a dry 

adhesive patch is assembled at the backside of the TEH patch as shown in Figure 5.1 (d). When 

the finger lifts up, the dry adhesive can provide a pulling force to make the TEH detach from the 

skin surface. Because the adhesive force provided by the dry adhesive is limited, the dry adhesive 

will detach from finger when lifted up to a certain height. In order to have a maximized output 

power of TEH patch, the dry adhesive is optimized to provide a maximum lift-up height. 
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Figure 5.1 53  (a) Concept of the flexible microneedle skin patch attached on arm, elbow and 
knuckle. The patch consists of four functional components integrated on a whole PDMS sheet: 
Microneedle patch; Dry adhesive patch, TEH patch and pump system. (b) Detailed structure and 
functional components of the flexible microneedle skin patch; (c) Detailed structure of an 
individual bendable microneedle; (d) Detailed layer structure of the TEH patch; (e) Image of 
fabricated skin patch; (f) Attach the patch on flat skin surface like arm, power can be generated by 
pressing and lifting up the TEH patch (g) Attach the patch at the joint like elbow or finger, power 
can be generated by bending and unbending the elbow or finger. 

 

The dry adhesive film in the skin patch is used to fix the whole device onto skin surface 

and also provides the pulling force to separate the TEH patch from the skin which will be 

mentioned in the next section. The detailed fabrication process can be found in Figure 5.2. 
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Figure 5.254 The fabrication process of the flexible microneedle skin patch. 

5.1.1. Fabrication process for bendable microneedle array 
(a), (b) and (c) show the fabrication process of the bendable microneedle patch. This 

microneedle comprises two PDMS layers and sharp tips.  
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The first PDMS layer is for the pillars supporting the sharp tips and the film holding the PDMS 

pillars as shown from (a1) to (a3). A SU-8 layer on silicon substrate was patterned to form the 

holes which are used as the mold for PDMS pillars as shown (i) and (vi). A SU-8 pillar was further 

patterned at the center of the holes as shown in (a2), (ii) and (vii). A PDMS layer was then spin 

coated onto the SU-8 layer to fill the SU-8 holes. But the thickness was not thick enough to cover 

the top of the SU-8 pillar as shown in (a3) and (iii). Thus, after the release of the PDMS layer off 

from the SU-8 layer, there will be a delivery hole located at the center of the four PDMS pillars as 

shown in (iv). These delivery holes form the connection between microneedles and other 

microfluidic channels.  

The second layer is for the micro-channels array connecting the delivery holes as shown 

from (b1) to (b3). A SU-8 layer of the negative pattern of the micro-channel array was patterned 

on silicon substrate as shown in (b1) then covered with a PDMS layer as shown in (b2). Then the 

PDMS was cured by baking and released from the SU-8 layer as shown in (b3). A center hole was 

drilled by punch at the center of the channel array. This hole is to connect the channel array and 

the pump system in the final assembly process.  

Then align the second PDMS layer with the first layer of PDMS which is still on the SU-8 

mold as show in (c1) then bond these two layers by oxygen plasma treatment as shown in (c2). 

Release these two layers together off from the SU-8 mold as shown in (c3). Then rigid sharp tips 

were assembled by double drawing lithography as shown in (c4), (v), (x). (xi) shows the delivery 

hole within the four-beam pillar structure. The material can be maltose or SU-8 by leveraging the 

similar process.  
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5.1.2 Fabrication process for dry adhesive 

The dry adhesive is fabricated by leveraging the inking and printing technology. A PDMS 

layer with un-inked micro-pillar array was achieved by demolding the PDMS from SU-8 mold as 

shown from (d1) to (d3). A SU-8 mold of 20μm thickness with micro-pattern of hole array was 

patterned on silicon substrate as shown in (d1). Then a PDMS layer was spun onto the SU-8 mold 

to fill all the holes on SU-8 mold as shown in (d2). Then cure and demold the PDMS layer off 

from the SU-8 mold as shown in (d3) and (viii). The height of the pillar is 20μm, which is the same 

as the thickness of the SU-8 mold. 

The mushroom top which is necessary for dry adhesive to enhance the adhesive force is 

achieved by inking and printing process as shown from (e1) to (e5). A thin film of un-cured PDMS 

(5μm) was spun coat on a silicon chip as shown in (e1). Then the array of un-inked micropillars is 

inked in the un-cured PDMS film as shown in (e2). Subsequently, when lift the PDMS layer up 

from the un-cured PDMS film, small drops of un-cured PDMS is placed at the top of the array of 

un-inked micropillars as shown in (e3). Then the array was gently pressed against a silicon chip 

with treatment of detergent on the surface to peel sample easily as shown in (e4). Bake the sample 

to cure the PDMS droplet and release the dry adhesive off from the silicon chip as shown in (e5) 

and (ix).  

5.1.3 Fabrication process for TEH patch 

We leverage the pillar array which is achieved in (d3) as the surface micro-pattern required 

for TEH patch. A copper layer (200nm) was deposited by thermal evaporation at the backside of 

the PDMS layer as shown in (f1). Then a kapton layer was attached above the copper layer to fix 

the metal wire and protect the metal from scratching as shown in (f2). To study the different of 

performance by using different surface micro-patterns, we also use the dry adhesive in (e5) instead 
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of the pillar array in (d3) for the TEH patch. As a comparison with normal triboelectric patch, the 

pyramid surface micro-pattern is also used for TEH patch.  

5.1.4 Fabrication process of the complete patch 

All the functional patches are assembled onto a long PDMS sheet (200μm thickness) as 

shown in (g). For bendable microneedle patch, dry adhesive and pump system, they can be directly 

bonded onto the PDMS sheet by oxygen plasma treatment. Before the bonding of the bendable 

microneedle patch, a hole was drilled and aligned to the hole on the backside of the bendable 

microneedle patch to connect the bendable microneedle patch and pump system. The TEH is fixed 

by double side tape onto the PDMS sheet because the backside of the TEH patch is Kapton and 

cannot be directly bonded by oxygen plasma. 

5.2 Characterization of the dry adhesive 

To ensure the patch can be steadily fixed onto the skin, the normal adhesive force of the 

dry adhesive patch with two sets of pillar (diameter of 11μm and 13μm) and different ratio of pillar 

spacing vs pillar diameter (range from 20/11 to 3 ) was characterized. The adhesion strength was 

measured up to 10 repeating cycles for each sample by Instron Microtester 5848 (Instron, USA). 

The sample was attached onto the glass or skin and the normal force was applied by the Microtester 

from the backside to peel the dry adhesive off. The maximum force was recorded as the adhesive 

force. Figure 5.3 (a) and (b) show the adhesive force on glass and skin of each cycle. The dry 

adhesive was cleaned with acetone after each cycle to prevent the contamination and recover the 

adhesive force. The sample with 20μm pillar spacing can achieve higher adhesive force than the 

sample with 24μm pillar spacing when the pillar diameter is 11μm. For the test on the glass, the 

adhesive force does not have an obvious decline as shown in Figure 5.3 (a). However, for the test 

on the skin, there is a decline of the adhesive force when repeating the test cycles. This is because 
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the deformable skin will cause more damage on the mushroom top when the dry adhesive was 

pressed onto skin surface. Thus repeating the test cycles will accumulate the damage of mushroom 

and further reduce the adhesive force.  

The characterization of the adhesive force on the glass and skin by changing the pillar 

spacing for pillars of 11μm and 13μm diameter is shown in Figure 5.3 (c) and (d). The test results 

agree with the data in (a) and (b). The adhesive force decreases when the spacing increases. And 

the adhesive force of the patch with 13μm diameter is a bit lower than that with 11μm due to the 

lower pillar aspect ratio when the pillar diameter is higher. Base on the characterization of the dry 

adhesive force, we can conclude that the sample with 11μm pillar diameter and 20μm pillar spacing 

can achieve the highest adhesive force. Therefore, this parameter is adopted for the dry adhesive 

to be integrated on the patch of complete device. 



117 
 

 

Figure 5.355 Characterization of the adhesive force of dry adhesive patches by changing the pillar 
diameter and pillar spacing. Adhesive force test by repeating 10 cycles on glass (a) and on skin(b). 
After each test cycle, the dry adhesive patch was cleaned by acetone. The diameter of the pillar is 
11μm; Average adhesive force of the dry adhesive patches on glass(c) and skin(d) for samples 
with pillar diameter of 11μm and 13μm. 

5.3 Characterization of the TEH patch 

5.3.1 Comparison of the TEH patches with different surface micro-patterns 
A dielectric PDMS layer with micro-patterns was used to enhance the effective surface 

area and output voltage. Here we studied the performance by using micro-pillar with and without 

mushroom top and pyramid as the micro-patterns. At the backside of the dielectric PDMS layer, a 

Cu layer of 200nm thickness was deposited by thermal evaporation. Then a Kapton layer was 

attached above the Cu layer to protect the metal from scratching and friction. As mentioned before, 

to adapt the different locations for our patch to be applied, we developed two methods to generate 
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power. For the first case when the patch is applied on flat skin as shown in Figure 5.4 (a), the 

distance between two dry adhesive patches is a bit shorter than the original length of the TEH 

patch, making the TEH patch bent upward and having no contact with skin surface (Figure 5.4 (a-

1-i)). Then the TEH patch is pressed by finger and contact with the skin surface, as shown in 

Figure 4(a-1-ii), then is separated from skin again by lifting up the finger as shown in Figure 5.4 

(a-1-iii). Due to the sticky surface of PDMS, once the TEH is attached onto the skin, it cannot 

separate from skin without a pulling force. Thus, a dry adhesive patch is assembled at the backside 

of the TEH patch, providing the pulling force by having the adhesive force between the finger and 

dry adhesive patch. The detailed charge transport process is shown in Figure 5.4 (a-2). When the 

TEH patch was pressed onto the skin surface (Figure 5.4 (a-2-i)), there is charge transport between 

them. According to the triboelectric theory, electrons are transferred from the PDMS to the skin 

during the electrification process, since PDMS is more triboelectrically negative than skin as 

shown in Figure 5.4 (a-2-ii). The change of the negative charges on the surface of the PDMS 

induces positive charges on the Cu electrode, driving free electrons to flow from the Cu layer to 

the ground. An output voltage or signal is generated. Once the finger is lifted up, making the PDMS 

and skin separated (Figure 5.4 (a-2-iii)), the recovery of the surface negative charge on PDMS 

surface will induce a backflow of electrons from ground to Cu electrode. An opposite signal will 

be generated.  

According to the V–Q–x relationship for contact-mode TEHs [119], the output voltage is 

determined by the following equation: 

  𝑽𝑽 = 𝑬𝑬𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 × 𝒅𝒅 + 𝑬𝑬𝒂𝒂𝒅𝒅𝒅𝒅 × 𝒙𝒙  ……………………..(1)                                                                                                                         

where Edielectric is the electric field though the dielectric layer, which is PDMS layer here, 

generated by the tribo-charges on the opposite sides of the TEH; d is the thickness of the dielectric 
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layer; Eair is the electric field though the spacing between the top surface of TEH and contact 

surface, this electric field is generated by the tribo-charges on the TEH surface and contact surface; 

x is the spacing between the TEH surface and contact surface. The output voltage should increase 

with the increase of the spacing between the TEH surface and contact surface in the ideal fully 

contact-mode TEHs. Thus to achieve the maximum output power, the TEH should be lifted up as 

high as possible. The maximum height to be lifted up is determined by the spacing between the 

two adhesives. When this spacing decreases, the TEH can bend upward more and have a large 

distance away from the skin surface. However, a shorter spacing between the two dry adhesive 

patches also decreases the effective contact area between the TEH patch and skin. It will further 

lower the quantity of the tribo-charges to be generated. The spacing between the two dry adhesive 

patches is optimized in Figure 5.5 to achieve a maximum lift-up height. The adhesive force should 

provide a certain adhesive force to lift up the TEH to the maximum height. Otherwise, before the 

TEH is lifted up to the maximum height, the finger will detach from the dry adhesive because of 

the insufficient pull force. Based on the adhesive force characterization in Figure 5.4, output 

voltage of dry adhesive patches with different adhesive forces are tested in Figure 5.5. The dry 

adhesive with highest output voltage was selected to be assembled at the backside of the TEH for 

output power characterization in Figure 5.4 (b) and Figure 5.4 (c).  

In order to calculate the power generated by the TEH, a load resistor was connected 

between TEH patch and ground. The finger pressing of 2Hz frequency was applied to generate the 

power. The voltage was then measured across the load resistor to obtain the power generated by 

the TEH. As the load resistance was increased, the power output increased, peaked at a point, and 

then started dropping thereafter. The voltage and power characteristics of TEH with different 

surface micro-patterns and load resistance are shown in Fig 5(b) and 5(c). The maximum power 
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output for TEH patch with pillar with and without mushroom top assembly and pyramid are 11.79 

μW, 13.3 μW and 15.21 μW, respectively; when the load resistance values are approximately 23.08 

MΩ, 37.5 MΩ and 44.44 MΩ, respectively, as shown in Figure 5.4 (c). This load resistance for 

peak output power represents the inner impedance of the TEH patch. The TEH with pyramid 

surface micro-patterns generates a higher voltage and output power, but also gives a higher inner 

impedance. The inner impedance is determined by the following equation: 

2
0 max

0

( )
opt

d xR
Svε
+

≈        ……………………..(2)                                                                                                                         

where Ropt is the inner impedance; d0 is the thickness of the PDMS layer; xmax is the 

maximum height to be lifted up for TEH patch; S is the effective area size of TEH patch which 

can be altered by the surface micro-patterns; v is the speed of the TEH to be lifted up; ε0 is the 

dielectric constant of air. 

For the TEH patches whose surface micro-patterns are pillar with and without mushroom 

tops, the contact surface is stickier than the TEH patches with pyramid surface micro-pattern. Thus 

when the TEH patches were lifted up, TEH with pyramid surface micro-pattern has a faster 

detachment from skin, thus with a higher v, result in a narrower and higher output voltage pulse. 

However, when the height of the micro-pillar, which is 20μm, is much higher than the height of 

the pyramid, which is 1.37μm, the micro-pillar structure can provide a higher S, effective area size 

of TEH patch, than the pyramid structure and further lower the inner impedance.  

Another method to generate the power is to attach the device to the joint. In this case, when 

people bend and straight their joint, the skin will be stretched and compressed, making the TEH 

patch contact and detach the skin. Thus, the dry adhesive on the backside of TEH patch is not 

required. The test result of the output voltage and output power is shown in Figure 5.4 (d) and (e) 

showing the same trend as that of (b) and (c). The maximum power output for TEH patch with 
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pillar with and without mushroom top assembly and pyramid are 12.4 μW, 13.4 μW and 15.6 μW, 

respectively; when the load resistance values are approximately 28.1 MΩ, 37.7 MΩ and 46.8 MΩ, 

respectively. 
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Figure 5.456 (a) Working principle of the TEH patch when applied on flat skin surface; 
Characterization for the TEH output voltage(b) and power(c) when applied on flat skin; 
Characterization for the TEH output voltage(d) and power(e) when applied on finger knuckle. 
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5.3.2 Optimization for TEH patch configuration 

 

Figure 5.557 Open circuit voltage by changing the spacing between two adhesive for the TEH 
attached on arm; (b) Open circuit voltage by changing the pillar spacing of the dry adhesive patch 
at the backside of the TEH patch; (c) Open circuit voltage by changing the spacing between two 
adhesive for the TEH attached on finger knuckle; (d) Average width of the pulse for the signal in 
(a).  

The spacing between the two dry adhesive patches beside the TEH patch will affect the 

maximum height to be lifted up and further affect the maximum output voltage. The test results of 

the output voltage of the TEH patch by changing the spacing between two dry adhesive patches 

for the situation when the TEH was applied on arm is shown in (Figure 5.5 (a)). The length of the 

TEH patch is 2cm. Thus the spacing between two dry adhesive patches decreases from 2 cm to 

1cm with 0.2cm step. The output voltage peaks at 1.4cm because the increase of the height to be 

lifted up. Then it declines by reducing the spacing because the effective contact area reduces when 
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the spacing is too low. For the situation when the TEH patch was applied on finger knuckle, the 

rest results are shown in Figure 5.5 (c). The output voltage peaks at 1.6cm. Another fact will affect 

the lift- up height is the adhesive force of the dry adhesive patch assembled at the backside of the 

TEH patch. If the adhesive force is not sufficient, it will detach from finger before the TEH patch 

is lifted up to the maximum height. Based on the adhesive force characterization in Figure 5.4, we 

selected the sample of 11μm and pillar spacing ranges from 20μm to 32μm in the test. In this test, 

only micro-pillar without mushroom top is used. As shown in Figure 5.5 (b), the voltage decrease 

with the increase of the pillar spacing because of the reduction of the adhesive force. Only the dry 

adhesive patch with 20μm spacing can give the highest output voltage which indicates that the 

highest lift-up height. The width of the pulse for the signal measured in Figure 5.5 (a) is shown in 

Figure 5.5 (d). As mentioned in paper, because the TEH patch with pillar-based micro-pattern is 

stickier than that with pyramid micro-pattern, thus it takes longer time to detach from skin surface 

and generate a broader pulse. The average width of the pulse for pyramid, pillar with and without 

mushroom top assembly is 19ms, 22ms and 26ms, respectively.  

 5.4 Conclusion 

We developed a stretchable wearable flexible medical device for transdermal drug delivery. 

Unique bendable microneedles were proposed to overcome the safety issue associated with the 

microneedle breakage during the application. The PDMS mix ratio and pillar spacing are 

optimized for a maximum buckling force to enhance the skin penetration success rate. To adapt 

the applications for water-soluable and lipophilic drug formulations, two kinds of microneedle 

configurations are developed. Microneedles with SU-8 sharp tips are more suitable for the storage 

of water-based drugs while microneedles with maltose sharp tips are more suitable for the storage 

of lipid-based drugs. We leverage the dry adhesive as the fixation method to realize a conformal 
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attachment. The micro-pillar structure achieved in fabrication of dry adhesive is also investigated 

as a TEH patch which is a promising energy source for other active components. Two methods for 

power generation, based on different positions for skin patch to be attached, were developed and 

characterized. Thus the TEH patch can generate power no matter the patch is attached on flat skin 

or joint part.  
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Chapter 6 Towards self-powered Microneedle skin 

patch integrated with Triboelectric liquid volume 

sensor for lab-on-chip applications  

For the treatment of diseases such as type 2 diabetes and osteoporosis, multiple drug 

injections per day with dose control of each injection will be necessary. Thus, large delivery 

volume and a precise control mechanism are desirable features for wearable skin patch drug 

delivery system but not developed yet. It means within the skin patch, a liquid volume sensor with 

proper mechanism should be integrated with the fluidic system for drug loading and delivery. 

Moreover, a standalone wearable drug delivery skin patch with capability of health monitoring, 

signal processing and interfacing with external cloud computing apparatus, an built-in energy 

source is inevitable to power components such as integrated circuits (ICs), microprocessor, liquid-

crystal display (LCD) reading panel, drug delivery and control actuators, and diversified sensors, 

e.g., glucose sensor.  

In this chapter, we report a LoC drug delivery patch with manually-controlled drug delivery 

function and power source which is suitable for further integration with other active components 

for more applications. The key innovation of our design is that the liquid volume could be sensed 

by a triboelectric mechanism using the same materials for LoC. Thus the delivery volume can be 

well measured and controlled during the drug delivery process. The bendable microneedle array 

was assembled onto the patch to confirm the drug control function by insulin delivery tests on rats. 

By leveraging the similar triboelectric mechanism as the liquid sensor, we developed and 

optimized a stacked layer design triboelectric energy harvester(TEH) which is suitable to be 
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attached onto the patch as an energy source. Such energy source can be used to support the 

operation of other components. 

6.1 Structure and fabrication process 
6.1.1 Structure of the skin patch 

 

Figure 6.1 58 (a) Concept of the flexible microneedle skin patch attached on skin; (b) Detailed 
structure and functional components of the flexible microneedle skin patch with manual-controlled 
insulin delivery and delivery volume monitoring function. (i) TEH assembled on the top surface 
of the skin patch as power source for other functional active components to be integrated in the 
future; (ii) Delivery volume sensor using triboelectric mechanism to measure the drug volume to 
be delivered and control the insulin dose; (iii) Bendable microneedle array for skin penetration; 
(iv) Microfluidic control system including a pump chamber, two check-valves and drug reservoirs; 
insulin can be loaded and delivered by pressing the pump chamber. 
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We propose a flexible microneedle skin patch with manually-controlled drug delivery, dose 

volume monitoring, bendable microneedles and TEH as shown in Figure 6.1. The whole device 

consists of four functional components: microfluidics control system, bendable microneedle array 

for skin penetration, delivery volume sensor and TEH.  

The microfluidics control system has four parts: two check-valves in series, a pneumatic 

pump-chamber between these two check-valves, several drug reservoirs in series and microfluidic 

channels connecting all these components. By having this microfluidics control system, drugs can 

be manually loaded and delivered.  

The bendable microneedle array, connected with the microfluidic control system by a 

vertical channel, is assembled onto the top surface of the microneedle patch. After skin penetration, 

drugs stored in the drug reservoirs will be delivered into skin through this microneedle array when 

we use fingertip to press the pump chamber.  

The main component of the delivery volume sensor above the pump chamber leverages the 

triboelectric sensing mechanism which has yet been demonstrated as liquid volume sensor. 

Currently, triboelectric sensing mechanism has been investigated in terms of chemical sensor[120-

123], pressure sensor[124-126], motion sensor[127-133] and tactile sensor[134-136] because of its advantage 

of easy fabrication and self-powered feature. Here we assembled a triboelectric layer pair with the 

same area as the pump chamber, i.e., of 1.2×1.2 cm2 for sensing delivery volume.  
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Figure 6.259 (A) Cross-sectional view of the lab-on-chip drug delivery patch; (B) Working 
principle of the TEH for the delivery volume sensor; (b1) to (b3) shows the a magnification of 
layer structure and charge polarity in (a1) to (a3).(C) Detailed image shows the parylene layer to 
encapsulate the TEH patch and coated on the bottom of the chamber. 

 
 A detailed cross-sectional view of the device without microneedle is shown in Figure 6.2. 

The microfluidics control system has four parts: two check-valves in series, a pneumatic pump-

chamber between these two check-valves, several drug reservoirs in series and microfluidic 

channels connecting all these components. By pressing the pump chamber, the liquid will be 

sucked into the channel from the inlet and delivered out from the outlet as shown in Figure 6.2 

(A). The detailed structure and working principle are shown in Figure 6.3. 

Figure 6.2 (B) shows a detailed structure of the TEH assembled for liquid volume sensor. 

A dielectric PDMS layer with pyramid shape micro-patterns was used to enhance the surface area 

and output voltage. Underneath the PDMS layer, a Kapton tape was attached as an intermediary 
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layer for metal deposition. To have a better adhesion between Cu and Kapton, a Cr layer was 

deposited before the deposition of Cu layer. In order to protect the metal layer, a parylene layer 

was coated by CVD onto the whole surface of the TEH, including the PDMS top surface. Then 

the TEH was assembled in a PDMS chamber with Al layer coated on the ceiling. 

In the original position, the surface of the TEH and ceiling are not in contact (Figure 6.2 

(a1) and (b1)). When the bottom layer of the pump chamber is pressed, the liquid or the air in the 

in the pump chamber will be compressed and the top layer of the pump chamber will also be 

deformed. This deformation will induce a contact between the top layer of the TEH and the ceiling 

of the PDMS chamber, resulting in charge transport between them (Figure 6.2 (a2) and (b2)). 

According to the triboelectric theory, electrons are transferred from the parylene to the Al during 

the electrification process, since parylene is triboelectrically negative and Al is triboelectrically 

positive. The change of the negative charges on the surface of the parylene can induce positive 

charges on the Cu electrode, driving free electrons to flow from the Cu layer to the ground. An 

output voltage or signal is generated. Once the pressing is released, the parylene and Al surfaces 

are separated (Figure 6.2 (a3) and (b3)). The recovery of the surface negative charge on parylene 

surface will induce a backflow of electrons from ground to Cu electrode. An opposite signal will 

be generated. The output voltage is generated by the contact between parylene and Al and it is 

determined by the contact area. And this contact area is also determined by the deformation of the 

pump-chamber, which is related with the delivery volume. Thus, based on the output signal, the 

delivery volume can be measured.  

To avoid the interference from the backside of the TEH, the bottom of the chamber is also 

coated with parylene as shown in Figure 6.2 (C). Thus, the backside of the TEH and the bottom 
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surface of the chamber are of the same material. The contact of these two interfaces will not 

generate any output voltage.  

To achieve the highest voltage, the surface materials of the triboelectric layer pair should 

be optimized. The gap between the top and bottom of the delivery volume sensor is critical to 

measurement accuracy of the liquid volume sensor. To ensure a good accuracy of this delivery 

volume sensor, this gap is also optimized. 

6.1.2 Structure and working principle of the pump and check-valves for microfluidic control 
system 
 

 
Figure 6.3 60 Structure and working principle of the pump chamber and check-valves. 

The design and working principle of the pump-chamber and check-valves are illustrated in 

Figure 6.3. The pump -chamber is located between two check-valves. The check-valve has three 

parts: a thin PDMS membrane layer with a hole, a top layer that contains a discontinuous channel, 

and a bottom layer that contains a short segment of a channel. The device was formed by bonding 

these three layers together. But the contact area between the protruding poster of the top layer and 

center membrane layer should not be treated with Oxygen plasma. When pressure applied, the 
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center membrane could detach from the top layer and deform. During the plasma treatment, the 

contact area will be covered by a piece of Al foil. These two check-valves ensure that the liquid or 

air can only enter the pump-chamber through one valve, and leave the pump-chamber through the 

other. Due to the elasticity of PDMS, when the bottom layer of the pump-chamber is pressed and 

deformed, the pressure in the pump-chamber will increase. For check-valve 1, this high pressure 

in the pump-chamber will make the chamber below the membrane expand. Thus the membrane 

will be pushed and attach tightly onto the protruding poster of the upper layer, sealing the channel. 

Then check-valve 1 is off. For check-valve 2, this high pressure in pump-chamber will push the 

membrane of the check-valve 2 and make it deform. Then check-valve 2 is on and the air or liquid 

in the pump chamber can pass through. When the bottom layer of the pump-chamber is released, 

the pump-chamber tends to recover its initial shape. Thus the pressure in pump-chamber is low. 

This low pressure in the pump-chamber will make the membrane of check-valve 1 have a 

downwards deformation. Then the check-valve 1 is on and the air or liquid outside the device can 

be sucked into the pump-chamber. Meanwhile the low pressure in pump-chamber will make the 

membrane of check-valve 2 have an upwards deformation and seal the channel. Then check-valve 

2 is off.  

In summary, one check-valve can be on only when another check-valve is off. Then a one 

directional flow can be formed by pressing the pump chamber. 

6.1.3 The fabrication process of the TEH 
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Figure 6.461 Fabrication process of the TEH 

Figure 6.4 shows the fabrication process of the TEH used for energy harvester and delivery 

volume sensor. The process of the TEH fabrication started from a Si wafer with pyramid shape 

holes as shown in (a). A PDMS layer was coated and cured onto the Si mold as shown in (b). The 

thickness of the PDMS layer was controlled by the spin rate of the spin coater. Then attach the 

Kapton tape at the backside of the PDMS layer as shown in (c). Two layers of metal were coated 

onto the Kapton tape by evaporation as shown in (d). The first layer of Cr is to enhance the 

adhesion between Cu and Kapton tape. Then PDMS layer with Kapton and metal layers was 

released from the Si mold and encapsulate it with parylene by CVD. This parylene layer can protect 

the metal from peeling off by scratch and contact with adhesive surfaces. In the test, the backside 

metal layers of the TEH were assembled onto PDMS surface which is adhesive. Thus if without 
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the parylene coating, the metal may detach from the TEH because of the contact with the adhesive 

PDMS surface. 

6.1.4 Fabrication process of the LoC drug delivery patch 
The fabrication process of the LoC drug delivery patch is as shown in the Figure 6.5. Two 

SU-8 molds were prepared first. The first SU-8 mold was for the upper layer of the check-valve, 

pump-chamber, drug reservoirs and fluidic channels ((a1) to (a2)). The SU-8 layer was coated and 

patterned on a glass wafer as shown in (a1). On this SU-8 mold, there were bases for pump-

chamber and drug reservoirs. Then SU-8 of liquid phase was dipped onto the SU-8 base and 

formed hemispheres as shown in (a2). Previous research reveals that the maximum skin absorption  

rate is around 33µL/day for each microneedle[143]. Considering the microneedle array has 8 

microneedles in our design, the total drug solution can be delivered  in one day is around 264 µL. 

Thus by controlling the volume of SU-8 dipped onto the substrate to form the drug reservoir, the 

total volume of the drug reservoir is 270 µL. The sample was baked to make the SU-8 hemispheres 

solidified. Then the sample was exposed with UV light and post baked to make the SU-8 crosslink. 

The second SU-8 mold is for the fluidic channels for microneedle array and chamber for TEH 

delivery volume sensor as shown in (b). To have a well control of the spacing of the chamber, a 

glass slide of certain thickness was attached onto the base of the chamber. Then the SU-8 molds 

of (a2) and (b) were face to face aligned and fixed with a spacer at the edge. The space between 

these two SU-8 molds was filled with PDMS as shown in (c1). These fixed SU-8 molds with 

PDMS in between were kept at room temperature for 24 hours without baking to avoid the air 

bubbles within the PDMS layer. Then sample was cured at 75ºC for 30 minutes. The sample was 

cooled down to room temperature and release these two SU-8 molds from the PDMS layer as 

shown in (c2). This PDMS layer has patterns on both sides and acts as the main body of the device. 

The top side has the channels for microneedle array and the bottom layer has the pattern for 
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microfluidic control system. To have the top PDMS layer for microneedle pillar array, a third SU-

8 mold was prepared ((d1) to (d3)). For this SU-8 mold, a SU-8 layer with hole array was patterned 

as shown in (d1). The holes were for the four-beam PDMS pillars. Then a pillar array was aligned 

to the hole pattern as the second SU-8 layer. The second layer is for the vertical channel connecting 

to the channel array on the top layer of (c2) with the microneedles which will be assembled later. 

Then PDMS was coated onto the SU-8 mold to fill the hole pattern and form a whole layer above 

the SU-8 mold as shown in (d3). The thickness of the PDMS layer (150 μm) was lower than the 

thickness of the height of the SU-8 pillar (350 μm). Thus the top of the SU-8 pillar was not covered 

by PDMS. This SU-8 mold can create a penetrated hole through the PDMS layer and form a 

vertical channel inside the microneedle. Make the sample of (d3) face down and bonded to the top 

surface of main body as shown in (c2). Then the SU-8 mold was released as shown in (c3). Now 

at the top surface of the main body of the device, a PDMS pillar array was aligned and connected 

to the channel array. Then for the bottom surface of the main body, two PDMS layer was needed 

to form the two check-valves. Thus two SU-8 molds were required. (e1) shows the SU-8 mold for 

the bottom chambers of check-valves. Then a thick PDMS layer was coated onto the SU-8 mold. 

Then cured PDMS was released as shown in (e2). (f1) shows the SU-8 mold for the holes on the 

center membrane layer of the check-valves. Then a thin layer of PDMS was coated onto the SU-8 

mold as shown in (f2). To create penetrated holes on this membrane layer, the thickness of the 

PDMS (40 μm) is lower than the height of the SU-8 pillar (350 μm). The PDMS layer of (e2) with 

(f2) were aligned as shown in (g1) and bond them together (g2). Then the bonded the PDMS layers 

were released from the SU-8 mold as shown in (g3). These bonded PDMS layers have the 

membrane with holes and chambers for the check-valve. These PDMS layers were aligned and 

bonded to the bottom surface of the main body as shown in (c4). Then the sharp tips were 
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assembled onto the PDMS pillar array as shown in (c5). This sharp tip assembly is realized by 

drawing lithography. Then the TEH was fixed at the bottom of the sensor chamber and a PDMS 

with Al coating was bonded above to seal the chamber as shown in (c6).  
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Figure 6.562 Fabrication process of the LoC drug delivery patch 
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6.2 Characterization and optimization 
6.2.1 Optimization and characterization of the surface materials of the triboelectric layer pair 

 

Figure 6.6 63 Optimization for PDMS thickness and material of contact surfaces; (b) 
Characterization of the output power; (c) Output voltage over time of the different triboelectric 
surface pairs when the thickness of the PDMS layer is 200μm. 
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To enhance the sensitivity of the delivery volume sensor, the output voltage of the TEH is 

expected to be as high as possible. Here we investigated the effect of surface pyramid micro-

pattern, material of contact surface and the thickness of the PDMS dielectric layer. Three groups 

of samples with different PDMS thickness are prepared as shown in the following table. 

Table 6.12 Details of groups of sample for optimization of PDMS thickness and contact surfaces 

Group No. Surface micro-pattern Contact surface Thickness of dielectric 
layer 

Group 1 Without pyramid micro-
pattern 

Parylene vs PDMS 30 μm 

80 μm 

150 μm 

215 μm 

Group 2 With pyramid micro-pattern Parylene vs PDMS 30 μm 

80 μm 

150 μm 

215 μm 

Group 3 With pyramid micro-pattern Parylene vs Al 30 μm 

80 μm 

150 μm 

215 μm 

 

In the test, the TEH patches were fixed onto a force gauge and applied onto the PDMS or 

Al contact surface with the same force, which is 10 N. To make the open circuit output voltage of 

TEH reaches the maximum value, the surface of TEH is fully contacted with PDMS or Al surface.  

The experimental measurement data is shown in Figure 6.6 (a). According to the V–Q–x 

relationship for contact-mode TEHs, the output voltage is determined by the following equation: 

𝑉𝑉 = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑑𝑑 + 𝐸𝐸𝑎𝑎𝑑𝑑𝑑𝑑 × 𝑥𝑥                        (1) 
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where Edielectric is the electric field though the dielectric layer generated by the tribo-charges on the 

opposite sides of the TEH; d is the thickness of the dielectric layer; Eair is the electric field though 

the spacing between the top surface of TEH and contact surface, this electric field is generated by 

the tribo-charges on the TEH surface and contact surface; x is the spacing between the TEH surface 

and contact surface. The output voltage should increase with the increase of the dielectric layer 

thickness in the ideal fully contact-mode TEHs. 

For group 1, there is no pyramid micro-pattern on the surface of TEH. The two contact 

surfaces are parylene and PDMS. The output voltage increases from 3.8 V to 9.5 V when the 

thickness of PDMS dielectric layer increases from 30 μm to 215 μm, which is consistent with the 

equation (1).  

For group 2, there are pyramid micro-patterns on the surface of TEH. The two contact 

surfaces are the same as group 1. Compared with the samples of group 1, the output voltages of 

the samples of group 2 have about 50% enhancement with the same PDMS thickness. The output 

voltage increases from 5.2 V to 14.6 V when the thickness of the PDMS dielectric layer increases 

from 30 μm to 215 μm. Thus the pyramid micro-pattern on the surface of TEH can enhance the 

output voltage by 50%.  

The samples of group 3 are the same as group 2. To further increase the output voltage, we 

changed another contact surface from PDMS to Al. Since Al is more triboelectrically positive than 

PDMS, these contact surfaces of parylene and Al could generate higher output voltage. For the 

samples of 30 μm, 80  μm and 150 μm, the output voltages are about 50% higher than their 

counterparts of group 2. For the sample of 215 μm thickness, the output voltage has 100% 

enhancement than the sample with the same thickness of group 2. This maybe induced by the too 

thick layer of PDMS. During the test, not only the surface pyramid micro-patterns get deformation, 
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but the PDMS layer itself also got serious deformation which induced more charge transport. Thus 

the enhancement of the output voltage of thicker PDMS dielectric layer is much higher than that 

of thinner PDMS dielectric layer. 

The output power for each group by changing the load resistance is shown in Figure 6.6 

(b). The change of the maximum output power for each group follows the same trend as that of 

open circuit output voltage as shown in Figure 6.6 (a). 

6.2.2 Optimization and evaluation of the liquid flow sensor 

 

Figure 6.7 64 Volume sensor monitors the delivery volume of each pressing of the pump chamber. 
(a) Demonstration of the drug delivery with volume sensor monitoring; (b) Optimization for 
spacing between the top and bottom surface of the triboelectric pair; (c) Delivery volume 
calibration with different measuring method. 
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In equation (1), the spacing between the top surface of the TEH and another contact surface 

is also another parameter to determine the output voltage. In order to investigate the effect of the 

spacing between the TEH surface and contact surface, which is the height of the PDMS chamber, 

we changed the spacing from 250 μm to 1000 μm. In this test, the TEH samples are with pyramid 

surface micro-pattern and of 215 μm PDMS thickness, which are the samples generating the 

highest output voltage in Figure 6.7(a). The sample was assembled above the top layer of pump-

chamber as shown in Figure 6.1 and Figure 6.2 (A). The bottom layer of the pump-chamber was 

pressed to delivery solution of certain volume within the range from 0.01 ml to 0.1 ml. The output 

voltage was recorded and the relation between the delivery volume and output voltage is shown in 

Figure 6.7 (b). According to the equation(1) for fully contact-mode TEHs, the output voltage will 

increase with the increase of the spacing. But as shown in Figure 6.7 (a), the output voltage 

decreases with the increase of the spacing. This is because the TEH shown in Figure 6.1 and 

Figure 6.2 is not working in fully contact-mode. With the same deformation of the top layer of 

the pump-chamber, the contact area decreases with the increase of the spacing. Although the TEH 

could give higher output voltage when the spacing was lower, the standard deviation was also 

higher, which is shown as the error-bar in Figure 6.7 (b). Thus there is a trade-off between the 

accuracy and the output voltage of the TEH delivery volume sensor. When the pump chamber is 

pressed by finger, the TEH patch will deform and contact with the Al surface. However, these two 

surfaces not only contact with each other but also squeeze each other and further have a friction 

between them. So the whole TEH does not only work in contact mode but also partially works in 

friction mode. The friction will also contribute to the output voltage. This friction is more obvious 

when the spacing is lower. This is because with the same force applied on the pump chamber, the 

TEH patch will squeeze the Al surface more when the spacing is lower. If the force applied onto 
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the pump chamber is not perpendicular to the Al surface, then a friction will occur. However, the 

direction of the force applied by human finger cannot be too well controlled. Thus, the extent of 

friction also cannot be well controlled. This is the reason why the error bar is larger when the 

spacing is lower. When the spacing is 1000μm, this fiction almost does not happen because the 

deformation of the TEH surface is not large enough to squeeze the Al surface. Based on the data 

when the spacing is 1000μm, the Coefficient of Variation is %CV=11%. To have a better accuracy 

for the delivery volume monitoring, the design of 1000 μm spacing was applied for the sample in 

other tests. 

A demonstration of the drug delivery with volume sensor monitoring is shown in Figure 

6.7 (a). The weight of the patch was measured after each pressing to calculate the volume of the 

delivered solution. And the output voltages of the delivery volume sensor were also recorded and 

converted to delivered volume according to the voltage-volume curve calibrated in Figure 6.6 (b). 

Moreover, the number of empty drug reservoirs can be counted to roughly estimate the delivered 

drug volume. The results of the delivery volume of each finger-pressing measured by these three 

methods are shown in Figure 6.7 (c). The number of empty drug reservoirs for each pressing is 4, 

2, 3, 2 and 6, which is indicated as red line in Figure 6.7 (c). The volume measured by the weight 

and delivery volume sensor is indicated as blue spots and dash line, respectively. The delivered 

volume measured by delivery volume sensor and weight is almost the same except to the last data 

point, i.e., the volume measured by delivery volume sensor is a bit higher than the volume 

measured by weight. The applied force recorded by the delivery volume sensor at the last finger-

pressing data point was higher than the required force to deliver the rest solution in the patch, 

where the accurate volume is characterized as weight. Secondly the delivered volume measured 

by counting the empty chamber does not perfectly match with the data measured by delivery 
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volume sensor and weight because there was some residual solution in the empty drug reservoirs 

and channels. Generally the delivered volume can be roughly and straightforwardly estimated by 

counting the number of empty drug reservoirs. Thus the triboelectric volume sensor is required to 

figure out relatively precise delivered volume as long as some usage scenarios need the 

information of accurate delivered volume. 

6.2.3 Characterization and optimization for the TEH of stacked layers design 

 

Figure 6.865 Characterization and optimization for the TEH of stacked layers design. 
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Due to the small area of the whole device, the power generated by a single layer of TEH is 

limited. Thus TEHs of stacked layer design [137-142] have been applied to enhance the output voltage. 

Multi-TEHs (N layers) are stacked layer by layer and connected in parallel to achieve a N-times 

charge transferred by one pressing comparing with the single layer TEH. If all the N-layered TEH 

has the charge transport simultaneously, the output voltage will increase N times. Meanwhile, due 

to the parallel connection of all layers in the N-layered TEH, the total inner resistance will decrease, 

which further enhances the output power.  

Here we study the TEH with one, two and three stacked layers. The contact surface of the 

TEH is parylene vs Al. The thickness of PDMS dielectric layer is 215 μm which is optimized for 

the highest output (Figure 6.6 (a)). And to avoid a collapse and contact between two triboelectric 

surfaces when pressing is not applied, the spacing between two triboelectric surfaces is 700 μm.  

In order to calculate the power generated by the TEH, a load resistor was connected 

between the top and bottom electrodes. A cyclic force of approximately 6 N with 0.5 Hz frequency 

was applied to generate the power. The voltage was then measured across the load resistor to obtain 

the power generated by the TEH. As the load resistance was increased, the power output increased 

and peaked at a point and started dropping thereafter. The voltage and power characteristics of 

TEH with different stack layers are shown in Figure 6.8 (a). The maximum power output for 

devices with one, two and three stacked layers are 11.34 μW, 22.96 μW and 33.12 μW, respectively; 

the load resistance are approximately 28.57 MΩ, 25.93 MΩ and 16.67 MΩ, respectively, as shown 

in Figure 6.8 (b). This decrease of load resistance for peak power represents the decrease of the 

inner impedance of stacked TEHs, which is induced by the parallel connection of stacked TEHs. 

Although the quantity of charge transferred is proportional to the number of layers (black line in 

Figure 6.8 (d)), the peak voltage with respect to the number of layers does not follow the same 



146 
 

trend. The peak voltage of TEH with 3 layers for open circuit is 33V which is not as high as 3 

times of the peak voltage (15 V) of TEH with 1 layer in open circuit (Figure 6.8 (c)). Since all the 

triboelectric surfaces cannot be triggered simultaneously for the TEH with more than 1 layer, the 

voltage pulses of different layers will be generated at different times. Thus the width of voltage 

pulse, which is the accumulation of the voltage pulses of all layers, will increase with the number 

of stacked layers (red line in Figure 6.8 (c)). The finger-pressing frequency will also change the 

output voltage as shown in Fig. 5(f). As shown in this figure, the peak voltage has an obvious 

increase within the range from 0.5 Hz to 2 Hz and tends to saturate when frequency is higher than 

2 Hz. One major parameter which seem to affect the output voltage was the impact force provided 

by the fingertip. As the amplitude of acceleration or force increases, the impact force also keeps 

increasing. Higher impact force results in increased elastic deformation in the PDMS layer which 

leads to increased contact area between the two triboelectric layers. The increased contact area is 

possibly the reason for increased triboelectric generation and performance of the device. The 

output voltage over time generated by different pressing frequency is added in the supplementary 

information. A representative example of the time domain signals of open circuit output voltage 

from different frequency with 1 stacked layer is shown in Figure 6.9.  Considering that the TEH 

is manually pressed, 2 Hz should be a reasonable optimum operation frequency. 

Due to the reliability concern , a parylene coating on the bottom PDMS dielectric layer was 

used to protect the metal layer at the backside in our design as shown in the S3. An experiment has 

been conducted for the TEHs without parylene coating as a comparison to previous data with 

parylene in order to characterize the impact of such parylene coating. Thus, the contact surface is 

PDMS vs Al. The voltage and power characteristics of TEH with different stack layers are shown 

in Figure 6.8 (e). Compared with the results of TEH with parylene coating, the load resistances of 
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peak powers are the same. However, the peak powers are 14 μW, 29.3 μW and 42.8 μW, 

respectively, indicating an average of 27% enhancement. This result suggests that, if the backside 

metal of the TEH patch is not easily detached or scratched, the parylene layer can be avoided and 

PDMS surface can offer a better performance. 

 

Figure 6.966 Comparison of time domain signals of open circuit output voltage from different 
frequency with 1 stacked layer. 

The force impact increases with the increase of the pressing frequency. Thus, higher impact 

force results in increased elastic deformation in the PDMS layer which leads to increased contact 

area between the two triboelectric layers. The increased contact area induce enhances the 

triboelectric generation and performance of the device. When the pressing frequency is 0.5 Hz, the 

output voltage is around 20V. When the frequency is higher than 2 Hz, the output voltage is around 

26V. 
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6.2.3 Characterization of the liquid volume sensor in insulin delivery test 

 

Figure 6.1067 Delivery volume sensor monitors and controls the dose for insulin delivery. (a) 
Optical image of the microneedle array assembled onto the patch, the scale bar is 200μm; (b) 
Detailed optical image of an individual microneedle, the scale bar is 200μm; (c) Histology image 
of individual microneedle penetration, scale bar is 200μm; (d) Changes in blood glucose level in 
diabetic rats after insulin delivery using microneedles, subcutaneous hypodermic injection of 
insulin, and without injection of insulin; (e) Changes in blood glucose level in diabetic rats after 
insulin delivery using microneedles with different delivery volumes. 

In order to confirm that the device has ideal features for an efficient drug volume control, 

transdermal delivery of insulin was tested in vivo. As a powerful approach for various biomedical 

researches such as transdermal drug delivery and transdermal bio-sensing, a microneedle array 

was assembled onto the skin patch for the skin penetration and insulin delivery. The sharp tips of 

microneedles were assembled by double drawing lithography onto the patch as shown in Figure 

6.10 (a) and (b). Penetration tests on mouse cadaver skin were conducted to characterize the 

penetration capability of the SU-8 microneedles made by double drawing lithography. A histology 

image of the skin at the site of one microneedle penetration confirms that the sharp conical tip was 
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not broken during the insertion steps as shown in Figure 6.10 (c). A detailed in vitro drug delivery 

test is shown in Figure 6.11. 

All the procedures were performed under protocol and approved by the Institutional 

Animal Care and Use Committee at the National University of Singapore. Sprague–Dawley rats 

with weight of 200 ~ 250 g were injected with 50 mg kg−1 streptozotocine (Sigma-Aldrich, 

Singapore) in citrate buffer (pH 4.2) via intraperitoneal injection to generate a diabetic animal 

model. These rats were kept with free access to food and water for 3 days. Then their blood glucose 

level was checked by a glucometer (Accu-Chek, USA). The rats with blood glucose level between 

16 and 30 mM were selected and the hairs on the abdomen skin were removed by a razor 24 hours 

before the experiment. All these rats were divided into 3 groups and each group contained 3 rats. 

We first conducted the tests without liquid volume control to confirm the drug delivery 

capability of the patch. Group 1 was a negative control group, in which we only tested the blood 

glucose level throughout the duration of the test. Group 2 was an experimental group. After the 

rats were anesthetized, the patch with insulin loaded was applied on the abdomen skin surface. The 

pump chamber was pressed to deliver all the insulin (10 IUmL−1) contained in the drug reservoirs. 

As mentioned before, the totally volume of all the drug reservoirs is about 246 μL. In group 3, 

after the rats were anesthetized, 10 IUmL−1 Lispro insulin was injected subcutaneously with a 29G 

hypodermic needle into the rats (2.5 IUkg−1) as a positive control experiment. 

Blood samples were taken from the tail vein every 30 minutes after the beginning of the 

experiments in all groups. The blood glucose level monitoring lasted for 5.5 hours. A glucometer 

(Accu-Chek, USA) was used to give the corresponding blood glucose levels. The results are shown 

in Figure 6.10 (d). The blood glucose level in rats treated with our patch dropped continuously 

during the 5.5 hours insulin delivery period and was quite stable after 3 hours. It was significantly 
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different compared with the negative control group, where insulin solution was not administered 

to the rats. Remarkably, the changing of the blood glucose level in the positive control experiments 

in both groups, i.e., using patch and a hypodermic needle, was about the same. This experiment 

successfully proved the feasibility of using proposed LoC drug delivery patch to deliver 

macromolecules like insulin.  

A detailed study was conducted in order to study the ability of manual control function for 

insulin delivery, which is supported by the microfluidic control system including pump chamber, 

check-valves and liquid volume sensor. During the test with patches, the delivery volume was 

controlled by controlling the pressing force. The output voltage of the liquid volume sensor was 

recorded to confirm the different volume delivered during the tests, as shown in Figure 6.10 (e). 

There were 4 groups in the study. For the first 2 groups, only one time pressing was applied during 

the test. The output voltages of the delivery volume sensor were 3.8 V and 5.4 V, respectively. For 

the last 2 groups, the pump chambers were pressed twice and the output voltages of the delivery 

volume sensor were measured as 5.3+3 V and 5.6+5.3 V, respectively. The change of the blood 

glucose level is shown in Figure 6.10 (e). For the group with higher voltage output, which means 

a larger volume of insulin delivery, the blood glucose level drops more. But for all the groups, the 

blood glucose level stabilized at a certain level after 3 hours. The experiment confirms that the 

manual control delivery mechanism with liquid volume sensor can successfully monitor insulin 

delivery and further control the blood glucose level. However, during the insulin delivery, the 

microneedles were immersed within the skin, making the outlets of the microneedles. Thus, the 

flow resistance of the whole microfluidic channel has a significant increase, result in a slight 

deviation of the actual delivery volume from the in vitro calibration as shown in Figure 6.12. 
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Generally speaking, the actual delivery volume of in vivo was around 10% lower than that of in 

vitro calibration in the situation of drug delivery when microneedle were in skin. 

 

Figure 6.1168 Images of confocal microscopy to show the florescent solution is successfully 
delivered into the tissue underneath the skin surface. (a) 30 lm; (b) 60 lm; (c) 90 lm; (d) 120 lm; 
(e) 150 lm; and (f) 180 lm (scale bar is 100 lm). 

In order to verify that the drug solution can be delivered into tissue from the sidewall gaps 

of the microneedles, FITC (Fluorescein isothiocyanate) (Sigma Aldrich, Singapore) solution was 

delivered through the SU-8 microneedles after they were penetrated into the mouse cadaver skin. 

The representative results were then investigated via a confocal microscope (Figure 6.11). The 

permeation pattern of the solution along the microchannel created by microneedles confirmed the 

solution delivery results. The black area was a control area without any diffused florescent solution. 

In contrast, the illuminated area in Figure 6.11 indicates the area where the solution has diffused 

to it. These images were taken consecutively from the skin surface down to 180 lm with 30 lm 

intervals. The diffusion area had a similar dimension with the inserted microneedles. It has proved 

that the device can be used to deliver drugs into the body. 
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Figure 6.12 69 Comparison of the insulin delivery volume measured by weight and liquid 
volume sensor in in vivo test. 

When the microneedles were in skin during in vivo test, the flow resistance of the whole 

micrfludic channel increases a lot. Thus, the actual insulin delivery volume was a bit lower than 

the value of the in vitro calibration. The detailed comparison is show in Figure 6.12. The actual 

delivery volume measured by weight (red line) is always lower than that measured by liquid 

volume sensor (black line). The deviation was small when the delivery volume is low and increases 

with the increase of the delivery volume. 

6.3 Conclusion 

Triboelectric energy harvester has been applied for various kinds of wearable sensors and 

electronics due to its flexible and thin film structure. Here a liquid volume sensor which leverages 

the triboelectric mechanism was integrated within a wearable lab-on-chip drug delivery patch to 

realize a manually controlled large volume drug delivery function. To power active components 
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which will be integrated on the patch in the near future, a stacked layer triboelectric energy 

harvester (TEH) design was studied and characterized. Increasing the number of stacked layers 

significantly enhances the output power. The output power generated by a TEH with 3 stacked 

layers and a 2×2 cm2 area is 33 μW. The optimum pressing frequency is 2 Hz which is within the 

reasonable range of usage scenarios based manually finger pressing. The liquid volume sensor 

integrated within the patch leverages the similar structure as the TEH. The spacing between 

triboelectric pair surfaces is optimized to be 1000μm for a best accuracy. Thus, the delivery volume 

can be monitored, which is crucial for certain medical applications such as insulin delivery, whose 

delivery dose needs to be precisely controlled. Microneedle array was assembled onto the patch to 

confirm the drug delivery and volume monitoring functions by in vivo experiments in rats. The 

liquid volume sensor can be integrated with other drug delivery devices or lab-on-chip microfluidic 

devices when the liquid volume delivered should be accurately measured. 
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Chapter 7 Summary of current work and Future plan 

7.1 Summary of current work 

 In this thesis, we have explored how to further develop the drawing lithography process 

and integration of microneedle with other functional components to realize different applications. 

We first designed and developed two different kinds of flexible microneedle patch by using 

dissolvable and non-dissolvable materials as the sharp tips. Both of them are hollow microneedles 

for the continuous delivery of large molecules. The flexible microneedle patch with dissolvable 

sharp tips is able to deliver drugs with large volume while four beams structure with SU-8 tips 

enhance the microneedle stiffness. The proposed fabrication process is scalable, reproducible and 

inexpensive. The height of the microneedle by drawing lithography is around 800µm which is 

comparative with the hollow microneedles fabricated by other processes. But our process is much 

simpler, of lower coat, and more importantly, enables further integration with other functional 

components. 

Based on the non-dissolvable microneedle we developed, we further investigate the 

microneedle with CNTs nanofilters. Such CNTs nanofilters can be used to selectively transport 

biomolecules such as ss-DNA, glucose, insulin and Haemagglutinin. This is the first time to realize 

biomolecule transport through CNTs. Previously only gas, ion and gold particles transport through 

CNTs.[143-145] Because the condition to have molecules transport for different biomolecules are 

different, according to their dimension, shape and polarity, the drugs can be selectively delivered 

during the drug administration by using the microneedle with CNTs nanofilter assembled within.  

For the next step, a soft microneedle skin patch which can have a conformal attachment 

onto skin as a wearable medical device is expected to be realized. However, the uneven skin 
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surface will introduce unpredictable buckling force which will cause needle breakage during the 

skin penetration for the soft skin patch. Therefore, we propose a unique bendable microneedle 

design to overcome this issue. The design composes a rigid sharp tip, which can be either glucose 

or SU-8, and a soft PDMS base. Such bendable microneedle can bend when the needle cannot 

penetrate skin. After skin penetration, the bendable microneedle can also adjust the lateral 

movement between skin surface and microneedle skin patch to avoid needle broken within skin. 

With optimization of the PDMS mix ratio and pillar angular, the skin penetration rate for bendable 

microneedle with SU-8 tip is 88% and with maltose tip is 66%. Although the skin penetration rate 

cannot be as high as rigid hollow microneedles, the bendable microneedle can avoid safety issue 

caused by needle breakage within skin.  

By using this bendable microneedle, we realize a thin and soft microneedle skin patch as a 

standalone device which can realize the function of drug loading and delivery only with manual 

control. As a medical device, other chemical sensors for health monitoring are expected to be 

integrated onto the skin patch in the future. Thus a power source for these active components are 

necessary. In this skin patch, we also integrated TEH leveraging dry adhesive micro structure as 

power source which can power these sensors which may be incorporated in the future. The TEH 

leveraging dry adhesive micro structure can generate 11.79 μW with 23.08 MΩ inner impedance 

while the TEH leveraging  conventional  pyramid micro structure can generate 15.21 μW  with 

44.44 MΩ  inner impedance. Although the maximum output power of pyramid is higher than that 

of dry adhesive, the lower inner impedance of dry adhesive can realize a higher output power when 

the load resistance is smaller than the inner impedance of dry adhesive. 

To further make the drug delivery system complete and more like a standalone  wearable 

medical device, a volume sensor is inevitable to measure the drug dose to be delivered, especially 
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for the insulin delivery. Hence we investigate a TEH based volume sensor which can be integrated 

within the skin patch. We delivery volume can be immediately measured when we press the finger 

onto the pneumatic pump to deliver drug. With this feedback signal of delivery volume, the drug 

dose can be manually controlled.  The spacing between triboelectric pair surfaces is optimized to 

be 1000μm for a best accuracy when the Coefficient of Variation is %CV=11%. A minimal 

delivery volume of 10μL can be realized.  

7.2 Flexible microneedle skin patch of ultra-high needle density with surface drug coating 
for short term drug delivery 

For the application of short term drug delivery which only the total drug dose needs to be 

controlled, we could also make flexible microneedle skin patch without hollow channels but 

coating with a drug-containing layer onto the surface of microneedles as shown in Figure 7.1(a). 

Compared with the flexible microneedles with hollow channels, this kind of microneedle skin 

patch could be much thinner and more conformal to skin due to the absence of the thick PDMS 

layer for chamber reservoir. It could be applied as a normal bandage and will become a disposable 

device.  

To realize a sufficient drug dose on one skin patch, the microneedle array needs to be dense 

enough. For the previous microneedle made by drawing lithography, the spacing of the 

microneedles cannot be less than 1 mm. Otherwise the drawing material will form a cluster among 

a few semi-formed microneedles during the drawing process. Here we propose a new idea to 

improve the process and overcome this issue, significantly increase the density and production 

quality of microneedles on one patch. Either the gel-like materials or solution-like drug will be 

investigated and optimized. To control the volume of the drug, the thickness of the drug coating 

layer could be further tuned by controlling the cycles of coating process. An improved process is 
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proposed in this project as shown in Figure 7.2. SU-8 is baked on glass slide (Figure 7.2 (a)) and 

covered by a grid mold (Figure 7.2 (b)). The holes on the grid layer would be filled by melted SU-

8. Then align the microtube array (Figure 7.2 (c)) and inserted it into the melted SU-8 (Figure 7.2 

(d)). Due to the physical separation of SU-8 in each well, during the drawing lithography process, 

the formation of each sharp tip will not be affected by others (Figure 7.2 (e)). Thus the density of 

the needle array is simply determined by the density of the holes on grid mold.  

 

Figure 7.170 (a) 2D illustration of microneedle skin patch of ultra-high needle density with surface 
drug coating; (b)-(d) Optical images of a prototype of microneedle we currently achieved. 

 
Figure 7.271 Improved drawing lithography process for ultra-high density needle array.  
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7.3 Further study of the selective drug delivery 

A few kinds of ions and molecules pumping through CNTs by different driving methods have 

been reported. Gas (e.g. H2, N2, CO2, Ar and CH4), polar molecules (e.g. water, ethanol and 

isopropyl alcohol), non-polar molecules (e.g. hexane and decane) and non-charged nano-particles 

(e.g. Au particles) can pass through CNTs by applying pressures, while charged ions (e.g. Na+, K+, 

H+ and Li+) and various kinds of molecules (e.g. water, DNA, ss-DNA and charged lysozyme) can 

pass through CNTs with the aid of an electric field. But selectively transport biomolecules through 

CNTs nanofilters are only reported by our group. Previously, the biomolecules can pass the CNTs 

nanofilters just by applying electric field and pressure. However, it is also reported that surface 

function of CNTs could realize a selective biomolecule transport as shown in Figure 7.3. In Figure 

7.3 (a), the surface of CNTs was modified by electrochemically oxidation. Then two biomolecules, 

lysozyme and BSA, could be separated by applying electric field. Only Lysozyme could pass 

through the CNTs. And in Figure 7.3 (b), the surface of CNTs was modified by ethanolamine. And 

the permeability of ss-DNA and Au nanopaticles could be controlled. Such a modification also 

could be incorporated in the fabrication of the microneedle with CNTs nanofilters.  

In our future study, we could explore the other surface functionalization on CNTs nanofilters 

and enable a selective drug delivery without applying electric field. Thus only pressure is required, 

the microneedles with CNTs nanofilters are able to be integrated onto flexible skin patch as a 

standalone device to wearable drug delivery application. 
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Figure 7.3 72  (a) The surface of CNTs is modified by electrochemical oxidization and two 
biomolecules could be separated by CNTs membrane; (b) The surface of CNTs is modified by 
ethanolamine to control the permeability of ss-DNA and Au nanoparticles. 
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Appendix 1 : Detailed fabrication process for CNT 

nanofilter 

 

Figure A1. Fabrication process for stretchable membrane based nanofilters using patterned array 
of vertically grown carbon nanotubes 

Figure A1 illustrates the fabrication process. The process began with thermal oxidation of 

single crystal silicon substrate to form a etch stop oxide layer. After the CVD of poly-silicon as a 

sacrificial layer, a 5 nm thickness of pattered Fe film, which acted as the catalyst film for the 

selective growth of CNTs, was prepared onto the silicon substrate (Figure A1(a)). As illustrated in 

Figure A1(b), the vertical aligned CNT bundles of 50 μm in height were grown via pyrolysis of 

acetylene at 800ºC with an Ar/NH3 flow for 15 min. The CVD parylene-C was then employed to 

fill into vertically aligned CNTs to reinforce the inter-tube binding at room temperature. Thus, the 

top side of CNTs was covered with parylene-C, and the discrete CNTs were bound together by 

parylene-C (Figure A1(c)). This step was the most critical process for forming the mechanical 

supporting layer for CNT bundles. The thickness of the flexible parylene-C layer was determined 
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by the CVD process. To achieve reliable mechanical strength for following handling and process, 

10 μm thick parylene layer was deployed. The parylene layer was peeled off together with CNT 

bundles from the substrate. Since the catalyst layer blocked the bottom ends of CNTs, the catalyst 

layer at the bottom of CNT bundles was etched by oxygen plasma from backside (Figure A1(d)). 

Then a prebaked SU-8 layer of 200 μm thickness on PET was prepared. PET is a kind of 

transparent soft film having low adhesion with SU-8. The PET film was fixed on glass slide by 

tapes to provide a rigid substrate for processing. The parylene layer was attached on the surface of 

SU-8 layer. The SU-8 layer was then melted at 95 ºC and cooled to room temperature. A good 

bonding between parylene and SU-8 was achieved (Figure A1(e) and 1(f)). After this bonding, 

well aligned microchannels under CNT bundles were patterned by UV lithography (Figure A1(g)). 

The diameter of the channel is 40 μm, smaller than the diameter of the CNT bundles, to ensure the 

SU-8 under parylene sidewalls around CNT bundles was exposed. The bonding between SU-8 and 

parylene sidewalls would finally provide sufficient mechanical bonding strength to fix the CNT 

membranes on SU-8 substrate. After UV lithography, the sample was post baked at 65 ºC for 10 

min and 95 ºC for 30 min. Then the PET film together with SU-8 and parylene layer was released 

from glass slide by removing the tapes. The SU-8 layer together with the parylene layer was dry 

released from PET by slightly bending the PET film (Figure A1(h)). The released SU-8 layer was 

developed to form the microchannels. A bonding technique was developed for bond SU-8 with 

PDMS. A thin PDMS film of 200 μm thickness with center area larger than the dimension of CNT 

bundle array cut off was prepared. The surface of this PDMS layer was treated with nitrogen 

plasma and attached to the bottom surface of SU-8 layer. The sample was baked at 120 ºC for 30 

min. A permanent bonding between SU-8 and PDMS was achieved (Figure A1(i)). In this step, the 

thickness of PDMS must be kept low enough to avoid the poor quality bonding, which is due to 
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the non-conductivity and the low plasma efficiency of the PDMS layer. After the bonding, the 

parylene layer was etched by oxygen plasma to open the sealed top ends (Figure A1(j)). In this 

process, the whole parylene layer was etched away except the parylene sidewall around the CNT 

bundles due to the anisotropic property of RIE . The adhesion between parylene and SU-8 was 

good enough to hold suspended CNT bundles as mentioned above. In the RIE etching process, the 

plasma generated large amount of heat. The temperature of SU-8 layer would rise to several 

hundred ºC during the long period of the 10 μm thick parylene etching. This high temperature 

would degenerate the bonding between SU-8 and PDMS. Thus, the whole etching process was 

divided into several periods to avoid over heating for samples. After etching away parylene on 

CNT bundles, the membrane was bonded with a thick PDMS layer (Figure A1(k)). This process is 

a conventional bonding between PDMS surfaces. Both PMDS surfaces were treated with oxygen 

plasma and bonded together. This thick PDMS layer allows us to connect tubes for further fluidic 

tests. 
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Appendix 2 : Preparation of ss-DNA and BPSM 

ss-DNA preparation: Single strand DNA (ss-DNA) was prepared by the following steps: 

Bordetella pertussis genomic DNA was used as a template to synthesize a PCR fragment of 805 

base pair using Go Taq Green Master Mix (Promega) kit protocol. Primers used for the PCR were 

from Sigma Aldrich, HPLC purified vipC forward primer 

(5'TTGAATTCGAGTTCGAGCCGGTGCTGG3') and vipC reverse primer 

(5'TTAAGCTTTTGCTGGTAAGGAATGCGCTG3'). Annealing temperature of 64.5ºC was used 

and the denaturation, annealing and extension cycle was repeated 25 times. Final elongation step 

was carried out at 72ºC for 10 min. The ds-DNA generated was then kept at 95ºC for 5 min to 

separate the two DNA strands to generate ss-DNA. PCR reaction was set up using Bio-Rad 

iCycler-thermal cycler PCR. Haemagglutinin was purchased from Zuellig Pharma. Other chemical 

reagents were purchased from Sigma Aldrich and used without a further purification. NaCl and 

HCl solutions were prepared using deionized (DI) water from a water purification system 

(Millipore SAS 67120 MOISHEIM). 

Bacterial preparation: BPSM (Bordetella pertussis streptomycin resistant strain) was grown on 

sheep blood agar plates for 4 days. A loopful growth was taken to inoculate 10 ml SSAB media 

with streptomycin. The culture was grown for 24 hours at 37 ºC with continuous shaking. The OD 

(optical density) was measured and adjusted to 1×107 cfu/mL bacteria in PBS. 
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