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Abstract 

 

 With the development of technology, the clinical study related to disease detection 

has become a popular topic for biostatisticians. For those studies, the combination of 

multiple diagnostic tests seems to be the most general tool to achieve optimal sensitivity 

and specificity. In this thesis, we apply the exponential tilting model proposed by Qin 

and Zhang (2010) and the monotonic density ratio model proposed by Chen et al. (2015) 

to estimate the asymptotic distribution for 𝜷  and 𝐴𝑈𝐶  using three bootstrapping 

methods and give an evaluation and comparison towards their performances. We give 

a good estimation for the distribution of 𝜷 no matter whether the robustness is taken 

into consideration. And we also have a good thinking for estimating the distribution of 

𝐴𝑈𝐶. 

 

 

Keywords: Multiple diagnostic tests; Monotonic density ratio model; 

Exponential tilting model; ROC curve; AUC; Sensitivity; Specificity; 

Asymptotic distribution estimation; Bootstrapping  
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Chapter 1  

 

Introduction 

 

 With the medical technology developing rapidly, people become more and more 

enthusiastic to the clinical study related to disease detection in the early stage when the 

patient in fact doesn’t have any obvious symptoms yet. This kind of early detection, or 

in other words, screening, grows to be a popular topic for biostatisticians because these 

trials can find the possible disease earlier with less cost and significantly reduce the 

death rate.  

Among those clinical researches, the studies about biomarkers towards disease 

detections and classifications seem to be the essential part and have considerable 

research results according to Henson et al. (1999) and Srinivas et al. (2001). However, 

those tumor biomarkers, for example, CA-125 for diagnosing ovarian cancer, are 

accurately not perfect in performance for disease detecting. Many diseased individuals 

may have normal tumor biomarker concentrations, causing false negative diagnostic 

tests, while many non-diseased individuals may also have strange biomarker 

concentrations, leading to unnecessary diagnostic work-up and possible further 

treatments. Therefore, diagnostic tests, especially multiple diagnostic tests, are usually 

used for screening and diagnostic program, while the specificity and sensitivity of a 
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single diagnostic test cannot meet the researchers’ needs in practice. And the 

combination of multiple diagnostic tests can further increase the accuracy of testing and 

then obtain an optimal testing method, so that those hidden diseases can be detected 

earlier and those diseased and non-diseased individuals can be distinguished more 

easily and accurately. 

 In clinical practice, many diagnostic testing methods are available for detecting 

possible diseases. And researchers can find that different diagnostic tests are sensitive 

to different aspects of the disease. Therefore, in recent several years, researchers are 

keen to find the best combination of multiple diagnostic tests for different assumptions. 

Kay and Little (1987) discussed various versions of the density ratio model by 

transforming the variables in the logistic regression model for binary data. If they 

assume that the variable satisfies a multivariate normal distribution, Su and Liu (1993) 

found the best way to combine different multiple diagnostic tests. By applying the 

Neyman-Pearson fundamental lemma, Eguchi and Copas (2002), Copas and Corbett 

(2002), and McIntosh and Pepe (2002) found the best combination of multiple 

diagnostic tests using log density ratio statistic for diseased and non-diseased 

individuals. Etzioni et al. (2003) took logistic combinations towards biomarkers to 

detect disease for cancers. Yuan and Ghosh (2008) came out with a novel model-

combining algorithm when they combined multiple biomarker models in logistic 

regression. Liu and Zhou (2013) took the covariate adjustment into account and then 

studied the optimal combination in this case. Qin and Zhang (2010) assumed that the 



3 

 

diseased and non-diseased population has a log density ratio and proposed an 

exponential titling model as a combination of multiple diagnostic tests. Chen et al. 

(2015) considered a semiparametric monotonic model by directly modeling the density 

ratio as an unspecified monotonic non-decreasing function of a combination of multiple 

tests between those two groups of individuals. More development about the 

combination of multiple diagnostic tests can be found in the papers written by Barreno 

et al. (2008), and Kim et al. (2013). The last two models proposed by Qin and Zhang 

(2010) and Chen et al. (2015) will be introduced in detail and applied in future chapters. 

 And when the sampling distribution of the diagnostic variable is continuous, the 

ROC curve, or to be more precisely, the receiver operating characteristic curve, is one 

of the most widely used techniques for assessing the diagnostic accuracy in disease 

detection. To further classify the accuracy of the proposed method, 𝐴𝑈𝐶 (the area 

under the ROC curve) is often applied for estimating the performance. Back to the 

whole research history, the estimations related to the ROC curve and the corresponding 

𝐴𝑈𝐶  are always based on a parametric model, a semiparametric model, or a fully 

nonparametric model. If we take some reading of the papers written by Begg (1991), 

Hsieh and Turnbull (1996), Zhou et al. (2002), Krzanowski and Hand (2009), Pepe 

(2003) and Zou et al. (2011), it is supposed to have a more comprehensive reviews of 

the development of the applications based on the ROC curve and the corresponding 

𝐴𝑈𝐶 in recent years. 
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 This thesis is going to mainly discuss the application of the ROC curve to estimate 

the accuracy of the optimal combinations proposed by Qin and Zhang (2010) and Chen 

et al. (2015). Moreover, in Chen et al. (2015), they have proceeded to establish the 

convergence rate of 𝜷  and the 𝐴𝑈𝐶  for the proposed method. Here 𝜷  is the 

parameter of the semiparametric monotonic density ratio model which satisfies: 

𝑓(𝒙)

𝑔(𝒙)
= 𝜓(𝑣(𝒙, 𝜷)) 

where 𝜓(. )  is an unknown monotonic non-decreasing function, and 𝑣(𝒙, 𝜷) =

𝜷𝑇ℎ(𝒙). 

 But in Chen et al. (2015), it only gave an estimation of the convergence rates for 

these two parameters, while their asymptotic distributions are actually still in mystery, 

inspiring us to have deeper exploration towards this problem. Therefore, this thesis will 

apply bootstrapping and resampling methods to show the empirical distributions for 𝜷 

and 𝐴𝑈𝐶 and estimate the accuracy with different parameter settings, which is the 

main part of this thesis. 

 This thesis will be organized as follows. In Chapter 2, we will introduce some basic 

concepts which will be applied later in this thesis. In Chapter 3, we will describe those 

two optimal combinations of multiple diagnostic tests proposed by Qin and Zhang 

(2010) and Chen et al. (2015) and some related asymptotic results. In Chapter 4, we 

will describe the methods for estimating the asymptotic distribution of  𝜷 and 𝐴𝑈𝐶 

in detail. In Chapter 5, we will do some simulation studies to give an evaluation of the 

methods of estimating distributions we have already described in Chapter 4, with those 
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biomarkers following bivariate exponential distribution. A conclusion remark and 

future discussion will be given in Chapter 6.  
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Chapter 2 

 

Basic concepts  

 

2.1 ROC and AUC 

The ROC (receiver operating characteristic) curve is a graphical plot that can 

evaluate the performance of a diagnostic test. It was first used during the period of 

World War II when the United States army tried to analyze the radar signals and predict 

the routes of Japanese aircrafts. Its employment in signal detection extended to 

medicine in 1950s to assess human detection of weak signals according to Green and 

Swets (1966). The ROC curve was then extensively applied in medical research, 

epidemiology, machine learning and the evaluation of diagnostic tests, which we can 

find more details from Zweig and Campbell (1993). It also became a common technique 

to evaluate radiology technique. 

The ROC curve can be created by plotting the true positive rate (TPR), also known 

as sensitivity, against the false positive rate (FPR), known as 1-specificity, at various 

threshold settings. 

 

 



7 

 

  Predicted condition 

 Total population Predicted Condition 

positive 

Predicted Condition 

negative 

 

True 

condition 

Condition 

positive 

Ture positive rate 

(sensitivity) 

False negative rate 

(Type II error) 

Condition 

negative 

False positive rate 

(Type I error) 

True negative rate 

(1-specificity) 

Table 1. 2 × 2 contingency table 

 

From Swets (2014), only the rates TPR(T) and FPR(T) are needed for plotting 

the ROC curve. The TPR is the ratio describing how many correct positive results occur 

among all positive samples appeared in the test. On the other hand, the FPR is the ratio 

describing how many incorrect positive results occur among all negative samples 

appeared in the test. For a single diagnostic test, if 𝐹 and 𝐺 denote the cumulative 

distribution functions for the test result in the diseased and non-diseased individuals, 

and 𝑓 and 𝑔 denote the probability density functions for them, then TPR(T) and 

FPR(T) can be represented as: 

TPR(T) = ∫ 𝑓(𝑥)𝑑𝑥
∞

𝑇

 

FPR(T) = ∫ 𝑔(𝑥)𝑑𝑥
∞

𝑇

 

And the ROC curve has the following representation: 
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𝑅𝑂𝐶(𝑠) = 1 − F(𝐺−1(1 − s)), s ∈ (0,1). 

 As a classifier to measure the efficacy, 𝐴𝑈𝐶 (the area under the curve) will often 

be applied, which is given by: 

𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑠)𝑑𝑠.
1

0

 

If we define 𝐴𝑈𝐶 directly from the rates TPR(T) and FPR(T), then it can be 

represented as: 

𝐴𝑈𝐶 = ∫ TPR(T)
∞

−∞

FPR′(T)dT 

  = ∫ ∫ 𝐼(𝑇′ > 𝑇)
∞

−∞

∞

−∞

𝑓(𝑇′)𝑔(𝑇)𝑑𝑇′𝑑𝑇 = 𝑃(𝑋1 > 𝑋0) 

where 𝑋1 is the score for the positive distance and 𝑋0 is the score for the negative 

distance. It should be noted that those two expressions above are equivalent in 

mathematics. 

 This ROC-AUC statistic is widely applied in many different fields nowadays. 

Sometimes researchers will link this statistic to a number of other performance metrics 

such as Brier score described in Hernández (2012) to reduce the noise when it is applied 

as a classification measure, which will not be considered in this thesis due to the 

application complexity. 
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2.2 Bootstrapping and resampling 

Bootstrapping refers to some tests based on random sampling with replacement in 

statistics. This method was first published by Bradley Efron (1992). It is a popular and 

straightforward technology that can be applied to assign measures of accuracy, such as 

bias, variance, confidence intervals and prediction error for some complex estimators 

of complex parameters of the distribution. It may also be used for constructing 

hypothesis tests.  

When bootstrapping is used to calculate confidence intervals for the population-

parameter, we can first approximate the distribution by referring to the empirical 

distribution function of the observed data. In the case where the observations are 

assumed to be an independent and identically distributed dataset, this distribution can 

be obtained by constructing a number of resampling with replacement from the 

observed dataset. The size of the new dataset can be smaller or equal to the initial 

dataset. If we set the confidence level equal to α  and using percentiles of the 

bootstrapping distribution, a confidence interval can be obtained as follows: 

(𝜃𝛼/2
∗ , 𝜃1−𝛼/2

∗ ) , where 𝜃𝛼/2
∗  denotes the α/2  percentile of the bootstrapped 

coefficients 𝜃∗. 

Except this kind of classical way of bootstrapping, various alternatives are 

available for regression problems such as Bayesian bootstrapping, smooth 

bootstrapping, wild bootstrapping described by Wu (1986) and block bootstrapping 

described by Hernández (1989). 
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Bootstrapping method work well in those cases where the bootstrapping 

distribution is symmetrical and centered on the observed statistics and where the sample 

statistic is median-unbiased and has maximum concentration. And due to the 

development of computing power, it is recommended to increase the number of 

bootstrapping samples as many as possible, so that the effects of random sampling 

errors which arise from the bootstrapping method itself can be reduced. 
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Chapter 3 

 

Optimal combination of multiple diagnostic tests 

 

 Suppose that there are K tests in total, with the kth test denoted as ℵ𝑘 for k =

1, … , K . Let {𝑻1, … , 𝑻𝑛}  denote the combined K-vector {𝑿1, … , 𝑿𝑛0
; 𝒀1, … , 𝒀𝑛1

} , 

where 𝑿1, … , 𝑿𝑛0
 represent independent and identically distributed results from the 

non-diseased individuals, and 𝒀1, … , 𝒀𝑛1
 represent independent and identically 

distributed results from the diseased individuals. Here 𝑿𝑖 , 𝒀𝑖  are all K-vector 

represented as (ℵ1, … ℵ𝐾)𝜏 , and 𝑛0 ,  𝑛1  are the sample size for non-diseased and 

diseased individuals with 𝑛 = 𝑛0 + 𝑛1 , 𝑛  refers to the size of the whole sample 

dataset. Let 𝐷 = 1 and 𝐷 = 0 refer to the diseased and non-diseased status, and let 

𝐹(𝒙) = 𝑃(𝑿 ≤ 𝒙|𝐷 = 1)  and 𝐺(𝒙) = 𝑃(𝑿 ≤ 𝒙|𝐷 = 0)  represent the cumulative 

distribution functions of 𝑿𝑖  and 𝒀𝑖 ,  𝑓(𝒙)  and 𝑔(𝒙)  are the corresponding 

possibility density functions.  

 

3.1 Optimal combination based on exponential titling model 

In Qin and Zhang (2010), they consider an exponential titling model, which we 

will call it model (1) in short. For a given K in 𝐗 = 𝐱 , the conditional 

distribution 𝑃(𝐷 = 1|𝑿 = 𝒙) is given by the logistic regression model: 
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𝑃(𝐷 = 1|𝑿 = 𝒙) =
exp(𝛼∗ + 𝜷𝜏ℎ(𝒙))

1 + exp(𝛼∗ + 𝜷𝜏ℎ(𝒙))
 

And this model is equivalent to represent the density ratio as followed: 

𝑓(𝒙)

𝑔(𝒙)
= exp(𝛼 + 𝜷𝜏ℎ(𝒙)) 

where α is a scalar parameter, 𝜷 is a p × 1 vector parameter, and ℎ(𝒙) is a p × 1 

smooth vector function of 𝒙. 

Here U = 𝛼 + 𝜷𝜏ℎ(𝒙) is the optimal combination. It can be evaluated by plotting 

the receiver of characteristic 𝑅𝑂𝐶𝐶(s)： 

𝑅𝑂𝐶𝐶(s) = 1 − 𝐹𝑐(𝐺𝐶
−1(1 − s)), s ∈ (0,1) 

where 𝐹𝑐(𝑢) = P(U ≤ u|D = 1)  and 𝐺𝑐(𝑢) = P(U ≤ u|D = 0) , the corresponding 

area under the optimal curve 𝑅𝑂𝐶𝐶(s) is given by 

𝐴𝑈𝐶𝐶 = ∫ 𝑅𝑂𝐶(𝑠)𝑑𝑠.
1

0

 

 To be more specific, let {𝒕𝟏, … 𝒕𝒏} denote the observed value of {𝑻𝟏, … 𝑻𝒏}, and 

because the optimal combination of different diagnostic tests is the likelihood ratio, the 

semiparametric log likelihood function of (α, 𝛃) is given by: 

ℓ(𝛼, 𝛽) = ∑[𝛼 + 𝛽𝜏ℎ(𝒚𝒋)

𝑛1

𝑗=1

] − ∑ log(1 + ρexp(𝛼 + 𝛽𝜏ℎ(𝒕𝒊)))

𝑛

𝑖=1

− nlog𝑛0 

where ρ = 𝑛1/𝑛0  is assumed to converge when n → ∞ . And the maximum 

semiparametric likelihood estimator 𝜃̃ = (𝛼̃, 𝜷𝜏̃) of 𝜃 is the solution of the following 

equations: 
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𝜕ℓ(𝛼, 𝜷)

𝜕𝛼
= 𝑛1 − ∑

𝜌 exp(𝛼 + 𝜷𝜏ℎ(𝒕𝒊))

1 + exp(𝛼 + 𝜷𝜏ℎ(𝒕𝒊))
= 0

𝑛

𝑖=1

 

𝜕ℓ(𝛼, 𝜷)

𝜕𝜷
= ∑ ℎ(𝒚𝒋)

𝑛1

𝑗=1

− ∑
𝜌 exp(𝛼 + 𝜷𝜏ℎ(𝒕𝒊))

1 + exp(𝛼 + 𝜷𝜏ℎ(𝒕𝒊))
ℎ(𝒕𝒊) = 0

𝑛

𝑖=1

 

 Under this model, the maximum semiparametric likelihood estimator of 𝐹 and 𝐺 

are given by: 

𝐹̃(𝑡) =
1

𝑛0
∑

exp (𝛼̃ + 𝜷̃𝜏ℎ(𝑻𝒊)) 𝐼(𝑻𝒊 ≤ 𝑡)

1 + 𝜌exp (𝛼̃ + 𝜷̃𝜏ℎ(𝑻𝒊))

𝑛

𝑖=1

 

𝐺̃(𝑡) =
1

𝑛0
∑

𝐼(𝑻𝒊 ≤ 𝑡)

1 + 𝜌exp (𝛼̃ + 𝜷̃𝜏ℎ(𝑻𝒊))

𝑛

𝑖=1

 

Now let U𝑘̃ = 𝛼̃ + 𝜷̃𝜏ℎ(𝑻𝒌) for k = 1, … , n. Similar to the estimation about 𝐹 

and 𝐺 above, 𝐹𝐶(𝑢) and 𝐺𝐶(𝑢) can be estimated by the following expressions: 

𝐹̃𝐶(𝑢) =
1

𝑛0
∑

exp(U𝑖̃) 𝐼(U𝑖̃ ≤ 𝑢)

1 + 𝜌exp(U𝑖̃)

𝑛

𝑖=1

 

𝐺̃𝐶(𝑢) =
1

𝑛0
∑

𝐼(U𝑖̃ ≤ 𝑢)

1 + 𝜌exp(U𝑖̃)

𝑛

𝑖=1

 

It may also be proposed that the estimated optimal ROC and its area (AUC) can be 

represented as: 

𝑅𝑂𝐶̃𝐶(s) = 1 − 𝐹̃𝑐 (𝐺̃𝐶
−1(1 − s)) , s ∈ (0,1) 

𝐴𝑈𝐶̃𝐶 = ∫ 𝑅𝑂𝐶̃(𝑠)𝑑𝑠.
1

0
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 In addition, this semiparametric estimators (𝐹𝐶̃(𝑢),𝐺̃𝐶(𝑢)) and the area under the 

estimated optimal ROC curve 𝐴𝑈𝐶𝐶̃  has the asymptotic behaviors as the following 

theorem: 

 

Theorem 1  

Under the model (1), for the estimator (𝐹𝐶̃(𝑢),𝐺̃𝐶(𝑢)), √𝑛(𝐹̃𝐶 − 𝐹𝐶) → 𝑊𝐹 and 

√𝑛(𝐺̃𝐶 − 𝐺𝐶) → 𝑊𝐺 weakly in ℘[−∞, ∞] as n → ∞, where ℘[−∞, ∞] refers to the 

set of all real-valued functions that are right continuous and has left-hand limits for all 

x ∈ [−∞, ∞]. And let 0 < a < b < 1 , suppose that 𝑓𝐶  and 𝑔𝐶 are the corresponding 

density functions that are continuous on [𝐺𝐶
−1(a) − ε, 𝐺𝐶

−1(𝑏) + ε] for some ε > 0, 

then  √𝑛(𝑅𝑂𝐶̃𝐶(𝑠) − 𝑅𝑂𝐶𝐶(𝑠)) → 𝑊[𝐺𝐶
−1(1 − s)] weakly in ℘[1 − b, 1 − a] and 

√𝑛(𝐴𝑈𝐶̃𝐶 − 𝐴𝑈𝐶𝐶) → 𝑁(0, 𝜎2(𝛼0, 𝛽0, 𝐺𝐶)). Here in these relations, 𝑊𝐹, 𝑊𝐺 and  𝑊 

should satisfies some conditions.  

More details and proofs of the asymptotic results can be found in Qin and Zhang 

(2010). 

 

3.2 Optimal combination based on semiparametric monotonic 

density ratio model 

In most papers, the combination needs to specify the density ratio or the distribution 

for multiple diagnostic tests correctly to obtain the optimal combination, which is 
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difficult to realize in practice, especially when the data is high-dimensional. Therefore, 

Chen et al. (2015) directly model the density ratio as a nonparametric function of a 

combination of multiple diagnostic tests, which they think can greatly improve the 

robustness of the combination proposed by Qin and Zhang (2010). They consider a 

semiparametric monotonic density ratio model, which we will call it model (2) in future 

pages: 

𝑓(𝒙)

𝑔(𝒙)
= 𝜓(𝑣(𝒙, 𝜷)) 

where 𝜓(. )  is an undefined monotonic non-decreasing function, and 𝑣(𝒙, 𝜷) =

𝜷𝑇ℎ(𝒙). While ROC is an invariant property, the optimal ROC curve of model (2) is 

based on the combination 𝑣(𝒙, 𝜷) = 𝜷𝑇ℎ(𝒙).  

 Let {𝒕𝟏, … 𝒕𝒏} denote the observed value of {𝑻𝟏, … 𝑻𝒏}. And: 

𝑝𝑖 = 𝑑𝐹(𝒕𝒊), 𝑞𝑖 = 𝑑𝐺(𝒕𝒊), 𝑖 = 1,2, … . , 𝑛, 

𝑚𝑖 = 𝐼(𝑡𝑖 ∈ {𝒀1, … , 𝒀𝑛1
}), 𝑟𝑖 = 𝐼(𝑡𝑖 ∈ {𝑿1, … , 𝑿𝑛0

}). 

 The corresponding likelihood function is 

L = ∏ 𝑝𝑖
𝑚𝑖𝑞𝑖

𝑟𝑖

𝑛

𝑖=1

 

where 𝑝𝑖, 𝑞𝑖 ≥ 0, ∑ 𝑝𝑖 = 1𝑛
𝑖=1 ,  ∑ 𝑞𝑖 = 1𝑛

𝑖=1 , 𝑝𝑖/𝑞𝑖 = 𝜓(𝑣(𝒕𝒊, 𝜷)). 

 And the maximum empirical likelihood estimators of 𝑝𝑖 and  𝑞𝑖 can be defined 

to be: 
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{𝑝𝑖̂, … , 𝑝𝑛̂, 𝑞𝑖̂, … , 𝑞𝑛̂, } = arg max
𝑝1,…,𝑝𝑛,𝑞1,…,𝑞𝑛

𝐿 

 Then we assume 𝑛1/(𝑛0 + 𝑛1) → 𝜆 ∈ (0,1)  as n → ∞ . 𝑝𝑖  and  𝑞𝑖  can be 

reparameterized to 𝜃(𝑣(𝒕𝑖; 𝛽)) and  𝜙𝑖 in this way: 

𝜃(𝑣(𝒕𝑖; 𝛽)) =
𝜆𝑝𝑖

𝜆𝑝𝑖 + (1 − 𝜆)𝑞𝑖
=

𝜆𝜓(𝑣(𝒕𝒊, 𝜷))

𝜆𝜓(𝑣(𝒕𝒊, 𝜷)) + (1 − 𝜆)
 

 𝜙𝑖 = 𝜆𝑝𝑖 + (1 − 𝜆)𝑞𝑖 

which is equivalent to: 

𝑝𝑖 =  𝜙𝑖𝜃(𝑣(𝒕𝑖; 𝜷))/𝜆 

𝑞𝑖 =
 𝜙𝑖{1 − 𝜃(𝑣(𝒕𝑖; 𝜷))}

1 − 𝜆
 

 If we apply the new-reparametrized parameters 𝜃(𝑣(𝒕𝑖; 𝜷))  and  𝜙𝑖 , the 

empirical likelihood function can be revised to 𝐿 = 𝐿1𝐿2 , with 𝐿1 , and 𝐿2  be 

expressed as: 

𝐿1 = 𝜆−𝑛1(1 − 𝜆)−𝑛0 ∏{𝜃(𝑣(𝒕𝑖; 𝜷))}𝑚𝑖{1 − 𝜃(𝑣(𝒕𝑖; 𝜷))}𝑟𝑖

𝑛

𝑖=1

 

𝐿2 = ∏  𝜙𝑖
𝑚𝑖+𝑟𝑖

𝑛

𝑖=1

 

 The maximum empirical likelihood estimators  𝜙𝑖̂  of  𝜙𝑖  are calculated by 

Dykstra et al. (1995) when 𝛽 is fixed： 

𝜙𝑖̂ =
𝑚𝑖 + 𝑟𝑖

𝑛
 

 Then the maximum empirical likelihood estimators for 𝜃(. )  and 𝛽  can be 

calculated by maximizing 𝐿1: 
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{𝜃(. ), 𝜷̂} = 𝑎𝑟𝑔 min
𝜃̂(.)∈Θ,𝛃∈𝐁

𝑀𝑛(𝜃, 𝜷) 

with  

𝑀𝑛(𝜃, 𝜷) = −
1

𝑛
∑[𝑚𝑖 log{𝜃(𝑣(𝒕𝑖; 𝜷)} + 𝑟𝑖 log(1 − 𝜃(𝑣(𝒕𝑖; 𝜷))]

𝑛

𝑖=1

 

Θ = {𝜃(. ): 𝜃(. ) ∈ [0,1] and is monotonic increasing} 

𝐁 = {1} × 𝐁−𝟏 

It should be noted that for this semiparametric monotonic density ratio model, we 

would apply PAVA method described in Ayer (1955) to do the minimization with 

respect to 𝜃. 

 Let 𝐹𝐶(𝑢; 𝜷)  and 𝐺𝐶(𝑢; 𝜷)  be the cumulative distribution function (cdf) of 

𝑣(𝒀; 𝜷) and 𝑣(𝑿; 𝜷). Those cumulative distribution functions, the optimal ROC curve 

and its area can be estimated by: 

𝐹𝐶̂(𝑢) = ∑ 𝑝𝑖̂𝐼

𝑛

𝑖=1

((𝑣(𝒕𝑖; 𝜷̂) < 𝑢) 

𝐺𝐶̂(𝑢) = ∑ 𝑞𝑖̂𝐼

𝑛

𝑖=1

((𝑣(𝒕𝑖; 𝜷̂) < 𝑢) 

𝑅𝑂𝐶𝐶̂(s) = 1 − 𝐹𝐶̂ (𝐺̂𝐶
−1(1 − s)) , s ∈ (0,1) 

𝐴𝑈𝐶̂𝐶 = ∫ 𝑅𝑂𝐶𝐶̂(s)𝑑𝑠.
1

0

 

 And the following theorem shows the convergence rate of the previous estimated 

parameters if they satisfy some conditions: 
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(a) d (𝜃(𝑣(𝒙; 𝜷̂), 𝜃0(𝑣(𝒙; 𝜷𝟎)))) = 𝑂𝑝(𝑛−1/3) 

(b) 𝜷̂ − 𝜷𝟎 = 𝑂𝑝(𝑛−1/3) 

(c) 𝑠𝑢𝑝𝑢∈𝑹|𝐹𝐶̂(𝑢) − 𝐹𝐶(𝑢; 𝜷𝟎)| = 𝑂𝑝(𝑛−1/3) and 𝑠𝑢𝑝𝑢∈𝑹|𝐺𝐶̂(𝑢) − 𝐺𝐶(𝑢; 𝜷𝟎)| =

𝑂𝑝(𝑛−1/3) 

(d) |𝑅𝑂𝐶𝐶̂(𝑠) − 𝑅𝑂𝐶𝐶(𝑠)| = 𝑂𝑝(𝑛−1/3) for every s ∈ (0,1) 

(e) 𝐴𝑈𝐶𝐶̂ − 𝐴𝑈𝐶𝐶 = 𝑂𝑝(𝑛−1/3) 

 

The conditions that the asymptotic estimations above should satisfy and the detailed 

proofs could be found in Chen et al. (2015). We will not include all these parts because 

of the length limit and presentational continuity. 
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Chapter 4 

 

Method description 

 

In this chapter, we will describe the methods we are going to estimate the 

distribution for the estimated parameters 𝜷 and 𝐴𝑈𝐶. We compare the performance of 

the following methods: ①Method I based on model (2) (semiparametric monotonic 

density ratio model); ②Method II based on model (2); ③Method II based on model 

(1) (exponential titling method).  

Here Method I has the following steps: 

(a) Generate a dataset {𝑿1, … , 𝑿𝑛0
; 𝒀1, … , 𝒀𝑛1

}  with 𝑛0  non-diseased individuals 

and 𝑛1 diseased ones. 

(b) Do 𝐁  resamplings with replacement from the previous dataset 

{𝑿1, … , 𝑿𝑛0
; 𝒀1, … , 𝒀𝑛1

} , form a ‘new’ dataset {𝑿1
𝐵, … , 𝑿𝑛0

𝐵 ; 𝒀1
𝐵, … , 𝒀𝑛1

𝐵 } , here 

{𝑿1
𝐵, … , 𝑿𝑛0

𝐵 }  are from {𝑿1, … , 𝑿𝑛0
} , {𝒀1

𝐵 , … , 𝒀𝑛1
𝐵 } are from {𝒀1, … , 𝒀𝑛1

}  and 

then calculate the corresponding 𝜷𝑩̂ and 𝐴𝑈𝐶𝐶
𝐵̂  for each resampling.  

(c) Collect 𝐁 estimated  𝜷𝑩̂ and 𝐴𝑈𝐶𝐶
𝐵̂  calculated from each resampling in step (b), 

establish the asymptotic distribution of 𝜷̂ and 𝐴𝑈𝐶𝐶̂ from the resampling results 

and do the hypothesis test to find whether the true value 𝜷𝟎 and 𝐴𝑈𝐶𝐶 are in the 

confidence interval (α/2, 1 − α/2) with confidence level α. If the true value of 
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𝜷𝟎  or 𝐴𝑈𝐶𝐶  is in this confidence interval, then the corresponding counting 

parameter C = C + 1. 

(d) Repeat step (a)~(c) for 𝐍 times, and calculate the corresponding Type I error and 

Type II error.  

 

Method II has the following steps: 

(a) Generate a dataset {𝑿1, … , 𝑿𝑛0
; 𝒀1, … , 𝒀𝑛1

}  with 𝑛0  non-diseased individuals 

and 𝑛1 diseased ones. 

(b) Calculate the estimated cumulative density functions 𝐹𝐶̂(𝑢), 𝐺𝐶̂(𝑢) and 𝐴𝑈𝐶𝐶̂ 

for the dataset {𝑿1, … , 𝑿𝑛0
; 𝒀1, … , 𝒀𝑛1

}. 

(c) Generate a ‘new’ dataset {𝑿1
𝑁 , … , 𝑿𝑛0

𝑁 ; 𝒀1
𝑁 , … , 𝒀𝑛1

𝑁 }  based on the dataset 

{𝑿1, … , 𝑿𝑛0
; 𝒀1, … , 𝒀𝑛1

} and the estimated 𝐹𝐶̂(𝑢), 𝐺𝐶̂(𝑢) calculated in step (b). 

Here ‘based on’ means that we assume that the distribution of diseased and non-

diseased individuals are known and discrete which take values among 

{𝑿1
𝑁 , … , 𝑿𝑛0

𝑁 ; 𝒀1
𝑁 , … , 𝒀𝑛1

𝑁 }. They follow the cumulative distribution function 𝐹𝐶̂(𝑢) 

and 𝐺𝐶̂(𝑢). And different from Method I, here {𝑿1
𝑁 , … , 𝑿𝑛0

𝑁 } and {𝒀1
𝑁 , … , 𝒀𝑛1

𝑁 } are 

in fact from the whole dataset {𝑿1, … , 𝑿𝑛0
; 𝒀1, … , 𝒀𝑛1

}. 

(d) Calculate the estimated parameters  𝜷𝑁 ̂ and 𝐴𝑈𝐶𝐶̂
𝑁

 for the ‘new’ dataset 

{𝑿1
𝑁 , … , 𝑿𝑛0

𝑁 ; 𝒀1
𝑁 , … , 𝒀𝑛1

𝑁 } 
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(e) Repeat this bootstrapping steps (c)~(d) for 𝐁  times, collect 𝐁  estimated  𝜷̂𝑁 

and 𝐴𝑈𝐶𝐶̂
𝑁

calculated in step (d), establish the distribution of 𝜷̂ and 𝐴𝑈𝐶𝐶̂ from 

the bootstrapping results and do the hypothesis test to find whether the true value 

𝜷𝟎  and 𝐴𝑈𝐶𝐶  are in the confidence interval (α/2,1 − α/2)  with confidence 

level  α. If the true value 𝜷𝟎  or 𝐴𝑈𝐶𝐶  is in this confidence interval, then the 

corresponding counting parameter C = C + 1. 

(f) Repeat step (a)~(e) for 𝐍 times, and calculate the corresponding Type I error and 

Type II error. 

 

Here Type I error for method I and II both have the expression: 

error I𝜷 = 𝐶𝜷/𝐍 

error I𝐴𝑈𝐶 = 𝐶𝐴𝑈𝐶/𝐍 

 For Type II error of 𝜷, since we will standardize ‖𝜷‖2 = 1 in the simulation 

study in next chapter, we will set the value for hypothesis test vary from 0 to 1, with an 

interval of 0.05 and find out the value of Type II error. 

 And for 𝐴𝑈𝐶, which takes value from 0.5 to 1 if it is defined correctly, we will set 

the varying interval value equal to 0.01 around the true value because 𝐴𝑈𝐶 has a more 

concentrated distribution compared with 𝜷. We can observe the change of Type II error 

more precisely if we set the interval smaller for 𝐴𝑈𝐶. 
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 About the process of calculating Type II error, we will count the number which the 

testing value is in the confidence interval and Type II error of that value is the counting 

number divided by 𝐍. 
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Chapter 5 

 

Simulation study 

 

 In this chapter, we will estimate the distribution of 𝜷̂ and 𝐴𝑈𝐶𝐶̂  and do the 

corresponding hypothesis tests to find out Type I error and Type II error while applying 

the methods described in the Chapter 4. Due to the time limit, we consider the sample 

size (𝑛0, 𝑛1) equals to (600,300) and consider a combination of two biomarkers 𝐗 =

(𝑋1, 𝑋2) . For each method, we perform 𝐁 = 100  resamplings and 𝐍 = 1000 

replications.  

In this simulation, we assume 𝐗 = (𝑋1, 𝑋2)  follows a bivariate exponential 

distribution, which we will describe it in detail in the next section. And we should also 

note that our estimation can also be applied for other distributions. 

 

5.1 Biomarkers follow exponential distribution 

 First, we study the case when the two biomarkers follow the bivariate exponential 

distribution. We posit that 𝑋1|𝐷 = 1~exp (𝜉1), 𝑋2|𝐷 = 1~exp (𝜉2), and correlation 

Corr(𝑋1, 𝑋2) = 𝜉0/(𝜉1 + 𝜉2 − 𝜉0), where 0 ≤ 𝜉0 ≤ min (𝜉1, 𝜉2), here 𝜉1 and 𝜉2 are 

rates of exponential distribution. The process for generating data is as follows: 
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(a) Generate 𝑌1 from the univariate exponential distribution with rate 𝜉1 − 𝜉0 and 

𝑌2 from the univariate exponential distribution with rate 𝜉2 − 𝜉0. 

(b) Generate Z from the univariate exponential distribution with rate 𝜉0. 

(c) Let 𝑋1 = min (𝑌1, 𝑍) and 𝑋2 = min (𝑌2, 𝑍). 

 

From the process above, the joint density function of 𝐗|𝐷 = 1  for diseased 

individuals can be easily verified: 

{
𝑓(𝒙) = 𝜉1(𝜉2 − 𝜉0)𝑒−𝜉1𝑥1−(𝜉2−𝜉0)𝑥2  𝑖𝑓  𝑥2 < 𝑥1

𝑓(𝒙) = 𝜉2(𝜉1 − 𝜉0)𝑒−𝜉2𝑥2−(𝜉1−𝜉0)𝑥1  𝑖𝑓 𝑥1 < 𝑥2

 

For 𝐗|𝐷 = 0, we similarly generate 𝐗 for non-diseased individuals. We apply 

different rates for different groups. For example, we set 𝜉1
𝐷 = 𝜉2

𝐷 = 2,  𝜉0
𝐷 = 1 for 

diseased group and 𝜉1
𝑁 = 𝜉2

𝑁 = 10, 𝜉0
𝑁 = 1 for non-diseased group. Then suppose 

𝑓(𝒙) and 𝑔(𝒙) are the probability density function for diseased and non-diseased 

groups, the log density ratio can be easily verified: 

𝑙𝑜𝑔
𝑓(𝒙)

𝑔(𝒙)
= 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 

Let U = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 . It is easy to verify that U  is always the optimal 

combination of 𝑋1 and 𝑋2. Here if the rates 𝜉1
𝐷

, 𝜉2
𝐷

, 𝜉0
𝐷

, 𝜉1
𝑁

, 𝜉2
𝑁

, 𝜉0
𝑁

 are given, 

then 𝛼, 𝛽1 and 𝛽2 would have an explicit expression: 

α = log (
𝜉1

𝐷(𝜉2
𝐷 − 𝜉0

𝐷)

𝜉1
𝑁(𝜉2

𝑁 − 𝜉0
𝑁)

) 
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𝛽1 = 𝜉1
𝑁 − 𝜉1

𝐷
 

𝛽2 = 𝜉2
𝑁 − 𝜉2

𝐷
 

Next we study the robustness of the methods. It means that the “diseased group” 

would include some non-diseased individuals and the “non-diseased group” would 

include some diseased individuals. We posit that the diseased group satisfies the 

distribution: 

𝑓(𝒙) = 𝜆1𝑓1(𝒙) + (1 − 𝜆1)𝑓0(𝒙) 

and the non-diseased group satisfies the distribution: 

𝑔(𝒙) = (1 − 𝜆0)𝑓1(𝒙) + 𝜆0𝑓0(𝒙) 

where 1 − 𝜆1 is the proportion of non-diseased individuals contained in the diseased 

group and 1 − 𝜆0  is the proportion of diseased individuals contained in the non-

diseased group. Here 𝑓1(𝒙) and 𝑓0(𝒙) refers to the probability density function of the 

bivariate exponential distribution for diseased and non-diseased populations described 

in this section.  

 

5.2 Distribution estimation and comparison 

 In this section, we will compare the distribution estimation of 𝜷 and 𝐴𝑈𝐶 while 

applying different methods described in Chapter 4. For all methods, we standardize 

‖𝜷‖2 = 1 , while ‖. ‖2  is the 𝐿2  norm. We fix 𝜉1
𝐷 = 𝜉2

𝐷 = 2,  𝜉0
𝐷 = 1  for the 
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diseased group, and vary 𝜉1
𝑁 = 𝜉2

𝑁 = 3/5/10, 𝜉0
𝑁 = 1 for the non-diseased group 

to simulate different magnitudes between these two groups. 

 First, we display the estimating results of the models proposed by Qin and Zhang 

(2010) and Chen et al. (2015) when 𝜆 = 1 and 𝜆 < 1:  

 

Figure 1. The ROC estimation results for 𝜆 = 1 (left panel) and 𝜆 = 0.8 (right 

panel) when 𝜉1
𝐷 = 𝜉2

𝐷 = 2 and 𝜉1
𝑁 = 𝜉2

𝑁 = 5 

 

 From the Figure 1 in the left panel, the estimations based on two models are both 

acceptable for non-robust case. For 𝜆 = 0.8, the estimations are still not bad for both 

models. If we take a comparison, Model 2 performs comparably better than Model 1 

for both robust and non-robust cases.  

Then, we could focus on the distribution estimation for 𝜷. Here we only test for 

𝛽2 since we have already standardized 𝜷. And we set confidence level α = 0.05 for 
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all methods. Since we set 𝜉1
𝐷 = 𝜉2

𝐷
, 𝜉1

𝑁 = 𝜉2
𝑁

, the true value for 𝛽2 is equal to 

1/√2 ≈ 0.707. 

 We take 𝜉1
𝐷 = 𝜉2

𝐷 = 2  and 𝜉1

𝑁
= 𝜉2

𝑁 = 3  as an example to describe the 

results in detail. Other parameter settings can be analyzed in a similar way: 

 

 ① ② ③ 

𝜆0 𝜆1 Par. Bias MSE Type I Bias MSE Type I Bias MSE Type I 

1 1 𝛽2 -0.021 0.025 0.016 -0.017 0.023 0.127 -0.005 0.016 0.063 

0.8 0.8 𝛽2 -0.063 0.073 0.020 -0.083 0.081 0.006 -0.036 0.053 0.001 

0.6 0.6 𝛽2 -0.172 0.165 0.019 -0.151 0.165 0.000 -0.251 0.355 0.000 

Table 2. Method performances for estimating 𝛽2 while choosing different 𝜆0, 𝜆1 

when 𝜉1
𝐷 = 𝜉2

𝐷 = 2  and 𝜉1

𝑁
= 𝜉2

𝑁 = 3 

 

 Table 2 shows the bias, MSE and Type I error for three methods in different 𝜆0, 

𝜆1  settings. If we do not consider the robustness, that is 𝜆0 = 𝜆1 = 1 , all three 

proposed methods have an acceptable bias and MSE. If we compare these parameters 

more precisely, method ③ is comparably better than method ① and method ②. 

And from the Type I error, we compare the performance of the distribution estimation. 

From these three methods, Type I error of method ③  (0.063) is closest to the 

confidence level α = 0.05 , therefore this method has the best performance in 
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distribution estimation among three methods. And Type I error of method ① (0.016) 

is comparably small and Type I error of method ② (0.127) is comparably big, means 

that the distribution estimation of method ① is a little rough and the distribution 

estimation of method ② is a little specific compared with the true distribution. Here 

are their distribution estimations for a dataset showed by histograms, which is 

consistent to the analysis above: 

 

 

Figure 2. Histograms of the distribution estimation for three methods (graphs are 

listed by the order method ①、 ② and ③) 
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  And the Table 3 below shows Type II error for non-robust case. We roughly find 

that ③>②>① in performance because Type II error of method ③ has the fastest 

decreasing speed compared with method ① and method ② when 𝛽2 is away from 

the true value. But since the difference of 𝜉𝐷 and 𝜉𝑁 is not great, even when 𝛽2 =

0.15 or another side 𝛽2 = 0.95 , the Type II error for all three methods are still bigger 

than 0.050, showing that the Type II error for all three methods can not be controlled 

quite well. But this can be controlled much better when the magnitude is greater. 

 

𝛽2 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

①  0.121 0.186 0.256 0.316 0.399 0.482 0.581 0.667 0.761 0.834 

②  0.038 0.066 0.093 0.133 0.197 0.256 0.344 0.432 0.518 0.627 

③  0.021 0.032 0.050 0.086 0.140 0.216 0.297 0.406 0.548 0.664 

𝛽2 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

①  0.902 0.947 0.976 0.987 0.967 0.942 0.858 0.690 0.437 0.000 

②  0.726 0.803 0.851 0.875 0.866 0.794 0.666 0.483 0.238 0.000 

③  0.768 0.859 0.907 0.933 0.928 0.867 0.755 0.547 0.257 0.000 

Table 3. Comparison of Type II error for distribution estimation while 𝜆0 = 𝜆1 = 1 

𝜉1
𝐷 = 𝜉2

𝐷 = 2 and 𝜉1
𝑁 = 𝜉2

𝑁 = 3 for different methods 
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 Back to Table 2, we then focus on the robustness. It can be found the absolute value 

of bias for method ③ increase extremely quickly (from 0.005 to 0.251) and its Type I 

error suddenly decreases to 0, showing that method ③ is not suitable for robust case. 

Similar results and conclusions can be found for method ②, with its absolute value of 

bias increases from 0.017 to 0.151. And method ① seems to be the most stable method 

that even if its absolute value of bias increases a little bit (from 0.021 to 0.171) when 

𝜆0, 𝜆1 are decreasing, its Type I error is still at the same level (~0.02). 

- And here are the estimating results for three method when 𝜉1
𝐷 = 𝜉2

𝐷 = 2, 𝜉1
𝑁 =

𝜉2
𝑁 = 5 and 10: 

 

 ①  ② ③ 

𝜆0 𝜆1 Par. Bias MSE Type I Bias MSE Type I Bias MSE Type I 

1 1 𝛽2 -0.001 0.007 0.020 -0.010 0.007 0.097 -0.004 0.004 0.052 

0.8 0.8 𝛽2 -0.020 0.027 0.026 -0.027 0.029 0.002 -0.014 0.020 0.003 

0.6 0.6 𝛽2 -0.114 0.131 0.019 -0.121 0.134 0.000 -0.113 0.152 0.000 

Table 4. Method performances for estimating 𝛽2 while choosing different 𝜆0, 𝜆1 

when 𝜉1
𝐷 = 𝜉2

𝐷 = 2  and 𝜉1

𝑁
= 𝜉2

𝑁 = 5 
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𝛽2 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

① 0.000 0.000 0.000 0.001 0.003 0.008 0.028 0.092 0.216 0.413 

② 0.000 0.000 0.000 0.000 0.002 0.007 0.019 0.052 0.145 0.300 

③ 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.016 0.083 0.191 

𝛽2 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

① 0.634 0.816 0.933 0.979 0.965 0.821 0.523 0.152 0.011 0.000 

② 0.481 0.679 0.835 0.898 0.815 0.615 0.334 0.098 0.007 0.000 

③ 0.408 0.643 0.868 0.946 0.882 0.663 0.301 0.041 0.000 0.000 

Table 5. Comparison of Type II error for distribution estimation while 𝜆0 = 𝜆1 = 1 

𝜉1
𝐷 = 𝜉2

𝐷 = 2 and 𝜉1
𝑁 = 𝜉2

𝑁 = 5 for different methods 

 

 ①  ② ③ 

𝜆0 𝜆1 Par. Bias MSE Type I Bias MSE Type I Bias MSE Type I 

1 1 𝛽2 -0.003 0.005 0.023 -0.009 0.005 0.108 -0.001 0.003 0.057 

0.8 0.8 𝛽2 -0.019 0.020 0.018 -0.015 0.020 0.003 -0.013 0.020 0.004 

0.6 0.6 𝛽2 -0.111 0.126 0.022 -0.120 0.130 0.000 -0.077 0.111 0.000 

Table 6. Method performances for estimating 𝛽2 while choosing different 𝜆0, 𝜆1 

when 𝜉1
𝐷 = 𝜉2

𝐷 = 2 and 𝜉1

𝑁
= 𝜉2

𝑁 = 10 
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𝛽2 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

① 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.007 0.068 0.215 

② 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.014 0.060 0.165 

③ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.068 

𝛽2 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

① 0.460 0.735 0.919 0.975 0.950 0.763 0.364 0.053 0.000 0.000 

② 0.383 0.637 0.829 0.896 0.814 0.547 0.218 0.027 0.001 0.000 

③ 0.246 0.545 0.821 0.945 0.870 0.536 0.160 0.008 0.000 0.000 

Table 7. Comparison of Type II error for distribution estimation while 𝜆0 = 𝜆1 = 1 

𝜉1
𝐷 = 𝜉2

𝐷 = 2 and 𝜉1
𝑁 = 𝜉2

𝑁 = 10 for different methods 

 

 From Table 2-7, we can have a look at the performances of these three methods for 

different 𝜉1
𝑁 , 𝜉2

𝑁
 settings in robust and non-robust case. We can analyze these results 

in a similar way to the previous setting. From all these settings, we conclude that the 

method ③ estimate the distribution best if we do not consider the robustness. It has 

the smallest MSE and bias and its Type I error is always closest to confidence level 

α = 0.05 even if magnitudes are different. For the other two methods, Type I error for 

method ① is comparably a little small (~0.02) while Type I error for method ② is 

comparably a little big (~0.10). Then if we consider the robust case, we find that method 

① is the most stable method that its Type I error for distribution estimation doesn’t 

change too much(~0.02). Method ② and method ③ perform not so well if we take 
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robustness into account, especially method ③ for small magnitude, its bias and MSE 

increase quickly when 𝜆0, 𝜆1 decrease. We also find similar opinion in Chen et al. 

(2015)’s paper that the exponential titling method cannot be correctly specified if 𝜆 <

1, corresponding to our analysis towards method ③. 

 If we focus on Type II error, we conclude that ③>②>① in performance. We can 

look at another parameter setting different from the discussion above. If we choose to 

take 𝜉1
𝐷 = 𝜉2

𝐷 = 2, 𝜉1
𝑁 = 𝜉2

𝑁 = 5 and Type II error=0.05 as the judgement point 

as an example, we find that for method ③, we have a Type II error smaller than 0.05 

if 𝛽2 < 0.430  or 𝛽2 > 0.898, while for method ②, we achieve this when 𝛽2 <

0.397  or 𝛽2 > 0.916, and for method ①, 𝛽2 should satisfy 𝛽2 < 0.368  or 𝛽2 >

0.942. 

 Then, we turn to the distribution estimation for 𝐴𝑈𝐶. While the biomarkers follow 

bivariate exponential distribution, the direct calculation for the true value 𝐴𝑈𝐶 would 

be not be a difficult task. Another approach is to numerically calculate P(𝑈𝐷 > 𝑈𝑁), 

here 𝑈𝐷 is the optimal combination of the data from the diseased group and 𝑈𝑁 is for 

the non-diseased group. The result of these two approaches should be equivalent. It 

should also be noticed that when we consider the robustness, the true value of 𝐴𝑈𝐶 

will change greatly. Here are the true value of 𝐴𝑈𝐶 for different 𝜉 and 𝜆 and the 

estimation of AUC for three methods: 
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𝜆0 𝜆1 Par. 𝜉1
𝑁 = 𝜉2

𝑁 = 3 𝜉1
𝑁 = 𝜉2

𝑁 = 5 𝜉1
𝑁 = 𝜉2

𝑁 = 10 

1 1 𝐴𝑈𝐶 0.61975 0.75735 0.87943 

0.8 0.8 𝐴𝑈𝐶 0.57137 0.65120 0.72908 

0.6 0.6 𝐴𝑈𝐶 0.52448 0.55094 0.57750 

Table 8. True value for 𝐴𝑈𝐶 

 

 

  ①  ②  ③  

𝜆0 𝜆1 Par. Bias MSE Bias MSE Bias MSE 

𝜉1
𝑁 = 𝜉2

𝑁 = 3 

1 1 𝐴𝑈𝐶 0.018 7 × 10−4 0.018 7 × 10−4 0.013 5 × 10−4 

0.8 0.8 𝐴𝑈𝐶 0.023 9 × 10−4 0.022 8 × 10−4 0.005 3 × 10−4 

0.6 0.6 𝐴𝑈𝐶 0.029 0.001 0.028 0.001 0.007 3 × 10−4 

𝜉1
𝑁 = 𝜉2

𝑁 = 5 

1 1 𝐴𝑈𝐶 0.012 5 × 10−4 0.011 4 × 10−4 0.013 4 × 10−4 

0.8 0.8 𝐴𝑈𝐶 0.020 8 × 10−4 0.020 7 × 10−4 -0.013 5 × 10−4 

0.6 0.6 𝐴𝑈𝐶 0.026 0.001 0.024 9 × 10−4 -0.004 3 × 10−4 

𝜉1
𝑁 = 𝜉2

𝑁 = 10 

1 1 𝐴𝑈𝐶 0.010 3 × 10−4 0.010 3 × 10−4 0.012 3 × 10−4 

0.8 0.8 𝐴𝑈𝐶 0.014 5 × 10−4 0.014 5 × 10−4 -0.055 0.003 

0.6 0.6 𝐴𝑈𝐶 0.021 8 × 10−4 0.020 7 × 10−4 -0.022 8 × 10−4 

Table 9. Estimation for 𝐴𝑈𝐶 for three methods 
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Table 8 shows the true value of 𝐴𝑈𝐶 in different cases and Table 9 shows the 

estimation results for 𝐴𝑈𝐶 for three methods. It is not surprising that method ① and 

② have almost the same bias and MSE, since these two methods have the same data-

generating and initial estimating process. The results in Table 9 are consistent to those 

results showed in Figure 1. However, from the bias for non-robust case, we also notice 

that the estimation for 𝐴𝑈𝐶 is not so good as the estimation for 𝛽2 for this sample 

size. Actually, the estimated distribution of 𝐴𝑈𝐶 is always more concentrated than 𝛽2. 

Therefore, taking those three existing methods to give a distribution estimation for 

𝐴𝑈𝐶  do not have quite good performance. Taking 𝜉1
𝑁 = 𝜉2

𝑁 = 5 as an example, 

confidence level α = 0.05: 

 

 ①  ②  ③ 

𝜆0 𝜆1 Par. Bias Type I Bias Type I Bias Type I 

1 1 𝐴𝑈𝐶 0.012 0.227 0.011 0.299 0.013 0.167 

0.8 0.8 𝐴𝑈𝐶 0.020 0.372 0.020 0.300 -0.013 0.999 

0.6 0.6 𝐴𝑈𝐶 0.026 0.532 0.024 0.000 -0.004 0.763 

Table 10. Method performances for estimating 𝐴𝑈𝐶 while choosing different 𝜆0, 

𝜆1 when 𝜉1
𝐷 = 𝜉2

𝐷 = 2 and 𝜉1
𝑁 = 𝜉2

𝑁 = 5 
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From Table 10, we find that the hypothesis test perform badly for 𝐴𝑈𝐶 estimation 

for all these three methods. Although their bias seem acceptable for both robust and 

non-robust cases, their Type I errors are a little big compared with the confidence level 

α = 0.05. 

In short, the methods we have come out with are suitable for estimating the 

asymptotic distribution of 𝛽. For non-robust case, Method ③ is found to be the best 

method and for robust case, Method ① has the best performance. But these three 

methods do not have a good performance for estimating 𝐴𝑈𝐶. We probably need to 

think of some new methods if we want to estimate its asymptotic distribution. 
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Chapter 6 

 

Conclusion and discussion 

 

 In this study, we apply the optimal combination of multiple diagnostic test while 

using exponential tilting method proposed by Qin and Zhang (2010) and the monotone 

density ratio method proposed by Chen et al. (2015) to establish the asymptotic 

distribution for 𝜷 and 𝐴𝑈𝐶. By applying bootstrapping and resampling, we come out 

with three methods and make comparison to their performances.  

 From the simulation results, we find that the estimated distributions of 𝜷 are not 

so central-concentrated than 𝐴𝑈𝐶  but have better estimating accuracy for their 

estimations. If we do not consider the robustness and if we set the confidence level α =

0.05, method ③ has the best approximation for the distribution of β with about 

0.05~0.06 Type I error and also perform best for Type II error. And if we take the 

robustness into account, method ① seems to be the most stable one. Its Type I error 

remains to be about 0.02 for all λ we have tested.  

 As we have concluded above, those three methods we come out have acceptable 

results for estimating the asymptotic distribution for 𝜷  and each method has its 

advantages. However, if we apply our methods to estimate 𝐴𝑈𝐶, those methods work 

not so well as expected. Maybe it is because that the asymptotic distribution of 𝐴𝑈𝐶 
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is more central-concentrated. Therefore, the hypothesis test towards 𝐴𝑈𝐶  may be 

more sensitive to the bias, and it needs a method with higher accuracy for estimating 

the distribution than estimating for 𝜷. 

 In conclusion, we have successfully given an estimation towards the asymptotic 

distribution of 𝜷  with good accuracy. And about 𝐴𝑈𝐶 , the estimating part still 

remains to be an open question for future studies. We can perhaps turn to discover some 

methods with higher accuracy in estimation which may work for estimating 𝐴𝑈𝐶 . 

More thinking can be taken into this interesting topic. 
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