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Summary

Android is a popular mobile platform for which a huge number of apps (applica-

tions) have been developed during the past few years. However, the complexity

in Android programming increases the possibility for developers to introduce vul-

nerabilities. In this thesis, we present a novel analysis framework to detect and

confirm data injection vulnerabilities in benign Android apps. We study two im-

portant classes of such vulnerabilities and use our analysis framework to show that

many existing apps are vulnerable. As we are able to find many such vulnerabil-

ities, we believe that a significant number of Android apps can be exploited by

such attacks.

First, we develop an automated vulnerability detection system for Android

apps which not only finds data injection vulnerabilities but also confirms them

with a proof-of-concept zero-day exploit. Our tool employs a novel combination

of static dataflow analysis and symbolic execution with dynamic testing. We

also use several optimizations to tame the path explosion problem in symbolic

execution. We show through experiments that this design significantly enhances

the detection accuracy compared with an existing state-of-the-art analysis.

Next, we present a detailed study of a new class of application vulnerabilities

in Android that allows a malicious web attacker to exploit app vulnerabilities. It

can be a significant threat as no malicious apps are needed on the device and

the remote attacker has full control on the web-to-app communication channel.

Analyzing real apps from the official Google Play store – we found many confirmed

vulnerabilities which suggest that these attacks are easy to mount and developers

do not adequately protect apps against them.

Finally, we conduct a systematic study of the attacks targeting databases in be-

nign Android apps. We present a comprehensive classification of database attacks.
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These attacks can be triggered either from content providers or intents received

throughout the app. In order to detect and exploit zero-day database vulnerabili-

ties, we utilize our analysis framework and extend it with models for symbolically

executing operations on the URI-based objects that are involved in database man-

agement. We evaluate our analysis framework by analyzing real-world Android

applications and generating the corresponding proof-of-concept exploits. We find

both public and private database vulnerabilities in real-world apps. We also show

new ways to exploit the previously reported and fixed vulnerabilities.
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Chapter 1

Introduction

Android is a popular mobile platform for which a huge number of apps (appli-

cations) have been developed during the past few years. It offers many useful

functionalities, thereby highly adopted by developers in practice. However, not

all these apps are developed with security in mind. Complexity of features in

Android has raised many confusions for software developers which has resulted

in many vulnerabilities. Attackers may exploit these vulnerabilities to launch

devastating attacks.

In this thesis, we focus on data injection vulnerabilities in Android apps

through which the attacker can control the input and behavior of the app. These

vulnerabilities may be exploited by attackers to launch a wide variety of at-

tacks such as cross-site scripting (XSS), SQL-injection, cross-site request forgery

(CSRF), privilege escalation, sensitive data leakage, etc. Such vulnerabilities may

exist in SDKs (e.g., PhoneGap [PHO]) which can affect thousands of apps incor-

porating them. However, understanding the vulnerabilities in a particular SDK

does not give the big picture of the problem. Moreover, there are already millions

of apps ready for download [GPL] which may suffer from different types of vul-

nerabilities. Hence, we aim for a systematic approach which helps us to detect,

confirm and characterize data injection vulnerabilities in real-world apps.

In order to automate the process of identification and exploitation of data in-

jection vulnerabilities in Android apps, we introduce a new analysis framework.

This framework helps us to detect different classes of vulnerabilities and success-

fully generate working exploits for them. Our analyzer integrates static analysis

with dynamic testing and is designed in a way to be suitable for the Android

ecosystem.

Another goal in this thesis is to study how some of the popular features and

functionalities of Android affects the security of benign apps. Our focus is on two

important classes of attacks which abuse the web-to-app channel and databases
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implemented in apps. We study and characterize these attacks in detail. Using

our analysis framework, we find many apps which are vulnerable to these two

attack families and generate proof-of-concepts to exploit them.

1.1 A New Analysis Framework for Android

At the high level, detecting many classes of vulnerabilities can be considered a

source to sink reachability analysis for Android apps. In general, pure static

information flow analysis techniques would give potential reachability and existing

techniques for Android apps [ARF+14, LLW+12, GZWJ12] are no different.

Many analyzers have been developed for Android applications. FlowDroid

[ARF+14] and CHEX [LLW+12] are some representative static analyzers tailored

for Android applications. FlowDroid is an open source static taint analysis frame-

work built upon Soot [LBHD11] which is often used in academic studies. CHEX

is another static dataflow analysis framework designed to find component hijack-

ing vulnerabilities in Android. It builds data-dependence graph (without control

dependence) to report potential vulnerable flows in the program. These analysis

frameworks do not handle conditional statements in the program and are heavily

based on abstractions which result in high false positive rates and reporting infea-

sible flows. Moreover, they are not adequate for confirming the vulnerabilities.

Our goal is not only to analyze for potential vulnerabilities but also to confirm

them. For this more ambitious goal, we want to be able to generate working

exploits which actually drive the execution to reach and also affect a security-

critical program point, in other words, automatically generating some form of zero-

day attacks. This makes the task of understanding and confirming a vulnerability

significantly easier for security analysts or the app developers.

To estimate the prevalence of vulnerabilities, we have developed an automated

vulnerability detection system for Android apps which not only finds vulnerabil-

ities but also confirms them. Analyzing real apps from the official Google Play

store, we found many confirmed vulnerabilities. Our tool employs a novel combi-

nation of static dataflow analysis and symbolic execution with dynamic testing.

We show through experiments that this design significantly enhances the detection

accuracy compared with an existing state-of-the-art analysis.

1.2 Web-to-Application Channel in Android

Presently, both mobile applications and traditional browsers are playing essential

roles in users’ devices. To provide a seamless experience for users, Android and iOS
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support scheme mechanism to handle web-to-application inter-operations [ANU,

IOS]. This mechanism makes it possible for a web page to invoke an installed

app. When a user clicks a web hyperlink of a certain format, Android parses

the hyperlink and invokes a specific application. With this technique, the mobile

app can be launched by a custom URI on any website in the user’s browser.

For example, by clicking the phone number in a website, the Phone app will be

launched to call the number. This customized service is convenient to users, but

it also exposes vulnerable apps to web attackers.

Without the proper sanitization or check on the URI or extra parameters de-

rived from the intent hyperlink, the vulnerabilities in apps may become accessible

to the remote attackers. Thus the malicious intent hyperlinks can misuse the vul-

nerable apps to conduct illegitimate manipulations on the victim’s device, e.g.,

stealing the victim’s contacts. In this thesis, we report the first systematic study

on Web-to-App Injection (W2AI) attacks, which exploit the scheme mechanism

to hijack the vulnerable mobile apps.

W2AI forms a new class of application vulnerabilities that do not require the

user to have installed a malicious app, but merely to have visited a malicious web-

site or advertisement in a mobile browser. Such attacks permit remote attackers to

exploit natively installed Android applications, without the risk of publishing mal-

ware on application market or enticing users to install malicious applications that

request suspicious permissions at install-time. This interface can be a significant

threat as the remote attacker has full control on the web-to-app communication

channel.

Some previous works discover attacks through scheme mechanisms [WXWC13].

Rui Wang et al. reveal confused deputy attacks on Android and iOS applications

which abuse channels provided by mobile OS. One of these channels is the scheme

mechanism through which attacker can invoke apps on the phone by crafting intent

hyperlinks and publishing on web. They present a CSRF attack on the Dropbox

SDK in iPhone [WXWC13] launched through an intent hyperlink. However, our

attacks differ because in our attack model, the user clicks on an intent hyperlink

in the default browser so it does not need to be started from the benign app and

can leverage safer channels like default browsers.

We present the first detailed study of this new class of application vulnerabil-

ities on Android. Moreover, we investigate which vulnerabilities can be exploited

once the attacker can manage to start an application via intent hyperlinks. We

study the prevalence of these attacks in Android apps and generate exploits for a

large number of them.
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1.3 Database Attacks in Android Apps

Android apps often include internal databases for data management. We conduct

a systematic study of the attacks targeting these databases and detect them in

real-world apps. Content provider components are designed to provide shared

content among applications. When an application requests to access another ap-

plication’s data using the ContentResolver object available in its context, the

system delivers the request based on the URI provided in the request. The URI

also contains additional data which might be processed by the destination ap-

plication for different purposes like locating tables in a database. Even though

the main functionality of content providers is to insert or query data from other

applications, they might be abused by the attackers if not protected carefully.

Developers sometimes implement internal databases without utilizing con-

tent providers. Android apps may have private databases typically in the form

of SQLite databases which cannot be accessed using content providers. These

databases can be implemented in any component of an app. Even though such

internal databases are usually incorporated into the apps to be used privately,

adversaries might be able to launch pollution, data-leakage or file access attacks

as described later due to the inherent vulnerabilities in the benign applications.

In order to detect and exploit zero-day database vulnerabilities, we utilize

our analysis framework and extend it with mechanisms for symbolically executing

operations on the URI-based objects that are involved in database management.

We use our analysis framework to analyze real-world Android applications to find

and generate working exploits for them.

ContentScope [ZJ13] is proposed for detecting pollution and leakage attacks

on content providers in Android applications. However, it only deals with the

vulnerabilities in public databases triggered through standard content provider

APIs. We present a more comprehensive study of database vulnerabilities in

Android apps and analyze them for both “public” and “private” database attacks.

Moreover, our analyzer can detect public and private vulnerabilities and generate

proof-of-concept for them.

1.4 Contributions and Thesis Organization

This thesis makes several contributions in improving the security of Android ap-

plications. We introduce a scalable approach for automatically detecting vulner-

abilities in Android apps focusing on web injection attacks and databases. Our

approach is novel as we not only detect but create proof of concept (zero-day)
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exploits to demonstrate the vulnerabilities. Our current techniques can be ex-

tended and customized to cover more classes of vulnerabilities in Android. With

our detection system, we have found zero-day vulnerabilities in many real-world

Android apps.

To the best of our knowledge, we are the first to conduct a systematic study on

web-to-app injection attacks , which abuse the web-to-app bridge to hijack vulner-

able Android apps without any installation of malware [HJY+15]. We demonstrate

8 different categories of W2AI attacks. These attacks target critical vulnerabilities

that can be exploited silently without user interaction.

We perform a comprehensive classification of database vulnerabilities in An-

droid apps. In order to detect and exploit these vulnerabilities, we construct

symbolic models for URI-dependent Android libraries. Using our analysis frame-

work, we have analyzed Android apps and found many of them vulnerable to the

database attacks and generated exploits for them. We also compare our results

with ContentScope [ZJ13]. We find both public and private database vulnera-

bilities. We also show new ways to exploit the previously reported and fixed

vulnerabilities.

This thesis is organized as follows: Chapter 2 briefly describes the architecture

of Android, its security mechanism and applications developed for it. Chapter 3

introduces a new framework for detecting and confirming vulnerabilities in An-

droid. We also evaluate our framework and compare it with a state-of-the-art

dataflow analyzer. Chapter 4 studies and classifies Web-to-App Injection attacks

that target Android applications. We also present a customized version of our

analysis system tailored for W2AI vulnerabilities. We have analyzed real-world

Android applications and detected and confirmed W2AI vulnerabilities which is

reported in this chapter. Chapter 5 performs a comprehensive study of database

vulnerabilities and show how to detect and exploit them in benign Android apps.

We conclude in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we introduce the main elements of an Android application which

are relevant in the attacks presented in this thesis. Understanding these elements

are also essential for analysis purposes. We also briefly present the Android ar-

chitecture and its security mechanism. Throughout this thesis, we use app and

application interchangably to refer to the Android programs.

2.1 Android Applications

Even though Android apps are mainly written in Java-like languages, they are

very different from standard Java programs. Some of these differences are:

1. Android applications consist of four types of components which can be points

through which system enters the app (unlike Java programs which have a

main method that can be the entry point). Each component has a different

lifecycle which identifies how the component is created, destroyed, etc.

2. Android is heavily based on callbacks and asynchronous calls handled by the

framework. For instance, in addition to the Java threads, Android provides

higher-level implementations for threads such as AsyncTask and Handler as

part of the system’s framework which have particular semantics that are not

available statically.

3. Android provides RPC/IPC among apps which mainly works based on se-

rialization similar to Java but through different mechanisms. In particular,

a new message passing mechanism is possible in Android in which messages

(called intents) can be used to invoke a specific component in the same or

another app.

7



4. The access control mechanism designed for Android apps is very different

from Java programs. Android apps do not have a language-level security

mechanism while the Java security manager enforces security in Java pro-

grams at the language level.

2.1.1 Android Components

Android components are the building blocks of Android applications. There are

four types of components: activity, service, content provider and broadcast re-

ceiver. The data injection vulnerabilities studied in this thesis can be triggered

by invoking one of these components depending on the attack category.

Activity. Activity is an Android component which is in charge of the user inter-

face of the app. Usually, activities are the first components launched once an app

starts. A different app can invoke any of the activities of the app (if it allows) and

transmit data by sending Intent messages.

Service. A service component performs long-running operations (such as down-

load a file) in the background without a user interface. A service can be bound

by other components to establish a client-service interface through the Binder.

Content Provider. Content provider is another Android component used as

an interface to manage access to a structured set of data. The developer can

implement this component to share data with other apps on the device. In order

to access data in a content provider of another app, developer has to use the

ContentResolver object available in the application’s context. ContentResolver

allows applications to locate and interact with content providers in the phone.

Once the content provider receives and handles a request, the results are returned

by the ContentResolver back to the requesting app.

Broadcast Receiver. Broadcast receiver is a component that can be registered

to receive broadcast messages and notifications sent by other apps or system. The

broadcast messages can be the system events, such as when the system boots up

or any custom intent.

2.1.2 Android Manifest File

Every Android application needs an AndroidManifest.xml file (manifest file). The

manifest file provides information about the application including its components

and the requested permissions. It is also possible to specify which Intent messages

a component can handle through intent filters as explained shortly. Listing 2.1

shows part of an example manifest file which provides specification for an activity

component.
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2.1.3 Message Passing in Android

A component in an Android app can request another component (possibly in

another app) to perform an action. Intent is the primary way to facilitate this

communication to share data with other apps and access system services [INA].

Unfortunately, it can also be crafted by attackers to exploit data injection vul-

nerabilities in the apps installed on the device. An intent is an abstraction of an

operation to be performed which is implemented by the Android Binder IPC. An

intent object carries information as shown below which is used by the Android

framework to determine which component to start executing, plus information

that the recipient component uses to properly perform the action:

• data is a URI that the intent is targeting. It can consist of elements such

as scheme, host, path, etc.

• action is a string that specifies the generic action to perform (such as view

some information).

• category defines a string containing additional information about the kind

of intent that will be handled by this component.

• component name can be set to send the intent to a particular component

in an application.

• extra parameters. Extras is a bundle of any additional information carried

through intents. It is the parameter returned by get[type]Extra() API

where type can be String, Int, etc. Extras is set through the Bundle data

structure. A Bundle is a mapping from values to Parcelable types whose

instances can be written and restored from a Parcel. A Parcel is a container

for data or object references that can be sent through the Android IPC.

• flags. It is possible to use flags in Intent messages. By setting special flags,

we can control how the intent is handled. FLAG GRANT READ URI PERMISSION

is an example flag that can be set to grant readPermission to the recipient

activity for a set of data.

In the manifest file, it is possible to specify which Intent messages a compo-

nent can handle through intent filters using <intent-filter> tags. The <action>,

<category>, and <data> tags are the sub-elements that describe most of the con-

tents of the intent filters.
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The <data> tag declares the type of data accepted, using one or more attributes

of data URI (scheme, host, port, path, mime type, etc.). Listing 2.1 depicts a sam-

ple intent filter for an activity named MainActivity picked from the manifest file of

an application. An Intent message is accepted by a component if its fields match

the intent filter attributes.

1 <activity android:name=".MainActivity">

2 <intent -filter >

3 <action android:name="android.intent.action.VIEW"/>

4 <category android:name="android.intent.category.DEFAULT"/>

5 <category android:name="android.intent.category.BROWSABLE"/>

6 <data android:scheme="myuri" android:host="foobar" android:path="

/"/>

7 <data android:mimeType="text/plain">

8 </intent -filter >

9 </activity >

Listing 2.1: This Listing is a part of a manifest. It shows an intent filter

of an activity named MainActivity.

2.2 Android Architecture

The Android architecture consists of five layers: applications, application frame-

work, libraries, runtime and kernel. The benign apps analyzed in this thesis reside

in the applications layer which can be exploited to access system resources and

libraries in lower layers. In order to exploit the vulnerabilities, attacker can lever-

age the services in the application framework layer to access the information and

interfaces of the benign app.

Applications

Applications is the top layer in the Android architecture where all applications

installed on the phone (e.g., browsers, games, etc.) can be found.

Application Framework

Application framework is the layer below the applications layer where Android

apps are plugged in and contains system services that perform system-level jobs.

Next, we describe some of the key system services that perform important opera-

tions:

• Activity Manager is the system service which controls the application life-

cycle. It interacts with the overall activities running in the system. This
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service manages the inter-component communication in Android. For exam-

ple, it is responsible for delivering intents to the recipient activities.

• Package Manager is responsible for APK installation and maintaining

information about installed applications. It stores the permissions granted

to each application in certain files and later, apps can query this service to

determine whether an app has the required permissions.

• Content Providers provide the interface to manage and share data among

running processes.

Libraries

This layer provides libraries such as SQLite database, WebKit browser engine and

Libc to applications at higher levels. It also includes libraries specific to Android

which are available to the applications as Java classes. Next, we describe the most

relevant Android libraries to the attacks studied in this thesis.

• android.webkit. It provides Java classes to perform web-browsing includ-

ing WebView. WebView is an in-app browser that provides the basic func-

tionalities of normal browsers (e.g., page rendering and JavaScript execu-

tion). However, the UI (User Interface) is not similar to normal browsers.

In fact, the UI in WebView is similar to any other activity and the URL

bar is not visible to the user. For instance, user cannot distinguish http

from https URLs. Therefore, if a malicious web page loads in a WebView,

phishing attacks are feasible which can result in credential theft. WebView

also enables access to various interfaces (e.g., HTML5 APIs and JavaScript-

to-native bridge) that can be exploited by malicious URLs. WebKit, the

rendering engine in WebView, is a framework library to display web pages.

In addition to phishing attacks, if the malicious URL loads in the WebView,

attacker can exploit vulnerabilities (e.g., [CVWb, CVWa]) in the WebView

or WebKit (other than the vulnerabilities in third-party apps) to bypass the

same origin policy or invoke arbitrary Java code. WebViews are used in a

group of vulnerable applications studied in Chapter 4, which are exposed to

attackers allowing arbitrary JavaScript execution.

• android.database. This library contains SQLite classes including SQLite-

QueryBuilder and SQLiteDatabase which can be used to access the data

shared by content providers. These libraries can also be implemented in
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applications as private databases. If developers do not provide enough pro-

tection for these databases, attackers can launch different classes of attacks

which are studied in Chapter 5.

Android Runtime

Android runtime contains the Dalvik Virtual Machines where Android applications

run. This layer incorporates standard Java libraries to be utilized in Android

applications.

Android Kernel

The bottom layer in the Android operating system is the Linux kernel. The user-

based access control in the Linux kernel plays an important role in the Android’s

security mechanism.

2.3 Android Security

In order to design reasonable attack models and report realistic vulnerabilities,

it is necessary to understand the protection mechanisms provided in Android.

Android has two levels of security: system level and application level. The system

level protection is provided by the user-based access control in Linux. Each app

gets a unique UID and GID at the installation time based on which it determines

which system resources can be accessed.

At the application level, in order to invoke sensitive APIs, apps have to request

for certain permissions in the manifest file. By installing an application, user

grants the requested permissions.

Android classifies permissions as follows:

System Permissions. These permissions are owned by the system and

allow access to the system resources. android.permission.RECEIVE SMS and

android.permission.INTERNET are examples of system permissions that once

granted, allow the application to receive SMS and access the Internet respectively.

Self-declared Permissions. Applications can declare their own permissions

with specific protection levels in the manifest file to protect their components

(e.g., activity).

Content Provider Permissions. In addition to the self-declared permissions,

a content provider can protect its data with readPermission, writePermission

and path-permission. Developers can choose to require the requesting apps to
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obtain these permissions at install time. Alternatively they can delegate permis-

sions to some applications at runtime. For this purpose, they need to specify

grantUriPermission in the manifest file for the whole provider or a particular

set of paths. The per-URI permission delegation happens by setting certain at-

tributes in an Intent message. When the client app receives this intent, it can

access the specific set of data.

The Android permissions can have four protection levels:

• Normal permissions which are automatically granted to applications. Per-

missions by default are normal.

• Dangerous permissions are more sensitive and will be presented to users

for approval.

• Signature permissions require the app to have same signature as the app

that has declared the permission.

• Signature or System permissions are only designed for system applica-

tions and third-party apps cannot request them.
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Chapter 3

A Framework for Detection and

Exploitation of Vulnerabilities in

Android

In this chapter, we design and introduce a new analysis framework for analyzing

Android applications (APKs) to detect and exploit data injection vulnerabilities

on a large scale. Existing static analysis techniques alone are insufficient for con-

ducting such analysis as the complexity and size of applications limits the precision

of static analysis.

Our goal is not only to analyze for potential vulnerabilities but also to confirm

them. For this more ambitious goal, we want to be able to generate concrete

exploits which actually reach and also affect a sink, in other words, automatically

generate some form of zero-day attacks. This makes the task of understanding

and confirming a vulnerability significantly easier for security analysts or the app

developers. Also, we opt for an analysis framework which is independent of An-

droid versions and can analyze APKs built for any SDK. At the high level, finding

data injection vulnerabilities of an Android app can be reduced to a source to sink

reachability analysis. We assume that the source and sink method signatures are

given and design our analysis system based on the source-sink pair invocations

found in the program.

In general, static analysis techniques would give potential reachability and

existing techniques for Android apps [ARF+14, LLW+12, GZWJ12] are no differ-

ent. These analysis frameworks heavily use abstractions and often do not deal

with control dependencies. As a result, there can be many potential source-sink

flows detected with possibly many false positives (i.e., potential vulnerability is

signaled as a flow, even though it can never occur during execution). Moreover,
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these analysis systems are not adequate for exploit generation.

The random input generators in Android [MTN13, SR14] mainly focus on UI

events and are more suitable for stress testing. These tools might also gener-

ate redundant inputs and they are less likely to be useful for semantically-rich

vulnerabilities studied in this thesis.

Symbolic execution is an alternative analysis technique used to achieve higher

precision and generate inputs that cause each part of the program to execute. This

analysis technique faces the complementary problem of path explosion [CS13].

Another well-known challenge in symbolic execution is dealing with external code

such as libraries and frameworks [CDE08]. Even though existing dynamic analysis

systems [CDE08, GLM08] use heuristics to tame such problems while analyzing

possibly large programs, they might not be directly appropriate for our purposes.

The reason is the heuristics used by these works mainly aim for improving path

coverage. However, we need a targeted symbolic execution which optimizes the

exploration process to reach a specific sink method. Moreover, these systems may

not be suitable for the Android app ecosystem. That’s due to the huge number

of applications in App-stores which can still grow on a daily basis and each of

those applications might be replaced by new versions very frequently. Hence, our

analysis design should be suitable not only for large programs but also for a large

number of them. For this purpose, we offer a framework which achieves a good

balance between precision and efficiency.

In this work, we employ static analysis integrated with dynamic testing to

overcome the challenges of these individual techniques. Our analysis system is able

to automatically analyze APK files (we don’t need the source-code) to produce

working exploits (zero-days) for various forms of data injection vulnerabilities.

It consists of several stages which refine the results generated in the previous

stage and produce more precise results. Due to this flexible design, the security

analyst can optionally stop the analysis at each stage and use the results. For

instance, our analyzer performs a fast static symbolic execution at the third stage

to find vulnerabilities and potential exploits and reports a subset of the apps as

potentially vulnerable. The results from this phase can directly be used by the

security analysts to confirm the reports manually. Alternatively, it conducts an

automatic testing to confirm the exploits or improve the precision of the generated

inputs and potentially generating new exploits which are more accurate.

Our analysis framework shows a significant enhancement of the accuracy and

precision over the results generated by purely static state-of-the-art dataflow anal-

ysis. It constructs a witness exploit (e.g., Intent), to be subsequently used by the

security analysts or app-store managers to construct specific attack payloads for
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determining the severity of discovered vulnerabilities. We employ several optimiza-

tions to tame the classical problems in symbolic execution such as path explosion

and precision.

In summary, the contributions of this chapter are:

• A new analysis framework which is capable of generating zero-day exploits

for data injection vulnerabilities in Android apps.

• A staged analysis which combines static dataflow analysis and symbolic ex-

ecution with dynamic testing to analyze potentially large Android apps.

• Several optimizations that tame the path explosion and dealing with external

code in symbolic execution of Android apps.

• Comparison with a state-of-the-art static analysis and showing improvement

in precision and accuracy.

3.1 Motivating Example

Our aim is to design a system which both detects and also confirms data injec-

tion vulnerabilities by generating working exploits. We look for sinks defined as

sensitive/critical Android and Java APIs used to inject data which make the ap-

plication vulnerable. API calls which fetch data that are under the control of the

attacker are called sources.

Apart from the classical challenges in symbolic execution, the complexity of

the Android environment and apps raises additional practical challenges. Fig-

ure. 3.1 shows a simplification of the code of the WorkNet (kr.go.keis.worknet

version 3.1.0) app which is vulnerable to data injection vulnerabilities. In this ex-

ample, the source method is getIntent() and the security-critical sink methods

are WebView.loadUrl() which loads URLs in the browser implemented in the app

and Context.startActivity() which invokes other apps on the device.

The activity component that is triggered by the incoming malicious intent is

MainActivity. Unlike Java programs, Android apps do not have a main method.

When an intent invokes an activity, what happens is that the Android run-

time invokes the onCreate() which is part of the activity component lifecycle

or onNewIntent() callback method. Next, the getIntent() and onNewIntent()

methods obtain the Intent messages. Once an Intent is sent to an activity, any

invocation of the getIntent() method throughout the activity yields the same

Intent until setIntent(Intent) is called. Thus, the intent objects at Lines L9 and

L17 will refer to the same intent object.
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MyRunnable

run(){...
  L15: if(timeOutError(this.timeout))

my_activity.
onReceivedError();

  L16: loadUrlNow(this.url);}

public MyRunnable(String s3,int t1){
  L13: this.url = s3;
  L14: this.timeout = t1;}

MainActivity MyWebView

String url;  int timeout;

Object getProperty(String key, 
                        Object default){
  L9: Intent i2 = my_activity.getIntent();
  L10: return i2.getExtras().get(key);}

loadUrlNow(String s4){
  L11: if(s4.startsWith(“file://”) ||
     s4.startsWith(“javascript://”))
  L12: local_webview.loadUrl(s4);}

loadUrl(String s1,int n1){...
  L4: String s2 = (String)

getProperty("url", null);
  L5: if (s2 == null) loadUrlNow(s1,n1);
  L6: this.url = s2;
  L7: my_activity.
    runOnUiThread(new MyRunnable

          (s2,t1));
  L8: MyRunnable dummy = new 

MyRunnable(s2,t1);}

showWebPage(String s7,...){
  L20:  if((s7.startsWith(“file://”) ||

  !s7.equals(this.url)) 
  L21:  loadUrl(s7);
  L22: Intent i3 = new Intent("android.

intent.action.VIEW");
  L23: startActivity(i3.setData

(Uri.parse(s7)));}5

MainActivity my_activity;  String url;

  onReceivedError(String s5){
   L17: Intent i3 = getIntent();
   L18: String s6 = i3.

getStringExtra(“errorUrl”);
   L19: appview.
              showWebPage(s6,...);}   

onCreate(Bundle...){...
  L1: this.mUrl =

        “http://m.work.go.kr/”;
  L2: init();...}

init(){...
  L3:appview.
    loadUrl(this.mUrl,60000);...}

1

MyWebView appview;

2 4

3

6

Figure 3.1: The code snippet is chosen from the WorkNet (kr.go.keis.worknet
version 3.1.0) app which is vulnerable to data injection attacks. This app may
obtain parameters from the malicious intents. There are three classes separated
by dashed lines: MainActivity, MyWebView and MyRunnable. MainActivity is the
browsable activity, MyRunnable is an inner class of MainActivity and methods are
shown in boxes.

We explain three possible execution paths in Figure 3.1 where the MainActivity

loads malicious parameters from the malicious intent. These three execution paths

are explained using the steps shown in Figure 3.1:

1. The MainActivity is launched and onCreate() is invoked storing the default

URL in this.mUrl used by loadUrl() at L3.

2. However, the application does not load the default URL into the WebView

immediately. Instead, getProperty() is called which invokes getIntent() at

L9. This method looks for the “extra parameter” (explained in Section 2.1),

having the key "url". If this parameter exists in the intent, runOnUiThread()

at L7 is called which runs the MainActivity’s UI thread.

3. Next, MyRunnable class is instantiated storing the malicious URL in field

this.url and the run method is invoked by the runtime. Line L15 in

MyRunnable forks a thread (not shown) to check whether the network con-

nection times out within timeout limit. In case of timeout, it calls the

onReceivedError() in the MainActivity. This method looks for another

extra parameter with key "errorUrl" at L18.

4. If the string conditions at Line L20 are met, the malicious URL is eventually

loaded to the WebView (path 1 with sink 1, loadUrl, at Line L12).

5. Otherwise, the string will be incorporated into a new intent and the at-

tacker succeeds to confuse this app to start another app (path 2 with sink

2, startActivity, at Line L23).
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6. Alternatively the malicious URL obtained at Line L4 will eventually be

loaded into the WebView (path 3 with sink 1, loadUrl at Line L12).

In this example, there are 2 vulnerable sinks at Lines L12 and L23 with 3

paths to reach them. However, analyzing these vulnerabilities requires dealing

with challenges that are not currently dealt with satisfactorily in existing systems.

Existing systems such as FlowDroid have limitations in constructing the control

flow graph (CFG) from the Dalvik code due to incomplete models for Android-

specific asynchronous calls. In the example, we saw that the vulnerable flows

occur due to (nested) inner threads and runOnUiThread which changes execution

to the main UI thread of the activity. Moreover, typically static dataflow analysis

frameworks do not deal with conditional statements which may result in reporting

infeasible flows.

Our analysis not only aims for accuracy in finding the paths for the source-sink

flow but also needs to generate exploits (e.g., instances of intents) to confirm the

vulnerability. This means that symbolic reasoning of the string type and opera-

tions is needed (Lines L11, L20) in addition to the numeric operations. Exploit

generation for semantically-reach vulnerabilities is not currently supported in the

existing analysis systems for Android.

The operations on Intent parameters can be dependent on the intent filters

in the app manifest. Hence, in addition to the bytecode analysis, intent filters

from the app manifest need to be taken into account in the analysis and the corre-

sponding constraints should be used in the symbolic execution as pre-conditions.

This example also shows that getIntent() method may be called in various parts

of the component. All of these invocations should give the same Intent message.

In general, analysis needs to determine which intent getIntent() refers to. Fur-

thermore, the analysis needs to be object-sensitive to refer to the correct instance

of MyRunnable class. It should also be field-sensitive, since the malicious URL

is stored in the this.url field. Hence, symbolic execution should incorporate a

symbolic heap model.

We have observed that real Android applications often include application-level

(inter-procedural) cycles or call cycles, i.e., method calls in the callgraph form a

strongly connected component. For example, consider the code in Figure 3.2

which shows the vulnerable paths of the motivating example in Figure 3.1. In this

figure, the sink methods are startActivity() and loadUrl(). As you can see, this

application contains a call cycle (the call chain is a loop) which is painted in red.

Moreover, the IrrMethod() in this CFG embeds a long path that is irrelevant to

the analysis which might prevent us from reaching the program points that we

look for due to time and space limits.
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ma.onCreate()

ma.init()

appview.loadUrl()

appview.getProperty()

ma.getIntent()

appview.loadUrlNow()

local_webview.loadUrl(s4)

ma.runOnUiThread(mr)

MyRunnable mr = new MyRunnable(s2,t1)

mr.run()

mr.timeOutError(this.timeout)

ma.onReceivedError()

ma.getIntent()

appview.showWebPage()

startActivity(i3.setData(Uri.parse(s7))) 

ma.onResume()

ma.onPause()

ma.onStart()

ma.onStop()

ma.onDestroy()

ma.onNewIntent()p

p

p

p

MainActivity ma = new MainActivity();

p

p

ma.onRestart()

return

p

IrrMethod()

IrrMethod()

Figure 3.2: CFG for the motivating example in figure 3.1. The gray box contains
the lifecycle methods of the MainActivity. This graph contains a call cycle which
is painted in red. The IrrMethod() method represents irrelevant methods which
do not affect the data dependency analysis but contribute to long paths. The
dashed arrows are not original edges in the CFG. They summarize the methods
and immediately connect the callsite to the successor statement. The p statements
represent conditional statements (predicates).
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(2) Constructing Control FlowGraph
and Reachability Analysis

Specification

(3) Static Flow Refinemnet & 
Symbolic Execution

(4) Attack Validation and Concrete 
Value Propagation

Exploit

<source1 - sink1>
<source2 - sink2>
...

(1) Source-Sink Pair 
Identification

Figure 3.3: Analyzer Architecture

If these challenges are not handled properly, analysis might get stuck in one

path and miss the critical sinks which reside on other paths. Our goal in symbolic

execution is not to achieve full path coverage but to find certain classes of vulner-

abilities and exploiting specific sink methods. Therefore, our analysis has to be

equipped with ways to avoid traversing the irrelevant execution paths and reach

the particular program points of interest.

3.2 Approach and Design

Our analysis consists of several individual components that are put together to

detect and exploit data injection vulnerabilities in Android apps. In order to

maintain the balance between precision and efficiency, we have integrated the

static dataflow analysis, symbolic execution and dynamic testing. The initial

static dataflow analysis can be fast but less precise which is followed by static

symbolic execution, a more precise but slower phase. The final dynamic testing of

Android apps is the most time consuming phase in practice. Therefore, we try to

reduce the number of flows that have to be tested and confirmed by the dynamic

testing phase using the other components of our framework.

The core analysis technique used by our system is symbolic execution which

enables us to generate an attack exploit. To understand the importance of sym-

bolic execution for generating attack exploits, we have randomly selected 200 apps

from our data set which are reported by our analyzer to be vulnerable to data in-

jection attacks. Figure 3.4-(a) shows that execution paths triggered by intents

often contain constraints on variables that have data dependency on them. On

average, the paths that trigger the vulnerabilities in these apps have 19 conditional

statements with data dependency on inputs and 32% of them have more than 20

data dependent conditional statements. Therefore, simply fuzzing with random

inputs might result in many false positives. A new efficient approach is required

which is scalable and takes the advantage of accurate techniques such as symbolic

execution.

Note that the Android framework offers a very large API to applications con-
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Figure 3.4: We have randomly chosen 200 applications vulnerable to data injection
attacks. (a) Shows the number of conditional statements with data dependency on
input on paths that reach data injection vulnerabilities. (b) Compares the number
of source-sink pairs that analysis has to iterate over with (FlowDroid Pairs) and
without (Total Pairs) FlowDroid.

sisting of thousands of methods. Hence, obtaining a complete control flow graph

(CFG) of the application is challenging in principle and it also requires the anal-

ysis of the framework. Despite the progress in static analysis techniques, often

the CFG constructed for real applications is incomplete. Even though these tech-

niques [ARF+14, LLW+12, GZWJ12] are meant to be conservative through over-

approximations performed in the analysis, unfortunately, in practice some of the

flows are missed as explained in Section 3.1. We try to alleviate these problems

by combining static analysis with dynamic testing and modeling some parts of the

framework.

One well-known barrier in symbolic execution is path explosion. In order

to “tame the path explosion problem”, we have developed techniques which are

explained in this chapter: (1) a search heuristic which chooses the next symbolic

state based on its distance from a sink method; (2) the use of bounded recursion

and recognizing cycles; (3) a node visiting strategy to avoid long and expensive

execution paths; (4) merging symbolic states using our search heuristic.
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Initial Setup of the Framework

Our implementation extends the Soot analysis framework [LBHD11] which pro-

vides a three-address intermediate representation (Jimple IR) for analyzing Java

and Android applications. This framework is considered to be a start-of-the-art

framework for analyzing Android apps [GKP+15]. The term variable usually used

in Java is called register in Jimple and Dalvik VM. We use variables and registers

interchangeably in this chapter.

Initial Control Flow Graph. The initial CFG used by our analysis is the

inter-procedural control flow graph in Soot [LBHD11] constructed based on the

callgraph created by SPARK [LH03]. As explained before, Android apps don’t

have a single main method. Instead, each Android component contains several

callback methods (e.g., onCreate()) that are invoked by the Android framework

in a special order. FlowDroid [ARF+14] models the Android component lifecycle,

in the form of a dummy main method. We use the same lifecycle model in our

analysis. The gray component in Figure 3.2 depicts a dummy main method used

by our system. We remark that the initial model created by FlowDroid does not

call the onNewIntent() as part of the activity lifecycle. Instead, this method is

called as a callback if FlowDroid is configured in callback mode.

SPARK builds the callgraph starting from the dummy main method. It con-

ducts a field sensitive points-to analysis to build the callgraph. Given a set of

entry points, it starts with a Class Hierarchy Analysis (CHA) [DGC95] to find the

reachable methods from which it creates the pointer assignment graph. Then it

simplifies the pointer assignment graph and performs points-to propagation. Even

though SPARK uses CHA initially, it creates the final graph on-the-fly at solving

time by removing all the initial inter-procedural edges and only adding the edges

as the points-to propagation continues.

Our analyzer works in phases as shown in Figure 3.3: (1) the first step iden-

tifies the pairs of source and sink program points and creates the initial CFG;

(2) step 2 takes the source-sink pairs produced by the previous step and performs

a sink reachability analysis which is utilized as a pre-computation for the search

heuristic in the next step. Also, if our analyzer finds any edges which reflect miss-

ing execution paths at this step, it adds them to the initial control flow graph;

(3) the third step performs bounded static symbolic execution to generate inputs

which will be incorporated into the final exploits; (4) the runtime executor con-

structs the final exploits (e.g., intents) and runs them to log the execution trace

for further exploit validation. Additionally, the feedback from phase 4 to phase 3

in Figure 3.3 enables our vulnerability detection system to incorporate the con-
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crete values obtained from the runtime execution to the path constraints which

are solved again by the solver to possibly assist the symbolic execution to generate

more precise exploits. In what follows, we describe each of these phases.

3.3 Source-Sink Pair Identification

Our analysis framework starts with a specification provided by the security ana-

lyst. The specification contains lists of source and sink method signatures as well

as attack settings for a particular attack model. In the first step, we generate pairs

of source and sink program points for the given specification.

Definition 3.1. Method Signature. Two of the components of a method declara-

tion comprise the method signature – the method’s name and the parameter types.

“<android.app.Activity: android.content.Intent getIntent()>” is a

sample source method signature. It fetches the Intent objects and provides data in-

puts to the app. “<com.android.webview.chromium.WebViewChromium: void

loadUrl(java.lang.String)>” is an example sink method signature. It loads

URLs in the in-app browser.

There are two design choices for selecting these source and sink program points.

In the first approach, we can locate all possible program points in the initial

CFG, simply by comparing the method signatures in the source code for reachable

methods. Since the CFG created by Soot [LBHD11] is constructed in a way that

it only includes methods reachable by the entry points, these source and sink

program points are a subset of all source and sink program points in the whole

application source code.

Alternatively, we can use an existing dataflow analysis system like Flow-

Droid [ARF+14] to collect source-sink pairs which have data dependency on in-

puts. Figure 3.4-(b) compares the number of source-sink pairs that the symbolic

executor has to iterate over using each of these two approaches. This figure shows

the results for the same 200 applications randomly selected for Figure 3.4-(a).

The total number of source-sink pairs has been counted by comparing the method

signatures in the source code for reachable methods. The FlowDroid source-sink

pairs are those reported by FlowDroid which are potentially vulnerable to injec-

tion attacks using taint analysis. As you can see, there is a big difference between

these two approaches, using FlowDroid we need to perform the analysis for fewer

source-sink pairs, thereby decreasing the analysis time.

As discussed in Section 3.8.1, FlowDroid is a static state-of-the-art analyzer for

Android built upon Soot [LBHD11]. Even though it is not path-sensitive and the
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paths generated by this framework might not be the execution paths, it scales well.

The reason is that it is based on the Inter-procedural Finite Distributive Subset

(IFDS) algorithm [RHS95] which has worst-case complexity O(ED3) where D

is the set of dataflow facts and E is the number of control flow edges of the

program. IFDS can be applied to problems that have finite dataflow facts and the

meet operation is distributive. These two properties allow creating representations

which summarize the effects of a procedure. Such summarizations have helped the

IFDS framework to handle recursions efficiently.

FlowDroid uses the CFG explained above to find the pairs of source and sink

program points using dataflow analysis and also generates a set of witness flows for

the detected tainted sinks. The initial dataflow analysis done by FlowDroid has to

be more conservative and possibly not missing any potential vulnerability. It has

a configuration setting that can be adjusted for the analysis. We have configured

FlowDroid with a conservative setting. For instance, it is possible to choose the

flow-sensitivity of the backward alias search and conservatively, we choose it to be

flow-insensitive.1

In the next step, we utilize these source-sink pairs in the reachability analysis

and refine the initial CFG constructed by Soot.

3.4 Control Flow Graph Construction & Reach-

ability Analysis

The less precise dataflow analysis in the previous step might have many false

positives and the same constructed CFG might miss edges (informally, we call

them as gaps). This step is essentially a preparation for the next phase where we

perform an accurate on-demand refinement of the analysis and symbolic execution.

This step has two objectives: (i) to refine the CFG by filling in the gaps as

much as possible; (ii) and to find potential vulnerable regions in the CFG using

reachability analysis. This is used to tame the state explosion problems in the

symbolic execution phase.

If the CFG traversal in symbolic execution is only based on limited depth-

first search, the long paths on the call cycle either cause the analysis to miss the

sinks or results in path explosion. Therefore, if we perform a pre-analysis to mark

the irrelevant parts of the execution paths and prevent the symbolic execution

from examining them, analysis will scale better. The IrrMethod() in Figure 3.2

1The authors of FlowDroid also recommend to make the alias search flow-insensitive for large
applications [FDG].
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represents these irrelevant parts of the paths. Moreover, since the sources and

sinks are known to our system and analysis has to be conducted per source-sink

pairs, if we can detect the irrelevant pairs using a less expensive analysis and do

the more-expensive symbolic execution for the rest, the efficiency will improve.

3.4.1 Control Flow Graph Construction

The current implementation of SPARK partly supports Thread and AsyncTask

but it is not complete and precise enough. Android provides more mecha-

nisms to support threads: runOnUiThread(), Handler, Executor.execute(Runnable

command), ThreadPoolExecutor.execute(Runnable command) FutureTask. Each of

these mechanisms might have several methods to execute a thread. For example,

Handler is an Android class which provides post(Runnable), postAtTime(Runnable,

long), postAtFrontOfQueue(Runnable), and postDelayed(Runnable,long) meth-

ods to start threads. Such thread mechanisms are not supported in the current

version of SPARK.

On the other hand, AsyncTask, a helper class for Thread and Handler, is partly

supported in SPARK. This Android class has a special lifecycle that needs to be

modeled.

Since all the static analysis phases are dependent on the CFG, it is important

to make it as precise and complete as possible. In Figure 3.1, a node for method

run in MyRunnable class has to be added because the CFG misses the edge from

L7 to this method. The class object for the MyRunnable class is resolved using a

backward search similar to the copy constant search explained in Section 3.5.2.

We choose to look for such gaps in the CFG and fill them to decrease the number

of false negatives.

While analyzing the Android apps in our dataset,2 we have detected some

edges missing due to failure in properly handling cast operations. For these cases,

the methods belonging to the class casted by the cast operation are not reachable

in the callgraph. Among the other missing edges found in our refinement phase,

some are due to the improper handling of inner classes. Our analyzer successfully

deals with such cases and adds the missing edges to the CFG.

Given a source method, Sc, and a sink method, Sk, our analysis traverses the

CFG with Sc being the starting node. We traverse the graph with an optimized

depth-first search for more coverage and less memory space consumption. If a

new sink is detected during this phase, it is added to the source-sink pairs to be

examined later by the symbolic execution. In Section 3.7, we show that accurately

2Our dataset is a collection of Android apps that we analyze to detect vulnerabilities.
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handling threads helped us to find interesting vulnerabilities that could not be

detected by an existing state-of-the-art analyzer [ARF+14].

Our analysis needs to find the possible targets of the calls which are not reach-

able in the original CFG due to the missing edges discussed before. In Java and

Android applications (we assess the parts written in Java), a group of methods can

be overridden by inherited classes (also called virtual methods). Java also provides

interfaces as types of reference variables. Any instance of a class that implements

the interface can be assigned to such reference variables. Therefore, there might

be more than one implementation for methods of an interface. In order to find

the correct targets of such methods while traversing the parts of the CFG which

are added by our analysis, we employ a backward use-def chain analysis to find

the allocation site of the object and use its type as target.

The backward use-def chain analysis is 1callsite+1object sensitive. Note that

in a context insensitive call graph traversal, results computed for a method is used

for all of its callsites. Traditionally context sensitivity has been a standard vehicle

to increase precision. There are many flavors to context sensitivity including call-

site, object-based and type-based analyses. 1callsite+1object context sensitivity

means that the analysis qualifies each method invocation with the receiver object

of the method (i.e., 1object) and the callsite of the method where the receiver

object is allocated (i.e., 1callsite).

3.4.2 Reachability Analysis

The search heuristic used by our symbolic execution is based on the distance

of a program point from a given sink program point. The reachability analysis

explained in this section computes this information to be utilized subsequently by

the symbolic executor. Symbolic executors may not explore all program paths, and

hence they often make heuristic choices to prioritize path exploration. Our work

focuses on finding paths that reach certain program points, whereas most prior

work has focused on finding paths to increase code coverage [GKS05, CGP+06,

CDE08].

While refining the CFG, a reachability analysis is also performed simultane-

ously for the selected sink program points. We define the program statement B is

reachable from the program statement A if there exists a path in the CFG from

A to B. Each statement in the CFG has a unique corresponding program point.

When analysis reaches a method call, first it checks if the corresponding edge

exists in the CFG. If this edge is not present, it attempts to detect and add the

edge as explained before. Next, it examines the reachability and distance of the
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method to the sink, Sk. The reachability analysis in this phase is 1callsite+1object

context sensitive to compute distances more precisely.

The reachability analysis traverses the CFG via a limited depth-first search. If

the callsite for a method invocation statement in a certain context is visited again,

the previous sink reachability result is reused and the method is not traversed

again. This strategy is used to handle recursive calls.

Another problem in the analysis is that Sc can be invoked anywhere in the

program. Therefore, the caller of the method where Sc resides might not be known

(e.g., Line L9 in Figure 3.1). Our analysis is conservative, thus, it returns to all

possible callsites to continue the analysis. Note that a path might have more than

one sink. In that case, the analysis continues until it reaches the Sk sink.

3.5 Symbolic Execution and Static Flow Refine-

ment

The initial dataflow analysis in the first step might produce a large number of flows,

many of which are false positives. Therefore, a strategy is required to reduce the

number of false positive flows. On the other hand, static analysis is generally not

sufficient to confirm vulnerabilities. Rather, concrete execution is needed for such

confirmation. However, concrete execution requires input, in the form of an attack

(e.g., intent). As discussed in Section 3.2, each phase in our analysis framework

improves the precision of the results generated by their prior phases.

We employ a bounded symbolic execution [Kin76] commonly used for auto-

mated test generation to help in generating the input along with a reaching def-

inition analysis. The final generated exploit is the result of a combination of the

symbolic execution and validation phases. Our symbolic executor does not require

any initial inputs; there are optimizations to improve the scalability and reduce

the number of paths that need to be explored by utilizing the sink reachability

analysis conducted in the previous step.

At the high level, our analyzer achieves an initial reduction by removing the

infeasible paths using symbolic execution. A path is feasible if there exists a

program input for which the path is traversed during program execution, otherwise

the path is infeasible [Kor90]. So we immediately remove the infeasible paths.

Symbolic executor runs a program on symbolic input which is initially allowed

to be unconstrained. It substitutes program inputs with symbolic values, hence

operations manipulate symbolic values rather than concrete values. When pro-

gram execution reaches a conditional statement which is dependent on a symbolic
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value, the system can follow both branches. On each path, it maintains a set of

constraints, called path condition, which must hold on the execution of that path.

When a path terminates or a sink statement is reached, the path condition is sent

to an SMT solver to generate an input which triggers the same path at runtime (if

the program is deterministic). The inter-procedural analysis in our system handles

three kinds of edges: call edge, return edge and normal edge.

Along with the symbolic execution, we perform a reaching definition analy-

sis [ASU86] to be able to track the variables which have data dependency on the

input (source) variables.

Definition 3.2. Data dependency. We say statement s2 is data dependent on

statement s1 if s1 writes to the memory that s2 later reads.

Reaching definition is a dataflow analysis which computes all the definition

statements which may reach a given program point. Given a variable, we use the

computed use-def chains to determine if it is dependent on the input variables.

Our reaching definition analysis is conservative. For instance, if analysis reaches a

library method which is not available statically and the arguments are dependent

on inputs, we assume that the output is also dependent on inputs.

Our static symbolic execution executes programs by keeping track of symbolic

states and at each program statement, it transitions from a symbolic state to

another.

Definition 3.3.
∑

. A symbolic state
∑

is defined as a tuple (s, φ, δ, H, S, η).

Given a symbolic state
∑

, a transition step gives us a new symbolic state by

translating its program statement s to a symbolic expression. If s is a conditional

statement and it is dependent on symbolic variables, a constraint is derived and

added to the path condition φ. Hence, φ records which conditional branches

have been chosen so far. Each symbolic state maintains a mapping δ between

local variables of the currently running method, i.e., variables on the call stack,

and symbolic expressions. Once s is translated, δ is updated with the translated

symbolic expression if a local variable is modified. Otherwise, if s is a store

operation to an instance or static field, symbolic state’s heap H or S are updated

respectively.

Static fields are referenced by the class name where they are declared and S
maps class names to static fields. However, instance fields are defined for a specific

class object. Hence, instance variables have to be distinguished based on the class

object where they are invoked. We distinguish objects using unique identifiers. H
maps each object to its instance fields. Finally, η is the cache containing the list
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of statements executed on the path which are data dependent on inputs which is

kept for improving the performance.

Our symbolic analysis applies String, Integer and Boolean theories. We also

handle equality constraints for object references using their unique identifiers.

Algorithm 1 gives the simplified pseudocode for the main loop of our symbolic

executor and further details are provided in Section 3.5.1. Analysis picks a source-

sink pair, Sc-Sk, starts from the source statement Sc and symbolically executes the

program until it reaches the sink, Sk. First, an initial state
∑

is created and s is

set to Sc. In the beginning, φ, H, S and δ are all empty. The initial symbolic state

is added to a worklist. At each iteration, the symbolic executor chooses the next

symbolic state from the worklist to analyze. It calls select to choose a symbolic

state from the worklist based on the search heuristic which is explained shortly.

If s is a conditional, fork is called which derives the constraint C and queries the

SMT solver to decide which branch must be taken next. A new symbolic state

is forked for a branch if it is satisfiable. If C is dependent on symbolic variables

(using the reaching definition analysis results), it is concatenated to φ and the SMT

solver is queried. If s is not conditional, the symbolic executor runs translate to

execute s and updates H, S or δ if the instruction has any side-effect. Finally the

new symbolic states are added to the worklist and execution continues until the

worklist is empty or the sink statement which we look for is reached.

Algorithm 1 Symbolic Executor’s Main Loop
1: Sk = a sink statement
2: while worklist 6= ∅ do
3:

∑
= select(s, worklist, Sk)

4: if sink is found then
5: exit and analyze next source-sink pair
6: end if
7: if

∑
.s is conditional then

8: fork(
∑

) and add to worklist
9: else
10: translate(

∑
) and add to worklist

11: end if
12: end while

3.5.1 Mitigating the Path Explosion Problem

As we have discussed before, if a conditional statement has more than one feasible

branch, the symbolic executor has to choose which branch to explore first (select

at Line 3 in Algorithm 1). We need to choose the selection strategy in a way to be

able to reach the security critical statements that we are interested in successfully

in practice. Moreover, the number of feasible paths may grow exponentially as

the symbolic execution forks symbolic states for all feasible paths. In this section,
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we introduce strategies that we use to reach the security critical statements and

to mitigate the path explosion problem.

Search Heuristic

The search strategies of a symbolic executor can play an important role in alleviat-

ing the path explosion problems. For instance, SAGE [GLM08] uses a generational

search strategy and KLEE [CDE08] guides the exploration towards the path clos-

est from an undiscovered instruction which yields more path coverage. Unlike

these works, our objective is not to increase path coverage but to reach a specific

program point.

Algorithm 2 shows how our search heuristic picks a symbolic state. If the

current state’s program statement is not a control statement (i.e., if , goto, switch

or call statement), it picks the last state added to the worklist. Otherwise, least

or randomReachable are called randomly. Each program statement has a distance

from a given sink. least selects the symbolic state whose program statement has

the shortest distance from the Sk. The distances between program statements

and sinks in the control flow graph are computed in the sink reachability phase

explained in Section 3.4.

Alternatively, randomReachable chooses the next branch only if it leads to

the Sk. If more than one branch leads to the Sk, one of them is chosen randomly.

Algorithm 2 Search Heuristic used by Symbolic Executor
1: function select(s, worklist, Sk)
2: if s is a control statement then
3:

∑
= (least(worklist, Sk) or randomReachable(worklist, Sk))

4: return
∑

5: else
6:

∑
= pop(worklist)

7: return
∑

8: end if
9: end function

Merging States

We use state merging to decrease the number of paths that needs to be explored

by the symbolic executor. Similar to the state merging strategies in [KKBC12],

our state merging is based on our search heuristic, thereby not interfering with it.

We choose to merge states at a branching node if the branches are reachable to a

given sink.

Our analysis employs “Phi-node folding” or “If conversion” [CCF03] which

statically merges program paths when branches form a diamond pattern in the

control flow graph. Instead of branching for both true and false cases, the whole
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Figure 3.5: The dashed boxes contain the CFG of a method. (a) Immediate
post-dominator (ImPodm) inside the method is marked as a merge point. (b) If
method does not contain an immediate post-dominator but both branches of the
If statement are reachable to the sink statement, we create a dummy immediate
post-dominator.

diamond pattern is replaced by a single basic block, thereby, reducing the number

of paths.

In addition to the classic state merging through Phi-node folding, we utilize

the sink reachability results explained in Section 3.4 to perform a special form of

state merging.

When analysis reaches an If statement, the sink reachability result is examined

for the true and false branches. If none of the branches are reachable to the Sk,

no new job will be added to the worklist and the next path will be traversed. If

only one of the branches is reachable, that branch will be taken. Finally, if both

branches are reachable to the Sk, we employ the following optimization.

First, we search for the ImPodm inside the method.

Definition 3.4. ImPodm (immediate post-dominator). Given a control flow graph

G, node b is said to postdominate node a if every path from a to the END node

(the exit node) of G contains b. If a → b is an edge in G, then the ImPodm of a

postdominates b.

Based on the CFG of a method, if analysis finds an ImPodm inside the method,

a new pending merge state will be added to the merge stack M. Figure 3.5-(a)

shows the CFG of a method (enclosed in the dashed box) which contains an

ImPodm. In this figure the condition for the If statement is referred to as p

(i.e., predicate) and the sink reachability result for this node is expressed by a
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vector with two elements: the left element refers to the left branch and the right

element refers to the right branch. In this method, both of the elements have sink

reachability distance < ∞ which means that both of the left and right branches

are reachable to the sink Sk.

Another possible scenario is presented in Figure 3.5-(b). As you can see, even

though the sink reachability result for the If statement shows that both of the left

and right branches are reachable to Sk, the method does not contain any ImPodm.

Note that if there is no ImPodm inside the method, even though both of the

branches eventually reach the same node (Sk), path merging is not possible. To

avoid these distinct paths forked for each branch, we introduce a dummy ImPodm:

Definition 3.5. Dummy ImPodm (dummy immediate post-dominator). Given a

control flow graph G, node a is a conditional statement whose both branches are

reachable to the sink Sk. A new node b is created such that every path from a to

all of the END nodes of G pass through b. Furthermore, b is an ImPodm of node

a.

Now we explain how these dummy ImPodms are added and handled. (1) we

add a merge state to the merge stack when execution reaches an always sink

reachable conditional statement and the merge point can be any exit statement of

the method. An exit statement is a program point where execution exits a method

(END nodes in Figure 3.5); (2) when execution reaches any exit statement, it does

not exit the method. Instead, if merge stack (M) contains a pending merge job,

the merge job is processed. If the merge job belongs to a conditional statement

which has unexplored path, the unexplored path is added to the worklist; (3)

finally, when all feasible paths inside the method are traversed and execution

is exiting the method, the states at all of the exit statements which have data

dependency on inputs and the constraints for the class fields are merged and there

will be only 1 merged state for all exist statements. In order to choose the program

statement for this dummy ImPodm, we also create a dummy exit statement.

After merging states, there is only one formula with disjunctions in the path

condition. If variables that appear on different paths have different content, a new

symbolic variable is added to the symbolic variable pool, σ, and the disjunction

of the values is added to the path formula, φ. Merging the values of two variables

requires a form of type checking, i.e., the types of the two variables should match

each other. Otherwise, the solver produces error when it solves the generated

constraint. Merging two variables are allowed if they have similar types3 or one is

NULL.

3These types have to be supported by the solver.
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Loops, Recursions and Cycles

Symbolic execution of code containing loop, recursion or call cycles may result in

infinite number of paths if the termination condition is not known to the analysis.

In practice, one needs to put a limit on the search, e.g., a timeout or a limit on

the number of paths, loop iterations or exploration depth.

Our analysis detects loops inside methods [ASU86] and conducts a bounded

symbolic execution (i.e., runs loops for m times). We also detect the inter-

procedural cycles (call cycles) by finding the strongly connected components

in the callgraph. Similar to the loops, we employ a bounded symbolic execution

for call cycles (i.e., iterating for n times).

Node Visiting Strategies

If a program point is visited in the same context (i.e., the same callsite) for k times

and the path condition has not changed, the corresponding symbolic state is not

further explored.

3.5.2 Further Optimizations

To enable detection and exploitation for vulnerabilities in Android apps on a large

scale, we employ further optimizations which improve efficiency and precision.

These optimizations are performed at different stages of the analysis explained

earlier in this chapter.

Reusing DataFlow Analysis Results

In section 3.5, we explained that a combination of symbolic execution and reaching

definitions analysis is used to accurately generate inputs which are subsequently

embedded in zero-day exploits. Since the path-sensitive analysis in this phase is

expensive, we do the following optimization to avoid re-computations as much as

possible.

Our analysis design differs from the classical reaching definitions analysis by

reusing the reaching definition results at branching nodes. Symbolic states store

the pointers to data dependent statements (η cache in Definition 3.3). This allows

us to reuse the computed results in branching statements. Otherwise the analysis

has to recompute the use-def chains from the beginning of the path to maintain the

path-sensitivity when a new branch is taken. This design enables us to efficiently

check whether the η part of the symbolic state contains a definition present on

use-def chains.
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Copy Constant Search

In an execution path, there may be variables whose values are used but not re-

solved. We employ an (on demand) inter-procedural copy constant search to

increase the chance of generating more accurate inputs in symbolic execution.

In general, constant propagation is conducted as follows: given statement s1:

a = c where a is constant and s2: t = a op b, if statement s1 reaches s2 and no

other definition of a reaches s2, then t is replaced by c op b.

However, we query for copy constants in a partial backward search similar to

the demand-driven approach in [Due96]. If analysis reaches a variable whose value

is dependent on the intent filters in the manifest file, the value is obtained from

the manifest file. We have modeled the Intent class to map the methods of this

class to the elements of intent filters in the manifest file.

The analysis starts backward from statement s and only relevant information

is collected (e.g., if the variable we are interested in is affected). The search

terminates as soon as it finds a solution (i.e., a copy constant for the variable).

If a method invocation is reached on the path, the search continues from the

exit statement of the method and the problem is replaced by the new problem

for the return variable in the exit statement. In case the unresolved variable

has dependency on method arguments or class fields, analysis continues from the

definition statement outside the method recursively.

The inter-procedural copy constant search approach explained above leads to

the following over-approximations: (i) if the variable is a method parameter, we

consider all possible callers of the method. Therefore, the result might be a set

of possible values; (ii) if the variable is a class field, we do an over-approximation

by considering all of the objects that the field variable points to using the points-

to analysis in the SPARK [LH03]. Note that if two values are resolved due to

conditional statements, the intersection of the two values is reported.

In Section 3.4, we mentioned that type resolution is required to resolve methods

and more specifically handle interfaces and inheritance for abstract and other Java

classes. Our system resolves class types using a search similar to the copy constant

search described in this section. The difference is that the search terminates if a

new statement is reached (i.e., the class object is instantiated).

Reusing Cached Results for Identical Symbolic States

When the analyzer reaches a sink statement and sends the path conditions to

the SMT solver, we cache the results. If the analysis reaches a particular sink

statement with the same symbolic state, this optimization avoids sending queries
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to the solver and reuses the already cached results.

3.5.3 Interaction with the Environment

Symbolic execution is not always able to handle programs completely. Static

symbolic execution usually does not scale to analyze libraries and frameworks.

Also, some parts of the program might be too complex, might contain native code

which is not supported by our symbolic executor or they may only be available

at runtime. Whenever symbolic execution is not possible, models can be used to

approximate the behavior of the unavailable code. Another way is to use concrete

values to simplify constraints and carry on the analysis with a simplified par-

tial symbolic execution [CDE08]. However, this might result in over-constraining

[CKC11] and interesting paths might be lost. We use models for some libraries

and use symbolic variables for the rest. Once we get the concrete execution trace

by running the generated exploit, we obtain the concrete values and try to improve

the path constraints.

Our analysis is a hybrid of pure static symbolic execution and dynamic testing.

We have modeled the frequently used library functions that are necessary for

generating precise exploits for data injection attacks. android.content.Intent,

java.lang.String, java.lang.StringBuffer are examples of such classes and

symbolic reasoning for them is crucial. For the rest of the libraries, we use a

symbolic variable for the return value of external method. Once the initial inputs

are tested by the dynamic executor, the concrete values are obtained from the

concrete execution path and we try to replace the concrete values with the symbolic

variables used for the external method to generate more accurate inputs if possible.

Modeling Libraries

String Classes. The library classes which implement the semantics of strings

(e.g., java.lang.String and java.lang.StringBuffer) are modeled using SMT

formulas. Since the SMT solver used by our system supports the String theory,

most of the methods of these libraries can directly be translated to SMT formulas

(see Appendix A).

Container Classes. Our analysis uses models for container libraries (e.g.,

android.content.ContentValues, java.util.List) to provide more precision.

The android.content.ContentValues class is used to map a set of keys (col-

umn names) to values. This class is usually used in the database APIs. Our

analysis generates a unique identifier for each ContentValues object and stores

ContentValues column name and values in the field map for the ContentValues
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object. If the key parameters are not resolved by the symbolic execution, we use

the copy constant search, explained in 3.5.2. If the analysis fails to resolve the key

names, an arbitrary string value is generated. The containsKey() method in this

class captures the constraints related to the key parameters of the ContentValues.

In this way, we are able to trace the values stored in these objects more precisely.

We have modeled other Java container classes such as java.util.List in a similar

way.

Intents. Our model for the Intent objects is similar to the one used for con-

tainer classes. The symbolic model for Intents has several fields such as action,

category, Extras. During the analysis, we define Intent methods as entry meth-

ods if the intent is the source input. The methods of the Intent class are also

mapped to the elements of the intent filters in the manifest file. For instance,

when analysis reaches the Intent.getAction() method, the analyzer parses the

manifest file and finds all possible actions registered for the intent object and

adds equality conditions to the path condition. The data fields of Intent class

which is a URI is not precisely modeled in this chapter. Therefore, if the fields of

the URI cannot be determined using the manifest file, we try to track the values

returned by the URI methods (e.g., Uri.getPath()) by generating unknown values

explained before and follow their data dependencies on the inputs conservatively.

Bundle. Bundle is a class used to set extra parameters of intents. For instance,

Intent.getStringExtra(String key) returns the extras in the Bundle field of an

intent whose type is string and is mapped to key. This class behaves similar to the

other container classes. We need to find keys corresponding to each input parame-

ter to find the values of the arguments of API calls such as getStringExtra(String

name). If the analysis fails to resolve the key names, an arbitrary string value is

generated.

On-demand support for arrays. Handling arrays in program analysis is usually

expensive. In practice, precision is usually sacrificed for the performance and the

indices of these data structures are not distinguished in the analysis. We take

a conservative approach and for most of the cases avoid tracking the individual

elements of arrays. However, if the source variables in the analysis have array

types (e.g., some of the parameters of source methods in the public and private

database attacks studied in Chapter 5 have array types), we keep track of the

individual elements of the arrays.

Threads. We handle different ways provided by Android to use threads and

also support binding arguments for them. Usually threads are initialized with

arguments which are stored in class fields. Later, these class fields are queried in

the body of the run methods. Keeping track of these objects is possible using our
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field-sensitive analysis. There are also more complicated thread models used in

Android apps for which an obvious one-to-one mapping between actual parameters

at callsite and formal parameters of the method does not exist. As an example,

the argument of the AsyncTask.onPostExecute(Result) is the return value of

the AsyncTask.doInBackground(Params...). We also handle such cases.

Once we get the abstract description for all the sinks and external methods as

constraints (SMT formulas), we solve them and check the feasibility of each path.

For feasible paths, a solution to the constraints is a witness which can be used

to construct an exploit to drive the execution down this path. These exploits are

used at the last step to dynamically execute the program. We employ the CVC4

SMT solver [LRT+14] which supports String, Integer and Boolean constraints to

solve the generated formula.

Once the solver has generated values for the symbolic variables, we use them to

instantiate an exploit. In order to incorporate the generated inputs to the exploit,

analysis should resolve other pieces of information (e.g., the key-value mappings)

in the exploit (explained shortly).

3.6 Attack Validation and Concrete Value Prop-

agation

Even though the symbolic execution in the previous step can remove some of

false positives, it is not sufficient for confirming attacks. The analyzer aims to

automatically generate exploits (e.g., intents) for the data injection vulnerabilities.

The generated exploit might need additional data which correlate to the intent

filter elements in the manifest file. For example, an exploit in the form of an intent

should be configured (e.g., using the action and data element of the intent filter

of the target component) to trigger a specific source method in the victim app.

Once we have all the necessary inputs for the source-sink flows and the intent

filter specifications for the target component, the system puts all of these elements

together to generate working attack exploits. Note that due to the state merging

in the previous section, a group of paths generated in the symbolic execution phase

might contribute to a single exploit.

There are several possible ways to send data to an application. Some applica-

tions communicate with other apps by directly calling their exposed APIs (e.g.,

public database attacks in Chapter 5), while some others send Intent messages

(private database attacks in Chapter 5 and W2AI attacks in Chapter 4). Depend-

ing on the attack model, the actual exploit may follow a different structure, e.g.,
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malware app or intent hyperlink. In Chapter 4 and 5 we show how the analyzer is

customized to generate exploits for the W2AI and database attacks respectively.

Attack Validation. The exploit generated in the static phase are used by the

dynamic executor explained below to validate whether they exploit the sink meth-

ods. In general, an exploit is considered a true positive exploit if it satisfies the

following conditions: (i) causes the execution to reach a sink program point; (ii)

the sink program point has a data dependency on the malicious exploit, hence

controllable by the attacker; (iii) and the triggered execution path conforms to

the attack policy (e.g., the security analyst can specify certain methods which

should be present on the execution path).

The generated exploit can guide the execution to reach a critical sink method.

For some sink methods, this might be enough for launching an attack. However,

some sink methods are only exploited if they are tainted by attacker inputs. We

call the latter data injection attacks. The attack policy consists of rules for every

class of vulnerability. Depending on the category of the sink method reached

on the execution trace, the attack validation component applies different policy

checks. The validator component invokes exploits and logs the execution traces.

After testing the generated exploits (e.g., executing the app with an intent),

two possible scenarios can happen: (1) the sink method is invoked at runtime

and the generated input is accurate enough to cause the desired attack. In this

case, the validator component reports the generated exploit as a proof-of-concept

exploit; (2) the sink method is invoked but it is not exploitable. In this case, first

we use the concrete values obtained from the runtime execution path and assign

them to the variables of interest whose values were unknown at the symbolic

execution phase. The new path formula is passed to the solver again and our

system generates a new exploit. This procedure continues until exploits do not

change any more (i.e., analysis reaches a fixed point).

The validation component has to verify whether the generated exploit results

lead to true positive attacks. This decision is based on the execution trace, concrete

values and the attack policies provided by the security analyst. First we verify

whether the sink method is reached on the execution trace.We should also check

whether the concrete values of the sink method parameters are directly affected

by the generated exploit fields. For this purpose, we compare the values resolved

for the sink method parameters in the symbolic execution phase with the values

observed after running the exploit. We also check for other methods (if provided

in the policy) on the execution path that should exist so that the exploit is not

prevented from occurring. After confirming the sink method to be exploitable, the

exploit will be reported to be true positive.
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Note that generating a working exploit cannot always be fully automatic. As

an example, our system may conclude that the exploit should be

"intent:///A.html#Intent;scheme:myapp;action=android.intent.action.VIEW

;end"

and the vulnerable sink is deleteFile(‘‘A.html’’). This means that the path

segment of the URI should point to the html file which will be deleted by the

deleteFile method. In this generated intent hyperlink, A denotes an uncon-

strained string. The security analyst has to replace A.html with an existing path

on the victim device and the validator verifies if this input taints the sink method.

In order to run the generated inputs and obtain the execution trace, we chose

to use a high-level but standard interface, the Java Debug Wire Protocol (JDWP)

[JDW] which is supported by the Android runtime (both Dalvik and ART). There-

fore, we don’t have to upgrade our detection system for new releases of the Android

framework. Specially, this factor is important when the security analyst aims to

compare the behavior of the application in different framework releases.

An additional complexity is that the execution is running in Dalvik bytecode

but we use the Jimple IR (the three-address IR used in Soot) in our analysis.

Dexpler (the Dalvik byte code to Jimple converter in Soot) [BKLTM12] keeps

a mapping between byte code instruction addresses and Jimple statements. In

order to assign the concrete values of variables from execution trace to Jimple

registers, for each method, we have to find the relation between variables on the

execution stack and the Jimple registers in the method Body. Moreover, Jimple

local registers might be reused (because Jimple is not a Static Single Assignment

(SSA) representation).

After running the generated exploits, we will use these register mappings to

find out accurately which Jimple registers’ values should be updated. These values

will be further processed to construct more accurate exploits as explained before.

3.7 Evaluation

In this section, we assess the effectiveness of our analysis framework against Flow-

Droid [ARF+14], a state-of-the-art static dataflow analysis for data injection vul-

nerabilities. We have the following goals: (i) the potential vulnerabilities found

by the analyzer should have only few false positives; and (ii) the analyzer should

find vulnerabilities which may be missed due to the imprecision at the initial CFG
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construction.

We have analyzed 1,729 apps in Ubuntu 12.04 on an Intel Core i5-4570 CPU

PC desktop (3.20GHz) with 16 GB of RAM. Our experiments show that our

analysis framework is able to effectively reject false positive flows. In contrast, a

purely static dataflow analysis like FlowDroid has a large number of false positive

flows reported as potential vulnerabilities. We detect missing edges in the CFG

constructed by Soot framework which results in finding more vulnerabilities.
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Figure 3.6: Ratio of number of paths generated by our analysis framework and
vanilla FlowDroid.
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Figure 3.7: Number of missing edges in the initial CFG which were found and
added by our analyzer. All of these apps have at least one potential vulnerable
sink. Apps are sorted based on the ratio in Figure 3.6.
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Figure 3.8: FD sinks are number of FlowDroid false positive sinks and new sinks
are number of new vulnerable sinks found by our analyzer. Apps are sorted based
on the ratio in Figure 3.6.
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Figure 3.9: Total execution time for static analysis in seconds. Apps are sorted
based on the ratio in Figure 3.6.

Figure 3.6 depicts the ratio of number of paths generated by our framework and

those reported by vanilla FlowDroid. For most of the apps, there is a considerable

reduction in the number of reported flows which means that either most of the false

positive flows are rejected or the combination of symbolic execution and dataflow

analysis has effectively reduced the number of generated paths. For some of the

applications, the path ratio is bigger than 1 which is due to the new vulnerabilities

detected by our analysis framework which cannot be found by FlowDroid.

Figure 3.8 shows that our analyzer is able to effectively detect false positive

sinks. Our system is able to find sinks which have been missed by vanilla Flow-

Droid. In Figure 3.8, these sinks are shown as new sinks. Note that if we don’t

find any new sinks for one app, we don’t put 0 in the chart. In some cases, all

of the sinks reported by FlowDroid are false positives while our analysis finds the

true positive ones.

In total, we find 82 new true positive sinks in 69 applications after refining the

CFG constructed by FlowDroid. The new sinks found in 39 applications are due

to thread executions. Figure 3.7 shows the number of missing edges in the CFG

constructed by Soot and also used by FlowDroid for each application in our data

set. In total, we find 863 missing edges in the initial CFG of apps which are due

to thread invocations.

The total execution time for static analysis phase can be found in Figure 3.9.

For most of the applications, analysis takes less than 30 seconds. The execution
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time for dynamic analysis phase tends to be higher on average. We measure the

execution time as per flow (the execution time for running the exploit representing

the flow) for 8 applications each representative for each attack category. The

average execution time per flow is around 48.3 s. A large portion of the cost for

the dynamic phase is due to operations such as networking, graphics rendering,

etc.

In Figure 3.6, it can be observed that for the first 200 apps, the number of

paths reported by vanilla FlowDroid is much higher than our analyzer (the ratio

is less than 0.2). Figure 3.8 also shows that FlowDroid has many false positive

sinks for the same apps. This shows that our system can successfully reduce the

number of generated paths for these apps by rejecting the false positive sinks.

3.8 Related Work: Analysis of Java and Android

Programs

Many of the recent works have been devoted to the analysis of Android apps

and symbolic execution. In this section, we review the existing works on static

information flow analysis, symbolic execution and dynamic analysis of Android

applications.

3.8.1 Static Information Flow Analysis

Static analysis of Android applications for vulnerability detection is employed

by many works [GZWJ12, ZJ13, GZJS12, GCEC12, EBFK13, CHY12, YY12,

KYYS12, FHM+12, SSG+14, HUHS13]. There are also works that use analysis

techniques for malware detection [FADA14, ASH+14, HZT+14]. In what follows,

we describe the analysis frameworks that are closely related to our vulnerability

detection system.

Woodpecker [GZWJ12] is a static analysis tool that detects capability leaks

in pre-loaded Android applications. The authors define capability leaks as situ-

ations where an app can gain access to a permission without actually requesting

it. The analysis is conducted in two steps: (1) finding possible paths between

entry points designated by the manifest file and some use of the capability; (2)

performing symbolic path simulation on each path one by one, to reject paths

whose constraints are infeasible. Woodpecker’s main objective is to report poten-

tial vulnerabilities that are reachable from entry points. Therefore, they do not

address the challenges which are specific to input generation.
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It is not also clear whether they can track instance fields of a particular class

object. More specifically, it is not clear whether they distinguish objects origi-

nating at different allocation sites but reaching the same program point. Finally,

Woodpecker is designed for specific pre-loaded apps which have high privileges.

However, our goal is to detect vulnerabilities in any benign third-party application.

CHEX [LLW+12] is a tool designed to find component hijacking vulnerabilities

in benign Android applications. In this work, the app execution is approximated

as a sequential permutations of “splits”. The inter-procedural dependency among

heap objects is built using a callgraph constructed by 0-1-CFA analysis. The

precision of this analysis affects the practicality of this approach as an imprecise

callgraph may result in infeasible split permutations. The analysis in this work is

limited to data dependency analysis and does not handle control dependencies. In

contrast, we use symbolic execution and check the feasibility of paths by solving

constraints collected along the paths. CHEX abstracts objects by their alloca-

tion sites whereas our analysis generates unique identifiers for each object during

symbolic execution which yields better precision.

FlowDroid [ARF+14] is a state-of-the-art dataflow analyzer tailored for An-

droid applications. It is built upon Soot [LBHD11] and implements the Inter-

procedural Finite Distributive Subset (IFDS) algorithm [RHS95] to improve the

scalability. The analysis in FlowDroid incorporates a modeling of the component

lifecycle of apps and achieves precision by performing a field-sensitive and an on-

demand alias analysis. While doing the backward aliasing, in order to avoid false

positives, a flow-sensitive analysis is employed which uses activation statements :

After spotting a field definition in the backward analysis, FlowDroid propagates

inactive taints in the forward direction. This taint, however, is not active and

only becomes active when activation statement is called in the call-tree. However,

this solution is expensive and in practice (for real applications) the flow-insensitive

approach (also suggested by the authors in [FDG]) scales better.

Similar to FlowDroid, our analysis is also object and field-sensitive. For the

cases where backward aliasing is required for field objects, if the aliasing statements

are on the execution path, symbolic execution naturally captures the dataflows

through the aliases. Otherwise, we use the results from the points-to analysis in

the Soot framework. Similar to the previous systems, FlowDroid is designed to

report potential vulnerable flows and reachable vulnerable sinks.
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3.8.2 Symbolic Execution

Symbolic execution [Kin76] can be used as a general software testing technique to

generate inputs that cause each part of a program to execute. It can be employed

statically [CK03, CKL04]. Alternatively, it can be combined with concrete execu-

tion, [SMA05, GKS05, GLM08, CDE08] also called dynamic symbolic execution

to enhance coverage and be able to deal with calls to framework APIs and library

functions using the runtime concrete values. There are different lines of research

that try to address the challenges inherent in symbolic execution.

Interaction with Environment and Precision. Whenever symbolic execu-

tion is not possible, concrete values can be used to simplify constraints and carry

on with a simplified partial symbolic execution [GKS05]. Concolic execution

[GKS05, GLM08] allows calling the actual code if it is not available statically.

Another approach used by symbolic executors is to purely run symbolic exe-

cution without executing the program [JMF12]. This latter has to model the

underlying platform. Execution Generated Testing Approach implemented by

[CGP+06, CDE08] checks before every operation if the values in the operands are

all concrete. The system interacts with the environment to run the operation if

all of its operands are concrete and leverages the symbolic models of the external

libraries otherwise. Even though dynamic symbolic execution helps to generate

test inputs for executions that traditional symbolic execution cannot handle, it

may miss some execution paths due to simplifications of concretization.

Our analysis is a hybrid of pure static symbolic execution and dynamic test-

ing. We have modeled the frequently used library functions that are necessary for

generating precise exploits for data injection attacks. For the rest of the libraries,

the path condition is extended with the constraint that the relevant symbolic ex-

pression be equal to a concrete value. Initially, these concrete values are unknown.

Once the initial inputs are tested by the dynamic executor, certain concrete values

are obtained from the concrete execution path. These values help us to generate

more accurate inputs on demand.

Scalability and Path Explosion. Scalability is a challenge that symbolic ex-

ecution faces due to (1) exponential number of paths; (2) expensive constraint

solving; (3) and interaction with environment. While the main objective of most

prior works is to increase code coverage [GKS05, CGP+06, CDE08], our work is

based on directed symbolic execution which focuses on finding paths that reach

certain program points.

One way to control the exponential search space is using search heuris-

tics. [CGP+06] selects next states if the statement is visited the fewest number
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of times. This may lead to missing critical paths if the program makes extensive

use of few utility methods. Our search heuristic is related to the approach used

by KLEE [CDE08] which guides the exploration towards the path closest from

an undiscovered instruction. Another approach is to use sound program analysis

techniques to simplify the path exploration problem. For instance, the RWset

technique [CS13, BCE08] discards paths that reach the same program points and

while their symbolic constraints have not changed. Another approach for reducing

the number of explored paths is merging the path constraints statically and pass-

ing them to constraint solvers [CCK11]. We also use merging to tame the path

explosion problem.

Satisfiability checking is NP-hard for the constraints used in the formulas.

Moreover, invoking queries at every branch is very expensive. Several opti-

mizations have been designed to make the SMT solver problems less expen-

sive: (1) expression rewriting; (2) constraint set simplification; (3) implied value

concretization; (4) removing independent constraints; (5) counter-example cache

KLEE [CDE08]. Our system also tries to make queries less frequent by caching

the results and reusing them if the symbolic states are identical.

Recently, symbolic execution has been used for analyzing Android applica-

tions [ANHY12, MMP+12, JMF12]. [ANHY12] is a concolic executor built upon

Soot which automatically generates event sequences at runtime to mimic user

interactions. SymDroid [JMF12] is another symbolic executor which proposes a

new language with fewer instructions (compared to Dalvik). It can be used to

discover conditions under which high privileged operations in apps might occur.

Unfortunately, SymDroid currently does not support symbolic strings. Compared

to other Android symbolic executors that support event sequences, it requires the

user to write a driver which reflects the entry points for symbolic execution. Un-

like the existing symbolic executors for Android apps, currently we focus only on

data inputs that will lead to injection attacks. However, existing event sequence

generation techniques can be combined to the existing system in future to support

more categories of attacks.

On the other hand Mirzaei et al. [MMP+12] perform symbolic execution and

handle both event sequences and data inputs by first making an abstraction for

modeling event sequences and then use Symbolic Java Path Finder (JPF) to per-

form symbolic execution on the sequences. JPF is an explicit-state model checker

which is built on top of a customized Java Virtual Machine. Programs are instru-

mented to enable JPF to perform symbolic execution; concrete types are replaced

with corresponding symbolic types and concrete operations are replaced with calls

to methods that implement corresponding operations on symbolic expressions.
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This work creates stubs and drivers that simulate Android framework, event han-

dling and external libraries. Scaling a precise static analysis to real-world Android

apps (in APK form) is challenging. Existing works, do not reflect this challenge

when it comes to automatic data input generation for exploitable vulnerabilities.

3.8.3 Dynamic Analysis

Apart from the symbolic execution techniques, event sequences can be generated

through capture-replay or model-driven approaches [AFT11, MTN13]. Dynodroid

is a tool to generate UI event test inputs for Android applications [MTN13]. It

is based on a modified Android framework and involves humans to pass some of

the app pages. CopperDroid [TKFC15] is a dynamic malware behavioral anal-

ysis system which performs system call-centric analysis through virtual machine

introspection to reconstruct the behaviors of the malware. Our work can be com-

plementary to CopperDroid by providing inputs to stimulate the app and trigger

certain system calls which can be captured and analyzed by CopperDroid.

There are also some works which create Intents to test the robustness of An-

droid applications [MABR12, YCZJ13, SR14]. Intent Fuzzer [SR14] generates

Intents to test Android components which are exposed publicly. This work uses a

path-insensitive traversal of the CFG to collect possible parameter keys and string

literals to use as parameter values to create well-structured Intents. During our

analysis, we have observed that the data injection exploits can heavily rely on the

path constraints and such an imprecise analysis may result in a large number of

inaccurate Intents (which incorporate the data inputs). Therefore, the methodol-

ogy used in [SR14] is more suitable for testing the resilience of Android apps to

arbitrary inputs rather than exploit generation for zero-day vulnerabilities.

3.9 Summary

We have proposed a practical framework to detect and confirm zero-day vulner-

abilities in Android. We have designed an analysis framework for the Android

ecosystem. It reduces the false positives and improves scalability and gives good

efficiency. We employ heuristics and optimizations to tame the path explosion

problem in symbolic execution. Our analysis gains further precision by applying a

hybrid of static analysis and dynamic testing. With our analyzer, we also validate

the exploits for the vulnerable apps.

We have evaluated our system and compared the results with a state-of-the-art

dataflow analysis, FlowDroid [ARF+14]. The results show that our analyzer can
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avoid many false positives statically and even find new vulnerabilities missed by

FlowDroid. Our analysis is efficient enough to be used at a large scale. In this

thesis, we show that the analysis framework explained in this chapter is capa-

ble of finding and exploiting important classes of attacks. We find and exploit

286 W2AI vulnerabilities in 1,729 candidate apps (Chapter 4) and 153 database

vulnerabilities in 924 candidate apps (Chapter 5).
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Chapter 4

Web-to-Application Injection

Attacks on Android

In this chapter, we study the security implications of the web-to-app channel which

exposes the vulnerabilities in the application layer to web. These vulnerabilities

may further allow remote attackers to access the sensitive resources and libraries

in the lower layers of the architecture.

The Android platform, much like its smartphone OS counterparts, is designed

to protect users from installing malicious apps. Typically, applications are served

on official, vetted application markets that are monitored from malware [BOU].

Further, each application is isolated/sandboxed and restricted to a set of permis-

sions that are granted by the user at the time of installation.

There is a growing transparency between the web and applications. Users want

a seamless experience when finding and using information on the Internet. In this

chapter, we study a new class of application vulnerabilities that do not require the

user to have installed a malicious app, but merely to have visited a malicious web-

site or advertisement in a mobile browser. Such attacks permit remote attackers

to exploit natively installed Android applications, without the risk of publishing

malware on application market or enticing users to install malicious application

that requests suspicious permissions at install-time.

First, we study the mechanisms of Intent messages in Android and show how

they differ from intent hyperlinks which convey untrusted input from the web.

We introduce the web-to-app bridge, an underexplored channel through which

attackers can exploit vulnerabilities in benign applications remotely. This channel

is currently adopted largely for several legitimate objectives. It also expands the

attack surface targeting Android applications.

To the best of our knowledge, we are the first to conduct a systematic study
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on web-to-app injection (W2AI) attacks [HJY+15], which abuse the web-to-app

bridge to hijack vulnerable Android apps without any installation of malware. We

demonstrate eight different categories of W2AI attacks.

We find that W2AI attacks introduce a broad range of possible exploits in

installed Android applications analogous to vulnerabilities commonly known to

occur in web applications — such as open redirect, database pollution, file inclu-

sion, credential theft, and so on. Further, these vulnerabilities are not specific to

implementations of certain application frameworks (or SDKs), as they can arise

in apps written in different SDKs.

Even though, many of the developed mobile applications leverage the web-to-

app channel, few of them are implemented securely. We elaborate on common

implementation mistakes made by Android developers that might lead to serious

security problems in Android devices.

Finally, we assess the prevalence of W2AI attacks using our analysis framework

at a large scale and find 134 apps out of 1,729 browsable apps vulnerable and detect

and exploit 286 vulnerabilities in total.

In summary, the contributions of this chapter are:

• Studying an characterizing W2AI attacks.

• Investigating the software engineering implications of web-to-app channel.

• Extending the analysis framework introduced in Chapter 3 and detecting

and exploiting W2AI vulnerabilities at a large scale.

4.1 Web-to-Application Injection Attacks on An-

droid

4.1.1 Intent Hyperlinks and URI Intents

Presently, both mobile applications (apps) and traditional browsers play essen-

tial roles in users’ devices. To provide a seamless integration of web and native

apps for users, Android and iOS support a scheme mechanism to handle web-to-

application inter-operations [ANU, IOS]. Therefore, it is possible for a web page

to invoke an installed app. In this case, the target app should declare one of its

activities as browsable. For example, Yahoo Mail is an Android app with more

than 100 Million downloads used to send emails. This email app can be invoked

via an intent by any other app. Setting one of its activities as browsable, it lets
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any web page to open its email composing activity of Yahoo Mail.

"intent :// foobar /# Intent;scheme=myuri;action=android.intent.action.VIEW;S

.url=https :// google.com;end"

Listing 4.1: An Intent Hyperlink Example

Browsable Activities.

Activities which intend to be invoked via the web have to be declared in a

specific category called the BROWSABLE category in the app’s manifest (Line 5 in

Listing 4.2).

1 <activity android:name=".MainActivity">

2 <intent -filter >

3 <action android:name="android.intent.action.VIEW"/>

4 <category android:name="android.intent.category.DEFAULT"/>

5 <category android:name="android.intent.category.BROWSABLE"/>

6 <data android:scheme="myuri" android:host="foobar" android:path="

/"/>

7 <data android:mimeType="text/plain">

8 </intent -filter >

9 </activity >

Listing 4.2: The Browsable Activity’s Manifest

When a user clicks a web hyperlink in a certain format, Android translates it

into an intent. Such intent hyperlinks begin with intent:, as shown in listing 4.1.

We call intents created from such hyperlinks as URI intents. In this thesis, we

will say “intent hyperlink” when referring to the link or its string, while “URI

intent” refers to workings of the mechanism in Android. Intent hyperlinks carry

parameters contained in the hyperlink, the fragment identifier, and information

about the target activity specified as a tuple (scheme, host, path, action, category),

and some additional metadata. This is the web-to-app bridge defined in Android.

For example, an intent hyperlink can be used to launch the phone app when a

user clicks a hyperlink showing the phone number on a website.1 Some of the

mainstream Android browsers (e.g., Opera) even allow activities not marked as

browsable to be launched via URI intents which allows even more attacks.

The data inputs which make up an intent hyperlink are derived from the Intent

class methods. An intent hyperlink follows a specific syntax. Here is a simplified

intent hyperlink example:

1When user clicks on the number 1234, the web page is redirected to an
intent hyperlink (e.g., intent:1234#Intent;scheme=tel;action=android.
intent.action.DIAL;category=android.intent.category.BROWSABLE;end) and
the phone app launches.
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intent://HOST/PATH?query=[string1]#Intent;action=[string2];

scheme=[string3];S.key =[string4];end

where data input can be sent through the [string] fields to the Android application

code. There are several possible ways to send data via an intent hyperlink:

• A data URI which references the data resources consists of the scheme

([string3]), host and path that should match the <data> element speci-

fied by the manifest file (line 6 in listing 4.2). It can also include query

parameters ([string1]) which are the key-value mappings preceded by the

“?”;

• Intent extras, the key-value pairs whose type can also be specified in the

Intent URI (e.g., the S in S.key=[string4] refers to the string extra). Note

that an intent hyperlink can have more parameters with other types, e.g,

int;

• Intent filter parameters such as categories, actions ([string2]), etc., ex-

plained in section 2.1 that can be sent as string values.

The syntax (as regular expression) for intent hyperlinks is provided below:

intent://HOST/PATH[?query1=string(&queryi=string)∗]#Intent;
action=string;[scheme=string;][category=string;][type=string;]

([S|B|i|l|f|d].key=string;)∗end

where the fields inside [] are optional and ∗ means that the fields inside () can

be repeated for zero or more times. The types for extras in intent hyperlinks can

be specified by S, B, i, l, f and d which refer to String, Boolean, int, long, float

and double types respectively.

Figure 4.1 shows the steps from where a user clicks on an intent hyperlink in

the default browser to where a benign app gets launched.

• Step 1: Initially the user installs a benign app which requests for a set of

permissions.

• Steps 2 and 3: The Package Manager component in the Android frame-

work checks the AndroidManifest.xml file for the requested permissions and

prompts the user.
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(2)  System checks    
permissions in 

AndroidManifest.xml
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approves
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default browser and 
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(1) Install a trusted 

privileged app

Package Manager

(4) Grant all permissions 
and install the trusted app

Activity Manager

(6) Browser requests to 
start the trusted app and 
sends data input
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intent object and starts 
the trusted app

Applications

Android Framework

Figure 4.1: This figure shows how an intent hyperlink starts a benign app which
has been granted sensitive privileges by the user.

• Step 4: The user grants privileges to the benign app.

• Steps 5 and 6: The user continues by surfing through the default browser.

While surfing, she clicks on links formatted specifically to launch Android

apps (intent hyperlinks). Therefore, the browser redirects to the Android

framework to request to start the target app.

• Step 7: This time, the Activity Manager checks the (scheme, host, path, action,

category) tuple in the intent hyperlink at step 7 and launches the compo-

nent of the app which matches this tuple. Note that no further permission

checking is conducted by the Android framework at this stage.

In what follows, we present some use-case scenarios to highlight why intent

hyperlinks are largely adopted by existing applications and therefore, a large-scale

analysis of the security side-effects of this channel is crucial.

Deep Linking and App Indexing

A pervasive use-case for intent hyperlinks is deep linking and app indexing [AIN].

These features allow Android applications to appear in Google search results,
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letting users to land exactly on a specific function within the app. The use of app

indexing allows Google systems to improve search results, giving better ranking

results, query autocompletions for device users and Now on Tap, a Google feature

which advertises related apps while visiting a specific app.

Companies such as Google, Yelp and Twitter already offer this deep linking

experience in their search results and mobile applications. The documentation

for deep linking shows that developer is meant to take the user straight away

to the relevant content (also called First-Click-Free) without showing the logging

screen or further authentication. This requirement increases the possibility of the

attacks, explained later in this chapter, which leverages the same channel as deep

linking.

While deep linking is handled locally on the device by the underlying Android

framework, app indexing is managed by the Google crawler remotely on the web

side.

If a URL starts with android-app://, Google crawler considers it as a link for

app indexing. When Google crawler sees such a link on a web page, it registers

that link for app indexing. If user searches for content that matches this link, then

Google shows the corresponding app page as the search result. For this purpose,

the developer has to put the link in the HTML code of the webpage as shown below:

<link rel="alternate" href="android-app://package id[/scheme

/host[/path ]][#Intent;...];">

There are several case studies that show a widespread adoption of deep link-

ing [CAS]. Statistics show that 15% of Google searches on Android return deep

links to apps through app indexing and the number of clicks on app deep links

has seen an increase by 10x, over just one quarter. As an example, Etsy is a mar-

ketplace where people sell and buy unique goods around the world. This market

has seen an 11.6% increase in average daily app traffic from referral links, thanks

to app indexing. Additionally, after a series of product improvements, Etsy has

seen a 254.7% increase in impressions and a 32.5% increase in clicks.

In order to get support for deep linking, apps need to add the browsable cate-

gory to the intent filter for activities of interest in the manifest file. Additionally,

the intent filter should specify the android.intent.action.VIEW action.

Although applications benefit by adding support for deep linking, they are also

opening up new channels for attackers to inject (malicious) inputs. Therefore, if

applications do not apply appropriate validation on the incoming data, potential

vulnerabilities will be accessible to remote attackers. To motivate the necessity
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of a systematic study for these group of applications, we present an Android app

which is vulnerable to W2AI attacks. Equalizer music player booster is a

music listening Android application with more than 10 million downloads. This

Android application aims to support deep linking and sets one of its activities as

browsable in the manifest file. However, the browsable activity also exposes its

point earning system used for marketing purposes to remote attackers. A remote

attacker can request or give points on behalf of the user by sending malicious data

through an intent hyperlink.

Authentication and Authorization

Another scenario where Android applications might get benefit from the web-to-

app bridge is for authentication and authorization purposes. There are several

identity provider SDKs available that can be integrated into the Android applica-

tions. OAuth is an authorization protocol used by most of these providers which

has been shown to be poorly implemented in existing applications [CPC+14].

Both of the versions of this protocol (OAuth1 and OAuth2) use browser redi-

rection extensively for delivering OAuth tokens. Since browsable activities in

Android apps can be started by a web page, they can play the role of browser

redirection in web. Service providers can send access tokens and other particulars

to the applications using intent hyperlinks.

This phenomenon opens up many of the existing applications to sensitive data

provided by unknown parties on the web. While application developers might

have used browsable activities only for authorization or authentication purposes,

we believe that they should be studied carefully for the side effects of poor imple-

mentations or misunderstandings that potentially make these apps vulnerable to

different classes of attacks.

Docs To Go (4.0) is a document manager application with more than 10

million times being downloaded. This application uses Dropbox for storing data.

The Dropbox SDK version that is used in this application implements OAuth2

and allows the remote attacker to provide the redirect URL. Therefore, remote

attackers can inject their own oauth token, oauth token secret uid and state

query parameters to launch an authentication exfiltration attack.

File Management

Sometimes, Android applications expose their functionalities to other applications

to enhance the usability. Streaming audio/video or opening a PDF or image

and other MIME types from the SDcard are examples of such features. For this
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Victim’s Android Device

Browser

App

3) Launch the 
corresponding 
activity with payloads 
in the URI intent

Malicious 
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2) HTML with the
malicious hyperlink

1) Click the link

4) Run payloads
in the vulnerable app   

Figure 4.2: W2AI attacks on Android apps. 1) A user clicks a malicious link
that redirects to the attacker’s site in her mobile browser. 2) The site loads the
malicious intent hyperlink in an iframe or a new tab. 3) The browser parses the
hyperlink, generates the URI intent and launches the corresponding activity in the
vulnerable app. 4) Therefore, the payloads derived from the URI intent running in
the app can access the user’s private information or perform privileged operations
on behalf of the app.

purpose, the intent filter is configured to be accessed by other applications. If

the intent filter is configured to be browsable, not only the local applications on

the phone, but any remote party from web can also access these services. These

applications usually accept the details of the operation to be performed through

the data segment of a URI or extra parameters of the intents. The same segments

can also be configured by the intent hyperlinks. If the input data is not handled

correctly by the recipient application, it might lead to exploitation of potentially

existing vulnerabilities.

HD MP4 Video Downloader (1.0) is a video downloader application which

can be started by other applications or remotely through intent hyperlink. The

path of the file to be downloaded can be specified by the data URI segment of

the intent. However, the data URI is also concatenated with JavaScript code and

loaded in the inner WebView of the application. Therefore, a remote attacker can

launch a Cross-Site Scripting attack [XSS] by embedding a malicious playload into

the intent hyperlink.
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4.1.2 Web-to-App Injection Attacks

URI intents expose a new channel of attacks targeted at installed apps. In this

chapter, we present the first comprehensive study of web-to-app injection (W2AI)

attacks in Android.

Threat Model. In a W2AI attack, we assume that the adversary is a standard

web attacker [ABL+10], who controls a malicious website. To expand the coverage

of victims, the attacker can disseminate the shortened URL of the malicious site

through emails, social networks, advertisements and other channels. Once a user

clicks on a link, our attacks do not require any further interaction and vulnerabili-

ties can be exploited silently. We make the following conservative assumptions but

a real attack may be even worse by combining W2AI with other Android attacks

(see Chapter 5). We assume that the victim, Alice, only installs legitimate apps

from Google Play on her Android device, and does not install any malware. We

assume that at least one app on her device is benign but buggy, hence a W2AI

vulnerability exists. Note that as the app is benign, it has adequate permissions

to achieve its functionality (See Figure 4.1). The W2AI attacks studied in this

chapter do not request for system or dangerous permissions explicitly. In contrast,

once the user grants permissions (with different sensitivity levels) to a third-party

application, the remote attacker can leverage the already existing permissions to

access system resources.2

W2AI Attacks. As Figure 4.2 depicts, when surfing the Internet, the victim

Alice clicks a link that redirects to the attacker’s site in her Android browser (step

1). The attacker’s page can then automatically launch the vulnerable activity

via an intent hyperlink. For example, it can load a maliciously-crafted hyperlink

in an iframe causing it to generate a URI intent (step 2). The intent launches

the vulnerable activity passing it the data from the malicious hyperlink (step 3).

Depending on how this malicious data is used by the vulnerable activity, a broad

category of vulnerabilities can arise (step 4).

4.1.3 Categories of W2AI Vulnerabilities

Android applications typically use the data derived from URI intents through

various API interfaces. These can be divided into two categories — WebView

interfaces and native interfaces. If the attacker-controlled data is used in these

interfaces without any validation, the attacker can feed payloads to abuse the APIs.

We divide the arising vulnerabilities that either abuse WebView or Android native

2For example, if a contact manager app has the APIs to read and write contacts, the app
must have the READ CONTACTS and WRITE CONTACTS permissions in the manifest.
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app interfaces, and explain the damage via these exploits.

Note that all W2AI vulnerabilities arise due to dataflows that start in the native

Android code, and not in the application logic written in HTML5 code [CW14,

LHD+11, GJS14, JHY+14]. Unlike other vulnerabilities that exploit app-to-app

communication interfaces [ZWZJ12, ZJ12, LLZW14, CQM14], W2AI attacks do

not need an installed malicious app on the device to launch attacks.

Abusing WebView Interfaces. As we explained before, WebView is an in-app

browser that provides the basic functionalities of normal browsers (e.g., page ren-

dering and JavaScript execution) and enables access to various interfaces (e.g.,

HTML5 APIs and JavaScript-to-native bridge). Certain applications take param-

eters in the URI intent and treat them as web URLs, thereby loading them into

WebView during their execution. If such a behavior exists, the attacker’s HTML

code runs in the WebView. Additionally, if the vulnerable application enables

execution for JavaScript in the WebView, the attacker can run JavaScript in its

HTML page, and can access all interfaces exposed to it by WebView. We classify

the vulnerabilities arising from unfettered access to the exposed interfaces into 4

sub-categories:

1) Abusing the JavaScript-to-Native Bridge. JavaScript code loaded in the Web-

View can access native methods on Android.3 The accessible native methods are

specific to each application and tend to be quite large. In our experiments, we

have found up to 29 distinct JavaScript-to-native interfaces accessible in a sin-

gle application. For example, many applications enable access to interfaces that

retrieve the device’s UUID, version and name, thereby opening up the threat of

privacy-violating attacks. Furthermore, several interfaces allow reading, updating

and deleting the user’s contact list and app-specific local files.

2) Abusing HTML5 APIs. WebView enables access to standard HTML5 APIs,

akin to normal web browsers. For example, if the vulnerable app has the proper

permissions and WebView settings,4 the attacker’s web page running in the We-

bView can use JavaScript to call the HTML5 geolocation API directly. For in-

stance, we find that 29 applications allow the attacker to track the user’s current

geolocation.5.

3) Local File Inclusion. When the user visits the malicious site, the site can

trick the browser to automatically download a HTML file into the user’s SD-

3JavaScript can access native methods via the android.webkit.JavascriptInterface.
4ACCESS COARSE LOCATION and ACCESS FINE LOCATION permissions and

setJavaScriptEnabled and setGeolocationEnabled settings give access to geolo-
cation sensors.

5Using the API navigator.geolocation.getCurrentPosition
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card by setting the HTML file as not viewable.6 When the site triggers the

browser to parse the intent hyperlink that refers to the downloaded HTML file

(e.g., file:///sdcard/Downloads/attack.html), it launches the vulnerable app to

load the HTML file in its WebView. If the vulnerable app has certain settings7

for the WebView, the malicious JavaScript code in the HTML file can read any

files under the app’s directory or the readable system files (e.g., /etc/hosts) and

send them to the attacker.

4) Phishing. The attacker’s web page can impersonate or phish the user interface

of the original application. Since there is no address bar displayed by WebView

that users can use to inspect the current page’s URL, users cannot distinguish

the phishing page from the normal page, as shown in Figure 4.4-(a). Such attacks

via the web-to-app bridge are harder for users to discern than the conventional

phishing attacks on the web [FW11].

Even worse, we have detected applications that use a default UI for all the

activities including the activity that the WebView is loaded in. Figure 4.3 shows a

zero-day phishing attack on com.sigmaphone.topmedfree (1.0.92) application

which is downloaded more than 1 million times. In this example, attacker.com

is a page identical to an existing activity in the application and entices user to

do sensitive operations (e.g., Buy stuff from attacker.com). The user has no

means to distinguish the original app (on the left) from the injected page from

attacker.com (on the right).

Abusing Android Native App Interfaces. Android Apps, even those which

do not use WebView, can expose native Android interfaces to URI intents without

proper validation on input. These open the following four category of exploits in

our experiments:

1) Database Access. Android provides native interfaces for apps to execute SQL

statements to manage the app’s database. Therefore, if the SQL statement pa-

rameters are derived from the URI intent, it allows the web attacker to pollute

(e.g., add or update the table’s fields) the vulnerable app’s database.

2) Persistent Storage Pollution. Android native interfaces enable apps to store

persistent states, e.g., authentication tokens, in the persistent storage.8 Many

vulnerable apps directly treat the parameters from the URI intent as the content

to add or update the persistent storage. Hence, the attacker can craft a proper

6Setting the Content-Type header with binary/octet-stream for a HTML file can make
it not viewable.

7The settings are setAllowFileAccess, setJavaScriptEnabled and
setAllowFileAccessFromFileURLs (or
setAllowUniversalAccessFromFileURLs).

8Persistent storage includes SharedPreferences, local files, etc.
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(a)  (b)  

Figure 4.3: (a) The original activity used for financial purposes. (b) Injected URL
loaded by the App. This application uses the same UI framework for different
activities.

URI intent to pollute the target app’s persistent storage.

3) Open Re-delegation. Android native interfaces provide the ability to launch

specific activities addressed by name.9 If the name parameter is derived from URI

intent, it allows the malicious web attacker to invoke any in-app private activities

directly, which may not be marked browsable. Moreover, attacker might embed

an additional intent hyperlink as a parameter to the original intent hyperlink

and force the benign app to invoke another app. This leads to a broad range of

problems such as permission redelegation [FWM+11]. Permission re-delegation is

a confused deputy problem whereby a vulnerable app accesses critical resources

under influence from an adversary. Though these attacks are previously known

to be possible via the app-to-app [FWM+11], we show that they can be affected

under influence of a website through the web-to-app bridge, without requiring in-

stalled malware. Furthermore, W2AI attacks allow calling in-app private activities

beyond what traditional privilege redelegation attacks provide.

4) App-Specific Logic Flaws. Android enables apps to perform various operations

(e.g., popping up messages) via native interfaces. Due to the app-specific logic

flaws, the vulnerable app directly uses the data from the URI intent as parameters

to these operations. For instance, in our experiments we find that the web attacker

9Class.forName(x) enables invoking a class called x.
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(a) (b)

Figure 4.4: (a) The original or phishing page in WorkNet. (b) The malicious
page running in the WorknetActivity steals the user’s private data (e.g., device
information, contacts, local files and geolocation), sending it to the attacker’s
server.

can utilize the flaws to instruct the vulnerable apps to display fabricated PayPal

transaction status.

4.1.4 A Vulnerable App Example

Now we use a real app as an example to explain how the W2AI attack works.10 The

example app is WorkNet (kr.go.keis.worknet), which provides job information

in Korea and has 1 - 5M downloads. It has a browsable activity,11 which loads

arbitrary URLs in URI intents and is vulnerable to the following W2AI attacks:

abusing JavaScript-to-native bridges, abusing HTML5 APIs, local file inclusion

and phishing. The attack’s life cycle is depicted in Figure 4.2 as follows:

1. The attacker hosts a malicious website, which loads the hyperlink below into

a new tab using window.open.

"intent ://# Intent;scheme=worknet;action=android.intent.action.VIEW;S

.url=http :// attacker.com;end"

10We have disclosed the vulnerability to the application vendor and Google.
11The activity kr.go.keis.worknet.WorknetActivity.
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The attacker posts the site’s shortened link on social networks, e.g., Face-

book.

2. When the user visits the attacker’s site (by clicking the link on social net-

works, ads, and so on) in her Android browser, the site loads the hyperlink

in a new tab.

3. The user’s browser parses the hyperlink to the URI intent that contains extra

parameters and launches the WorknetActivity activity with the intent.

4. The activity loads the URL (http://attacker.com) derived from the mali-

cious URI intent into the WebView without any validation. Now the at-

tacker’s site is loaded with its JavaScript code running in the WebView.

The attacker can utilize whatever is available to this activity, e.g., abusing

JavaScript-to-native bridges.

We find that WorkNet has 21 such interfaces, e.g., accessing contacts, lo-

cal files, device information and so on. Therefore, the attacker’s site can

mimic the same UI of the original page as Figure 4.4-(a) shows. In the

background, the scripts access the user’s private data (e.g., device informa-

tion and contacts) and send them to the attacker’s server as Figure 4.4-(b)

demonstrates (logged on the server). In addition to abusing the JavaScript-

to-native interfaces, the web attacker can also abuse HTML5 APIs to track

Alice’s geolocation and leak the content of local files via file inclusion in this

app.

From this example, we can see that the W2AI attacker can not only mount

conventional web attacks (e.g., unvalidated redirection in the example), but also

can hijack the vulnerable app to perform privileged operations on sensitive re-

sources (e.g., local files and contacts) without any installation of malware in the

user’s device.

4.2 Web-to-App Channel from a Software En-

gineering Perspective

We find that among many of the developed mobile applications which leverage the

web-to-app channel, few of them are implemented securely. From our experiments,

it appears that either developers do not understand how this channel works or they

give little attention to the security implications of a vulnerable implementation. In
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this section, we elaborate on common implementation mistakes made by Android

developers that might lead to serious security problems in Android devices.

While implementing the code to support intent hyperlinks, Android developers

might introduce vulnerabilities in several ways. As explained in Section 4.1.1,

programmers need to both add intent filters to the manifest file and handle the

Intent messages received in the app via the web-to-app channel. Recently, Google

has provided plugins in the development environments for giving useful warnings

to programmers, specially for intent filter configurations. For instance, if the

pathPrefix specified in the intent filter of a browsable activity does not start

with ’/’, the developer gets warning. However, the logic that handles the intents

received by the app is not analyzed. Therefore, developers might fail in enforcing

crucial validations.

In this section, first, we present some Android-specific programming practices

that might increase the W2AI attack surface. Next, looking at the most popu-

lar Android development frameworks, we estimate how the software engineering

practices lead to devastating security vulnerabilities. Finally, we study the request

methods in the HTTP protocol to understand whether app indexing, an impor-

tant use-case for web-to-app channel, is akin to GET methods. For this purpose,

we compare the existing web-to-app channel design with HTTP request methods

and find ambiguous differences which might lead to vulnerabilities.

4.2.1 Browsable Activities as the Main Entry Points

In Chapter 2, we explain that Android applications are different from Java pro-

grams. An Android app consists of four types of components: activities, services,

broadcast receivers and content providers. These differences might raise confu-

sions in developers. For instance, an activity can serve as the main entry point

into the app if it has an intent filter with the android.intent.action.MAIN ac-

tion in the manifest file. This action indicates that the corresponding activity is

the main entry point and does not expect any Intent data.

We have found 453 applications in our data set (26% of the browsable apps)

where the main entry point activity is set to be browsable. This means that

developers of these apps have possibly exposed the main functionalities of their

applications to web. This behavior extends the potential attack surface which

developers should particularly try to avoid.

Figure 4.5 shows the percentage of Lines Of Code (LOC) which are reachable

from the browsable activities in the apps studied in our data set. In order to

count the reachable LOC, the number of statements of the application methods
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Figure 4.5: This chart shows the percentage of lines of code exposed to web by
browsable activities.

which are reachable in the call graph are calculated. Our study shows that about

26% of apps expose more than 80% of the code-base to the web while only 10%

of them expose less than 30% of their code-base to web. The high percentage of

reachable code-base to the browsable entry points show that developers might not

have isolated the implementation for handling intent hyperlinks carefully. Also,

we found that none of the apps which expose less than 10% of their code-base

to the web are vulnerable to the W2AI attacks. This suggests that as expected,

there is a correlation between code exposure and possibility of exploitation.

4.2.2 Intent Hyperlinks Loaded in the WebViews

We observe that Android developers often load untrusted and arbitrary URLs

which are obtained from the intent hyperlinks in their customized internal Web-

Views. Our results in Section 4.4 show that 84 applications in our data set load

such URLs in their internal WebViews which cause the browsable activities to be
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invoked. This large number of vulnerable apps suggest that the developers might

use the web-to-app channel as a source of URLs which can be processed by the app

without additional security checks and that they don’t understand their security

implications.

Whitelisting on URLs in WebView. To abuse WebView interfaces, the web

attacker needs the vulnerable app to load the malicious URL from the URI intent

in the customized WebView. Setting the proper whilelist for URLs to prevent

the unauthorized web pages being loaded in the app’s WebView can mitigate

W2AI attacks to abuse WebView interfaces. Currently, some hybrid frameworks

(e.g., PhoneGap) provide such whitelisting rules [WHI], but the vulnerable apps

in our experiments do not deploy the proper settings. Researchers have also

proposed origin-based defenses that require developers to set whitelisting poli-

cies [WXWC13], however, they have not been widely deployed on Android.

4.2.3 W2AI Vulnerabilities due to Code Reuse

Developers are often keen to either extend existing frameworks or copy code from

one program to another. In order to provide the transparency between the web

and applications and a seamless experience when finding and using information

on the Internet, existing frameworks usually support and utilize intent hyperlinks.

Therefore, a developer who embeds an existing code-base to her application might

not even notice that it is exposed to the web.

While creating a hybrid Android application, integrating both web and native

Android functionalities, many developers prefer to use existing frameworks such as

PhoneGap [PHO], SeattleClouds [sea], etc. In addition, providing special services

such as sharing data on social networks, cloud storage, etc., requires incorporating

SDK libraries into the application. Even though the developers are generally aware

of the need for security, the inherent security of the used frameworks largely affects

the security guarantees of the application.

Even though some of these frameworks do have built-in protection, they have

very little or none at all for intent hyperlinks. The major drawback of building

applications on top of the frameworks is the inevitable security flaws in the frame-

work itself. Even if developers pursued best practices, the resulting application

would remain vulnerable. It is necessary to factor in additional research on secu-

rity properties of frameworks before picking them. However, the developers may

not be equipped to do so.

Table 4.1 shows the security control parameters that we have used to analyze

the protection mechanisms of existing Android frameworks against web-to-app
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injection attacks.

The first parameter which is crucial to avoid W2AI attacks is input validation

and sanitization. Input validation checks if the input meets a set of criteria (such

as a string contains no standalone single quotation marks). Input sanitization

modifies the input to ensure that it is valid (such as doubling single quotes).

These two techniques are used to protect the program from injection attacks.

For instance, the PhoneGap framework12 extracts an extra parameter url from

the intent hyperlink, applies an input validation by checking whether it starts

with javascript: or file://. Otherwise, it checks if the url follows a specific

pattern. Unfortunately, most of the developers choose “.*” as the pattern which

allows any URL to be loaded in the Webview of the local app. This vulnerability

leads to attacks such as accessing contacts, local files, device information and so

on. Unfortunately, this platform does not apply any sanitization and the extra

parameters reach security critical methods without being modified.

PhoneGap does not check the origin of the Intent messages. The data passed

through the intent hyperlinks are sent as raw strings. Hence, any third-party app

which can hijack the intent on the phone can see the query parameters and data.

Finally, this framework does not use the web-to-app channel for authentication or

authorization.

Many developers often integrate cloud storage services using available SDKs

like Dropbox. Dropbox provides SDKs both for Android and iOS to allow applica-

tions to store data on the cloud. Android developers can include the Dropbox SDK

in the application as a library to authenticate or authorize the user. The Dropbox

SDK leverages the web-to-app channel for this purpose as shown in Figure 4.6.

Unfortunately, due to the lack of proper input validation and authorization, a

web adversary can exploit W2AI vulnerabilities inherent in this SDK and launch

authentication exfiltration attacks. In this case, even if the developer is cautious

about the security aspects of the application, she ends up publishing a vulnerable

application due to the vulnerability in the Dropbox SDK.

Tencent (QQ) framework is another well-known SDK which is mainly included

by Android developers to authenticate or authorize users for sharing data on the

social networks. This framework provides several implementations for this service

and one of them utilizes the web-to-app channel as shown in Figure 4.6. Moreover,

this SDK has W2AI vulnerabilities mainly due to the lack of proper input valida-

tion and sanitization which allows adversaries to launch injection attacks such as

Cross-Site Scripting [XSS].

12PhoneGap [PHO] is a distribution of Apache Cordova [COR]. The actual code-base that
implements the web-to-app channel is part of the Apache Cordova.
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Table 4.1: Security control matrix for W2AI attack in Android development frame-
works.

Framework Version Input
Validation
/santization

Checking
Origin

Leakage Authentication
/ Authorization

PhoneGap
3.3.0

Partial
No Yes Not Supported

Dropbox
SDK

1.6.1
Partial

Yes Yes Can be
bypassed

Tencent
(QQ) SDK

2.8
Partial

Yes Yes Can be
bypassed

SeattleClouds
6.5.1

Partial
No Yes Not Supported

SeattleClouds is another framework utilized by many developers to build hybrid

apps. This framework also provides financial services such as PayPal transactions.

Unfortunately, due to the inherent flaws in the SDK, web adversaries can pop up

arbitrary messages on the phone such as “transaction status failed” or they may

force the app to open arbitrary files. Similar to the previous frameworks, the W2AI

vulnerabilities in this SDK make the application vulnerable while the developer

might not even be aware of the problem. These vulnerabilities could be effectively

avoided with proper input validation and sanitization.

4.2.4 Design Problems of Web-to-App Channel

Even though web-to-app channel is getting more and more popular, its design

does not seem to be mature enough. For instance, intent hyperlinks are sent

in plain text as part of the URL both for app indexing (see Section 4.1.1) and

sensitive information transmission (e.g., authentication tokens) which may result

in confidentiality issues.

Sometimes intent hyperlinks are intended to be used for side-effect-free actions.

App indexing is one example where an application is invoked as the result of a

search action and no further side-effect is expected to happen. On the other hand,

an intent hyperlink might be received and processed if it is sent from a trusted

party. If these two scenarios were distinguished systematically (i.e., transparently

by the Android platform), Android developers could handle these requests more

reliably. Such design problems have been raised already and addressed in the web

context where sender and receiver are web client and server. In this section, we

briefly describe the key concepts of HTTP protocol used in the World Wide Web

which can possibly be re-defined for web-to-app interactions in Android.

The HTTP protocol defines request methods like GET and POST to clearly

identify the action to be performed on a specific resource (e.g., a file). The infor-

mation returned to the user depends on the implementation of the server.
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GET Requests. The GET method is designed to request information from a server.

Such requests should only retrieve data [FGM+99]. This guideline specifies that

this method should be safe which means that it should not have any side-effect on

the server. The GET request essentially embodies some data that is passed via the

URL’s query string. The query string specifies the data that needs to be retrieved

from the server such as date, account balance, etc. Web crawlers such as search

engine indexers normally use the GET and HEAD methods exclusively, to prevent

their automated requests from performing such actions. HTTP GET should not be

used where sensitive information, such as user names and passwords, have to be

submitted along with other data for the request to complete.

Side-effect-free intent hyperlinks (e.g., used for app indexing) resemble GET

methods supported by the HTTP protocol and hence they can be considered safe.

The important difference between intent hyperlinks and GET messages is that un-

like GET requests, intent hyperlinks do not send back any direct response to the

web user. Instead, an application is launched on the phone.

POST Requests. The POST method requests that the server accept the data

enclosed in the request as a new subordinated web resource identified by the URI.

The data POSTed might be, for example, a message for a bulletin board, newsgroup,

mailing list, comment thread or an item to add to a database. POST requests allow

altering data on the server side. The action performed by the POST method might

not result in a resource that can be identified by a URI. Intent hyperlinks which

are used for authentication or file management are akin to POST requests which

should be transmitted more securely and handled more cautiously.

Intent hyperlinks are sent in plain text. Unlike GET messages which are explic-

itly advised not to include sensitive data, there is no such restriction for intent

hyperlinks. The sensitive data is advised to be sent via POST requests in the HTTP

protocol. Since there is no such distinction available in the web-to-app channel

design, developers have no choice but to send the sensitive data in the URI itself.

Similar to HTTP requests, intent hyperlinks are also prone to attacks based on

file and path names. The RFC guideline [FGM+99] clearly warns HTTP servers

not to process arbitrary files or leakage of configuration/setting files. However,

there is no such guidelines for smartphone developers.

HTTP Headers. HTTP requests can have security-related headers configured

by the web server:

strict-transport-security is an HTTP header which enforces secure (HTTP
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Figure 4.6: Two-way communication between the Android app and web.

over SSL/TLS) connections to the server. Another HTTP header example is

content-security-policy which can prevent Cross-Site Scripting [XSS] and

other cross-site injection attacks.

Unfortunately, these security-related HTTP headers are not available in intent

hyperlinks. Therefore, communications from the Android app to web might be

problematic as shown in Figure 4.6. Assume an Android application establishes

a connection with a web-server using the HTTP protocol while the web server

responds using intent hyperlink. Since the security-related HTTP headers are not

available in the intent hyperlinks, this transaction might lead to security problems.

Unfortunately, there are Android SDKs in the wild such as QQ that support

identical scenarios and are incorporated in many real world apps.

In the HTTP requests, it is possible to set the referrer field which identifies

the address of the webpage (i.e., the URI) that is linked to the resource being

requested. By checking the referrer, the new webpage can see where the request

originated from. The Android API level 22 and later versions have a similar

additional feature that provides a way for developers to figure out the sender

of an intent. EXTRA REFERRER and EXTRA REFERRER NAME are extra parameters that

allow the sender of an intent to set Uri object or Uri string respectively to help the

recipient application know where the intent comes from. Recipients can obtain this

extra parameter by either calling getReferrer() or directly reading the parameter.

However, this is not a security feature – developer cannot simply trust the referrer

information, since applications can spoof it.

As we have discussed in this section, unlike the web world, there is no GET/POST

notion defined for the intent hyperlinks. Therefore, the same code-base that han-

dles intent hyperlinks will be used for requests with and without side-effects. In
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fact, whether the intent hyperlinks have side-effect or not is highly dependent

on the Android application itself. Our results in Section 4.4 show that imple-

mentations handling intent hyperlinks in many existing applications indeed have

side-effects, while the same code-base is used for app indexing. Unfortunately,

they don’t distinguish safe and unsafe requests – the same code-base handles any

arbitrary intent hyperlinks in the same way. If developers want to provide both

functionalities, i.e., app indexing and processing data in the intent which possibly

has side-effects, they need to implement the code for distinguishing the requests

by themselves since Android does not provide an interface for that.

4.3 Detection and Exploitation of W2AI Vulner-

abilities

We aim to examine the prevalence of W2AI attacks at a large scale. For this

purpose, we customize and use the vulnerability detection system that we intro-

duced in Chapter 3 and call it W2AIScanner [HJY+15]. Next, we discuss the

customization needed for some of the stages of the analysis.

4.3.1 Source-Sink Pair Identification for W2AI Attacks

We have modified the entry point selection implementation to pick the browsable

activities. Starting from the browsable activities, FlowDroid finds pairs of source

and sink program points using dataflow analysis which will be utilized in the sink

reachability analysis.

The getIntent() and onNewIntent() methods are the source methods that

fetch the Intent objects which start the activity and provide data inputs to the

app from an intent. onNewIntent() is called for activities that set launchMode to

singleTop or the FLAG ACTIVITY SINGLE TOP flag is used in the Intent which invokes

the activity. We choose a subset of the sink methods provided by Susi[RAB14]

based on the attack categories discussed in Section 4.1.3.

4.3.2 Symbolic Execution

The symbolic variables for analyzing W2AI vulnerabilities are the intent objects

received in browsable activities and their fields such as URI data, action, extra

parameters, etc. Our analysis starts with a set of pre-conditions created based on

the intent-filters specified in the manifest file for browsable activities. For instance,

the intent-filter in the manifest file might be defined to only accept intents whose
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actions are specific string constants. By adding these constraints to the path

formulas, we avoid generating non-realistic exploits.

4.3.3 W2AI Attack Validation

W2AIScanner has to automatically generate intent hyperlinks that exploit vulner-

abilities in Android apps. An intent hyperlink can be divided into two parts: (i)

the action, category and parts of the data URI which have to be matched with the

intent filter for the activity defined in the manifest file; and (ii) the data inputs

which are in the form of key-value pairs.

The first part is collected by our manifest parser component which we use to

obtain the intent filter specification for the source activity. It creates all possible

schemes that will match the intent filter. Path is one part of the data elements

in intent filters that will be checked for accepting an intent. The Android de-

veloper can specify a special form of regular expressions in the manifest file to

match the intent hyperlink path pattern. W2AIScanner uses the same algorithm

implemented in the Android framework to match against intent hyperlink path

patterns and generates a counter example. Some of these values might also be ob-

tained from the symbolic execution phase in which case we directly use the values

generated by our symbolic executor.

The second part which includes the key-value pairs of input data are obtained

by our analysis. Usually, the keys in key-value pairs are resolved using copy con-

stant search as explained in Section 3.5.2 and the values are generated as instances

of symbolic variables. It is also necessary to resolve the types for extra parameters

which is dealt with in the symbolic execution phase (e.g., by evaluating cast oper-

ations). When an intent hyperlink is clicked by the user and the target application

is invoked, the data inputs which make up an intent hyperlink are derived from

the Intent class methods. In this chapter, we discussed that an intent hyperlink

follows a specific syntax:

intent:HOST/PATH?[string1]=[string2]#Intent;action=[string3];

scheme=[string4];[type1].[string5] =[string6];end

where data input can be sent through the fields (e.g., [string]) and their types can

be specified using [type].

Once we have the key-value pairs and their types, other necessary inputs for

the source-sink flows and the intent filter specifications for the target browsable

activity, all of these elements are put together to generate an intent hyperlink.

The validation component confirms whether the generated intent hyperlink
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is a true positive exploit. In this chapter, we classified W2AI vulnerabilities and

showed that these classes depend on the categories of the sink methods. If the sink

method is reached on the execution trace, W2AIScanner applies different policy

checks. There are two main classes of vulnerabilities: abusing WebView interfaces

and abusing native app interfaces.

The first category is validated by sending a malicious website URL through

the intent hyperlink parameters. When a vulnerable application loads the mali-

cious URL, the data retrieved from the device is sent to our test server and we

can confirm the attacks according to the category settings. The Policies/Set-

tings column in Table 4.4 shows the methods for the representative sinks in

our attack categories that should be invoked on the execution path for an at-

tack to be confirmed. As an example, if the app has flows that reach the

WebView.loadUrl sink and enables setAllowFileAccess, setJavaScriptEnabled

and setAllowFileAccessFromFileURLs settings, the app is vulnerable to local file

inclusion attacks.

Attacks on abusing native app interfaces are more complex to validate. If the

sink method is reached on the execution trace, we check the concrete values of

the sink method parameters. We compare the values resolved for the sink method

parameters in the symbolic execution phase with the values observed after running

the intent hyperlink at the sink invocation site. Then, we look for the category

setting method invocations on the execution path and report the intent hyperlink

if the vulnerability is confirmed to be exploitable.

4.4 Experimental Results for W2AI Vulnerabil-

ity Detection

In this section, we employ W2AIScanner on real-world Android applications and

report our results. We assess the prevalence of web-to-app injection attacks at a

large scale. We choose the top 100 apps of all categories in Google Play plus the

data set used in [JHY+14] which are 12,240 in total. Among these apps, 1,729

apps have at least one browsable activity. Since numerous apps in the data set

used in [JHY+14] were out of the shelf (this data set contains 15,510 apps), we

could download only 9,877 apps on Google Play in April, 2014.

New Vulnerabilities Found: W2AIScanner detected and validated 286 ex-

ploitable vulnerabilities of 134 apps which corresponds to 7.75% of apps with

browsable activities being vulnerable. Since Google Play has millions of applica-

tions ready to download, we believe that we can expect a higher rate for the whole
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Table 4.2: Overall statistics of vulnerable apps in each W2AI attack category.

Category Sub-Category
# of

Sinks
# of

Vulnerable Apps
ID

Abusing
Web-
View
Interfaces

Abusing JavaScript-to-
-Native Bridge

9 52 1

Abusing HTML5 APIs 10 29 2
Local File Inclusion 9 63 3
Phishing 11 84 4

Abusing
Native
App
Interfaces

Database Access 14 10 5
Persistent Storage Pollution 72 7 6
Open Re-delegation 39 23 7
App-Specific Logic Flaws 16 18 8

app store.

Experimental Setup

We have conducted a systematic analysis on 12,240 apps in Ubuntu 12.04 on an

Intel Core i5-4570 CPU PC desktop (3.20GHz) with 16 GB of RAM.

To validate the exploits that abuse WebView interfaces, W2AIScanner sets the

malicious site’s URL (our attack web server) as a parameter in the malicious intent

hyperlink and utilizes the adb command, as shown below, to automatically launch

the corresponding activity via the intent hyperlink in the emulator or Android

device.

adb shell ’am start "intent ://# Intent;scheme=worknet;action

=android.intent.action.VIEW;S.url=http :// attacker.com;end"’

Thus, the vulnerable app loads the attacker’s page into its WebView, the test web-

page calls the exploitable JavaScript functions for that category of vulnerability

identified by W2AIScanner to retrieve the data and send it back to our test server.

By checking the responses in the server, we can automatically confirm whether

there are exploitable vulnerabilities in apps from the category of W2AI attacks

which abuse WebView interfaces.

To validate the exploits that abuse Android native app interfaces, W2AIScanner

utilizes the adb command to launch the activity to perform privileged operations

(e.g., inserting data into the app’s database). By analyzing the concrete values

in the log traces and mapping them to the Jimple registers as explained in 4.3,

W2AIScanner can automatically determine whether the exploits work (e.g., suc-

cessfully pollute the app’s database) or not.

4.4.1 Prevalence of W2AI Vulnerabilities in Apps

We ran W2AIScanner on 1,729 apps and detected 286 W2AI vulnerabilities in

134 apps. This shows that our system can scale as a vulnerability detection tool
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for W2AI attacks. (We, in fact, analyze 12,240 apps, first rejecting those without

browsable activities).

Table 4.2 gives a breakdown of the detected vulnerable apps into our 8 cat-

egories for W2AI attacks. The column, # of sinks, gives the number of sinks

defined by our specification for that category. There can be overlaps among the

different categories of sinks. For example, WebView.loadUrl can be the sink for the

first 4 categories. In total, we have specified 153 distinct sinks for 8 categories in

our attack specification. Table 4.4 shows the representative sink method for each

attack category.

The column, # of vulnerable apps, gives the number of apps which are vulner-

able to a class of vulnerability. An app can be vulnerable to more than one attack

category. For instance, the WorkNet example has vulnerabilities from categories

with ID 1 to 4. Thus, the sum of that column is greater than the number of

vulnerable apps.

We have found at least one application with more than 1 million downloads

for each category. One of the popular applications is Wikipedia (1.3.4) which is

vulnerable to categories with ID 2 and 4. We have also detected and confirmed

14 Dropbox applications to be vulnerable to open-redelegation attacks where at-

tacker can force them to invoke other apps on the phone. One app-specific logic

vulnerability appears in 587 apps so we count it as one unique vulnerability to

avoid skewing the results. Once this vulnerability is exploited, attacker can send

fake PayPal payment notifications to the phone. In Section 4.4.4, we present case

studies that show detailed results on 8 applications which are representative of

each of our attack categories.

Validation on Data from Intent Hyperlinks. In our experiments, we have

found 46 vulnerabilities in Android apps that pass data from intent hyperlink

to the native Android interfaces as parameters without proper validation. We

believe that by validating and sanitizing the data from the intent hyperlink before

passing it to the native interfaces, the app developer can effectively fix such W2AI

vulnerabilities. For instance, Android apps should not process arbitrary URIs

referencing files (e.g., configuration/setting files).

4.4.2 Effectiveness of W2AIScanner in Detecting W2AI

Vulnerabilities

We successfully generate accurate intent hyperlinks that follow complex patterns

and allow us to find zero-day vulnerabilities. For example, Letv is an Android

app which only processes an intent hyperlink if it has a query parameter with
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from as the key and baidu as value. Another example is Kobobooks which requires

that action parameter of the intent hyperlink that invokes the app be not equal to

android.intent.action.VIEW. W2AIScanner can successfully report such paths as

infeasible and avoid false alarms by the use of symbolic execution and validation.

An alternative approach to symbolic execution is fuzzing but we believe that any

fuzzing without some symbolic reasoning is unlikely to give good results.

4.4.3 Reporting Vulnerabilities to Vendors

Using our vulnerability detection system, we have found several critical zero-day

W2AI vulnerabilities. In this part, we explain the steps we took to detect and

report these vulnerabilities.

Analyzing the applications in our data set, we found a critical W2AI vulner-

ability in some of the PhoneGap hybrid applications in July 2014.13 Our system

is able to automatically generate proof of concept exploits for these applications.

The static analysis in our system reported two categories of vulnerabilities for

these apps: Abusing WebView Interfaces and Open Re-delegation. However, only

the first category of vulnerabilities were confirmed by our system. The attacks for

the second category of vulnerabilities failed due to a null pointer dereference which

would cause the application to crash. We have reported these vulnerabilities to

all of the application vendors and got positive feedback from some of them.

We also found a vulnerability in Dropbox SDK used in Android applications

where attacker can provide a redirection URL through which they are able to

launch open re-delegation attacks and also inject OAuth tokens. We detected this

vulnerability in July 2014 and reported to some of the vendors.

Our system has detected and confirmed a W2AI vulnerability in McAfee appli-

cation (an antivirus for Android apps) which enables attackers to launch phishing

attacks.14

We have reported all of the vulnerabilities explained above as well as the rest

of the vulnerabilities to Google. We have also provided the proof of concept intent

hyperlinks to exploit these vulnerabilities.15

We have also noticed a dangerous use of intent hyperlinks in some of the

applications that integrate QQ authentications. These attacks might result in

Cross-Site Scripting [XSS] and token exfiltration attacks. The security team in

QQ has confirmed the vulnerability and introduced a patch in the subsequent

releases of the SDK.

13The Cordova vulnerability [Kap] was reported afterwards in August 2014 by IBM security..
14Unfortunately the McAfee security team has not responded yet.
15Google has encouraged us to release our system to be used in the application vetting process.
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Table 4.3: Representative vulnerable apps for each W2AI vulnerability category.

ID App Version # of Downloads

1 WorkNet (kr.go.keis.worknet) 3.1.0 1 - 5 M
2 Wikipedia (org.wikipedia) 1.3.4 10 - 50 M
3 WeCal Calendar (im.ecloud.ecalendar) 3.0.8 1 - 5 M
4 IPharmacy (com.sigmaphone.topmedfree) 1.0.92 1 - 5 M
5 i2X RDP (com.tux.client) 11.0.1899 1 - 5 M
6 MoneyControl (com.divum.MoneyControl) 2.0 1 - 5 M
7 Caller ID (com.callapp.contacts) 1.56 1 - 5 M
8 Sina Weibo (com.sina.weibo) 4.3.0 5 - 10 M

ID: Category ID
App: Representative App (Package Name)

Version: App’s Version
Download: # of Downloads (Million)

Table 4.4: Sinks and policies/settings for representative apps.

Category Sub-category Representative Sinks Policies/Settings ID

Abusing
WebView
Interfaces

Abusing Java-
Script-to-Native Bridge

WebView.loadUrl
JavaScript-to-native interfaces,
setJavaScriptEnabled

1

Abusing HTML5 APIs WebView.loadUrl
setGeolocationEnabled,
setJavaScriptEnabled

2

Local File Inclusion WebView.loadUrl

setAllowFileAccess,
setJavaScriptEnabled,
setAllowFileAccessFromFileURLs

3

Phishing WebView.loadUrl setJavaScriptEnabled 4

Abusing
Native App
Interfaces

Database Access SQLiteDatabase.insert - 5

Persistent Storage Pollution
SharedPreferences.

Editor.putString
- 6

Open Re-delegation Class.forName - 7
App-Specific Logic Flaws TextView.setText - 8

4.4.4 Case Studies

In what follows, we detail the reached sinks which are exploitable and the damage

caused by the vulnerabilities for each representative app in Table 4.3.

Abusing JavaScript-to-Native Bridge. WorkNet with 1 - 5 million (M) down-

loads provides job information in Korea. W2AIScanner detects WebView.loadUrl

in this app. This app enables settings for JavaScript and JavaScript-to-native

interfaces in its configuration file (config.xml). After running W2AIScanner on

WorkNet, we have detected and exploited the WebView.loadUrl sink. This app

enables the following settings: setJavaScriptEnabled, setGeolocationEnabled,

setAllowFileAccess, setAllowFileAccessFromFileURLs. Hence, the web attacker

can mount all the attacks in the abusing WebView interfaces category on WorkNet.

As we have explained in this chapter, its WebView which loads arbitrary URLs

exposes the Java native methods to the JavaScript code. Once the user clicks the

malicious link, WorkNet loads the URL from the intent hyperlink’s parameters in

the WebView. Therefore, the malicious page running in the WebView can invoke

21 JavaScript-to-native interfaces to access private user data (e.g., contacts) and

perform privileged operations (e.g., modifying local files).
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Abusing HTML5 APIs. Wikipedia with 10 - 50 M downloads is the free ency-

clopedia containing more than 32 M articles in 280 languages. It contains 2 paths

that reach the WebView.loadUrl sink and enables JavaScript and geolocation set-

tings. The combination of this sink and setting enables the malicious site running

in the WebView to access the GPS sensors and send out the user’s current location

to the attacker to track the user at any time.

Local File Inclusion. WeCal Calendar is a calendar assistant, which synchro-

nizes with the Google calendar, takes notes, sets alarm and so on. W2AIScanner

detects that the app has flows that reach the WebView.loadUrl sink and enables

settings for JavaScript and the file’s access. The settings are: setAllowFileAccess,

setAllowFileAccessFromFileURLs. After validation, we find that with loading the

local HTML file (whose URL comes from the intent hyperlink) in the WebView,

the file can utilize XMLHttpRequest to read the local files (e.g., /etc/hosts) and leak

the content to the attacker.

Phishing. IPharmacy with 1 - 5 M downloads provides medical products.

W2AIScanner detects that the Webview.loadUrl sink in this app is reachable and

exploitable. Therefore, this app can be exploited to load a phishing page whose

URL is derived from the intent hyperlink crafted by the web attacker in the cus-

tomized WebView.

Database Access. 2X RDP Client is a popular remote desktop app. The ex-

ploitable sink reported by W2AIScanner is SQLiteDatabase.insert, which adds

items to farms table. The web attacker can set sensitive attributes, e.g., creden-

tials, in the intent hyperlink to pollute the app’s database.

Persistent Storage Pollution. MoneyControl is a popular business and market-

ing app. W2AIScanner detects paths that inject data to the SharedPreferences.

Editor.putString sink. Exploiting this vulnerability, the web attacker can make

permanent changes to the storage.

Open Re-delegation. Caller ID - Call Blocker is a caller-ID app in Google

Play that identifies a billion unknown callers. The reached sink for this app is

Class.forName. The attacker can set a private activity’s name in the intent hy-

perlink’s parameters. When this app launches with the malicious intent hyperlink,

it invokes the designated activity.

App-Specific Logic Flaws. Sina Weibo is a microblogging client for An-

droid phones. A W2AI vulnerability in this application allows the attacker

to show arbitrary titles to the victim user (e.g., attacker can set the title to

https://www.paypal.com) which can be used in social engineering attacks. The

vulnerable sink in this application is TextView.setText. The attacker can launch

an injection attack by putting an arbitrary title as query parameter in the mali-
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Figure 4.7: Attacks in Android smartphones can be classified to four categories:
(a) over-privileged malware; (b) privilege escalation; (c) injection attacks in
HTML5 and WebView attacks; and (d) web-to-app injection attacks;

cious intent hyperlink.

4.5 Related Work: Attacks on Android Apps

The popularity of smartphones along with the fact that these devices store a large

amount of private user data (e.g., contacts, user data files and geolocation) has

drawn much interest in the security research community. The Android operating

system restricts access to the user’s private data through a permission-based secu-

rity model. We compare three classes of attacks targeting Android smartphones

with the new class of attack (Web-to-App Injection) that is studied in depth in

this chapter.

4.5.1 Over-Privileged Malware

The first attack model depicted in Figure 5.1-(a) assumes that the Android

user installs a malicious application and grants critical permissions (e.g., sending

SMS). Android malware may use several ways to seem legitimate to the Android

users [ZJ12]. Felt et al. showed that it is very common to find over-privileged An-

droid apps in the app-stores [FWM+11]. Sometimes, a malicious advertisement
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library integrated into an application forces the app to request for high-privilege

permissions [GZJS12]. Since the Android permission system does not separate

privileges of Android apps from the embedded third-party libraries, the privileges

will be granted to the libraries as well. In our attack model, we don’t need any

kind of malware to be installed on the phone.

4.5.2 Privilege Escalation

Figure 5.1-(b) demonstrates another class, known as Android privilege escalation

attacks. While Android provides a well-structured permission system, it does not

protect against transitive permission usage. This ultimately results in allowing an

adversary to perform privileged operations (e.g., sending premium SMS) which

the sandboxed application is not authorized to do [DDSW10, LLZW14, CQM14,

ZLZ+14]. This class of attacks target unprotected components in benign appli-

cations. Enck at al. [EOMC11] have discussed the existence of unprotected

broadcast receivers which receive arbitrary intents from other applications on the

phone. ContentScope [ZJ13] is another work for finding pollution and leakage

attacks on content providers in Android applications. If a vulnerable Android ap-

plication exposes a content provider component without any protection, installed

malware on the phone can launch pollution and leakage attacks to steal data or

manipulate the sensitive data. These works all assume that the malicious apps

are present on the victim’s Android device.

4.5.3 HTML5 and WebView Injection Attacks

More recently, it has been shown that the WebView and hybrid apps [LHD+11,

JHY+14, GJS14, CW14] can lead to new classes of attacks (See Figure 5.1-(c)).

Luo et al. [LHD+11] observe that malicious JavaScript code can access the sensi-

tive resources via the native bridge by invoking addJavascriptInterface method.

Georgiev et al. carry out an analysis on hybrid apps, and demonstrate vulnera-

bilities that affect the native bridge mechanisms [GJS14].

Jin et al. introduce code injection attacks on HTML5-based mobile apps via

internal and external channels [JHY+14]. These attacks require the user to use

external resources such as bluetooth or barcode scanner to read malicious input

which will potentially exploit vulnerabilities in the HTML5 code. Alternatively,

the user has to visit the malicious page directly in the WebView of the hybrid

apps. Our attack model differs, since, W2AI attacks utilize intent hyperlinks

to convey the payload simply by clicking a link in the default browser, which is

more probable than users choosing to browse a malicious page through a specific
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app. Moreover, hybrid apps, like any other app can be prone to W2AI attacks.

Therefore, these apps are only a subset of applications which are systematically

studied in our work.

4.5.4 Web-to-App Injection Attacks

Figure 5.1-(d) shows our attack model, Web-to-App Injection attacks. We distin-

guish the threat models described above from the Web-to-App Injection attacks,

by the assumption that the user chooses to install the malware app on her phone.

However, the threat model studied in this chapter is much more probable and has

less requirements since the user only needs to click a link to exploit a vulnerability.

The attack targets are any third-party applications, including the hybrid apps in

HTML5 and WebView injection attacks (figure 5.1-(c)). The difference between

these two models is the program code where attacks start. In W2AI attacks,

the default browser parses a malicious intent hyperlink and invokes the vulnerable

app. Therefore, attacks start from Java code in the app and involve program paths

which might finally reach HTML5 code and even exploit its vulnerabilities. In con-

trast, in HTML5 and WebView injection attacks, the malicious URL loaded inside

the in-app WebView exploits vulnerabilities in HTML5 code and as a result may

reach Java methods which are explicitly exposed via addJavascriptInterface().

Some previous works have discovered attacks through the scheme mecha-

nisms [WXWC13]. Rui Wang et al. reveal confused deputy attacks on Android

and iOS applications which abuse channels provided by mobile OS. One of these

channels is the scheme mechanism through which attacker can invoke apps on the

phone by crafting intent hyperlinks and publishing on web. This work studies

the problem where user surfs through the web in customized WebViews of benign

applications and launches confused deputy attacks abusing the benign app’s “ori-

gin”. They present a CSRF attack on the Dropbox SDK on the iPhone [WXWC13]

launched through an intent hyperlink. However, our attacks differ because our at-

tack model is more general, the user clicks on an intent hyperlink in the default

browser, so it does not need to be started from the benign app and can lever-

age trusted channels like the default browsers. More importantly, we investigate

which vulnerabilities can be exploited once the attacker can manage to start an

application via an intent hyperlink. We have conducted (the first) systematic

and large-scale analysis of existing apps which shows that our analysis system is

not only able to detect vulnerabilities with high precision but also automatically

generate exploits.

Takeshi Terada [Ter] presents three browser vulnerabilities exploitable via In-
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tent scheme URLs [Ter]. This work is based on manual analysis.

4.6 Summary

In this chapter, we have presented an in-depth study of W2AI attacks which can

introduce a broad range of possible exploits (i.e., abusing WebView interfaces and

native app interfaces) in installed Android apps. It can be a significant threat

as no malicious apps are needed on the device and the remote attacker has full

control on the web-to-app communication channel.

Web-to-app injection enables web-based adversaries to trigger intents (with

arbitrary parameters) the same way as if the adversary had a malicious APK

installed on the victim’s device, without really installing the malware. Therefore,

the web adversary essentially plays the role of a pseudo-malicious application

which doesn’t need any actual Android permissions (e.g., reading “public” files on

compact flash drive) and does nothing except issuing (arbitrary) Intent messages.

As no malware is needed for our attacks, the root cause of the problem is that

apps do not validate Intent parameters. Even those users who are very careful to

never install malicious or “pseudo-malicious” apps are vulnerable.

In this chapter, we have presented some Android-specific programming prac-

tices that might increase the W2AI attack surface. Looking at the most popular

Android development frameworks, we have shown how reusing third-party soft-

ware components lead to security vulnerabilities. We have also studied the request

methods in the HTTP protocol to understand whether web-to-app channel can

borrow similar concepts to allow the developers utilize it more securely.

To discover the prevalence of W2AI vulnerabilities, we have employed our an-

alyzer to automatically detect the apps vulnerable to W2AI attacks and generate

exploits for them. With our analyzer, we also validate the exploits for the vul-

nerable apps. By running a customized version of our analyzer, W2AIScanner,

on 1,729 candidate (browsable) apps identified among the apps downloaded from

the Google Play, we have found 286 vulnerabilities in 134 apps. Specially our sys-

tem has automatically detected and confirmed devastating W2AI vulnerabilities

in PhoneGap and Dropbox applications.

We have observed that developers often expose a large percentage of the app

code-base to web without really needing to do that. We have also observed that

in many apps the main activity is browsable. We recommend the developers to

avoid making the main activities browsable and minimize the exposure to web to

reduce the attack surface. We also believe that white-listing the URLs processed

b the apps and validation and sanitization can help mitigating the W2AI attacks.
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It would also be useful to distinguish the URI intents with and without side-effect

to avoid vulnerabilities which can be exploited to control the behavior of the app.

Finally, we suggest the developers to check the origin of the incoming intents and

handle those coming from the web more cautiously.
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Chapter 5

Detecting and Characterizing

Database Attacks in Android

Apps

Android apps often make use of data stored in databases. Furthermore, apps in

Android are designed to provide functionality to each other, which means that an

app can interact with the database(s) managed by another app. A vulnerability

in an app can allow malware to violate the integrity and confidentiality of data

stored in its databases.

Apart from ContentScope [ZJ13], there has been little work on detecting

database vulnerabilities in Android apps. However, their work only studies vul-

nerabilities in public databases which are managed through the Android content

provider APIs. On the other hand, content management in apps is not limited to

content providers. Developers also utilize internal databases, private databases,

without implementing content providers. Even though such internal databases

may be intended to be used privately, malware may be able to launch pollution,

leakage or file access attacks. We indeed show that vulnerabilities in the benign

apps can have private database attacks. While studying the private database us-

age in apps which were previously only studied for public database attacks [ZJ13],

we discovered new privilege escalation attacks which are triggered from private

database vulnerabilities but end up exploiting protected content providers (public

databases) of other apps.

In this chapter, we study and classify different approaches taken by Android

developers to implement databases and the security controls used to protect them.

This is used to design our analysis system. We also study whether the public

database vulnerabilities in [ZJ13] still occur after Android’s changes to secure
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the default settings of content providers. In order to assess the security of the

databases in real-world apps, we extend the analysis framework introduced in

Chapter 3 and propose an end-to-end analysis framework, DBDroidScanner, which

finds and confirms database vulnerabilities more comprehensively than [ZJ13]. We

analyze for both public and private database vulnerabilities.

The Android database implementation relies heavily on URI objects. URIs

are used in Android to reference resources such as text files, images or structured

data. Paths in the app manifest referring to a particular set of data in content

providers are based on URIs. Code in the apps using database methods often

employ URI library methods. Inaccurate analysis of such libraries may result in

generated exploits which do not work. Existing works [ZJ13, ARHB15, BJM+15]

do not discuss much about (symbolic) models for URIs. As far as we are aware,

we are the first to present symbolic implementations for the semantics of URI

operations and related objects in Android.

Using DBDroidScanner, we analyze 924 apps which are among the top 100

apps of all categories in Google Play. We automatically detect and confirm that

153 database vulnerabilities are exploitable. We found some of the applications

which were detected in [ZJ13] but since updated to still have vulnerabilities, e.g.,

Maxthon Android Web Browser. More importantly, there are apps where the con-

tent provider reported to be vulnerable to the public database attacks in [ZJ13]

is updated with the vulnerability fixed, but it remains exploitable via other com-

ponents due to private database attacks.

In summary, our contributions in this chapter are:

1. A comprehensive classification of database attacks in Android apps.

2. Accurate models for URI-based libraries which are essential for analysis of

apps using databases.

3. A detection and exploit generation framework for zero-day Android database

vulnerabilities.

5.1 Overview

Android developers often open up the databases implemented in their apps to

“other apps” on the device using content provider components which provide APIs

for public database access from other apps. They can also implement databases

without exposing them through the public database mechanism by instead using

the inter-app communication channel, i.e., intents. We call the former group
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Public: Malware Unprotected App DB

Private: Malware Unprotected App DB

Private: Malware Unprotected App1 Protected App2 DB

CP API

Intent

Intent CP API

Figure 5.1: Database attack scenarios: CP API stands for Content Provider API.

of databases, public databases and the latter, private databases. A vulnerable

database (public or private) which is not protected properly may compromise the

security of the system. In addition, we show that public databases by design

have more robust and reliable protection mechanisms. For our purposes, database

means what Android provides for data storage, namely the SQLiteDatabase library

and files (e.g. ParcelFileDescriptor).

5.1.1 Public Database Attacks

The first category of attacks targets the public databases which are accessible

through content providers. Figure 5.1 shows the public database attack scenario

where a malware app uses the parameters of an unprotected content provider

API to exploit the database vulnerabilities of a victim app. In Android, com-

ponents should be exported to be accessible by other apps by specifying the

android:exported attribute in the manifest file. Content provider is a special

case. Line 4 in Listing 5.3 shows the android:exported attribute of the content

provider tag in the manifest file. By default, this attribute is set to false for

Android SDK 17 (released Nov 2012) and higher which means that the content

provider is not available to other apps. However, content providers in apps built

for SDK 16 and lower are exported by default, hence accessible by all apps. In this

thesis, we study the public database attacks for the SDK 17 and higher.1 While

the android:exported="false" attribute isolates a database from other apps, un-

fortunately, it is coarse-grained preventing all legitimate apps from using public

database functionalities.

Developers can protect content provider components using existing or their

own custom permissions.2 We consider cases where content provider is not fully

protected in our attack scenarios. Developers can restrict access to the data

in content providers across applications at different granularities. Setting the

android:exported="false" attribute is the least fine-grained option to protect

1ContentScope [ZJ13] analyzes apps for SDK 16 and lower versions.
2A custom permission is declared by the developer and has to be added to the manifest file

separately. If the protection level of a permission is normal, all applications can get it.
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the component. Alternatively, they can specify the following permissions: (1)

android:permission for the whole component which is coarse-grained and pre-

vents apps (malware) lacking this permission from directly accessing the content

provider; (2) readPermission and writePermission which restricts access based

on the request, i.e., query or data manipulation. These permissions are more

fine-grained and partially protect the content providers; (3) path-permission for

protecting particular sets of data in databases which is the finest-grained option

protecting specific paths of the content providers.3 More details on choosing the

candidate content providers can be found in Section 5.4.1.

5.1.2 Private Database Attacks

The second category of attacks targets the private databases which are accessible

through inter-app communication. An unprotected app has an unprotected com-

ponent (except for content provider) which is exported4 but not protected by any

dangerous or more restrictive permissions. Figure 5.1 shows two private database

attack scenarios. In the first scenario, the malware sends malicious intents to the

victim app’s components (e.g., activity) to exploit its database vulnerabilities. In

the second scenario, two victim apps are involved: the malware first sends ma-

licious intent to the victim App1; next, App1 invokes the content provider APIs

of victim App2 which results in exploiting the vulnerabilities of the latter. Note

that the victim App2 might have correctly protected its content provider with per-

missions. It is also possible that the victim App1 calls its own protected content

provider APIs.

Unlike public databases, Android does not provide any explicit protection

mechanism for private databases. Hence, developers have to implement their

own (possibly buggy) access-control code to secure internal databases. If a com-

ponent (e.g., a broadcast receiver) allows an app to access the private databases

by sending messages (e.g., intents), there is no further access control in Android

to protect these private databases. However, many Android apps heavily rely on

these private databases to organize various data types such as contacts and app

private information.

Intents are the main means of communication in Android and developers often

fail in checking its origin properly. They may use intents for communication among

3Android allows developers to temporarily override the content provider permissions using
the grantUriPermission. This case is not considered as the app which owns the content
provider should explicitly send an intent or call grantUriPermission() method to allow the
app to temporarily access its data.

4I.e., exported="true" is specified. Alternatively the exported attribute is not specified
explicitly but the component has intent filter.
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internal components, but forget that intents can also be created and sent by other

apps. Handling an incoming intent which modifies the internal database’s data is

not different from handling other intents and this might result in the programmer’s

confusion. As a result, intents may trigger undesired behaviors which result in

security violations of private databases. Apps may accidentally expose access

paths to private databases by allowing portions of the input string from an intent

to directly be passed to the SQL methods (e.g., insert()), which allows attackers

to manipulate the database. We remark that the “private databases” discussed in

[ZJ13] are considered here as public databases since they can be accessed through

the content provider APIs.

We adopt the classification in ContentScope [ZJ13] and categorize our public

and private database vulnerabilities to leakage and pollution. A leakage vulnera-

bility results in leaking sensitive data while pollution vulnerabilities allow attackers

to manipulate the data. Additionally, we use the file access category for attacks

which allow the attackers to control obtaining the file descriptor for the database

files which may cause both leakage and pollution of data.

The question of whether the developer intends certain functionality allowing

other apps (malware) to access its database is a tricky one. For the public database

attacks, one view is that only protecting a specific set of paths of the content

provider in the manifest file is intentional. However, a valid argument is that

the developer may have chosen a wrong path pattern, thereby creating a vul-

nerability – this seems to be the case for some of real app vulnerabilities found.

Private database attacks are even more susceptible to unintended behavior as the

protection in Android is limited only to the permissions specified for the entire

exported component which is too coarse-grained. Hence, developers might give

up on protecting a component since it restricts the app functionality too much

without realizing its exposure to attacks. In this work, we are conservative and

make the reasonable assumption that a database which is available to all apps

including malware but not fully protected is a candidate to be analyzed for public

and private database vulnerabilities.

5.2 Motivating Examples

Listing 5.1 and 5.2 show two example components of app A (our example benign

victim app) which are vulnerable to the public and private database attacks respec-

tively. App M in Listing 5.4 is the malware app which exploits the vulnerabilities

in app A.
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�
1 public class PublicDatabase extends ContentProvider{

2 UriMatcher uriMatcher = new UriMatcher (0);

3 PublicDBHelper dbHelper;

4 public boolean onCreate (){

5 dbHelper = new PublicDBHelper (...);

6 uriMatcher.addURI("com.example.app.PublicDatabase", "#", 1);

7 uriMatcher.addURI("com.example.app.PublicDatabase", "contacts/", 2);

8 return true;}

9 public Uri insert(Uri uri , ContentValues values){

10 SQLiteDatabase db = dbHelper.getWritableDatabase ();

11 switch(uriMatcher.match(uri)){

12 case 1:{

13 String table = getTableName(uri.getLastPathSegment ());

14 if(! table.isEmpty ())

15 return db.insert(table , null , values);

16 return null;

17 }

18 case 2:{

19 return db.insert("Contacts", null , values);

20 }

21 default:

22 return null;

23 }

24 }

25 String getTableName(String id){

26 switch(id){

27 case "1":

28 return "ScheduledMessage";

29 default:

30 return "";

31 }

32 }

33 ...

34 }

35 class PublicDBHelper extends SQLiteOpenHelper{

36 public void onCreate(SQLiteDatabase db) {

37 db.execSQL("CREATE TABLE ScheduledMessage (message TEXT , ... )");

38 db.execSQL("CREATE TABLE Contacts (_id INTEGER , ...)");

39 }

40 ...

41 }� �
Listing 5.1: Public database example code in app A.
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�
1 public class ExampleBroadcastReceiver extends BroadcastReceiver{

2 PrivateDBHelper dbHelper;

3 ...

4 public void onReceive(Context paramContext , Intent paramIntent){

5 ContentValues values = new ContentValues ();

6 if(paramIntent.hasExtra("task")){

7 String task = paramIntent.getStringExtra("task");

8 String data = paramIntent.getStringExtra("data");

9 values.put(task , data);

10 if(values.containsKey("message")){

11 int contact = paramIntent.getIntExtra("contact");

12 values.put("contact", String.valueOf(contact));

13 handleSendMessage(contentValues);

14 }

15 }

16 }

17 void handleSendMessage(ContentValues values){

18 SQLiteDatabase db = dbHelper.getWritableDatabase ();

19 db.insert("SendMessage", null , values);

20 }

21 }

22 class PrivateDBHelper extends SQLiteOpenHelper{

23 public void onCreate(SQLiteDatabase db) {

24 db.execSQL("CREATE TABLE SendMessage (message TEXT , ... )");

25 }

26 ...

27 }� �
Listing 5.2: Private database example code in app A.

�
1 <permission android:name="com.example.app.Write" android:protectionLevel="

dangerous" />

2 <permission android:protectionLevel="normal" android:name="com.example.app.

permission"/>

3 ...

4 <provider android:name=".PublicDatabase" android:authorities="com.example.app.

PublicDatabase" android:exported="true">

5 <path -permission android:pathPattern="/contacts/" android:writePermission="com.

example.app.Write" />

6 </provider >

7 <receiver android:name="com.example.app.ExampleBroadcastReceiver" android:

permission="com.example.app.permission">

8 <intent -filter >

9 <action android:name="com.example.app.event.Trigger" />

10 </intent -filter >

11 </receiver >� �
Listing 5.3: The content provider and broadcast receiver specification of app A

(victim app) specified in its manifest file.
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�
1 class DatabaseMalware extends Activity{

2 void insertPublic (){

3 Uri targetUri targetUri = Uri.parse("content ://com.example.app.PublicDatabase

/1");

4 ContentValues values = new ContentValues ();

5 values.put("message","Sensitive Data");

6 ContentResolver contentResolver = getContentResolver ();

7 Uri confirmationUri = contentResolver.insert(targetUri , values);

8 if(confirmationUri != null){

9 // attack has been launched successfully.

10 }

11 }

12 void insertPrivate(int phoneNo , String message){

13 Intent intent = new Intent("com.example.app.event.Trigger");

14 intent.putExtra("task", "message");

15 intent.putExtra("data",message);

16 intent.putExtra("contact",phoneNo);

17 sendBroadcast(intent);

18 }

19 }� �
Listing 5.4: App M which is a malware accessing the public and private databases
of the victim app A.

5.2.1 Vulnerable Public Database Example

Line 4 in Listing 5.3 shows the content provider tag of app A. The android:exported

attribute in the manifest allows the content provider to be accessed by other

apps on the device. The developer has tried to protect this provider using

<path-permission> at Line 5. This means that any request which targets URIs

with the "/contacts/" path intending to modify the data managed by this provider

will be allowed if the requesting app has the com.example.app.Write permission.

However, there are some bugs in the code in Listing 5.1. Other paths in this code

allow the attacker to pollute the database with sensitive data which will be sent

out later (e.g., via SMS).

In the lifecycle of the content providers (see Section 5.4.1), onCreate() is the

first method called by the Android framework. The two URI patterns are regis-

tered in the android.content.UriMatcher object: Line 6 maps URIs whose paths

only consist of digits to 1 and Line 7 maps URIs whose paths are "/contacts/" to

2. Due to the <path-permission> in the manifest file (Line 5 in Listing 5.3), only

the second URI pattern is protected by the writePermission. However, the first

URI pattern is not protected by any permission so malware can use it to pollute

the database by invoking the insert() API in the content provider.

Now, we explain the public database attack launched by app M, the malware

in Listing 5.4. The insert() method of the content provider in app A at Line 9

in Listing 5.1 is called once app M calls ContentResolver.insert() at Line 7 in

Listing 5.4. App M also passes appropriate data as arguments of this method to
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send sensitive messages to the contact list on the device. The targetUri at Line

3 is crafted by the attacker in a way to pass the check at Line 11 in Listing 5.1 to

reach the SQLiteDatabase.insert() statement at Line 15. In this example, the bug

which leads to the public database attacks can be fixed either by enforcing proper

permissions in the manifest file or changing the implementation of the content

provider. Instead of protecting a particular subset of paths in the manifest file,

the developer can protect the whole provider by the writePermission which is

inflexible. Alternatively, she could remove Line 6 in Listing 5.1 and only allow

the path patterns that are already protected in the manifest file to execute the

program to reach the insert() method.

5.2.2 Vulnerable Private Database Example

Listing 5.2 shows an example broadcast receiver in app A which is vulnerable to

private database attacks. The manifest file of this app in Listing 5.3 shows that

the broadcast receiver component declares the permission at Line 2 with "normal"

protection level. Therefore, any application can have this permission including

app M. When app M creates and sends a malicious intent to the broadcast receiver,

the onReceive() method gets invoked in Listing 5.2. This method processes the

Intent message and if it contains a particular set of data, parts of its content will

be stored in the private database at Line 19.

The private database attack explained above can be prevented by protecting

the entry points which make the private internal databases reachable. For exam-

ple, the broadcast receiver in this example could be protected by a permission

with "dangerous" protection level. In this way, the malware would not be able

to send arbitrary intents to this component because it does not have the required

permission. However, as this protection mechanism is all-or-nothing, it may not

be flexible enough. Alternatively, the developer can implement and incorporate

validators in the code to prevent the malicious payloads reaching the database.

Experience shows that writing a correct validator is error prone, e.g., the vul-

nerable code in Listing 5.2 tries to validate the incoming Intent message before

inserting its data to the database, but it still has a vulnerability.

Our example database attacks show that even though the targets in the pri-

vate and public attacks are similar, e.g., SQLiteDatabase, the attack channels

are different and attackers have to bypass different security mechanisms. Public

databases have more standardized security mechanisms. Private database apps

seem to be written more arbitrarily and their security are mostly based on the

app’s implementation.
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These examples also show that detecting and generating exploits for database

attacks demands accurate analysis. A malware installed on the device can con-

struct malicious inputs using data structures and objects which are more complex

than primitive types. There are also several libraries with particular semantics on

the execution path which have to be handled by the analysis to lower down the

false positive rates. In addition, since the number of entry points for the private

database attacks can be large and the private databases can be implemented any-

where in the code-base, the analysis needs to be scalable and efficient. Next,we

discuss our attack model and explain how we detect and confirm database attacks

in real-world Android apps.

5.3 Threat Model

The adversary in our attack model is a malware installed on the Android device.

We do not make any assumptions about the permissions requested by the mal-

ware, i.e., malware does not need to request for any permission with dangerous

protection level. We assume that at least one app on the device is benign but

buggy, hence a database vulnerability exists. The malware can attack either pub-

lic or private databases of unprotected apps as shown is Figure 5.1. It needs to

craft malicious input (which can be string, URI objects, intent or other types of

objects) and send it to the relevant component of the vulnerable app.

5.4 Detection and Exploitation of Database Vul-

nerabilities

We aim to generate inputs which can exploit these vulnerabilities. Con-

tentScope [ZJ13] is an analysis framework which detects and exploits the public

database vulnerabilities using reachability analysis and constraint solving. How-

ever, it does not deal with the private database vulnerabilities. Our experience

shows that private database vulnerabilities are more scattered throughout the

code-base of Android programs. Hence, compared to ContentScope, our analysis

has to be equipped with the techniques which deal with the scalability challenges

and handle framework libraries more precisely. We present DBDroidScanner and

show how it extends and customizes different components of the analysis frame-

work introduced in Chapter 3.
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5.4.1 Source-Sink Pair Identification for Database Attacks

The first component of our analysis framework is to identify the source-sink pairs

– this is customized for the class of vulnerabilities studied by the system namely,

database vulnerabilities. In order to find the entry points which lead to the

database sink methods, first, we study possible ways of accessing the public and

private databases in the Android apps.

Direct Invocation of Content Provider APIs (Public Databases)

Content provider components encapsulate local content and export them through

standardized APIs: query(), insert(), openFile(), etc. These are the interfaces

which can be invoked by other apps to operate on the internal SQLite database

and internal files. A malicious app can call these (standardized) APIs to launch

pollution, leakage or file access attacks. Once the possible entry methods are

determined, we mark the parameters of these methods as source variables.

A content provider is candidate for analysis if it is not fully protected by

appropriate attributes and permissions in the manifest file. A content provider

is fully protected: (1) by default (equivalent to exported="false") in Android

SDK 17 and higher; (2) if exported="false" is specified explicitly; (3) if the

android:permission attribute is specified in the <provider> tag in the manifest

file.5

A content provider is partially protected if developers use the readPermission

and writePermission or <path-permission> for a more fine-grained protection. If

the content provider is protected by these permissions, some of the APIs do not

need to be analyzed for the public database attacks. We remove the permission-

protected APIs from the source method list based on the category that they belong

to and the permission chosen by the developer: (i) if the content provider is

protected by the readPermission, clients installed on the device must request for it

to be able to query the component. Therefore leakage APIs (e.g., query()) cannot

be a source method; (ii) Similarly if a component is protected by writePermission,

the pollution APIs (e.g., insert()) cannot be source methods; (iii) For the APIs

which are used to obtain the file handlers (e.g., openFile()), readPermission and

writePermission are checked based on the requesting access mode. If the access

mode is "w", writePermission is checked and if it is "r", the readPermission is

checked. If the content provider is protected by the readPermission, we analyze

the app for the "w" mode and if it is protected by the writePermission, we analyze

5If a content provider is protected by a permission which has a protection level higher than
normal (e.g., dangerous), it is not chosen as a candidate entry point for analysis since the user
will be prompted to grant it.

95



it for the "r" mode. Since the attacker can always gain the file handlers in one of

the "r" or "w" access modes, the file access APIs are always source methods.

A content provider which is protected by the readPermission and writePermission

simultaneously will not be chosen as candidate for analysis since such providers

are not reachable by the malware. The analysis does not generate an exploit

whose reported path is protected by the <path-permission>. For instance, Line 5

in Listing 5.3 shows that the developer has protected the "/contacts/" path by

writePermission. Therefore, our analysis does not generate exploits consisting of

URIs which have "/contacts/" path to invoke the insert() method of the content

provider as they will be false positives.

Intents and Data Access (Private Databases)

Android apps may have private databases typically in the form of SQLite databases

which are not accessible through content providers. Private databases can be im-

plemented in any component (class) of an app. A component (except for content

provider) is a candidate entry point to be analyzed for private database attacks

if it is not protected by permissions and it is exported (see Section 5.1). A mal-

ware installed on the device may indirectly access private databases by crafting

malicious intents without calling any of the methods of the ContentResolver to

invoke the ContentProvider APIs. Instead, it sends an intent that starts a com-

ponent (e.g., activity), which is part of the provider’s app. Hence, the destination

component is in charge of retrieving and processing the data. These intents are

obtained by APIs such as getIntent() in activities or onStart() in services, etc.,

which are our source methods.

We have classified the sink methods to the leakage, pollution and file access

categories.6 The sink methods used in our analysis for the privilege escalation

attacks are the ContentResolver APIs (e.g., ContentResolver.insert()). These

sinks are used to detect both public and private database attacks.

5.4.2 Constructing the Control Flow Graph and Reacha-

bility Analysis

The control flow graph (CFG) construction for analyzing database attacks is sim-

ilar to the one in Section 3.4. Android apps do not contain a main method so

the CFG is dependent on the lifecycles of the entrypoint components. The entry

6E.g., SQLiteDatabase.query(), SQLiteDatabase.insert() and
ParcelFileDescriptor.open() for the leakage, pollution and file access categories
respectively.
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point component for the public database attacks is content provider. The content

provider APIs are called by the underlying Android framework as callback meth-

ods in a specific order as follows. First, the ContentProvider is instantiated and

the onCreate() method is called. Next, one of the entry methods of the content

provider which is overridden by the app is invoked and this process is repeated for

the rest of the overridden entry methods. Notice that the onCreate() method in

content providers which is supposed to be called before any other API is anlayzed

before other callbacks. The lifecycle for the entry point components which trigger

the private database attacks are the same as the models explained in [ARF+14].

A sink reachability analysis is performed on the CFG to identify whether a sink

method is reachable from a program point and what their distance is. This in-

formation is later used by the search heuristic of the symbolic execution phase

to optimize the path traversal for reaching sink methods, thereby reducing path

explosion.

5.4.3 Symbolic Execution for Detecting Database Attacks

As we have discussed in Chapter 3, symbolic execution would have to deal with

low-level data structures, e.g., collection classes which are essentially a barrier

for most of the existing analyses. Also, some parts of the libraries might not be

supported by the analysis, e.g., native code.

The analysis introduced in Section 3 takes a hybrid approach of static symbolic

execution and dynamic testing to interact with the Android framework. While

the hybrid approach helps for scalability, modeling certain libraries is crucial for

certain classes of vulnerabilities. The examples in Listing 5.1 and 5.2 show that

the execution paths that lead to the database attacks might include Android and

Java library methods which have to be handled more accurately by the symbolic

execution and constructing exploits to run these paths is not trivial.

Among these libraries, those which construct a URI [BLFIM98] object and use

its semantics to build filters are particularly important for building public and

private database exploits. For instance, the entry methods of content providers

which have to be invoked by the malware in the public database attacks require a

URI parameter to identify the data in a database. URI objects are different from

strings and have more complex semantics. The analysis framework in Chapter 3

supports load and store operations for the fields of URI objects but not more com-

plex operations. This is not sufficient for generating the database exploits which

rely on these operations, hence, we model semantics of complex URI methods.

Note that ContentScope [ZJ13] which is designed to detect the public database

97



vulnerabilities also has to handle such libraries to be able to generate working ex-

ploits. However, the authors do not discuss how they model them. Our approach

for handling URI-based libraries combines the classical symbolic execution which

is dependent on SMT solvers with automata-based theories. We use the following

approach to construct symbolic models for URI-based libraries: (i) we use SMT

formulas if a method of a library can be directly translated to an SMT formula

and the formula is tractable enough. Examples of such methods can be found in

Table 5.1; (ii) sometimes, directly translating the semantics of library methods to

SMT formulas is complex and the resulting formula is large (possibly unbounded).

If the method maps an input string to an output string, we model them as Sym-

bolic Finite Transducers (SFT) [HLM+11] to simulate the I/O relationship. In

what follows, we study the structure of URIs and present our models using the

approaches discussed above.

Background: Structure of Generic URIs and URI-Based Libraries

URIs are widely used in Android to identify resources. For instance, content

providers use different components of URIs to reference data in their tables. How-

ever, a URI might contain components that trigger vulnerabilities in the recipient

code which interprets the URI. The syntax for a “generic URI” which conforms

to RFC 2396 [BLFIM98] is as follows:

〈scheme〉://〈authority〉〈path〉?〈query〉

where only the existence of scheme part is mandatory. The scheme component

identifies a resource and defines the semantics for the remainder of the URI string.

For example, the scheme component of the URIs used by the content providers

has to be "content". The next element, authority, is a hierarchical element spec-

ifying where the URI is governed by. An authority can consist of userinfo, host

and port where userinfo and port might not be present. The path component

contains data specific to the authority and query is a string consisting of key-value

pairs. A URI reference may have additional information attached in the form of

a fragment identifier.

The Android and Java libraries that implement the URIs are android.net.Uri

and java.net.URI respectively which conform to RFC 2396 [BLFIM98]. Android

apps use the first class for implementing URIs more often. Even though we ex-

plain our models mainly based on the android.net.Uri, most of the methods of

the java.net.URI class are handled in a similar way. URI instances and their op-
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erations are not directly supported by SMT solvers. There are a number of classes

which are frequently used in Android programs and provide methods to manip-

ulate URIs.7 A content URI8 is simply a URI that identifies data in a provider.

Every data access method of ContentProvider class has a content URI parame-

ter which allows developers to determine the table, row, or file to access. Content

URIs include the name of the entire provider which has to match the authority at-

tribute of the content provider in the manifest file. The android.net.ContentUris

class declares methods for working with the id part of a content URI. This class

has utility methods useful for working with the android.net.Uri objects that use

the "content" scheme. The java.net.UriMatcher class helps in choosing which

action to take for an incoming content URI. This class has methods which map

content URI patterns to integer values. For example, the developer can use the

integer values in a switch statement that chooses the desired action for the content

URI or URIs that match a particular pattern (Line 11 in Listing 5.1).

Symbolic Representation for URIs

Our analysis keeps a separate pool of URIs to trace the states of the URI instances.

We call the model that we have created to represent URIs, summarized URI. A

summarized URI object can be altered by the methods of the classes listed above.

Basically, our symbolic model for the URI instances follows the original URI class

semantics and stores symbolic values for the URI fields. The states of fields of

summarized URIs change during symbolic execution. A summarized URI also

contains summarized methods which are modeled in one of the following ways:

(i) directly translated to SMT formulas; and (ii) SFTs. Summarized URIs are

further used as the building blocks of other related classes. For instance, the

java.net.UriMatcher class stores the summarized URIs which are added using

the UriMatcher.addURI(Uri) method (Line 6 and 7 in Listing 5.1). A content URI

is also modeled and used as a summarized URI.

Direct Translation of Methods to SMT Formulas

Table 5.1 shows some of the methods which are directly translated to SMT for-

mulas. We present example symbolic representation of methods of libraries which

are dependent on URIs. Uri.getLastPathSegment() which returns the last path

segment of a URI can be modeled with the following self-explanatory constraint:

7E.g., android.net.Uri.Builder, android.content.UriMatcher,
android.content.ContentUris, etc.

8Content URI syntax: content://authority/path-prefix/id
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Input: String path

Output: String LPS

Local variable: String x

¬LPS.contains("/") ∧ (path = x."/".LPS ∨ path = LPS)

where uri is an android.net.Uri instance object, path is the path field of the uri,

x is a string variable, LPS is the output variable for the result of the method which

represents the last path segment of the uri, "." is the concatenation operation

and contains("/") means that the base variable contains the ”/” character. We

actually work with the constraint in SMT format to be solved by the SMT solver:

(= (str .++ x LPS) path)∧
(= (str.indexof y "/" 0) -1)∧
(or (= (str .++ "/" y) LPS) (and (= (str.len x) 0) (= y LPS)))

The getPathSegments() method is another method which is modeled using the

semantics of the bounded version of String.split() method (i.e., splitN) where

N is the number of string tokens found in the base string variable. N is two for

the particular example shown in Table 5.1.9 Some of the methods are translated

using models for other methods. For instance, Uri.Builder.appendId(String id)

is translated using the Uri.Builder appendPath(String x) method. In what fol-

lows, we present the symbolic models for library methods which are more complex

and therefore modeled using SFTs. We illustrate symbolic execution for these

library methods through concrete examples.

Matching URIs Using SFT

The UriMatcher.match(Uri) method is often used in Android programs to compare

content URIs. It performs a mapping operation, i.e., accepts an object as input

and maps it to a unique output value. Modeling this method as an SMT formula

is problematic because the formula might be unbounded. We represent our model

using Symbolic Finite Transducers (SFT) [HLM+11]. Finite transducers are an

extension of finite automata used to model operations on lists of elements. A SFT

extends a finite transducer by allowing the transition labels to be predicates. In

what follows, we mainly explain how SFTs are used using examples.

Figure 5.2 shows the SFT designed for the UriMatcher.match(Uri) method. In

this diagram, Ui belongs to the set of URIs added to an android.content.UriMatcher

object via UriMatcher.addURI(Uri). Each transition has a constraint (ci) which

9Our implementation supports formulas for higher values of N.
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Table 5.1: This table shows SMT formulas for modeling methods of URI-based
classes.

Class Method Constraint

android.net.Uri.Builder Uri.Builder.

appendPath(String x)

path′ = (str.++ path ”/” x)

android.net.Uri String

getLastPathSegment()

(= (str.++ x LPS) path)∧
(= (str.indexof y ”/” 0) -1)∧
(or (= (str.++ ”/” y) LPS)
(and (= (str.len x) 0)
(= y LPS)))

android.net.Uri List

getPathSegments()

(or (= path (str.++ ”/” x1 ”/” x2))
(= path (str.++ ”/” x1 ”/” x2 ”/” x3 ))) ∧
(not (str.contains x1 ”/”)) ∧
(not (str.contains x2 ”/”))

android.content.ContentUris Uri.Builder

appendId(String id)

appendPath(id)

android.content.ContentUris long

parseId(Uri uri)

last := uri.getLastPathSegment() ∧
(ID = (str.to.int last))

android.content.ContentUris Uri

withAppendedId(Uri uri,

long id)

appendPath((int.to.str id))

outputs d, the default value registered in the UriMatcher (e.g., 0 registered at Line

2 in Listing 5.1), if it is not satisfied. ϕ is the path constraint of the current execu-

tion path. If the URI passed as argument to UriMatcher.match(Uri) matches any

of the Ui, the transducer outputs the integer code stored for Ui (code(Ui)). The

symbol e, used for the transition between q2 and q3 denotes the end of inputs.

Content URI patterns can be matched using wildcard characters. Our symbolic

model understands the "*" and "#" used as the path segment by the UriMatcher

class where "#" is ([(0-9)+]) and "*" is (.*) as regular expressions.

In order to symbolically execute uriMatcher.match(uri) at Line 11 in List-

ing 5.1, our analysis employs the SFT in Figure 5.2 for the two URIs registered

in uriMatcher at Lines 6 and 7. First the SFT examines whether the argument

uri matches the URI at Line 6 which restricts the path segment of the uri to

match ([0-9]+) and returns 1 (the code registered for the first URI). Next, the

analysis examines the second URI at Line 7 which restricts the path to be equal

to "/contacts/". However, due to the <path-permission> at Line 5 in Listing 5.3,

this URI is protected and should not be reported as exploitable (unsatisfiable due

to the path constraint). Hence the path at Line 18 in Listing 5.1 is infeasible.

Comparing URIs Using SFT

Another example method which is modeled using SFT is Uri.compareTo(). This

method constructs the string representation of the base and argument Uri ob-

jects and compares them: it returns 0 if the base and argument Uri objects are

equal; and less or greater than 0 if the base URI string is lexicographically less or

greater than the argument URI string respectively. Figure 5.3 depicts our model
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Sstart

q1 q2 q3

c1: f1,1 = f2,1 ∧ ϕ

c2: f1,2 = f2,2 ∧ ϕ

c3: f1,2 = “#” ∧ f2,2 ∈ L([0-9]+) ∧ ϕ

c4: f1,2 = “*”
c1/d

c2/d

c3/d

c4/d

e/code(Ui)

Figure 5.2: SFT for UriMatcher.match(Uri): φ is the path constraint; the fields
of the registered and argument URI are denoted by f1,i and f2,i respectively; c1

checks the constraints for the authority and c2, c3 and c4 check the constraints for
the path segments of the URIs and d is the default integer registered in UriMatcher

object.

for Uri.compareTo(Uri) as an over-approximation of this method: it returns 0 if

the string representations of the two URIs are equal (i.e., transitions reach the

accepting state q7) and 1 otherwise. If the fields of the base Uri and the argument

Uri are represented by f1,i and f2,i respectively and ϕ denotes the path constraint

computed so far, ci which is the constraint label of a transition is: f1,i = f2,i ∧ ϕ.

For instance, the transition from the start state, S, to q1 symbolically represents

all possible scheme fields in the base URI (f1,1) which match the scheme field of

the argument URI (f2,1) and also satisfy the path constraint.

We now explain how our symbolic model for Uri.compareTo() works using an

example. If we add the two methods in Listing 5.5 to the PublicDatabase class in

Listing 5.1 which is vulnerable to the public database pollution attacks, this class

will also become vulnerable to the public database leakage attacks. In order to

generate working exploits, our analysis needs to compare the two Uri instances, u1

and u2 at Line 4 in Listing 5.5. Our symbolic executor first creates a summarized

URI instance for u2, the first argument of the query method which is a Uri object.

Next, it analyzes supportedUri() at Line 2. This method builds and returns a new

Uri object, hence the symbolic executor creates another instance of a summarized

URI and initializes its fields with the corresponding values (e.g., scheme field will

be "content"). Line 3 enforces constraints on the fields of u2 as well and adds

them to the path constraint. At this point, the path constraint for this part of

the program10 is:

10We do not present the path constraint for the previously analyzed parts of the program for
simplicity.
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�
1 public Cursor query(Uri u2 , String [] projection , String selection , String []

selectionArgs , String sortOrder) {

2 Uri u1 = supportedUri ();

3 if(u2.getScheme ().contains("content") && (u2.getPathSegments ().get (0) != null))

{

4 if(u1.compareTo(u2) == 0){

5 SQLiteDatabase db = dbHelper.getReadableDatabase ();

6 db.query(u2.getPathSegments ().get(0), projection , selection , selectionArgs ,

null , null , sortOrder , null);

7 }

8 }

9 return null;

10 }

11 Uri supportedUri () {

12 Builder builder = new Uri.Builder ();

13 builder.scheme("content").authority("com.example.app.PublicDatabase").

appendPath("profile").appendPath("1").appendQueryParameter("id", "1").

appendQueryParameter("type", "admin");

14 Uri u = builder.build ();

15 return u;

16 }� �
Listing 5.5: Example Android program which calls the Uri.compareTo(Uri)

method.

φ = f2,1.contains("content") ∧ f2,2 = "com.example.app.PublicDatabase" ∧
f2,3 = "/".x1."/".x2 ∧ ¬ x1.contains "/" ∧ ¬ x2.contains "/" ∧ x1 6= null

where xi is the (i-1)th path segment determined by the Uri.getPathSegments() at

Line 3 and the fields of u2 are denoted by f2,i: f2,1 is the scheme, f2,2 is the authority

and f2,3 is the path field of u2. The authority "com.example.app.PublicDatabase"

is obtained from the manifest file.

At each transition of the SFT, new constraints are concatenated to the path

constraint as shown below and if they are satisfiable, the transducer moves to the

next state:

c1: f1,1 = f2,1 ∧ f1,1 = "content"

c4: f1,2 = f2,2 ∧ f1,2 = "com.example.app.PublicDatabase"

c6: f1,3 = f2,3 ∧ f1,3 = "/profile /1"

c7: f1,4 = f2,4 ∧ f1,4 = "id=1"

c7: f1,5 = f2,5 ∧ f1,5 = "type=admin"

where the fields of u1 and u2 are denoted by f1,i and f2,i respectively. The indices

in this example are from 1 to 5 and refer to the scheme, authority, path, first query

parameter and second query parameter respectively. If the analysis doesn’t find

any constraint for a transition, it moves to the next state. Since the constraints

for all transitions in this example are satisfied, the SFT returns zero which means

that u1 and u2 are equal. For example, c1 enforces the f1,1 (scheme) field of u1
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Sstart q1 q2 q3

q4q5q6q7

c1/1 c2/1 c3/1

c3/1

c3/1

c4/1 c5/1

c6/1

c6/1

c7/1

c7/1

c8/0

Figure 5.3: SFT for Uri.compareTo(Uri). The label for each transition is a
constraint (ci) for a particular field of the base and argument URIs: c1 for scheme,
c2 for userinfo, c3 for host, c4 for authority, c5 for port, c6 for path, c7 for query
pairs, c8 for fragment.

to be equal to both "content" and f2,1 and the path constraint also enforces the

f2,1 field of u2 to contain "content". The concatenation of the path constraint

and c1 is satisfiable and restricts the f2,1 field of u2 to be equal to "content".

Similarly, the constraints for the rest of transitions are satisfiable and as a result,

the sink method at Line 6 can be reached by the malware on the device. The

transducer for Uri.compareTo() deals with the multiple query parameters in the

URI instance (Line 13) using c7. In this case, the SFT iterates through the query

parameters stored in the summarized URI and moves to the accepting state if all

the constraints are satisfiable. Note that the query parameter pairs in URIs are

implemented using Java container classes. In order to obtain the constraint for

a pair, we keep track of individual loaded and stored elements during symbolic

execution.

Integration of SFT to DBDroidScanner

One reason for choosing SFT to model the URI-based methods is their compati-

bility with SMT solvers. This allows us to construct symbolic models whose input

are path constraints in the form of SMT formulas and reuse them all over the

code-base. The labels of transitions in our implementation for SFT are SMT for-

mulas. At each transition, a new constraint is checked whether it satisfies the

existing path constraint. If the constraint is satisfiable and its variables have data

dependency on the inputs, it is appended to the path constraint. These constraints

can specially help us in generating more precise inputs at the end of the symbolic

execution phase. One important characteristic of transducers which makes them

104



useful for modeling URI-based methods is that they can deal with unbounded

inputs. This allows us to support URI fields which have recursive structure (e.g.,

query parameters). The number of iterations for transitioning between states

might depend on the loops in the program. In this case, our framework employs a

bounded symbolic execution, thereby transitioning for a limited number of times in

the transducer. Our implementation for the SFTs is single-valued. Informally, this

means that the value returned for a given transition is always a single value. We

allow ε-transitions in our models by setting the predicate to "true" and mapping

it to the appropriate value dependent on the states between which it transitions.

In this chapter we have illustrated SFT models for two example URI methods.

Other URI methods (e.g., Uri.encode(String)) can also be modeled using SFTs.

Parsing the URIs

Sometimes the analysis needs to construct a URI object for a given URI string

(e.g., Uri.parse(String) returns a Uri object for the String argument). URI

strings can be parsed using the POSIX regular expression in RFC 2396 to retrieve

the scheme, authority, path, query components and fragment parts. In order to

model the Uri.parse(String) method, first we use the SMT solver to compute a

value for the String argument which satisfies the path formulas collected so far.

Next we use the regular expression to retrieve the fields and construct a URI. If

concrete values cannot be resolved for the fields of the URI, symbolic values are

generated for them.

5.4.4 Database Attack Validation

In Section 5.1, we explained how database attacks can be classified into private

and public categories. DBDroidScanner extends the validation component in the

analysis framework to analyze Android apps for these categories of database vul-

nerabilities. Once the symbolic executor deploys static symbolic execution, it uses

the CVC4 SMT solver [LRT+14] to solve the path constraints and generate values

for the symbolic input variables identified by the source-sink identification phase.

However, generating such values is not adequate for exploiting the vulnerabili-

ties and constructing working exploits using them is not straightforward as shown

next. These generated values are processed by the validation component to gener-

ate concrete exploits that trigger the private and public database vulnerabilities.

We have utilized and designed patterns for generating such exploits based on the

source and sink methods of the reported vulnerable path.
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Public Database Attacks

Public databases are accessible through content providers. Content providers can

be reached from other apps (malwares) on the device by directly invoking stan-

dardized APIs (e.g., insert()). For this purpose, the malware can obtain the

content model by calling getContentResolver() which allows calling APIs of con-

tent providers available to the system. The parameters of these APIs are the

symbolic inputs for which the symbolic executor generates values. The validation

component uses these generated inputs as well as the manifest file to derive con-

crete parameters and launch requests to a particular content provider. We explain

the content provider exploit generation through an example:

One of the APIs of a content provider is query(Uri uri, String[] projection,

String selection, String[] selectionArgs, String sortOrder) which returns

a Cursor over the result set for the given URI. The uri parameter identifies a

particular table of a content provider and projection is the list of columns to be

queried. The selection parameter should be formatted as SQL WHERE clause

to enforce constraints on the query and if it contains ?s, they will be replaced by

the selectionArgs parameter. Finally, the sortOrder determines how to order the

rows in the result set.

The symbolic executor in the analysis framework generates values for each of

the method parameters. The uri parameter starts with the content scheme which

is fixed in content URIs. The authority segment is obtained by the manifest

file and the symbolic executor checks whether its value is consistent with the

authority value resolved from the analysis of the program. The reason is that

sometimes developers make mistakes and apply conditions on the execution path

which prevent the authority registered in the manifest file to be accepted by the

content provider. In this case, the content provider cannot handle any request from

other apps. Our analysis catches such mistakes to avoid reporting false positives.

The remaining segments of the uri identify the tables of a database which are

generated by the symbolic executor. As you can see, some of the parameters of

the query API have array types. We use the array models to resolve the elements.

In practice, reasoning about arrays is not trivial and we only focus on the arrays

which are the source method parameters. It is also possible to set all of the

parameters of the query API except the uri to null. If projection is null, all of

the columns and if the selection is null, all of the rows for the given URI will be

returned. If sortOrder is null, results will return with the default sort order.

In order to perform the dynamic testing, we have created a malware skeleton

app for invoking the APIs of vulnerable content providers with malicious argu-
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ments which are resolved from the static analysis. Our malware does not have

any permission granted from the user. Once the vulnerable content provider is

invoked, the validator component logs the execution trace to obtain the concrete

values. Using these concrete values, our analysis attempts to place them in the

path constraints generated by the static symbolic execution to create more precise

inputs if possible. If the generated inputs reach a fixpoint, our malware invokes

the vulnerable content provider and validates the vulnerability using the following

sample rules:

We assume the openFile() and openAssetFile() APIs of a content provider are

exploited if they return non-null ParcelFileDescriptor and AssetFileDescriptor

references respectively. Similarly, the query() API of a content provider should

return a non-null Cursor reference; the insert() API of a content provider should

return a non-null Uri reference; and the update() API of a content provider should

return a non-zero integer.

Private Database Attacks

The difference between private and public databases is that public databases are

accessed through content providers, while private databases are accessed via In-

tent messages received by any of the following components: activities, services

or broadcast receivers. An input string obtained from an intent which triggers

paths down to the SQLiteDatabase methods may allow attackers to manipulate

the database or compromise the security of the app.

In order to trigger and validate the private database attacks, the attacker

should generate intents which target the vulnerable component of the victim app.

For this purpose, the values generated by the symbolic executor are embedded

in an Intent message in the validation phase to construct an Intent exploit. A

malware can send explicit malicious intents to a particular component of an app

by explicitly setting the target class name using the Intent.setClass() API. Al-

ternatively, it can construct an intent which conforms to the intent filter of the

target component as shown at Line 13 in Listing 5.4.

The validation component collects information about the entry component

by parsing the manifest file and combining the results from the static symbolic

execution. It creates all possible data parameters that will match the intent filter.

Path is one of the data elements in intent filters that will be checked for accepting

an intent. The developer can specify a special form of regular expressions as the

path pattern.11 Some of these values might also be obtained from the symbolic

11We follow the same algorithm implemented in the Android framework to match against the
paths of intents.
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execution phase in which case we directly use the values generated by our symbolic

executor.

Intent messages transmit data in the following ways: (i) a data URI which

references the data resources consists of the scheme, host and path as well as

query parameters which are the key-value mappings preceded by the “?”; (ii)

Intent extras, the key-value pairs whose type can also be specified in the intent

(e.g, int, string, etc); (iii) other Intent parameters such as categories, actions, etc.,

that can be sent as string values. An intent can be constructed as a Java object

from a malware app as discussed in this chapter. It can also be represented as an

intent hyperlink and invoked from web as explained in Section 4.3.3.

One difference between Intent objects and intent hyperlinks is that Intent

objects can contain arrays and parcelable extra parameters while intent hyperlinks

can only contain primitive type extra parameters. Hence, it is also possible for the

attackers to send malicious data through parcelable key-value pairs and the victim

receives the malicious inputs by invoking the Intent.getParcelableExtra(). We

partially support this API for the parcelable types which have been modeled by

our system (e.g., Intent). For this purpose, analysis should first resolve the type

of the parcelable extra parameters received in the target app. For example, if a

cast operation is applied to the parcelable parameter, the cast type will be used

as the resolved type for the parameter. If the resolved type is supported by our

analyzer, an object will be instantiated in the malware program and set as an

extra parameter to the Intent object.

Once the analysis framework generates the key-value pairs as explained in

Section 4.3.3 and other necessary inputs for the source-sink flows and the intent

filter specifications for the target component, all of these elements are put together

to generate an Intent message.

In order to perform dynamic testing, we configure our malware to send out

an Intent message with malicious parameters. Once the target component gets

invoked and receives the intent, the validator logs the execution trace to obtain

the concrete values. Similar to the public vulnerability validation, our analysis

attempts to place these concrete values in the path constraints generated by the

static symbolic execution to create more precise inputs if possible. If the sink

method is reached on the execution path and the malicious intent parameters

are observed at the sink invocation site, we assume that the vulnerability is ex-

ploitable.
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5.5 Experimental Results for Database Vulner-

ability Detection

We now analyze real-world Android apps to detect and exploit database attack

vulnerabilities. Our main goal is not only to detect potential vulnerabilities but

also to confirm the public and private database vulnerabilities with successful

zero-day exploits. We analyze 924 apps in total which are the top 100 apps of

all categories in Google Play. Of these apps, 133 apps have at least one exposed

and unprotected content provider and all 924 apps have at least one exposed and

unprotected component other than content providers.

We ran DBDroidScanner in Ubuntu 12.04 on an Intel Core i5-4570 (3.20GHz)

with 16GB of RAM. Our analyzer is a prototype and not designed to be efficient

or optimized. To get an idea of the analysis time, we have randomly chosen 50

apps, the static analysis (dataflow, symbolic execution and exploit generation) of

DBDroidScanner takes on average 43.5 and 140.1 seconds for detecting public and

private database vulnerabilities respectively. We can see that analysis of private

database vulnerabilities is more complex because the number of paths that need

to be traversed by symbolic execution can be high. Moreover, the execution paths

triggered by intents which lead to vulnerable sink methods can be long and often

contain many conditional statements which have to be solved by the SMT solver.

To validate the database exploits, we configure our custom malware app to launch

the components and to perform the privileged operations (e.g., inserting data into

the app’s database). Listing 5.4 shows the code-snippet of example malware used

to send the requests to the vulnerable public and private database. The runtime

execution of a single dynamic test varies depending on the app from seconds to

1-2 minutes. Although DBDroidScanner is a prototype, we see that the times are

already reasonable.

5.5.1 Database Vulnerability Detection Results

We ran our analyzer on 924 apps where 133 apps have unprotected content

providers in the manifest. Hence, we analyze 133 apps for public database attacks

and all 924 apps for potential private database attacks which can be exploited

via inter-app communication. As shown in Table 5.2, we detect and confirm 52

public and 23 private vulnerable apps and 153 vulnerabilities in total. We also

classified our results based on the content leakage, pollution and file access cat-

egories. Our results show that modeling the URI-based libraries are necessary

to generate accurate exploits for both public and private database attacks. Even
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Table 5.2: Overall statistics of apps vulnerable to the database attacks.

Category Sub-Category
# of

Vulnerable Apps

Public
Databases

Pollution 19

Leakage 27

File Access 26

Private
Databases

Pollution 12

Leakage 14

File Access 5

though the mechanisms through which the private database attacks are launched

(intents) are different from the public database attacks (content provider APIs),

sometimes similar constraints are used by the developers to validate the incoming

input. Next, we discuss two example apps vulnerable to the public and private

database attacks to explain why a good model of such libraries is needed for exploit

generation.

chomp SMS (version 6.07) is an SMS app vulnerable to public attacks. It requires

accurate modeling of the android.content.UriMatcher and android.content.Content

Uris libraries. A vulnerable content provider, provider.ChompProvider, accepts

requests to update the scheduled messages if the URI parameter of the update

API passes certain constraints. The goal is to generate specific values for each pa-

rameter of the update API (e.g., the URI parameter) to use in a working exploit.

Our model for the UriMatcher.match(Uri) method tries to find a registered URI

matching the given URI parameter: (1) our model checks if the URI parameter’s

authority is com.p1.chompsms.provider.ChompProvider; (2) it checks the path seg-

ment of the URI. If it is "scheduled messages", all the scheduled messages can be

updated with the playloads crafted by the malware. In this case, DBDroidScanner

generates the corresponding constraints using our model. Solving the constraints

gives the attack URI parameter: "content://com.p1.chompsms.provider.Chomp

Provider/scheduled messages". Otherwise, if the path segment matches

"scheduled messages/#", the ContentUris.parseId(Uri) method is invoked for

the URI parameter to retrieve the last path segment and use it as the selec-

tion argument for the SQLiteDatabase.update sink method. In summary, the

constraints generated using our models constrain the URI parameter to con-

tain the scheduled messages path segment and its last segment to be a num-

ber. Solving these constraints, DBDroidScanner generates a malicious URI,

"content://com.p1.chompsms.provider.ChompProvider/scheduled messages/1",

which triggers a different execution path.

We now discuss how we generate an accurate exploit for the com.netease.cloudmusic
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(version 1.7.3) app which is vulnerable to private database attacks. The vulnera-

ble component which the malware sends an intent to exploit is LoadingActivity.

The victim app obtains the URI object set in the intent by invoking the

Intent.getData() method and performs the following validations: (1) the scheme

part of the URI object is checked whether it is "content". Our analysis also

generates the corresponding constraints using our model for the android.net.Uri

library; (2) the ContentUris.parseId(Uri) method is called with the URI object

passed as the argument to obtain its last path segment and it checks if the last

path segment is a number. Our model for android.content.ContentUris gener-

ates the corresponding constraints and our tool generates "content:///1"12 as the

malicious URI part of the intent message. The intent is further configured by set-

ting its action and type attributes to target the victim app and launch a private

database attack.

5.5.2 Case Studies

We now discuss some findings for the representative vulnerable apps from our

dataset. The public and private vulnerabilities are further categorized into pollu-

tion, leakage and file access attacks.

Chomp SMS (version 6.07) is an SMS app which provides several features such

as sending scheduled SMS. This app is vulnerable to the pollution and leakage

public attacks. Th exported content provider, provider.ChompProvider, allows

the malware to steal or manipulate sensitive data such as scheduled and MMS

messages. CallApp - Caller ID & Block (version 1.56) is a phone-call number

identification app which is vulnerable to the public leakage attacks. The un-

protected .provider.CustomSuggestionsProvider component allows attackers to

query if a particular contact name is present in the contact list.

Kii Keyboard (version 1.2.22r6) is an alternative Android keyboard app vul-

nerable to public pollution and leakage attacks. This application has a content

provider .enhanced.BlacklistProvider which is exported but not protected by

any permission. This provider contains the blacklist of words which should not

be shown as predictions. The attacker can manipulate or steal the content of the

blacklist. AppLoc (version 1.99.2) is another app which allows users to lock apps

with passwords. This app is vulnerable to the public leakage attacks due to an

exported content provider which leaks information about the locks such as the

process names and alarm times. The attacker can also apply SQL injection to

retrieve information from the tables such as locations by setting the projection

12The authority part of the URI can be empty.
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argument to "* from locations;".

ES File Explorer File Manager (version 3.1.2), a popular file manager app,

is vulnerable to public file access attacks. The exported content provider,

app.FileContentProvider allows the attacker to obtain the file descriptors for

arbitrary files in private internal or external storage which can lead to leakage of

sensitive information.

Lelong.my - Shop and Save (version 1.2.5.3) is a mobile shopping app, vulner-

able to the private attacks with two exposed activities. The shoppingcart.Payment

OptionsActivity activity allows the attacker to pop up order requests where the

price and order ID can be manipulated. Another activity product.ProductNewActivity

allows the attacker to perform rawQuery() and insert() to the database to search

items. Money Manager Expense & Budget (version 2.4.6) is a money manager app

vulnerable to the private leakage attacks. It exposes an activity allowing attack-

ers to query and pop up bills for a specific account id. Adidas World Football

Live WP (version 3.1) is a sport news app which is vulnerable to private pollution

database attacks. It has an exposed broadcast receiver which can be exploited to

insert scheduled advertisements into its private database.

5.5.3 Comparing DBDroidScanner and ContentScope

We also compare our system with ContentScope [ZJ13], the closest related work.

As their data set is not available, we have tried to collect and analyze representative

vulnerable apps mentioned in the paper. Some of these apps are removed or

updated – the original versions are no longer available. Table 5.3 shows our results

for the representative apps analyzed by ContentScope which are still available.

Column three shows the closest APK version we could find. It is marked with

“3” if has been updated since the publication of [ZJ13]. Column four and five

show the minimum and target SDK for which an app is compiled respectively. The

last two columns show our findings for the public and private database attacks.

ContentScope only finds public database attacks. However, we also report

private database vulnerabilities in these apps and show that 5 of these apps are

vulnerable to both public and private database attacks. There are also updated

versions of apps in which we do not find public database vulnerabilities but are

vulnerable to the private database attacks. DBDroidScanner confirms the public

database vulnerabilities in the apps which have the same version as those an-

alyzed by ContentScope. In some cases (Pansi SMS, mOffice - Outlook sync),

even though the vulnerabilities reported by ContentScope are not applicable any

more in the updated versions of the apps, we find new public database vulnerabil-
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ities. We also detect and confirm 8 apps vulnerable to the private database vul-

nerabilities. Surprisingly, there are some cases (mOffice - Outlook sync, Dolphin

Browser HD, Shady SMS 3.0 PAYG) where the private database vulnerability allows

the attacker to access the protected content providers and launch privilege esca-

lation attacks. In what follows, first we compare our results with the findings

of [ZJ13] for the public attacks. Next we present our private database attacks for

these apps. We present results for all the available representative apps for both

public and private attacks.

Public Database Attacks

DBDroidScanner did not find public database vulnerabilities in the updated

versions of: Shady SMS 3.0 PAYG, Nimbuzz Messenger, MiTalk Messenger, Youdao

Dictionary, Netease Weibo, Dolphin Browser HD, Mobile Security Personal Ed.,

Sina Weibo, Youni SMS and Tencent WBlog. Our results are consistent with the

results reported by ContentScope on the following apps (these apps have not been

updated): 360 Kouxin, GO FBWidget, Boat Browser Mini, Droid Call Filter, GO

TwiWidget. Next, we present the public database attack case-studies for the re-

maining vulnerable apps in Table 5.3 by the ID column.

Table 5.3: Public and private database vulnerabilities in representative apps
of [ZJ13].

ID App Name Version SDKM SDKT Public Private

1 Pansi SMS 3.6.0 3 7 13 3 3

2 Youni SMS 4.6.7 3 8 11
3 mOffice -

Outlook sync

3.7.7 3 5 - 3 3

4 Shady SMS 3.0

PAYG

3.38 3 8 18 3

5 360 Kouxin 1.5.0 5 - 3 -
6 GO SMS Pro 7.0.3 3 14 22 3 -
7 Messenger

WithYou

2.0.90 3 4 - 3 3

8 Nimbuzz

Messenger

4.1.0 3 15 21 -

9 MiTalk Messenger 7.3.32 3 14 19 -
10 Youdao Dictionary 6.5.1 3 11 19
11 GO FBWidget 2.2 5 - 3 3

12 Netease Weibo 2.4.0 3 8 10 3

13 Dolphin Browser

HD

11.5.3 3 14 17 3

14 Maxthon Android

Web Browser

4.5.8.
2000 3

8 21 3

15 Boat Browser Mini 3.0.2 7 7 3 -
16 Mobile Security

Personal Ed.

7.0 3 9 23

17 Droid Call Filter 1.0.23 4 - 3

18 Tc Assistant 4.5.0 3 7 - 3

19 GO TwiWidget 2.1 5 - 3 3

20 Sina Weibo 6.3.1 3 14 23
21 Tencent WBlog 6.1.2 3 10 -
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1. Pansi SMS is a messaging app which is vulnerable to the leakage and pol-

lution attacks. ContentScope reports that the .provider.MsgSummaryProvider

is vulnerable. However, this component is protected by both readPermission

and writePermission in the updated version of the app. Therefore, malware

will not be able to access this component. However, DBDroidScanner finds

other content provider components which are not explicitly protected. The tar-

get SDK version for this app is 13 (<17), hence the content providers are ex-

ported by default and this application is vulnerable in all compatible Android plat-

forms. The vulnerable content providers are: .provider.PansiContactProvider,

.provider.PhraseProvider and .provider.SmsDraftProvider which may be com-

promised by attackers to steal or manipulate information such as contact details.

3. mOffice - Outlook sync is a productivity app which synchronizes private con-

tact information with remote desktops. The updated app studied in our work

does not export .dao.DBProvider anymore but .dao.BackupProvider is another

content provider vulnerable to leakage and pollution attacks. Thus, attackers can

steal and manipulate the sensitive data such as SMS and contact details.

6. The updated version of GO SMS Pro, which is an instant messaging app, is

vulnerable under Android 16 and below. The .StaticDataContentProvider and

.golauex.smswidget.SmsProvider components are unprotected content providers

vulnerable to the public leakage and pollution attacks.

7. In the Messenger WithYou app, we find that the openFile() method in the

MiyowaExplorerContentProvider content provider may return arbitrary database

file descriptors, which is similar to ContentScope. In addition, we find the

openAssetFile() API as another source method to trigger a similar vulnerability.

14. We could only find an updated version of the Maxthon Android Web Browser

app. We find SQL injection and pollution vulnerabilities in the .BrowserProvider

content provider if it runs in Android 16 and below. Even though ContentScope

reports that the vulnerability in this app is fixed, the exported attribute of the

vulnerable provider in the manifest file is not explicitly set to "false" in the up-

dated version, nor is it protected by any permission. Hence, DBDroidScanner still

reports vulnerabilities which are consistent with descriptions provided in [ZJ13].

These attacks can successfully be launched in Android <= 16.

18. The Tc Assistant app logs outgoing calls and traffic. The .net.provider

.TrafficProvider and com.wali.android.provider.LogsContentProvider content

providers in the updated version of this app are not protected resulting in sensitive

data leakage.
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Private Database Attacks

Now we present the private database attack case-studies for the vulnerable apps in

Table 5.3. We remark that ContentScope only aims to detect the public database

vulnerabilities, however, our analysis also finds the private database vulnerabili-

ties in these representative apps analyzed by ContentScope. The last column in

Table 5.3 shows our results for the private database vulnerabilities. The dynamic

testing for a few apps could not be done due to some practical problems, e.g., we

have to register a valid phone number for one app or the app crashes once launched

due to incompatibilities. Thus, we do not confirm if these apps are vulnerable or

not. We now discuss the case-studies by the ID column of Table 5.3.

1. Pansi SMS is vulnerable to private pollution and leakage attacks. The attacker

can launch privilege escalation attacks using the vulnerable MrBeanUpgradeMsgActivity

activity in this app to update the SMS content. It is also possible to exploit a

vulnerability in SearchActivity activity to force this app to search the messages

in the phone for a keyword.

3. The mOffice - Outlook sync app which has SMS read and write permissions

can be reached by a malware through its com.innov8tion.mobisynapse.core.SMS

Receiver component. By sending a malicious intent, the malware can choose an

SMS ID and launch a privilege escalation attack by forcing the app to send an

update request to the content provider of the default SMS app on the phone.

Malware can also force the mOffice - Outlook sync app to send query requests

to .dao.DBProvide even though this component is not exported and has been

protected by readPermission. The malware can craft malicious intents and

choose arbitrary task identifiers (e.g., taskID) to invoke the vulnerable compo-

nent .activity.task.EventEditActivity to launch leakage attacks.

4. A malware on the phone can launch privilege escalation attacks and force the

Shady SMS 3.0 PAYG app to manipulate a particular SMS content.

7. Messenger WithYou is vulnerable to the private pollution and leakage database

attacks. For instance, the malware can send malicious intents to the Capptain

WebAnnouncementActivity component to send query or delete requests using arbi-

trary WHERE clauses.

11. The GO FBWidget app has a vulnerability which can be exploited to send

requests to manipulate Facebook authentication data.

12. An existing malware on the phone can force the Netease Weibo app to open

an input stream for a given URI.

13. Although Dolphin Browser HD is updated to fix its public database vulner-

abilities, it happens to be vulnerable to private leakage attacks. The vulnerable
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component is the AddBookmarkPage activity which allows malware to force this

component to send query requests to the BrowserProvider even though the latter

is not exported in the updated version of the app. Therefore, the attacker can ac-

cess the component which was reported by ContentScope [ZJ13] to be vulnerable

in a new way.

19. GO TwiWidget is another app which can be forced by the malware to query the

details of an account on the device. This app is vulnerable to the private leakage

attacks.

5.6 Related Work

In the past few years, many different aspects of Android security have been

studied. Even though many works aim to detect vulnerabilities in benign

apps [GZWJ12, CHY12, HUHS13, ARF+14, LLW+12], few works also try to ex-

ploit them. Database vulnerabilities which may compromise the security of system

has been partially studied in [ZJ13, LLW+12].

ContentScope [ZJ13] is designed for finding pollution and leakage attacks on

content providers in the Android app. Their work finds public database vulnera-

bilities in Android apps built for the Android SDK 16 or lower in which the content

provider components which by default are accessible by other apps on the phone.

Our work is related as both detect database vulnerabilities and generate exploits

for them. However, we focus on apps whose SDK target is 17 and higher where the

default assumptions have been fixed to provide more security. We only analyze

the representative apps in [ZJ13] which have lower SDK targets to compare our

results with ContentScope under their lower SDK assumption.

Moreover, ContentScope only focuses on the vulnerabilities in public databases

triggered through standard content provider APIs. We also study a new class of

attacks involving private database vulnerabilities triggered via inter-app commu-

nication. We also improve the precision of our symbolic execution by modeling

and presenting the URI semantics and several Android libraries. However, [ZJ13]

does not present any details of library modelling.

CHEX [LLW+12] is an information flow analysis tool which is tailored to detect

component hijacking vulnerabilities in benign Android apps. Component hijack-

ing attacks happen when an unauthorized app, issuing requests to one or more

exported components in a vulnerable app, seeks to read or write sensitive data.

CHEX reports the potential vulnerabilities pertaining to the private databases.

Compared to this work, our analysis system takes one step further and generates

working exploits for the detected vulnerabilities.
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Privacy leakage and privilege escalation [DDSW10] attacks are two more

broad classes of attacks that have attracted researchers during the past few

years. Privacy leakage might happen as the result of over-privileged malwares

or privilege escalation attacks due to application bugs or flaws in the system

design. A few systems have been proposed to mitigate these classes of attacks

[OMEM09, DSP+11, BGH+13, NKZ10, HHJ+11, ZY14, XSA12, JMV+12].

Even though these mitigation mechanisms make such attacks more difficult

to succeed, they can only prevent a subset of attacks. Moreover, they impose

additional overhead at runtime or require changes in the underlying framework,

thus not directly applicable to the existing systems. Detection of vulnerabilities

that lead to such attacks is an alternative approach which is the focus of this

chapter. Our work differs from these systems by focusing on detecting and ex-

ploiting specific classes of vulnerabilities in benign applications that lead to the

privacy leakage or privilege escalation attacks. The target attacks in this chapter

are database leakage, pollution and file access vulnerabilities.

Another line of research is the static analysis of apps to find potential vulner-

abilities in Android applications [GZWJ12, GZJS12, GCEC12, EBFK13, CHY12,

YY12, KYYS12, FHM+12, SSG+14, HUHS13]. The vulnerabilities reported by

these works may have false positives.

Android apps pervasively use libraries such as android.net.Uri to per-

form operations on strings and structured data. There is a body of work

which support string manipulation operations statically for different applica-

tions [SAH+10, CMS03, KGG+09, TCJ14]. We transform the utility meth-

ods of URI classes to SFTs [HLM+11, VHL+12] and leverage the CVC4 SMT

solver [LRT+14] to support String, Integer and Boolean theories.

Static string analysis is another line of research which determines the values

of string expressions at a given program point [CMS03, LLWH15, YBCI08]. Our

approach differs from these works as we intend to generate strings that drive exe-

cution paths to reach a program point. Java String Analyzer [CMS03] models flow

graphs of string operations to a context-free grammar which is over-approximated

to a finite state automaton. Instead, we use the existing SMT solvers which sup-

port numeric and string constraints simultaneously to check the satisfiability of

string constraints and generate test inputs.

Li et al. [LLWH15] present a general-purpose string analysis framework for

Java and Android apps. The framework works based on an IR that represent

the control flow and data flow relationships among string variables and string

operations in the program. Programmers can implement interpreters to model

the semantics of string operation and provide analysis properties such as context-
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sensitivity and loop handling. In contrast, we use symbolic execution, a different

approach which is a context-sensitive analysis but might have scalability problems.

We have tried to improve the scalability of our analysis by several optimizations

presented in this chapter and Chapter 3. Moreover, [LLWH15] does not address

the more complex URI-based libraries which rely on string operations but also

introduce more semantics.

Yu et al. [YBCI08] use deterministic finite automaton (DFA) to represent the

set of values string expressions can take. In this work, first a control flow graph is

constructed where nodes are string operations. Given an attack pattern, a string

variable and a program point, it computes the DFA that accepts the language that

corresponds to all the string values that the variable can take at a program point.

Their analysis can be used to prove the correctness of sanitizers. Since we need to

generate exploits which satisfy constraints imposed by libraries (e.g., URIs), we

combine SMT formulas with automata models.

5.7 Summary

In this chapter, we have studied the database attacks targeting Android apps which

can compromise the security of the system. While existing works [ZJ13, LLW+12]

partially study and detect the database attacks, we present a comprehensive clas-

sification of these attacks: private and public database attacks.

We have extended and customized our analysis system introduced in Chapter 3

to detect and exploit the database vulnerabilities. More specifically, we have pro-

vided symbolic models for URI-based Android libraries such as android.net.Uri

to generate more precise exploits automatically. For this purpose, we leverage

SMT formulas and symbolic finite transducers to achieve better precision while

maintaining the scalability. As a future work, it can be investigated whether our

proposed models for the URI-based libraries can be generated automatically from

the library code-base.

We have analyzed apps for both private and public database vulnerabilities.

We have evaluated our system on 924 of Android apps from Google App store and

found 52 apps vulnerable to public and 23 apps vulnerable to private database

attacks (153 database vulnerabilities in total). We have compared our results

with ContentScope [ZJ13] and surprisingly some of the apps are still vulnerable.

Unfortunately, the existing protection mechanism for private databases is too

inflexible and developers might not be able to specify effective permissions. We rec-

ommend that instead of private databases, developers should use public databases

for sharing data with other apps as the latter can be protected with more fine-
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grained access control mechanisms.

Even though Android provides a relatively fine-grained protection mechanism

for public databases, developers do not protect them carefully. We recommend

more effective use of the protection mechanism available for public databases.

Furthermore, developers can avoid private and public database vulnerabilities by

validating the input data coming from the untrusted sources and protect the entry

point components by using proper permissions.
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Chapter 6

Conclusion and Future Work

In this thesis, we have introduced a novel analysis framework to detect and con-

firm data injection vulnerabilities in benign Android apps. We have studied two

important classes of such vulnerabilities and developed analysis systems to detect

and show proof-of-concept exploits in real-world apps.

First, we have developed an automated vulnerability detection system for An-

droid apps which not only finds data injection vulnerabilities but also confirms

them. Our tool starts with static dataflow analysis to reduce the number of

source-sink pairs and uses symbolic execution to generate inputs and avoid re-

porting infeasible paths. Next it constructs working exploits and confirms the

potential vulnerabilities using dynamic testing. Integrating these phases, we have

designed an analysis framework which can be used as part of the application vet-

ting process in App-stores. We show through experiments that this design signifi-

cantly enhances the detection precision compared with an existing state-of-the-art

dataflow analysis and maintains the efficiency.

Second, we have presented a detailed study of a new class of application vul-

nerabilities on Android platform that allows a malicious web attacker to exploit

app vulnerabilities. It can be a significant threat as no malicious apps are needed

on the device and the remote attacker has full control on the web-to-app com-

munication channel. Using our analysis framework, we have conducted the first

large-scale analysis on real apps from the official Google Play store – we have found

many confirmed vulnerabilities which suggest that these attacks are pervasive and

developers do not adequately protect apps against them.

Finally, we have conducted a systematic study of attacks targeting databases

in benign Android apps. We have provided a more comprehensive classification for

these attacks compared to the previous works. Our attacks can be triggered from

a malware either by invoking content provider APIs or sending Intents which can

be received throughout the victim app. In order to detect and exploit zero-day
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database vulnerabilities, we have utilized our analysis framework and extended it

with mechanisms for symbolically executing operations on the URI-based objects

that are involved in database management. To the best of our knowledge, we are

the first to analyze Android apps for these more comprehensive database attacks.

We have found and confirmed many vulnerabilities and generated working exploits

for them.

The focus of this thesis has been on analyzing data injection vulnerabilities in

benign apps. As a future work, it would be interesting to generalize the analysis

framework in Chapter 3 to also detect malware. Malware detection has additional

challenges as attackers often use anti-analysis techniques to hide the malicious

behavior of their apps. For instance, they may use dynamically loaded code, JNI

or reflection to make it more difficult for analyzers to reach the malicious part of

the code. The analysis framework presented in this thesis needs to be extended

to deal with such challenges. One possible approach is to use existing tools like

ConDroid [SFT15] which is based on concolic testing to reach the parts of the code

which are not available statically and analyze them using our analysis framework.

While our analysis framework is able to generate complex data inputs (e.g.,

intents), generating event sequences might help to improve test coverage and detect

more attack categories. Anand et al. [ANHY12] have designed a concolic testing

framework for Android apps for generating event sequences. Integrating these two

systems can be investigated as a future work to improve path coverage and find

other types of attacks.

In this thesis, we have systematically studied security-critical Android vulner-

abilities which can be exploited by attackers to launch devastating attacks. How-

ever, mitigating such attacks remains an open problem. Our results show that

the W2AI vulnerabilities are prevalent in Android apps and abuse the web-to-app

channel which is also used by Google app indexing. Considering the benefits of this

channel, it is very likely that it gets even more popular and implemented by innu-

merous apps. Therefore, securing this channel seems to be crucial. On the other

hand, database vulnerabilities which result in sensitive data leakage and pollution

have inadequate protection mechanisms. In particular, our study shows that the

protection mechanism for private databases is so coarse-grained that developers

might give up the security altogether. More fine-grained mitigation techniques for

database attacks can be another future research direction.
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Freisleben, and Matthew Smith. Why Eve and Mallory Love Android: An

Analysis of Android SSL (in)Security. In Conference on Computer and

Communications Security (CCS), 2012.

[FW11] Adrienne Porter Felt and David Wagner. Phishing on Mobile Devices. In

Web 2.0 Privacy and Security (W2SP), 2011.

[FWM+11] Adrienne Porter Felt, Helen J Wang, Alexander Moshchuk, Steve Hanna,

and Erika Chin. Permission Re-Delegation: Attacks and Defenses. In

USENIX Security Symposium, 2011.

[GCEC12] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. An-

droidLeaks: Automatically Detecting Potential Privacy Leaks in Android

Applications on a Large Scale. In Conference on Trust and Trustworthy

Computing (TRUST), 2012.

[GJS14] Martin Georgiev, Suman Jana, and Vitaly Shmatikov. Breaking and Fixing

Origin-based Access Control in Hybrid Web/Mobile Application Frame-

works . In Network and Distributed System Security Symposium (NDSS),

2014.

[GKP+15] Michael I. Gordon, Deokhwan Kim, Jeff H. Perkins, Limei Gilham, Nguyen

Nguyen, and Martin C. Rinard. Information-flow Analysis of Android

Applications in DroidSafe. In Network and Distributed System Security

Symposium (NDSS), 2015.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Auto-

mated Random Testing. In Conference on Programming Language Design

and Implementation (PLDI), 2005.

[GLM08] P. Godefroid, M. Y. Levin, and D. Molnar. Automated Whitebox Fuzz

Testing. In Network and Distributed System Security Symposium (NDSS),

2008.

[GPL] Leading App Stores. http://www.statista.com/statistics/276623/

number-of-apps-available-in-leading-app-stores/.

[GZJS12] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.

Unsafe Exposure Analysis of Mobile In-app Advertisements. In Conference

on Security and Privacy in Wireless and Mobile Networks (WISEC), 2012.

[GZWJ12] Michael C. Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic

Detection of Capability Leaks in Stock Android Smartphones. In Network

and Distributed System Security Symposium (NDSS), 2012.

127

http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/


[HHJ+11] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and

David Wetherall. These Aren’T the Droids You’Re Looking for:

Retrofitting Android to Protect Data from Imperious Applications. In

Conference on Computer and Communications Security (CCS), 2011.

[HJY+15] Behnaz Hassanshahi, Yaoqi Jia, Roland H. C. Yap, Prateek Saxena, and

Zhenkai Liang. Web-to-Application Injection Attacks on Android: Char-

acterization and Detection. In European Symposium on Research in Com-

puter Security (ESORICS), 2015.

[HLM+11] Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and

Margus Veanes. Fast and Precise Sanitizer Analysis with BEK. In USENIX

Security Symposium, 2011.

[HUHS13] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and Michael Spre-

itzenbarth. Slicing Droids: Program Slicing for Smali Code. In Symposium

on Applied Computing (SAC), 2013.

[HZT+14] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang.

AsDroid: Detecting Stealthy Behaviors in Android Applications by User

Interface and Program Behavior Contradiction. In International Confer-

ence on Software Engineering (ICSE), 2014.

[INA] Intents and Intent Filters. http://developer.android.com/guide/

components/intents-filters.html.

[IOS] Apple URL Scheme Reference. https://developer.apple.com/library/

ios/featuredarticles/iPhoneURLScheme_Reference/Introduction/

Introduction.html.

[JDW] Java Debug Wire Protocol. http://developer.android.com/tools/

debugging/index.html.

[JHY+14] Xing Jin, Xunchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gau-

tam Nagesh Peri. Code Injection Attacks on HTML5-based Mobile Apps:

Characterization, Detection and Mitigation. In Conference on Computer

and Communications Security (CCS), 2014.

[JMF12] Jinseong Jeon, Kristopher K. Micinski, and Jeffrey S. Foster. Symdroid:

Symbolic Execution for Dalvik Bytecode. Technical report, 2012.

[JMV+12] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel,

Nikhilesh Reddy, Jeffrey S. Foster, and Todd Millstein. Dr. Android and

Mr. Hide: Fine-grained Permissions in Android Applications. In Workshop

on Security and Privacy in Smartphones and Mobile Devices, Co-located

with CCS (SPSM), 2012.

128

http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
https://developer.apple.com/library/ios/featuredarticles/iPhoneURLScheme_Reference/Introduction/Introduction.html
http://developer.android.com/tools/debugging/index.html
http://developer.android.com/tools/debugging/index.html


[Kap] David Kaplan. (CVE-2014-3500/1/2) Apache Cordova for Android - Mul-

tiple Vulnerabilities. http://seclists.org/fulldisclosure/2014/Aug/

21.

[KGG+09] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and

Michael D. Ernst. HAMPI: A Solver for String Constraints. In Inter-

national Symposium on Software Testing and Analysis (ISSTA), 2009.

[Kin76] James C. King. Symbolic Execution and Program Testing. Commun.

ACM, 1976.

[KKBC12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Can-

dea. Efficient State Merging in Symbolic Execution. In Conference on

Programming Language Design and Implementation (PLDI), 2012.

[Kor90] B. Korel. Automated Software Test Data Generation. IEEE Trans. Softw.

Eng., 1990.

[KYYS12] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. ScanDal:

Static Analyzer for Detecting Privacy Leaks in Android Applications. In

Workshop on Mobile Security Technologies (MOST), 2012.

[LBHD11] Patrick Lam, Eric Bodden, Laurie Hendren, and Technische Universitt

Darmstadt. The Soot Framework for Java Program Analysis: a Retro-

spective. In Cetus Users and Compiler Infrastructure Workshop, 2011.
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[XSA12] Rubin Xu, Hassen Säıdi, and Ross Anderson. Aurasium: Practical Policy

Enforcement for Android Applications. In USENIX Security Symposium,

2012.

[XSS] Cross-Site Scripting (XSS). https://www.owasp.org/index.php/Cross-

site_Scripting_(XSS).

131

http://www.mbsd.jp/Whitepaper/IntentScheme.pdf
http://docs.phonegap.com/en/3.5.0/guide_appdev_whitelist_index.md.html
http://docs.phonegap.com/en/3.5.0/guide_appdev_whitelist_index.md.html
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)


[YBCI08] Fang Yu, Tevfik Bultan, Marco Cova, and Oscar H. Ibarra. Symbolic

String Verification: An Automata-Based Approach. In Workshop on Model

Checking Software (MCS), 2008.

[YCZJ13] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. DroidFuzzer:

Fuzzing the Android Apps with Intent-filter Tag. In Conference on Ad-

vances in Mobile Computing and Multimedia (MOMM), 2013.

[YY12] Zhemin Yang and Min Yang. LeakMiner: Detect Information Leakage

on Android with Static Taint Analysis. In World Congress on Software

Engineering (WCSE), 2012.

[ZJ12] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characteri-

zation and Evolution. In Symposium on Security and Privacy (SP), 2012.

[ZJ13] Yajin Zhou and Xuxian Jiang. Detecting Passive Content Leaks and Pollu-

tion in Android Applications. In Network and Distributed System Security

Symposium (NDSS), 2013.

[ZLZ+14] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and Xi-

aoFeng Wang. The Peril of Fragmentation: Security Hazards in Android

Device Driver Customizations. In Symposium on Security and Privacy

(SP), 2014.

[ZWZJ12] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get Off of

My Market: Detecting Malicious Apps in Official and Alternative Android

Markets. In Network and Distributed System Security Symposium (NDSS),

2012.

[ZY14] Mu Zhang and Heng Yin. AppSealer: Automatic Generation of

Vulnerability-specific Patches for Preventing Component Hijacking Attacks

in Android Applications. In Network and Distributed System Security Sym-

posium (NDSS), 2014.

132



Appendices

133





Appendix A

Translating Jimple IR to

SMT-LIB Format

We use Jimple as the intermediate representation (IR) in our analysis. Jimple

is the three-address IR used in Soot [LBHD11]. In Chapter 3, we introduced

an analysis framework which uses symbolic execution as its core analysis. Our

symbolic execution relies on CVC4 SMT solver [LRT+14] to check the satisfiability

of path constraints and to generate inputs that run an execution path.

The CVC4 used in this thesis supports SMT-LIB(v2) [BST+10] for input and

output languages. We use QF S as the basic logic which is the theory of strings. The

produce-models option is used to activate model generation and incremental or

multiple query solving is enabled to check more than one problem. We also use

strings-exp option which allows us to handle a wide range of string operations

(e.g., str.to.int which converts a string to integer).

Jimple IR supports primitive and reference types. Sometimes, these types

cannot directly be used in the SMT-LIB(v2) format. For example, we need to

understand where integer types are numeric types and where they are boolean

types (represented as 0 and 1) and convert the integer to boolean type (represented

as true and false) in the latter case. We try to resolve the types and perform a

type checking before translating any Jimple statement to the SMT format. We use

three SMT-LIB(v2) format types while translating from Jimple IR : Int, String

and Bool. Our translator converts other numeric types such as long and double

to Int if possible.

String types consists of several Jimple reference types, e.g., StringBuilder,

StringBuffer, CharSequence. Our symbolic executor supports Java Reference

types in equality conditions by generating unique identifiers for each Java object.

These constraints are then translated to string equality operations supported by
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Table A.1: Translating representative Java methods to SMT-LIB(v2) syntax.

Method SMTLIB language

X.contains(Y) (str.contains X Y)

X.concat(Y) (str.++ X Y)

X.append(Y) (str.++ X Y)

X.startsWith(Y) (= (str.++ Y T) X)

X.endsWith(Y) (= (str.++ T Y) X)

X.length() (str.len X)

X.equals(Y) (= X Y)

X.charAt(N) (str.at X N)

X.substring(I, J) (str.substr X I J)

X.indexOf(Y, I) (str.indexof X Y I)

X.replace(Y, Z) (str.replace X Y Z)

String.valueOf(I) (int.to.str I)

Integer.valueOf(X) (str.to.int X)

Integer.parseInt(X) (str.to.int X)

X.isEmpty() (= (str.len X) 0)

X.split(Y)

(or (= X (str.++ X1 Y X2))

(= X (str.++ X1 Y X2 Y X3))) ∧
(not (str.contains X1 Y)) ∧
(not (str.contains X2 Y))

CVC4.

Table A.1 shows a summary of translations of some of the Java methods1 to

SMT-LIB(v2) syntax. For instance, Integer.valueOf() and String.valueOf()

are representative methods for several Java classes (e.g., Float) which are handled

in a similar way. While some of the Jimple instructions are directly translated to

SMTLIB syntax, e.g., String.contains(), some of them are translated using a

combination of existing SMTLIB operations, e.g., startsWith() and split().

We support a bounded version of split() method (splitN) which generates N

new strings. In Table A.1, we show a translation of the split() method where N

is two.

1We actually translate the invocations of these methods in the Jimple IR.
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