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Summary

Topological Insulators (TIs) belong to a new phase of matter where the topo-

logical property is protected by Time Reversal Symmetry (TRS). TIs have long

been question of great interest since they can provide a novel material platform

where the surface states usually play an essential role to generate new topo-

logical phases, such as quantum anomalous Hall (QAH) effect after breaking

TRS. This thesis reports on the Quantum Anomalous Hall (QAH) and Spin

Hall Effect (SHE) of TI thin films and broken symmetry topological phases for

different classes of topological materials. Our works fall in four categories: (1)

Quantum Anomalous Hall (QAH) effect in TI thin film, (2) QAH effect with

tunable Chern number near a Z2 topological critical point. (3) Unconventional

QAH effect of topological crystalline insulators. (4) Intrinsic SHE in TI thin

film. In the first part of thesis, we comprehensively investigate the QAH effect

in magnetically doped Bi2Se3 thin film with different magnetic structures. In

the second and third parts of thesis, we propose a mechanism to realize QAH

phase without the surface state involved. We take two material classes: Z2 TI

TlBi(S1−δSeδ)2 and topological crystalline insulator Pb1−xSnxTe/Pb1−xSnxSe as

examples, where both of them are tunable from trivial to non-trivial phases via

chemical composition. Specifically, wedemonstrate that themagnetically doped

materials near topological critical points are candidates for high Chern num-

ber QAH insulators. Our proposal successfully reduces the necessary exchange

coupling strength for a targeted Chern number where the QAH phase occurs

even in the trivial side of the material. Finally, the intrinsic SHE in Bi2Se3 thin

film are also discussed.
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Chapter 1

Introduction

1.1 Topology in a nutshell

Recently, there has been renewed interest in the application of topology in phy-

sics. Topology is a concept in mathematics about the continuity in space [1]. An

early example is the Möbius strip which can be made by connecting two ends a

long rectangle original strip with twists which are not possible to destroy with-

out destroying the object [2]. Figure 1.1.a shows a simplest form of Möbius strip

while figure 1.1.b shows how to connect a strip with two edges so that the ar-

rows matched. Another example is the mug and doughnut with equal number

of holes in figure 1.1.c-d, respectively. In addition, it is not possible to distin-

guish these two objects in the language of topology where one can transform

to another. In fact, topology introduces many concepts which are applicable for

physics and engineering [1] like surface, topological order, etc.. The topology of

surface also can be characterized by Euler characteristic:

χ =
1

2π

∫
S

KdA = 2− 2g (1.1)

The value of this ingegral is quantized by Gauss-Bonnet theorem [3, 4]. Here,∫
S
KdA is the curvature integra,K – Gaussan curvature,A – element of the area,

g – the genus of the surface. In addition, a topological order is also extended and

1
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a)

b)

c)

d)

Figure 1.1: Topology in geometry (a) AMöbius stripwith one boundary and one
surface. (b) By connecting two edges of a rectangle so that the arrows matched,
a Möbius strip with fixed topology is made. (c) A coffee mug with one hole,
being equal to the number of holes in doughnut presented in (d)

utilized to explain fractional quantum Hall states [5]. Moreover, it was shown

that the Z2 topological order can characterize the well known quantum spin

Hall state in Two Dimensional (2D) topological insulator [6, 7]. Thus, defining

topological property of materials is of particular interest.

1.2 Review of Hall effects

The traditional Hall effect is fundamental to many application in eletronics like

Gaussmeter probe using Hall sensor. The basics physics come from the Lorentz

force experienced by electronic charge under longitudinal voltage applied on

metallic or semiconductor films. Besides the traditional Hall effect where the

electron motions are classical, recent transport theory and experiments have

confirmed the existence of Hall effects where the description of quantum me-

chanics is required, they are, namely, QuantumHal Effect (QHE) [8], Fractional

QuantumHall Effect (FQHE) [5], Spin Hall Effect (SHE) [9], Quantum Spin Hall

Effect (QSHE), and Quantum Anomalous Hall Effect (QAHE). The quantum

Hall effect emerges when applying magnetic field in direction perpendicular to

TwoDimensional ElectronGas (2DEG) inwhich themost popular system is thin

2



1.3. Topological phases – materials and experimental realization

film GaAs , graphene [10–12]. Under the magnetic field, electrons move in cy-

clotron trajectory and jump along the edge. Theoretically, the QHE arises under

strong magnetic field, when electron motion can be separated in single-particle

motion with Landau level, thus the Hall conductance is quantized. The FQHE

is more complex when electron orbital interaction are strong and the physics is

still under active scrutiny [5, 13, 14]. The intrinsic spin Hall effect, however, car-

ries another story without the magnetic field applied. It is also observed in 2D

electronic system when electron spin can flip under weak electric field. Thus,

the spin up and down electrons move in two opposite directions, causing a spin

Hall voltage [15] in 2D system. Generally, the spin orbit coupling is a essential

ingredient for anomalous Hall effect, quantum Hall effect and spin Hall effect.

These effects can be detected in transition metals, 2DEG and more recently in

Topological Insulator (TI) system. The QAHE carries another fascinating story

when internal magnetization combined with spin orbit coupling can drive TI

thin film to quantized Hall conductivity without Landau level, instead it is al-

most dissipationlesswith the resistance highly attenuatedwith a large bandgap.

1.3 Topological phases –materials and experimental

realization

This sub-section provides an overview of recently investiated TI materials and

related topological phases. When the concept of topology and Chern number

in mathematic is well known [9], its application in physics is developing rapidly

with topological band theory [16]. The concept of Chern number in physics is

the number of edge states of two dimentional systems. Here, we note that one

should differentiate betweenOne Dimensional (1D) edge of a 2D system and 2D

surface of a 3D system. In the presence of spin-orbit coupling and certain crys-

tal group symmetry, TI’s bandstructure can be signified by a topological invari-

3
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ance. Meanwhile, wave function in the bulk TI in the Hibert space expanding

in a nontrivial topology [17]. According to the topological band theory, there

should be a non-trivial surface state of the material. The TI surface state is of

particular interest for spintronics study and experiments, since it hosts various

interesting propertieswith spin polarized currents in real space. Here, we aim at

reviewing the existing topological phases of condensedmatter systemwhich are

apparently experimentally realized. We start with a QSHE system or 2D topo-

logical insulator, followed by of 3D topological insulator with a Dirac surface

state. We also introduced a new class of material with topological crystalline

surface states.

The two dimensional TI state is also called Quantum Spin Hall (QSH) state

which has been observed experimentally in 2D HgTe-CdTe quantum wells [18],

InAs/GaSb/AlSb quantum wells [18]. QSH systems are 2D insulating mate-

rials in the bulk but conductive on the edge. In the existence of time-reversal

symmetry QSH edge states exhibit a 1D Dirac cone at the edge. Generally,

the main difference between the QHE and QSHE is that the QHE requires a

magnetic field to break the time reversal symmetry and obtains a discrete set

of Hall conductivity [19]. On the other hand, the QSHE has time reversal in-

variance and does not require an external magnetic field. The first QSH effect

was proposed in (Hg,Cd)Te quantumwell which can be explained theoretically

by the 4-band BHZ model based on k·p perturbation theory for bulk mate-

rial [bernevig_quantum_2006]. Experimentally, the 2D structureCdTe/HgTe/CdTe

grown by molecular beam epitaxy shows the discrete spin Hall conductance in

the absence of applied magnetic field when the thickness of HgTe layer is larger

than a critical parameter of 6.5nm [20].

The topological insulator field has been extended in 3D systems where gap-

less surface states of Bi/Sb alloys and the Dirac cone of Bi2X3 (X=Se,Te) mul-

tilayer materials were detected. By contrast with graphene, this Dirac cone is

spin polarized with strong spin-orbit coupling of Bi and Se atoms [16]. The
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1.3. Topological phases – materials and experimental realization

physics around the Dirac cone is of interest with tunable properties under ex-

ternal fields. Particularly, the three dimensional magnetic TI characterized by

magnetic impurities (Fe,Cr,Mn) [21] on the surface of Bi2X3 (X=Se,Te). This may

lead to another topological phase–Quantum Anomalous Hall (QAH) phase. In

the existence of ferromagnetic ordering, the magnetic field breaks time reversal

symmetry and a band gap is opened at the Dirac cone. Thus, the Dirac surface

state becomes massive and TI is insulating if the Fermi level lies inside the band

gap. The ferromagnetic (FM) ordering and Spin–Orbit Coupling (SOC) are suf-

ficiently strong to transform the topological phase to non-trivial one with a fi-

nite Chern number. Besides, several systems have been predicted to be QAH

systems namely: GdBiTe3 thin films [22], ferromagnetic CdO/EuO quantum

well [23]. In addition, there have been some predictions of large Chern number

QAHE in magnetic topological crystalline insulators. For example, Cr-doped

Bi2(Se,Te)3 is a potential candidate for the C=2 Quantum Anomalous Hall Insu-

lator (QAHI) [23, 24]. When theory and experiments were reported to demon-

strate the quantum Hall effect [8], anomalous Hall Effect [25] and QSHE [6, 20],

the QAHE is more difficult to observe. This is because it is not straightforward

to detect ferromagnetic ordering on the surface of magnetically doped TIs and it

requires extremely low temperature to reach QAH [6, 20, 26, 27]. The first QAH

experiment successfully demonstrates the quantized Hall conductance on the

surface of compound Cr-doped (Bi,Sb)2Te3 with the Chern number 1.

More recently, a new concept of surface state of IV-VI narrow gap semicon-

ductors was proposed based on the extension of topological classification of

strongly spin-orbit coupled materials [28]. The Topological Crystalline Insu-

lator (TCI) is a novel material platform where the surface state exists due to a

non-trivial bulk band topology and the crystalline mirror symmetry [28, 29].

Apparently, the change in chemical composition of PbxSn1−xTe/PbxSn1−xSe can

drive the bulk band from trivial to a non-trivial state [29, 30]. Additionally, the

TCI phase transition appeared across a critical composition Sn may have inter-
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Introduction

esting behaviour due to the gapless bulk state. The material class is exotic with

the presence of C4v symmetry, TRS combined with a mirror symmetry. More-

over, the mirror Chern number is a new topological invariance for this mate-

rial class. The electronic properties of TCI in both trivial and non-trivial sides

are investigated in a number of experiments [30]. Interestingly, the material ex-

hibits exotic properties with the presence of unconventional quasi-particle in-

terference signal, or the theoretical prediction of the quantum spin Hall effect in

TCI [31]. While the surface magnetism has been confirmed in Z2 magnetically

doped TI, the surface magnetism in TCI has not been found. Recently, a predic-

tion of high Chern number QAHE in TCI in thin film limit [32]. It is expected to

drive the TCI to new topological phases by various symmetry breaking pertur-

bations (time reversal symmetry breaking, crystal symmetry breaking, inversion

breaking). However, there is still a room for the research for magnetic IV-VI nar-

row gap semiconductors. By doping, the material could host magnetism with

certain direction with respect to the 2D crystal thin film. Recently, theoretical

investigations have been carried out to predict the high Chern number QAHE

in magnetic thin film TCI.

This thesis is organized as follow: In chapter 2 we investigate the Z2 topolog-

ical insulator through a layered k·pmodel, imposing magnetizations with three

different configurations. In chapter 3 we present the physics of multiple quan-

tum anomalous Hall phase transition near Z2 topological critical point when the

band inversion is generated without surface state. In chapter 4, through a real-

istic tight-binding model of thin film of narrow gap semiconductor Pb1−xSnxSe

or Pb1−xSnxTe, we found an unconventional touching point when the magneti-

zation can drive low energy spectra of the materials to a new Van Hove singu-

larity (VHs). Finally, inspired by experimental works of the intrinsic SHE in TIs,

we predict a layer-dependent spin Hall conductivity of TI.
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Chapter 2

Quantum anomalous Hall effect in

Topological Insulators

Bi based structures play a critical role in the field of Z2 Topological Insulator (TI)

and novel topological phases. Starting with BixSb1−x [33], followed by bismuth

chalcogenides [16, 34], these materials are one of the most widely used groups

for Hall transport measurements. While the bulk electronic structure of rhom-

bohedral 3D TI Bi2Se3 carries unconventional properties with a direct band gap

at the Γ point. The band inversion in which the swapping of orbital charac-

ter of p orbitals at Γ point happens and a bulk band gap opens by spin orbit

coupling. When cutting the Bi2Se3 crystal along [111] direction, a surface state

arises connecting bulk valence and conduction bands. For systems with spin

orbit coupling, TRS and inversion symmetry are survived, the degeneracy in

band-structure guarantees a zero net anomalousHall current. The surface states

exhibit a single Dirac cone on each surface with opposite spin chiralities due to

the inversion symmetry.

While the surface states of TIs are robust against weak external perturba-

tions [35], a magnetic field perpendicular to the surface of TIs breaks TRS and

open up a magnetic gap through a Zeeman field. Under a magnetic perturba-

tion the spin-up and spin-down states split and a hedgehog-like spintexture is

7



Quantum anomalous Hall effect in Topological Insulators

captured both in first-principles calculation and ARPES [36]. Theoretical model

suggests that the magnetization can be generated by doping with ferromagnetic

elements (proximity induced ferromagnetism). For example, theory predicted

that when doping Bi2Se3 with ferromagnetic elements like Fe,Cr the ferromag-

netic ordering is more favourable compared to antiferromagnetic one. Thus, the

calculated energy of the ferromagnetic state is lower (or more stable) than that

of the antiferromagnetic state [37, 38].

In a quantumHall state [8], the edge electrons can “jump” around the bound-

ary of 2D slab - vacuum, the Hall conductivity shows plateaus at exact values

of magnetic field. After that, the quantum spin Hall state [20] (2D TIs) was dis-

covered in quantum well structure CdTe–HgTe–CdTe with the notion of “spin

current”. In the edge of QSH the spin currents are spatially separated: the spin

up and spin down electrons move in opposite directions. The total Chern num-

ber of the system is zero but the system can be signified by a topological in-

variance, the spin Chern number [39] of 2D TIs is zero but their substraction

is nonzero. Thus, the Hall conductivity of the system is quantized in unit of
e2

h
. The quantum anomalous Hall state [26], however exhibits non-trivial state

without Landau levels. The nonzero Hall conductance can be observed even

in zero magnetic field. However, less study was conducted to investigate the

critical exchange field driven by magnetic dopant to obtain nonzero Hall con-

ductivity. In addition, one challenge of experiments is generating supra-high

exchange field to either get a large magnetic gap or higher Chern number. In

the absence of exchange field we have edge state but due to the finite size effect

when the thickness of the film is reduced to be comparable with decay length

of surface states, the energy gap opened as a result of quantum tunnelling be-

tween top and bottom surfaces states to avoid the crossing of bands with same

quantum numbers. Hence, the system has a small gap at the Dirac point and

ultra-thin TI film is adiabatically connected to trivial insulating phase.

In magnetic TIs [26], the non zero Hall conductivity is due to Berry curva-
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ture originating from out of plane ferromagnetism, and spin orbit coupling. By

increasing the magnetic doping in a TI thin films, in case the gap closes and

reopens, the initial state and final state cannot be adiabatically connected. Con-

sequently, they belong to different topological phases and undergo a topological

quantum phase transition [27]. However, little study has been conducted to un-

derstand the relation of bandstructure topology, thickness, spintexture andHall

conductivity for ultra-thin magnetic TI films. Hence, we consider three pos-

sible magnetic configurations (one substrate-induced ferromagnetic ordering,

two substrate induced ferromagnetic ordering, bulk doping). It turns out that

TIs doped with ferromagnetic elements in the bulk requires the less exchange

energy to get non-zero quantized Hall conductivity. In the two last configura-

tions we indicated another critical exchange energy that can get more than two

topological phases (multiple topological phase transition).

The conventional model of 3D TIs is simplified to describe only the surface

states without the quantumwell states or too complicated to be implemented as

an insightful model for QAHE for TIs [40]. We adapted a realistic k·p model of

three dimensional TI based on one quintuple layer Bi2Se3 Hamiltonian through

layer by layer approaches in which a grown bilayer of Rashba-type spin-orbit

coupled 2DEG is placed on adjacent planes of bilayers. The model can be used

to explore topological bandstructure for Bi2Se3 slab with arbitrary thickness.

The critical spontaneous exchange field to break TRS and open a band gap is

calculated and explained by considering ultra-thin magnetic films model. Ex-

cept for studying electronics properties of Bi2Se3, the model is also flexible to

study a wide range of 3D TIs materials like Bi2Te3. The Chern number charac-

terising the bandstructure topology is computed based on Kubo formalism [41].

Moreover, the effect of non-zero temperature on the Hall conductivity is also

considered. In addition, we applied electric field to the slab model with the

assumption that the potential in each quintuple layer of Bi2Se3 varies linearly,

making the energy separation between the top and bottom surface Dirac cones.
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This chapter presents the work published in [42]

2.1 Formalism for k.p model

Crystalline Bi2Se3 is layers of Se–Bi–Se–Bi–Se atoms in one Quintuple Layer

(QL), spatially separated with other QLs by Van Der Waals gap. Figure 2.1.a

shows an unicell of 6QLs Bi2Se3 slab with the Se atoms (yellow circles) and Bi

atoms (brown circles). From theoretical point of view, each “perfect” QL has

the same energy and structure, coupled with its neighbours, except for surface

QLs which are exposed to the vacuum, as presented in Figure 2.1.b. In real ex-

periment, the material is grown on substrate and under measurement there is

a potential difference between top and bottom surfaces. This breaks inversion

symmetry of the system when an effective electric field can introduce a poten-

tial gradient along crystal grow c-axis (see Figure 2.1.c, where the arrow is the

direction of the applied field). We implemented a model being presented by kx

Figure 2.1: Crystalline structure of Bi2Se3 and simplified model (a) Material
structure of Bi2Se3 for a 6QLs slab under hexagonal presentation. The yellow
circle–Se atoms, brown circle–Bi atoms (b) The interactive model for three di-
mensional topological insulators. (c) Realistic material grown on substrate with
potential gradient.

and ky coupled with Pauli spin matrices σx and σy respectively. This basically
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2.1. Formalism for k.p model

reproduces a spin orbit coupling with kinetic energy.

Hsp =

 k2/m vkx + ivky

vkx − ivky k2/m

 (2.1)

Thediagonal element k2
m
is the kinetic termwithmbeing orbitalmass, theHamil-

tonian acts in spin space. The surface states HamiltonianHsp is originated from

Rashba spin-orbit coupling:The surface state of Bi2Se3 around the Γ point is

mainly contributed by Se pz orbitals. Neglecting the contribution of three other

atomswithin oneQL, we consider only pz orbitals of two Se atomswith the basis

|1, pz, ↑〉; |2, pz, ↑〉; |1, pz, ↓〉; |2, pz, ↓〉,

where the index 1,2 are atomic orders, ↑ and ↓ are spin up and spin down. We

hence adapt a model Hamiltonian with real space hoping parameters for the

[111] surface of Bi2Se3. The system is symmetric around the Γ point with TRS.

The effective Hamiltonian Hp of one quintuple layer captures both spin degen-

eracy and tunnelling term:

Hp =



k2/m1 d+ k2/m2 vkx + ivky 0

d+ k2/m2 k2/m1 0 −vkx − ivky

vkx − ivky 0 k2/m1 d+ k2/m2

0 −vkx + ivky d+ k2/m2 k2/m1


(2.2)

where m1 is mass term. d and m2 specify the hopping energy between two or-

bitals with the same spin (d, m2<0). For stacked structure of Bi2Se3, the system

can be expressed as each quintuple layer having two nearest neighbours (except
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for two surface quintuple layers having only one neighbour).

T =



t 0 0 0

tz t 0 0

0 0 t 0

0 0 tz t


(2.3)

Semi-infinite model of [111] surface 3D TIs is written as:

H =



H1 T1 · · · · · · 0

T †1 H2 T2 · · · 0

0 T †2 H3 · · · 0

... ... ... . . . ...

0
... ... ... ...


(2.4)

where Hi = Hp and Ti = T for any integer i which denotes the index of quintu-

ple layers, T is hoping matrix between two neighbouring QLs (4x4 matrix). The

electronic structures capture salient features of the Z2 TI and gives the topolog-

ical phase transitions and surface gap opening with finite film thickness due to

the finite size effect. A realistic parameter set is obtained by fitting the band

structure to the experimental dispersion [43].

We have m = 0.125eV−1Å−2; m2=-0.04eV−1Å−2; d=0.22eV, v = 2.5eVÅ; tz =

0.37eV; and t = −0.045eV.

Values of these parameters yield a semiconducting bulk gap 300meV and the

single-Dirac-cone topological surface states on each side of the surface. The ex-

pected in-plane spin-polarization of the surface state are obtained. In addition,

we find that the surface gap decreases dramatically with increasing film thick-

ness, and above 6QLs, practically a “tiny-gap” remains which all agree with

experimental data [43].

The theory of Hall effect in spin-orbit coupling material has long history.

The calculation was firstly initialized by Karplus and Luttinger to solve conduc-
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2.1. Formalism for k.p model

tivity problem based on perturbation theory (We give a brief derivation in Ap-

pendix A). Later, Kubo proposed a model based on transport coefficient, sum-

marizing the proof by Luttinger when a system in equilibrium and slowly tuned

by in-plane electric field (see Appendix B). The theory can be also extended by

Green’s function approach, computing conductivity under interaction and im-

purities (see Appendix C). We adapt Kubo formula to compute the Chern num-

ber:

C =
1

2π

∑
m,n,k

Im[〈nk| ∂H
∂kx
|mk〉〈mk| ∂H

∂ky
|nk〉]

(Enk − Emk)2
(nf (Enk)− nf (Emk)) (2.5)

nf (E) is the Fermi-Dirac distribution function. In equation 2.5 The topological

phases are mainly defined by the contribution of the Dirac bands. The proce-

dure of Chern number is as follow: Firstly, for each k-point, one should do exact

diagonalization to get the eigenvalues and wavefunction. Secondly, the Berry

curvature at each k-point is computed using the velocity operators and wave-

function. One should be careful when the energy gap between two states is two

small and can cause problem of division by zero. Later, the integration is done

while a sufficient number of k-points is taken into accounts. We note again, the

Chern number is associated with the number of 1D edge states. For a 2x2 band

model spin matrices are conventional Pauli matrices:

σx =

0 1

1 0

 ;σy =

0 −i

i 0

 ;σz =

1 0

0 −1

 (2.6)

Under exchange energy, the four band model which consists of two pz orbitals

of Se atom. Since the basis was chosen as two spins up and two spins down, the

spin matrices are defined as:

σx =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


;σy =



0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0


;σz =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


(2.7)
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if the exchange field is out of plane, the bands with spin up and spin down

are splitted in opposite directions by an energy proportional to the exchange

energy. Hence, the new Hamiltonian under exchange energy is two interacting

topological insulators model with Zeeman energy:

Hp =



k2/m1 +Mz d+ k2/m2 vkx + ivky 0

d+ k2/m2 k2/m1 +Mz 0 −vkx − ivky

vkx − ivky 0 k2/m1 −Mz d+ k2/m2

0 −vkx + ivky d+ k2/m2 k2/m1 −Mz


(2.8)

where Mz specifies the exchange energy driven by proximity ferromagnetism.

The eigensystems of the Hamiltonian are:

E1∓(k) =
k2

m1

∓

√
(
k2

m2

−Mz + d)2 + v2k2 (2.9)

E2∓(k) =
k2

m1

∓

√
(
k2

m2

+Mz + d)2 + v2k2 (2.10)

Ψ1−(k) =
1

|Φ1−|
{ −1

vk−
(
k2

m2

−Mz + d+

√
(
k2

m2

−Mz + d)2 + v2k2),

−1

vk−
(
k2

m2

−Mz + d+

√
(
k2

m2

−Mz + d)2 + v2k2), 1, 1}

Ψ1+(k) =
1

|Φ1+|
{ 1

vk−
(− k

2

m2

+Mz − d+

√
(
k2

m2

−Mz + d)2 + v2k2),

1

vk−
(
k2

m2

−Mz + d−

√
(
k2

m2

−Mz + d)2 + v2k2), 1, 1}
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Ψ2−(k) =
1

|Φ2−|
{ −1

vk−
(
k2

m2

+Mz + d−

√
(
k2

m2

+Mz + d)2 + v2k2),

−1

vk−
(
k2

m2

+Mz + d−

√
(
k2

m2

+Mz + d)2 + v2k2),−1, 1}

Ψ2+(k) =
1

|Φ2+|
{ −1

vk−
(
k2

m2

+Mz + d+

√
(
k2

m2

+Mz + d)2 + v2k2),

−1

vk−
(
k2

m2

+Mz + d+

√
(
k2

m2

+Mz + d)2 + v2k2),−1, 1}

The eigenvalues are doubly degenerate at zeromagnetization, them2 < 0 which

makes valence bands separated from conduction bands for layered model. Φi

are normalization constants.

At zero exchange field, one can detect the degeneracy between E1±(k) and

E2±(k). However, thewavefunctions expanding theHilbert space carry different

characteristics. When k = 0 the Hamiltonian at the Γ point:

H0 =



Mz d 0 0

d Mz 0 0

0 0 −Mz d

0 0 d −Mz


(2.11)

having the energy states E1∓(Γ) = ∓(Mz − d) ,E2∓(Γ) = ±(Mz + d), with the

wavevectors: Ψ1−(Γ) = 1√
2
{0, 0, 1, 1} contributed by two orbitals with the same

spin Ψ1+(Γ) = 1√
2
{−1, 1, 0, 0} Ψ2−(Γ) = 1√

2
{1, 1, 0, 0} Ψ2+(Γ) = 1√

2
{0, 0,−1, 1}

Looking at the basis chosen to build the effectiveHamiltonian, one notes that

the degeneracy at zero exchange field is due to the combination of thewavefunc-

tions in the vicinity of the Dirac cone. Consequently, the exchange field breaks

band degeneracy in two oppositeways: The spin up states are lifted up, whereas

spin down states are pulled down. The energy gap at the Γ point is calculated

as the difference between E2+ and E2− for k = 0 ∆E = −2(Mz + d) under small
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magnetizationMz < −d (d specifies hopping energy of the same spin type for

different electrons, hence d is negative). At critical exchange field Mc = −d a

gapless Dirac cone is obtained. For large exchange field, the band inversion re-

sults in the change in energy gap definition at the Γ point: i.e., ∆E = 2(Mz + d).

Hence, the evolution of bandstructure is as follow: Small exchange field ap-

plied in four band effective Hamiltonian for one QL narrows down the band

gap. When the exchange field reaches a critical value comparable to hopping

energy of two electrons with the same spin, the model exhibits a gapless Dirac

cone at high symmetry point. Hence, the band gap increases linearly as a func-

tion of exchange field. Assume the Fermi energy lies in the middle of the band

gap. The energy gap between lowest conduction band and highest valence band

E2+ and E2− for different wavevectors and exchange energy:

∆E(k) = 2

√
(
k2

m2

+Mz + d)2 + v2k2 (2.12)

For small exchange field the highest valence energy and lowest conduction en-

ergy are located at the Γ point. The spin polarization at zero momentum:

〈σz1+〉(Γ) = 〈Ψ1+(Γ)|σz|Ψ1+(Γ)〉 = −1

〈σz1−〉(Γ) = 〈Ψ1−(Γ)|σz|Ψ1−(Γ)〉 = 1

〈σz2+〉(Γ) = 〈Ψ2+(Γ)|σz|Ψ2+(Γ)〉 = 1

〈σz2−〉(Γ) = 〈Ψ2−(Γ)|σz|Ψ2−(Γ)〉 = −1

Justifying our initial proposal of the band shift by Zeeman energy due to the

spin at vicinity of the Γ point. We calculate the out of plane spin component as

a function of the exchange fieldMz, wave vector k for all different 4 bands.

〈σz1±(k)〉 = 〈Ψ1±|σz|Ψ1±〉;〈σz2±(k)〉 = 〈Ψ2±|σz|Ψ2±〉

〈σz2−〉(k) = 〈Ψ2−(k)|σz|Ψ2−(k)〉 =
α− 1

α + 1
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2.1. Formalism for k.p model

α = 1
v2k2

( k
2

m2
+ d+Mz −

√
( k

2

m2
+ d+Mz)2 + v2k2)2

α = [−x+
√
x2 + 1]2 with x = 1

vk
( k

2

m2
+ d+Mz)

We look for the lower Dirac cone spintexture with serveral possibilities for

exchange field and wave vector. The out of plane spintexture is circular around

the Γ point which depends only on the parameter k in the first Brillouin zone.

For the case Mz + d < 0 the exchange energy is not sufficient to close the

quantum tunnelling gap. The wavefunctions of upper and lower Dirac cone

states follow a trivial topology with a hedgehog spintexture in which the total

out of plane spin component is positive for upper Dirac band and negative for

lower Dirac band (〈σz2−〉 > 0 and 〈σz2+〉 < 0, exhibiting a trivial topological

spintexture of the gapped Dirac cone). Since k2

m2
+ d is the wave vector depen-

dence hopping energy between orbitals with the same spin defining the initial

tunnelling gap, small exchange field is not able to compensate the band gap.

x = k
vm2

< 0 since m2 < 0; 〈σz2−〉(k) = α−1
α+1

approaches zero when k → Γ and

α→ 1

〈σz2−〉(k) = α−1
α+1

approaches 1 when − k2

m2
> vk(the hopping energy between

orbitals of the same spin is greater than spin-orbit coupling term) and α→∞

Under large exchange field Mz + d > 0, the band gap opens linearly as a

function of exchange energy and it indicates that the two topological phases can

not adiabatically connected. For the wave vector at vicinity of the Dirac cone

α→ 0 and 〈σz2−〉(k → Γ) = −1. When

k → kc =
√
−m2(Mz + d), α→ 1 (2.13)

the total z spin component reaches zero 〈σz2−〉(k → kc) = 0. One notes that the

critical k-point kcwhich defines the band inversion region increases as function

of exchange field.

The out of plane spin components after phase transition follow a non-trivial

topology signifying by the band inversion at vicinity of the Dirac cone k � kc,
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i.e., the spin experiences an inversion from negative to positive at critical mo-

mentum kc =
√
−m2(Mz + d). This is a function of exchange field and hopping

energy and becomes positive at large momentum. 1

Figure 2.2 demonstrates the evolution of Topological Surface State (TSS) un-

der exchange field based on the four band effective Hamiltonian for ultra-thin

TI film with the unconventional spin-texture which has been proposed analyti-

cally above. The arrows indicate the spin polarization. A gapped TSS with zero

net magnetization, in which all the degeneracies are survived is presented in

Figure 2.2.a. As a result of a small magnetization with efficiency being smaller

than the tunnelling gap (or the critical exchange field), i.e., Mz < Mc (see Fig-

ure 2.2.b). Figure 2.2.c shows a perfect spin polarized Dirac cone at critical ex-

change energy. The total out of plane spin component at the vicinity of the Dirac

cone is zero. When the exchange field overcomes the critical valueMz > Mc the

band inversion is followed by a spintexture inversion which leads to the change

in topological band structure. The size of inversion region is dependent on the

magnetic exchange energy. The Dirac energy dispersions with magnetic gap

demonstrates a non-trivial spin-texture. The bands experience a change in di-

rection of the spin from negative to positive out of plane spin for lowermagnetic

gapped Dirac band, and vice versa for upper Dirac band (see Figure 2.2.d).

The Berry curvature tuned bymagnetization contributes to the total topolog-

ical Chern number characterising the quantum Hall effect. The effective four-

band Hamiltonian explains the gapped topological surface state for one quintu-

ple layer 3D TI in finite size limit. Moreover, the Berry curvature in time reversal

broken topological phase exhibits a peak at the Γ point, contributed majority to

the total Chern number. To understand the Berry curvature we analyse the par-

tial Berry curvature of the lowest conduction band and highest valence band as

a function of spintexture and momentum. Based on Kubo formula which in-

volves particle-hole scattering process, the Berry curvature of the gapped Dirac

1For four band model, the out of plane spintexture of upper and lower Dirac bands reversed
〈σz2+〉(k) = −〈σz2−〉(k)
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2.1. Formalism for k.p model

a) b) c) d)

Figure 2.2: Evolution of sub-band structure under exchange field for ultrathin
topological insulator film. (a)GappedDirac cone under zero exchangefieldwith
the bands doubly spin degenerated. (b) Energy level splitting due to the small
exchange energy Mz < Mc. (c) A perfect spin polarized Dirac cone at critical
exchange energy. The total out of plane spin component at the vicinity of the
Dirac cone is zero. (d)Mz > Mc the band inversion is followed by a spintexture
inversion which leads to the change in topological band structure.

state with quadratic dispersion can be expressed (see eq. 2.5). We note that there

should be doubling in the Ω2:

Ω2(k) =
Im[〈Φ2−| ∂H∂kx |Φ2+〉〈Φ2+| ∂H∂ky |Φ2−〉]

(E2− − E2+)2
(nf (E2−)− nf (E2+)), (2.14)

∂H

∂kx
=



2kx/m1 2kx/m2 v 0

2kx/m2 2kx/m1 0 −v

v 0 2kx/m1 2kx/m2

0 −v 2kx/m2 2kx/m1,


(2.15)

∂H

∂ky
=



2ky/m1 2ky/m2 i.v 0

2ky/m2 2ky/m1 0 −i.v

−i.v 0 2ky/m1 2ky/m2

0 i.v 2ky/m2 2ky/m1,


(2.16)

Ω2(k) =
16

∆E(k)2Φ2
2+Φ2

2−.k
2
.

√
(
k2

m2

+ d+Mz)2 + v2k2.(Mz + d− k2

m2

), (2.17)
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When Mz < −d, the momentum dependence Berry curvature is negative for

k < k0 =
√
m2(Mz + d) and positive for large momentum k > k0. One possi-

ble explanation for trivial insulating phase is the cancellation of the topological

Chern numbers for top and bottom surface for ultra-thin TI films (±1
2
), hence

the total Chern number for tunnelling TI is 0.

When Mz > −d, the Berry curvature is always positive due to the spin in-

version, the exchange field is sufficiently strong to close the tunnelling gap and

transform the Chern number of one surface with negative Chern number to a

positive value. Thus, the total Chern number under large magnetization is non-

zero, indicating a non-adiabatic topological phase transition from trivial insu-

lating phase to non-trivial QAH one. The integration for Chern number consists

of two part: a part with one half Chern number k ≤ kc =
√
−m2(Mz + d) with a

non-trivial inverted spintexture, the other half is conventional trivial contribu-

tion.

2.2 Layer dependencebandstructure and spintexture

Pristine Bi2Se3

Figure 2.3.(a-d) shows calculated bandstructure for layer thickness of 1, 4, 8, 16

QLs, respectively. It is interesting to note thatwhen the number of QLs increases

and is larger than tunnelling length (above 6QLs) of top and bottom surface

wave-functions, the surface state exhibits a perfect gapless Dirac cone. When

the slab thickness increases, the bulk bands become closer together and become

continuous for infinite thick slab, whereas the bands are discrete for a small

number of layers. At very large thickness, the spin up and spin down states

of top surface have weak interaction with spin up and spin down of bottom

surface. Moreover, when the thickness of the film is reduced to only several

nano-meter, overlapping between the surface state wavefunctions from the two
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Figure 2.3: Thickness dependence bandstructure of Bi2Se3 which captures main
features of low energy spectra (a) 1QL, (b) 4QLs, (c) 8QLs, (d) 16QLs slabs.

surface states of the film becomes non-negligible, and hybridization between

them has to be taken into account [44]. As a result, a small band gap opens at

the Γ point. The tunnelling effect can be simply demonstrated by aHamiltonian:

H =

 T ∆

∆† B

where T,B indicate theHamiltonian for top and bottom surfaces,

∆ is the interaction term. In the ultrathin filmmodel for oneQLdescribed above,

the tunnelling term shows a parabolic like dispersion. The topology of band

structure can not be distinguished with original insulator phases. However, as

thickness of TI slab is enough, the band gap drops for 16QLs, approaching 0.

For Bi2Se3 the parameters are controlled to show a bulk gap of 0.3eV. In addi-

tion, the states contributed by px and py orbitals of Bi and Se are negligible near
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the Fermi level. In the thick slab limit, the band gap closes, showing linear en-

ergy dispersion around the Dirac cone. The quantum well states separate from

surface state due to the interlayer hopping energywhen the interlayer tunnelling

term T is large enough.

Magnetically doped Bi2Se3 We look for three possible magnetic configura-

tions: one substrate induced ferromagnetism (Ferromagnet–Topological Insu-

lator (FM-TI)), two substrate induced ferromagnetism (FM-TI-FM), whole slab

doping (see Figure 2.4.(a–c), respectively). While the conventional model are

based on low energy spectra and captures only surface state, our model is more

flexible in term of magnetic configurations. Realistically, if capping the TI thin

film in the middle while the magnetization can acts on separate surfaces of TI

thin film, and having the same magnetic direction (Figure 2.4.(b)). It is possi-

ble that the magnetization can have different directions and a gap can simply

open without signal of phase transition. As can be seen from the figure 2.4.(a–

c), the spontaneousmagnetization is directed perpendicular to the surface of TI,

breaking the time reversal symmetry.2 Themagnetic direction can be controlled

by a small magnetic field in the opposite direction. Presumably the magnetic

substrates are coupled with only surface QLs, while in the whole slab doping

configuration the magnetic exchange energy has effect on all layers. We simu-

late the effect of the proposed proximity induced ferromagnetism by including

the exchange field to the spin matrix of the last QL for the first case, two surface

spin matrices for the second structure, and total spin matrix for the whole slab

doping case. The TI model with magnetic impurities on one surface is adapted

for various exchange energy scales, the results are presented in Figure 2.5.(a–d)

for Mz = 0eV, Mz = 0.1eV, Mz = 0.24eV, Mz = 0.375eV, respectively. As pre-

sented in the schematic model and previous band structure, the ultra-thin TI

2Note that if magnetization is applied parallel to the surface, the Dirac cones are only shifted
away from the Γ point.
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2.2. Layer dependence bandstructure and spintexture
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c)a) b)

Figure 2.4: Simplifiedmaterial structurewith differentmagnetic configurations,
the arrows indicate direction of magnetization: (a) one substrate induced mag-
netic ordering, (b) two substrate inducedmagnetic ordering, (b) whole slab dop-
ing.

film of 4QLs shows a band gap due to the tunnelling effect as mentioned above

instead of a perfect Dirac cone. When a small exchange energy is applied on one

surface, the two surface states lose twofold spin degeneracy (see Figure 2.5.a).

The quantumwell states show the same behaviour i.e., they split uponmagneti-

zation. As can be seen in Figure 2.5.b, when the exchange ferromagnetic energy

is small, there are two states moving in opposite directions with respect to the

Fermi level, leading to a decrease in band gap. Afterwards, a linear touch is also

presented in critical TPT point (see Figure 2.5.c). When the exchange energy is

larger than a critical value (see Figure 2.5.d), the band gap gradually increases

as a function ofMz in contrast to the small magnetization.

From Figure 2.6, the band gap at Γ point is presented as a function of thick-

ness and for differentmagnetic structure. The critical exchange fieldMz atwhich

the direct band gap at Γ point closes and reopens can also be seen. This indicates

a phase transition which motivates our further study of Chern number charac-

terizing the band structure topology. For FM-TI structure, the critical exchange

energy is almost identical for all thickness, varying around 0.24eV , depending

on parameter d in Eq.2.2. The critical exchange field for multiple QLs model

is slightly larger than for one QL with a negligible difference. Hence, the crit-
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Figure 2.5: Realistic band-structure calculated of 4QLs under magnetic doping
for different exchange fields. (a) Mz = 0eV, (b) Mz = 0.15eV, (c) Mz = 0.25eV,
(d)Mz = 0.35eV

ical exchange energy should be confirmed experimentally in term of sufficient

magnetic dopant’s concentration to trigger dissipasionless Hall current.3

We look for a simplified effective model of topological insulator with arbi-

trary thickness.

HFM−TI =

 T ∆L

∆†L B + σzMz


The initial gap value is proportional to the interaction between the two Dirac

cones. At critical exchange energy, the gap at the Γ point closes when the field is

sufficient to compensate the tunnelling gap. In the FM-TI case, the effectivemag-
3Note that a perfect Dirac cone of pristine Bi2Se3 can not obtained for finite thickness since

the tunnelling effect of the two opposite surfaces always exists, in the ARPES study for thick
slab limit the gap is not present due to the small scale of a band gap.
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2.2. Layer dependence bandstructure and spintexture
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Figure 2.6: Evolution of the band gap at the Γ point as function of Mz and
film thickness, critical Mz dependence on number of QLs. (a) One substrate
induced ferromagnetism. (b) Sandwitching TI slab between two magnetic layer
i.e., FM-TI-FM (c) Whole slab doping gap evolution

netization is less effective compared to the exchange field generated from the 4x4

model. Here, we note that the tunnelling gap and the inter-layer coupling de-
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cide the critical exchange field needed to drive the system to QAH phase. We

consider a simplified effective model of TI with arbitrary thickness, consider-

ing the tunnelling term as a function of thickness. At critical exchange energy,

the gap at the Γ point closes when the field is sufficient to close the tunnelling

gap in opposite surface (we still have some intermediate contribution from the

bulk layers) and reopen it. The effective critical exchange field needed to tun-

nel through bulk QLs to take effect on top QL with a smaller initial tunnelling

gap. Curiously, the similarity in tendency of tunnelling gap, effective interlayer

hoping energy as well as the effective exchange energy for FM-TI structure gives

us almost unchanged realistic criticalmagnetization (see Figure 2.6.a). However,

the parameters arematerial specific, one has to confirm that the numerical study

performed depends largely on the energy scale of the specific band-structure

and from the experimental point of view the change in critical exchange field

for FM-TI structure is negligible.

As can be seen from Figure 2.6.a, the band gap closes and reopens only once

for FM-TI structure. Such robust layer-independent QAH effect is, however, not

present in the cases of FM-TI-FM structure and the homogeneous doping. In

the latter cases, while Mc decreases with increasing number of QLs, the QAH

gap grows linearly with respect to the exchange energy. The drop in critical ex-

change field with respect to the slab thickness is a result of the decrease in inter-

surface interaction. Comparing three differentmagnetic configurations, we con-

firm that the critical exchange energy at which the Chern number becomes 1 is

smallest for the whole slab doping case showing the most significant expansion

in magnetic gap as a function of magnetization, followed by FM-TI-FM struc-

ture. Thus, homogeneous magnetic doping is the most promising candidate to

the real low power-consumption electronic devices. On the contrary, the FM-TI

structure is predicted to open smallestmagnetic gap. The second and thirdmag-

netic structures can demonstrate multiple gap closing in which the band gap at

the Γ point closes and reopens more than once at the Γ point only, indicating
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2.2. Layer dependence bandstructure and spintexture

two TPT (see Figure 2.6.(b–c)). We will demonstrate the band-structure in the

next sub-section.

To further show the proof of multiple gap closing and in-direct band gap

transition at high exchange field limit for the FM-TI-FM and homogeneous dop-

ing proposed in Figure 2.6.(b–c), we demonstrate the bandstructure evolution

under strong exchange field of 4QLs slab for FM-TI-FM in Figure 2.7 and Fig-

ure 2.8. The TPT mechanism has no significant difference compared to FM-TI

structure except for the indirect bandgap at high exchangefields (see Figure 2.8.a).

In addition, more complicated bands can involve in low energy spectra and the

material becomes metallic (see Figure 2.8.(c–d)). The calculation of second TPT

point will be presented in next chapter for another class of tunable TI.
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Figure 2.7: Bandstructure evolution under strong exchange field for FM-TI-FM
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Mz = 0.075eV.
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Spintexture of Dirac bands

As can be seen from the Figure 2.9 the out of plane spin component expressed in

term of the density at vicinity of the upper and lower Dirac cones has a perfect

circular shape i.e., symmetric around the Γ point in consistency with the effec-

tive four band Hamiltonian studied analytically above. The total z spin compo-

nent at the Γ point is always ±1 unpon applying the magnetic exchange energy

indicating that the total inplane spin components of the system are zero at the Γ

point. Assuming that under exchange energy not large enough to cause a band
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Figure 2.9: Evolution of z-spin density around the Dirac cones before and after
phase transition, the left-side figures stand for the upper Dirac state, the right-
side: lower Dirac cones. (a–b) Mz = 0.235eV, (c–d) Mz = 0.24eV, close to Mc,
(e–f)Mz = 0.25eV

mixing between bulk QLs and surface QLs, the valence band maximum and

conduction band minimum are always located at lower and upper Dirac cones,
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respectively. In consistent with our initial proposal in Figure 2.2 we observed

two distinctive spin textures before and after gap closing. Before gap closing at

Mz = 0.235eV andMz = 0.24eV, z-spin component of the top surface is positive

for upper Dirac cone and negative for lower Dirac cone at small momentum.

After gap closing at Mz = 0.25eV the direction of z-spin reversed, indicating a

topological phase transition. The z-spin is positive for upper Dirac cone, and

negative for lower Dirac cone for all surfaces at TPT. The top surface z-spin

component contributed the most to the total spin, indicating strong spin polar-

ized behavior at around the Γ point. We note that applied exchange field is at

bottom layer, and the spin density is computed at topmost surface layer. From

Figure 2.9 it can be seen that the behaviour of z-spin component of different QLs

at the vicinity of Dirac cone is the same although their polarization strength is

different. One possible explanation is that for FM-TI structure where the in-

version symmetry is broken, the low energy wave-function come mainly from

top QL. For QAHE with Mz = 0.3eV, the layer dependence spintexture shows

that the z-spin of the top QL at small momentum is the main contribution to

the whole system, whereas the negative spin polarization at large momentum

mainly comes from bottom surface where the magnetization is applied (see Fig-

ure 2.10.b).
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Figure 2.10: Layer dependence out of plane spin polarization of upper Dirac
cones before and after phase transition along kx direction for FM-TI structure
for (a)Mz = 0.1eV: trivial (b)Mz = 0.3eV: QAH.

30



2.2. Layer dependence bandstructure and spintexture

Chirality of the spintexture

The spin components are computed within one first surface quintuple layer in

Figure 2.11(a–b) in trivial and QAH side, respectively. The colour indicates the

out of plane spin polarization. One notes that a chiral spintexture (left handed or

right handed) for surface bands is specific property for Z2 TI. The total spin com-

ponents are expected to be nonzero due to the band splitting and broken inver-

sion symmetry in FM-TI, in contrast with zero total inplane spin for FM-TI-FM

and homogeneous doping (we have proved analytically the zero inplane spin-

texture of single layer Hamiltonian under magnetization in the previous sec-

tion). While the topmost surface shows left-handed spintexture for upper Dirac

cone, the bottom surface shows right-handed spintexture for lower Dirac cone

with the inversion symmetry. Due to SOC interaction, the spin-momentum are

locked for TI phase. In a perfect TI, the spin texture gives rise to a non-trivial

Berry phase for the topological surface states and suppresses the backscatter-

ings under TRS, leading to possible device applications in spintronics [17]. One

should note that although for the FM-TI-FM and homogeneous doping cases,

the exchange field does not break inversion symmetry but if considering only

in-plane spin of top surface, the spintexture is helical. Figure 2.11(c–d) shows

that the spin polarization at bottom QL is weak at vicinity of the Γ point, and

the helicity also changes at large momentum. By contrast, the chiral spintexture

of top surface tend to be more conservative upon the TPT (see Figure 2.11(a–d)).
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a) Trivial top surface b) QAH top surface
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Figure 2.11: Evolution of surface inplane spin components of the two Dirac
cones under magnetic perturbation. (a) The surface spin-textures for FM-TI
structure for trivial side, (b) The skyrmion spin-textures for surface QL in QAH
phase. (c) The inplane spintexture of bottomQL inQAH state. Blue-upperDirac
cone, (d) Red–lower Dirac cone in the.
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Figure 2.12: Layer dependence inplane spin polarization of Dirac cones after
phase transition along kx direction for 4QLs. (a) Upper Dirac cone, (b) Lower
Dirac cone

Figure 2.12 demonstrates the layer-dependence 〈σ〉y of the two Dirac cones

in QAH state. Due to the interlayer tunnelling effect, 〈σ〉y carries the same sign

for all slab except for last QL. The in-plane spin crosses zero value three times.

Figure 2.12 further revealed the complexity of chiral character in quantum tun-

nelling tunnelling limit: At largemomentum the TR broken spin chirality at bot-

tom surface is: right handed for large momentum, transforming to left-handed

at small momentum k.

The surface state of TI

To investigate the band evolution of nearly perfect TSSwithDirac cone, we com-

puted the surface band by tuning magnetic exchange field for FM-TI structure.

We use thick slab limit to avoid tunnelling effect without interlayer tunnelling.

The weight of a band is computed by a proportion of surface wave component

with respect to thewavefunction normalization factor. For example, the topmost

surface band components of lower Dirac cone state is Ψ1,k,Ψ2,k for spin up, with

Ψk = (Ψ1,k,Ψ2,k, ...,Ψ4N−1,k,Ψ4N,k) (2.18)
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Figure 2.13: Surface band of 15QLs slab under magnetic perturbation. (a)Mz =
0eV, (b)Mz = 0.1eV, (c)Mz = 0.275eV

being the lower Dirac cone surface state for a kpoint. Hence, the weight of top-

most surface spin-up component can be expressed as:

W 2
↑,k =

|Ψ1,k|2 + |Ψ2,k|2

||Ψk||2
(2.19)
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2.3. Electric field effect

The tunnelling effect is non-negligible in thick film limit, thus for a slab of 15QLs

its direct gap is some percentage of meV. At zero exchange energy, the surface

state comes from both spin up and spin down components. Upon applying

small exchange energy, the twofold degenerated band separates into spin up

and spin down state: Spin up bands move up and spin down bands move down

with respect to the Fermi level 45. However, the gap closing at thick slab limit is

quite difficult to observe, and the gap opened is small as mentioned in previous

section. Figure 2.13 demonstrate that at very thick film limit, the FM-TI is not a

potential structure for QAH experiment. The arrows indicate the spin polariza-

tion direction, whereas the green and red colour indicate the surface states of

bottom and the top QLs, respectively. The FM layer, which acts on last QL can

straightforwardly open the gap on bottom, however, could not open a consider-

able gap for top QL. Finally, at large exchange field a single spin polarized Dirac

cone still survives (see fig 2.13.(b–c)).

2.3 Electric field effect

If electric field is applied in z direction, there is a potential gradientwhich breaks

the reflection symmetry of theHamiltonian. The two surface states are no longer

degenerated due to potential difference. While a electric field is applied perpen-

dicular to one slab surface, the potential difference does not break TRS. How-

ever, there is a shift at the Dirac point for upper and lower surfaces. The splitting

of two surface states is more prominent at larger wave vectors but disappears at

the Γ point. This is a Rashba-type splitting, in which the two sub-bands with

different spin shift along the k// axis in opposite directions and degenerate at

the Γ point [44].

Figure 2.14.a shows that we invoke thick slab limit to compute the surface
4We assume Fermi level is located in the middle of the two Dirac cones
5We applied magnetic exchange energy in -z direction, if the field is in +z direction the spin

z components are reversed

35



Quantum anomalous Hall effect in Topological Insulators

E
n
er

g
y
(e

V
)

kx(Å
-1)Layer

10 20 30
-0.05

0

0.05
E

le
ct

ri
c 

p
o

te
n

ti
al

(e
V

)

a) b)

-0.1 0 0.1
-0.4

-0.2

0

0.2

0.4

Figure 2.14: Effect of electric field, red color: surface band of topQL, green color:
surface band of bottom QL. (a) Linear potential profile of 15QLs. (b) Calculated
bandstructure for 15QLs with electric field.

state, assuming that the potential difference within one QL is negligible. Sig-

nificantly, the top surface state is lifted up for the first QL with higher potential,

whereas the surface state of bottomQL is pulled downwith theweight indicated

by red and green circles, respectively. Hence, the surface states also demonstrate

Rashba-type spin-orbit splitting because the dielectric substrate-induced poten-

tial difference and more bulk bands emerge. The larger the potential difference

applied, the larger the separation between two Dirac cones obtained. Moreover,

the splitting is more prominent at thicker model due to highly asymmetric po-

tential. There are two other Dirac cones formed by band crossing of top and

bottom surfaces. Although we adapted the model to a thick slab, the tunnelling

effect still exists between the two surfaces. In the two symmetric Dirac cones

which are shifted away from the Γ points, two band gaps opened as a result of

inter-surface quantum tunnelling.

In addition, the substrate effect was also modelled by implying effective po-

tential along the film normal direction V (z), the dispersions are obtained, the

energy separation ∆E becomes proportional to V (z). A simple model Hamilto-

nian can refer back to two interactingDirac conemodel for arbitrary thickness in
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2.4. Quantum Anomalous Hall effect

which the on-site energy of the twoTIs are different: HEfield =

TI1 − V (z) ∆

∆† TI2 + V (z)

.

The spintexture of two Dirac cones are opposite: Upper Dirac cone–left handed,

lower Dirac cone-right handed and vice versa for bottom surface.

2.4 Quantum Anomalous Hall effect

Figure 2.15 demonstrates the experimental setup of Hall effects. For quantum

Hall effect, the perpendicular magnetic field applying to 2DEG system leads to

a Hall current around the edge of 2D slab. The Hall conductance is quantized

due to Landau levels formation, thus increasing the magnetic field will cause

plateaus of Hall conductance at exact value of magnetic field. In the Quantum

Spin Hall Effect (QSHE), the two spins up and down are spatially separated

and form a so called “spin current”, without a magnetic field. The spontaneous

magnetization of QAH automatically breaks TRS and opens amagnetic gap and

dissipationless spin current is non spin dependence. 6. The QAH experimental

setup is similar to classical Hall effect where the voltage is applied in longitu-

dinal direction with a current flows in perpendicular direction. The only dif-

ference is that in QAH experiment is required to align the magnetic ordering in

desired direction.

Quantized Hall conductivity

We computed the Chern number to determine the band structure topology for

different exchange energy and three magnetic configurations. Since the sum

in Eq.2.5 is over the first Brillouin zone, we choose an effective Brillouin zone

for k·p model in a rectangle centred at the Γ with a cut off k-point . The main

contribution of Berry curvature in the Kubo formula is at the vicinity of the Γ

6Wehave to distinguish “magnetic gap” and “tunnelling gap”which is caused by two surface
coupling
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Figure 2.15: Currents flow with spin directions in Hall effects. (a) Quantum
Hall effect, (b) Quantum spin Hall effect, (c) Quantum Anomalous Hall effect,
(d) Basic experimental setup of QAHE

point. Thus, Berry curvature shows a peak at the Γ point at TPT. As can be seen

from 2.16, the Chern number is exactly quantized when varying the exchange

energy for all three magnetic configurations at T=0K. Before phase transition,

the exchange energy is not sufficient to close the band gap, the Chern number

is zero. The Berry curvature drops to a negative minimum value at the Γ point

(k < k0 =
√
m2(Mz + d)), positive value of the Berry curvature around the first

Brillouin zone border makes the total Chern number zero. 7 If the exchange

energy is strong enough to close the band gap and reopen it, the phase trans-

formed to non-trivial QAH phase with Chern number 1 at T=0K. Interestingly,

the TPT happens at exact critical point where the band gap reached minimum

value. Comparing three different magnetic configurations, we confirmed that

the critical exchange energy at which the Chern number becomes 1 is smallest

for the whole slab doping case, followed by sandwiching the slab between two

ferromagnetic layers. Thus, in the whole slab doping the critical exchange en-

ergy is smallest compared to the two other cases. This fact may help to define

the critical ferromagnetic doping concentration, andmake a reliable experimen-

tal structure for QAH. The temperature dependence Hall conductivity is also

7Although the band gap is small but it is still exists, so the TI phase is still connected to trivial
insulating phase
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considered when varying the exchange field.
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Figure 2.16: Hall conductivity as a function of exchange energy, temperature 0K,
20K, 30K, 50K for different doping possibilities. The quantization is survived
under zero temperature only: (a) one substrate induced magnetic ordering, (b)
two substrate induced magnetic ordering, (c) whole slab doping

Hence, we have presented our main results of topological phase transition
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of topological insulator in the proximity to the ferromagnetism effect. By tak-

ing into the consideration the exchange coupling, our model with Rashba based

spin-orbit coupling and interlayer tunnelling have shown exact quantized anoma-

lousHall states for threemagnetic structure. However, the effect of thermal fluc-

tuation or chemical potential variation can change the Hall quantization. In the

next sub-section, we will give more insightful discussion of temperature depen-

dence Hall conductivity. We note that the Hall conductivity becomes negative

at -0.25eV, but there is no phase transition occurs.

Temperature-dependence Hall Conductivity

TheQAHunder non-zero temperature and chemical potential gating-modulated

is considered when the exchange energy is sufficient for QAH. As can be seen

from the Figure 2.17, the Hall conductivity inside the magnetic gap at zero tem-

perature is quantized in unit of e2

h
due to the Chern number quantization for

all three magnetic cases. The drop in Hall conductivity is also obtained be-

fore phase transition indicating that total Berry curvature falls down due to the

change in occupation number of highest valence band at Dirac cone region. The

“jump” of Hall conductance under non-zero temperature is smooth, not show-

ing a quantized behaviour. Under large exchange field and zero temperature,

the Fermi-Dirac distribution function is either 0 or 1 for the states below and

above Fermi level (The Fermi level is in the middle of the band gap). When the

temperature increase to 20, 30K the Hall conductivity decreases as an effect of

Fermi-Dirac distribution function. Wenote thatMolecular BeamEpitaxy (MBE)-

grown Bi2Se3 may contain a few impurities, or the experimental condition is un-

der Fermi-level being gating-modulated. Thus, theHall conductivity: decreases

to 0 when the Fermi level is below the two Dirac cones (conductor), jumps to 1

when the Fermi level is inside the band gap, drops to 0 when the Fermi level is

above the two Dirac cones (insulating phase). When the temperature increase,
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whole slab doping

41



Quantum anomalous Hall effect in Topological Insulators

the electronswith kinetics energy are able tomove along the edge of TImaterial.

Thus, we observed slightly above nonzero Hall conductivity in conducting and

insulating phases. In QAH phase (the Fermi level is in the band gap), the elec-

trons transverse in perpendicular direction with respect to the voltage applied

experienced collision with other electrons. Hence, the Hall conductance is less

than e2

h
for the QAH phase. When sandwiching TI material with two ferromag-

netic layers and doping the Ferromagnet (FM) on all layer, the Hall conductivity

shows less dependence on temperature i.e., σxy decreases insignificantly when

temperature slightly increases. σxy is more consistent for the whole slab doping

case where the magnetic gap is large i.e., when T=10K the Hall conductivity is

almost the same compared to the zero temperature case.

2.5 Conclusion

We provided an overview of realistic model for ultra-thin topological insulator

films. From two dimensional spin-orbit coupled electron gas model we devel-

oped the magnetic multi-band k·p model which involves both spin degener-

acy and surface interaction. The work has confirmed that the stacked quintuple

model successfully captures the electronic properties of magnetic TI compared

to first principle calculation and ARPES measurement. Remarkably, the main

theoretical finding of this chapter is the TPTmechanism driven bymagnetic im-

purities for three experimental realizable magnetic structure mentioned above

(FM-TI, FM-TI-FM, magnetically doped TI). The key issue is that the interaction

between two surfaces of TI never vanishes unless the slab is infinite. Moreover,

the critical phase transition exchange field is found to balance the intersurfaces

tunnelling energy. The topological phase transition is a result of band exchange

and confirmed by the Thouless-Kohmoto-Nightigale-Nijs (TKNN)) invariance

or the first Chern number. Hence, the Hall conductivity is nonzero under suf-
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ficient out-of plane exchange field, enabling dissipationless charge current in

spintronics devices. One key contribution of the study is that the skyrmion spin

flip pattern is predicted for FM-TI structurewhen the inversion symmetry is bro-

ken. The previous experimental work has confirmed a hedgehodge spin pattern

of the valence bands of magnetically doped TI. As an extension of this field, our

study suggests that the spin-ARPES measurement can examine higher energy

bands to observe the spin-flip pattern in momentum space. However, in exper-

imental condition the Hall conductivity is no longer quantized in unit of e2
h
due

to the effect of temperature fluctuation. Moreover, the non-quantized Hall con-

ductivity with Fermi level being gatingmodulated. Our proposal simplified the

computational complexity of magnetically doped crystal Bi2Se3, thus novel bro-

ken symmetry topological phases can be tuned on more straightforwardly. For

example, Chern number 2 is expected under super-high exchange energy if we

maintain the system to be insulating.

We investigated ultra-thin TI slab with various thicknesses which requires

a computational approach, complemented by an analytical result. Hence, the

analytical work which was done for a four-bandmodel with magnetic exchange

field nicely explains all the calculation results of momentum dependence Berry

curvature evolution, spin-flip pattern and critical momentum. A higher order

analytical calculation for thin film of higher thickness could be a possible way to

explain the transitionmechanism of Z2 TI. However, the analytical results could

not be performed for larger Hamiltonian. We expect that the topological phase

transition point is almost identical for other QLswith different thicknesses since

the phase transition is mainly on the two surfaces.
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Chapter 3

Multiple topological phase

transition BiTl(S1−δSeδ)2

3.1 BiTl(S1−δSeδ)2 as a topological insulator

There is a growing bodyof literature that recognises the importance of TlBi(S1−δSeδ)2

(δ–doping level) as a first tunable analoque of Bi2Se3 [45]. Different composition

of sulfur gives rise to a topological surface state like in Bi2Se3 or a simple insu-

lating thin film. As presented in experiments, the Dirac cone starts appearing in

Angle Resolved Photo-emission Spectroscopy (ARPES) at the critical concentra-

tion δ = 0.4 [45], whereas lower doping only gives a normal insulator. The emer-

gence of the surface state is also confirmed by the enhancement of the spectral

weight in ARPES measurement, i.e the signal comes from surface is dominant

in the Dirac cone region. Figure 3.1 demonstrates experimental measurement

of energy momentum dispersion in BiTl(S1−δSeδ)2, showing a phase transition

from trivial insulator to TI with spintexture as a function of doping.

The proposal of high Chern number in TI is for the Bi2Se3 class using ex-

tended Haldane model [27]. As mentioned in the last chapter, the high Chern

number Quantum Anomalous Hall (QAH) in Bi2Se3 is hard to realize when the

high exchange field can envole more bands at low energy spectra and difficult to
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ARPES dispersion map

Non-inverted inverted

Spin polarized surface state

Trivial insulator TI

Figure 3.1: First rows: ARPESdispersionmapof tunable BiTl(S1−δSeδ)2 as a func-
tion of doping level δ. Second rows: constant energy contour with the spin di-
rections defined (labels). Experimental data taken from Ref. [45]

maintain insulating state. The basics physics is multiple band inversion when

the magnetic exchange field overcomes the bulk band gap, generating second

bulk band inversion [24, 27, 46]. However, for Bi2X3 the bulk band gap is fixed

and it is quite difficult to control the necessary exchange field to a large value.

Up to now, the QAH experiment can detect the Hall conductivity with Chern

number up to 1 [27, 47]. This is because the limitation of the band gap, and the

magnetization in the system. A small shift in the Fermi level can even change the

Hall conductivity and loose the quantization. Hence, a new material class with

more tunable properties is needed to achieve more roburst Quantum Anoma-

lous Hall (QAH) insulating state. Several questions have appeared since the

QAH has been realized experimentally. What is the best way to get high ferro-

magnetic ordering? What materials to looks at to get a stable QAHI? And what

are the additional parameters can be tuned except for the out of plane exchange

field? This chapter also presents the work published in [48].

In order to answer the aforementioned questions, we study the practicabil-

ity of achieving Quantum Anomalous Hall Effect (QAHE) with field-tunable

Chern number in a magnetically doped, topologically trivial insulating thin

film. We demonstrate that the QAH phases with different Chern numbers can
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3.1. BiTl(S1−δSeδ)2 as a topological insulator

be achieved for TlBi(S1−δSeδ)2, bymeans of tuning the exchange field strength or

the sample thickness near the Z2 topological critical point. Our physics scenario

successfully reduces the necessary exchange coupling strength for a targeted

Chern number. This QAHmechanism differs from the traditional QAH picture

with amagnetic topological insulating thin film,where the “surface” statesmust

involve and sometimes complicate the realization issue. Furthermore, we find

that a given Chern number can also be tuned by a perpendicular electric field,

which naturally occurs when a substrate is present.

This chapter provides an alternative route to achieve QAHI, compared to

the previous studies [24, 27, 49], to achieve a high Chern number QAHI. We

show the feasibility of exhibiting QAHE with field-tunable Chern number in

a magnetically doped, topologically trivial insulating thin film, in proximity to

the Z2 topological critical point [50]. Specifically, we will focus on a candidate

compound, TlBi(S1−δSeδ)2, for its tunable property from a trivial insulator to an

non-trivial one by changing the chemical composition [51]. Although themicro-

scopicmechanism to realize theQAHphases is still the same as themagnetically

dopedTIs, our scenario further offers a fewattractive features to achieve a higher

Chern number: (1) Making the system close to the Z2 critical point lowers the

threshold value of the exchange field to induce the high order spin-polarized

band inversion; This feature is distinguished from the high Chern number in

thin film ofmagnetic TIs, where the first Chern number could be achievedwhen

the exchange fields compensate the tunnelling band gap. Meanwhile, the higher

Chern number QAH effect is more difficult to achieve when the exchange field

should overcome the bulk band gap [50]. (2) we start with a trivially insulating

thin film, in sharp contrast to previous studies. As a result, all 2D-like subbands

have bulk nature and it has advantages to avoid the treatment for the sample

surfaces, usually exposed to complex environment; (3) we also suggest an im-

plementation of the potential gradient or the dielectric substrate to reduce the

critical value of the exchange field. This has not yet been explored in previous
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3. Multiple topological phase transition BiTl(S1−δSeδ)2

related studies. Therefore, in brief, our work strongly suggests that the trivial

insulating thin film with sufficiently large SOC can provide a unique platform

to exhibit QAHE with high Chern number.

The parameter specific model for TlBi(S1−δSeδ)2 in the trivial side is close to

theZ2 phase transition critical points. Wehavem=0.0625eV−1Å−2; m2=-0.04eV−1Å−2;

d = −0.22 eV, v = 2.5 eV·Å; tz = 0.2eV. [52] By increasing tz, we can obtain a

nontrivial Z2 topological insulator phase. This model has been used to describe

the Topological Phase Transition (TPT) in TlBi(S1−δSeδ)2 and delivered the spin-

polarized surface related states both in the trivial and the nontrivial region in

good agreement with recent spin- and angle-resolved photoemission measure-

ments. [52]

3.2 Topological phase transition: From trivial to non-

trivial insulators

It would be helpful to begin with a warm-up example to demonstrate how the

effective model can be driven into a non-trivial Z2 insulators by tuning the pa-

rameter tz which is related to the lattice constants and the size of atomic orbitals

in general. For concreteness, we adapt the parameters mentioned above which

are fitted to band structures of TlBi(S1−δSeδ)2 [52]. However, it is worth men-

tioning that this model is also applicable for the other Bi2X3 compounds. [43]

The typical energy spectra around Γ point for Z2 trivial and non-trivial thin

films are shown in Figs. 3.2(a) and (b), respectively. Without breaking both TRS

and IS, each band in the spectra is obviously spin degenerated and thus has

a zero expectation value for the net spin polarization. By defining Eg as the

energy gap between the lowest conduction band and the highest valence band

at Γ point in the thin film, and ∆i as the gap between ith lowest conduction band

and i + 1th lowest one, on the trivial insulator side, we find that Eg is typically
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a) Z2 trivial thin film b) Z2 nontrivial TI film
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Figure 3.2: The schematic energy spectra of the thin film model around Γ point
from a trivial insulator (a) to a Z2 TI (b) with two types of energy scales: the sys-
tem band gapEg and the energy difference between neighboring bandstructure.
The positive integer numbers without (with) prime denote conduction (valence)
bands. “0” and “0’” denote bandswith surface nature. (c) The calculatedEg and
i as a function of tz. tzc is found to be 0.22 eV here. (d) The band gap Eg of the
thin film at tz = tzc as a function of the number of layers Nl. (e) The wave func-
tion distribution |Φ|2 at Γ point as a function of l for the lowest three conduction
bands in an Nl = 20, Z2 TI thin film with tz = 0.23 eV (l is the layer index). Other
numerical parameters are given in the main text. (f) Z2 topological phase tran-
sition of the bulk band, M is the mass term. M>0 – trivial band gap. M=0 –
critical, gap closing. M<0 – non-trivial, band gap inverted.

larger than ∆i, while among ∆i they are comparable, as a result of all quantum

well states.

The aforementioned feature can be changed via chemical (Se) doping, or

effectively, increase the tunnelling energy tz. Close to a “critical” value of tz

(called tzc, at which the 3D bulk band gap closes, independent of the thickness

of the thin films), Eg becomes comparable to ∆1 and turns into a smaller value

rapidly after passing tzc, as can be seen in Figs. 3.2(b) and (c). This crossover

phenomenon between the values of Eg and ∆1 marks a TPT: From a thin film

of trivial insulator to a thin film of a Z2 topological insulator. The latter phase

is sharply identified by the presence of the surface states, a consequence of the

band inversion, with Dirac-like energy dispersion [see the band labelled by “0”

and “0′” in Figure 3.2(b)]. Note that the surface states are distinct from the usual

quantum well (bulk) states, because their wave functions would be almost lo-
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3. Multiple topological phase transition BiTl(S1−δSeδ)2

calized at either the top or the bottom layer, as compared in Figure 3.2(e) by

showing wave function distribution |Φ|2 as a function of the layer index l. A

phase diagramwhich tunable parameter tz (doping) is presented in Figure 3.2(c)

with corresponding band gapEg, quantumwell gaps ∆1,∆2. TheZ2 TPT occurs

when the bulk band gap closes. Hence, the band gap of thin film is comparable

with the gap of quantum well states, contributed totally by the interlayer tun-

nelling term. With doping, we can flexibly control the thin film band gap and

the quantum well gaps. There are a few things in the TI regime worth mention-

ing here. Firstly, when tz > tzc, it is understood that themassiveness of the Dirac

spectrum for the surface states is due to the tunneling barrier (or inevitablewave

function overlapping between boundaries), that is, with a relatively small tz (but

still > tzc), in thin films. Secondly, similar to the usual case for growing Bi2Se3

thin films [44], the Dirac mass can be reduced to zero by increasing the number

of layersNl to a tz-dependent threshold valueNlc. For instance, as tz approaches

to tzc from above, the energy gap is closed only when Nlc goes to infinity in the

true 3D limit [see Figure 3.2(d)]. Finally, it is quite important to notice that typ-

ically Eg < ∆2 < ∆1 for TIs, while near tz ∼ tzc even on the trivial insulating

side, these energy scales are all comparable with each other. Figure 3.2(f) shows

a schematic bulk band as function of doping where the Z2 phase transition is

captured. There a three regimes with mass term: M>0 trivial, M=0 critical, and

M>0 non-trivial. This is the key observation of our proposed scenario for real-

izing QAHE with field-tunable Chern number, as we will explain below.

3.3 QuantumAnomalous Hall Effect from trivial in-

sulating thin films

In this section, we demonstrate how the QAHE with field-tunable Chern num-

ber can be achieved theoretically through our scenario. As shown schematically
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3.4. Exchange field tunable Quantum Anomalous Hall Effect

in Figure 3.3(a), the TlBi(S1−δSeδ)2 thin film, growing on a substrate, on the trivial

insulating side with tz ∼ tzc (doping-tunable) is taken to be our prototype sam-

ple. During the process toward QAHE, we also assume that certain magnetic

dopant can be distributed homogeneously over the whole sample and are ferro-

magnetically ordered to provide the necessary exchange field. In the presence

of the exchange field, the core concept to exhibit QAHE is simply from the band

inversion phenomenon occurred between pairs of the conduction and valence

bands with different spin polarizations. Figs. 3.3(b) and (c) schematically show

one pair of the bands inverted (thus with Chern number C = 1) and two pairs

inverted (with Chern number C = 2), respectively. After band inversion, each

band forms a skyrmion-like spin texture around Γ point in momentum space,

leading to non-vanishing Chern number. In addition, in order to achieve the

QAH phase with even higher Chern number, more pairs of the band inversions

are needed. According to the comparison among various energy scales in the

previous section, with a given strength of the exchange field Mz, our focus on

the trivial side near tzc would more likely arrive at a phase with high C.

3.4 Exchangefield tunableQuantumAnomalousHall

Effect

We now show the band structure evolution around Γ point as a function ofMz

for a TlBi(S1−δSeδ)2 thin film withNl = 6 in Figure 3.4. When the warping effect

is relatively small, such as in TlBi(S1−δSeδ )2, applying Mz is the only effective

way tomake bandsmagnetically inverted; when thewarping effect is large, such

as in Bi2Te3, one may also apply in-plane magnetization along certain direction

to induce QAH phase. Fermi levelEF is always set at zero energy and the labels

i = 1, 2 (i = 1′, 2′) denote the ith lowest (highest) conduction (valence) bands, in

the absence ofMz, with spin-up and spin-down shown in different colors.
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Figure 3.3: The left panel (a) schematically shows our proposed scenario to
achieve the field-tunable QAHE: Let layered TlBi(S1−δSeδ)2 thin film with fer-
romagnetic order be grown on a substrate, which provides an electric potential
along z direction. The right panel, (b) and (c), shows schematic band struc-
tures, spin-texture (“skyrmion”-like), and band-inversion with suitable band
labels for C = 1 and C = 2 QAH phases, respectively, at tz < tzc. (a) Pro-
posed TlBi(S1−δSeδ)2 grown on substrate with spontaneous magnetization com-
bined with electric potential along c-axis. (b)-(c) Reflection symmetric (E = 0
eV) band structure as a function of exchange field (four bands model). (a) QAH
phase with C = 1 of magnetic trivial thin film with "skyrmion" spin pattern
(b) The band-structure folding number C = 2 when two other quantum well
states change the particle hole characteristic. The U(1) charge symmetry still
conserves.

Starting with Mz = 0, each band is spin-degenerate and the system is in

the C = 0 (trivial) phase (The model we use here is different from the one in

previous chapterwith another interlayer tunneling terms). IncreasingMz causes

spin splitting, which shifts the bandswith spin-up and spin-down polarizations

in opposite directions with respect to EF , and hence reduces Eg [Figure 3.4(b)].

AsMz reachesMc1, the energy gap is closing with vanishing out-of-plane spin

moment at the touching point [Figure 3.4(c)]. Further increasingMz reopens the

gap again, forms skyrmion-like spin texture, and indicates a TPT due to band

inversion from C = 0 trivial phase to C = 1 QAHE [Figure 3.4(d)]. We note that

now the band labeled “1” and “1′” are switched. As Mz = Mx1, the band “2”

(“2′”) meets with “1′” (“1”) [Figure 3.2(e)] and the band “2”with spin-down and

“2′” with spin-up become prominent near EF if Mz continues increasing until
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3.4. Exchange field tunable Quantum Anomalous Hall Effect
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Figure 3.4: Evolution of the sub-band structure at tz = 0.2 eV and Nl = 6
around Γ point upon increasing exchange fieldMz. The band labels are used as
usual. Additionally, the color dressing in each band represents the momentum-
dependent, out-of-the-plane spin polarization with arrows indicating the main
spin-polarized component. (a) Mz = 0; (b) 0 < Mz < Mc1 before first TPT; (c)
Mz = Mc1, where the gap closes at the first time; (d) Mc1 < Mz < Mx1 in the
QAH phase with C = 1; (e) Mz = Mx1, where two lowest conduction bands
meet; (f) Mx1 < Mz < Mc2 and the system approaches second band inversion;
(g) Mz = Mc2 at another critical point; (f) Mz > Mc2, where the second TPT
occurs, and the system enters QAH state with C = 2.

Mz = Mc2 [Figure 3.4(f)]. At Mz = Mc2, the gap is closing [Figure 3.4(g)] and

implies a second TPT, which adds the Chern number by one and hence C = 2

after the gap-reopening asMz > Mc2 [Figure 3.4(h)]. The fashion shown here is

in fact quite similar to some previous proposals for getting the QAHEwith high

Chern number in the TI thin film regime. [24, 27, 49]
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3. Multiple topological phase transition BiTl(S1−δSeδ)2

3.5 Toward higher Chern number

The model simulation and discussion in the previous subsection give us a clear

physical picture of our mechanism to obtain high Chern number. Given suffi-

ciently large exchange field, the band gap can close and reopen multiple times

due to the presence of relatively intensive 2D subbands (quantum well states),

which is a consequence of a trivial insulating sample with (nearly) critical Se-

doping.
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Figure 3.5: (a) Band structure of the QAH phase with C = 2 in the thick film
limit, Nl = 20; (Mz = 0.06 eV) and the color dressing is used for spin polar-
izations. (b) The corresponding wave function distributions of the three lowest
conduction bands at the Γ point as a function of layer index l. (c) and (d) show
the band gap evolution and the quantized Hall conductivity, respectively, as a
function ofMz for the given Nl = 4, 5, 6 cases. All plots here use tz = 0.2 eV.

This mechanism is completely based on the “twist” of the spin-polarized

bulk states in the quasi-2D system. Thus, it is distinctive from the original pro-

posal, where the QAHE is achieved by gapping out the surface Dirac cones in

3D TIs [53, 54]. To see this, we first present energy spectrum around Γ point

and the corresponding spin texture for C = 2 QAH state with Nl = 20, i.e.,

in the thick film limit [see Figure 3.5(a)]. The initially lowest, spin-down polar-

ized conduction band now becomes the third highest valence band, indicating

that the spin-polarized bands inverted twice. To explain the underlying physics,

from the wave function distribution as a function of l in Figure 3.2(b), the first
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3.5. Toward higher Chern number

three lowest conduction bands all have bulk nature. Similar properties are also

found for the other bands. Such a feature results in a subtle but important dif-

ference from previous studies [24, 27, 49], because in our case no surface bands

are involved in thewhole process. Aswewill consider later, this might affect the

real experiments in which each sample is usually grown on certain substrate.

To invert more spin-polarized bulk bands, our mechanism suggests at least

two ways: 1) Apply large exchange field on the sample, and 2) increase the

thickness of the sample. In Figs. 3.5(c) and (d), we explicitly calculate the band

gap and the Hall conductivity as a function ofMz, respectively. The gap closes

and reopens multiple times with the presence of the corresponding quantized

plateaus in σxy, indicating a rich phase diagram of the QAH system. The Chern

number increases in one integer step when Mz increases, a similar trend com-

pared with the usual quantum Hall system. In addition, in the same figures by

using different colors we also present both quantities with different number of

layers. Clearly, for a thicker filmwith a givenMz, it is more likely to end upwith

a higher Chern number insulator due to the shrinking of ∆i, which is inversely

proportional to Nl.

From recent experiments in magnetic topological insulators such as Cr or

Fe doped (Bi, Sb)2Te3, people observed that these magnetic dopants can be fer-

romagnetically ordered at temperature of order 100 K. The corresponding ef-

fective exchange field strengthMz can be estimated as large as 0.2eV with 10%

doping [24, 55] and thus strongly indicates the feasibility of our scenario. To

roughly estimate what the largest Chern number could be achieved, one can

simply count how many quantum well states (subbands), labeled x, are able

to be inverted by applying Mz. By noticing that Eg ∼ ∆i ∼ 0.035 eV in Fig-

ure 3.2(c) with Nl = 20, the number can be estimated through the following

formula, x = [(Mz − 0.0175)/0.035 + 1], where [· · · ] denotes a floor function.

Inserting the value of Mz ≈ 0.2 into the formula yields x = 6, i.e., the largest

C = 6 in this case. In addition, the energy range for this QAH phase to be stable
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3. Multiple topological phase transition BiTl(S1−δSeδ)2

could be as large as 0.035 eV, above room temperature.

3.6 Electric field tunable QAHE

One of the practical issues, based on the mechanism we have mentioned above,

is the presence of certain substrates when preparing the thin films epitaxially

in the experiments (we have also mentioned in Chapter 2). It is equivalent to

the presence of an effective electric field ‘Ez’ along z direction and this leads

to a broken z → −z reflection symmetry for the thin films. Hence, we study

systematically the effect of the electric field by adding a given linear potential

term along z direction, with potentials ∓Ez on the top and bottom surfaces of

the sample, respectively, in Eq.(2.2) under various applied Mz. Note that the

dispersion relation does not change if Ez changes sign.

We first consider the evolution of the energy spectrumnear Γ point as a func-

tion ofMz with Ez = −0.05eV, as shown in Figs. 3.6(a)-(d). In the absence of any

exchange field, the electric field simply introduces Rashba type interactions into

the system and consequently each spin-degenerate band now splits with the

originally band minimum shifted away from Γ point, while the spin degener-

acy still keeps intact at Γ point [see Figure 3.6(a)] [44]. Assuming Nl = 2N , it is

worth noting that the wave function distribution of these lowest (highest) con-

duction (valence) bands around Γ point is mainly from the contributions ofN th

andN +1th layers in the middle. This is in sharp contrast with the usual TI thin

films (i.e., tz > tzc) , in which the lowest conduction (highest valence) band has

the largest weight from the top and the bottom layers.

Upon turning on the exchange field, as one can see in Figure 3.6(b), all the

spin-degenerate points of Rashba-like bands at Γ point open up gaps and the

band gap of the system reduces to zero asMz reaches to a critical valueMc [see

Figure 3.6(c)]. Further increasingMz results in a spin-polarized band inversion
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3.6. Electric field tunable QAHE

and reopens the band gap, leading again to the QAH phase [see Figure 3.6(d)].

It is interesting to notice a few subtle differences from the case without Ez: 1)

When Mz = 0 the band gap is smaller due to the shift of the conduction band

minimum; 2) atMz = Mc, the energy dispersion is non-linear and the spin tex-

ture around Γ point is relatively simple. Importantly, the above observations

show that the critical exchange field strength is lowered and one can possibly

achieve QAHE with high Chern number by tuning the electric field, as we ex-

plain next.

Figure 3.6 illustrates the band gap evolution as a function ofMz with a given

electric field Ez in an Nl = 20 thin film. The band gap repeatedly closes and re-

opens, indicating that the system undergoes TPTs several times up to the QAH

phase with high Chern number (C = 3 in our plot). Significantly, after consid-

ering several different values of Ez, we find that the critical exchange energies

to achieve C = 1 and C = 2 phases, respectively, are less than the cases in the

absence of the electric potential. To examine it more carefully, we take two rep-

resentative initial phases in our system at Ez = 0, as indicated by the arrows

shown in Figure 3.6(e): 1) a trivial C = 0 phase with fixed Mz=0.025 eV and

2) a C = 1 QAH phase with fixed Mz=0.055eV. Purposely, they are chosen just

prior to QAH phases with C = 1 and C = 2 separately. We then compute

the corresponding band gap as a function of Ez for each of them. As one can

see in Figure 3.6(f), it is feasible to apply an external electric field to drive our

focused system, namely, TlBi(S1−δSeδ)2 thin film from an originally Chern num-

ber C QAH phase to another QAH phase with Chern number C + 1. However,

we would like to point out that this tuning approach is efficient to obtain QAH

phase up to C = 2. For getting higher Chern numbers, it might become unsta-

ble because several sub-bands would come into play around EF and the system

may not maintain its insulating nature during the process.
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Figure 3.6: The evolution of the band structure upon increasing Mz with non-
vanishing Ez = −0.05 eV: (a) Mz = 0; (b) 0 < Mz < Mc; (c) Mz = Mc; (d)
Mz > Mc, where the system turns to the C = 1 QAH phase. The degree of
out-of-the-plane spin polarization is denoted by color. (e) The non-linear band
gap evolution as a function of Mz with various electric field strength. Chern
number C (starting from 0) is added by one each time when the gap closes. The
arrows shown here are the chosen exchange field strength to be compared in (f).
(f) Electric field tunable QAH phases for two given exchange field strength. The
gap closing points separate the C = 0 and C = 1 phases (blue curve), and the
C = 1 and C = 2 phases (green curve), respectively.

3.7 Conclusion

In summary, we have presented our scenario to achieve QAH effect with field-

tunable Chern number via a model study. Remarkably, the model can describe

topological phase transition from a Z2 trivial to an non-trivial insulating thin

film for realisticmaterials such as TlBi(S1−δSeδ)2. By showing the band-structure

evolution, spin-texture, and hence the spin polarized band inversion, we clearly
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3.7. Conclusion

demonstrate the feasibility of our approach to tune the Chern numbers of the

QAH phases through changing either the exchange field strength or the electric

field strength in topologically trivial thin films near the Z2 critical point (to TI

phase). In particular, we stress that the necessary exchange field strength to

exhibit high Chern number QAH effect can be reduced further when pushing

the system closer to the critical point and combining with the benefit from the

substrate.
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Chapter 4

Quantum anomalous Hall effect in

(001) thin films of topological

crystalline insulators

4.1 Topological crystalline insulator

Recent trend in topological material field has lead to not only the Z2 TI, but

also to other classes of materials where crystall symmetry plays more important

roles. In particular, the interests refer to tunable material class of previously

known as spin Hall insulator PbTe [56] and similar structures like Pb1−xSnxTe.

The rock-salt structure of semiconductors Pb1−xSnxX (X=Se/Te) are com-

pounds of heavy atoms. Hence, the relativistic effect derived mainly from the

spin-orbit coupling involves in the electronic properties of this material class.

For example, the band gap of SnTe at L point is a result of relativistic effect,

as well as mixing of states with different quasi-particle energies. It has been

confirmed that the lowest conduction band and highest valence band derived

mainly from 5p states on Sn and Te, respectively [57].

The crystal symmetry is special in the bulk Sn based structure like C4v rota-

tion symmetry andmirror symmetry. There would therefore seem to be definite
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4. Quantum anomalous Hall effect in (001) thin films of topological crystalline insulators

need for investigation of newphases. Hence, extending the symmetry classifica-

tion of the crystal band-structure of SnTe/PbTe, the TCI has been discovered as a

new phase of matter in which the combination of SOC, TRS and crystal symme-

try give rise to new class of non–Time Reversal Invariance Momentum (TRIM)

Dirac cones [28, 29]. The physics of band inversion in SnTe is similar to Bi2Se3

when each band carry orbital weight from p orbitals of different atoms that we

mentioned above. By contrast, this feature is not presented in pristine PbTe

where the bulk band gap is trivial. Figure 4.1.(a–b) (taken from Ref. [29]) rep-

resents difference in bulk band-structure properties at L point for SnTe (band

inverted), and PbTe (trivial). The four Dirac cones at surface Brillouin zone are

presented in Figure 4.1 with associating spin-texture. Moreover, TCI Pb1−xSnxX

(X=Se/Te) [001] endowswithmany interesting properties like Quasi-particle In-

terference (QPI) map induced by four Fermi pockets of TCI surface state [32, 58],

surface state spin texture [59], etc.
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Figure 4.1: Figs. (a–b) taken from Ref. [29], red dots represent the orbital weight
of Te atoms (a) Band inversion at L point for SnTe (b) Trivial gap at L point for
PbTe (c) Four Dirac cones at surface Brillouin zone, the arrows indicate the spin
directions.

Here, following the previous chapterwe emphasize that there is active search

for systems with a high Chern number (C ≥ 2) due to both fundamental and

application interests while the Chern number C is equal to the number of edge

states. Especially, more dissipationless conducting channels may effectively re-
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4.1. Topological crystalline insulator

duce the contact resistence in the circuits, improving the performance of the low-

power consumption devices. From this perspective, topological crystalline in-

sulators (TCIs) that we mentioned above [32, 60] become a class of very promis-

ing materials with the following advantages: 1) Although a TCI, just like a 3D

TI, has a bulk gap and topology-protected surface Dirac fermions, such a pro-

tection originates from crystalline symmetry (e.g., mirror symmetry), instead

of time-reversal symmetry [28, 29]. Consequently, a surface band gap can be

made by applied strain or an electric field to break the crystalline symmetry

without using an exchange field [61]. This not only endows the flexibility to

control gap opening when designing electronic devices, but also enriches pos-

sible QAH physics in this material. 2) For a bulk TCI, the band inversion occurs

even number of times in total, indicating that interest physics takes place inmul-

tiple low-energy regions in the Brillouin zone (e.g., near four L points in SnTe).

This gives way to achieve high Chern number QAH states via magnetic band

inversion. Moreover, in Pb1−xSnx(Se,Te), for instance, via chemical composition

x it is possible to tune the system from trivial to non-trivial insulating state, or

vice versa [62].

The magnetic TCI is predicted to exhibit QAH states with different Chern

number levels [63]. Here, any Chern number between +4 and -4 can be obtained

in TCI. Reference [63] only considered surface states which is located at non-

time reversal invariance momentum. However, a problem with this approach

is that a k·p model may not capture realistic electronic properties. Hence, this

may fail to predict the exact topological phase diagram of TCI in film limit. By

examining the evolution of the band structures upon increasing exchange field

strength with associated orbital weight distribution and spin polarization, we

find that various QAH states, in particular, with a high Chern number can be

achieved. We emphasize that: (1) Our results strongly depend on the chemical

composition, thickness, and certain symmetry breaking perturbations. There-

fore, we suggest a best strategy to obtain an ultra-high Chern number (C ≥ 8)
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4. Quantum anomalous Hall effect in (001) thin films of topological crystalline insulators

under TCI critical regime. (2) The key mechanism to QAH effect here is still

a magnetic band inversion. However, it associates with certain unconventional

process during band inversion, where the touching points are not located at time

reversal invariance momenta. (3) We find the tunability between a trivial and

a QAH phase via a rotated magnetization or an applied (or substrate-induced)

perpendicular electric field, which has not yet been explored before. Therefore,

ourworkwould be a useful guideline for experiments to search forQAHphysics

on thin-film of magnetic TCI materials.

The chapter describes and discusses systematicmethodology of tuningmag-

netic narrow gap IV-VI semiconductors from trivial and non-trivial to QAH

phases with different chemical compositions. It begins with a description for

a 3D tight-binding Hamiltonian of a face centred cubic lattice for the bulk and

the thin film model of TCI [29]. We describe our method of introducing a small

magnetic perturbation rotated in the real space and the potential gradient with

an assumption that the potential within a slab of thin film is invariant. As con-

vention, in the next session we propose a band-structure evolution as a function

of the exchange field for odd and even number of layers, complemented with

spin projection. Next, we present our numerical results of non-linear touching

mechanism for thin film of IV-VI semiconductors near the TCI critical point. As

a result of unconventional band inversion, new Van-Hove singularity emerges.

We also show that the Berry curvature at the QAH phase is consistent with the

VHs forC = 4 phase, whereas a second order band inversion also emerges at the

TCI critical point. Finally, making use of the broken symmetry property of the

substrate-induced electric field and magnetic rotation, we can tune the material

to QAH phase with C=2. This chapter is also a summary of a paper [64].
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4.2. Model and method

4.2 Model and method

As mentioned in the introduction, rocksalt IV-VI semiconductor structures pos-

sess various kinds of symmetries including Time Reversal Symmetry (TRS), C4v

rotation symmetry and reflection symmetry. Figures 4.2(a–b) demonstrate cu-

bic crystal structure of SnTe and surface Brillouin zone with associated high

symmetry points, respectively. Moreover, the number of layers also decide the

Γ X

M

Sn/Pb Te/Se

a) b) X’

Figure 4.2: (a) Crystal structure of SnTe. (b) Surface Brillouin zone.

degeneracy at the high symmetry point X . These materials exhibit a special

screw rotation symmetry (π-rotation plus a half Bravais lattice translation) along

[110] or [1̄10], i.e., the direction of Pb–Pb bond) at the surface Brillouin zone

for an even number of layers. Hence, each state at (0, π) are fourfold degener-

ated by: time reversal symmetry and screw rotation symmetry [65]. The mirror

eigenvalues are indistinguishable when the mirror operator commutes with the

Hamiltonian: [M,H] = 0. However, the fourfold degeneracy at (0, π) is broken

for an odd number of layers with double TRS degenerated states. Here, we em-

ployed an unperturbed tight binding Hamiltonian for TCI thin film which was

constructed from the bulk electronic structure of Pb1−xSnxX (X=Se,Te) based on

p orbitals. The tight-bindingmodel is constructed from theWannier functions of

the conduction and valence bands, which are p-orbitals of Sn and Te(Se) atoms.
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4. Quantum anomalous Hall effect in (001) thin films of topological crystalline insulators

This model was used to study the TCI with the mirror Chern number [29].

Htb = m
∑
j

(−1)j
∑
r,α

c†jα(r)cjα(r) (4.1)

+
∑
j,j′

tjj′
∑

(r,r′),α

c†jα(r).d̂rr′ d̂rr′ .cj′α(r′)

+ h.c.+
∑
j

iλj
∑
r,α,β

c†jα(r)× cjβ(r).sαβ + · · · ,

where the operator c†jα(r) is a column vector with three components represent-

ing px, py, pz orbitals, respectively, and creates either Sn (j = 1) or Te/Se (j = 2)

fermion at site r of the rocksalt lattice [See Fig. 4.2(a)] with spin polarization

α (↑, ↓). m is the on-site potential difference between Sn and Te/Se. The sec-

ond term of Eq. (4.2) represents σ-bond hoppings between the p-orbitals; denot-

ing d̂rr′ the unit vector connecting sites r to r′, t12 = t21 represent the nearest-

neighbour (NN) hoppings between Sn and Te/Se while t11 and t22 represent the

next NN hoppings within separate sub-lattices. The third term includes atomic

L · s spin-orbit coupling with coupling strength λj , where L is the angular mo-

mentum for p-orbitals and s are Pauli matrices for spin-1/2.

Taking periodic boundary conditions (BCs) along x and y directions and

open BC along z ([001]) direction, the bulk and surface bands of above tight-

binding model are now all projected onto a square (surface) first Brillouin zone

(BZ). We note that the model parameters are chosen to best represent the first-

principles calculation results. Depending on which material we study, addi-

tional terms such as π-bondhopping of the p-orbitals and the higher order neigh-

bour hopping are added, as “· · · ” in Eq. (4.2) stands for. For the other Sn-

substitution compounds (0 < x < xmax), the model parameters are obtained

from the virtual crystal approximation, which usually provides an accurate de-

scription of the band inversion.

In parallel with our previous k·pmodel, we adapt a similar semi-infinite slab
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model, except for higher order interlayer coupling term.

H =
∑
p

ĤpC
†
pCp +

∑
p,L

T̂LC
†
pCp+L +

∑
p,L

T̂L
†
CpC

†
p+L (4.2)

Where p represents the layer index, L is the distance index between two neigh-

bouring layers. Considering the boundary conditions for layered materials, we

adapt a semi-infinite slab model for [001] surface, except for higher order inter-

layer coupling term.

H =



H1 T1 T2 · · · 0

T †1 H2 T1 · · · 0

T †2 T †1 H3 · · · 0

... ... ... . . . ...

0
... ... ... ...,


(4.3)

The orbital basis is:

|Pb, px,y,z, ↑〉; |Te(Se), px,y,z, ↑〉; |Pb, px,y,z, ↓〉; |Te(Se), px,y,z, ↓〉,

Thus, each single layer of material is represented by a 12x12 Hamiltonian Hi =

Hp,Ti are the i-th order nearest neighbour interlayer hoping matrices. The num-

ber of bands are linearly increased within the number of layers. Since we only

consider the homogeneousmagnetic doping, themagnetization takes effect over

all layers and orbitals. When doping a thin film by magnetic elements, we as-

sume the moments are homogeneous-ferromagnetically ordered, having a uni-

form exchange field M = (Mx,My,Mz) applied to the system. Thus, such an

effect can be described by adding a Zeeman term to Eq. (4.2):

HM =
∑
r,j,αβ

M · sαβc†jα(r)cjβ(r), (4.4)

This term is the main driving force for our system to enter into QAH regime.

M = (Mx,My,Mz) are three components of the exchange field. In the case of
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4. Quantum anomalous Hall effect in (001) thin films of topological crystalline insulators

rotating a givenmagnetizationM = |M| of the exchange field, it is usually more

convenient to rewriteM in terms of spherical coordinates:

M = M(sin θ cos(
π

4
− φ), sin θ sin(

π

4
− φ), cos θ),

The presence of π
4
phase difference in φ is due to the fact that the corresponding

‘x’ and ‘y’ directions from k-space are along [110] and [1̄10], respectively. For

later use, we also consider a perpendicular electric field applied to a thin film.

Such effect can be described by adding a potential gradient along [001] direction

with the assumption that in-plane potential in each layer is equal:

HE =
∑
r,j,α

E(z)c†jα(r)cjα(r), (4.5)

where the spatial coordinate z is viewed as the layer index and the potential

E(z) is proportional to z. This model gives four non-time reversal invariance

Dirac cone along Γ−X for the surface Brillouin zone of non-trivial TCI surface

state.

4.3 Unconventional band touching

The following is a brief report on the possible QAH phase transition for triv-

ial thin film and non-trivial TCI films. From a wide range of possible doping

and structure combination, only some prominent features are presented. Start-

ing from unperturbed Hamiltonian for trivial thin film, we slowly tune the pa-

rameter Mz, assuming that no in-plane magnetic components exist. In all the

band-structure presented below, we compute the out-of-plane spin polarization

for total slabs with the strength presented by colour map. Specifically, we show

that when magnetically doping a trivial (x < 0.2) Pb1−xSnxSe insulating thin

film, a QAH phase can be induced due to a simple mechanism: the magnetic
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4.3. Unconventional band touching

band inversion. Our scenario is in sharp constrast to the one proposed by Fang

et al. [63], where only topology-protected surface states of a TCI are essential.

Since the thin films with odd and even number of layers possess different sym-

metries which result in distinct behaviors, we discuss them separately below.

Figure 4.3 clearly distinguishes the sub-band evolution as a function of the

out of plane exchange field for odd and even number of layers of a trivial thin

films of pristine PbSe. In all two cases the broken TRS results in spin splitting in-

side the Brillouin zone. With different exchange energy scale, we first look at the
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Figure 4.3: The band evolution of PbSe as a function of exchange field for even
L = 30 (first row) and odd L = 29 (second row) number of layers. (a) 30L,
Mz = 0eV (b)Mz = 0.15eV, (c)Mz = 0.18eV, (d)Mz = 0.2eV, (e) 29LMz = 0.0eV,
(f)Mz = 0.12eV, (g)Mz = 0.145eV, (h)Mz = 0.152eV. The color indicates the out
of plane spin polarization.

band structure along high symmetry line for an even number of layers L = 30 in

Figure 4.3(a–d)). As convention under zero exchange field all spins of the slab

are in-plane with a trivial band topology, i.e the lowest conduction and highest

valence bands are bulk states. However, a small exchange field can make the

states inside the Brillouin zone non-degenerated with weak out-of-plane spin

polarization at the vicinity of X point. However, even before phase transition

the spin can change direction at the vicinity of X point due to the combination

of exchange field and strong inter-orbital hopping energy (see Figure 4.3(c–d))).

The critical spin state is very unconventional, exhibiting two spin channels along
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4. Quantum anomalous Hall effect in (001) thin films of topological crystalline insulators

high symmetry direction: one spin up, and one spin down mainly contributed

by Pb and Se p-orbitals respectively (see Figure 4.3(c))), linear in the high sym-

metry direction. This spin-texture is common for all Sn doping concentration

as a reflection of our initial model based on interacting Pb and Se p orbitals.

Since there is no Z2 symmetry in the system, the band gap is also shifted by ex-

change field in momentum space. The signal of QAH state is the band closes,

and reopens with a mixed spin direction within one valence bands (spin down

from X point until valence band maximum). As a result, the number of band

inversion is 4, showing a QAH state with Chern number 4 (each low energy gap

closes and reopen once, changing the QAH Chern number by one step). This is

further supported by our Hall conductivity calculation by integrating the Berry

curvature of all Bloch states in the momentum space.

As mentioned from the introduction of this section, the mechanism of phase

transition could be quite different for odd number of layersL = 29. Thematerial

follows the TRS with zero out of plane spin-texture (there is still a even num-

bers of band). However, there is an absence of screw symmetric rotation of an

odd number of layers. Hence, the states at X are no longer fourfold degenerated.

Here, the results show the possibility that two states which are close in energy

can have the same spin polarization direction (see Figure 4.3(f–g))). The critical

magnetization shows a non-linear touch at X point ((see Figure 4.3(g)))). In the

critical phase transition, the spin state in the vicinity of X point is completely

in-plane which reminiscences the phase transition of Z2 TI thin film. Each of the

4 X points stands for 1/2 of a band inversion which is shown in Figure 4.3(h)).

The band inversion is associated with the spin-inversion. Here, the QAH with

a total Chern number 2 is predicted for magnetically doped PbSe with an odd

number of layers. Three Dimensional (3D) view of the valence and conduction

bands with three magnetization scales under different angles are presented in

Fig 4.4–4.6. In the direction perpendicular to Γ−X , the band are parabolic like.

By contrast with Z2 QAHE, the QAH critical point of TCI can be achieved while
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4.4. Wave-function near the critical quantum anomalous Hall state

two parabolic band touch at a single point along Γ − X . Figs 4.4–4.6 suggest

that the trivial thin film already has inverted orbital order under a sufficient

exchange field when two bands still do not touch. The inverted regime is as-

sociated with a spin inversion which is not straightforwardly detectable due to

the shift in momentum space of the low energy valley. The closing mechanism

of trivial thin film is quite complicated compared to usual TCI surface state pic-

ture. However, the touching theorem presented in Fig 4.5(a) and Fig 4.6(a) is

parabolic like in the direction perpendicular to high symmetry line. One more

time here we emphasize that the mechanism is in sharp contrast with previous

proposal [63] where a topological surface state was involved.
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Figure 4.4: 3D view of the valence and conduction bands before phase transition
in three different angles. The colour represents the total out of plane spin

4.4 Wave-function near the critical quantum anoma-

lous Hall state

To understand the layer-dependence wave-function of the QAH state, we inves-

tigate the low energy wave function tunnelling properties over the slab. Specif-

ically, we investigate the spacial wave-function of the lowest conduction bands

near the Fermi level at the critical point of QAH (lowest conduction band – up-

per band). It is worth to mention that the surface state mainly contributes to
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Figure 4.6: Unconventional band inversion which leads to the high Chern num-
ber quantized anomalous Hall state

higher energy with respect to the Fermi level. Meanwhile, the exchange energy

shift the band gap away from the X points. Hence, it is possible to drive the

low energy bulk states of trivial TCI thin film to the surface state. Figure 4.7

shows that the wave function distribution of lowest conduction band with mag-

netization for doping concentration x = 0.1 comes from bulk state, whereas the

highest valence band is surface state like.
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4.4.1 HighChernnumber inPb1−xSnxSenear a topological crys-

talline insulator critical point

At zeromagnetization, the band-structure at critical pointwill exhibit bulk prop-

erties for both valence band and conduction band, irrespective of large number

of layers (see Fig 4.8). However, as mentioned in the previous section, the mag-

netization will drive the band gap in the momentum space, far away from X

point. Hence, at nearlyQAHcritical point, the initial high energy band close toΓ

point will be shifted to low energy. In Fig 4.9, we choose a magnetization which

is very close to QAH critical point and pick up two points in momentum space:

highest conduction band and lowest valence band. It is quite possible that the

gap is indirect because the two band edgesmove differentlywithmagnetization.

As can be noticed from Fig 4.9, the wave function of lowest conduction band is

surface like, whereas the highest valence band is bulk like, oscillating with layer

index. However, the layer-dependence wavefunction is still symmetric for ho-

mogeneous magnetic doping case (the inversion symmetry is not violated).

At the critical point, the difference between the gap, the quantumwell states

are negligible. Increasing the exchange field may lead to a second band inver-
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sion of all four local Dirac cones (see Fig 4.10). Interestingly, while the low en-

ergy of the first inversion carries both bulk and surface characters, the second

band inversion is dominated by the surface states. This fact is a result of the

initial quantum well bands which is dominantly contributed by surface layers.

Fig 4.10 shows the QAH near second critical pointMz = 0.35eVwhen the Chern

number becomes 8. As expected, the low energy bands are shifted far away

from X point. Both of highest valence and lowest conduction band will have
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surface properties. It is worth mentioning that the second QAH band inversion

will happen only at x = xc and with very large exchange field.

4.4.2 Quantum anomalous Hall effect induced by topological

crystalline insulator surface state

A typical TCI thin film surface state band inversion is represented with the cor-

responding out of plane spin polarization. The TCI surface state can be observed

within a thicker number of layer in the non-trivial side (x = 0.5). The model can

be seen as exact two interacting Dirac cones based on Pb0.5Sn0.5Se orbitals with

the children Dirac cone induced by the tunnelling gap. We note that themassive

Dirac fermion does not represent in thin film TCI surface state with magnetiza-

tion, since the Dirac cone is not at time reversal invariance momentum. Instead

the QAH surface state exhibit two Dirac cones with each of them having half

spin up, and half spin down (see Fig 4.10(b)). This spintexture has never been

predicted in previous study on QAH. The band inversion induced VHs is also

not presented in highest conduction band like in previous theory for QAH of
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trivial thin film. Here, we note that the existing accounts which use k·p theory

fail to resolve the spin-texture of QAH in TCI surface state. Figure 4.12 presents
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Figure 4.12: 3D view of the unconventional band inversion of TCI surface state
without a Van-Hove singularity.

3D view of QAH for TCI thin film with corresponding out of plane spin polar-

ization map. The QAH phase in TCI is distinguished with our unconventional

band inversion with VHs. We note that the initial bands which are located at

X point also move to low energy. At ultrahigh magnetization, the system can

be easily driven to metallic state. We conclude that the TCI thin film is not a

promising candidate to large gap Quantum Anomalous Hall Insulator (QAHI).
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4.4.3 QAH Chern number for odd number of layers

In this subsection, the question how the Chern number can change from 2 to 4

for oddnumber of layers is addressed. As discussed above, the trivial side of TCI

can close a band gap exactly atX point. However, the TCI side can have a similar

surface state for very thick number of odd layers where the concept of children

Dirac cone is acceptable. In this case, the parents gap could not dominate the

tunnelling children Dirac gap to give a semi-metal. Hence, a Chern number 4

is expected for thick odd number of TCI layers. However, the QAH with odd

number of layer and trivial thin film is not promising for high doping level x ≈

0.1. Fig 4.13 represents a mechanism where the gap closes and does not open

for a reasonable high doping level. Here, the band inversion could not induce

any gapped state.
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Figure 4.13: Odd number of layers (19) band evolution with a reasonable high
doping level x = xc. (a)Mz = 0eV, (b)Mz = 0.055eV, (b)Mz = 0.06eV

4.4.4 The critical momentum as a function of film thickness

From unconventional touching mechanism, we define position of the critical

momentum at critical QAH point when two spin channels meet. It it realised

that the with the same exchange energy scale, the band gap experiences a more

considerable change when the thickness increases. Thus, the critical exchange
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energy decreases as a function of thickness. However, from the previous section

we concluded that the momentum shift in the band gap takes effect when the

exchange energy is applied. The more magnetic exchange energy applied, the

momentum shift increases. Out general conclusion is that as the slab becomes

infinite, the critical momentum remains constant with respect to the X point. In

other word, the critical momentum remains closer to X point for larger number

of layers.
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Figure 4.14: The Berry curvature calculated based on the Kubo formalism for
two range of exchange field. (a) Mc1 < Mz < Mc2 the QAH with C=4 having
a VHs, the Berry curvature reflects the VHs, localized at low energy bands. (b)
Mz > Mc2 the QAHwith C=8. The Berry curvature contributionmay come from
higher energy band. (c) The layer dependence band gap and critical exchange
field for first and second band inversions. (d) The layer dependence critical mo-
mentum for first and second band inversions

In Fig 4.14(a–b) we present our computed results of the momentum depen-

dence Berry curvature for the two exchange energy range, when the Fermi level

is located inside the magnetic gap. Moreover, from the linear response formal-

ism the Berry curvature is inversely proportional to the square of momentum

dependence energy gap. In the previous section, we reported on the existence

of the VHs and two disconnected electron pockets. Here, the numerical results

once again confirmed our initial proposal with peaks of the Berry curvature (see

Fig 4.14(a)). The peak area occupies a small part in momentum space, shifted

away fromhigh symmetry line. The emergent Berry curvature is consistentwith
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the shape of two disconnected electron pockets, verifying the accuracy of our

numerical results. The integration in momentum space gives an integer num-

ber, confirming that the slab is in QAH with C=4. The second phase transition

(not presented here) is similar to the first phase transition but it is generated by

higher energy quantum well states. As can be seen from Fig 4.14(b), the Berry

curvature is destructive despite of the presence of second band inversion in-

ducedVHs (this VHs is similar to Fig 4.14(c)). The Berry curvature is distributed

in a larger momentum window compared to the former case.

Figure 4.14(c) shows layer dependence band gap at the TCI critical pointwith

the associating critical exchange energy for the first and second band inversions.

We note that the number of layers is even, odd number of layers can show differ-

ent behaviour. The trends clearly demonstrate that the band gap, the first and

second critical exchange fields decrease as a function of layers. The band gap

trend can be well explained through the interlayer tunnelling effect, whereas

the critical exchange field should overcome the tunnelling band gap. For the

critical thin film, the QAH with C=8 occurs if many factors can be overcome

including the initial band gap, the quantum well gap and the shift in momen-

tum space. However, we found that the critical thin film with exchange field is

a promising candidate for QAH transport experiments. The layer dependence

momenta of highest conduction band k0 and the QAH critical momenta kc1, kc2,

measured from Γ point to critical points are also shown in Fig 4.14(d). The layer

effect does not change k0, whereas it decreases the critical momenta kc1, kc2. All

these features are consistent with the trend of Mc1,Mc2. Since smaller critical

exchange fields with large number of layers can shift the conduction bandmini-

mum lesser compared to thinner films, the critical momenta also decrease when

L increases. To a certain thick film limit, when the initial band gap is very small,

the smaller critical momenta kc1 is comparable with kc0. Thus, these prominent

features might help ARPES to detect the band inversion of magnetic films.
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4.5 Controllingquantumphases via a rotated exchange

field or an electric field

In this section, we will define s new tuning principle from trivial non QAH state

to QAH when the magnetization is not sufficient for the unconventional phase

transition. One experimental challenge of the non QAH state is that if the ex-

change field is very close to the critical field, but it is not sufficient to open a

magnetic gap, we consider number of perturbations which can drive the thin

film (including trivial, critical and TCI films) to QAH state. Firstly, by rotating

magnetization in the real space, we can design a switching device principle for

TCI. Secondly, we adapt the electric field to tune the system at the TCI critical

point.

4.5.1 The quantum control by in-plane magnetization.

While the out of plane magnetization does not break the C4v symmetry, the in-

plane magnetic rotation can give a shift in the parent Dirac cone of TCI surface

state and a C4v broken symmetry is expected. When the tunnelling gap of TCI

surface state is small, an in-plane magnetization can break the rotation symme-

try, transforming TCI to semi-metal. We remind the case mentioned in Chapter

2 for the magnetic Z2 TI, an in-plane component of magnetization can shift the

Dirac cone in momentum space. However, the picture is completely different

for the trivial thin film which can only be analysed by our tight binding model.

Due to a large gap of parent trivial bulk state between p orbitals of Pb and Te,

we choose a magnetization close to QAH critical point, slowly rotate the mag-

netization with small angles θ, and φ.

Figure 4.15(a) describes a schematic diagram demonstrating how we can

tune the magnetization direction or the substrate induced electric field. Indeed,

in the experiment it is possible to control the magnetized slab by the nature
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4.5. Controlling quantum phases via a rotated exchange field or an electric field

magnetic doping. Thus, the magnetization vector can be described in spherical

coordinateM = M(θ, φ). Moreover, our assumption that the potential gradient

in each layer is realistic, since the crystal has planar slabs based on two types of

atoms.

Figure 4.15(b) represents our results of magnetic rotation QAH, with a sim-

ple symmetry analysis. In the presence of both in-plane and out of plane mag-

netic components. The degeneracy in energy dispersion of the perpendicular

direction to in-plane magnetization is destroyed by broken mirror symmetry.

Meanwhile, the energy along Brillouin zone boundary of parallel direction is

still doubly degeneratedwithmirror symmetry. Moreover, it is possible to trans-

form the shape of energy dispersion by themagnetic rotation along φwhen both

the in-plane component atMx andMy are presented. In this case, all the degen-

eracies at zone boundary are broken.
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Figure 4.15: A schematic diagram of the external symmetry-broken perturba-
tion which can drive the system into a new QAH phases. (a) Crystal of IV-VI
based semiconductors with strong spin orbit coupling and mirror symmetry.
Three components of magnetization M = M(θ, φ) or M = (Mx,My,Mz). Ez–a
substrate induced electric field. b) Broken symmetry sub-band structure of local
QAH band inversion occurs with magnetic rotation along Γ− (π, 0)− (π, π). If
there is onlyMx component then only degeneracy at (0, π)− (π, π) is broken.

The realistic bandstructure of PbTe near QAH critical point is represented in

Fig 4.16 and Fig 4.17 in direction perpendicular and parallel to the in-planemag-

netic component, respectively. Figs. 4.16–4.17 shows the changes in sub-band
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4. Quantum anomalous Hall effect in (001) thin films of topological crystalline insulators

structure evolution of non-QAH phase with magnetic rotation along direction

perpendicular and parallel to the in-plane magnetic component, respectively.

The total modulus of magnetization M remains constant, whereas the compo-

nents change with respect to angle φ. As expected, the band gap in the direction

perpendicular toMx does not change to a non-trivial, instead it increases with

the split of states along X–M. Thus, the in-planemagnetization can only increase

the direct gap until the gap becomes indirect and a band inversion is hardly hap-

pens. By contrast, the gap in the parallel direction toMx along Γ− (0, π)− (π, π)

closes and reopen, changing the topology at the local gap (see Figs. 4.17–4.18).

The change in topology, however, is not robust where there might be indirect

band gap and insulator–metal phase transition.
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Figure 4.16: The band evolution of PbTe as a function magnetic rotation angle
θ, 14 layers, |M | = 0.19eV, φ = 0, in direction perpendicular to the in-plane
magnetic component (a) θ = 0, (b) θ = 0.135π, (c) θ = 0.2167π

However, a total Berry curvature integration is needed to confirm that along

kx where the band inversion does not happen and the total local Berry curva-

ture is zero, along ky the total Berry curvature is 2 (see Fig 4.19)(c–d). As dis-

cussed above, we have two band inversions along ky, gapped bands along kx

thus the system exhibits Chern number 2. In the first non-inverted Dirac cone

although the Berry curvature can have a small negative peak, a positive contri-

bution around the peak makes the total Berry curvature to be zero. By contrast,
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Figure 4.17: The band evolution of PbTe as a function magnetic rotation angle
θ, 14 layers, |M | = 0.19eV, φ = 0, in direction parallel to the in-plane magnetic
component (a) θ = 0, (b) θ = 0.135π, (c) θ = 0.2167π
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Figure 4.18: The phase transitionmechanism near the QAH critical point, |M | =
0.19eV, φ = 0, (a) θ = 0, (b) θ = 0.135π, (c) θ = 0.2167π

a positive peak around the inverted Dirac state can give a non-zero quantized

Chern number. Overall, this supports our proposal of phase transition induced

by magnetic rotation for even number of layers. Thus, due to local band inver-

sion and asymmetry, it is possible to drive the system to three phases. By apply-

ing topological band theory, we can design a device principle as follow: an out

of plane magnetization which is smaller than critical magnetization can give an

insulator with no edge state; rotating themagnetizationwith a small angle θ can

drive the system to QAH state with C=2; keeping θ = const, φ = 0 → π/2 can
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4. Quantum anomalous Hall effect in (001) thin films of topological crystalline insulators

change the local band inversion, increase θ more can give a semi-metal phase.
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Figure 4.19: Two Dirac cones characterizations with their associating Berry cur-
vature. The region close to low energy band Bery curvature is highlighted

4.5.2 The quantum control by electric field.

We next demonstrate an electric field-tunable QAH phase in a trivially insu-

lating, even Nl, Pb1−xSnxSe thin film with x ≈ xc under a nearly critical M =

(0, 0,Mz). The necessary electric field can be either applied externally or effec-

tively produced by a certain substrate which is usually present when preparing

a thin film epitaxially. Any finite electric field “Ez” along z-axis breaks z → −z

reflection symmetry for a thin film and destroys all screw rotation symmetries

as well.

One straightforward way to show the tunability of Ez toward a QAH phase

is to study the band gap evolution (around X) as a function of Ez. As shown

in Fig. 4.20 (a) for a Nl = 30 thin film with Mz = 0.11 eV, the gap does de-

crease, close, and reopen, reflecting a typical process for a topological phase

transition. A closer examination from the spin-resolved spectrum around X ,

as can be seen in Figs. 4.20 (b)-(d) [corresponding to three cross symbols re-

spectively in Fig. 4.20 (a)], further confirms the occurrence of the magnetic band

inversion. Such band inversion then indicates the phase transition from a C = 0

trivial phase to a C = 4 QAH phase.
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Figure 4.20: (a) The band gap as a function of electric field whenM ≈Mc. (b-d)
The electric field induced phase transition.

4.6 Conclusion

In summary, we have made a comprehensive prediction on realizing various

QAH phases with high Chern number (See Table 4.1) in trivially insulating thin

films, Pb1−xSnx(Se,Te), upon increasing exchange field strength. Although the

formation of any QAH phase we investigate here is based on a conventional

mechanism, namely, a magnetic band inversion between conduction and va-

lence bands (quantumwell states), the band structure evolution is usually found

to be “unconventional”, compared to the previous scenario involving TCI sur-

face states [63]. Such an “unconventional” process strongly depends on the

chemical composition, number of layers, and exchange field strength.
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4. Quantum anomalous Hall effect in (001) thin films of topological crystalline insulators

Doping Mz θ Ez Nl XM DEG C

x ≤ 0.08 + − +/− odd −/+ 2

(X=Se) even, Nl ≥ 19 + 4

x ≈ 0.2 + − +/− odd − −

(X=Se) even, Nl ≥ 30 −/+ 4 · n

x > 0.2 + − − odd − 4

(X=Se) even, Nl ≥ 30 + 4

x ≈ 0 + + − even, Nl ≥ 14 −/+ 2

(X=Te) C4 breaking

Table 4.1: Summary of QAH phases obtained in Pb1−xSnxX thin films (X= Se
or Te). The formation of each ground state depends on various factors, such
as chemical composition x, number of layers Nl, magnetic exchange field Mz,
magnetic rotation angle θ, and effective electric field Ez. In addition, the spec-
trum can have twofold degeneracy along BZ boundary (XM DEG, in short) if
screw rotation symmetry remains intact in the system. +/− indicates the pres-
ence/absence of such factor.

In particular, we highlight: 1) There is a significant (Nl) even-odd effect. For

instance, for a slightly Sn-doped PbSe, the odd Nl thin film and the even Nl one

exhibit QAH effect with C = 2 and C = 4, respectively, whenMz > Mc. More-

over, the emergent VHSs after band inversion appear only in the latter case, not

in the former one. These distinct behaviours basically originate from different

symmetries they possess. 2) The best strategy to obtain an ultra-high Chern

number (C ≥ 8) phase is to consider Pb1−xSnx(Se,Te) thin films with nearly crit-

ical doping x ≈ xc. The main reason is due to the decrease of the energy gap

between adjacent quantum well states and hence reduces the necessaryMz. 3)

Using a rotated exchange field (i.e., producing finite in-plane magnetization) or

an applied electric field can drive the system from a trivial insulator to a QAH

insulator even thoughM .Mc. This provides a new design principle for appli-

cations, for example, an on/off switch device.
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Chapter 5

Intrinsic spin Hall effect in

topological insulator

5.1 Physics of intrinsic spin Hall effect

Recent developments in the field ofHall effects in Topological Insulator (TI) have

heightened the need for realistic system in spintronics application. In parallel

with Quantum Anomalous Hall Effect (QAHE) study, there has been renewed

interest in intrinsic Spin Hall Effect (SHE) in TI and spin-orbit coupling system.

The SHE was originally predicted in Two Dimensional Electron Gas (2DEG)

system with Rashba Spin–Orbit Coupling (SOC) under the electric field. In

2DEG system, the spin and angularmomentum couple and form a circular spin-

texture when the spin are completely in-plane, coexisting with orthogonal an-

gular momenta. In an original work proposed byHirsch [66], a tranverse charge

current perturbs paramagnetic metal, causing a spin imbalance with a spin Hall

voltage. Under in-plane electric field, the spin experience a torque, and all the

spins precess in ±z direction (direction perpendicular to 2DEG) [15, 66]. The

SHE can be seen as two copies of the anomalous Hall effect when the spin-up

and spin down electrons can move in two opposite directions. The mechanism

of SHE can be various and coexist in the same material. Treating the mate-
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5. Intrinsic spin Hall effect in topological insulator

rial with coexisting SHE mechanism requires large effort since each effect can

dominate in certain impurity limit. Different from the Quantum Anomalous

Hall (QAH) effect described above when only the low energy spectra electron

plays the main role, the SHE can be dependent on the whole electronic struc-

ture and can only be simplified in k·p picture within framework of few-bands

involvement if the role of high energy bands is negligible. The skew scattering

SHE is present when a electron scatters asymmetrically with impurity center

and can be described by traditional Boltzmann transport equation [67]. When

the inter-band effect is neglected. The side jump mechanism, however, arises

due to the anomalous term in the spin-orbit coupled systemwhich takes part in

the Boltzmann equation (or in the Kubo formula) [67–69].

Several studies have been carried out to investigate the spin phenomenon in

differentmaterials (tramsitionmetals, spinHall semiconductors) [56, 70, 71] and

TI is emerging material class for experimental measurements. In our work, we

consider intrinsic spin Hall effect which is originated from bandstructure, the

extrinsic mechanisms can contribute to the spin Hall currents through interac-

tions and impurities.

5.2 Intrinsic spin Hall effect in topological insula-

tors

Traditionally, the spin current in TI corresponds to edge stateswith a linearDirac

dispersion [72] in a 2D system like HgTe/CdTe quantum well [73]. The QSHE

is protected by the edge state and robust against weak perturbation, but the

SHE is sensitive to the bandstructure, impurity and chemical potential. While

the first prediction of SHE is on the paramagnetic metal, the intrinsic SHE can

also exist in the semiconductor system with tunable characters where the spin

Hall conductivity is sensitive to external stress, impurity and the gap [56]. In
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5.2. Intrinsic spin Hall effect in topological insulators

the topological scenario, the spin-orbit coupling materials are the same for both

semiconductors and insulator. However, due to the large gap the SHC current

can be much smaller for insulators compared to semiconductors.

Hence, the topological materials with SOC become promising material class

for SHE measurement. The measurement using optical technique such as Kerr

rotation spectroscopy can detect the bulk signal of spin accumulation process.

Recently, the spin Hall effect tunnelling spectroscopy experiment has been used

to investigate the intrinsic SHE and detect the surface signal of spin Hall con-

ductivity [74]. However, the bulk-surface combination, still remains unsolved.

We ask an important question that if the SHC of thin film TI can be comparable

with the bulk SHE. Moreover, at what energy range of the chemical potential,

the SHE can reach a large value which promises a potential technological appli-

cation.

In figs. 5.1(a–b) we propose our schematic physical picture for SHE in thin

film TI when all the bands are discrete. A spin polarized bulk or surface states

all can give a contribution to the total spin Hall current. An TI thin film with

discrete bands is combination of many Quintuple Layer (QL) for Bi2Se3, each

bands are interacting and the SOC is considered totally in-plane. Hence, in the

accumulation the spin polarized electron can precess frombulk to surface states,

surface to surfaces and bulk to bulk inside the material (indicated by red arrows

in fig 5.1(b)). This chapter aims on the spin Hall conductivity for thin film of TI.

Firstly, we consider chemical potential dependence SHE of bulk, treating the 3D

bulk Bi2Se3 with different electric field and spin directions. We found that the

spin direction a long z direction ([111]) under in-plane electric field possesses

the largest value for SHC inside the bulk gap. However, if the chemical potential

naturally shifted due to the impurity, the SHC can reach a large value if the

chemical potential lies in-between two band crossing centres. We also focus on a

layer dependence studywhich show that in the ultra thin film limit of 1-2QLs the

SHC is almost zero inside the gap. However, the surface states suppress a large
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TI L

E

a) b)

Figure 5.1: Physics for intrinsic spin Hall effect of Z2 topological materials. (a)
Electron spin is responded to an in-plane electric field E and the spin polarized
electrons are separated to two opposite directions (perpendicular to the electric
field). (b) The SHC of thin film TI is complex which involves bulk-bulk SHC,
bulk-surface state, surface-surface scattering.

contribution of bulk states SHC. By analysing the SBC through k·pHamiltonian

with quadratic band dispersion, we explain an anisotropy of SBC for thin film TI

and predict an asymmetric behaviour for momentum dependence of the Berry

curvature. Meanwhile, in the energy limit away from the Dirac cone, the SHC

for thin film can be enhanced due to the presence of nearly crossing bands.

5.3 Response formalism for spin Hall conductivity

The SHC can be calculated within the linear response formalism. In the con-

text of band-structure dependence, each spin can be separated through a spin

current operator when the spin couple with the velocity operator, the spin Hall

conductivity is thus:

σkij =
e

V

∑
k,n

fn,kΩn,k (5.1)

where the SBC

Ωn,k =
∑
n

2.Im[〈m|jki |n〉〈n|vj|m〉]
(Em − En)2

, (5.2)
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5.3. Response formalism for spin Hall conductivity

V is volume of the unit cell, fn,k is the FermiDirac distribution function. Velocity

operator: vj = ∂H
~∂kj ; the spin current operator: jki = 1

4
{σk, vi}+ describes that

the spin current can be separated for spin-up and spin down electron flowing

in two opposite directions. This formula shows the k-spin Hall current along i

direction, in response to electric field in j direction.

Different from the Hall conductivity which can describe a topological invari-

ance and can be converged to an integer unit of e2

h
, the Kubo formula for spin

Hall conductivity essentially depends on the spin polarization strength, spin-

orbit coupling constant and energy dispersion. Moreover, even for an insulat-

ing state with no Fermi surface, the spinHall effect still presents with the signals

collected from all energy bands of the Fermi sea. Meanwhile, the spin dominant

direction can be originated from the crystalline anisotropy. Moreover, the SHE

can be enhanced by the band inversion induced by the spin orbit couplingwhere

the SBC peaks, contributing to total SHC. The kpoints sampling methods: The

model for bulk Bi2Se3 has b vectors [75]:

b1 = (−1,−
√

3

3
, b).g,

b2 = (1,−
√

3

3
, b).g,

b3 = (−1,
2
√

3

3
, b).g,

for rhombohedral primitive translation vectors g = 2π
a
. The volume of the unit

cell is thus: Vrhombo =
√

3
6
a2c We transfer from the non-othorgonal velocity op-

erators to orthogonal coordinate system: vbi = ∂H
∂kbi

but kx,y,z = B.kb1,b2,b3 and

kb1,b2,b3 = B−1kx,y,z vj =
∑

j
∂H
∂kbi

∂kbi
∂kj

where ∂kbi/∂kj are the matrix elements of

B−1 having , the same dimension as the velocity operator. The dimension of

SHC per unit cell volume is thus: [σkij] = ~
e
Ω−1Å−1 or [σkij] = ~

e
Ω−1cm−1

For rhombohedral TIs, the unit cell contains 5 atoms.

The finite thickness of thin film TI, however, can have only definite SHCwith

the average SHC for each QL: σzxy−QL =
σzxy
L

where L is the thin film thickness.
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5. Intrinsic spin Hall effect in topological insulator

Here the z direction is perpendicular to [111] surface of Bi2Se3. In principle, the

bulk and thin film SHC should have the same dimension to be comparable. We

consider SHC for themodel with 20 bands of 5 atoms eachQL, the same number

of bands and orbitals for our rhombohedral unit cell.

5.4 Bulk spin Hall conductivity

As presented in Figure 5.2 the SHE calculation is carried out for a k-mesh of

61x61x61 and zero quasi-particle broadening. The velocity operatorwas defined

from the tight-binding model projected into Cartesian coordinate, possessing

both diagonal and off-diagonal terms. We found that the diagonal term of the

velocity operator is important for SHC, especially inside the bulk gap, when the

insulator state can have small SHC values.
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Figure 5.2: The intrinsic spin Hall conductivity in response to electric field in
x,y,z directions respectively.

Outside the bulk gap when many bands involve, the Berry curvature peaks

when two band crosses and a gap opened by the SOC and this gives a large

contribution for the total SHC. Moreover, the SOC parameters also play a very

important role in the SHC calculation when the off diagonal elements of the

velocity operators proportional to the SOC energy. In next sub-section, we will
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5.4. Bulk spin Hall conductivity

show that the SHC can also be controlled by themass terms from the k·pHamil-

tonian. From the results of SHE in Figure 5.2, the SHC is largest for the z-spin

([111 surface]) of the bulk Bi2Se3. This result comes from the large hopping en-

ergy within the quintuple layer of TI compared to the inter-QL tunnelling term.

Themomentumdependence SBCΩz
xy can partially explain the tendency of SHC.

Firstly, in Figure 5.3–5.5 although themain feature ofC3 symmetry is broken, the

hexagonal feature originated from the crystal lattice around the Γ point still sur-

vives. As can be noticed, for all three cases, the sign of Ωk
ij is opposite for two

pair of conduction and valence bands. For example, the valence band can carry

negative contribution around the Γ point, whereas a positive SBC comes from

the conduction band.
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Figure 5.3: Momentum dependence spin Berry curvature for (a) lowest conduc-
tion bands and (b) highest valence band Ωz

xy at kz = 0

While the conductivity tensor is a 3×3 matrix of σkij , one need to consider

only the three components σzxy, σyzx, σxyz. The other components of the tensor can

only get zero values or can be transformed from the three SHCs depicted above.

Due to the symmetries including mirror symmetry and rotation symmetry of

the crystal Bi2Se3 we have:

σxxy = σxyx = σxxz = σxzx = 0 (5.3)
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Figure 5.4: Momentum dependence spin Berry curvature for (a) lowest conduc-
tion bands and (b) highest valence band Ωy

zx at kz = 0
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Figure 5.5: Momentum dependence spin Berry curvature for (a) lowest conduc-
tion bands and (b) highest valence band Ωx

yz at kz = 0

σyxx = σyyy = σyyz = σyzy = 0 (5.4)

σzyx = −σzxy = 0 (5.5)

To check the consistency of the source code, we confirm the results for σzxy =

−σzyx (shown in Figure 5.6).
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Figure 5.6: Symmetry of the spin Hall conductivity tensor σzxy = −σzyx.

5.5 Thin film spin Hall conductivity

While the bulk of Bi2Se3 has rhombohedral structure, the primitive unicell of

thin-film TI is hexagonal . Here, we computed the layer dependence SHC for

thin films with different thicknesses (2-10QLs). Since each QL contain the same

number of electrons, the total number of electron orbitals should beNorb.N (N–

number of QLs), being finite. As can be seen from Figure 5.7 the Fermi level de-

pendence average SHC per QL follow the same trend for all thin film thickness

above 3QLs. For TI of thickness of 1-2QLs, the inter-surface interaction domi-

nates and no strong signal presents. Hence, the SHC signal should be weaker

compared to thick TI slabs. As can be noticed, the SHC in very low Fermi level

can reach values as high as ≈ 2000~
e
Ω−1cm−1. This is the result of the extensive

band crossing of the bulk and surface bands at low energy.

We now focus on the energy region where the bulk and surface states sepa-

rate without a band crossing feature in Figure 5.8–5.9. As discussed above, the

sign of SHC inside the bulk depends on the spin polarization (spintexture), but

it is independent of the helicity (for surface state as an example). As can be seen

from the figure, a finite film SHC around the Dirac cone region is a combination

of bulk and surface. The total SHC values, however, is known only after bulk

projection. A sudden "jump" in SHC can be seen when the Fermi level changes
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Figure 5.7: Layer dependence spin Hall conductivity divided by thin film thick-
ness

from -0.06 to -0.04eV. This figure is smallest at the vicinity of the Dirac cone. As

the thickness increases up to 21QLs, the SHC across the Dirac cone become flat-

ter as expected, since the contribution from Dirac cone becomes smaller (due to

thickness effect) and the number of bulk bands increase.

For the total SHC of thin film without thickness effect, the absolute values

of SHC should be shifted by a constant value, having the same trend. Quantita-

tively, the tendency can be explained as the total SHC of thin film of NQLs with

N-2 bulk QLs and 2 surface QLs.
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Figure 5.8: Layer dependence and bulk spin Hall conductivity near the Dirac
cone.

Figure 5.9 shows a quantitative comparison between the energy dispersion of
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5.5. Thin film spin Hall conductivity

10QLs film and the SHC values. It can be seen clearly that the variation of SHC

inside the Dirac cone is small compared to the whole Fermi level dependence

SHC picture. Since the thickness is finite, discrete quantum well states with

surface state can be seen in energy range E = −0.1 − 0.5eV. It should be noted

that once the thickness is sufficient to see parallel bands which are shifted by a

constant value, the SBC of these band are similar to each other just like the case

of first conduction quantum well states in Figure 5.9(a). As a result, there is no

special change in the trend of SHC at EF=0.35–0.5eV.

With a band crossing at low or high energy, the SHC of thin film becomes

more complex and depends on the property of the band dispersion. At low

energy, when the Dirac cone meet the discrete bulk bands, the change in SHC

is more complex. Focusing in the energy region of conduction bands with a

more complicated dispersion of crossing between surface and bulk states. At the

crossing point, the SBC of the singleDirac state is surprisingly large compared to

all bulk bands. A sharp jump is presented at EF=-0.05eVwhen the SHC changes

approximately 3 times.
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Figure 5.9: (a) Energy dispersion of 10QLs thin film with associated SBC (color
map) (b) Averaged spin Hall conductivity.

To look for detailed understanding and check the consistency of calculation,

Figure 5.10 shows amomentumdependence SBC for two surface bands for 3QLs

cases. Interestingly, the hexagonal wrapping effect which apparently occurs in
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5. Intrinsic spin Hall effect in topological insulator

TI surface state still survives in the SBC. This can be explained by the energy dif-

ference between upper and lower Dirac cones which evolved in the calculations.

At the vicinity of Γ point, the Dirac states and bulk states are separated (the bulk

band gap of Bi2Se3 is around 300meV) and the SBC of the Dirac cones are solely

decided by particle-hole scattering within Dirac cone. Whereas the high energy

SBC is more sensitive to the neighbouring bands (quantum well states). The

signs of SBC for lower and upper DC is positive and negative, respectively in

addition to a anisotropic feature (the SBC is stronger along kx direction). For

3QLs case (figs. 5.10,5.11) an asymmetric feature of SBC intensity is not as clear

as for 4QLs case (Figure 5.12).
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5.5.1 Spin Hall conductivity from k·p Hamiltonian

We use the k·p model studied in chapter 1 to study the spin Hall conductivity

of the Topological Surface State (TSS), comparing with our full tight-binding

model. The spin current operator is also defined.

σz =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


; jzx =



4kx
m1

4kx
m2

0 0

4kx
m2

4kx
m1

0 0

0 0 −4kx
m1
−4kx

m2

0 0 −4kx
m2
−4kx

m1


The spin operator shows that the spin-up and spin down currents are sepa-

rated in two opposite direction as well defined from intrinsic spin Hall effect.

We define: k± = kx ± iky The energy dispersion of the Hamiltonian: E1,2 =

k2m2−m1

√
k4+m2

2v
2k2

m1m2
, For conduction bands with the corresponding wave func-

tions

Φ1 =

{
− ik−
m2v

,
ik−

√
k2 +m2

2v
2

m2vk
, 0, 1

}

Φ2 =

{
−ik−

√
k2 +m2

2v
2

m2vk
,
ik−
m2v

, 1, 0

}

E3,4 =
k2m2 +m1

√
k4 +m2

2v
2k2

m1m2
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5. Intrinsic spin Hall effect in topological insulator

For valence bands

Φ3 =

{
− ik−
m2v

,−ik−
√
k2 +m2

2v
2

m2vk
, 0, 1

}
; Φ4 =

{
−ik−

√
k2 +m2

2v
2

m2vk
,
ik−
m2v

, 1, 0

}

We will show that σzxy is positive and the momentum dependence SBC scales

as k2
x where kx is direction of the spin current.

Ωs
1,3 = Im[< 3|jzx|1 >< 1|vy|3 >]/(E3 − E1)2 (5.6)

We have < 3|jzx|1 >= −8kx
m1

a real number. Hence, we have to consider only

imaginary part of

Im[< 1|vy|3 >] =
2.kx
m2k

√
k2 +m2

2v
2 (5.7)

Ωs
1,3 =

−4k2
x

k2
.
m2

m1

.
1√

k2 +m2
2v

2
(5.8)

|Φ1| =
√

2(k2 +m2
2v

2)/m2v, |Φ3| =
√

2(k2 +m2
2v

2)/m2v, (5.9)

The spin Berry curvature for valence band is always positive since m2 < 0.
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Figure 5.13: Spin Berry curvature from k·pmodel. (a) 3D view of Ωz
xy, (b) Upper

Dirac cone, (c) Lower Dirac cone.

Here, we argue that the SBC carries anisotropic property.

Figure 5.13 clearly shows that an anisotropic feature in the SBCdensity is due

to the quadratic term in the Dirac cone dispersion. If the electric field is applied

in ky direction, the SBC density is concentrated in the kx direction, giving rise
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5.6. Conclusion

to the spin Hall current. For a perfectly linear Dirac cone, the two mass terms

m1,m2 → ∞. The spin current operator is identically zero: jzx = v[σy, σz]+ = 0.

Hence, the momentum dependence SBC of the Dirac cone in figs.5.11–5.12 can

be simply explained in the context of our 4 bands k·p Hamiltonian.

5.6 Conclusion

Wenumerically compute spinHall conductivity of Z2 topological insulator. While

the spin-orbit coupling in TI material is the driving force of the SHC comple-

mented with the crystalline structure (layered structure), we conclude that the

σzxy SHC of the bulk Bi2Se3 possesses the largest value. Moreover, the concept of

spin Hall insulator still works for Bi2Se3, since the SHC values is non-zero inside

the bulk gap. The SHC for thin film TI possesses interesting features while the

interplay between bulk states and surface states become importantwhen the sur-

face states meet bulk. The SHC of surface states can suppress the discrete bulk

state for a finite number of layers. Thus, the values of SHC for thin film inside

the Dirac state is less negative compared to the bulk. Secondly, with the exten-

sive band-crossing features in the thin film bulk bands, the SHC values can be

enhanced to a significant value of. We also found that the angle resolved SBC of

Dirac states possesses an antisymmetric feature where the SBC is concentrated

in direction perpendicular to the applied electric field. Complemented with nu-

merical results for the surface state SBC, we proved that this feature is due to

the quadratic term in the energy dispersion. Moreover, the SHC can also be

controlled by the mass terms of the band-structure.
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Chapter 6

Conclusion

This thesis provided a comprehensive study of realistic models for magnetically

doped thin films in different phases. It is applied to solve long standing prob-

lems in the field of quantum anomalousHall insulators possessing various sym-

metry properties. All the studies reviewed so far, however, suffer from the fact

that the low energy spectra may have more bands than the existing theories

possess. In our theory, we consider multiband models constructed from layer-

by-layer approach. A key finding of the works is the proposal of a class of QAHI

without surface state involvedwhichmake the experimental measurements less

sensitive to the dielectric substrate. Moreover, the bulk-boundary correspon-

dence is of particular importance for our Hall conductivity results. Particularly,

the intrinsic spinHall effect for thin film TI could be very different from the bulk

signals.

Firstly, from a standard multilayer model based on 2DEG we developed the

magnetic multiband k·p model, including many experimentally realized per-

turbations. We confirmed that the stacked quintuple model successfully cap-

tures the electronic properties of magnetic TI and trivial thin film compared

compared to conventional ARPES measurement. Remarkably, first main theo-

retical finding is the QAHE without surface state involved, making the system

less sensitive to the substrate. Hene, this is an approach to avoid surfaces which

are always experimental problem. We have answered a long standing question
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6. Conclusion

of how to get a high Chern number QAHE. Second finding of this thesis is

the topological phase transition mechanism driven by magnetic impurities for

three experimental realizable magnetic structure mentioned in chaper 2 (FM-TI,

FM-TI-FM,magnetically doped TI). The key issue is that the interaction between

two surfaces of TI never vanishes unless the slab is semi-infinite. Moreover, the

critical phase transition exchange field is found to balance the inter-surfaces tun-

nelling energy in the TI phase. Meanwhile, this research extends our knowledge

of the high Chern number in the Z2 magnetic thin film of critical phase. The

topological phase transition is a result of band exchange and confirmed by the

Thouless-Kohmoto-Nightigale-Nijs (TKNN) invariance or the first Chern num-

ber. In addition, one key contribution of the study is that the skyrmion spin flip

pattern is firstly predicted for FM-TI structure when the inversion symmetry is

broken. Even in another magnetic structures, when the inversion symmetry is

not broken, the spin up, in plane to spin down transition is of significant results.

The previous experimental work has confirmed a hedgehog spin pattern of the

valence bands of magnetically doped TI. However, the skyrmion spin-texture

should also be a driving force of experimental study.

Regarding Topological Crystalline Insulator (TCI), our prediction of non-

linear touching mechanism and unconventional QAHE is of particular interest

to motivate experimental works. The presence of new Van-Hove singularity,

broken symmetry order, difference between odd and even number of layers are

the driving force for different phases.

Our fundamental conclusion for intrinsic spin Hall effect comes from the

presence of surface states in 2D electronic structure models. A full tight bind-

ing model can give a prediction for intrinsic spin Hall conductivity. However,

the effect of layer thickness is also very important ingredient for experimental

measurement.

As an extension of this field, our study suggests that the spin-ARPES mea-

surement can examine higher energy bands to observe the spin-flip pattern in
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momentum space. However, in experimental condition the Hall conductivity is

no longer quantized in unit of e2/h due to the effect of temperature fluctuation.

Moreover, the non-quantized Hall conductivity with Fermi level being gating

modulated. Our proposal simplified the computational complexity of magneti-

cally doped crystal Bi2Se3, thus novel broken symmetry topological phases can

be tuned onmore straightforwardly. In addition, we also showed our prediction

on spinHall conductivity in topological insulatorwhen the number of layers ap-

proach infinite. For intrinsic spin Hall effect, the interplay between surface and

bulk states becomes an important ingredient to supress the spin Hall conduc-

tivity at low energy and enhance that figure at high energy.

We investigatedultrathin TI/trivial/TCI slabwith various thicknesseswhich

requires a computational approach, complemented by an analytical result. Hence,

the analytical work which was done for a four-band model with magnetic ex-

change field nicely explains all the calculation results ofmomentumdependence

Berry curvature evolution, spin-flip pattern and critical momentum. A higher

order analytical calculation for thin film of higher thickness could be a possi-

ble way to explain the transition mechanism of Z2 TI. However, we could not

perform the analytical derivation for larger Hamiltonian. We expect that the

topological phase transition point or the momentum resolved spin Berry cur-

vature is almost identical for other layered models with different thicknesses.

Moreover, one shortcoming is that the layered k·p model is not able to capture

the orbital coupling between d orbitals of transition metal and p orbitals of Se.

Another possible improvement of the study could have been adding a term ex-

pressing the d orbital coupling through a tight binding model. This method

could indicate more exact critical exchange energy for phase transition.
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Appendix A

Karplus and Luttinger’s theory

This section shows the theoretical summary for Hall conductivities based on

nothing else but linear response theory. The proof of initial paper of Karplus

and Luttinger on the anomalous Hall effect in ferromagnetic metal is summa-

rized [76, 77]. Presumably an internal magnetic moment exists in crystal, a tra-

verse Hall conductance arises due to an interplay between crystal field energy,

spin orbit coupling and small electric field perturbation. The total Hamiltonian

can be written as

HT = H0 +HSO +HE, (A.1)

H0 =
p2

2m
+ V (r), (A.2)

HSO = [σ ×∇V (r)].p, (A.3)

spin orbit coupling potential when an electron spin couples with orbital de-

gree of freedom. When magnetic field is applied, all electrons are spin polar-

ized through exchange forces. In relativistic representation, the spin orbit cou-

pling energy can also be expressed as: H = 1
m2c2

[M×∇V (r)]
Ms

, withMs being max-

imum magnetic moment when an electrons are lined up in the same direction.

HE = −e.E.r is electron potential under the electric field. Only the electron

total Hamiltonian can have Bloch wave function type of solution, since the crys-

tal field and spin-orbit coupling Hamiltonians are periodic whereas the electric
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A. Karplus and Luttinger’s theory

potential is not.

(H0 +HSO)φn,k = En,kφn,k, (A.4)

All electron wave functions are normalized:

〈φn,k, φn′,k′〉 =

∫
Ω

φn,k(r)φn′k′(r)dx
3 = δn,n′δk,k′ , (A.5)

where the integration takes place all over the crystal volume Ω. Here, the impor-

tance comes to calculating matrix element of the electron potential Hamiltonian

HE in the Bloch wave function representation. Presumably, an electron is ex-

perienced the potential Ey applying in the y direction. The velocity operator is

connected with position operator through equation of motion:

∂Ry

∂t
= vy = i[H,Ry] = i[H0 +H

SO
, Ry] = 2

py
m

+
1

m2c2

[M ×∇V ]y
Ms

, (A.6)

We have: Hkφn,k = En,kφn,k , we neglect the k index in the equation ∂H
∂ky

+H ∂φn
∂k

=

En
∂φn
∂ky

,we multiply by φn′ and integrate over the crystal volume

∫
φn′

∂H

∂k
φnd

3x+

∫
φn′H

∂φn
∂ky

d3x = En

∫
φn′

∂φn
∂ky

d3x

〈φn′|vy|φn〉+ 〈φn′ |H|
∂φn
∂ky
〉 = En〈φn′ |

∂φn
∂ky
〉,

〈φn′ |vy|φn〉 = (En − En′)〈φn′ |
∂φn
∂ky
〉 = iωn,n′〈n|Rb|n′〉, (A.7)

We would like to express the off diagonal matrix element of velocity operator

in a more general way for different k, from the Bloch wave function we have

φn,k = ei.k.rωn,k:

〈n, k|Ry|n′, k′〉 =

∫
Ω

e−i.k.rω∗n,kRye
i.k′.rωn′,kd

3x =

∫
Ω

e−i.k.rω∗n,k
1

i

∂ei.k
′.r

∂kb
ωn′,k′d

3x,
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=
1

i

∂

∂ky

∫
Ω

φ∗n,kφn′,k′d
3x+ i

∫
ei.(k−k

′).rωn,k
∂ωn′,k′

∂k′y
d3x =

= −i ∂
∂k′y

(δn,n′ .δk,k′) + i

∫
ei.(k

′−k).r.ω∗n,k
∂ωn′,k′

∂k′y
d3x,

Since only ω is orthogonal and periodic, the factor is only non-vanished if k = k′.

Hence

〈n, k|Ry|n′, k′〉 = iδn,n′
∂

∂
δk,k′ + i.Jnn

′

y (k), (A.8)

with Jn,n′y =
∫

Ω
ω∗n,k(r)

∂
∂ky
ωn′,k(r)d

3x,

〈n, k|HE|n′, k′〉 = −e.Ey{iδn,n′
∂

∂ky
δk,k′ + i.δk,k′J

n,n′

y (k)}, (A.9)

Thus, the second term comes entirely from off diagonal matrix element, and

it contributes to total conductivity problem. The electric field potential can be

considered as two term, one periodic and one non-periodic. HE = H1 + H2,

where H1 is periodic perturbation with matrix element −i.e.δk,k′EyJn,n
′

y (k), and

H2 representation is unique. We thus can get a periodic Hamiltonian: Hp =

H +H1, with the eigenfunctions are stationary one electron states. In addition,

the electron distribution can by described by density matrices with two terms

namely stationary at constant lattice temperature, and lattice vibration term. ρ =

ρ0(Hp)+ρ1,where ρ0(H0) = {exp[(Hp−EF )/kT ]+1}−1, and ρ1 is combination of

deviation from thermal equibrium,H2 implementedwith the collisionswith the

lattice. The average velocity operator of the Hall effect is thus: 〈vx〉 = Tr{ρ0vx}.

Here the velocity operator vx can be described as vx = i[H,Rx] = i[Hp, Rx] −

i[H1, Rx],. The first term gives zero, we only need to calculate the second term:

〈vx〉 = −i.T r{ρ0(H)[H1, Rx]} = −iT r{[Rx, ρ0(H)]H1} =

− i
∑
n,k

〈n, k|[Rx, ρ0(H)]|n, k〉〈n, k|H1|n, k〉

− i
∑
n,k

∑
n′ 6=n

〈n, k|[Rx, ρ0(H)]|n′, k〉〈n′, k|H1|n, k〉, (A.10)
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The operator contains both diagonal and off diagonal terms. We will show that

if there exists a Bloch wave function of an eigein-energy en(k): φn,k = ei.k.run,k,

and an operator f(H), the differentiation of f with respect to momentum:

∂f(en(k))

∂kx
= i[f(H), Rx], (A.11)

We have if: H(p, r)φn,k = en(k)φn,k then:

H(p+ k)un,k = en(k)u(n, k), (A.12)

We now have to compute the matrix element of right hand side in (1.10)

〈[f(H), Rx]〉nk =

∫
d3xu∗nke

−i.k.r[f(H(p, r)).Rx −Rxf(H(p, r))]ei.k.runk

=

∫
d3xu∗nke

−i.k.r[f(H(p, r)).i.
∂

∂kx
− i. ∂

∂kx
f(H(p, r))]ei.k.runk

= −i
∫
d3xu∗nk

∂

∂kx
[e−i.k.rf(H(p, r))ei.k.r]unk

= −i
∫
d3xu∗nk

∂

∂kx
[f(H(p+ k, r))]unk = −i ∂

∂kx

∫
u∗nkunkd

3xf(H(p+ k, r)),

Implementedwith results from (A.12)we proved (A.11). Applying (A.10) for the

case f(H) = H , f(en) = en,∂en(k)
∂kx

= i〈[H,Rx]〉nk = 〈Ṙx〉nk = 〈vx〉nk, Coming back

to Eq.A.10, we have to simplify the equation in term of the velocity operators,

thus:

−i
∑
n,k

〈n, k|[Rx, ρ0(H)]|n, k〉〈n, k|H1|n, k〉 =

= −i
∑
n,k

∂ρ(en(k))

∂kx
〈vx〉nk.e.Eb.Jnnb (k) =

= −ieEb
∑
n,k

ρ′.〈vx〉nkJnnb (k), (A.13)
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The off diagonal part in (A.10) then becomes (note that the sum takes over even

off diagonal part)

−i
∑
n,k

∑
n′ 6=n

〈n, k|[Rx, ρ0(H)]|n′, k〉〈n′, k|H1|n, k〉

= i.e.Eb
∑
n,k

ρ′0(en,k)
∑
n′

{Jnn′x (k)Jn
′n

y (k)− Jn,n′y (k)Jn
′n

x (k)}, (A.14)

After inserting the wave-function, the off diagonal part becomes:

−i.e.Eb
∑
n,k

ρ′0(en,k)[vy(n, k)Jx(n, k)− vx(n, k)Jy(n, k)],

, implementing with 1.13: we get the anomalous velocity:

〈vx〉 = −i.e.Ey
∑
n,k

ρ′0(en,k)vy(n, k)Jx(n, k), (A.15)

This velocity operator gives rise to anomalous velocity, and conductivity. Here

we have to express the Jx(n, k) operator in term of the wave function and eigen-

values. We adapt first order perturbation theory of electron unperturbed by

spin-orbit coupling with modified wave function. The new wave function is

thus:

wn,k = un,k +
∑
n′ 6=n

un′,k(r)〈n′, k|HSO|n, k〉0/(en,k − en′,k)

Jx(n, k) = 2
∑
n′ 6=n

Inn
′

x 〈n′|H ′|n〉/ωn,n′ ,

But Inn′x =
∫

Ω
u∗n

∂un′
∂un

d3x = −〈n|px|n′〉0/mωnn′ . Thus, the final transverse velocity

operator becomes:

〈vx〉 = −2.i.e.Ey
∑
n,k

ρ′0(en,k)
∑
n′ 6=n

vx(n, k)〈n|py|n′〉〈n′|HSO|n〉/ω2
nn′ , (A.16)

Thus Karplus and Luttinger was the first who studied and related the anoma-

lous Hall effect with the spin-orbit coupling.
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Appendix B

Kubo Formalism and relation with

Berry curvature

This section shows the Kubo formalism based on the theory for the transport

coefficients [78–80]. It mostly summaries the proof by Luttinger when a system

in equilibrium and slowly tuned by in-plane electric field. Due to the lengthy

proof of the initial Kubo formalism, only mean features are covered. That is, the

time dependent wave function gradually changed:

φe(r, t) = φe(r)est, (B.1)

The totalHamiltonian is alsomodified by an time dependence exponential term:

Ht = H + Fest, (B.2)

with F =
∫
ρ(r)φe(r)dr, ρ being charge density operator. According to Kubo

and later Luttinger, the current density then will take the form of two current

correlation function.

〈Jγ(r)〉 =

∫
dr′

∫ ∞
0

dte−st
∫ β

0

dλ
∑
γ′

〈jγ′(r′)jγ(r, t+ i~λ)〉eq.Ee
γ′(r

′), (B.3)
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After Fourier transforming the wave function, confining ourselves to a single

component we obtain: φe(r) = 1
V
φeqe

iq.r, and define: jq =
∫
dre−iq.rj(r) Hence,

the q dependence current:

〈Jq,γ〉 =
1

V

∑
γ′

∫ ∞
0

dte−st
∫ β

0

dλ〈j−q,γ′jq,γ(t+ i~λ)〉eq.Ee
q,γ′ ,

Here Ee
q = −iqφeq. Note that we already assume ~ = 1, getting back Planck con-

stant in the Hamiltonian. If we assumed the applied field takes the wavevector

dependence form, that is: H ′ = F.eit/~(−~ω+is) The Hall conductivity is thus can

be obtained:

σγγ′(ω) = Ωlims→0+

∫ β

0

dλ

∫ +∞

0

dteit/~(−~ω+is).T r〈ρ0Jγ′(0)Jγ(t+ i~λ)〉, (B.4)

We write the current operator matrix elements in the independence electron

approximation H =
∑

n εna
†
nan. That is:

〈n|Jγ(i+ iλ~)|m〉 = ei(t+iλ~)/~εne−i(t+iλ~)/~εm〈n|Iγ|m〉 = ei(t+iλ~)/~(εn−εm)〈n|Iγ|m〉,

Where the Iγ is time independence current operator. Thus, the correlation be-

tween two current operators:

〈n|Jγ′(0)Jγ(t+ i~λ)|m〉 =
∑
p

ei(t+iλ~)/~(εp−εn)〈m|Iγ′|p〉〈p|Iγ|n〉

Tr(〈n|Jγ′(0)Jγ(t+ i~λ)|m〉) =
∑
p

ei(t+iλ~)/~(εp−εn)〈m|Iγ′ |p〉〈p|Iγ|n〉,

Wealso rewrite the charge density operator in new space, withTr(ρ0a
†
nama

†
paq) =

δmpδmqf(εm).(1− f(εn)), Plug in the equation, we get:

σγγ′(ω) = Ωlims→0+

∑
m,n

∫ β

0

dλe−λ(εn−εm)f(εm)

∗(1− f(εn))

∫ +∞

0

dteit/~(−~ω+is+εn−εm)〈m|Iγ′|n〉〈n|Iγ|m〉,

124



We take integration of each part in this Eq:

∫ β

0

dλe−λ(εn−εm)f(εm)(1−f(εn)) =
1− e−β(εn−εm)

(εn − εm)

1

1 + eβεm
eβεn

1 + eβεn
=
f(εm)− f(εn)

εn − εm

∫ +∞

0

eit/~(−~ω+is+εn−εm)dt =
limt→+∞e

it/~(−~ω+is+εn−εm) − 1
i
~(−~ω + is+ εn − εm)

= i~/(−~ω+is+εn−εm),

Here we can obtain a general Kubo formula

σγγ′(ω) = i~Ωlims→0+

∑
n,m

(
f(εm)− f(εn)

(εn − εm)(−~ω + is+ εn − εm)
〈m|Iγ′|n〉〈n|Iγ|m〉),

(B.5)

That is, the Kubo formula is a very general version with a finite quasi-particle

broaderning s and the current density operators. In momentum space, the op-

erators can be expressed in relation with the velocity operator in momentum

space. Iγ = −e.vγ = −e ∂H
~∂kγ , thus the Kubo formula in zero broadening limit:

σγγ′ =
e2

~
∑
k

Im[
∑
n,m

(
f(εm)− f(εn)

(εn − εm)2
〈m| ∂H

∂kγ′
|n〉〈n|∂H

∂kγ
|m〉)], (B.6)

For a zero temperature regime, the sum should give contribution for only par-

ticle hole scattering process, i.e one band is above and one band is below the

Fermi level. Hence, we can write each momentum dependence term as:

σk =
1

i

〈φmk|∂Hkγ′
|φnk〉〈φnk|∂Hkγ |φmk〉 − 〈φnk|∂Hkγ |φmk〉〈φmk|∂Hkγ′

|φnk〉
(εn − εm)2

,

However, as we proved above: 〈φmk|∂Hkγ |φnk〉 = (εm − εn)〈φmk|∂φnk∂kγ
〉 = (εn −

εm)〈∂φnk
∂kγ
|φmk〉,we can simplify the above equation as:

σk =
1

i
(〈∂φnk
∂kγ
|φmk〉〈φmk|

∂φnk
∂kγ′
〉 − 〈∂φmk

∂kγ′
|φnk〉〈φnk|

∂φmk
∂kγ
〉), (B.7)
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B. Kubo Formalism and relation with Berry curvature

Reminding that
∑

εn<EF<εm
|φnk〉〈φnk| + |φmk〉〈φmk| = 1,. Using this relation,

plug (B.8) into (B.7) we get:

σγγ′ =
e2

i~
∑

εn<EF<εm

(〈∂φnk
∂kγ
|φmk〉〈φmk|

∂φnk
∂kγ′
〉 − 〈∂φmk

∂kγ′
|φnk〉〈φnk|

∂φmk
∂kγ
〉) =

=
e2

i~
∑
m,n,k

(〈∂φnk
∂kγ
|∂φmk
∂kγ′

〉 − 〈∂φmk
∂kγ′

|∂φnk
∂kγ
〉) =

=
e2

2πih

∫
d2k

∫
d2r(

∂φ∗

∂kγ′

∂φ

∂kγ
− ∂φ∗

∂kγ

∂φ

∂kγ′
) =

=
e2

h

1

2πi

∫
d2k[∇k × Â(kγ, kγ′)]z,

Where Â(kγ, kγ′) =
∫
d2r( ∂φ

∗

∂kγ′
∂φ
∂kγ
− ∂φ∗

∂kγ

∂φ
∂kγ′

),. This is the phase factor, the

integration of which gives rise to a topological invariance which was obtained

by many authors. The above described formulation is a fundamental reason

for Hall conducvity quantization and the generalization of quantum anomalous

Hall effect in magnetic topological insulators.
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Appendix C

Smrcka and Středa theory

Furthermore, we also tried to make a quantitative difference between Hall con-

ductivities in low and high impurity regime for TI by reproducing the calcu-

lation based on Smrcka and Středa’s formalism [78]. It is also shown that the

Fermi surface term, and Fermi sea term. The Kubo formalism has been applied

to study not only anomalousHall effect, quantumanomalousHall effect but also

intrinsic spin Hall effect, and orbital Hall effects. Here we give a brief summary

of theHall conductivity in theGreen function approach. Different from zero im-

purity limit, there are two terms contributing to total spin/anomalous/orbital

Hall conductivity with a certain modification for Green function.

Depending on the impurity distribution, the impurity dressed Green func-

tion can have a new form: Ĝ−1
imp(k, ω) = Ĝ−1

0 (k, ω) −
∑

imp. For a simplest case,

the impurity is band-independence and take part as a quasi-particle broadening

constant. For a single particle, the Green function: ĜR/A(k, ω) = 1
ω−εk±iδ

. Based

on equation of motion for charge density, the original charge/spin Hall conduc-

tivity can be divided by two contributions: the Fermi sea term and Fermi surface

term.

σγγ′ = σIγγ′ + σIIγγ′ , where σIγγ′ = 1
2πN

∑
k Tr[IγĜ

RIγ′Ĝ
A]ω=0, is the Fermi sur-
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C. Smrcka and Středa theory

face term. The Fermi sea term can be expressed as:

σIIγγ′ = − 1

4πN

∑
k

∫ 0

−∞
dωTr[Iγ

∂ĜR

∂ω
Iγ′Ĝ

R − IγĜRIγ′
∂ĜR

∂ω
− (R↔ A)],

Generally, we tested the numerical results for spin Hall conductivity at certain

impurity limit. When the impurity induced broadening is small compared to

the energy gap between two nearly crossing bands or the gappedDirac cone, the

Fermi surface term is negligible compared to the Fermi sea term. The Fermi sea

term, can also expressed in the Kubo formalism with spin/orbital Berry curva-

ture terms. However, similar to the results for transitionmetals, the spin/orbital

Hall conductivity of topological insulators is largely affected by large number

of impurity site. When the impurity induced self-energy term is too large, the

Fermi surface term can be a main contribution of the total Hall conductivity.
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