
ENERGY-TIME PERFORMANCE OF
HETEROGENEOUS COMPUTING

SYSTEMS: MODELS AND ANALYSIS

Lavanya Ramapantulu
M.S. Microelectronics, Birla Institute of Technology and Science

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2016

Abstract

While heterogeneity is increasingly becoming the norm in most computing plat-

forms today, one of the key challenges is to determine the set of energy-time effi-

cient system configurations among the large system configuration space to execute

a parallel application. This large configuration space offers a new opportunity to

improve the match between parallel application demands and system resources to

achieve efficient energy-time performance. This thesis presents an approach to ad-

dress this challenge using a measurement-driven analytical model that determines

both time and energy efficient system configurations. Based on our taxonomy of

heterogeneous computing systems, we first propose a core analytical model for a

baseline heterogeneous system representing inter-node heterogeneity and consist-

ing of brawny and wimpy nodes. The proposed core model is scalable for different

types of heterogeneity and is formulated using parametric values obtained from

baseline measurements of the application for better accuracy. The key novelties

of our approach include modeling both inter and intra-node resource overlaps and

resource contention.

Among heterogeneous systems, intra-node heterogeneous systems with Vector

Processing Units (VPUs) are increasingly being adopted in the Top500 super-

computers as they offer accelerated performance gains. Secondly, the impact of

heterogeneity in parallel programs leads to the wider adoption of hybrid program-

ming models for scientific applications. Hybrid programming models are gaining

traction as they exploit system resources and parallelism at both inter- and intra-

node levels. The scalability of our proposed core model is shown by extending it

to both intra-node heterogeneous system and hybrid programs. Key model exten-

sions include (i) inter- and intra-core contentions for VPUs in a Many Integrated

Core (MIC) architecture system, and (ii) inter- and intra-node communication for

hybrid programs.

With the advent of heterogeneity at both program and system level, it is non-

trivial for application developers or users to choose an energy and time optimal

configuration from the large configuration space. The proposed core model and

its extensions are applied to determine energy-time efficient system configurations

for inter-node heterogeneous system, intra-node heterogeneity with VPUs and hy-

brid programs. In determining these efficient system configurations, we exposed a

number of insights. Firstly, there aremultiple Pareto-optimal “sweet-spot” configu-

rations that can be approximated using a distinct energy-deadline Pareto-frontier.

These configurations facilitate energy-time trade-offs such as to minimize energy

used for a given execution-time deadline and/or to minimize execution time for

a given energy budget. Our analysis shows that for inter-node heterogeneous

clusters and hybrid programs, energy savings of up to 75% can be achieved by

selecting Pareto-optimal configurations as opposed to non-optimal configurations.

Furthermore, among the Pareto-optimal configurations hybrid programs reduces

the energy used by up to 65% at the expense of 18% increase in execution time.

With the explosion of the configuration space, we show that the Pareto-frontier

can be analytically established using the node performance-to-power ratios (PPR).

We show that the Pareto-frontier can be further improved by replacing low PPR

nodes with higher PPR nodes using our power substitution ratio. Additionally,

our energy proportionality analysis reveals that inter-node heterogeneous clusters

enable the scaling of the energy-proportionality wall by exposing sub-linear energy-

proportional configurations. To further optimize the Pareto-frontier, we introduce

a new metric called useful computation ratio (UCR) to quantify the degree of

resource contentions and communication overheads in an execution. Lastly, we

show how UCR and Pareto-optimal configurations can be used in conjunction by

system designers to gain further insights into system resource imbalances, and how

application developers can further fine-tune their hybrid programs.

iv

Science is bound, by the everlasting vow of honour, to face fearlessly every

problem which can be fairly presented to it.

– Lord Kelvin

vi

Acknowledgments

I would like to express my sincere gratitude to my thesis advisor Professor

Teo Yong Meng. The door to Professor Teo’s office was always open whenever I

needed help or had a question about my research or writing. He has taught me

the nuances of research by asking the right questions to help me think clearly and

present my thoughts in a coherent manner. His guidance struck the right balance

between giving me the freedom to follow my ideas and steering me in the right

direction whenever he thought I needed it. His teaching style of asking the right

questions inspires me to embark on an academic career. Thank you, Professor Teo

for your advice and support during my PhD studies.

I would like to take this opportunity to thank my thesis advisory committee,

Professor Ooi Wei-Tsang and Professor Wong Weng-Fai for their comments, feed-

back and support during the various milestones of my candidature. I would like to

thank Professor Chin Wei Ngan, Professor Ooi Beng Chin, Professor Ananda and

Professor Lakshminarayanan for being supportive and lending their systems for

my research. My heartfelt gratitude to Madam Loo Line Fong for her continuous

support both before joining and during my PhD candidature. I thank the staff

in the graduate office for their support in administrative matters and enabling

me to attend conferences to present my research. I recognize that this research

would not have been possible without financial assistance and express my sincere

gratitude to the Ministry of Education, Singapore.

A special acknowledgement to my mentors in the lab, Dr. Bogdan Marius

Tudor and Dr. Cristina Carbunaru, from whom I have learnt the nitty-gritty

details involved in writing technical research papers. A special thank you to my

wonderful colleague and collaborator Dumitrel Loghin for discussing my research

and reviewing my work. I would like to thank my lab mates over the years Khanh,

Linh, Trang, Saeid, Thy, Oana, Sunimal, Suman, Irvan for making the work place

enjoyable.

I thank all my friends who made my stay in Singapore such a wonderful expe-

rience. Marcel, Pooja, Sreetama, Subhasree, Sudipta, Shuang Liu for their advice

during the different milestones of my PhD studies; Akshay, Asha, Parvathy, Neha,

Sanat for making me feel at home; Prasanta, Anirudh, Abhra, Bhargava, Yang

Yi for the discussions on life philosophies; Mahsa, Maryam, Huping, Chundong,

Yamilet, Anh and the NUS Buddhist society for enhancing my cultural experience;

Peichu, Sergey, Shin Hwei for company to play table-tennis; Kuldeep, Rajiv for

vii

being wonderful cohort mates; and many more friends who made this journey an

enjoyable one.

Last but not the least, I would like to thank my family and friends for being a

source of strength, love and encouragement despite being thousands of miles away

from me. Finally, I thank my friend, philosopher and life-guide Anshoo Tandon

without whom I would not have embarked on this defining chapter of my life.

I am sure that there are many more to thank and sincerely apologize to those

that are overlooked.

viii

List of Publications

1. L. Ramapantulu, B.M. Tudor, D. Loghin, T. Vu and Y.M. Teo, Modeling

the Energy Efficiency of Heterogeneous Clusters, Proceedings of 43rd Inter-

national Conference on Parallel Processing, pp 321-330, Minneapolis, USA,

Sep 9-12, 2014. [Inter-node Heterogeneity]

2. L. Ramapantulu, D. Loghin and Y.M. Teo, An Approach for Energy Effi-

cient Execution of Hybrid Parallel Programs, Proceedings of 29th IEEE In-

ternational Parallel and Distributed Processing Symposium, pp 1000-1009,

Hyderabad, INDIA, May 25-29, 2015. [Hybrid Programs]

3. D. Loghin, L. Ramapantulu, O. Barbu and Y.M. Teo, A Time-Energy Per-

formance Analysis of MapReduce on Heterogeneous Systems with GPUs, Per-

formance Evaluation - An International Journal, Vol 91, pp 255-269, Else-

vier, 33rd International Symposium on Computer Performance, Modeling,

Measurement and Evaluation (IFIP WG 7.3 Performance 2015), Sydney,

AUSTRALIA, Oct 19-21, 2015. [Inter-chip and Intra-chip Heterogeneity]

4. L. Ramapantulu, D. Loghin and Y.M. Teo, On Energy Proportionality

and Time-Energy Performance of Heterogeneous Clusters, Proceedings of

18th IEEE Cluster Conference, Taipei, Taiwan, Sep 12-16, 2016. (accepted)

[Inter-node Heterogeneity]

5. L. Ramapantulu, T. Dao, D. Loghin, N. Thoai and Y.M. Teo, Modeling

the Energy-Time Performance of MIC Architecture System, Proceedings of

24th IEEE Conference on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems, London, UK, Sep 19-21, 2016. (accepted)

[Intra-node Heterogeneity]

ix

Table of Contents

Abstract iii

Acknowledgements vii

List of Publications ix

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Motivation . 3

1.2 Challenges and Research Questions 4

1.3 Objective and Contributions . 8

1.4 Thesis Organization . 11

2 Related Work 15

2.1 Heterogeneous Computing Systems 15

2.1.1 Systems . 18

2.1.2 Programs . 25

2.2 Approaches . 28

2.2.1 Energy Efficiency . 29

2.2.2 Energy Proportionality . 31

2.2.3 Time Performance . 36

2.3 Heterogeneity and Energy-time Performance 42

2.4 Summary . 43

3 Approach and Core Model 45

3.1 Overview . 45

xi

3.2 Core Model . 48

3.2.1 Model Inputs . 48

3.2.2 Execution Time Model . 50

3.2.3 Matching Technique . 54

3.2.4 Energy Model . 56

3.3 Validation . 57

3.3.1 Workloads and Setup . 58

3.3.2 WPI and SPIcore . 60

3.3.3 SPImem Regression over Core Frequency f 60

3.3.4 Execution Time and Energy 62

3.3.5 Sources of Inaccuracy . 62

3.3.6 Accuracy of Related Work 63

3.4 Summary . 63

4 Analysis of Inter-node Heterogeneous Systems 65

4.1 Pareto-optimal Configurations . 65

4.2 Impact of Performance-to-Power Ratio 68

4.2.1 Performance-to-Power Ratio (PPR) 68

4.2.2 Analytical Analysis of PPR on Sweet Region 71

4.3 Impact of Power Substitution Ratio 73

4.3.1 Power Substitution Ratio (PSR) 73

4.3.2 Impact of Heterogeneous Mixes on the Sweet Region 74

4.3.3 Analytical Analysis of PSR on Sweet Region 77

4.4 Energy Proportionality Analysis . 78

4.4.1 Brawny versus Wimpy Node 79

4.4.2 Cluster-wide Energy Proportionality 85

4.4.3 Does Heterogeneity Scale the Energy Proportionality Wall? . 89

4.5 Summary . 92

5 Extension to Intra-node Heterogeneity with VPU 95

5.1 Overview . 98

5.1.1 MIC Architecture . 100

5.2 Time Performance Model . 102

5.2.1 Intra-core contention . 105

5.2.2 Inter-core contention . 106

5.3 Model Parameterization and Validation 107

xii

5.3.1 Workloads and Setup . 108

5.3.2 Model Parameterization . 109

5.3.3 Execution time Validation 112

5.3.4 Power Characterization . 114

5.4 Analysis . 114

5.4.1 Pareto-optimal Configurations 115

5.4.2 Performance-to-power Ratio 117

5.5 Summary . 121

6 Extension to Hybrid Programs with Communication 123

6.1 Overview . 124

6.2 Communication Model . 128

6.2.1 Model Inputs . 128

6.2.2 Time Model . 130

6.2.3 Energy Model . 133

6.2.4 Validation . 134

6.3 Analysis . 138

6.3.1 Pareto-optimal Configurations 139

6.3.2 Useful Computation Ratio 142

6.4 Summary . 145

7 Conclusion 149

7.1 Thesis Summary . 149

7.1.1 Measurement-based Analytical Model 150

7.1.2 Insights from Energy-Time Performance Analysis 154

7.1.3 Limitations . 157

7.2 Future Directions . 157

7.2.1 Dynamic Adaptation of Configurations at Run-time 157

7.2.2 Cost-Time Performance . 158

References 161

A Experiment Setup 185

A.1 Programs . 185

A.2 Systems . 187

A.3 Software Setup . 188

A.4 Validation Results . 190

xiii

B Model Parameters 192

C Sensitivity Analysis 195

C.1 What is a Good Mix of High-performance to Low-power Nodes? . 195

C.2 Are Larger Mixes of Heterogeneous Nodes Better? 197

C.3 Does Static Workload Allocation Suffice? 199

C.4 Impact of Realistic Workloads on Heterogeneity 202

C.5 Impact of Jobs Queueing Delay . 207

xiv

List of Figures

2.1 A classification of heterogeneous computing systems 17

2.2 Power-performance of processors . 19

2.3 Example system with inter-chip heterogeneity, Intel Xeon Phi . . . 21

2.4 Example system with intra-chip heterogeneity, ARM big.LITTLE . 24

2.5 Example system with intra-chip heterogeneity, Nvidia Jetson TK1 . 25

2.6 Hybrid program with MPI, OpenMP, Xeon Phi API and CUDA . . 28

2.7 Energy proportionality metric relationships 32

2.8 Energy-performance of CPU, GPU and MIC [140] 34

3.1 Methodology for core model . 47

3.2 Validation setup . 60

3.3 WPI and SPIcore across problem size 61

3.4 Effect of frequency and number of cores on SPImem 61

4.1 Pareto frontier for EP with dmax = 3 67

4.2 Pareto frontier configurations for EP 69

4.3 Pareto frontier configurations for RSA-2048 70

4.4 Configurations on the sweet-spot region 72

4.5 Pareto frontier for EP with d = 2 75

4.6 Pareto frontier for EP with d = 3 75

4.7 Pareto frontier for RSA-2048 with d = 2 76

4.8 Pareto frontier for RSA-2048 with d = 3 77

4.9 Energy proportionality of EP . 80

4.10 Energy proportionality of x264 . 81

4.11 Energy proportionality of blackscholes 81

4.12 PPR of EP . 83

4.13 PPR of x264 . 83

4.14 PPR of blackscholes . 84

xv

4.15 Cluster-wide energy proportionality d = 1 and d = 2 87

4.16 Cluster-wide energy proportionality d = 3 88

4.17 Energy proportionality of Pareto-optimal configurations for EP . . . 90

4.18 Response time of sub-linear heterogeneous mixes for EP 91

4.19 Energy proportionality of Pareto-optimal configurations for x264 . . 91

4.20 Response time of sub-linear heterogeneous mixes for x264 92

5.1 Approach for intra-node heterogeneity 99

5.2 MIC architecture . 101

5.3 Abstraction of a parallel program 103

5.4 WPI validation . 110

5.5 Validation of instructions . 110

5.6 Validation of cache accesses . 111

5.7 Validation results for scatter thread affinity mode 112

5.8 Validation results for compact thread affinity mode 113

5.9 Pareto-optimal configurations for executing BT 115

5.10 Pareto-optimal configurations for executing FT 116

5.11 Pareto-optimal configurations for executing CG in scatter mode . . 119

5.12 Pareto-optimal configurations for executing CG 120

6.1 Abstraction of a hybrid program . 125

6.2 Model of hybrid program execution 125

6.3 Approach for hybrid programs . 126

6.4 Network characterization . 129

6.5 Execution time validation . 136

6.6 Energy validation . 136

6.7 Scale-out program LU . 137

6.8 Xeon cluster executing SP program 139

6.9 ARM cluster executing CP program 140

6.10 UCR and time-energy performance on Xeon cluster 143

6.11 UCR and time-energy performance on ARM cluster 144

7.1 Measurement-based analytical model 151

C.1 Heterogeneous mixes for memcached 196

C.2 Heterogeneous mixes for EP . 196

C.3 Increasing cluster size for memcached 198

xvi

C.4 Increasing cluster size for EP . 198

C.5 Memcached static workload allocation 200

C.6 EP static workload allocation . 201

C.7 Pareto frontier with sequential fraction α = 0.1 203

C.8 Pareto frontier with parallel overhead k = 0.01 206

C.9 Effect of job queueing delay on cluster utilization 208

xvii

List of Tables

2.1 Comparison of performance analysis approaches 37

2.2 Heterogeneity and energy-time performance 42

3.1 Core model parameters . 49

3.2 Types of heterogeneous nodes . 59

3.3 Single-node validation . 60

3.4 Cluster validation . 62

3.5 Accuracy of Related Work . 63

3.6 Summary of core model . 64

4.1 Performance-to-power ratio . 69

4.2 Cluster mixes for 1kW power budget 74

4.3 Useful Operations . 80

4.4 Single-node energy proportionality 80

4.5 Cluster-wide energy proportionality 85

5.1 Model parameters . 100

5.2 Programs . 108

5.3 Intel node with MIC co-processor 109

5.4 Validation results . 113

5.5 Performance-to-power ratio . 117

5.6 Summary of model extension for MIC architecture 121

6.1 Communication model parameters 128

6.2 Hybrid program system . 135

6.3 Hybrid program validation results 137

6.4 Summary of model extension for hybrid programs 147

7.1 Summary of all models . 152

xix

A.1 Programs used in thesis . 187

A.2 Systems used in thesis . 188

A.3 Software versions used in thesis . 189

A.4 Execution time validation on a single ARM node 190

A.5 Execution time validation on a single AMD node 190

A.6 Energy validation on a single ARM node 191

A.7 Energy validation on a single AMD node 191

B.1 Notations used in thesis . 194

C.1 Energy and service time with α = 0.1 204

C.2 Energy and service time with k = 0.01 206

C.3 Energy and service time for ideal case 207

xx

Chapter 1

Introduction

The last 50 years have seen a rapid growth in the performance of processors,

with performance improvements by a factor of 10,000 over the last 20 years [61].

This growth in performance was sustainable due to the increase in the number

of transistors with a reduction in their size, thus leading to reduced costs and

manageable power with increase in performance. However, this sustained growth

has come to a stand-still in the 21st century due to the fundamental limits in

the power-efficiency of CMOS technology based processors. Therefore, along with

improvements in execution-time performance, energy and power performance of

processors is increasingly becoming very important.

This led to a paradigm shift from conventional sequential programming to

parallel programming and parallel systems for sustained growth in computer per-

formance. This shift presented opportunities to explore heterogeneity in both

programs and systems, and develop novel approaches to meet both energy and

time performance constraints of developers and users of parallel programs. With

heterogeneity in both programs and systems driving the future of computing, it

provides new opportunities to determine a better match between parallel programs

and available system resources to execute applications efficiently.

1

Chapter 1. Introduction

Heterogeneous Computing Systems (HCS) is heterogeneity in all manifesta-

tions of computing, including processors, networks, programming, protocols and

all combinations of these coming together to deliver a positive impact. While HCS

is all encompassing, we consider three types of heterogeneity for the scope of this

thesis, (i) inter-node heterogeneity - multi-core cluster of processors with diverse

performance-to-power ratios among them, (ii) intra-node heterogeneity - compute

node with accelerators/coprocessors such as Vector Processing Units (VPU), and

(iii) hybrid programs - exploiting inter-node distributed-memory scalability and

intra-node shared-memory performance in a cluster system.

While heterogeneity introduces new opportunities to gain a better balance be-

tween program demands and system resources, it brings forth many challenges.

One of the key challenges due to heterogeneity is the large system configuration

space made available. A heterogeneous mix of nodes offers a much larger system

configuration space due to the different combinations of system parameters such

as, types of nodes, number of nodes of each type, number of active cores per node

and the operating core clock frequency. If d denotes the degree of heterogene-

ity (d = 1 for a homogeneous system) then the space complexity of the system

configuration space available for execution grows exponentially to the power of

d. For example, a single type of processor having four cores per node and four

operating clock frequencies can have a maximum of 16 configurations. When the

types of processing nodes increase to two, then the configuration space becomes

256. Furthermore, by adding a third type of processor, the number of configura-

tions grows to 4096. For an application developer or user choosing an energy and

time optimal configuration from this large configuration space is non-trivial. In

this thesis, we aim to address this challenge of determining energy-time efficient

system configuration to execute a given parallel program.

2

Chapter 1. Introduction

1.1 Motivation

Energy efficiency of servers is a key concern for most datacenters in the world

today. For example, the power consumed by datacenters in the United States

(US) is estimated at nearly 91 billion kilowatt-hours in 2013 [127]. The power

consumption costs of datacenters are increasingly becoming a larger fraction of the

total cost of ownership [29]. From the environmental perspective, datacenter power

consumption in the US alone is equivalent to several million tons of greenhouse

gas emission per year [133]. Thus, improving the energy efficiency of servers not

only benefits the total cost of ownership but also has a positive impact on the

environment.

Many research findings advocate the usage of low-power processors (wimpy

nodes) as an alternative to traditional servers (brawny nodes), for achieving higher

energy efficiency [21, 84, 88, 102]. On the contrary, other researchers and practi-

tioners indicate that clusters using only brawny high-performance nodes are more

energy efficient [117, 156], but much remains to be explored to improve cluster-

wide energy efficiency of scale-out workloads. While a system using only low-power

nodes may not service the job fast enough to meet the desired QoS (e.g. dead-

line) [79], a system with only high-performance nodes may require an inordinate

amount of energy due to over-provisioning [10]. Ideally, a system should allow a

range of configurations where energy usage decreases progressively as the dead-

line is relaxed. This motivates the case for analyzing heterogeneous computing

systems having different mixes of nodes with varied performance-to-power ratios

(PPRs).

With the slowing down of “Moore’s law” and dark-silicon limiting the num-

ber of active cores in a multi-core processor, mixing CPUs and accelerators seems

like a viable alternative to scale-up parallel computing performance. The recent

3

Chapter 1. Introduction

years have seen the wide adoption of accelerators by the HPC community. Among

the Top500 systems in November 2015, there were about 104 systems with ac-

celerators [8]. Traditionally, while GPUs have been dominating the accelerator

arena, the launch of Intel’s Knight Corner in 2012, have seen another class of

accelerators being adopted mainstream, namely the Many Integrated Core (MIC)

architecture. The increasing adoption of this architecture is evident in the Top500

systems, where 32 among the 104 systems with accelerators use the Intel Xeon

Phi co-processor which is based on the MIC architecture. Thus, it is important to

address the challenges due to the adoptions of intra-node heterogeneous systems

with VPUs.

While heterogeneous clusters address heterogeneity at the system level, pro-

grams are increasingly becoming hybrid to simultaneously exploit the compu-

tational capabilities of multi-core systems and to scale complex HPC applica-

tions [27, 105, 148]. To utilize the advantages offered by hybrid programs, there

is a need to design the right balance between shared-memory computations and

the associated message-passing overheads. Thus, improving the time and energy

performance of heterogeneous computing systems involves not only determining

time and energy-time efficient system configurations among heterogeneous multi-

core clusters, but also determining the optimum trade-off between the number

of threads and the number of logical processes for efficient execution of hybrid

programs.

1.2 Challenges and Research Questions

With heterogeneity redefining the parallel computing landscape, it brings along

a plethora of challenges to the research community. Some of the key challenges

include improving efficiency, managing complexity, and improving dependability

4

Chapter 1. Introduction

[52]. With respect to improving efficiency, there are multiple performance metrics

to choose from with the focus moving from performance per Dollar to perfor-

mance per Watt per Dollar with ever increasing operational costs of energy and

cooling. There is a need to define standards to inter-operate software and tools in

to manage the complexity brought forth by heterogeneous systems. There is also a

need to explore high computing systems having an optimum mix of heterogeneous

processors, accelerators and interconnect technologies.

From a system perspective, a heterogeneous mix of nodes offers a large con-

figuration space due to the different combinations of system parameters such as,

types of nodes, number of nodes of each type, number of active cores per node and

the operating core clock frequency. While heterogeneity is becoming the norm in

most computing systems today, one of the key challenges is to determine the set

of energy-time efficient system configurations among the large system configura-

tion space1. Analyzing the energy-efficiency for such a large configuration space

triggers a multitude of challenges including:

1. Given an execution-time deadline and energy budget, how can we deter-

mine the set of energy-time efficient configurations from the large system

configuration space?

2. What is the impact of the performance-to-power ratio (PPR) on the set of

energy-time efficient configurations?

3. For a given power budget, what is an energy-time efficient mix among the

heterogeneous resources with diverse PPRs for a given power budget?

1 For example, if we consider three types of nodes, with each node having four, six, and eight
cores respectively and assuming the possible core clock frequencies for each type of node are
f1 ∈ [0.8, 1.4, 2.1] GHz, f2 ∈ [0.2, 0.5, 0.8, 1.1, 1.4] GHz, f3 ∈ [1.2, 1.5, 1.8] GHz. Then the total
number of possible configurations = (3× 6× 3)× (3× 4× 5)× (3× 8× 3)+ (3× 6× 3)× (3× 4×
5)+ (3× 4× 5)× (3× 8× 3)+ (3× 8× 3)× (3× 6× 3)+ (3× 6× 3)+ (3× 4× 5)+ (3× 8× 3) =
244,914.

5

Chapter 1. Introduction

4. How does heterogeneity impact cluster-wide energy proportionality?

Though simple back of the envelope calculations using heuristics may provide

the configuration, our aim is to obtain optimal time-energy configurations rather

than a single configuration to aid in efficient trade-offs in both energy and time.

In addition, we use a measurement-driven analytical model to obtain these con-

figurations as the goal is to increase the accuracy of the predicted configuration.

With heterogeneity becoming inevitable, past research work has focused on

mapping and scheduling multiple workloads on heterogeneous clusters [49, 64, 68,

126]. On the contrary, this thesis aims to address the aforementioned challenges

and determine energy and time-efficient system configurations for executing a

parallel application on heterogeneous computing systems.

While there is an increasing adoption of intra-node heterogeneous systems, such

as MIC architecture system in Top500 supercomputers [8], reaching the theoretical

peak performance of the Xeon Phi is challenging. It depends a lot on the scaling,

how to bind threads to cores, the degree of vectorization and memory usage of the

applications. Hence, for a HPC user, determining the optimal system configuration

to execute the parallel application is non-trivial and poses a number of research

challenges such as:

1. For a given program, what is the number of threads that achieves the best

performance?

2. For a given program and the number of threads, what thread affinity mode

achieves the best performance?

From a technology perspective, the advent of dark silicon era [55] is pushing

computing systems towards heterogeneous parallelism. This trend is necessitating

application developers to leverage the heterogeneity in systems and enable energy-

time performance gains. Thus, HPC application developers are increasingly using

6

Chapter 1. Introduction

hybrid programming models to simultaneously exploit the computational capabil-

ities of multi-core systems and use multiple nodes to scale complex applications.

A hybrid parallel program is partitioned into a variable number of logical parallel

processes and parallel threads. For a given hybrid program and a multi-node sys-

tem with multi-core nodes operating at different core clock frequencies, there is a

large system configuration space for executing these logical processes and threads.

As the resource demands in a hybrid parallel program varies with its problem size,

these resource demands have to be mapped onto different system configurations

to minimize resource contention and runtime overheads. Hence, energy-time effi-

cient execution of hybrid programs is non-trivial and poses a number of research

challenges such as:

1. What is an energy efficient system configuration (number of nodes, number

of cores and core clock frequency) to execute a hybrid program?

2. How much time does a hybrid program spend on computation (useful work)

versus communication of data and other overheads, and what is a good

Useful Computation Ratio (UCR)?

3. Does a higher UCR imply a more energy-time efficient configuration for

executing a hybrid program?

Answers to these questions help both application developers to gain insights on

program hot-spots, and system designers to identify capacity bottlenecks, and thus

optimize software-hardware co-design to improve energy-efficiency. This thesis

addresses these challenges and proposes a unified approach to not only determine

energy and time-efficient system configurations for executing a parallel application

on heterogeneous computing systems but also execute a hybrid (OpenMP+MPI)

parallel program in an energy efficient manner.

7

Chapter 1. Introduction

1.3 Objective and Contributions

The objective of this thesis is to develop an approach to determine energy and

time-efficient configurations for executing a parallel application on heterogeneous

computing systems. With the advent of heterogeneity at both program and system

level, this thesis presents a scalable measurement-based core analytical model

to determine the time-energy performance of heterogeneous multi-core clusters.

In contrast to pure analytical or mathematical models, the proposed approach

exploits baseline measurements for better accuracy. Additionally, the proposed

approach is scalable as we extend the core model to address different types of

heterogeneity.

The key contributions of this thesis are:

1. Measurement-driven Analytical Model [136, 137]

(a) Core Model [137]

We propose a measurement-based analytical model to determine time and

energy efficient system configurations for executing a parallel program

on a baseline heterogeneous cluster consisting of multi-core brawny and

wimpy nodes. Current approaches to analyze time-energy performance of

parallel programs mainly include instrumentation or application profiling

based measurement techniques or cycle-accurate simulations. However,

the large configuration space due to heterogeneity prohibits their usage.

The proposed core model is formulated using parametric values obtained

from baseline executions of the application to measure workload and ar-

chitectural artefacts. The key novelties of our approach are modeling both

inter- and intra-node resource overlaps and resource contentions.

(b) MIC Architecture Model

8

Chapter 1. Introduction

We show the scalability of the core model by extending it to determine

time and energy-efficient system configurations for parallel programs exe-

cuting on co-processors with VPUs, e.g. Intel Xeon Phi. With at least 50

cores, Intel Xeon Phi coprocessor offers high parallelism and a theoretical

peak of two TFLOPS for single precision, one TFLOPS for double preci-

sion and over 352 GB/s of memory bandwidth. The performance as well

as the flexibility to use the Xeon Phi as a coprocessor or a standalone pro-

cessor is promising for accelerating applications. Furthermore, Xeon Phi

has a general-purpose programming environment and can be programmed

with common programming languages, thus making it even more popu-

lar among HPC users. However, from a system perspective, coprocessors

based on MIC architecture offer a large system configuration space to ex-

ecute a parallel application due to the number of threads per core and the

number of available cores. The core model is extended to address both

inter- and intra-core contention for shared-memory in MIC architecture

systems, thus providing a systematic method to users of MIC architecture

systems to determine the thread affinity mode and the number of threads

for efficient execution of a HPC application.

(c) Communication Model [136]

While extension of the core model to intra-node heterogeneous systems

shows the scalability of the model from a system perspective, from a

program perspective, the scalability of the core model is illustrated by

modeling the communication for hybrid OpenMP and MPI programs.

Hybrid programming model is becoming increasingly popular for HPC

applications as it has the dual-advantage of exploiting inter-node scala-

bility and intra-node shared-memory performance in a cluster system. As

hybrid programs incur communication overheads, modeling these is key

9

Chapter 1. Introduction

to determine energy-time efficient system configurations. We extend our

measurement-driven core model to incorporate both intra- and inter-node

communication, and network contention across nodes, which enables us

to determine energy-time efficient system configurations for executing a

hybrid program.

2. Energy-Time Pareto-frontier [136, 137]

(a) Formulation of the Energy-Time Pareto-frontier [136, 137]

While the proposed approach relies on a measurement-driven analytical

model to determine energy-time efficient system configurations, the impact

of an execution-time deadline and/or an energy budget on these system

configurations is non-obvious. We show that a distinct Pareto-frontier

consisting of optimal configurations exist for parallel applications execut-

ing on heterogeneous clusters, intra-node heterogeneous systems and a

hybrid program running on homogeneous clusters. These Pareto-optimal

configurations are energy-time efficient as they consume the minimum en-

ergy for a given execution time deadline or execute in the minimum possi-

ble time for a given energy budget. With the explosion of the configuration

space due to heterogeneity, we show that the Pareto-frontier can be an-

alytically formulated using the node performance-to-power ratios (PPR).

Furthermore, we show the use-case of our approach to determine what

applications will benefit from offloading of execution to co-processors with

VPU such as Xeon Phi.

(b) Pareto-frontier Optimization for Heterogeneous Systems [137]

Given a peak power budget and a service time deadline, we apply our

model to analyze the Pareto-frontiers of different heterogeneous mixes.

We define and use the power substitution ratios for replacing nodes among

10

Chapter 1. Introduction

these mixes. We show that the Pareto-frontier can be further improved

by replacing low PPR nodes with higher PPR nodes using our power sub-

stitution ratio. Additionally, for a given power budget, we show that the

Pareto-optimal configurations of heterogeneous clusters have sub-linear

energy proportionality and thus scale the energy proportionality wall.

(c) Pareto-frontier Optimization for Hybrid Programs [136]

To optimize the Pareto-frontier of hybrid programs, we introduce a new

metric, useful computation ratio (UCR) that quantifies the degree of re-

source contentions and communication overheads in an execution. In ad-

dition, we show how system architects and application developers can

increase the UCR of Pareto-optimal configurations by balancing resource

service demands with resource utilization, to further minimize system in-

efficiencies.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 discusses the current state-of-the-

art in the execution time and energy performance of heterogeneous computing

systems. We first discuss the landscape and taxonomy of heterogeneous com-

puting systems. Next we discuss the different approaches in the state-of-the-art

pertaining to energy-time performance models and analysis, and compare these

approaches against our approach. Lastly, we discuss the impact of heterogeneity

and the limitations of the current approaches for understanding the energy-time

performance including simulations and analytical models.

The proposed approach and the core model to determine the energy-time per-

formance of multi-core heterogeneous clusters is presented in Chapter 3. The pro-

posed core model is scalable for different types of heterogeneity and is formulated

11

Chapter 1. Introduction

using parametric values obtained from baseline measurements of the application

for better accuracy. We first present an overview of the core model followed by the

input parameters to the model. Next, we present the derivation of the execution

time and energy model. Lastly, we discuss the validation results against direct

measurements of execution time and energy usage on a heterogeneous cluster with

ARM Cortex-A9, AMD Opteron K10 and Intel Xeon E5 multi-core nodes, for a

diverse range of parallel applications.

Chapter 4 shows the application of our core model to analyse the time-energy

efficiency of different inter-node heterogeneous configurations under a given service

time deadline and energy budget. We first evaluate the impact of multiple degrees

of heterogeneity on energy efficiency. Next, we present the performance-to-power

ratio (PPR) of the inter-node heterogeneous system and analytically determine the

impact of PPR on the sweet region. Lastly, we show how to apply our approach to

choose energy-time efficient cluster mixes constrained by a power budget followed

by an analysis of whether heterogeneous clusters are more energy proportional.

Chapter 5 shows the scalability of the proposed core model by extending it to

determine energy-time optimal system configurations for intra-node heterogeneous

systems with VPUs. We present the extensions to the model and address the

effects of thread level parallelism both within and across cores by considering inter

and intra-core resource overlaps, memory contention among threads within a core

and contention across multiple cores. Next, we show the validation results of the

model using an Intel Xeon Phi coprocessor to represent intra-node heterogeneous

system with VPU. Lastly, we discuss how the extended model can be applied to

determine energy-time efficient configurations for systems with MIC architecture

and how users of such systems can determine whether to offload program execution

on coprocessors based on the PPR metric.

Additional scalability of the core model is shown by extending it to determine

12

Chapter 1. Introduction

energy-time optimal system configurations for hybrid programs in Chapter 6. We

first present the model extensions to address the effects of using both distributed-

memory and shared-memory communication by considering inter and intra-node

resource overlaps, memory contention among cores within a node and network

contention across multiple nodes. Next, we present the validation results for a

range of hybrid (OpenMP+MPI) programs from different domains such as non-

linear partial differential equation solvers, electronic structure calculations and

computational simulation for fluid dynamics. Lastly, this chapter discusses the

application of our extended model for hybrid programs to determine energy-time

efficient system configurations the form a Pareto frontier and the application of the

Useful Computation Ratio (UCR) metric to further optimize this Pareto frontier.

We summarize and present the details of future work in Chapter 7.

13

Chapter 2

Related Work

In this chapter, we discuss the heterogeneous computing landscape and the state-

of-the-art with respect to energy-time performance analysis among these com-

puting paradigms. Firstly, we categorize the different levels of heterogeneity in

Section 2.1. There are several approaches to analyze the energy-time performance

of heterogeneous systems and are discussed in Section 2.2. An important aspect

of energy-time performance is improving the energy efficiency which has motivated

the need for heterogeneous systems. Thus, we discuss the various approaches in

the state-of-the art that target improving energy efficiency in Section 2.2.1, fol-

lowed by a discussion on energy proportionality in Section 2.2.2, and lastly we

discuss the various performance analysis approaches for analyzing execution-time

performance in Section 2.2.3. Next, we relate the research done on heterogeneous

computing systems with the works on energy-time performance and contrast them

with this thesis in Section 2.3 and then summarize in Section 2.4.

2.1 Heterogeneous Computing Systems

Heterogeneous computing is defined as [89]:

15

Chapter 2. Related Work

. . . the well-orchestrated and coordinated effective use of a suite of di-

verse high-performance machines (including parallel machines) to pro-

vide superspeed processing for computationally demanding tasks with

diverse computing needs.

Heterogeneous Computing Systems (HCS) is heterogeneity in all manifestations

of computing, including processors, networks, programming, protocols and all

combinations of these coming together to deliver a positive impact. While HCS

is all encompassing, we discuss the landscape of HCS with respect to computing

systems and programming models pertaining to this thesis.

“Moore’s law” has enabled a continuous growth in the performance of computer

systems over the last 50 years, by increasing the number of cores on a single chip.

However the advantages of this multicore scaling phenomenon is limited to a large

degree due to “dark silicon”, regardless of chip organization and topology [55].

To leverage the continued growth in performance and overcome the limitations of

non-usability of components within a chip due to dark silicon, the most promising

road ahead is to use a cluster system of heterogeneous nodes.

Recent trend in heterogeneous systems can be seen by the development of the

Heterogeneous System Architecture (HSA) Standard in 2012, which is founded

by an industrial consortium of companies including AMD, Texas Instruments,

Qualcomm, ARM among many others [4]. Members of HSA are designing a het-

erogeneous computing ecosystem, to enable combined processing on both CPU

and GPU nodes with higher memory bandwidth at lower power consumption.

This consortium is not only focusing on the hardware platform but also the soft-

ware development ecosystem, including the HSA Intermediate Language (HSAIL)

to support a diverse set of high-level programming languages. Thus creating the

foundation for the paradigm shift in general purpose computing.

16

Chapter 2. Related Work

Exploiting heterogeneity for energy-efficient executions has been studied to a

small extent within the scientific community, with heterogeneity being defined at

different levels. Traditionally, the advent of multi-core systems brought about the

shared-memory programming model, but the dark silicon phenomenon advocates

the use of distributed-memory model. However, increasingly programs are becom-

ing hybrid to take the dual-advantage of exploiting inter-node distributed-memory

scalability and intra-node shared-memory performance in a cluster system. Fur-

thermore, at the system level, heterogeneity maybe further classified into (i) within

a chip or (ii) within a single node or (iii) across nodes. This classification of the

different levels of heterogeneity at both applications and systems is illustrated in

Figure 2.1.

Heterogeneity

Programs

Shared

memory

e.g.

OpenMP

Distributed

memory

e.g. MPI

Hybrid

OpenMP +

MPI

OpenMP +

CUDA

MapReduce

Systems

Inter-node

CPU

generations

Brawny +

wimpy

Intra-node

Inter-chip

CPU + VPU

CPU + GPU

Intra-chip

CPU + GPU

big.LITTLE

covered in thesis

joint work on measurement studies

Figure 2.1: A classification of heterogeneous computing systems

17

Chapter 2. Related Work

2.1.1 Systems

Inter-node Heterogeneity

Inter-node heterogeneous systems are ubiquitous in datacenters today and is a

direct consequence of (i) replacing failed systems with newer versions of CPU ar-

chitecture, memory or higher operating clock frequency, (ii) scaling the capacity

leads to procuring latest server processors that differ in architecture from the exist-

ing ones, and (iii) cost-efficiency leading to the purchase of low-end servers com-

plementing existing high-performance high-cost servers. While these and many

other reasons are paving the way for inter-node heterogeneity in datacenters, it

leads to a number of challenges, namely, (i) necessitates novel work-scheduling

strategies that are heterogeneity-aware, (ii) need for efficient cluster configuration

to trade-off performance and save energy, and (iii) the need for a resource-aware

middleware to efficiently utilize the underlying heterogeneous resources. While

many studies explore the first challenge of workload provisioning and schedul-

ing [35, 49, 109, 175, 176], this thesis addresses the second challenge and aims

at determining energy-efficient configurations among the large configuration space

due to inter-node heterogeneity.

The power-efficiency and form-factor of processors used in mobile devices have

attracted the attention of several leading server vendors to use them to design

their next-generation servers [17, 143, 152]. These processors are also referred

to as “wimpy nodes” in contrast to the traditional high-performance high-power

(brawny) nodes. This trade-off between the performance and power with respect

to wimpy, brawny, GPU and VPU processors is illustrated in Figure 2.21.

At a cluster level, Whare-Map [109] explores performance improvements by us-

1This diagram is indicative of the general trend. This trend is derived using a Cortex-A9
processor representing wimpy, AMD Opteron processor for brawny, Nvidia Tesla for GPU and
Intel Xeon Phi processor for VPU.

18

Chapter 2. Related Work

p
o

w
e

r
[W

]

performance [GFLOPS]

Brawny

Wimpy

GPU

VPU

Figure 2.2: Power-performance of processors

ing existing heterogeneity in modern warehouse scale computers, while we model

and analyze the impact of heterogeneity due to diverse performance-to-power ra-

tios. Chun et al. [44] study the feasibility and potential of hybrid datacenters

with Xeon and Atom platforms, but considering only one node of each type. In

contrast, we explore heterogeneous mixes of several nodes. Nathuji et al. [126] ex-

ploit heterogeneity across platforms for power efficiency and their approach uses

throughput as a measure of performance. At inter-node level, Heath et al. [74]

proposed a modeling technique to optimize energy for a cluster of nodes with dif-

ferent CPUs and network capabilities. They model the request distribution among

nodes to balance resource utilization. On the other hand, we consider nodes with

diverse PPRs and model the execution time.

Inter-node heterogeneity not only refers to platform-level heterogeneity due to

processor with different generations of the same CPU architecture but also refers

19

Chapter 2. Related Work

to clusters of processors with varied ISA, and performance-to-power ratio. This

thesis addresses inter-node heterogeneity arising out of mixing wimpy and brawny

processor nodes.

Intra-node Heterogeneity

While inter-node heterogeneity explores different types of processors networked

together in a cluster system, intra-node heterogeneity explores different processor

systems within a node. In intra-node heterogeneous systems, either the processors

have an exclusive memory and communicate with each other using interconnect

such as a PCIe (inter-chip) or the processors are on the same chip and communicate

using shared-memory (intra-chip).

Inter-chip Heterogeneity

More recently, accelerators such as graphical processing units (GPUs) have seen a

phenomenal increase in their performance due to the demand for high-resolution

gaming and graphics processing. With the slowing down of “Moore’s law” and

dark-silicon limiting the number of active cores in a multi-core processor, mixing

CPUs and accelerators seems like a viable solution to scale-up parallel computing

performance. One most commonly used approach is to use GPUs as accelera-

tors with the CPU orchestrating the computations transferred to the GPU. Such

systems are commonly available in most desktop computers today, where an eight-

core CPU processor from Intel/AMD uses a GPU from Nvidia/ATI and commu-

nicate over a PCIe. Typically these systems have separate memory subsystem for

the CPU and GPU but use a specialized DMA controlled by the CPU to enable

high-speed data sharing between these processing units.

Another exciting approach is that of CPU processor communicating using a

PCIe with an accelerator consisting of Many Integrated Core (MIC) architec-

20

Chapter 2. Related Work

Intel Xeon CPU
24 cores @ 2.7 GHz

130W

Distributed GDDR5
memory

8GB

System memory
256GB

Intel Xeon Phi 5110P
60 cores @ 1GHz

225W
PCIe

Figure 2.3: Example system with inter-chip heterogeneity, Intel Xeon Phi

ture, this accelerator is also referred to as a co-processor. An example system

designed using CPU and MIC coprocessor is the Intel Xeon Phi [43] as shown

in Figure 2.3. Multiple Intel Xeon Phi coprocessors can be installed in a single

host system. Within a single system, the coprocessors can communicate with each

other through the PCIe peer-to-peer interconnects without any intervention from

the host. Similarly, the coprocessors can also communicate through a network

card such as InfiniBand or Ethernet, without any intervention from the host.

The multiple compute cores on the Xeon Phi are based on the Pentium core

architecture and are much smaller and simpler compared to the x86 CPU pro-

cessing cores of today. However, these simpler cores have been strengthened by

using vector processing units that can process vectors up to 512 bits wide. Typi-

cally a coprocessor has about 60 cores along with a vector processor per core and

supports 64-bit instructions of the x86 ISA. The theoretical peak performance

of an Xeon Phi coprocessor is about 1 TFLOP/s in double precision. However,

this performance is achieved at the same power consumption as two Xeon CPU

processors [73].

While both GPU and the Xeon Phi coprocessor have many simple cores to

accelerate performance, it is easier to deploy code on the MIC architecture as the

same application code can be easily cross-compiled for the Phi. However, to enable

21

Chapter 2. Related Work

applications to use the GPU, code needs to be rewritten in CUDA or OpenCL.

While this programming difference favors Xeon Phi, it is non-obvious whether the

MIC architecture is more attractive or the GPU architecture, as the application

performance gains that are achieved on the Xeon Phi by simply recompiling and

running code natively are lesser compared to the gains on the GPU.

MIC performance studies Fang et al. [59] presented an empirical study on

Xeon Phi, stressing its performance limits and relevant performance factors us-

ing micro-benchmarks. The system architecture components that were studied in

detail were the vector processing cores, the on-chip memory, the off-chip mem-

ory, the ring interconnects and the PCI express connection. They also attempted

to provide a simplified machine view for performance tuning and application de-

sign. Closer to this work, Ramachandran et al. [134] examined the performance

of OpenMP version of NPB on Xeon Phi, compared the performance with tradi-

tional Xeon CPUs and identified some issues that may degrade the performance.

In contrast, Schmidl et al. [144] and Vladimirov et al. [165] evaluated the perfor-

mance of OpenMP applications on Xeon Phi and compared the performance of the

coprocessor with a Xeon-based compute node. While these works are purely mea-

surement based studies, we use an analytical model to analyze MIC architecture

performance.

Fang et al. [58] used benchmarking to evaluate the performance of various

optimization techniques with a focus on guiding kernel design. By using a set

of micro-benchmarks, they characterized the three major components of the Phi

architecture - cores, memory, and interconnect. They also synthesized a set of

four machine-centric optimization guidelines and a simplified machine model for

facilitating kernel design and performance tuning on the Xeon Phi. Ramos et

al. [138] proposed communication models for cache-coherent MIC architecture and

22

Chapter 2. Related Work

applied these models to optimize algorithms with complex data exchanges. While

these works are related to optimizing the kernel or specific algorithms, we focus

on modeling the performance of parallel programs on the MIC architecture.

Heinecke et al. [75] implemented the Linpack benchmark on single and multi-

node systems based on Xeon Phi coprocessors in both native and hybrid configura-

tions. Their implementation on Knights Corner employs novel dynamic scheduling

and achieves close to 80% efficiency. Si et al. [148] developed a multithreaded MPI

implementation on many-core environments such as Xeon Phi to coordinate the

runtime engine of the threads and share idle threads with the application. In

contrast, we focus on the model the impact of thread affinity on the performance

to determine time-efficient system configurations to execute parallel programs.

Intra-chip Heterogeneity

While inter-node heterogeneity exploits the existence of a brawny and wimpy

node at a cluster level, intra-chip heterogeneity uses a multi-core architecture

with shared-memory where the multiple cores differ in their performance and

power usage [70]. Traditionally multi-core processors had symmetric cores, but

with the increasing need for energy-proportional servers, has motivated analyzing

multi-core architectures with asymmetric cores. Energy proportionality requires

the power consumed by servers during idling to be as low as possible and expects

the power to increase linearly with server utilization. To enable this within a

server, KnightShift [170] tightly couples a single high-performance processor with

a low-power processor to enable two energy-efficient operating modes. The Knight-

Shift hardware consists of a low-power low-performance compute node, called the

Knight, paired with a high-power high-performance server. Both the Knight and

primary server can be independently powered on and off. Both the Knight and

primary server share a common data disk and are able to communicate with one

23

Chapter 2. Related Work

another through traditional network interface.

Figure 2.4 illustrates the system architecture of ARM big.LITTLE, having four

Cortex-A15
Core 1

Cortex-A15
Core 2

Cortex-A15
Core 3

Cortex-A15
Core 4

Quad-core ARM big CPU @ 1.6 GHz, 12 W

2MB L2 cache 2MB L2 cache

CCI-400 (Cache Coherent Interconnect)

Cortex-A7
Core 1

Cortex-A7
Core 2

Cortex-A7
Core 3

Cortex-A7
Core 4

Quad-core ARM LITTLE CPU @ 600 MHz, 3W

Memory Controller Ports

Figure 2.4: Example system with intra-chip heterogeneity, ARM big.LITTLE

big cores of Cortex-A15 and four LITTLE cores with Cortex-A7 processor. Other

studies explore intra-chip heterogeneity [22, 91], much like the ARM big.LITTLE

architecture and switch to low-power efficient cores during low-utilization peri-

ods. Van Craeynest and Eeckhout propose a study of single ISA multi-core het-

erogeneity to understand the extent to which both system-level throughput and

per-program performance can be simultaneously satisfied [160]. Their study pro-

poses the use of analytical models to explore heterogeneity across cores within

a single chip, wherein the heterogeneity stems from cores with different memory

subsystems and pipelines but having the same ISA. Dynamic core heterogeneity

is investigated for programs that alternate between regions with high thread-level

parallelism and instruction-level parallelism [131]. This is also a heterogeneous

architecture study but within a single node. Here, the proposed reconfigurable

multicore architecture, increases the achievable instruction-level parallelism by

forming coalitions of two or more cores.

While all of these explore intra-chip heterogeneity using asymmetric cores of

24

Chapter 2. Related Work

the same ISA, another approach is to use CPU designs with different ISA cores or

accelerator cores on the same chip. The Cell Broadband Engine (CellBE) proces-

sor from the Sony/Toshiba/IBM consortium, design is based on a main core from

PowerPC and eight auxiliary cores also referred to as Synergistic Processing Ele-

ments. While the main core uses the traditional cache-coherent memory hierarchy

to access system memory, the auxiliary cores use specialized high-bandwidth DMA

to access the system memory [130]. Another intra-chip heterogeneous system is

the recently introduced Jetson TK1 system [53] with CPU and GPU on the same

chip as illustrated in Figure 2.5.

Shared system memory
2GB LPDDR3

Cortex-A15
Core 1

Cortex-A15
Core 2

Cortex-A15
Core 3

Cortex-A15
Core 4

Quad-core ARM CPU @ 2.3GHz, 3W Nvidia Kepler GPU
192-core @ 852MHz

3W

2MB L2 cache 128kB L2 cache

Memory Controller

Figure 2.5: Example system with intra-chip heterogeneity, Nvidia Jetson TK1

2.1.2 Programs

The advent of heterogeneity at different levels of hardware hierarchy, has intro-

duced a paradigm shift in the traditional parallel programming models being used.

While instruction-level parallelism is feasible with the multi-stage out-of-order

pipelines in processors today, thread-level parallelism is often exploited using the

multi-core architectures of processors. However, the dark silicon era is limiting the

25

Chapter 2. Related Work

thermal and power budgets of a multi-core processing node [55] and paving the

way for distributed systems. But, it is well known that High Performance Comput-

ing (HPC) applications are limited by data access bottlenecks. To simultaneously

exploit the computational capabilities of multi-core systems and to scale complex

HPC applications, application developers are increasingly using hybrid program-

ming models. A hybrid programming model utilizes both distributed-memory

across nodes for scalability and shared-memory within a node for improving per-

formance [27, 105, 148].

To exploit thread-level parallelism in multi-core processors, many multi-threaded

programming models have evolved over the years. While languages such as C,

C++ and Fortran provide multi-threaded support with variegated implementa-

tions, many other programming models such as OpenMP, MPI and Cilk abstract

threading details from the application developer. OpenMP is a popular program-

ming language that provides compiler directives and subroutine calls, for ease of

programming parallel programs. All OpenMP programs distribute the workload

among all the spawned threads and use a fork-join execution model. While it is

very easy to use, OpenMP has a large thread management overhead and is ineffi-

cient across multiple processor systems and is limited to thread-level parallelism

within multi-cores.

For exploiting parallelism across processors using distributed memory archi-

tecture, MPI [60] is a popular standard used by HPC application developers

worldwide. While MPI is a message passing interface standard, there are many

implementations of this standard by different academic research institutes and

industries, such as Open MPI [123], MVAPICH [125] and Intel MPI [100]. In

the MPI programming model, users manage the communication between different

processes by calling library routines to send and receive messages. Besides, users

completely control the workload distribution and process synchronization, which

26

Chapter 2. Related Work

permits the optimization of data locality and workflow. Since it has the advan-

tages of excellent scalability and portability, MPI is an appropriate programming

model to accomplish the communication functionality between different compute

nodes of large GPU clusters [104].

Hybrid Programs

While MPI programming is useful for distributed cluster of nodes and OpenMP is

popular for shared-memory multi-core system, recently hybrid programming is be-

coming popular among HPC application developers. A hybrid parallel program is

partitioned into a variable number of logical parallel processes and parallel threads.

For a given hybrid program and a multi-node system with multi-core nodes op-

erating at different core clock frequencies, there is a large system configuration

space for executing these logical processes and threads. As the resource demands

in a hybrid parallel program varies with its problem size, these resource demands

have to be mapped onto different system configurations to minimize resource con-

tention and runtime overheads. There are many different programming models

within the hybrid programming paradigm to cater to the different heterogeneous

systems today.

Figure 2.6 illustrates the hybrid programming model for heterogeneous clus-

ters with multi-core CPU, VPU and GPU. While the hybrid MPI+CUDA pro-

gramming model uses a distributed cluster of GPUs, the hybrid program with

OpenMP, MPI and CUDA utilize not only the GPUs but also exploit the multiple

cores within the CPU attached to the GPU [104].

27

Chapter 2. Related Work

Core 1 Y Core c

CPU

Y

OpenMP Threads

Node 1 (multi-core)

MPI Communication

Y

Core 1 Y Core c

CPU

Y

Xeon Phi APIs

VPU

Core 1 Y Core c

CPU

Y

CUDA APIs

OpenMP Threads

GPU

Node 2 (multi-core + VPU) Node N (multi-core + GPU)

OpenMP Threads

Figure 2.6: Hybrid program with MPI, OpenMP, Xeon Phi API and CUDA

2.2 Approaches

In this section we discuss the various approaches to achieve energy efficiency in

distributed systems and also discuss the approaches used to analyse and infer

execution time of programs in systems along with some methods to model com-

munication overheads.

Many research studies explore micro-architectural models and dynamic algo-

rithms for both power management [87, 99, 119], and energy efficiency of het-

erogeneous clusters [24, 177, 179]. While these approaches are dynamic and are

applicable during run-time, the approach proposed in this thesis determines static

energy-efficient configurations. For a given power budget, a proposed cluster-in-

a-box production system using only low-power CPUs improves the performance

per watt-hour [154]. However, we analyze the energy-time performance for a het-

erogeneous mix of nodes with diverse PPRs.

More recently, with the emergence of ARM big.LITTLE, a hierarchical power

management approach to optimize the performance per watt within a thermal-

design power budget is proposed by Muthukaruppan et al. [124]. Mixing CPU and

28

Chapter 2. Related Work

accelerators is another method used to improve the efficiency per watt at node-

level [166]. While these works focus on intra-chip and intra-node heterogeneity,

our proposed approach is applicable for inter-node heterogeneity and addresses

multi-ISA heterogeneity. Nathuji et al. [126] propose an intelligent workload allo-

cation method to exploit across-platform heterogeneity for power efficiency. How-

ever, we analyze the energy-time performance including energy proportionality of

heterogeneous systems having nodes with diverse PPRs.

2.2.1 Energy Efficiency

There are many techniques to improve energy efficiency of systems. Dynamically

changing the frequency of the microprocessor to reduce energy consumption for a

given performance requirement is explored by Weiser et al. [168]. There has been

a lot of research done in the area of energy aware dynamic scheduling algorithms,

including dynamic speed scaling [169] which decreases the frequency at lower work-

loads, thus reducing energy. Dynamic Voltage and Frequency Scaling (DVFS) has

been widely employed to achieve energy efficiency [76, 94]. Minimization of energy

using a system level energy efficiency ratio for workloads with real-time constraints

considering the characteristics of the core and the precedence relationship among

logical processes has been proposed by [41, 178]. However, energy inefficiencies

occur with all the above techniques as they rely on dynamic adaptations only to

frequencies which do not alter the inherent device characteristics. These inherent

device characteristics are implemented for nominal frequency and hence consume

more energy [39]. These techniques are also not advantageous because of the uti-

lization wall whereby the percentage of a chip that can be active is decreasing

exponentially, a concept referred as dark silicon [55].

Energy-aware load balancing is another system architecture technique that can

be used effectively to reduce the energy consumption [56] but this technique has

29

Chapter 2. Related Work

not been analyzed and explored for heterogeneous system architectures. Similarly

[50, 150] analyze iso-energy efficiency for multiple cores of processors for complex

scientific computations and propose analytical models for the same. Again, this

analysis is not being done for heterogeneous processor systems.

Dynamic voltage scaling to mitigate pipeline imbalances within a core is pro-

posed by [95]. PEPON [147] discusses power distribution among multiple-cores

to maximize performance without exceeding a given power budget. We are also

exploring ways to maximize performance for a given power budget but for het-

erogeneous systems. Algorithms for dynamic power management of clusters are

discussed in [40, 87, 119]. These techniques complement our approach as we do

not propose dynamic power management techniques within a core or node. A

cluster-in-a-box production system using only low-power CPUs has been designed

by [154], to improve the performance per watt-hour, for a given power budget. We

also analyze the improvements in energy reductions for a given power budget but

with a heterogeneous mix of both high-performance and low-power CPU nodes.

A modeling approach to determine a configuration of cores and core clock fre-

quency that optimizes energy within a low-power ARM node is proposed in [158].

In contrast, our core model is applicable for systems having both low-power and

high-performance nodes. Our proposal aims at lowering the energy by removing

some of the causes of energy inefficiencies in the system. Energy inefficiencies in

the system occur due to the imbalance of workload demands on system resources.

For example, a memory bound application will not achieve best performance at

neither the highest nor the lowest frequency but at an optimal frequency between

the two and hence will consume the lowest energy at that optimal frequency [149].

Contention for resources not only slows down the execution of a application

incurring performance losses but also increases inefficiencies in energy consump-

tion because of the cores dissipating higher power without doing useful work [120].

30

Chapter 2. Related Work

Recent studies also show that the utilization of data center servers is only in the

range of 10% to 50% which lead to energy inefficiencies because of under-utilization

[11, 30]. Our proposal aims at improving the resource contention bottlenecks in

the system and increasing the utilization of the cores to minimize energy inefficien-

cies. To this end we propose a measurement-based analytical model as our core

model, which predicts heterogeneous configurations of nodes to be used for a given

workload to achieve an optimum set of sweet spots for energy versus performance.

Next, we discuss the different metrics that are used to measure energy-performance

of computing systems.

2.2.2 Energy Proportionality

In an ideal energy-proportional system, the system consumes no power when idle

and its power consumption grows linearly with the amount of utilization of its

resources. For example, the ideal energy-proportional system consumes 10% of

its peak power at 10% utilization as shown in Figure 2.7. However, the actual

proportionality of servers or clusters may be super-linear or sub-linear. Multiple

metrics have been proposed by researchers to quantify the energy proportionality

of individual server nodes. The first metric, dynamic power range (DPR), was

proposed by Barroso et al. [30],

DPR = 100− Pidle(%)

where Pidle is the percentage of peak power consumed by the node while idling

with zero utilization. Another similar metric that captures a server’s power con-

sumption during idle periods with respect to its peak power is the idle-to-peak

31

Chapter 2. Related Work

Utilization [%]

20% 40% 60% 80% 100% 0%

P
ea

k
P

ow
er

 [%
]

0%

20%

40%

60%

80%

100%

PG

EPM(super-linear)

PG

D
P

R
 (super-linear)

D
P

R
 (sub-linear)
EPM(sub-linear)

(L
D

R
 <

 0
)

IPR (super-linear)

IPR (sub-linear)

Figure 2.7: Energy proportionality metric relationships

power ratio (IPR) metric [162],

IPR =
Pidle

Ppeak

While both the DPR and IPR metrics capture server power at zero utilization,

server’s power consumption is known to increase non-linearly with utilization [156],

which is not accounted for by these metrics. Since the majority of datacenters

over-provision their servers to achieve reasonable QoS at peak utilization, most

servers operate at 30% utilization on an average [29]. Hence, a more meaningful

metric would be to capture the ratio between power consumption at 30% and

100% utilization. However, datacenter operators may find it convenient to shift

workloads accordingly if they have prior knowledge of server proportionality at

different utilization levels.

32

Chapter 2. Related Work

As shown in Figure 2.7, the energy proportionality metric (EPM) proposed by

Ryckbosch et al. [141] measures server’s power consumption at different utilization

levels using the area between server’s power consumption and the ideal power

consumption curve,

EPM = 1−
∫ 100

0
Pserver · du−

∫ 100

0
Pideal · du

∫ 100

0
Pideal · du

where Pideal represents an ideal energy-proportional system. Varsamopoulos et

al. [162] propose a metric called the Linear Deviation Ratio (LDR) to account

for the linearity of server’s energy proportionality curve across utilization and is

defined as,

LDR =
|·|

max
u

P (u)− ((Ppeak − Pidle)u+ Pidle)

(Ppeak − Pidle)u+ Pidle

The
|·|

max
u

is the maximum value computed using absolute value comparisons across

utilization, such that the LDR value obtained retains the sign of the maximum de-

viation. While both EPM and LDR account for proportionality across utilization

levels, the results are expressed as a single value. For the EPM metric, a value of

one indicates that server consumes power proportional to its load, while a value of

zero indicates that the server consumes a constant amount of power irrespective

of its load [141]. For LDR, lower values indicate a more linear system, negative

values represent sub-linear energy proportionality and positive values represent

super-linear proportionality. As these metrics are aggregated as a single value,

it limits the analysis of energy-efficient configurations across cluster utilization

levels. In contrast, the Proportionality Gap (PG) metric proposed by Wong et

al. [170], is defined at each utilization as,

PG(u) =
P (u)server − P (u)ideal

P (u)ideal

33

Chapter 2. Related Work

A lower value of PG is indicative of a more energy-proportional server.

Figure 2.7 summarizes the relationships among recent energy proportionality

metrics.

A common metric to measure energy-efficiency is using the performance-to-

power ratio (PPR) that factors the throughput of the workload per unit power

across utilization levels and is defined as,

PPR(u) =
Throughput[operations/s]

Power[W]

where throughput denotes the number of useful operations performed by the sys-

tem per unit time. This metric is also used in SPEC benchmark [151]. Figure 2.8

shows the energy-time performance of CPU, GPU and the VPU (MIC architec-

ture) with respect to the PPR metric.

Figure 2.8: Energy-performance of CPU, GPU and MIC [140]

34

Chapter 2. Related Work

Energy proportionality studies of warehouse scale computers and strategies

to improve non-peak power efficiency has been widely explored [57, 103, 153].

There are many research studies that employ dynamic strategies using software

driven transitions to exploit multiple low-power server modes [62, 115, 116]. Such

strategies and techniques complement the energy-time performance analysis in

this thesis and can be applied to further reduce the inefficiencies of heterogeneous

cluster mixes. While Hsu et al. [81] question the linearity of the energy propor-

tionality curve and show that most modern servers follow a quadratic trend, we

show that the energy proportionality metric alone does not suffice to study clusters

consisting of nodes with diverse PPRs.

Barroso et al. [29] suggest that energy proportionality at the system level

cannot be achieved through CPU optimizations alone, but instead requires im-

provements across all components, such as memory and network devices. Energy

proportionality of server-level memories for datacenter workloads and datacenter

network architectures have been proposed [107, 145], but these studies are tangen-

tial to our work, as we study the impact of inter-node heterogeneity on cluster-

wide energy proportionality. With servers exhibiting lesser proportionality gaps

at higher utilization levels, workload co-location strategies have been proposed to

increase cluster or rack utilization [96, 110, 128, 174]. The implications of high

energy-proportional servers such as KnightShift [170] on cluster wide energy pro-

portionality was studied [172] and compared with cluster-level packing techniques

such as auto-scale [63]. However, this thesis proposes a measurement-driven an-

alytical model, and analyzes energy proportionality for inter-node heterogeneous

clusters consisting of node mixes with diverse PPRs

35

Chapter 2. Related Work

2.2.3 Time Performance

Current approaches to analyze parallel programs mainly include instrumentation

or application profiling based measurement techniques which trace the complete

execution of the program on a particular hardware system to identify both applica-

tion and hardware bottlenecks [12, 45, 108, 122]. However, they are generally intru-

sive and difficult to generalize across programming languages. Another approach

to understand application hot-spots on prospective hardware is the use of cycle

accurate micro-architecture level simulators [25, 32, 85]. However, analyzing ap-

plication executions even with reasonable input sizes is very time-consuming [69].

This thesis presents an approach to determine time and energy efficient system

configurations for executing a parallel program using a measurement-driven an-

alytical model. The proposed analytical model is formulated using parametric

values obtained from baseline executions of the application to measure workload

and architectural artefacts.

Other alternative approaches to predict performance include statistical meth-

ods that rely on black-box regression to infer dependencies between hardware

parameters and application performance [28, 93, 155]. Our approach is not black-

boxed and thus enables analytical prediction of the impact of changing different

system components such as memory/network bandwidth on program execution

time performance. More recently, at an algorithm level, asymptotic analysis based

modeling techniques are used to derive trade-offs between computation and com-

munication [47, 48]. However, the approach presented in this thesis is at a lower

level of abstraction, so that insights into both application and architecture bottle-

necks can be inferred.

A summary of the existing approaches and the measurement-driven modeling

approach proposed in this thesis is outlined in Table 2.1. Next, we discuss related

36

Chapter 2. Related Work

research work that models execution time of parallel programs.

Profiling Simulation
Statistical Analytical Measurement-based
prediction modeling analytical model

(this thesis)
Accuracy Yes Yes Yes No Yes
Non-intrusiveness No Yes No Yes Yes
Generic application No No No Yes Yes
Related work [45, 108, 122] [25, 32, 85] [28, 93, 163] [42, 78, 173] [136, 137, 158]

Table 2.1: Comparison of performance analysis approaches

Execution Time Models

A popular model to estimate speed-up when executing a parallel program is Am-

dahl’s law [18] which accounts for the speedup as a function of the sequential

fraction of a program and the number of processors.

S(n, f) =
1

f + 1−f
n

where S is the speedup, f the sequential fraction and n the number of processors.

However, the above does not account for the dependencies of speed-up on

problem size. Gustafson [71] shows that the scalability of a program increases

with the size of the problem being evaluated. Now, the speedup S is also a factor

of f(k) wherein, the sequential fraction f, depends inversely on the problem size k,

and is small for large workloads.

S(n, f, k) = n + (n− 1)f(k)

But, both Amdhal’s and Gustafson’s model do not consider resource contention.

Re-evaluating Amdahl’s law for multi-core processors, Hill and Marty [78] have

shown the impact of the different resource allocation schemes among cores on the

speedup. They introduce the perf(r) and use it to quantify the sequential fraction

37

Chapter 2. Related Work

of a program, by using a supercore processor to execute the sequential fraction.

The performance speedup of the sequential fraction using this supercore processor,

by combining r cores is,
√
r. So the speed-up becomes,

S(f, n, r) =
1

f
perf(r)

+ 1−f
n

However, the limitation of Amdahl, Gustafson and Hill-Marty approach is that

all these models are a function of the sequential fraction of a program, which is

highly dependent on the execution platform and cannot be easily inferred.

There are other models based on the theory of parallelism, where no overhead

is considered for parallelization, and the parallelism of a program depends on

the number of work units completed in unit time. One such model is proposed by

Eager et al. [54], gives the theoretical bounds on the speed-up of parallel programs.

The upper bound for speedup is given as:

Supperbound = min(n, π)

where n is the number of parallel processors to execute the program and π is the

inherent parallelism of the program. But, this model assumes that the processor

does not stay idle when the parallel work unit cannot be executed because of

resource sharing. While the inherent parallelism [83] is the number of parallel

tasks in a program that can execute concurrently, explicit parallelism involves

specific constructs in the programming language to specify the parallel tasks of

a program. The inherent parallelism of a program is not completely exploited

because of resource contentions (shared memory) and losses in parallelism due to

communication and house-keeping overheads [34].

To quantify the execution time of parallel programs, it is important to identify

38

Chapter 2. Related Work

patterns of computation. Previous work has identified computation and commu-

nication patterns that are distinct among thirteen classes of parallel programs

[23]. However, it is also important to quantify the impact of these patterns of

computation into inherent parallelism and exploited parallelism.

A trace-driven analytical model to account for resource contention among mul-

tiple cores is proposed by Tudor et al. [157].

S(m,n) =
A(m,n)

1 + ω(n)

where S(m,n) is the speedup which depends on both A(m,n) denoting the active

threads of the parallel program and ω(n) denoting the exploited parallelism. This

model not only accounts for parallelism loss due to memory contention but also

parallelism loss due to data dependencies. From the perspective of the execution

time of a program being defined by the bottleneck resource in a system, Tudor et.

al classify program execution to be bound by either CPU core, memory or I/O

resource [158].

T (n) = max(
C

n
, I)

where T (n) is the execution of a parallel program on an n-core processor, and

C(n) denotes the CPU response time and I denotes the I/O response time. The

C(n) maybe computed using the useful work cycles of a program and the stall

cycles of the program. Their analysis incorporates the memory response time of

the system, by considering the stall cycles due to memory contention as a separate

component, which can be modelled by measuring the number of last level cache

misses and using an M/G/1 queueing system.

This type of a trace-driven modeling approach for predicting the execution time

39

Chapter 2. Related Work

of a parallel program in a shared-memory system may be extended for distributed

systems. In our core model described in Chapter 3, we extend the above model and

use the increase in memory contention stall cycles as a characteristic of memory

response time instead of using the last-level cache misses. However, we assume

there is no communication overhead among the distributed nodes. The main

challenge in distributed system then becomes the modeling of the communication

patterns among the nodes and the execution time overhead because of this.

Modeling Communication

In this section, we present some of the widely used approaches to model the

communication overhead among nodes. The previous section accounts for the ex-

ecution time assuming an ideal case wherein the communication overhead among

nodes completely overlaps with the time required for computation. An initial

theoretical model, which conceptualizes the communication delay between a pro-

cessor’s computation and the data needed by the processor is the PRAM model.

For the block PRAM model [14, 15], the data access time is modelled as

Tdata−access = l + b

where l is the start-up time and b is the block access time. However, a limitation

of the block PRAM model is it assumes uniform access time for all data which is

not realistic. The Bulk Synchronously Parallel (BSP) model has been proposed,

wherein the communication among the distributed processing nodes is bundled

together in a step-oriented manner instead of point-to-point communication. The

computing processes do local computations, communicate with each other when

need of shared data, and then do a barrier synchronization to terminate the com-

munication. This is termed as a super-step and the time to complete a super-step

40

Chapter 2. Related Work

is modelled as:

Tsuper−step = max
processors

wi + h · g + l

where wi is the time required to do local computation, g is the time required for

global communication for shared data, and l is the time for barrier synchronization.

To overcome some of the limitations of the BSP model such as assuming there is

support in hardware for barrier synchronization, another approach to model the

communication among distributed nodes is the LogP model [46]. This model

not only accounts for communication costs as a factor of latency but also for the

overhead inside of a node which is the non-computational time of a CPU to initiate

and terminate the communication. The parameters used in the LogP model are:

• L: This is the maximum latency of sending a short packet from one node to

the other.‘

• o : This is the CPU overhead to process the packet

• g: The minimum gap between two consecutive packets.

• P: The total number of nodes in the distributed system

However, a limitation of this model is it does not account for heterogeneity among

nodes that have different overheads and different bandwidths among interconnec-

tion links between nodes. An extension to the LogP model is the LogGP [16],

which accounts for the transmission delay of the packets based on the bandwidth

of the interconnection network among the nodes. It includes another parameter,

G in addition to those of the LogP model, wherein G denotes the gap per byte

of the packet. The reciprocal of G denotes the available network bandwidth for a

node to transmit a large packet.

41

Chapter 2. Related Work

However, the challenge of modeling the execution time of a parallel program is

computing the overlap fraction, wherein for some program parts, the communica-

tion overhead overlaps with the computation, while the communication overhead

does not overlap for other parts of the program execution. The communication

model proposed in Chapter 6 of this thesis addresses this challenge and models

both intra and inter-node communication considering computational overlaps.

2.3 Heterogeneity and Energy-time Performance

The advent of heterogeneity in systems and programs introduces new research chal-

lenges for analyzing the energy-time performance of parallel programs. Section 2.1

discusses the heterogeneous computing landscape and Section 2.2 elucidates the

various approaches for energy-time performance analysis. In this section, we com-

pare the related work with respect to both heterogeneity and performance analyses

approaches, and position this thesis with respect to the existing works.

Heterogeneous Computing Related work This Thesis

Systems

CPU generations
Workload Scheduling

1. energy-time performance
energy [126], time [109, 176]

Brawny + wimpy

Simulation-based 2. measurement-based
[24, 38, 177, 179] analytical model
Analytical model
energy [74], time [175] 3. models inter and intra-node overlap,

CPU + VPU
Application profiling contention and communication
[92, 97, 111, 135, 146]

Programs
OpenMP + MPI

Statistical approach 4. determines Pareto-optimal
[28, 93, 98, 155] system configurations
Dynamic voltage frequency scaling
[65, 80, 86, 121] 5. covers inter- and intra-node

MPI + CUDA
Application profiling heterogeneous systems
[104, 129] and hybrid parallel programs

Table 2.2: Heterogeneity and energy-time performance

42

Chapter 2. Related Work

2.4 Summary

The paradigm shift towards heterogeneous computing is a very recent trend and

poses multiple challenges to the research community. One of the open challenges

that we would like to address includes modeling the energy-time performance of

a parallel program executing on heterogeneous computing systems, wherein the

degree of overlap among the computation cycles and communication overhead

needs to be computed. This would further complement and aid the design of

novel workload allocation techniques and scheduling algorithms that improve the

efficiency of such systems by increasing this degree of overlap.

We have shown that recent related work in the area of heterogeneity and

energy-time performance is focused mainly on instrumentation or application-

profiling based techniques or simulation-based approaches. However, this thesis

proposes a measurement-based analytical modeling approach to model the energy-

time performance. Specifically within inter-node heterogeneous systems, we pro-

pose a core model that determines both the execution time and energy performance

of a parallel program running on multi-core heterogeneous clusters. The key novel-

ties of our approach are modeling both inter and intra-node resource overlaps and

resource contention. Furthermore, we show the scalability of the proposed core

model by modeling both inter- and intra-node communication for energy-efficient

execution of hybrid parallel programs.

43

Chapter 3

Approach and Core Model

This chapter describes our proposed approach for determining energy-efficient sys-

tem configurations for multi-core clusters with multiple degrees of heterogeneity.

First, we present an overview of our approach. Next, we show the derivation of

our core model, the execution time model and energy model. Lastly, we validate

the assumptions of our core model using measurements and then summarize.

3.1 Overview

This section presents an approach to determine time and energy efficient system

configurations for executing a parallel program using a measurement-driven ana-

lytical model. Due to the wide spectrum of heterogeneity as shown in Figure 2.1,

one possible approach is to develop a model for each type. However, we took a

more scalable approach by identifying a core model that is applicable for a base-

line system consisting of brawny and wimpy node clusters. While this core model

does not include communication it is simple to apply and get quick analytical

insights. To address the diversity in heterogeneous systems, we extend the core

model for intra-node heterogeneous systems and hybrid programs. The proposed

45

Chapter 3. Approach and Core Model

core analytical model is formulated using parametric values obtained from base-

line executions of the application to measure workload and architectural artefacts.

The key novelties of our approach are modeling both inter and intra-node resource

overlaps and resource contention.

Given a parallel program executing on multi-core heterogeneous clusters, the

proposed approach determines energy-efficient Pareto-optimal configurations in

terms of the number of nodes, number of cores per node and core clock frequency.

These configurations either consume minimum energy for a given execution time

deadline or execute in the minimum possible time for a given energy budget. Such

a configuration is defined using a set of three-value tuples consisting of the types of

nodes, number of nodes for each type, the active cores per node and the operating

core clock frequency. Let the degree of heterogeneity, dmax, represent the maxi-

mum number of different types of multi-core nodes in a cluster. A homogeneous

configuration is defined to have degree one. The total number of compute nodes

available in the system configuration space is:

nmax =

dmax
∑

i=1

ni,max

While dmax is the maximum number of types of nodes available for execution, not

all types of nodes are used in an energy-efficient configuration set, and we use

d (≤ dmax) to denote the degree of heterogeneity in the energy-efficient config-

urations. Among these varied types of nodes, an execution configuration is any

combination of nodes with each node type having an efficient configuration of

number of active cores, ci, operating at a clock frequency, fi. Hence, an efficient

system configuration may be expressed as a set of (ni, ci, fi) tuples:

Energy-efficient configurations ≡ {(ni, ci, fi) | i ∈ [1 · · ·d]}

As outlined in Fig. 3.1, the proposed approach determines the set of energy-efficient

46

Chapter 3. Approach and Core Model

Application

Baseline
Executions

Workload
Parameters

System
Parameters

Power
Parameters

energy-time
efficient

configurations

Micro-
benchmarks

Core Model
� inter-node overlap
� intra-node overlap

Energy-Time Performance

Figure 3.1: Methodology for core model

configurations for a given system. Using workload parameters obtained from base-

line executions, we predict the execution time and energy used by the different

configurations. We use the matching technique to determine the proportion of the

workload distribution among the different types of nodes. Next, we remove sub-

optimal configurations by deriving the Pareto frontier of the time-energy configu-

ration space. Hence, given a service time deadline, our mix-and-match approach

determines a set of energy-efficient configurations ({(ni, ci, fi) | i ∈ [1 · · ·d]}).

These configurations either meet a given deadline with minimum energy usage or

execute in the minimum time for a given energy budget and hence form a time-

energy Pareto frontier. The derivation of Pareto frontier is discussed in Chapter 4.

Let Ps be a representative subset of a scale-out workload of program P having

repetitive phases of execution. For example, in memcached [5], the execution

phases are the GET, SET, DELETE request types. The execution time for a

heterogeneous mix of nodes is modeled based on measurements of architecture

dependent parameters such as the number of instructions per GET command. For

a given Ps, we measure the number of instructions, work cycles and stall cycles to

capture architecture specific parameters for each type of node. We determine the

47

Chapter 3. Approach and Core Model

execution time for P based on Ps by modeling the service time of CPU, memory

and I/O. The execution time on each type of node is matched by distributing

the workload in a ratio (ri) proportional to the computational rates of the node

type. The energy consumed per node is determined as the product of the derived

service time and the measured power consumption of each system component,

such as cores, memory and I/O. Only network I/O operations are considered.

3.2 Core Model

We present the modeling of energy and execution time in the following sections

using the notations1 in Table 3.1.

3.2.1 Model Inputs

The measurement-driven inputs to our model are obtained from workload char-

acterization using baseline executions and power characterization using micro-

benchmarks. We first discuss the measurement of workload dependent input pa-

rameters such as work and stall cycles followed by the measurement of power

parameters.

Workload Characterization

Typical scale-out workloads used in datacenters exhibit a lot of parallelism due

to both user requests and data. The computations of such workloads can be

divided into repetitive parallel execution phases within a request and also across

a batch of requests [29]. The representative subset Ps of the scale-out workload

used in our model is this repeating parallel phase. For example, in memcached

1While the symbols for parameters described in the table are general, a subscript i denotes
the parameter for a particular type of node.

48

Chapter 3. Approach and Core Model

Symbol Description
Workload Parameters

P program
Ps program P with smaller input size
S number of iterations in P

Ss number of iterations in Ps

W total work units of P
ri proportion of workload executed on nodes of type i, where i ∈ [1 · · ·dmax]

λI/O I/O requests inter-arrival rate
System Parameters

dmax maximum degree of inter-node heterogeneity of the system, i ∈ [1 · · ·dmax]
nmax maximum number of nodes of type i
cmax maximum number of cores for nodes of type i
fmax maximum core clock frequency for nodes of type i

Baseline Execution
Is number of instructions in Ps

ws number of work cycles in Ps

bs number of non-memory stall cycles in Ps

ms number of memory-related stall cycles in Ps

Us Average CPU utilization for Ps

Time Model
I number of instructions in P

w number of work cycles for P
b number of non-memory stall cycles for P
m number of memory-related stall cycles for P
U CPU utilization for P
n number of nodes
c number of active cores per node
f operating core clock frequency

TCPU total CPU response time for P
Tcore total core response time for P
Tmem total memory response time for P
TI/O total I/O response time for P
TI/OT

total I/O transfer time for P
T total execution time of program P

Power Parameters[W]
PCPU,act CPU power when executing work cycles
PCPU,stall CPU power when memory-related stalls
Pmem power consumed by memory operations
Pnet power consumed by network card

Psys,idle power consumed by idle system
Energy Model[J]

ECPU,act total energy consumed when CPU is active
ECPU,stall total energy consumed when CPU is stalling
Emem total energy consumed by memory sub-system
Enet total energy consumed by network sub-system
Eidle total energy consumed by idle system
E total energy consumed by a program

Table 3.1: Core model parameters

49

Chapter 3. Approach and Core Model

program [5], each of the GET, SET and DELETE request types are a parallel

phase of execution. We measure the number of instructions, work cycles and stall

cycles for a single GET, SET and DELETE command to capture the architecture

specific workload parameters for each type of node. The measurements used in

this thesis are done using hardware event counters in the respective nodes. The

measurements are done only once for each type of node being used.

Power Characterization

During execution, a processor consumes varying amount of power depending on

the number of active components. CPU active power, PCPU,act, is measured across

cores and frequencies for each type of node, using a micro-benchmark that max-

imizes the CPU utilization. Power incurred by CPU stall cycles, PCPU,stall, is

measured using a micro-benchmark that generates a stream of cache misses to

maximize the number of stall cycles. Power used by active memory, Pmem is

derived from specifications [2, 107]. Networking I/O power, PI/O, is obtained

through direct measurement when the NIC is used and the idle system power,

Pidle, is measured without any workload. It suffices to do the measurements on

a single node of each type because all the nodes of the same type exhibit similar

power characteristics.

3.2.2 Execution Time Model

The workload is split between the d types of nodes:

W =

d
∑

i=1

Wi and Wi = W · ri (3.1)

where Wi denotes the proportion of the workload executed on ni nodes of type i

with each node using ci active cores operating at clock frequency fi. Workload

50

Chapter 3. Approach and Core Model

(Wi) is equally distributed among nodes of the same type. Hence, nodes of the

same type complete their execution approximately at the same time:

T =
dmax
max
i=1

(Ti) (3.2)

The matching technique is used to distribute workload among nodes of different

types in a ratio such that the execution rate among them is matched. Thus, the

execution time of the program is:

T = Ti (3.3)

The execution time on a node depends on workload service demands on node

resources such as CPU and I/O response times. Since the I/O devices operate

with minimal CPU intervention, the bottleneck device dominates the response

time:

Ti = max(Ti,CPU , Ti,I/O) (3.4)

CPU Response Time

The CPU response time includes both the execution time of the core while per-

forming computations and the stall time of the core while waiting for memory

requests completion. Let Tcore denote the execution time of the core performing

computations and non-memory stalls, and Tmem denote the response time of the

memory requests. Most processors support out-of-order execution that may over-

lap waiting for memory requests with execution of work cycles. Hence, the CPU

response time is determined by the bottleneck between core and memory:

Ti,CPU = max(Ti,core, Ti,mem) (3.5)

51

Chapter 3. Approach and Core Model

The number of instructions executed for the same amount of work is different on

each type of node, because of the different ISAs and micro-architectures. Thus,

we use the measured parameter Ii,s, the number of instructions incurred by Ps, on

each type of node to determine the total instructions per node type as:

Ii = Wi · Ii,s (3.6)

The instructions executed on each type of node, Ii are split among ni nodes.

Furthermore, within one node the instructions that can be executed in parallel

are equally split among cores. The utilization of the CPU accounts for the data

dependencies among the cores. Thus, the instructions executed per core are:

Ii,core =
Ii

ni · Ui,CPU · ci
(3.7)

The number of useful work cycles and the non-memory stall cycles per instruction

depend on the micro-architecture implementation of the particular type of node:

WPIi =
ws

Ii,s
and SPIi,core =

bs
Ii,s

(3.8)

Next, we derive the execution time per core by modeling the number of cycles. For

a compute-intensive workload, the number of cycles incurred by a core is equal to

the work cycles and the non-memory related stall cycles:

cyclesi,core = Ii,core · (WPIi + SPIi,core) (3.9)

and thus

Ti,core =
cyclesi,core

fi
(3.10)

52

Chapter 3. Approach and Core Model

As the program scales from Ps to P, the number of instructions scale, but the

ratio of work cycles to instructions remains constant. Similarly the ratio of stall

cycles to instructions, SPIcore, also remains constant. This hypothesis of constant

WPI and SPIcore is validated in Section 3.3.2. Hence, we measure ws and bs for

Ps and use them to determine the number of cycles for P.

Memory Response Time

The CPU response time, TCPU , depends on the service time of the memory con-

troller or the memory response time, Tmem (Eq. 3.5). Memory response time can

be determined by the number of stall cycles incurred by the core due to memory

requests, m. For a memory bound workload, the total number of cycles incurred

during execution, cyclesi,mem, are the work cycles, w, and the stall cycles due to

memory accesses that cannot be overlapped with useful work, m. Thus,

cyclesi,mem = w +m (3.11)

By measuring the stall cycles incurred due to memory requests for executing Ps,

on each type of node, the memory response time for executing program P can be

directly inferred. Hence, we use the measured values of m for Ps (ms) to compute

SPIi,mem as:

SPIi,mem =
ms

Ii,s
(3.12)

Thus, the total cycles incurred by a program P that is bound by memory service

time can be determined from WPI and SPImem as:

cyclesi,mem = Ii · (WPIi + SPIi,mem) (3.13)

Ti,mem =
cyclesi,mem

fi
(3.14)

53

Chapter 3. Approach and Core Model

When the number of cores requesting memory accesses increases, memory response

time also increases due to memory contention [157]. The increase in memory

response time results in higher CPU stall cycles. In Section 3.3.3, we show that

SPImem correlates to both changes in core clock frequency f and the active number

of cores c. From Equations 5.4 and 3.12, memory response time can be determined

using the measured values of ws and ms across all possible values of the number

of active cores and core clock frequencies.

I/O Response Time

Since CPU computation time overlaps with I/O request transfer time, and I/O

transfer time in turn overlaps with inter-arrival waiting time of the next request,

it suffices to consider the maximum of these two values. Hence, for an I/O bound

program the response time is the maximum between the I/O transfer time as a

function of I/O bandwidth and the I/O requests inter-arrival rate.

Ti,I/O =
max(Ti,I/OT

, 1
λI/O

)

ni
(3.15)

For an I/O bound program, with the increase in the number of nodes for a fixed

workload, the I/O response time improves because the I/O bandwidth demands

per node decreases.

3.2.3 Matching Technique

In this section, we describe the approach to determine the proportion of work-

load executed by each type of node, ri, to match the execution rates among all

the nodes. As seen from the time model equations, the execution time depends

on the bottleneck resource, namely processing cores, memory or network and is

54

Chapter 3. Approach and Core Model

directly proportional to the amount of workload being executed. By abstracting

the proportionality constant to be ki for each type of node, the execution time on

ni nodes of the same type i can be expressed as:

Ti = ki · ri (3.16)

The proportionality constant ki depends on the bottleneck resource for that type

of node. While the bottleneck resource in a node shifts due to the problem size

of the workload being executed (i.e. ri), such an abstraction using ki leads to a

closed-form solution for matching the execution rate among nodes. Matching the

execution rate among different types of nodes makes the execution time due to

each type of node approximately equal. Thus:

Ti = Tj (3.17)

T1 = T2 ⇒ k1 · r1 = k2 · r2 ⇒ r2 =
k1 · r1
k2

(3.18)

Similarly, matching the execution time among d types of nodes, the proportion of

workload executed on each type becomes a function of k1, r1 and ki as:

ri =
k1 · r1
ki

(3.19)

Since the total work W of the program P is split into the proportional amount,

ri, on each type of node:

r1 + r2 + · · ·+ rd = 1 (3.20)

55

Chapter 3. Approach and Core Model

Thus, from Equations 3.19 and 3.20, the percentage of workload r1 executed on

n1 nodes of same type is determined as follows:

r1 = 1− (r2 + r3 + · · ·+ rd)

r1 = 1−
(

k1 · r1
k2

+
k1 · r1
k3

+ · · ·+ k1 · r1
kd

)

r1 =
1

1 + k1
k2

+ k1
k3

+ · · ·+ k1
kd

(3.21)

This derivation indicates that the proportion of workload on a type of node is

inversely proportional to its execution time proportionality constant k, and hence

a poor performing node (larger execution time) should execute smaller proportions

of the workload.

3.2.4 Energy Model

For a given workload, the energy model determines the total energy consumed

during program execution, by using system power parameters and the execution

time of P. Total energy for a given workload is the sum of energies consumed by

core, memory, I/O devices and the idle energy within a node across all nodes in

the system.

E =

d
∑

i=1

Ei (3.22)

Ei =
(

Ei,CPU + Ei,mem + Ei,I/O + Ei,idle

)

× ni (3.23)

The measured power parameter PCPU,act includes the number of active cores within

a CPU. The power used by inactive cores is accounted by Pidle which in turn

56

Chapter 3. Approach and Core Model

determines Eidle. Hence the energy consumed by the CPU is:

Ei,CPU = (Pi,CPU,act · Ti,act) + (Pi,CPU,stall · Ti,stall) (3.24)

where

Ti,act =
Ii,core ·WPIi

fi
(3.25)

Ti,stall =
Ii,core · SPIi,core

fi
(3.26)

Ii,core, WPIi and SPIi,core are obtained as explained in Section 3.2.2. The energy

consumed by memory is:

Ei,mem =Pi,mem · Ti,mem (3.27)

and the energy consumed by I/O is:

Ei,I/O = Ti,I/O · Pi,I/O (3.28)

The power parameter of each individual component excludes the system idle

power. Thus, the idle energy is:

Ei,idle = Ti · Pi,idle (3.29)

3.3 Validation

This section presents the validation of our proposed model against measurements

of execution time and energy usage for a diverse set of workloads. First, we present

57

Chapter 3. Approach and Core Model

the workloads and the system setup. Next, we show experimental evidence for

our hypothesis of constant WPI and SPIcore across program input sizes, and the

linearity of SPImem across cores and core clock frequencies. Lastly, we summarized

the validation results.

3.3.1 Workloads and Setup

Many datacenter workloads must obey strict service time deadlines. To service

requests within a deadline, processing is distributed over hundreds of server nodes.

Jobs arrive at front-end nodes and are forwarded to a cluster of compute nodes

that service job requests. Both response time and energy incurred by a job are

dominated by compute nodes [116]. Thus, we focus on the energy efficiency of

compute nodes only.

As we are targeting datacenter workloads, we select six programs represent-

ing different performance bottlenecks and with different deadline requirements.

EP, from NPB benchmark [26], is an embarrassingly parallel distributed memory

program that generates random numbers for Monte-Carlo numerical simulation.

Memcached is widely used by Facebook, Amazon, Twitter, among others, as an

in-memory key-value distributed storage. When a key request arrives, a front-end

node dispatches the request to a set of nodes that are responsible for storing the

key-values belonging to an application. All nodes in the pool perform a key look-

up computation, but typically few nodes return the value. However, this operation

may exert complex service demands on core, memory and I/O devices [101, 158].

We use memslap running on another system to generate requests to the mem-

cached server over a 1Gbps network connection. Memslap generates requests with

fixed key-value size and uniform popularity.

From the PARSEC benchmark suite [31], x264 represents the widely used en-

coding algorithm for streaming video, and blackscholes represents a quantitative

58

Chapter 3. Approach and Core Model

model for determining option pricing. The open source speech recognition en-

gine Julius [7] represents the increasing adoption of real-time speech processing

workloads originating from smart devices. To analyze the energy efficiency of web

security, we use the openssl RSA-2048 speed benchmark because major web play-

ers are increasingly concerned with in-transit data security and are hardening the

https encryptions [6].

While our proposed approach can analyze a generic mix of heterogeneous

nodes, for validation, we consider a mix of A9 (ARM), K10 (AMD) and E5

(Intel) nodes, as shown in Table 3.2. These representative nodes cover the broad

spectrum of performance and power offered by computing platforms today. At one

end of the spectrum is the low-power A9 node which consumes a peak power of

only 5W. At the other end of the power spectrum, we select the recent and more

energy-efficient high-performance E5 node with eight cores which consumes a peak

power of about 80W. As an intermediary point, we select the older generation K10

node that consumes a peak power of about 60W and offers a peak performance

around 50 GFLOPS that lies between the A9 and E5 nodes. We use perf to access

hardware event counters and to measure execution time, and a Yokogawa WT210

power monitor to measure the power and energy, as shown in Fig. 3.2.

Node
ARM Cortex AMD Opteron Intel Xeon

A9 K10 E5

ISA ARMv7-A x86 64 x86 64
Clock Freq 0.2–1.4 GHz 0.8–2.1 GHz 1.2–1.8 GHz
Cores/node 4 6 8
L1 data cache 32KB / core 64KB / core 32KB / core
L2 cache 1MB / node 512KB / core 2MB / node
L3 cache NA 6MB / node 20MB / node
Memory 1GB LP-DDR2 8GB DDR3 8GB DDR3
I/O bandwidth 100Mbps 1Gbps 1Gbps
Peak power [W] 5 60 80

Table 3.2: Types of heterogeneous nodes

59

Chapter 3. Approach and Core Model

Controller

System

Yokogawa WT210

Power Monitor

240V AC

outlet

Gigabit Ethernet Switch

Heterogeneous Cluster

Serial interface

Memory

Node

Core Core Core Core

Network

Figure 3.2: Validation setup

3.3.2 WPI and SPIcore

This section validates our hypothesis of constantWPI and SPIcore as workload

scales from Ps to P. Fig. 3.3 plots the WPI and SPIcore for the EP benchmark

with increasing problem sizes from A to C on the three types of nodes. The

problem size increases by four times from class A to class B and by sixteen times

from class A to class C. The plot shows that our hypothesis holds for EP, as it

does for all the other workloads.

Domain Program Problem Size

Execution time error [%] Energy error [%]
A9 node K10 node E5 node A9 node K10 node E5 node

Mean
Std.

Mean
Std.

Mean
Std.

Mean
Std.

Mean
Std.

Mean
Std.

Dev. Dev. Dev. Dev. Dev. Dev.

HPC EP 2,147,483,648 random numbers 1 2 1 5 4 2 6 5 6 2 9 8
Web Server memcached 600,000 GET/SET operations 4 8 7 5 3 2 5 4 6 5 10 8
Streaming video x264 600 frames 704 × 576 1 3 6 4 11 4 5 8 9 2 11 4
Financial blackscholes 500,000 stock options 1 1 1 1 15 13 5 2 7 3 14 12
Speech recognition Julius 2,310,559 samples 4 9 10 2 13 4 2 5 7 6 9 6
Web security RSA-2048 5000 keys verifications 10 1 1 1 1 1 2 7 7 2 6 5

Table 3.3: Single-node validation

3.3.3 SPImem Regression over Core Frequency f

As our approach models the memory response time by measuring the stall cycles

due to memory requests for the program Ps, we present the validation of the

60

Chapter 3. Approach and Core Model

 0.56

 0.66

 0.76

A B C

C
yc

le
s

pe
r

In
st

ru
ct

io
n

Problem Size

A9 WPI
A9 SPIcore

 0.58

 0.68

 0.78
K10 WPI

K10 SPIcore

 0.36

 0.4

 0.44
E5 WPI

E5 SPIcore

Figure 3.3: WPI and SPIcore across problem size

correlation between SPImem across different core clock frequencies and number

of cores. Fig. 3.4 shows that as core frequency increases, SPImem grows linearly.

 1

 4

 8

 0 0.5 1 1.5 2

S
P

I m
em

Core Frequency [GHz]

A9 cores=1; r2=0.97
A9 cores=4; r2=0.94

 0.2

 0.7

 1.2
K10 cores=1; r2=0.96
K10 cores=6; r2=0.98

 1.4

 1.7

 2
E5 cores=1; r2=0.97
E5 cores=8; r2=0.96

Figure 3.4: Effect of frequency and number of cores on SPImem

61

Chapter 3. Approach and Core Model

The Pearson’s correlation coefficient between SPImem and f is r2 ≥ 0.94, showing

a very strong correlation among them.

Program Execution time error [%] Energy error [%]
EP 3 10
memcached 10 8
x264 11 10
blackscholes 4 7
Julius 13 1
RSA-2048 2 8

Table 3.4: Cluster validation

3.3.4 Execution Time and Energy

The modeled execution time and energy are validated against measured values,

for all workloads described above. We validated two aspects of our mix-and-match

approach. First, we validated the predictions of execution time and energy for a

single node across all three types of nodes and across all combinations of number of

cores per node type and core clock frequencies. This validation tests the accuracy

of selecting the most energy efficient configuration per node. Second, we validated

multi-node energy efficient configurations. Together, these experiments validate

our selection of the Pareto-optimal configurations. While Table 3.3 shows the

average error and standard deviation on a single node, Table 3.4 summarizes the

average error on heterogeneous clusters. The absolute values of the execution time

and energy validated for a single node are shown in the appendix at Section A.4.

In summary, the average error of the model is less than 15%.

3.3.5 Sources of Inaccuracy

We identify three factors that affect the accuracy of the model. Firstly, the most

significant source of error is due to execution time irregularities during different

executions of the same program because of operating system overheads. The

62

Chapter 3. Approach and Core Model

measured values of execution time and energy show irregularities of up to 10% for

different runs of the same program. The second reason for model inaccuracy is

that the workload is not perfectly divisible on multiple cores and nodes. Third,

the model depends on the accuracy of the characterized power parameters. In

particular, system power values for active cycles, stall cycles and idleness differ

by up to 0.4W for the A9 node, 5W for the K10 node and 2W for the E5 node.

This variability translates into a larger underestimation of the energy consumed

especially for larger execution times.

3.3.6 Accuracy of Related Work

We present the average validation error of the state-of-the-art approaches relevant

to our approach in Table 3.5. While the proposed approach in this thesis results

in an average error up to 15%, the different related works have errors in the range

from 16% to 25%.

Related Work Average Error [%]
Blocking factor model [126] 20
Predictive metrics [37] 22
Sniper: interval simulation model [36] 25
GEM5 simulator on ARM Cortex-A15 [72] 16
Queuing architectural model [139] 22

Table 3.5: Accuracy of Related Work

3.4 Summary

This chapter proposes a measurement-based analytical modeling approach to de-

termine the execution-time and energy performance of a parallel program execut-

ing on multi-core heterogeneous clusters. As heterogeneous clusters have different

execution rate, we propose a matching technique, which splits the workload such

that all the different types of nodes complete the parallel job at the same time.

63

Chapter 3. Approach and Core Model

By finishing at the same time, the energy incurred by idling in the cluster is

minimized.

Energy Performance

E
∑d

i=1Ei

Ei

(

Ei,CPU + Ei,mem + Ei,I/O + Ei,idle

)

· ni

Ei,CPU (Pi,CPU,act · Ti,act) + (Pi,CPU,stall · Ti,stall)

Ei,mem Pi,mem · Ti,mem

Ei,I/O Ti,I/O · Pi,I/O

Ei,idle Ti · Pi,idle

Time Performance

T maxdmax
i=1 (Ti)

Ti max(Ti,CPU , Ti,I/O)

Ti,CPU max(Ti,core, Ti,mem)

Ti,core
cyclesi,core

fi

Ti,mem
cyclesi,mem

fi

Ti,I/O

max(Ti,I/OT
, 1

λI/O
)

ni

Table 3.6: Summary of core model

To determine the proportion of workload that is assigned to each type of node,

we propose and use the core analytical model that determines the energy required

to execute a parallel program. The core model is applicable on heterogeneous

clusters with wimpy and brawny nodes having different Instruction Set Architec-

tures (ISAs). For each type of node, the core model predicts the execution time

and energy usage of a job considering the overlap among the response times of

service requests to the CPU, the memory and the network I/O devices. The core

model is validated against direct measurements of execution time and energy us-

age on a heterogeneous cluster with ARM Cortex-A9, AMD Opteron K10 and

Intel Xeon E5 multi-core nodes, for a diverse range of parallel applications. Table

3.6 summarizes the energy and time performance derived from our core model.

64

Chapter 4

Analysis of Inter-node

Heterogeneous Systems

In this chapter, we apply our model to study the energy efficiency of different

inter-node heterogeneous configurations under a given service time deadline. We

first evaluate the impact of multiple degrees of heterogeneity on energy efficiency.

Next, we present the performance-to-power ratio (PPR) of the inter-node hetero-

geneous system and analytically determine the impact of PPR on the sweet region.

Lastly, we show how to apply our approach to choose energy-efficient cluster mixes

constrained by a power budget followed by an analysis of whether heterogeneous

clusters are more energy proportional.

4.1 Pareto-optimal Configurations

This section evaluates if heterogeneity reduces energy consumption while still

meeting an execution time deadline. As the total energy depends on the number

of active nodes, the number of cores per node and core clock frequency, finding

the global optimum configuration is a complex task. For example, a system with

65

Chapter 4. Analysis of Inter-node Heterogeneous Systems

three A9, three K10 and three E5 nodes results in a total of a quarter-million

possible configurations1. With the explosion of the configuration space, we show

that the sweet region can be analytically established using the node performance-

to-power ratios (PPR) in Section 4.2.2. In this section, we use EP workload to

illustrate the observations, but similar observations hold for all workloads. For

our energy efficiency analysis we choose an input of five million random numbers

for EP as one job. However, we note that the input size does not impact the

conclusion of the analysis because increasing the input size leads to an increase

in both execution time and energy usage. The homogeneous configurations with

up to eight A9 nodes have been validated against measurements and the date for

other configurations are from the model.

Fig. 4.1 plots the energy incurred to finish the EP job for all possible configu-

rations. Each point in this plot represents a different configuration, determined by

the number of A9, K10 and E5 nodes, number of cores per node and the core clock

frequency. For each configuration point, the x-axis denotes the job service time

and the y-axis represents the corresponding energy used. A configuration that

meets the deadline with the minimum energy usage is Pareto optimal. The set of

all Pareto optimal points across all possible deadlines forms the energy-deadline

Pareto frontier, as shown in Fig. 4.1.

From the plot, it is observed that increasing the degree of heterogeneity results

in more configurations on the Pareto frontier. The Pareto frontier in Fig. 4.1 can

be divided into three parts. The leftmost part consists of mixes of all the three

types of nodes, A9, K10 and E5, and hence has degree d = 3. The middle region

has nodes of only two types, A9 and E5 having a degree d = 2. The rightmost

1 dmax = 3 ; n1 = 3, n2 = 3, n3 = 3 ; c1 = 6, c2 = 4, c3 = 8; f1 ∈ [0.8, 1.4, 2.1] GHz,
f2 ∈ [0.2, 0.5, 0.8, 1.1, 1.4] GHz, f3 ∈ [1.2, 1.5, 1.8] GHz. Total number of configurations =
(3 × 6 × 3)× (3 × 4× 5)× (3 × 8× 3) + (3 × 6× 3)× (3 × 4× 5) + (3 × 4 × 5)× (3× 8 × 3) +
(3× 8× 3)× (3× 6× 3) + (3× 6× 3) + (3× 4× 5) + (3× 8× 3) = 244, 914 configurations.

66

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 1

 10

 10 100 1000

E
ne

rg
y

re
qu

ire
d

fo
r

de
ad

lin
e

[J
]

Deadline [ms]

All 244,914 Configurations
Pareto Frontier

d=3 d=2 d=1

Figure 4.1: Pareto frontier for EP with dmax = 3

part consisting of only A9 nodes has two homogeneous (d = 1) configurations on

the Pareto frontier. These configurations on the Pareto frontier represent a “sweet

region”2 where relaxing the deadline linearly reduces the energy used.

Impact on Energy Savings

The existence of the Pareto-frontier and using Pareto-optimal configurations for

executing a program imply two options for saving energy. Firstly, for a given

execution time deadline, using a Pareto-optimal configuration instead of a non-

optimal configuration results in energy savings. For example, for executing the

EP program on the inter-node heterogeneous cluster, a Pareto-optimal configura-

tion reduces energy by up to 75% as compared to a non-optimal configuration.

Secondly, Pareto-optimal configurations reduces energy by 17% at the expense of

2A sweet region is a union of Pareto optimal heterogeneous sweet-spots.

67

Chapter 4. Analysis of Inter-node Heterogeneous Systems

increasing the execution time of the EP program on an inter-node heterogeneous

cluster as shown in Figure 4.1.

In summary, we show that heterogeneity allows for the existence of a sweet

region. With the explosion of the configuration space, we show how to analytically

determine the configurations on the sweet region using the PPR of each type of

node, in the following section.

4.2 Impact of Performance-to-Power Ratio

4.2.1 Performance-to-Power Ratio (PPR)

PPR is defined as the work done per unit of time, normalized by the average

power consumption. This is equivalent to the work done per unit of energy. The

PPRs computed for the most energy-efficient configuration per type of node are

shown in Table 4.1. As observed from the table, A9 has a better PPR than

K10 and E5, but with two notable exceptions. For web-security applications such

as RSA-2048, E5 has better PPR due to its special instructions that accelerate

cryptography processing. x264 encoding algorithm is memory-bound [31], and

performs much better on the E5 node which has a higher memory bandwidth.

For the other applications, A9 has a better PPR but lower overall performance.

Hence, mixing the three nodes with diverse PPR optimizes both energy efficiency

and performance, as shown in Section 4.1. We discuss the conditions under which

a mix of heterogeneous nodes exhibits a sweet region. To assess the effect of

PPR, we generate the mix-and-match sweet region exhibited by a mix of three

A9, K10 and E5 nodes for two cases:(i) EP – where the A9 PPR is the best, and

(ii) RSA-2048 – where the E5 PPR is the best.

Figs. 4.2 and 4.3 plot the sweet regions for both types of programs. For each

68

Chapter 4. Analysis of Inter-node Heterogeneous Systems

Program
Performance A9 K10 E5

per Watt (PPR) node node node
EP (random no./s)/W 6,048,057 1,414,922 2,982,616
memcached (bytes/s)/W 5,224,004 2,68,067 1,851,587
x264 (frames/s)/W 0.7 1 1.6
blackscholes (options/s)/W 11,413 2,902 694
Julius (samples/s)/W 69,654 21,390 19,167
RSA-2048 (verify/s)/W 968 1091 1,483

Table 4.1: Performance-to-power ratio

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 20 40 60 80 100

E
ne

rg
y

re
qu

ire
d

fo
r

de
ad

lin
e

[J
]

Deadline [ms]

3 K10, 3 E5, 3 A9

2 K10, 3 E5, 3 A9

1 K10, 3 E5, 3 A9

0 K10, 3 E5, 3 A9

0 K10, 1 E5, 3 A9

0 K10, 0 E5, 3 A9
0 K10, 0 E5, 3 A9

Pareto Frontier

Figure 4.2: Pareto frontier configurations for EP

69

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 8

 8.1

 8.2

 8.3

 8.4

 8.5

 8.6

 20 25 30 35

E
ne

rg
y

re
qu

ire
d

fo
r

de
ad

lin
e

[J
]

Deadline [ms]

3 A9, 3 K10, 3 E5
3 A9, 3 K10, 3 E5

3 A9, 2 K10, 3 E5
2 A9, 2 K10, 3 E5

3 A9, 1 K10, 3 E5

1 A9, 1 K10, 3 E5

3 A9, 0 K10, 3 E5

2 A9, 0 K10, 3 E5
0 A9, 0 K10, 3 E5

Pareto Frontier

Figure 4.3: Pareto frontier configurations for RSA-2048

configuration point in the sweet region, the plots also show the number of A9,

K10 and E5 nodes that meet the deadline with the minimum energy usage. Both

sweet regions represent a linear transition between executing on all nodes (when

the execution time is minimized, but energy usage is at maximum) to an execution

on only two types of nodes, and finally with only the most power-efficient nodes.

For example, from the PPR Table 4.1, for EP, the most power efficient nodes

are A9, thus the configuration with the minimum energy contains only A9 nodes

(Fig. 4.2). But, for RSA-2048 the most power-efficient nodes are E5 and hence

the configuration with minimum energy consists of only E5 nodes (Fig. 4.3). The

sweet regions also exhibit different gradients based on the type of node that is

being removed. A steeper gradient indicates more savings in energy for lesser

increase in execution time, and is obtained when nodes having the worst PPR are

removed from the mix. For example, reducing the number of K10 nodes for EP

or A9 nodes for RSA-2048, results in a steeper gradient for the respective sweet

70

Chapter 4. Analysis of Inter-node Heterogeneous Systems

regions.

4.2.2 Analytical Analysis of PPR on Sweet Region

Given a server workload and an upper bound on the maximum number of nodes

of each type, the upper and lower bounds of energy versus deadline for the config-

urations on the sweet region can be determined analytically. The Pareto-optimal

configurations on the sweet region form a total order with respect to the relation

of decreasing energy as deadline is relaxed. If τ denotes a configuration on the

sweet region, then the total order with respect to energy E(τ), and execution time

deadline T (τ) is represented as:

∀i, j ∈ N : i < j ⇔ E(τi) > E(τj) ∧ T (τi) < T (τj)

For a given workload (P), we sort each of the d types of nodes with respect to

their PPRs in the ascending order, such that:

∀i, j ∈ [1 · · · dmax], i < j ⇔ PPRi < PPRj

Then the sweet region for executing P on a heterogeneous mix of nodes with degree

of heterogeneity d can be analytically determined based on the ascending order

of the PPRs for each type of node. The sweet region configuration executing in

the minimum possible execution time deadline, τ1, is the mix with the maximum

number of nodes of each type:

τ1 = (n1,max, n2,max, · · · , nd,max)

The next configuration τ2 on the sweet region has an execution time slightly longer

71

Chapter 4. Analysis of Inter-node Heterogeneous Systems

and consumes lesser energy than τ1 configuration.

τ2 = ((n1,max − 1), n2,max, · · · , nd,max)

The configurations on the sweet region thus have a decrease in the number of

nodes for the node type having the lowest PPR such that the final configuration

with the maximum execution time and minimum energy is a homogeneous one,

as shown in Fig. 4.4. This homogeneous configuration consists of nodes with the

E
n

e
rg

y
 r

e
q

u
ir

e
d

 f
o

r
d

e
a

d
li

n
e

 [
J]

Deadline [ms]

(n1,max , n2,max nd,max)

((n1,max -1) , n2,max nd,max)

(n2,max nd,max)

(n(d-1),max, nd,max)

(nd,max)

Figure 4.4: Configurations on the sweet-spot region

best PPR. Since the nodes have been ordered in ascending order of the PPRs, the

configurations with nd,max nodes has the best PPR among the dmax types of nodes

in the system.

The characteristic of the sweet region is a decrease in energy with an increase

in the execution time. This characteristic is dependent on the ratio of the PPRs

among the d nodes and the bottleneck system resource for the particular workload

being executed. For a given workload, changing the system configuration also

72

Chapter 4. Analysis of Inter-node Heterogeneous Systems

changes the proportion of workload being executed on a type of node. Thus, the

bottleneck resource on a type of node varies among the configurations on the sweet

region. Therefore, the sweet region exhibits multiple gradients, with each of these

gradients being determined not only by the ratio of the PPR among the nodes

but also by the type of resource bottlenecks (core, memory or I/O) within a type

of node.

4.3 Impact of Power Substitution Ratio

4.3.1 Power Substitution Ratio (PSR)

Since datacenters often have an upper bound on their peak power consumption,

we consider a fixed peak power budget drawn by our system that constrains the

maximum number of nodes. Based on peak power proportion between A9, K10

and E5 nodes, we analyze the impact of replacing some K10 and E5 nodes with

A9 nodes for workloads where A9 has a better PPR, such as the EP program.

Similarly, we analyze the impact of replacing A9 nodes with E5 and K10 nodes,

for workloads where E5 has a better PPR, such as the RSA-2048 program. These

replacements are done such that the total peak power is within the allocated

budget.

Assuming a peak power budget of one kilowatt, the number of A9, K10 and

E5 nodes are chosen based on the power substitution ratios. Since each K10 node

draws a peak power of 60W and each A9 node draws a peak power of 5W, one

K10 node can be replaced by twelve A9 nodes. However, accounting for the twenty

watts of peak power drawn by the switch [3] that connects the A9 nodes, gives us

a power substitution ratio of 8:1 between A9 and K10 [137]. Similarly, a power

substitution ratio between A9 and E5 nodes is 12:1 as the E5 node draws a peak

73

Chapter 4. Analysis of Inter-node Heterogeneous Systems

power of 80W. Therefore, to meet a budget of one kilowatt, there are multiple

possibilities of mixing all three types or any two types of nodes, to constitute a

heterogeneous cluster. Examples of some of these node mixes for a power budget

of one kilowatt are shown in Table 4.3.1.

Next, we discuss the effect of these various heterogeneous mixes on the sweet

region and show how the PPR discussed in Section 4.2.2 influences the energy

efficiency among different mixes for a given power budget.

Degree A9 K10 E5
of heterogeneity nodes nodes nodes

d = 2

96 4 0
80 6 0
0 4 8
0 7 6
32 0 8
56 0 6

d = 3

72 4 2
80 3 2
32 3 6
24 4 6
24 1 8
16 2 8

Table 4.2: Cluster mixes for 1kW power budget

4.3.2 Impact of Heterogeneous Mixes on the Sweet Region

Figs. 4.5 and 4.6 show the impact of changing the number of A9, K10 and E5

nodes, for a fixed peak power budget of one kilowatt, and degrees of heterogeneity

being two and three. We use the power substitution ratios of replacing nodes

among the mixes as shown in Section 4.3.1. As observed from Fig. 4.5, the hetero-

geneous mixes with only E5 and K10 nodes have the worst deadline-energy Pareto

configurations compared with heterogeneous mixes with only A9 and K10 or only

A9 and E5. The insight behind this observation is that A9 has the best PPR for

the EP program compared to K10 and E5 nodes. Hence, node mixes with more

A9 nodes outperform mixes with no A9 nodes or mixes with lower number of A9

74

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1 10 100

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

0 A9: 7 K10: 6 E5
0 A9: 4 K10: 8 E5

56 A9: 0 K10: 6 E5
80 A9: 6 K10: 0 E5
80 A9: 0 K10: 4 E5
96 A9: 4 K10: 0 E5

Figure 4.5: Pareto frontier for EP with d = 2

 0.5

 1

 1.5

 2

 2.5

 3

 1 10 100

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

8 A9: 12 K10: 2 E5
8 A9: 9 K10: 4 E5
8 A9: 3 K10: 8 E5

32 A9: 3 K10: 6 E5
56 A9: 3 K10: 4 E5

Figure 4.6: Pareto frontier for EP with d = 3

75

Chapter 4. Analysis of Inter-node Heterogeneous Systems

nodes.

Fig. 4.6 illustrates that mixes with larger number of A9 nodes are more energy-

efficient, because the configurations in such mixes either incur lower energy for a

given execution time or execute faster for a given energy budget. Furthermore,

mixes with larger number of E5 nodes compared to K10 nodes are more energy-

efficient. Hence, for a given power budget, substituting K10 nodes with E5 and

further replacing E5 nodes with A9 according to their respective power substitu-

tion ratios introduces a more energy-efficient sweet region.

For the RSA-2048 cryptographic encryption, the PPR of E5 is the best among

the three types of nodes. As the PPR of K10 and A9 are very close (Table 4.1)

and because the peak power consumed of K10 node is much higher than that

of an A9 node, for a given power budget, the cluster can consist of many more

A9 nodes rather than K10. Hence, heterogeneous mixes with only E5 and A9

nodes are more energy-efficient than other combinations for mixes with degree of

heterogeneity two, as shown in Fig. 4.7. Similarly, among the varied combinations

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 9.4

 9.6

 10 100

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

64 A9: 8 K10: 0 E5
0 A9: 13 K10: 2 E5
0 A9: 10 K10: 4 E5
56 A9: 0 K10: 6 E5
20 A9: 0 K10: 9 E5

Figure 4.7: Pareto frontier for RSA-2048 with d = 2

76

Chapter 4. Analysis of Inter-node Heterogeneous Systems

of heterogeneous mixes with degree three executing RSA-2048 encryption, mixes

with more number of E5 nodes are more energy-efficient as E5 nodes have the best

PPR for this program, as illustrated in Fig. 4.8. This observation is similar to the

 8

 8.1

 8.2

 8.3

 8.4

 8.5

 8.6

 8.7

 8.8

 8.9

 9

 9.1

 10 100

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

8 A9: 12 K10: 2 E5
8 A9: 9 K10: 4 E5

56 A9: 3 K10: 4 E5
32 A9: 3 K10: 6 E5
8 A9: 3 K10: 8 E5

Figure 4.8: Pareto frontier for RSA-2048 with d = 3

analysis of mixes executing EP program where increasing the number of A9 nodes

improves the energy efficiency, as the A9 nodes have the best PPR for EP.

4.3.3 Analytical Analysis of PSR on Sweet Region

Given a power budget and the power substitution ratio for different types of nodes

in the cluster for a given workload, energy efficiency among the different heteroge-

neous mixes can be analytically computed and compared. The PPRs of different

types of nodes for a given workload form a total order which can be represented

in the descending order such that:

∀i, j ∈ [1 · · ·dmax] : i < j ⇔ PPRi > PPRj

77

Chapter 4. Analysis of Inter-node Heterogeneous Systems

Assuming that the power substitution ratios among the dmax different types of

nodes is of the form αi : αj, where αi represents the number of type i nodes

that can be substituted with αj number of type j nodes, such that the resulting

cluster system does not exceed a given peak power budget. Given π different

combinations of the various types of nodes to meet a given power budget β, the

most energy-efficient mix should satisfy the constraint:

d
∑

i=1

ni · Pi ≤ β

where Pi is the peak power of node i and the mix has degree d with ni nodes of

type i.

When the heterogeneous nodes are such that, if PPRi > PPRj, then αi >>

αj , then it implies that having more number of nodes of type i in the mix increases

the overall energy efficiency. However, if the nodes are such that, when PPRi >

PPRj, the power substitution ratio αi < αj, then a lower degree of heterogeneity

is more energy-efficient than a higher degree of heterogeneity. This hypothesis is

validated in Figs. 4.5 and 4.6, where mixes with only A9 and E5 nodes (d = 2)

are more energy-efficient than mixes with A9, E5 and K10 (d = 3) for the EP

program. This is because even though E5 nodes have a better PPR than K10

for the EP program, the power substitution ratio is 2:3 between E5 and K10

respectively. As only two nodes of E5 replace three nodes of K10, the advantages

due to heterogeneity are not leveraged in this case.

4.4 Energy Proportionality Analysis

Energy proportionality was proposed as an important server design principle to

address the mismatch between the energy consumed and the amount of useful work

78

Chapter 4. Analysis of Inter-node Heterogeneous Systems

performed [30]. However, energy proportionality quantified by the EP metric [141]

has stalled at 80% for individual servers. This stall is referred to as the energy

proportionality wall, and is attributed to the lack of improvements in the dynamic

range of servers [171]. This has fuelled a lot of research to improve the energy

efficiency at individual server level by introducing different low power operating

modes.

Low power modes such as sleep or shutdown are not viable options as they

induce idle periods in the order of minutes. Server shutdown is also impractical

due to data availability concerns such as (i) longer response time during traffic

spikes and (ii) the necessity to execute many background tasks in typical datacen-

ters [20, 30, 118]. Therefore, research directions in the area of active low-power

modes have been explored, where the server can perform some amount of useful

work in a low-power state. Barely alive servers [19] and Somniloquy [13] perform

only I/O operations in low-power, while KnighShift propose low-power compu-

tations using low-power at low utilization. However all of these research works

explore energy efficiency at an individual server level. Complementing these tech-

niques, we analyze whether heterogeneous clusters exhibit better cluster-wide en-

ergy proportionality.

4.4.1 Brawny versus Wimpy Node

Table 4.4 shows the different energy proportionality metrics described in Sec-

tion 2.2.2 for the A9 and K10 nodes across all the workloads considered in this

chapter. Contrary to intuition, brawny K10 node has better energy proportion-

ality compared to the wimpy low-power A9 node. As the metrics in the table do

not illustrate the proportionality of nodes at individual utilization levels, we plot

the percentage of peak power consumed by these nodes to depict the variation of

the proportionality gap with utilization.

79

Chapter 4. Analysis of Inter-node Heterogeneous Systems

Domain Program
Useful

Bottleneck
Operations

HPC EP random numbers CPU
Web Server memcached bytes I/O
Streaming video x264 video frames memory
Financial blackscholes stock options CPU
Speech recognition Julius audio samples CPU
Web security RSA-2048 key verifies CPU

Table 4.3: Useful Operations

Program
DPR IPR EPM LDR

A9 K10 A9 K10 A9 K10 A9 K10
EP 25.97 34.57 0.74 0.65 0.26 0.34 0.26 0.35
memcached 16.78 11.05 0.83 0.89 0.17 0.11 0.17 0.11
x264 35.54 38.41 0.64 0.62 0.36 0.38 0.36 0.39
blackscholes 32.11 37.30 0.68 0.63 0.32 0.37 0.32 0.37
Julius 30.48 38.10 0.70 0.62 0.30 0.38 0.31 0.38
RSA-2048 35.62 41.19 0.64 0.59 0.36 0.41 0.36 0.41

Table 4.4: Single-node energy proportionality

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

P
ea

k
P

ow
er

 [%
]

Utilization [%]

Ideal
K10
A9

Figure 4.9: Energy proportionality of EP

80

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 50

 60

 70

 80

 90

 100

 20 40 60 80 100

P
ea

k
P

ow
er

 [%
]

Utilization [%]

Ideal
K10
A9

Figure 4.10: Energy proportionality of x264

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

P
ea

k
P

ow
er

 [%
]

Utilization [%]

Ideal
K10
A9

Figure 4.11: Energy proportionality of blackscholes

81

Chapter 4. Analysis of Inter-node Heterogeneous Systems

Figures 4.9, 4.10 and 4.11 plot the energy proportionality of a single AMD

Opteron K10 node and ARM Cortex-A9 node for the EP, x264 and blackscholes

programs respectively. From the plots, we conclude that usage of K10 nodes in

system clusters is more energy-proportional than using the A9 node, for compute

and memory intensive workloads. However, comparison between the absolute val-

ues of the idle power consumed by the two nodes shows that the idle power of

A9 (≈1.8W) is at least 25 times lower than that of K10 (≈45W). This counter-

intuitive result is because existing energy proportionality metrics discussed in Sec-

tion 2.2.2, do not provide a complete picture as they only quantify the percentage

of the power consumption with respect to the peak at different utilization lev-

els. The metrics neither consider the absolute power values nor do they consider

performance characteristics.

Next, we compare the two nodes using the performance-to-power ratio (PPR)

that factors the throughput of the workload per unit power across utilization levels

and is defined as,

PPR(u) =
Throughput[operations/s]

Power[W]

where throughput denotes the number of useful operations performed by the sys-

tem per unit time. This metric is also used in SPEC benchmark [151]. The

useful operations for the different workloads are tabulated in Table 4.3.

Figures 4.12, 4.13 and 4.14 plot the PPR across utilization levels for a single

node of K10 and A9 executing EP, x264 and blackscholes workloads respectively.

For certain workloads like x264, both the PPR and energy proportionality met-

rics concur (Figures 4.10 and 4.13), wherein K10 has both a better PPR and

proportionality gap compared to A9. However, the comparison of the energy

3In the energy proportionality plots presented in this thesis, lower is better
4In the PPR plots presented in this thesis, higher is better

82

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 0.01

 0.1

 1

 10

 10 20 30 40 50 60 70 80 90 100

P
P

R
 [1

06 o
ps

/W
]

Utilization [%]

K10
A9

Figure 4.12: PPR of EP

 0.01

 0.1

 1

 10 20 30 40 50 60 70 80 90 100

P
P

R
 [o

ps
/W

]

Utilization [%]

K10
A9

Figure 4.13: PPR of x264

83

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 0.1

 1

 10

 10 20 30 40 50 60 70 80 90 100

P
P

R
 [1

03 o
ps

/W
]

Utilization [%]

K10
A9

Figure 4.14: PPR of blackscholes

proportionality and the PPR values of the EP and blackscholes workloads show

contradictory results in terms of determining the more efficient node.

While the PPR of the A9 wimpy node is better than that of brawny K10 for

executing both EP and blackscholes workload, the proportionality gap of the A9

node is bigger than that of K10 for these workloads. This contradicting result

stems from the fact that while energy proportionality determines how the server

power consumption adapts to different utilization levels, it does not consider the

throughput. Thus, using the energy proportionality metrics alone does not always

suffice to make decisions regarding the nodes to be used for executing a workload.

We further augment this conclusion by illustrating the insufficiency of current en-

ergy proportionality metrics using the cluster-level analysis results in the following

section.

84

Chapter 4. Analysis of Inter-node Heterogeneous Systems

Program
DPR IPR EPM LDR

128 A9 64 A9 0 A9 128 A9 64 A9 0 A9 128 A9 64 A9 0 A9 128 A9 64 A9 0 A9
0 K10 8 K10 16 K10 0 K10 8 K10 16 K10 0 K10 8 K10 16 K10 0 K10 8 K10 16 K10

EP 25.97 32.66 34.57 0.74 0.67 0.65 0.26 0.33 0.34 0.26 0.33 0.35
memcached 16.78 12.44 11.05 0.83 0.88 0.89 0.17 0.12 0.11 0.17 0.12 0.11
x264 35.54 37.73 38.41 0.64 0.62 0.62 0.36 0.38 0.38 0.36 0.38 0.38
blackscholes 32.11 36.10 37.30 0.68 0.64 0.63 0.32 0.36 0.37 0.32 0.36 0.37
Julius 30.48 36.39 38.09 0.70 0.64 0.62 0.30 0.36 0.38 0.30 0.37 0.38
RSA-2048 35.62 39.92 41.19 0.64 0.60 0.59 0.36 0.40 0.41 0.36 0.40 0.41

Table 4.5: Cluster-wide energy proportionality

4.4.2 Cluster-wide Energy Proportionality

For analysing cluster-wide energy proportionality, we use the same metrics as

for the single node case and the power consumed by the whole cluster under

consideration. For cluster utilization, we consider a workload with batches of

parallel jobs of the same type being executed by all the nodes in the cluster.

While all nodes of the same type execute similar proportion of the workload,

the amount of workload executed by nodes of different types is determined by

matching the execution rates among the different types of nodes, such that all

nodes finish executing at the same time. Thus, in our approach, the idling period

of all nodes in a system configuration is approximately the same and depends only

on the cluster utilization level.

Wong et al. [172] considered cluster-wide energy proportionality but their anal-

ysis pertained to increasing the number of nodes in a cluster with an increase in

the utilization. In contrast, we assume a fixed system configuration across all

utilization levels to ensure that the energy proportionality analysis is an unbiased

comparison among different cluster mixes. Furthermore, to ensure a fair compari-

son among cluster mixes, we constrain the peak power of the cluster using a fixed

power budget. This is motivated by the fact that datacenters often have an upper

bound on their peak power consumption. Based on peak power consumed by the

A9 and K10 node, we analyze both homogeneous clusters and cluster mixes such

that the total peak power is within the allocated budget.

85

Chapter 4. Analysis of Inter-node Heterogeneous Systems

For this analysis we consider a peak power budget of 1kW. The combination

of the different heterogeneous cluster mixes within a 1kW power budget can be

determined using a power substitution ratio of 8:1 between the A9 and K10 nodes.

This ratio is derived based on the peak powers of the A9 and K10 nodes. Since

one A9 node draws a peak power of 5W and one K10 node draws a peak power

of 60W, one K10 node can be replaced by 12 A9 nodes. Factoring about 20W

peak power drawn by the switch, which connects the A9 nodes gives us a power

substitution ratio of 8:1. For a peak power budget of 1kW, the homogeneous

configurations consist either of 128 A9 nodes or 16 K10 nodes. As 16 K10 nodes

draw a peak power of around 960W and since the switch connecting these nodes

draws about 40W of peak power, the total power is 1kW, thus meeting the power

budget constraint. For the A9 cluster using the power substitution ratio of 8 A9

nodes for every K10 node results in a 128 node cluster which is within the 1kW

power budget.

The values of the energy proportionality metrics for the homogeneous clusters

and a heterogeneous cluster are shown in Table 4.5. As seen from the values in the

table, high-power homogeneous clusters consisting of K10 nodes have better energy

proportionality compared to the homogeneous cluster with A9 nodes. However,

the K10 cluster consumes an idle power of around 720W which is about three

times higher compared to the A9 cluster. Thus, this contradiction show that

using only energy proportionality metrics may not always reveal the most efficient

system configuration. This conclusion is further augmented by comparing the

cluster-wide energy proportionality and PPR for different workloads.

Figs. 4.15 and 4.16 plot the cluster-wide energy proportionality of executing EP

workload on clusters with degrees of heterogeneity one, two and three respectively.

Cluster configurations used in these plots are constrained by a maximum peak

power budget of one kilowatt. While all different mixes have the same peak power

86

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 60

 70

 80

 90

 100

 1 10 100

P
er

ce
nt

ag
e

of
 P

ea
k

P
ow

er
 [%

]

Utilization [%]

Ideal
0 A9: 7 K10: 6 E5

56 A9: 0 K10: 6 E5
0 A9: 0 K10: 10 E5
0 A9: 16 K10: 0 E5

128 A9: 0 K10: 0 E5

Figure 4.15: Cluster-wide energy proportionality d = 1 and d = 2

budget, power usage at different system utilization levels vary and thus the mixes

exhibit different proportionality gaps. The Proportionality Gap (PG) defined

by Wong et al. [170] is a measure of deviation between the server’s actual energy

proportionality and the ideal energy proportionality at individual utilization levels.

This definition is adapted to measure cluster-wide proportionality gap (CPG) and

is defined as the deviation between the ideal energy proportionality and the actual

usage of the cluster.

As observed from the plots in Figs. 4.15 and 4.16, clusters with degree one

consisting of only E5 nodes have the best CPG compared to the different cluster

mixes with degree two and three. Among the homogeneous clusters of degree

one, systems with A9 nodes has the worst CPG at all utilization levels, followed

by K10 and then E5. This order is in complete contrast to the peak idle power

consumed by the A9, K10 and E5 nodes. This is because CPG considers the

relative power consumed by the system as a percentage ratio with respect to the

87

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 60

 70

 80

 90

 100

 1 10 100

P
er

ce
nt

ag
e

of
 P

ea
k

P
ow

er
 [%

]

Utilization [%]

Ideal
8 A9: 12 K10: 2 E5
56 A9: 3 K10: 4 E5

Figure 4.16: Cluster-wide energy proportionality d = 3

idle power and does not consider absolute power usage. In contrast to the en-

ergy proportionality plots, our previous analysis using the energy-deadline Pareto

frontier illustrates that heterogeneous systems are more energy-efficient than ho-

mogeneous ones. This is because energy proportionality and the CPG metric in

particular, do not consider execution time deadline, which is an important factor

while choosing a system configuration for execution. The third counter-intuitive

observation is that among heterogeneous mixes of degree three, mixes that are

more energy efficient have the same CPG compared to mixes that are less effi-

cient. For example, 56A9:3K10:4E5 mix is more efficient (shown in Fig. 4.6) but

has the same CPG (shown in Fig. 4.16) compared to 8A9:12K10:2E5 mix. This

contrast is because while cluster-wide energy proportionality is a useful metric

to determine what cluster configuration to use based on the utilization levels, it

alone does not suffice as it does not consider the energy usage with respect to

an execution time deadline. Hence, to analyze the energy efficiency of programs

88

Chapter 4. Analysis of Inter-node Heterogeneous Systems

at different utilization levels, throughout this section we use the performance to

power ratio (PPR) metric.

4.4.3 Does Heterogeneity Scale the Energy Proportional-

ity Wall?

The energy proportionality and PPR values of homogeneous configurations ver-

sus heterogeneous mixes indicate that homogeneous configurations are better than

heterogeneous ones. While heterogeneity enables a sweet spot region, wherein in-

creasing the execution time deadline causes a reduction in the energy used [137], it

is unclear whether the large system configuration space due to heterogeneity helps

scaling the energy proportionality wall. Thus, in this section, we analyze the

energy proportionality of the heterogeneous configurations with respect to an exe-

cution time deadline constraint. While Section 4.1 shows that, among the large set

of configurations, there exists a Pareto-optimal set of heterogeneous configurations

that form the energy-deadline Pareto frontier, the impact of these Pareto-optimal

configurations on cluster-wide energy proportionality is non-obvious. Figure 4.17

plots the energy proportionality for the configurations on the Pareto-frontier us-

ing a maximum of 32 A9 and 12 K10 nodes, executing the EP workload. This

maximum number of nodes constraint is chosen among the heterogeneous config-

urations within a 1kW power budget.

As observed, several Pareto-optimal configurations have sub-linear energy pro-

portionality, as they fall below the ideal energy proportionality. These sub-linearly

proportional configurations arise by reducing the number of nodes with lower

PPRs. For example, given a maximum of 32 A9 and 12 K10 nodes executing the

EP workload, a configuration with only 25 A9 and 7 K10 nodes exhibits sub-linear

proportionality for cluster utilization above 50% as shown in Figure 4.17. These

89

Chapter 4. Analysis of Inter-node Heterogeneous Systems

configurations with smaller number of A9 and K10 nodes consume less energy

than ideal and they trade-off execution time to save energy. This trade-off with

respect to a response time deadline is not clear from the energy proportional-

ity plots alone. Hence, the response time analysis for these configurations gives

additional insights in choosing an energy-proportional configuration.

 20

 30

 40

 50

 60

 80

 100

 20 25 30 40 50 60 70 80 90 100

P
ea

k
P

ow
er

 [%
]

Utilization [%]

Ideal
32 A9: 12 K10

(25,10)

(25,5)

(25,8)

(32,12)

(25,7)

Figure 4.17: Energy proportionality of Pareto-optimal configurations for EP

Figure 4.18 plots the 95th percentile response times for the EP workload ex-

ecuted on different heterogeneous mixes that have sub-linear energy proportion-

ality. This plot shows that the response time difference among the configurations

is in the sub-millisecond range. Thus, we show that heterogeneity introduces sub-

linearly proportional configurations that do not impact response times. However,

this observation holds only when the PPR of wimpy nodes is better than the PPR

of brawny nodes. For workloads such as x264, where the brawny clusters out-

perform wimpy clusters, heterogeneity introduces sub-linear energy-proportional

configurations, but the execution time is degraded to the order of seconds.

90

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 10

 100

 20 30 40 50 60 70 80 90 100

95
th

 P
er

ce
nt

ile
 R

es
po

ns
e

T
im

e
[m

s]

Utilization [%]

32 A9: 12 K10
25 A9: 10 K10
25 A9: 8 K10
25 A9: 7 K10
25 A9: 5 K10

Figure 4.18: Response time of sub-linear heterogeneous mixes for EP

 20

 30

 40

 50

 60

 80

 100

 20 25 30 40 50 60 70 80 90 100

P
ea

k
P

ow
er

 [%
]

Utilization [%]

Ideal
32 A9: 12 K10

(25,10)

(25,5)

(25,8)

(32,12)

(25,7)

Figure 4.19: Energy proportionality of Pareto-optimal configurations for x264

91

Chapter 4. Analysis of Inter-node Heterogeneous Systems

 1

 10

 100

 20 30 40 50 60 70 80 90 100

95
th

 P
er

ce
nt

ile
 R

es
po

ns
e

T
im

e
[s

]

Utilization [%]

32 A9: 12 K10
25 A9: 10 K10
25 A9: 8 K10
25 A9: 7 K10
25 A9: 5 K10

Figure 4.20: Response time of sub-linear heterogeneous mixes for x264

Figures 4.19 and 4.20 plot the energy proportionality and the 95th percentile

response time for heterogeneous clusters with a maximum 32 A9 and 12 K10 nodes

executing the x264 workload. While the number of sub-linear configurations for

x264 is larger compared to the EP workload, these configurations suffer from

response time degradation in the order of seconds as shown in Figure 4.20. Thus,

heterogeneity does not scale the proportionality wall for workloads such as x264.

4.5 Summary

Heterogeneity is becoming the norm in systems today and it offers a larger system

configuration space due to different combinations of system parameters such as

types of nodes, number of nodes of each type, number of active cores per node and

the operating core clock frequency. This chapter addresses some of the challenges

due to this large configuration space and applies the core model to determine

an energy-efficient mix of nodes that services a job while maintaining a service

92

Chapter 4. Analysis of Inter-node Heterogeneous Systems

time deadline. We obtain a Pareto-optimal set of configurations by matching the

execution time of different nodes to minimize system idle time. Thismix and match

approach exposes a “sweet region” containing a set of sweet-spot configurations

where the energy used by a job reduces as its service time deadline is relaxed.

Sweet-spot configurations either use minimum energy to meet a given execution

time deadline or meet a given energy budget in a minimum possible execution

time. Next, we observe that these sweet-spots form a distinct energy-deadline

Pareto frontier. Despite the explosion of the configuration space, we show that

the Pareto frontier can be analytically determined using the node performance-

to-power ratios (PPR). Next, given a power budget, we show that replacing low

PPR nodes with higher PPR nodes leads to a more energy-efficient configuration.

Lastly, we study the impact of heterogeneity on energy proportionality. We show

that the PPR metric is more apt compared to the cluster-wide proportionality gap

metric for determining energy-efficient configurations.

For a given power budget, we show that inter-node heterogeneous clusters has

advantages over homogeneous clusters by scaling the energy proportionality wall

using sub-linear energy-proportional configurations. These configurations are en-

abled due to inter-node heterogeneity by replacing a few low PPR nodes with high

PPR nodes while maintaining a given power budget. While these configurations

save energy by trading execution time, we show that for workloads that have bet-

ter PPR on wimpy systems, these configurations have minimal impact on the 95th

percentile response time.

93

Chapter 5

Extension to Intra-node

Heterogeneity with VPU

With the slowing down of “Moore’s law” and dark-silicon limiting the number of

active cores in a multi-core processor, mixing CPUs and accelerators seems like

a viable approach to scale-up parallel computing performance. The recent years

have seen the wide adoption of accelerators by the HPC community. Among the

Top500 systems in November 2015, there were about 104 systems with Vector

Processing Units (VPUs) as accelerators [8].

Traditionally, while GPUs have been dominating the accelerator arena, the

launch of Intel’s Knight Corner in 2012, have seen another class of accelerators

being adopted mainstream, namely the Many Integrated Core (MIC) architecture.

The increasing adoption of this architecture is evident in the Top500 systems,

where 32 out of the 104 systems with accelerators use the Intel Xeon Phi co-

processor which is based on the MIC architecture.

With at least 50 cores, Intel Xeon Phi coprocessor adds high parallelism on a

single node and has a theoretical peak of two TFLOPS for single precision, one

TFLOPS for double precision and over 352 GB/s of memory bandwidth. This

95

Chapter 5. Extension to Intra-node Heterogeneity with VPU

performance gain as well the flexibility to be used both as a coprocessor or a

standalone processor, offers a new intra-node heterogeneous platform for HPC ap-

plications. In contrast to accelerators using GPU, Xeon Phi has a general-purpose

programming environment and can be programmed with common programming

languages, thus making it even more popular among HPC users.

However, from a system perspective, coprocessors based on MIC architecture

offer a large system configuration space to execute a parallel application. For a

given parallel program, reaching the theoretical peak performance of the Xeon

Phi is challenging. It depends a lot on the scaling, how to bind threads to cores,

the degree of vectorization and memory usage of the applications. Hence, for a

HPC user, determining the optimal system configuration to execute the parallel

application is non-trivial and poses a number of research challenges such as:

1. For a given program, what is the number of threads that achieves the best

performance?

2. For a given program and the number of threads, what thread affinity mode

achieves the best performance?

Answers to these questions help both application developers to gain insights on

program hot-spots, and system designers to identify capacity bottlenecks, and

thus optimize software-hardware co-design to improve system performance. This

chapter addresses these challenges and proposes an extension to the core modeling

approach proposed in Chapter 3, to illustrate how that approach can easily be

scaled and applied to a intra-node heterogeneous system architecture such as the

Intel MIC architecture.

This chapter presents an approach to determine time efficient system config-

urations for executing a parallel program using a measurement-driven analytical

model. The proposed analytical model is formulated using parametric values ob-

96

Chapter 5. Extension to Intra-node Heterogeneity with VPU

tained from baseline executions of the application to measure workload and archi-

tectural artefacts. The key novelties of our approach are modeling both inter and

intra-core resource overlaps and resource contention.

Given a parallel program, the proposed approach determines the system con-

figuration in terms of the tuple, number of cores and number of threads per core.

Thus the approach provides a systematic method to users of MIC architecture sys-

tems to determine the thread affinity mode and the number of threads for efficient

execution of a HPC application.

The proposed model is validated against direct measurements on an Intel Xeon

Phi card having a 5110P coprocessor with 60 cores operating at 1.053 GHz using

a range of NAS NPB benchmarks, including both kernel and applications [26].

Validation results for all possible configurations show that our model accuracy is

within reasonable bounds of less than 15%. As an example, we apply our model

to determine energy-time efficient configurations for HPC applications.

The key contributions of this chapter are:

1. A measurement-driven analytical model to determine time-efficient perfor-

mance of parallel program. In contrast to current approaches, we model

both inter and intra-core resource overlaps, memory contention within and

across multiple cores in MIC architecture.

2. show that parallel programs executing on MIC architecture systems exhibit

Pareto-optimal configurations, that execute in the minimum possible time for

a given energy budget or consume the minimum energy for a given execution

time deadline.

3. show the impact of performance-to-power ratio (PPR) metric to determine

what thread affinity mode is more optimal when offloading on accelerators

97

Chapter 5. Extension to Intra-node Heterogeneity with VPU

with MIC architecture.

5.1 Overview

The objective of the approach is to determine a time-efficient configuration for

executing a given parallel program on a coprocessor based on the MIC architecture.

While the MIC architecture offers immense amount of thread-level parallelism

(TLP), it is non-trivial for the user of such a system to determine the optimal

system configuration for execution among the huge configuration space offered by

such a system. A system configuration space is defined as a tuple consisting of

the number of cores and the number of threads per core1. Due to the large TLP

offered by the MIC architecture, users of such systems are given different options of

utilizing the underlying resources using the different thread affinity modes. Thus,

the configuration tuple determined using our approach translates to the number

of threads and the thread affinity mode to be used by the user.

The proposed approach determines the system configuration that has the best

execution time performance by determining the optimum number of threads (τ)

per core and the number of cores (c) to execute the program. Counter-to-intuition,

scheduling the maximum number of threads per core does not necessarily translate

to the best time performance because threads within a core compete with each

other for shared resources such as memory. This is modeled in our approach

as intra-core contention. Alternatively, keeping intra-core contention to a bare

minimum and scheduling only a single thread per core may not be optimal as the

threads executing across cores also contend for shared-memory, which we define as

1Considering a single Xeon Phi node can have 60 cores with 4 threads executing per core, and
two different thread affinity modes, compact and scatter, result in a total configuration space of
60× 4× 2 = 480− 3 (common configurations) = 477 configurations. These configurations grow
linearly with the increase in the number of cores, or number of threads per core or the possible
thread affinity modes.

98

Chapter 5. Extension to Intra-node Heterogeneity with VPU

inter-core contention. The performance impact of choosing either the policy with

(i) maximum number of threads per core (compact) or (ii) single thread per core

but using more cores (scatter) is non-trivial and thus we address this challenge by

modeling both intra- and inter-core contention for shared memory.

To infer an application resource demands such as CPU and memory, we charac-

terize the workload using baseline executions to derive program and architectural

artefacts. These baseline executions are performed using a small program input

size. Using these measurements, we derive useful work cycles and the intra- and

inter-core memory contention. The effect of memory contention is observed using

the measured parameter, the number of stall cycles due to cache misses. This

is used to determine the total cycles for executing a program with larger input

size. The notations used in the extended version of the core model for intra-node

heterogeneity are described in Table 5.1, and the other notations are as described

in Table 3.1 of Chapter 3. The proposed approach is outlined in Figure 5.1.

Application

Baseline
Executions

Workload
Parameters

System
Parameters

Power
Parameters

energy-time
efficient

configurations

Micro-
benchmarks

Intra-node heterogeneity
� intra-core contention
� inter-core contention

Energy-Time Performance

Figure 5.1: Approach for intra-node heterogeneity

99

Chapter 5. Extension to Intra-node Heterogeneity with VPU

Symbol Description
Baseline Execution

mintra,s no. of intra-core memory-related stall cycles in Ps

minter,s no. of inter-core memory-related stall cycles in Ps

System Parameters
cmax maximum no. of cores in MIC architecture system
τmax maximum no. of threads per core
f core clock frequency

Time Model
mintra intra-core memory-related stall cycles for P
minter inter-core memory-related stall cycles for P
c no. of cores per accelerator node executing program

P

τ no. of threads per core executing P

Tintra non-overlapped intra-core stalls
Tinter non-overlapped inter-core stalls

Table 5.1: Model parameters

5.1.1 MIC Architecture

An overview of the Many Integrated Core (MIC) architecture is illustrated in

Figure 5.2 using the Intel Xeon Phi co-processor as an example implementation.

The Intel Xeon Phi coprocessor is primarily composed of processing cores, caches,

memory controllers, PCI express client logic, and a very high bandwidth, bidirec-

tional ring interconnect. Each core has a 32-KB L1 instruction cache, a 32-KB

L1 data cache and a private 512-KB L2 cache that is kept fully coherent by a

globally-distributed tag directory.

The memory controllers and the PCIe client logic provide a direct interface to

the GDDR5 memory on the coprocessor and the PCI express bus, respectively.

All these components are connected together by the ring interconnect. There are

64 tag directories (TD) connected to the ring. Address mapping to tag directory

is based on the results of hash functions of the memory addresses, hence, the

memory addresses will be distributed evenly over the ring, which helps better

communication. The memory controller (GDDRMC) is distributed symmetrically

around the circle. The addresses are distributed evenly across the controllers,

100

Chapter 5. Extension to Intra-node Heterogeneity with VPU

thereby eliminating “hot spots” and provide unified access model.

The interconnect is implemented as a bidirectional ring. Each direction consists

of three separate rings [66]. The first ring, also the largest and most expensive

ring of the three is the data block ring. This data block ring is 64 bytes wide

to support high bandwidth. The address ring is smaller and is used to send

read/write commands and memory addresses. Finally, the smallest ring and the

least expensive ring is the acknowledgment ring, which sends flow control and

coherence messages. When the cores access the L2 cache and cannot find the

necessary data (cache miss occurs), one request will be sent to the tag directory.

If data is located on the L2 cache of another core, a request will be sent to that

core and the data will be sent via the data ring. If the requested data is not found

Figure 5.2: MIC architecture

101

Chapter 5. Extension to Intra-node Heterogeneity with VPU

in any caches of any cores, a memory address is sent from the tag directory to the

memory controller.

5.2 Time Performance Model

In this section, we derive the execution time, T , for a shared-memory parallel

program P with input size S, executing on a accelerator based on the MIC ar-

chitecture. An abstract view of a shared-memory parallel program is illustrated

in Listing 6.1. While this shows only one loop, a typical program can consist

of multiple loops. Adding more computational resources to a parallel program,

splits the computations or useful work and thus achieves speedup but also incurs

overheads due to thread communication and contention.

While intra-core communication using the shared L1 cache is faster, the over-

heads due to intra-core contention for the L1 cache causes speedup losses in par-

allelism. Similarly, when only a single thread is scheduled on a single core, it min-

imizes intra-core contention, but inter-core contention for the L2 memory causes

speedup losses. We model both intra and inter-core contention for shared-memory

by considering the overlap of these memory accesses with useful work or program

computations.

The execution time of a parallel program executing τ threads on c cores de-

pends on the total number of cycles executed by the thread in the critical path of

the execution. Thus,

T = max
1≤τ≤τmax
1≤c≤cmax

Tτ,c (5.1)

The execution time of a thread executing on a core in MIC architecture systems

depends not only on the computation time but also the contention time for shared

resources both within and across cores. We model this execution time as service

102

Chapter 5. Extension to Intra-node Heterogeneity with VPU

for(iteration = 1..S)
{

pragma omp parallel // τ threads on c cores
{

/* computations or useful work */
....
....
....
/* intra and inter-core contention
for shared-memory */

}
}

Figure 5.3: Abstraction of a parallel program

time offered by two system resources in the MIC, namely, cores and memory.

However, the response time of these resources overlap and thus the execution time

of the thread cannot be simply determined by a simple summation of the service

time and waiting time of both the servers, namely core and memory.

As the CPU cores have deep pipelines to simultaneously compute and access

memory, we split the execution time of the thread into the useful work done by the

core along with the overlapped memory accesses, and consider the non-overlapped

time of core separately. Therefore, we derive this execution time by considering

time overlapped with computation (Twork) and non-overlapped time (Tstall) waiting

for a shared resource. Hence,

Tτ,c = Twork + Tstall (5.2)

The execution time on the core and the overlapped memory access time is deter-

mined by using the cycles spent in the execution stage of the pipeline, and the

core clock frequency. Thus,

Twork =
cycleswork

f
(5.3)

103

Chapter 5. Extension to Intra-node Heterogeneity with VPU

The number of overlapped cycles between computation and memory access de-

pends on the instruction level parallelism (ILP) of the program and the underly-

ing processing core. We measure this artefact by using a program subset Ps and

determine the useful work cycles executed by a core (ws + bs). This in turn is

determined by measurements using the PAPI [167] hardware counters for cycles

and instructions for the program Ps.

WPI =
ws + bs

Is
(5.4)

We validate our hypothesis in Section 5.3.2 that as programs scale from Ps to

P, the WPI remains approximately the same, as both overlapped work cycles and

instructions scale by the same amount for a given program and system, as these are

effects of ILP. Thus, the overlapped work cycles for a program P can be determined

using the measured WPI for Ps and using the scaling factor S for determining the

instructions of program P. This scaling of instructions with program input size is

validated in Section 5.3.2.

cycleswork = WPI × S × IPs (5.5)

Next, we discuss the impact of TLP on the execution time, and derive how the

model determines the non-overlapped cycles, due to both intra and inter-core

contention. We use two separate measured parameters to determine both the con-

tentions. While the first parameter mintra,s measures the intra-core contention for

the shared L1 cache using the compact thread affinity mode, the second parameter

minter,s measures the inter-core contention for memory.

104

Chapter 5. Extension to Intra-node Heterogeneity with VPU

5.2.1 Intra-core contention

As the number of threads increase within a core, it is expected that the execution

time improves due to TLP. But, there are also parallelism losses that happen and

for an efficient software-hardware co-design it is imperative to gain insights into

these losses. As the number of threads within a core increase, the number of

instructions executed per thread decreases due to TLP, but the number of cycles

does not decrease by the same ratio due to the waiting time of the memory requests

per thread at the L1 cache. Thus, we model the parallelism loss due to contention

for the shared L1 cache among the threads within a core by measuring the increase

in the number of stall cycles.

We measure the increase in the non-overlapped stall cycles by increasing the

number of threads per core for program Ps, and use this to determine the non-

overlapped stall cycles mintra,s due to L1 cache contention for a given number of

cache accesses. If λintra,τ is the number of L1 data access requests when τ threads

are executing in a single core, the intra-core waiting time and non-overlapped

service time (Tintra) is

Tintra,τ =
mintra

f
=

λintra,τ × ατ,s

f
(5.6)

where ατ is the number of stalls per L1 cache access due to τ threads executing

within a core for program Ps. We use this time for determining the execution time

for a program executing with compact affinity mode when the number of cores

is one, and the number of threads vary from one to four. We use the measured

values of λintra,τ,s for the Ps and derive the parameters for program P using the

scaling factor S as:

λintra,τ = λintra,τ,s × S (5.7)

105

Chapter 5. Extension to Intra-node Heterogeneity with VPU

The scaling of the number of data accesses is validated in Section 5.3.2.

As the program can be compute bound or memory bound in a given core

depending on the number of threads being used and the amount of contention,

the total execution time of a program P using τ threads on a single core may be

determined as:

Tτ,1 = Twork + Tintra (5.8)

While the above determines the execution time for TLP on a single core, it does

not consider inter-core contention for shared-memory.

5.2.2 Inter-core contention

As the number of threads executing a program increase, based on the thread

affinity mode, the number of cores increase and thus contend for shared resources

such as memory. As there are local tag directories (TD) per core, a memory access

to the GDDR5 only happens when the requested access misses the distributed L2

cache across all the cores. Thus, the service rate of the inter-core memory requests

varies with the number of misses and the number of prefetches. The Xeon Phi uses

a hardware prefetching mechanism that is triggered dynamically identifies cache

miss patterns and generates prefetch requests [90]. Thus the service rate of the

memory controller depends on the intra-core memory request arrival rate, which

is a cumulative requests from both the prefetcher and misses during execution. As

both of these requests queue at the memory controller (GDDRMC), and with λinter

as the total number of memory requests, the inter-core non-overlapped memory

response time is:

Tinter =
minter

f
=

λinter,c × βc,s

f
(5.9)

where βc is the total number of cache accesses due to c active cores in the MIC

architecture system.

106

Chapter 5. Extension to Intra-node Heterogeneity with VPU

We use this time for determining the execution time for a program executing

with scatter affinity mode when the number of threads per core is one, and the

number of cores vary from one to 60. We use the measured values of λinter,c,s for

the Ps and derive the parameters for program P using the scaling factor S

λinter,c = λinter,c,s × S (5.10)

The total execution time of a program P using a single thread on c cores is

determined as:

T1,c = Twork + Tinter (5.11)

The execution time for a program using c active cores with τ threads per core,

considering overlap of both intra- and inter-core contention can be derived as the

time due to the resource having the maximum response time. Thus, the time due

to stalls is determined from both the contentions, and using Equation 5.2, the

execution time is:

Tτ,c = Twork +max(Tinter, Tintra) (5.12)

5.3 Model Parameterization and Validation

The measurement driven inputs to our analytical model are obtained by MIC

architecture system characterization and program characterization. We first de-

scribe the programs and the systems used for validation of the proposed model.

Next, we discuss an extensive validation of the model parameters for each of the

hypothesis presented in Section 5.2. Next, we validate the model determined val-

ues of cycles against direct measurements of total cycles using the PAPI hardware

counters. Lastly, we discuss the power characterization of the MIC architecture

system.

107

Chapter 5. Extension to Intra-node Heterogeneity with VPU

5.3.1 Workloads and Setup

While our approach is applicable on generic shared-memory parallel programs, we

selected a representative subset of six benchmark programs from NASA Parallel

Benchmark (NPB) suite [161] for presentation in this section. This subset was cho-

sen to represent different program demands on both CPU and memory resources.

These programs also exert different inter and intra-core resource demands. A brief

description of the programs and their problem input sizes for class A is shown in

Table 5.2.

While the table lists the program input size for only class A, the problem sizes

for class A,B and C used are in the ratio 1:4:16. We use the OpenMP version

of the program and executed it in the native mode on the Xeon Phi coprocessor.

The programs are compiled using the Intel compiler for C and Fortran, with full

optimizations (-O3) and the MIC flag (-mmic).

The experiments were conducted on a system consisting of an Intel node with

a Xeon Phi card based on the MIC architecture. The host system contains 128GB

of main memory and a dual-socket Intel Xeon CPU E5-2680-core processor, each

core operates at 2.7GHz. The Phi card used here are the 5110P coprocessor with

60 cores operating at 1.053 GHz. The card has 8GB of GDDR5 memory and is

connected to the host through PCI express. Table 5.3 describes details of the

systems used.

Program Description
Problem
Size (A)

BT Dense linear algebra: use matrices/vectors to store data 643

EP Embarrassingly parallel: low data dependency, low memory 228

FT Spectral methods: fast Fourier transform 2562X128
IS Parallel sorting: bucket sort on integers 223

CG Sparse linear algebra: data with many 0 values 14000
LU Lower-Upper Gauss-Seidel solver 643

Table 5.2: Programs

108

Chapter 5. Extension to Intra-node Heterogeneity with VPU

System
Host MIC Co-processor

Intel Xeon E5-2680 Intel XeonPhi 5110P
ISA x86 64 x86 64
Cores 8 60
Threads/Core 4 4
Clock Frequency 2.7 GHz 1.053 GHz
L1 data cache 32kB / core 32kB / core
L2 cache 256kB 512kB
L3 cache 30MB NA
Memory 128GB 8GB

Table 5.3: Intel node with MIC co-processor

5.3.2 Model Parameterization

Work Cycles per Instruction (WPI)

To validate our hypothesis of constant WPI as workload scales from Ps to P, we

use hardware performance counters from PAPI to measure the cycles, instructions

and determine WPI across problem input sizes. Figure 5.4 plots the WPI for

problem sizes from A to C. As seen from the plot, as the input size for the programs

scale from 1:4:16 times, the work cycles per instruction (WPI), a system and

program characteristic remains approximately constant. Thus the proposed model

measures WPI for class A and uses it to predict the work cycles for program

input sizes B and C using Equation 5.4. Next, we show the validation results of

determining instructions for a larger problem size using a scaling factor.

Instruction Scaling

We show the practical application of our approach to users of HPC programs, by

using the measured parameters by executing programs with smaller input sizes and

then determining the time-efficient configurations to execute the program with the

scale-out problem size. Figure 5.5 plots the measured versus predicted number of

instructions for class B for the CG and FT program using the measured values

of class A. This validates the application of our approach and the usage of the

109

Chapter 5. Extension to Intra-node Heterogeneity with VPU

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A B C

W
or

k
cy

le
s

pe
r

in
st

ru
ct

io
n

(W
P

I)

Problem size

CG
BT
EP
LU

Figure 5.4: WPI validation

scaling factor S to determine the useful work cycles using Equation 5.5.

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 50 100 150 200 250

Number of threads

FT

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

In
st

ru
ct

io
ns

 p
er

 th
re

ad
 [1

06]

FT

CG Measured
Predicted

Figure 5.5: Validation of instructions

110

Chapter 5. Extension to Intra-node Heterogeneity with VPU

Cache Accesses

The memory response time due intra- and inter-core contention depends on the

number of requests to memory, model parameter, λ. Here, we show the validation

of determining these model parameters for scale-out problem sizes using the base-

line measurements for smaller program size, Ps. Figure 5.6 plots the measured

versus predicted number of cache accesses for the programs FT and IS with input

size as class B. The model predicts the class B values using the measurements from

class A, which is four times smaller than class B. This validates the application

of our approach and the usage of the scaling factor S to determine the model

parameter, number of cache accesses used in Equations 5.7 and 5.10. While all

the programs have a scaling factor of four, program CG accesses much more data

in B compared to A and while the scaling factor for instructions is four, a separate

scaling factor of 25 is used for data accesses.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60

Number of active cores

IS.B

 0

 500

 1000

 1500

 2000

C
ac

he
s

ac
ce

ss
 p

er
 c

or
e

[1
06]

IS.B

FT.B Measured
Predicted

Figure 5.6: Validation of cache accesses

111

Chapter 5. Extension to Intra-node Heterogeneity with VPU

5.3.3 Execution time Validation

We use cycles as a handle for execution time. In this section we show the validation

results for the cycles per thread for a single iteration of the program with problem

size of class B. Extensive validation has been performed for all the programs in

Table 5.2 across all possible configurations and the average error between the

model and the measured values is shown in Table 5.4. Figure 5.7 and 5.8 show

the validation for the total cycles executed by programs BT, LU in scatter mode

and programs EP, FT in compact mode respectively.

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250

Number of threads

BT.B

 0

 100

 200

 300

 400

 500

C
yc

le
s

pe
r

th
re

ad
 [1

09]

BT.B

LU.B Measured
Predicted

Figure 5.7: Validation results for scatter thread affinity mode

Sources of Inaccuracy

We identify three factors that affect the accuracy of the model. Firstly, the most

significant source of error comes due to irregularities during different executions

of the same program. The measured values of execution time and energy show

112

Chapter 5. Extension to Intra-node Heterogeneity with VPU

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

Number of threads

EP.B

 0

 1

 2

 3

 4

 5

C
yc

le
s

pe
r

th
re

ad
 [1

09]

EP.B

FT.B Measured
Predicted

Figure 5.8: Validation results for compact thread affinity mode

Program
Average error [%]
Compact Scatter

BT 7 8
EP 14 4
FT 15 8
IS 4 6
CG 1 6
LU 11 11

Table 5.4: Validation results

113

Chapter 5. Extension to Intra-node Heterogeneity with VPU

irregularities of up to 10% for different runs of the same program. Secondly, there

are irregularities in both inter and intra-core contention for shared-memory due

to the shared ring architecture as the shared data could be residing in either the

neighbouring core or in the core that is half the distance of the ring from the

current core. These irregularities vary the service time parameter of the memory

and hence result in model errors. Thirdly, the model does not account for thread

synchronizations and waiting time due to these barriers, which leads to loss of

accuracy.

5.3.4 Power Characterization

To determine the power consumed by the cores in the MIC architecture, we use

PAPI counters and measure the instantaneous power using micpower component.

For each of the programs we measure the micpower:::tot0 [112], a native event of

the micpower component and use this value (Pτ,c) to compute the energy of the

programs executing on the MIC architecture system.

Eτ,c = Tτ,c × Pτ,c

5.4 Analysis

In this section, we apply our model to study the energy efficiency of different

configurations in MIC architecture system under a given service time deadline.

We first show how our model can be applied to determine Pareto-optimal system

configurations to execute a HPC program on MIC architecture system. Next, we

present the performance-to-power ratio (PPR) of the MIC architecture system

and determine the impact of PPR on the Pareto-optimal configurations.

114

Chapter 5. Extension to Intra-node Heterogeneity with VPU

5.4.1 Pareto-optimal Configurations

Similar to the Pareto frontiers in heterogeneous systems as reported in our earlier

work [137], time-energy efficient Pareto-optimal configurations are also exhibited

by MIC architecture systems executing HPC parallel programs as shown in Fig-

ures 5.9 and 5.10. These Pareto-optimal configurations are energy efficient as they

 150

 200

 250

 300

 350

 400

 450

 500

 100 1000

E
ne

rg
y[

kJ
]

Execution Time[s]

All Configurations (478)
Pareto-Optimal Configurations

Figure 5.9: Pareto-optimal configurations for executing BT

consume the minimum energy for a given execution time deadline or execute in

the minimum possible time for a given energy budget.

Figures 5.9 and 5.10 present two typical plots2 showing the execution time and

energy used to execute a parallel program for all possible configurations, program

BT and FT (477 configurations3) on a MIC architecture system respectively. Each

2The execution time and energy values for all the configurations in these plots are derived
using PAPI hardware counters.

3c ∈ [1, 2, 3, .., 60], τ ∈ [1..4], mode ∈ [scatter, compact], 60×4×2 = 480; c = 1, τ = 1 ; c = 59

115

Chapter 5. Extension to Intra-node Heterogeneity with VPU

 20

 40

 60

 80

 100

 120

 140

 10 100 1000

E
ne

rg
y[

kJ
]

Execution Time[s]

All Configurations (477)
Pareto-Optimal Configurations

Figure 5.10: Pareto-optimal configurations for executing FT

configuration in these plots is a tuple consisting of the number of cores and the

number of threads per core (c, τ), based on the thread affinity mode. For each

configuration point, the x-axis denotes the program’s execution time and the y-

axis represents the corresponding energy used. Given an execution-time deadline,

there exist a set of configurations that meet this deadline. The configuration that

meets the deadline with the minimum energy usage is Pareto optimal. The set

of all Pareto optimal points across all possible deadlines forms the time-energy

Pareto frontier.

Counter-to-intuition as the execution-time deadline is relaxed, the configura-

tions have lesser number of cores and threads but surprisingly use lesser energy.

Decreasing the number of cores decreases the average power used but increases

with τ = 4, & c = 1 with τ = 3; and c = 60, τ = 4 are the same in both modes, resulting in
480− 3 = 477 configurations.

116

Chapter 5. Extension to Intra-node Heterogeneity with VPU

execution time, and thus it is expected that the energy (power × time) will be

constant. Although, decreasing the number of cores causes a linear decrease in

the power used, the effect on the execution time is non-linear and is characterized

by the inter-core contention for shared resources such as memory (Tinter).

In the next section, we discuss the performance-to-power ratio metric and show

how this metric is useful to determine the existence of Pareto-optimal configura-

tions for a given program executing on accelerators with MIC architecture.

5.4.2 Performance-to-power Ratio

Program
Mega-operations PPR [Mops/J]

(Mops) 1 core 4 cores 16 cores 60 cores
τ = 1 τ = 4 τ = 1 τ = 4 τ = 1 τ = 4 τ = 1 τ = 4

BT 702,200 2.81 6.18 2.68 5.12 2.25 3.79 1.56 1.49
EP 2,147 0.06 0.14 0.06 0.13 0.06 0.11 0.06 0.07
FT 92,049 1.40 4.20 1.36 3.36 1.21 2.15 0.73 0.61
IS 335 0.10 0.20 0.09 0.20 0.08 0.18 0.07 0.08
CG 54,708 0.14 0.60 0.17 0.68 0.15 0.61 0.15 0.45
LU 498,816 1.83 4.20 1.67 3.36 1.39 2.26 1.06 0.83

Table 5.5: Performance-to-power ratio

PPR is defined as the work done per unit of time, normalized by the average

power consumption. This is equivalent to the work done per unit of energy and

defined as,

PPR =
Throughput[operations/s]

Power[W]

where throughput denotes the number of useful operations performed by the sys-

tem per unit time. This metric is also used in SPEC benchmark [151]. The

floating point operations are used as the useful operations and the computed PPR

for millions of floating point operations for all the programs across different num-

ber of active cores, for scatter and compact affinity modes with τ = 1 and τ = 4

respectively is shown in Table 5.5.

As observed from the table, increasing the number of cores, with τ = 1 (scat-

117

Chapter 5. Extension to Intra-node Heterogeneity with VPU

ter affinity) decreases the PPR, as the time decreases sub-linearly while power

increases linearly thus resulting in an increase in energy, with the exception of the

CG program. The execution time is much higher in the CG program compared

to the power of the Xeon Phi, and thus increasing the number of cores decreases

the execution time by a larger ratio compared to the increase in the power thus

reducing the energy and resulting in a better PPR.

For a given number of active cores, increasing the number of threads from one

to four, improves the PPR as seen from Table 5.5. This is intuitive because the

increase in power consumed by the core increases marginally, while the execution

time decreases by at least a factor of two [33, 78]. This improvement in PPR is

for smaller number of active cores, because as the number of active cores increase,

the sequential fraction becomes the bottleneck, resulting in an increase in energy

and thus reduction in PPR, as seen from results in Table 5.5 for c = 60.

Next, we discuss the conditions under which a coprocessor with MIC archi-

tecture exhibits a Pareto-frontier. To assess the impact of PPR, we analyse the

Pareto-optimal configurations for the CG program as this program exhibited an

improvement in PPR with increase in the number of active cores. Figures 5.11

and 5.12 plot the execution time and energy used across all possible configurations

to execute the program CG with only scatter mode and both modes respectively.

As observed from the plots, while there are many Pareto-optimal configurations

for the CG program, when we consider only the scatter thread affinity mode, there

is a single Pareto-optimal configuration. This scatter mode configuration uses 238

total threads implying, 58 cores with four active threads, and two cores with three

active threads.

The addition of the compact thread affinity mode exposes many more Pareto-

optimal configurations as illustrated in Figure 5.12. These configurations are due

to increasing the number of threads per core, with the number of active cores

118

Chapter 5. Extension to Intra-node Heterogeneity with VPU

 150

 200

 250

 300

 350

 400

 100 1000

E
ne

rg
y[

kJ
]

Execution Time[s]

All Configurations (240)
Pareto-Optimal Configurations

Figure 5.11: Pareto-optimal configurations for executing CG in scatter mode

between 60 cores and four cores, between the Pareto-configurations with the min-

imum and the maximum execution time. Thus, users of coprocessors with MIC

architecture systems executing HPC applications, can apply our approach to de-

termine the thread affinity mode to use, and the number of threads to execute their

program with the best possible execution time and/or consuming the minimum

possible energy.

Impact on Energy Savings The existence of the Pareto-frontier and using

Pareto-optimal configurations for executing a program imply two options for sav-

ing energy. Firstly, for a given execution time deadline, a Pareto-optimal con-

figuration consumes lesser energy compared to a non-optimal configuration thus

resulting in energy savings. For example, to execute the CG program within 17

119

Chapter 5. Extension to Intra-node Heterogeneity with VPU

 100

 150

 200

 250

 300

 350

 400

 100 1000

E
ne

rg
y[

kJ
]

Execution Time[s]

All Configurations (477)
Pareto-Optimal Configurations

Figure 5.12: Pareto-optimal configurations for executing CG

seconds, a Pareto-optimal configuration with 187 threads4 using compact mode

consumes only 112kJ, while a non-optimal configuration with 192 threads5 using

scatter mode can consume up to 150kJ, thus resulting in energy savings of 25%.

Secondly, the existence of Pareto-frontier results in significant energy savings

can be obtained by trading-off execution time by a negligible amount. For example,

to execute the BT program within 45 seconds, for a 1% increase in execution time

from 45.2 to 45.8 seconds, users can obtain around 14% of energy savings, by

reducing energy usage from 192kJ to 166kJ as illustrated in Figure 5.9.

4This configuration uses 49 cores with four threads per core and one core with one thread.
5This configuration uses 12 cores with four threads per core and 48 cores core with three

threads each.

120

Chapter 5. Extension to Intra-node Heterogeneity with VPU

5.5 Summary

While intra-node heterogeneous systems such as systems with MIC architecture co-

processors offer accelerated performance, users have to determine the time-energy

optimal set of number of cores (c) and threads per core (τ) for executing the

program in an energy-efficient manner. This chapter presents an approach to de-

termine time-energy Pareto-optimal system configurations (c, τ) for executing a

parallel program on intra-node heterogeneous systems such as the MIC architec-

ture using a measurement-driven analytical model.

The proposed extension of the core model addresses the effects of both TLP

within and across cores by considering inter and intra-core resource overlaps, mem-

ory contention among threads within a core and contention across multiple cores.

Table 5.6 summarizes the extensions to the core model to determine the time

performance of intra-node heterogeneous systems with VPU. Validation of the

proposed approach for a range of HPC programs against direct measurement on

Intel Xeon Phi coprocessor show an average error of up to 15% between the pre-

dicted and measured execution time.

Energy Performance

Eτ,c Tτ,c × Pτ,c

PPR Throughput[operations/s]
Power[W]

Time Performance

Tτ,c Twork +max(Tinter,c, Tintra,τ)

Twork
cycleswork

f

Tinter,c
minter

f
=

λinter,c×βc,s

f

Tintra,τ
mintra

f
=

λintra,τ×ατ,s

f

Table 5.6: Summary of model extension for MIC architecture

We show that a Pareto frontier consisting of time-energy Pareto-optimal con-

figurations exist for a parallel program executed on a MIC architecture system

121

Chapter 5. Extension to Intra-node Heterogeneity with VPU

representing intra-node heterogeneity. These configurations either consume min-

imum energy for a given execution time deadline, or execute in the minimum

possible time for a given energy budget. Hence, HPC users can easily apply our

approach for time-energy efficient execution. To further understand the Pareto

frontier, we use the performance-to-power ratio metric (PPR), that quantifies the

amount of useful computations performed per unit energy used in an execution.

Furthermore, we show the use-case of our approach to determine energy-efficient

system configurations to execute programs on accelerators such as Xeon Phi and

save energy.

122

Chapter 6

Extension to Hybrid Programs

with Communication

While inter-node heterogeneity is at the system level, programs are increasingly be-

coming heterogeneous to efficiently utilize system resources. The impact of hetero-

geneity in programs is observed by the wide-adoption of hybrid (OpenMP+MPI)

programs by HPC application developers [27, 105, 148]. This chapter presents an

approach to determine time and energy efficient system configurations for execut-

ing a hybrid program using a measurement-driven analytical model. The scalabil-

ity of the core analytical model proposed in Chapter 3 is shown by applying it to

hybrid programs.

A hybrid parallel program is partitioned into a variable number of logical

parallel processes and parallel threads. For a given hybrid program and a multi-

node system with multi-core nodes operating at different core clock frequencies,

there is a large system configuration space for executing these logical processes

and threads. As the resource demands in a hybrid parallel program varies with

its problem size, these resource demands have to be mapped onto different system

configurations to minimize resource contention and runtime overheads. Thus, we

123

Chapter 6. Extension to Hybrid Programs with Communication

extend the core model with communication parameters that infer both inter and

intra-node communication overheads.

Given a hybrid program, the proposed approach determines energy-efficient

Pareto-optimal configurations in terms of the number of nodes, number of cores

per node and core clock frequency. These configurations1 either consume minimum

energy for a given execution time deadline2, or execute in the minimum possible

time for a given energy budget. Thus, the approach provides a systematic method

to set the number of logical processes and threads for efficient execution of a hybrid

program. Secondly, to quantify the degrees of resource contention and commu-

nication overhead in an execution, we introduce the Useful Computation Ratio

(UCR) metric. We also discuss how UCR and Pareto-optimal configurations can

be used in conjunction by system designers to gain further insights into resource

imbalances and how application developers can fine-tune their hybrid program.

6.1 Overview

An abstract view of a typical hybrid parallel program can be represented as iter-

ations of alternating computation and communication phases. While the compu-

tation phase is further split into parallel threads performing computations using

shared-memory data, the communication phase consists of logical processes on

different nodes using MPI over the network. We assume that these phases have

negligible resource demands from storage devices such as disks. The code in Fig-

ure 6.1 shows an abstraction of a hybrid parallel program [132] with annotations

1For example, if we consider ten nodes (n), with each node having eight cores (c) and assuming
the possible core clock frequencies for each node is f ∈ [0.8, 1.4, 2.1] GHz, this results in 10 ×
8 × 3 = 240 configurations. This configuration space grows linearly with n, c or the number of
possible operating core clock frequencies.

2While most HPC applications do not have strict deadlines, their execution times are con-
strained due to sharing of cluster resources. Also, with the advent of pay-per-use models, an
execution time deadline translates to a cost budget.

124

Chapter 6. Extension to Hybrid Programs with Communication

illustrating the contention for shared-memory and network as inferred by our ap-

proach.

for(iteration = 1..S)
{

pragma omp parallel // τ threads on c cores
{

/* computations or useful work */
....
....
....
/* intra-node (shared-memory contention) */

}
/* inter-node (network contention) */
MPI Send // ℓ logical processes on n nodes
MPI Recv

}

Figure 6.1: Abstraction of a hybrid program

A typical hybrid parallel program is split into ℓ logical processes with τ parallel

threads per process as shown in Figure 6.2. Systems executing hybrid programs

have a peak power budget that limits the number of nodes to a maximum of

nmax. Each node can be configured to use a maximum number of cmax cores, with

each core operating at a clock frequency f ∈ [fmin, fmax]. Hence, the different

combinations of n, c, and f values within these bounds form the total number of

system configurations for executing the program.

� threads

Hybrid Parallel Program

K logical processes

P1 Pn
inter-node

communication &
overlap
««««

intra-node
communication & overlap

� threads

Figure 6.2: Model of hybrid program execution

125

Chapter 6. Extension to Hybrid Programs with Communication

Users of hybrid programs often face the challenge of determining the optimal

number of ℓ and τ for energy efficient execution. Using values of ℓ < n incurs

energy wastage due to idling resources. On the contrary, it may be beneficial to

have τ < cmax because of the energy saved by reducing the waiting time due to

shared-memory contention among the τ threads. Hence, choosing an energy effi-

cient number of ℓ (= n) and τ (= c) to execute a hybrid program is not obvious and

requires an approach that models the execution time considering inter and intra-

node (i) overlap, (ii) communication, and (iii) contention for shared resources.

Therefore, as outlined in Figure 6.3, given a hybrid parallel program, our ap-

proach uses a measurement-driven analytical model to determine Pareto-optimal

system configurations, i.e. (n, c, f), such that these configurations consume mini-

mum energy for a given execution time deadline and/or execute in the minimum

time for a given energy budget.

To infer the program’s demands on system resources such as CPU and memory,

we characterize the workload using baseline executions to derive program and

architectural artefacts. These baseline executions are performed on a single node

Application

Baseline
Executions

Workload
Parameters

System
Parameters

Power
Parameters

energy-time
efficient

configurations

Micro-
benchmarks

Hybrid Program
� inter-core communication
� Intra-core communication

Energy-Time Performance

Figure 6.3: Approach for hybrid programs

126

Chapter 6. Extension to Hybrid Programs with Communication

across all possible c and f values using a small program input size. To derive the

energy consumed by the program, we use micro-benchmarks to measure the power

characteristics of the processor system.

While Chapter 3 models the overlap between inter-node computation phases,

it considers data center workloads that have minimal inter-node communication.

However, hybrid programs not only exhibit considerable amount of inter-node

communication among ℓ processes but also intra-node communication among τ

threads. Hence modeling the overlaps, communication and contention for shared

resources for a hybrid program is non-trivial and challenging.

To determine the inter-node communication, we use the volume of communi-

cation per node (ν) and characterize the CPU overheads in communication using

the utilization of the cores (Us). This models the overlap between computation

and inter-node communication via the network. Next, we use queueing theory

to model contention among the nodes for network and compute the waiting time

(Tw,net) at each node with the network switch as a server servicing communication

requests. To model the overlap between computation and intra-node communica-

tion via shared-memory, we infer the waiting time of the cores due to contention for

memory using stall cycles (m). The notations used in the communication model

are described in Table 6.1 and the notations not listed in this table are from the

core model in Chapter 3, and are described in Table 3.1.

To show that our approach is independent of a programming language, we

have chosen benchmark applications in both C++ and Fortran. The five hybrid

programs are, Block Tri-diagonal solver (BT), Lower-Upper Gauss-Seidel solver

(LU), Scalar Penta-diagonal solver (SP) [161], Car-Parrinello Molecular Dynamics

(CP) [67] and a lattice Boltzmann method (LB) [77]. To predict the energy usage

for a configuration, it is assumed that the hybrid program is the only application

being executed, apart from background operating system tasks.

127

Chapter 6. Extension to Hybrid Programs with Communication

To demonstrate the application of our approach on different system architec-

tures, we validated it on two systems with diverse time-energy performance, ARM

Cortex-A9 processor based low-power cluster and Intel Xeon x86 64 architecture

based processor cluster. The systems used for validation have nodes with a single

NIC and cores access shared-memory via Uniform Memory Architecture (UMA).

Nodes communicate via an Ethernet-based switch.

6.2 Communication Model

Symbol Description
Workload Parameters

η no. of messages sent/received by P

ν volume (in bytes) per message
System Parameters

B communication throughput
Time Model

Tw,net waiting time due to network contention
Ts,net non-overlapped network service time

Table 6.1: Communication model parameters

6.2.1 Model Inputs

The measurement driven inputs to our analytical model are obtained from work-

load, network and power characterization.

Workload Characterization

To derive workload dependent architectural artefacts, we use baseline executions

of the program on a single node. To determine the overlap among useful com-

putation cycles, data-accesses from shared-memory and network, we measure the

translation of a given hybrid program into useful work cycles (ws). To model the

128

Chapter 6. Extension to Hybrid Programs with Communication

non-overlapped intra-node contention, we measure the stall cycles due to mem-

ory accesses (ms). These measurements are recorded for a single node across the

possible values of c and f using hardware performance counters. Hence, these

measurements are non-intrusive with respect to the execution of the application.

Program dependent communication characteristics, such as number of commu-

nication calls (η) and communication volume per message call (ν) are measured

using the lightweight profiling tool mpiP [163]. It suffices to perform baseline ex-

ecutions only on a single node, as workload characteristics from these measured

values can be inferred from ℓ and τ .

Network characterization

To measure communication overheads of MPI over TCP for a given link band-

width, we use NetPIPE [159]. Figure 6.4 shows that the maximum achievable

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000 10000 100000 1e+06 1e+07
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

M
es

sa
ge

 L
at

en
cy

[s
]

T
hr

ou
gh

pu
t[M

bp
s]

Message Size [Bytes]

Latency
Throughput

Figure 6.4: Network characterization

throughput on a 100 Mbps Ethernet link is only 90 Mbps due to MPI overheads

129

Chapter 6. Extension to Hybrid Programs with Communication

and the operating system. This characterization of the network link latency and

bandwidth is used to compute network service time.

Power Characterization

With energy proportionality becoming increasingly important, processors exhibit

a wide dynamic energy range [171]. Hence, during program execution, cores have a

wide-ranging power consumption depending on the amount of computations being

executed. We classify the power states of a core into active power and stall power

corresponding to computation cycles and stall cycles respectively. The idle power

of the core is accounted by the total system idle power (Psys,idle). We developed

benchmarks that stress the processor pipeline to measure active and stall CPU

power. These measurements are done for the complete range of cores (c) and

frequencies (f) supported by the system to characterize the processor across its

dynamic power range. We derive Pmem from JEDEC memory specifications and

directly measure Pnet.

6.2.2 Time Model

In this section, we derive the execution time, T , for a hybrid program P with

S iterations, executing on n homogeneous nodes, each having c cores. Inter and

intra-node overlap between the computation and communication phases in the

program is accounted as useful work cycles (TCPU). Non-overlapped execution

time including both inter and intra-node data dependencies is modeled as waiting

and service time for communication over the network (Tw,net, Ts,net) and within

shared-memory (Tw,mem, Ts,mem) respectively. Hence, the total execution time is

summed up as the overlapped time for useful work cycles and the non-overlapped

130

Chapter 6. Extension to Hybrid Programs with Communication

queueing delays:

T = TCPU + Tw,net + Ts,net + Tw,mem + Ts,mem (6.1)

To derive TCPU , we use the total work cycles incurred by the hybrid program. The

total work cycles for a given program is split equally among number of processing

cores across all nodes, operating at a clock frequency f as:

TCPU =
cyclescore
n · c · f (6.2)

Overlap of computations and shared-memory data accesses is accounted by using

the work cycles spent for computing (w) and stall cycles that are not due to

memory contention (b). These non-memory stalls are due to the complex out-

of-order pipeline architectures that are prevalent in most processors today [113].

Hence, the total useful cycles considering overlaps are:

cyclescore = w + b (6.3)

As non-memory stalls vary based on the application, they are measured using the

baseline execution of a program, but they scale well with program input size for

a given processor architecture [137]. Hence, they are derived easily for scale-out

programs, by using the measured values of the subset program Ps:

w(c, f) =
ws · S
Ss

b(c, f) =
bs · S
Ss

(6.4)

While parallelism increases speedup by enabling overlap, overlap causes increased

contention for shared resources. For hybrid parallel programs, the logical processes

across nodes contend for access to the network and the parallel threads within a

131

Chapter 6. Extension to Hybrid Programs with Communication

logical process contend for shared-memory. Network contention causes messages

to wait in the operating system’s network socket buffer before being serviced by

the network. As a result, CPU idles while waiting for data from the network. This

is modeled using a M/G/1 queue with a mean waiting time [114, 142]:

Tw,net =
λ · ŷ2
1− ρ

(6.5)

where ŷ and ρ are the service time and utilization of the network respectively, and

λ is the inter-arrival rate of messages to the buffer.

Communication characteristics of the program affect inter-node communica-

tion (Ts,net). For hybrid parallel programs, the communication characteristics

are determined using the number of messages transmitted (η) and the volume of

communication per message (ν). In most modern processing systems, the CPU

time incurred for processing, overlaps with transfer time of the messages over the

network. Thus, the service time of inter-node communication is:

Ts,net = max
(

((1− U) · TCPU) ,
(η · ν

B

))

(6.6)

In hybrid programs, the parallel threads within a logical process contend for

shared-memory. Shared-memory contention is derived from the waiting time and

service time of memory requests queueing up for service at the memory controller.

Queueing delay due to contention for memory causes stall cycles in the processor.

Therefore, these stall cycles due to non-overlapped memory accesses (m) are used

to model shared-memory contention overheads:

Tw,mem + Ts,mem =
m

f
m(c, f) =

ms · S
Ss

(6.7)

132

Chapter 6. Extension to Hybrid Programs with Communication

6.2.3 Energy Model

Total energy for a given hybrid program on a cluster of n nodes is the sum of the

energies consumed per node. Energy consumed by a node is divided among three

active components, processing unit (CPU), memory resources and network card.

Energy consumed by other system components such as power regulators, storage,

video, etc. are considered under the Eidle. Hence, the total energy consumed by

the system during execution is:

E =
(

ECPU + Emem + Enet + Eidle

)

× n (6.8)

Energy consumed by the active cores in a node is:

ECPU =((Pcore,act · TCPU)+

(Pcore,stall · (Tw,mem + Ts,mem))) · c
(6.9)

Energy consumed by the memory and network for each node is:

Emem = Pmem · (Tw,mem + Ts,mem) (6.10)

Enet = Pnet · (Tw,net + Ts,net) (6.11)

When the system is completely idle, the power consumption includes the idle power

of the cores, memory and I/O devices, as well as the fixed power consumption for

the rest of the components. Thus,

Eidle = Psys,idle · T (6.12)

133

Chapter 6. Extension to Hybrid Programs with Communication

6.2.4 Validation

Here, we first describe the hybrid programs, systems and setup used for validation

followed by validation results. The proposed approach is validated against direct

measurements for both execution time and energy.

Workloads and Setup

While our approach is applicable on generic hybrid parallel programs, we selected a

representative subset of five benchmark programs for presentation in this chapter.

This subset was chosen to represent a wide range of HPC domain applications

that exert different inter and intra-node communication resource demands and

use different programming languages. We use three hybrid programs from NASA

Parallel Benchmark (NPB) suite [161]. These solve discretized version of Navier-

Stokes equations in three dimensions, and are (i) Lower-Upper Symmetric Gauss-

Seidel (LU), (i) Scalar Penta-diagonal (SP), and (iii) Block Tri-diagonal (BT). The

fourth program uses the Car-Parinello (CP) method to simulate H2O molecules

from the Quantum Espresso suite [67]. While the above programs are in Fortran,

we chose the fifth program in C++, to illustrate that our approach is independent

of the programming language. This is an open source Lattice Boltzmann (LB)

code [1], that simulates fluid flows in a three-dimensional lid-driven cavity.

To illustrate the generalization of our approach, we validate on two diverse

processor system clusters as detailed in Table 6.2. The increase in the computing

capabilities of mobile-based smart devices, have caught the attention of leading

server providers to design their next-generation systems based on such mobile-

based processors [17, 143, 152]. Hence, other than the traditional server system

based on two Intel Xeon CPUs, we also choose a low-power ARM Cortex-A9-based

system for validating the proposed approach. The Xeon and ARM systems not

134

Chapter 6. Extension to Hybrid Programs with Communication

System Intel Xeon E5-2603 ARM Cortex-A9

ISA x86 64 ARMv7-A
Nodes 8 8
Cores/node 8 4
Clock Frequency 1.2–1.8 GHz 0.2–1.4 GHz
L1 data cache 32kB / core 32kB / core
L2 cache 2MB / node 1MB / node
L3 cache 20MB / node NA
Memory 8GB DDR3 1GB LP-DDR2
I/O bandwidth 1Gbps 100Mbps

Table 6.2: Hybrid program system

only have a diverse performance-to-power ratio but also have different ISAs and

differ in orders of magnitude in their cache, memory and network bandwidths.

These large differences among the resource capabilities of the selected systems

illustrate that our approach can be applied to a generic processor system and the

approach independent of any specific ISA. We validate our model against direct

measurements of both execution time and energy usage of each cluster with the

setup shown in Figure 3.2. The system time command is used to measure execution

time and a WattsUp meter [9] measures both power and energy.

To increase the credibility of our approach, we performed extensive validation

for each of the five benchmarks on a large number of Xeon and ARM system

configurations. These configurations arise from varying the (i) number of nodes,

nxeon/arm ∈ [1, 2, 4, 8], (ii) number of active cores per node, cxeon ∈ [1 · · · 8] and

carm ∈ [1 · · ·4]), and (iii) operating core clock frequency, fxeon ∈ [1.2, 1.5, 1.8] GHz

and farm ∈ [0.2, 0.5, 0.8, 1.1, 1.4] GHz. Thus, the number of configurations used

for validation was 96 and 80 for Xeon and ARM clusters respectively. Table 6.3

summarizes the average error and the standard deviation from the measured values

for all of these configurations. The predicted values of time and energy using our

approach follow the trends of the measured values across hardware configurations

as shown in Figures 6.5 and 6.6 respectively. Due to paucity of space, for each

135

Chapter 6. Extension to Hybrid Programs with Communication

 0

 100

 200

 300

 400

 500

 600

(2
,1

)
(2

,4
)
(2

,8
)
(4

,1
)
(4

,4
)
(4

,8
)
(8

,1
)
(8

,4
)
(8

,8
)

E
xe

cu
tio

n
T

im
e[

s]

Xeon Configurations(n,c)

BT

 0
 200
 400
 600
 800

 1000
 1200
 1400 SP

(2
,1

)
(2

,2
)
(2

,4
)
(4

,1
)
(4

,2
)
(4

,4
)
(8

,1
)
(8

,2
)
(8

,4
)

ARM Configurations(n,c)

LB

CP

Measured
Predicted

Figure 6.5: Execution time validation

 0

 5
 10
 15
 20

 25
 30

(2
,1

)
(2

,4
)
(2

,8
)
(4

,1
)
(4

,4
)
(4

,8
)
(8

,1
)
(8

,4
)
(8

,8
)

E
ne

rg
y[

kJ
]

Xeon Configurations(n,c)

LB

 0

 5
 10
 15
 20
 25
 30 BT

(2
,1

)
(2

,2
)
(2

,4
)
(4

,1
)
(4

,2
)
(4

,4
)
(8

,1
)
(8

,2
)
(8

,4
)

ARM Configurations(n,c)

LB

CP

Measured
Predicted

Figure 6.6: Energy validation

136

Chapter 6. Extension to Hybrid Programs with Communication

cluster we plot the execution time and energy for programs with the worst-case

error.

Domain Benchmark Suite Program

Execution Time error [%] Energy error [%]
Xeon Cortex-A9 Xeon Cortex-A9

Mean
Std.

Mean
Std.

Mean
Std.

Mean
Std.

Dev. Dev. Dev. Dev.

3D Navier-Stokes NAS Multi-zone LU 4 5 3 2 5 8 6 6
Equation Solver Parallel Benchmark SP 6 9 4 3 2 10 4 5

(NPB3.3-MZ) BT 8 7 4 6 8 7 5 6
Electronic-structure Calculations Quantum Espresso (v5.1) CP 1 10 5 12 1 14 7 12
Computational Fluid Dynamics OpenLB (olb-0.8r0) LB 6 8 4 8 15 12 7 9

Table 6.3: Hybrid program validation results

Many research studies show a correlation between communication patterns ex-

hibited by a program with scale-out input sizes [106, 164]. We show the application

of our approach for scale-out HPC programs by plotting the validation results for

LU program with input size of class C (four times larger than the baseline mea-

surement program size) in Figure 6.7. Thus, we show the application of our model

 0
 200
 400
 600
 800

 1000
 1200
 1400

(1
,1

)
(1

,2
)
(1

,4
)
(1

,8
)
(2

,1
)
(2

,2
)
(2

,4
)
(2

,8
)
(4

,1
)
(4

,2
)
(4

,4
)
(4

,8
)
(8

,1
)
(8

,2
)
(8

,4
)
(8

,8
)

E
xe

cu
tio

n
T

im
e[

s]

Xeon Configurations(n,c)

 0
 20
 40
 60
 80

 100
 120
 140

E
ne

rg
y[

kJ
]

Measured
Predicted

Figure 6.7: Scale-out program LU

to programs whose communication characteristics scale linearly with respect to

program input size.

137

Chapter 6. Extension to Hybrid Programs with Communication

Sources of Inaccuracy

We identify three factors that affect the accuracy of the model. Firstly, the most

significant source of error comes due to irregularities during different executions

of the same program from the operating system overheads. The measured values

of execution time and energy show irregularities of up to 10% for different runs

of the same program. Secondly, there are irregularities in the communication

overheads due to explicit synchronizations in the program among logical processes

and threads. For example, LB program incurs more instructions on higher number

of nodes at higher number of cores, due to the synchronization among the logical

processes and threads. This significantly increases the energy used, but does

not reduce the execution time. This increase causes our model to underestimate

the energy used by Xeon configurations (4,4) and (4,8) as shown in Figure 6.6.

The third reason for model inaccuracy is the accuracy of the characterized power

parameters. In particular, the system power values for active cycles, stall cycles

and idleness differ by up to 0.4W for the ARM node and 2W for the Xeon node.

This variability translates into a larger underestimation of the energy consumed

especially for larger execution times.

6.3 Analysis

This section discusses the application of our approach to determine time-energy

Pareto-optimal configurations for efficient execution of hybrid parallel programs.

Next we discuss the application of the Useful Computation Ratio (UCR) metric

to further optimize the Pareto frontier.

138

Chapter 6. Extension to Hybrid Programs with Communication

6.3.1 Pareto-optimal Configurations

Similar to the Pareto frontiers in heterogeneous systems as discussed in Chap-

ter 4, time-energy efficient Pareto-optimal configurations are also present in ho-

mogeneous systems executing hybrid parallel programs as shown in Figures 6.8

and 6.9. These Pareto-optimal configurations are energy efficient as they consume

the minimum energy for a given execution time deadline or execute in the mini-

mum possible time for a given energy budget. Figures 6.8 and 6.9 present two

 0

 10

 20

 30

 40

 50

 60

 1 10 100

E
ne

rg
y[

kJ
]

Execution Time[s]

All Configurations (216)
Pareto-Optimal Configurations

UCR=0.91
(1,1,1.2)

UCR=0.05
(256,8,1.8)

UCR=0.67
(1,8,1.8)

(256,1,1.2)
(256,1,1.5)

(128,1,1.2)

UCR=0.15
(64,8,1.8)

Figure 6.8: Xeon cluster executing SP program

typical plots3 showing the execution time and energy used to execute a hybrid pro-

gram for all possible configurations, program SP (216 configurations4) on a Xeon

cluster and program CP (400 configurations5) on an ARM cluster respectively.

3The configurations in these plots for n ∈ [1..8] for both A9 and Xeon clusters have been
validated as shown in Section 6.2.4.

4n ∈ [1, 2, 4, 8, .., 256], c ∈ [1..8] and f ∈ [1.2, 1.5, 1.8]GHz
5n ∈ [1, 2, 3, .., 20], c ∈ [1..4] and f ∈ [0.2, 0.5, 0.8, 1.1, 1.4]GHz

139

Chapter 6. Extension to Hybrid Programs with Communication

 5

 10

 15

 20

 25

 30

 35

 40

 1000 10000

E
ne

rg
y[

kJ
]

Execution Time[s]

All Configurations (400)
Pareto-Optimal Configurations

UCR=0.48
(1,1,0.2)

UCR=0.10
(20,4,1.4)

UCR=0.42
(1,2,0.8)

UCR=0.21
(12,3,0.8)

(3,2,0.8)
UCR=0.35

(20,1,0.2)
(16,1,0.2)

(20,4,0.2)

(20,1,0.5)

Figure 6.9: ARM cluster executing CP program

Each configuration in these plots is a tuple consisting of the number of nodes,

number of cores and the core clock frequency (n, c, f). For each configuration

point, the x-axis denotes the program’s execution time and the y-axis represents

the corresponding energy used. Given an execution-time deadline, there exist a

set of configurations that meet this deadline. The configuration that meets the

deadline with the minimum energy usage is Pareto optimal. The set of all Pareto

optimal points across all possible deadlines forms the time-energy Pareto frontier.

These time-energy plots illustrate three counter-intuitive insights. Firstly, as

the execution-time deadline is relaxed, the configurations have lesser number of

nodes but surprisingly use lesser energy. Decreasing the number of nodes decreases

power used but increases execution time, and thus it is expected that the energy

(power×time) will be constant. Although, decreasing the number of nodes causes

a linear decrease in the power used, the effect on the execution time is non-linear

140

Chapter 6. Extension to Hybrid Programs with Communication

and is characterized by the queuing delays due to network contention (Tw,net,

Ts,net). Secondly, as the energy budget is reduced, counter-to-intuition, the number

of cores and core clock frequency increases. Increasing the number of cores or

core clock frequency reduces execution time but increases power. Although the

increase in the power is a factor of processor design, the decrease in execution time

is not linear and is characterized by shared-memory contention (Tw,mem, Ts,mem).

Thirdly, Pareto-optimal configurations do not necessarily use all available cores

operating at the maximum frequency, e.g. ARM system configuration (3,2,0.8) is

on the Pareto frontier of the CP program.

Impact on Energy Savings

The existence of the Pareto-frontier and using Pareto-optimal configurations for

executing a program imply two options for saving energy. Firstly, for a given

execution time deadline, a Pareto-optimal configuration consumes lesser energy

compared to a non-optimal configuration thus resulting in energy savings. For

example, as shown in Figure 6.8, for executing the SP program on the Xeon

cluster within three seconds, a non-optimal configuration may consume energy

up to 41kJ while a Pareto-optimal configuration consumes only 10kJ, resulting in

energy savings of four times or 75% reduction in energy.

Secondly, the existence of Pareto-frontier results in significant energy savings

can be obtained by trading-off execution time by a negligible amount. For example,

with an execution time deadline of three seconds, increasing the execution time of

the SP program on a Xeon cluster from 2.2 to 2.7 seconds results in energy savings

of 65% as the energy consumed reduces from 29kJ to 10kJ as shown in Figure 6.8.

141

Chapter 6. Extension to Hybrid Programs with Communication

6.3.2 Useful Computation Ratio

While Computation-to-Communication Ratio (CCR) is a widely used metric to

quantify the communication costs (both inter and intra-node) of a parallel program

and a higher CCR implies better efficiency, this metric is not normalized and hence

is less useful for making comparisons across configurations. As HPC applications

become increasingly data-centric and with the widening gap between floating-

point speed and memory bandwidth [51], it is very important to characterize

the performance of a program with respect to an upper bound to compare and

evaluate its execution across a large system configuration space. To address this,

we propose a new metric called the Useful Computation Ratio (UCR) of a hybrid

program as:

UCR =
Tuseful(= TCPU)

T
(6.13)

Total execution time, T , for a hybrid program is defined as:

T = TCPU + Tdata dep + Tmem contention + Tnet contention (6.14)

Since TCPU is defined as the time spent by the program in the system for useful

computations including overlapped data accesses (Equation 6.2), the maximum

value for normalized UCR is one. Tdata dep is a program characteristic, and does

not change for a given program with a fixed input size executing on a specific

system architecture. As computations need data to be fetched, Tmem contention

represents the communication cost of fetching data from shared-memory within

a node and Tnet contention accounts for the inter-node communication cost. Thus,

UCR is a useful measure for comparing the execution efficiencies of a hybrid pro-

gram across different system configurations. Figures 6.10 and 6.11 plot UCR and

the time-energy performance of five hybrid programs for different configurations.

142

Chapter 6. Extension to Hybrid Programs with Communication

 0
 0.2
 0.4
 0.6
 0.8

 1

(1
,1

,1
.2

)
(1

,1
,1

.5
)

(1
,1

,1
.8

)
(1

,4
,1

.2
)

(1
,4

,1
.5

)
(1

,4
,1

.8
)

(1
,8

,1
.2

)
(1

,8
,1

.5
)

(1
,8

,1
.8

)
(4

,1
,1

.2
)

(4
,1

,1
.5

)
(4

,1
,1

.8
)

(4
,4

,1
.2

)
(4

,4
,1

.5
)

(4
,4

,1
.8

)
(4

,8
,1

.2
)

(4
,8

,1
.5

)
(4

,8
,1

.8
)

(8
,1

,1
.2

)
(8

,1
,1

.5
)

(8
,1

,1
.8

)
(8

,4
,1

.2
)

(8
,4

,1
.5

)
(8

,4
,1

.8
)

(8
,8

,1
.2

)
(8

,8
,1

.5
)

(8
,8

,1
.8

)

U
C

R

Xeon Configurations(n,c,f[GHz])

 0
 100
 200
 300
 400
 500

T
im

e[
s]

 0
 20
 40
 60
 80

E
ne

rg
y[

kJ
]

LU SP BT CP LB

Figure 6.10: UCR and time-energy performance on Xeon cluster

For a given program and an input size, the upper bound of UCR is obtained for

an execution configuration with a single node, single core and the lowest operating

frequency, (1, 1, fmin), as this configuration incurs negligible communication over-

heads. The differences between the CISC and RISC ISA of the processors causes

UCR for Xeon to be much higher (0.96 for BT program) than UCR for ARM (0.54

for BT program).

UCR not only exhibits resource mismatches between computational process-

ing and communication resources of a system but also expresses mismatches in

the program implementation due to an imbalance in the parallelism among log-

ical processes versus parallel threads. The CP and LB programs illustrate this

imbalance, as seen from the steep drop in the UCR values (Figures 6.10 and 6.11)

with increasing number of logical processes and threads. Increasing the number of

nodes, or cores or core clock frequencies, increases contention for shared resource

143

Chapter 6. Extension to Hybrid Programs with Communication

 0
 0.2
 0.4
 0.6
 0.8

 1

(1
,1

,0
.2

)
(1

,1
,0

.8
)

(1
,1

,1
.4

)
(1

,2
,0

.2
)

(1
,2

,0
.8

)
(1

,2
,1

.4
)

(1
,4

,0
.2

)
(1

,4
,0

.8
)

(1
,4

,1
.4

)
(4

,1
,0

.2
)

(4
,1

,0
.8

)
(4

,1
,1

.4
)

(4
,2

,0
.2

)
(4

,2
,0

.8
)

(4
,2

,1
.4

)
(4

,4
,0

.2
)

(4
,4

,0
.8

)
(4

,4
,1

.4
)

(4
,1

,0
.2

)
(4

,1
,0

.8
)

(4
,1

,1
.4

)
(4

,2
,0

.2
)

(4
,2

,0
.8

)
(4

,2
,1

.4
)

(4
,4

,0
.2

)
(4

,4
,0

.8
)

(4
,4

,1
.4

)

U
C

R

ARM Configurations(n,c,f[GHz])

 0
 50

 100
 150
 200

T
im

e[
m

in
]

 0

 20

 40

E
ne

rg
y[

kJ
]

LU SP BT CP LB

Figure 6.11: UCR and time-energy performance on ARM cluster

and thus decreases UCR. However, increasing the number of nodes, or cores or

core clock frequencies, reduces both the execution time and energy used for certain

configurations. Hence, while the UCR metric gives useful information regarding

the balance between the computation and communication resources in a system

for a program, it cannot be used to determine efficient execution configurations,

as configurations with high UCR are not necessarily energy-efficient.

Figures 6.8 and 6.9 also show the UCR values for some Pareto-optimal config-

urations. An increase in the execution time results in lesser number of nodes in

the Pareto-optimal configurations. This decrease in the number of nodes, reduces

contention thus increasing the UCR as observed. While the Pareto-optimal con-

figurations are energy efficient, they do not necessarily imply a high UCR. As is

observed from Figures 6.8 and 6.9, the UCR values of the Pareto-optimal configu-

rations (0.05 to 0.67 for Xeon and 0.10 to 0.42 for ARM) is quite small compared

144

Chapter 6. Extension to Hybrid Programs with Communication

to the best possible UCR (0.91 for Xeon and 0.48 for ARM). Hence there is room

for further optimizing the Pareto configurations for better balance between the

computation and communication phases of the hybrid parallel program executing

on a given system architecture.

Optimizing UCR for Pareto-optimal configurations

UCR represents the balance between the execution rates and the communication

rates of resources in a system and hence can be improved by either changing

the program or system design to achieve a better matching between these rates.

For example, doubling the memory bandwidth reduces the number of stall cycles

due to shared-memory contention by two times, and thus improves the UCR of

SP program executed on Xeon configuration (1,8,1.8) from 0.67 to 0.81. This

increase in UCR also reduces the execution time by 7 seconds and energy used by

590 Joules, thus further optimizing the Pareto-frontier configuration. Hence, the

proposed approach can be easily applied by system architects to gain insights into

resource imbalances, and further optimize the Pareto-frontier using UCR.

Secondly, for a given system configuration, application developers can fine-tune

their implementations by re-structuring the iterations during the computational

and communication phases of the program for different l (= n) and τ (= c) to fur-

ther improve the UCR of Pareto-optimal configurations. The proposed approach

thus offers a holistic hardware-software co-design by gaining useful insights from

the predicted execution time, energy and UCR of hybrid parallel programs.

6.4 Summary

While hybrid parallel programs offer the dual-advantage of scalability via distributed-

memory and better performance using shared-memory, users of these programs

145

Chapter 6. Extension to Hybrid Programs with Communication

face an uphill task in determining the time-energy optimal set of logical processes

(ℓ) and threads (τ) for executing the program. From a system’s perspective, this

challenge translates to determining energy efficient execution configurations in

terms of (n, c, f), where n is the number of nodes, c the number of cores and f

is the operating core clock frequency. This chapter presents an approach to de-

termine time-energy Pareto-optimal system configurations (n, c, f) for executing

a hybrid program using a measurement-driven analytical model.

The proposed model addresses the effects of using both distributed-memory

and shared-memory communication by considering inter and intra-node resource

overlaps, memory contention among cores within a node and network contention

across multiple nodes. Table 6.4 summarizes the extensions to the core model to

determine the energy-time performance of hybrid programs. We validate the pro-

posed approach for a range of HPC programs from different domains such as non-

linear partial differential equation solvers, electronic structure calculations and

computational simulation for fluid dynamics. These representative HPC applica-

tions are validated against direct measurement on Intel Xeon and ARM Cortex-A9

clusters as they have a diverse time-energy performance. Validation results show

a mean error of less than 15% between the predicted and measured execution time

and energy.

We show that a Pareto frontier consisting of time-energy Pareto-optimal con-

figurations exist for a hybrid program executed on a homogeneous cluster. These

configurations either consume minimum energy for a given execution time dead-

line, or execute in the minimum possible time for a given energy budget. Hence,

users of hybrid programs can easily apply our approach for time-energy efficient

execution. To further optimize the Pareto frontier, we introduce a new metric,

useful computation ratio (UCR) that quantifies the degree of resource contentions

and communication overheads in an execution. We also show how system archi-

146

Chapter 6. Extension to Hybrid Programs with Communication

Energy Performance

E
(

ECPU + Emem + Enet + Eidle

)

× n

ECPU ((Pcore,act · TCPU) + (Pcore,stall · (Tw,mem + Ts,mem))) · c
Emem Pmem · (Tw,mem + Ts,mem)

Enet Pnet · (Tw,net + Ts,net)

Eidle Psys,idle · T
Time Performance

T TCPU + Tw,net + Ts,net + Tw,mem + Ts,mem

TCPU
cyclescore

n·c·f

Tw,net
λ·ŷ2

1−ρ

Ts,net max
(

((1− U) · TCPU) ,
(

η·ν
B

))

Tw,mem + Ts,mem
m
f

Table 6.4: Summary of model extension for hybrid programs

tects and application developers can increase the UCR of Pareto-optimal configu-

rations by balancing resource service demands with resource utilization, to further

minimize system inefficiencies.

147

Chapter 7

Conclusion

7.1 Thesis Summary

With heterogeneity becoming ubiquitous due to the paradigm shift from high-

performance to low-power designs in server systems, maturity of multi-core clus-

ters, and wide-adoption of compute node accelerators among others, new opportu-

nities arise for an energy-time efficient matching of workload service demands and

resource capabilities. However, this opportunity introduces many challenges with

respect to energy-time efficient execution of parallel programs on the large config-

uration space made available due to heterogeneity in systems and programs. In

addition to inter-node heterogeneity, we address intra-node heterogeneous systems

with VPU accelerators and hybrid programs. A heterogeneous mix of nodes offers

a large system configuration space due to the different combinations of system pa-

rameters such as, types of nodes, number of nodes of each type, number of active

cores per node and the operating core clock frequency. While the configuration

space due to inter-node heterogeneity grows exponentially with respect to the dif-

ferent types of nodes, the configuration space due to intra-node heterogeneity and

hybrid programs grows linearly with the number of cores, nodes and the thread

149

Chapter 7. Conclusion

affinity modes.

In this thesis, we address some of the challenges due to this large configura-

tion space and propose a measurement-driven analytical modeling approach to

determine energy-time efficient configurations. The proposed approach addresses

the effects of using both distributed-memory and shared-memory communication

by considering inter and intra-node resource overlaps, memory contention among

cores within a node and network contention across multiple nodes.

The two major contributions of this thesis are: (i) an approach to determine

energy-time efficient configurations addressing the large configuration space and

(ii) novel insights from the energy-time performance of inter-node heterogeneous

systems, intra-node heterogeneous systems with VPU and hybrid programs. These

contributions are detailed below.

7.1.1 Measurement-based Analytical Model

We propose a measurement-based analytical model to determine time and energy

efficient system configurations for executing a parallel program on a baseline het-

erogeneous cluster consisting of multi-core brawny and wimpy nodes. We show the

scalability of the core model by extending it to determine time and energy-time

efficient system configurations for parallel programs executing on co-processors

with VPUs, e.g. Intel Xeon Phi. While extension of the core model to intra-node

heterogeneous systems shows the scalability of the model from a system perspec-

tive, from a program perspective, the scalability of the core model is illustrated by

modeling the communication for hybrid OpenMP +MPI programs. As outlined in

Fig. 7.1, the proposed approach determines the set of energy-time efficient configu-

rations for a given system. Table 7.1 summarizes the energy and time performance

derived from the proposed analytical model. The details of the experiment setup

used for validating the model and the description of the model parameters are in

150

Chapter 7. Conclusion

Application

Baseline
Executions

Workload
Parameters

System
Parameters

Power
Parameters

energy-time
efficient

configurations

Micro-
benchmarks

Core Model
� inter-node overlap
� intra-node overlap

Energy-Time Performance

� inter-core contention
� intra-core contention

Intra-node Heterogeneity

� inter-core communication
� inter-node communication

Hybrid program

Figure 7.1: Measurement-based analytical model

Appendix A and B respectively.

Modeling Overlap among Heterogeneous Nodes [137]

A heterogeneous mix of nodes offers a large system configuration space due to

the different combinations of system parameters such as, types of nodes, number

of nodes of each type, number of active cores per node and the operating core

clock frequency. While this large configuration space offers an opportunity to

obtain a better match between the application performance and the system, the

key challenge is to determine the set of energy-time efficient configurations. Thus,

this thesis presents an approach to address this challenge using a measurement-

driven analytical model that determines both time and energy performance of

heterogeneous computing systems. In contrast to pure analytical or mathematical

models, the proposed approach relies on baseline measurements to gain accuracy

151

Chapter 7. Conclusion

Core Model (Inter-node Heterogeneity)

Energy

E =
∑d

i=1Ei

Ei =
(

Ei,CPU + Ei,mem + Ei,I/O + Ei,idle

)

· ni

Ei,CPU = (Pi,CPU,act · Ti,act) + (Pi,CPU,stall · Ti,stall)

Ei,mem = Pi,mem · Ti,mem

Ei,I/O = Ti,I/O · Pi,I/O

Ei,idle = Ti · Pi,idle

Time

T = maxdmax
i=1 (Ti)

Ti = max(Ti,CPU , Ti,I/O)

Ti,CPU = max(Ti,core, Ti,mem)

Ti,core =
cyclesi,core

fi

Ti,mem =
cyclesi,mem

fi

Ti,I/O =
max(Ti,I/OT

, 1

λI/O
)

ni

Intra-node Heterogeneity

Energy
Eτ,c = Tτ,c × Pτ,c

PPR = Throughput[operations/s]
Power[W]

Time

Tτ,c = Twork +max(Tinter,c, Tintra,τ)

Twork =
cycleswork

f

Tinter,c =
minter

f
=

λinter,c×βc,s

f

Tintra,τ = mintra

f
=

λintra,τ×ατ,s

f

Hybrid Programs

Energy

E =
(

ECPU + Emem + Enet + Eidle

)

× n

ECPU = ((Pcore,act · TCPU) + (Pcore,stall · (Tw,mem + Ts,mem))) · c
Emem = Pmem · (Tw,mem + Ts,mem)

Enet = Pnet · (Tw,net + Ts,net)

Eidle = Psys,idle · T

Time

Thybrid = TCPU + Tw,net + Ts,net + Tw,mem + Ts,mem

TCPU = cyclescore
n·c·f

Tw,net =
λ·ŷ2

1−ρ

Ts,net = max
(

((1− U) · TCPU) ,
(

η·ν
B

))

Tw,mem + Ts,mem = m
f

Table 7.1: Summary of all models152

Chapter 7. Conclusion

and uses a core analytical model that determines the energy required to execute

a parallel program. The core model is applicable on heterogeneous clusters with

wimpy and brawny nodes having different Instruction Set Architectures (ISAs).

For each type of node, the core model predicts the execution time and energy

usage of a parallel task considering the overlap among the response times of service

requests to the CPU, the memory and the network I/O devices. As heterogeneous

clusters have different execution rate, we propose a matching technique, that splits

the workload such that all the different nodes complete the parallel job at the same

time. By finishing at the same time, the energy incurred by idling in the cluster

is minimized.

Modeling Overlap and Contentions in VPU

The Many Integrated Core (MIC) architecture enhances traditional host CPU

performance by providing multiple cores that can accelerate vector processing and

are also termed Vector Processing Units (VPUs).

While the core model proposed in Chapter 3 addresses inter-node heterogeneity,

to address intra-node heterogeneity, we extend the core model to determine energy-

time efficient configurations for executing parallel programs on the Intel Xeon

Phi coprocessor. Apart from determining the optimal number of nodes, cores

and operating core clock frequency, Xeon Phi additionally offers the challenge of

determining the optimal thread affinity mode. Thread affinity modes restrict the

execution of OpenMP threads to a subset of the available physical processing cores

and thus have a significant impact on both time and energy performance of the

program execution on the co-processor.

The Xeon Phi offers two main thread affinity modes, namely scatter and com-

pact. The scatter mode allocates a single thread per physical core till all the cores

are used up before allocating another thread on the same core. In contrast, the

153

Chapter 7. Conclusion

compact mode allocates the threads to the same physical core, till the core exe-

cutes the maximum possible number of threads before allocating another core to a

thread. These differences in the thread allocation policies offer some challenges in

modeling the intra-core thread contention for shared resources like L1 cache and

inter-core contention for shared memory. We extend the core model with these

additional resource contentions and determine time and energy-time efficient sys-

tem configurations to execute a parallel application on a intra-node heterogeneous

system such as Xeon Phi.

Modeling Communication of Hybrid Programs [136]

While the proposed core model considers both intra-node overlap between useful

work and memory accesses, it does not consider communication overheads among

nodes. A hybrid programming model has a dual-communication impact, from

communication among logical processes (inter-node), and communication among

threads (intra-node). We extend the core model by considering both distributed-

memory and shared-memory communication and modeling their effects on exe-

cution time and energy consumed by a hybrid parallel program. Given a hybrid

program, the extended core model determines time and energy-time efficient sys-

tem configurations in terms of the number of nodes, number of cores per node

and core clock frequency. Thus, the proposed approach provides a systematic

method to set the number of logical processes and threads for efficient execution

of a hybrid program.

154

Chapter 7. Conclusion

7.1.2 Insights from Energy-Time Performance Analysis

Inter-node Heterogeneous Systems [137]

While the proposed approach relies on a measurement-driven analytical model to

determine energy-time efficient system configurations, the impact of the performance-

to-power ratio (PPR) of the individual nodes on these system configurations is

non-obvious. The key insights from energy-time performance analysis of inter-

node heterogeneous systems may be summarized as:

1. sweet-spot configurations: Heterogeneity introduces “sweet-spots”, repre-

senting energy-time efficient system configurations, and set of sweet-spots

form the energy-deadline Pareto frontier.

2. energy-deadline Pareto-frontiers: The Pareto frontier can be analytically de-

termined using the node PPRs, thus addressing the challenge of the large

configuration space due to heterogeneity. The Pareto-frontier is further opti-

mized by replacing low PPR nodes with higher PPR nodes using our power

substitution ratio.

3. energy proportionality wall: Inter-node heterogeneous clusters provide an av-

enue to scale the energy proportionality wall by exposing sub-linear energy-

proportional configurations.

The existence of Pareto-optimal configurations for executing a program implies

energy savings. For example, to execute the EP program within a given time

deadline, Pareto-optimal configuration result in energy savings up to 75% com-

pared to non-optimal configurations.

155

Chapter 7. Conclusion

Intra-node Heterogeneous System with VPU

The key insights from energy-time performance analysis of intra-node heteroge-

neous system with VPU may be summarized as:

1. show that parallel programs executing on coprocessors with VPU exhibit

Pareto-optimal configurations, that execute in the minimum possible time for

a given energy budget or consume the minimum energy for a given execution

time deadline.

2. show how the performance-to-power ratio (PPR) metric can be used to de-

termine what programs benefit from offloading on VPUs.

Similar to the energy savings obtained due to Pareto-optimal configurations of

inter-node heterogeneous systems, intra-node heterogeneity with VPU also ex-

hibit energy savings. Firstly, for a given execution time deadline a Pareto-optimal

configuration reduces energy by up to 25% as compared to a non-optimal configu-

ration. Secondly, for configurations on the Pareto-frontier, energy savings of 15%

can be obtained at the expense of a 1% increase in execution time.

Hybrid Programs [136]

While the proposed model addresses the effects of using both distributed-memory

and shared-memory communication, it does not address the challenge of determin-

ing program hot-spots or system resource bottlenecks. To aid application develop-

ers to gain insights on program hot-spots, and system designers to identify capacity

bottlenecks, we further analyze the energy-time performance of hybrid programs

and thus optimize software-hardware co-design to improve energy-efficiency. Sim-

ilar to the Pareto frontiers of inter-node and intra-node heterogeneous systems,

we show that time-energy efficient Pareto-optimal configurations are also present

in homogeneous systems executing hybrid parallel programs.

156

Chapter 7. Conclusion

As HPC applications become increasingly data-centric and with the widening

gap between floating-point speed and memory bandwidth, it is very important to

characterize the performance of a hybrid program with respect to an upper bound

to compare and evaluate its execution across a large system configuration space.

To quantify the degrees of resource contention and communication overhead in an

execution, we introduce a novel metric, namely Useful Computation Ratio (UCR).

In addition, we illustrate how UCR and Pareto-optimal configurations can be used

in conjunction by system designers to gain further insights into resource imbalances

and how application developers can fine-tune their hybrid program. Similar to

energy savings due to inter and intra-node heterogeneity, hybrid programs also

save energy using Pareto-optimal configurations. Firstly, for a given execution

time deadline a Pareto-optimal configuration reduces energy by up to 75% as

compared to a non-optimal configuration. Secondly, Pareto-optimal configurations

reduce energy by 65% at the expense of 18% increase in execution time1.

7.1.3 Limitations

While the analysis of inter-node heterogeneous systems gives many useful insights

on energy savings obtained by varying the degree of heterogeneity, it assumes

that the workload can be divided among different node types and assumes that

a program can be divided into finer chunks which may not be possible for the

sequential fraction parts of the parallel workload. Appendix C discusses the impact

of factoring such parameters into the model.

While the programs used in the modeling and analysis scale linearly with an

increase in problem size, some parallel applications might have high overheads due

to synchronization (e.g., barrier, locks) at both node and cluster levels which are

not considered in the model.

1These values are derived from the plots in Section 6.3.1

157

Chapter 7. Conclusion

7.2 Future Directions

7.2.1 Dynamic Adaptation of Configurations at Run-time

For a given parallel application, the approach proposed in this thesis uses measure-

ment based parameters derived from baseline executions and workload character-

ization. These measured parameters are used as inputs to analytically model the

execution time and energy usage of a parallel application executing on heteroge-

neous computing systems. Such an approach has the dual advantage of improving

the accuracy of the time-energy prediction and is non-intrusive to the actual ap-

plication’s performance, but is a static mapping of the application to a system

configuration. While such a static approach does achieve desired energy-time per-

formance gains and minimizes inefficiencies, at run-time available system resources

may fluctuate widely. Thus, combining this approach with a dynamic configura-

tion selection during the execution of a program may result in more energy savings.

7.2.2 Cost-Time Performance

Cloud computing is becoming ubiquitous and a compelling business model for all,

from start-ups to large established corporations. The reason for the widespread

adoption of cloud computing can be attributed to two key characteristics offered

by this computing model, namely elastic resources and pay-per-use pricing. While

elastic resources offer dynamic on-demand scaling of computational resources, the

key challenge lies in matching applications elastic resource demands across elastic

resources to achieve optimal cost-performance. These characteristics also intro-

duce manifold challenges to cloud consumers to optimize the execution of their

applications for a given cost budget.

The energy-time performance models and analysis presented in this thesis can

158

Chapter 7. Conclusion

be adapted to explore two main directions: (i) cost-time performance models for

heterogeneous compute resources in the cloud (system) and (ii) cost-time perfor-

mance models for elastic applications using elastic resources such as cloud (pro-

gram).

System

A research direction by adapting this thesis is modeling the time and cost-efficient

performance of heterogeneous computing systems in the cloud. Cloud resources

are inherently heterogeneous as they need to cater to a widespread array of con-

sumers with different computational needs. Additionally, cloud service offerings

have multiple pricing models bringing about another dimension to the resource

configuration space. These variegated pricing models is a key challenge in map-

ping an application’s resource demands to the available elastic cloud resources and

needs to be addressed further. The approaches proposed in this thesis could be

used as an inception to explore cost and time efficient performance analysis of

heterogeneous resources in the cloud.

Program

Traditionally, the cloud computing model has attracted enterprise software appli-

cations that need on-demand scalability, but currently even scientific applications

and machine-learning applications are moving from self-hosted systems to the

cloud to meet their computational demands. Conventionally algorithms are de-

signed to solve a given problem with a “definite” and “precise” output. However,

many classes of applications such as scientific computations, image processing,

data mining, and pattern recognition do not need precise answers, and loss of

accuracy is acceptable. While users of such applications can accept imprecise re-

sults or results of different quality, elastic algorithms are necessary to exploit the

159

Chapter 7. Conclusion

full potential of elastic cloud resources. The models and analysis presented in this

thesis can be adapted to investigate the hypothesis: an elastic algorithm optimizes

the cost and quality-of-result (QoR) on elastic cloud resources.

160

References

[1] OpenLB: http://www.openlb.net, [online].

[2] DDR3 Specification, http://www.webcitation.org/6JN7G4r3x, 2010.

[3] Cisco Catalyst 2960-S and 2960 Series Switches,

http://www.webcitation.org/6JPSUNMj0, 2011.

[4] Heterogeneous System Architecture Standard,

http://hsafoundation.com/hello-hsa-foundation, 2012.

[5] Memcached 1.4.15, http://www.webcitation.org/6JLdcKxsc, 2012.

[6] Google finishes 2048-bit RSA migration, Yahoo to encrypt all data early

next year, http://www.webcitation.org/6LaPMkEj0, 2013.

[7] Julius, http://julius.sourceforge.jp/, 2013.

[8] Top 500 supercomputer sites, online, 2015.

[9] WattsUpMeters: https://www.wattsupmeters.com/secure/index.php, [on-

line], May. 2014.

[10] Z. Abbasi, G. Varsamopoulos and S. K. Gupta, TACOMA: Server and Work-

load Management in Internet Data Centers considering Cooling-computing

Power Trade-off and Energy Proportionality, Transactions on Architecture

and Code Optimization (TACO), 9(2):11, 2012.

161

REFERENCES

[11] D. Abts, M. R. Marty, P. M. Wells, P. Klausler and H. Liu, Energy Propor-

tional Datacenter Networks, Proc. of 37th Annual International Symposium

on Computer Architecture, pages 338–347, 2010.

[12] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin et al, HPC-

Toolkit: Tools for Performance Analysis of Optimized Parallel Programs,

Concurrency and Computation: Practice and Experience, 22(6):685–701,

2010.

[13] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl et al, Somniloquy:

Augmenting Network Interfaces to Reduce PC Energy Usage, Proc. of NSDI,

pages 365–380, 2009.

[14] A. Aggarwal and A. Chandra, Communication Complexity of PRAMs,

T. Lepist and A. Salomaa, editors, Automata, Languages and Programming,

volume 317, pages 1–17. 1988.

[15] A. Aggarwal, A. K. Chandra and M. Snir, On Communication Latency in

PRAM Computations, Proc. of 1st annual ACM symposium on Parallel

algorithms and architectures, pages 11–21, 1989.

[16] A. Alexandrov, M. F. Ionescu, K. E. Schauser and C. Scheiman, LogGP: In-

corporating Long Messages into the LogP Model - One Step Closer Towards

a Realistic Model for Parallel Computation, Proc. of the 7th Symposium on

Parallel Algorithms and Architectures, pages 95–105, New York, NY, USA,

1995.

[17] AMD, AMD to Accelerate the ARM Server Ecosystem with the First

ARM-based CPU and development Platform from a Server Processor Ven-

dor: http://www.amd.com/en-us/press-releases/Pages/amd-to-accelerate-

2014jan28.aspx, [online], Jan. 2014.

162

REFERENCES

[18] G. M. Amdahl, Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities, Proc. of the April 18-20, 1967, Spring

Joint Computer Conference, pages 483–485, 1967.

[19] V. Anagnostopoulou, S. Biswas, H. Saadeldeen, A. Savage, R. Bianchini

et al, Barely alive memory servers: Keeping data active in a low-power

state, J. Emerg. Technol. Comput. Syst., 8(4):31:1–31:20, Nov. 2012.

[20] V. Anagnostopoulou, S. Biswas, A. Savage, R. Bianchini, T. Yang et al,

Energy Conservation in Datacenters through Cluster Memory Management

and Barely-alive Memory Servers, Proc. of Workshop on Energy Efficient

Design, 2009.

[21] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan et al,

FAWN: A Fast Array of Wimpy Nodes, Proc. of 22nd SOSP, pages 1–14,

2009.

[22] M. Annavaram, E. Grochowski and J. Shen, Mitigating Amdahl’s Law

Through EPI Throttling, Proceedings of the 32Nd Annual International

Symposium on Computer Architecture, ISCA ’05, pages 298–309, Washing-

ton, DC, USA, 2005. IEEE Computer Society.

[23] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands et al, The

Landscape of Parallel Computing Research: A View from Berkeley, Techni-

cal report, EECS Department, University of California, Berkeley, 2006.

[24] N. Auluck, S. Betha and B. Mangipudi, Contention Aware Energy Effi-

cient Scheduling on Heterogeneous Multiprocessors, IEEE Transactions on

Parallel and Distributed Systems, 2014.

163

REFERENCES

[25] T. Austin, E. Larson and D. Ernst, SimpleScalar: an Infrastructure for

Computer System Modeling, Computer, 35(2):59–67, Feb 2002.

[26] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo et al, The

NAS Parallel Benchmarks 2.0, Technical Report NAS-95-020, NASA Ames

Research Center, 1995.

[27] P. Balaji, D. Buntinas, D. Goodell, W. Gropp and R. Thakur, Fine-grained

Multithreading Support for Hybrid Threaded MPI Programming, Interna-

tional Journal of High Performance Computing Applications, 24(1):49–57,

2010.

[28] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski et al,

A Regression-based Approach to Scalability Prediction, Proc. of 22nd ICS,

pages 368–377, 2008.

[29] L. A. Barroso, J. Clidaras and U. Hlzle, The Datacenter as a Computer: An

Introduction to the Design of Warehouse-Scale Machines, Second edition,

Synthesis Lectures on Computer Architecture, 8(3):1–154, 2013.

[30] L. A. Barroso and U. Hölzle, The Case for Energy-Proportional Computing,

IEEE Computer, 40, 2007.

[31] C. Bienia, S. Kumar, J. P. Singh and K. Li, The PARSEC Benchmark

Suite: Characterization and Architectural Implications, Proc. of PACT,

pages 72–81, 2008.

[32] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi et al, The M5 Simulator:

Modeling Networked Systems, Micro, IEEE, 26(4):52–60, July 2006.

[33] S. Borkar, Thousand core chips: a technology perspective, Proceedings of

the 44th annual Design Automation Conference, pages 746–749, 2007.

164

REFERENCES

[34] J. M. Bull, A Herarchical Classification of Overheads in Parallel Programs,

Proc. of 1st International Workshop on Software Engineering for Parallel

and Distributed Systems, pages 208–219, 1996.

[35] J. Burge, P. Ranganathan and J. Wiener, Cost-aware Sheduling for Het-

erogeneous Enterprise Machines (CASH’EM), Proc. of Cluster Computing,

pages 481–487, 2007.

[36] T. E. Carlson, W. Heirman and L. Eeckhout, Sniper: Exploring the Level of

Abstraction for Scalable and Accurate Parallel Multi-core Simulation, Pro-

ceedings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, page 52, 2011.

[37] L. C. Carrington, M. Laurenzano, A. Snavely, R. L. Campbell Jr and L. P.

Davis, How Well can Simple Metrics Represent the Performance of HPC

Applications?, Proc. of Supercomputing, pages 48–48, 2005.

[38] C. Castillo, G. N. Rouskas and K. Harfoush, Efficient QoS Resource Man-

agement for Heterogeneous Grids, 22nd. IEEE International Parallel and

Distributed Processing Symposium (IPDPS08). Citeseer, 2008.

[39] K. Chakraborty and S. Roy, Topologically Homogeneous Power-performance

Heterogeneous Multicore Systems, Design, Automation Test in Europe Con-

ference Exhibition (DATE), 2011, pages 1–6, 2011.

[40] J.-J. Chen, K. Huang and L. Thiele, Power Management Schemes for Het-

erogeneous Clusters under Quality of Service Requirements, Proc. of 26th

ACM Symposium on Applied Computing, pages 546–553, 2011.

[41] Y.-S. Chen and M.-Y. Chen, On-line Energy-efficient Real-time Task

165

REFERENCES

Scheduling for a Heterogeneous Dual-core System-on-a-chip, Journal of Sys-

tems Architecture, 59(45):234 – 244, 2013.

[42] S. Cho and R. G. Melhem, On the Interplay of Parallelization, Program

Performance, and Energy Consumption, Trans. on Parallel and Distributed

Systems, 21(3):342–353, 2010.

[43] G. Chrysos and Intel, Intel Xeon Phi Coprocessor - the Architec-

ture, https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-

codename-knights-corner, November 2012.

[44] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee et al, An

Energy Case for Hybrid Datacenters, SIGOPS Operating Systems Review,

44(1):76–80, Mar. 2010.

[45] I.-H. Chung, S. R. Seelam, B. Mohr and J. Labarta, Tools for Scalable

Performance Analysis on Petascale Systems, Proc. of IPDPS, pages 1–3,

May 2009.

[46] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser et al, LogP: to-

wards a realistic model of parallel computation, Proc. of the 4th Symposium

on Principles and Practice of Parallel Programming, pages 1–12, New York,

NY, USA, 1993.

[47] K. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P.-K. Yeung et al,

On the Communication Complexity of 3D FFTs and its Implications for

Exascale, Proc. of 26th ICS, pages 205–214, 2012.

[48] K. Czechowski and R. Vuduc, A Theoretical Framework for Algorithm-

architecture Co-design, Proc. of 27th IPDPS, pages 791–802, 2013.

166

REFERENCES

[49] C. Delimitrou and C. Kozyrakis, Paragon: QoS-aware Scheduling for

Heterogeneous Datacenters, Transactions on Computer Systems (TOCS),

41(1):77–88, 2013.

[50] Y. Ding, K. Malkowski, P. Raghavan and M. Kandemir, Towards Energy

Efficient Scaling of Scientific Codes, International Symposium on Parallel

and Distributed Processing, pages 1–8, 2008.

[51] J. Dongarra, High Performance Computing - Future Directions, Keynote of

43rd ICPP, 2014.

[52] M. Duranton, D. Black-Schaffer, S. Yehia and K. De Bosschere, Comput-

ing Systems: Research Challenges Ahead: The HiPEAC Vision 2011/2012,

2011.

[53] F. Dustin and Nvidia, Low-Power Sensing and Autonomy With NVIDIA

Jetson TK1, http://devblogs.nvidia.com/parallelforall/low-power-sensing-

autonomy-nvidia-jetson-tk1, June 2014.

[54] D. Eager, J. Zahorjan and E. Lazowska, Speedup Versus Efficiency in Par-

allel Systems, IEEE Trans. on Computers, 38(3):408–423, 1989.

[55] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam and D. Burger,

Dark Silicon and the End of Multicore Scaling, Proc. of 38th ISCA, pages

365–376, 2011.

[56] M. Etinski, J. Corbalan, J. Labarta, M. Valero and A. Veidenbaum, Power-

aware Load Balancing of Large Scale MPI Applications, International Sym-

posium on Parallel Distributed Processing, pages 1–8, 2009.

[57] X. Fan, W.-D. Weber and L. A. Barroso, Power Provisioning for a

Warehouse-sized Computer, Proc. of 34th ISCA, pages 13–23, 2007.

167

REFERENCES

[58] J. Fang, A. L. Varbanescu, H. Sips, L. Zhang, Y. Che et al, Benchmarking

Intel Xeon Phi to Guide Kernel Design.

[59] J. Fang, A. L. Varbanescu, H. Sips, L. Zhang, Y. Che et al, An Empirical

Study of Intel Xeon Phi, arXiv preprint arXiv:1310.5842, 2013.

[60] M. P. I. Forum, http://www.mpi-forum.org/.

[61] S. H. Fuller and L. I. Millett, Computing performance: Game over or next

level?, Computer, 44(1):31–38, 2011.

[62] A. Gandhi, M. Harchol-Balter and M. Kozuch, Are Sleep States Effective

in Data Centers?, Proc. of IGCC, pages 1–10, 2012.

[63] A. Gandhi, M. Harchol-Balter, R. Raghunathan and M. A. Kozuch, Au-

toScale: Dynamic, Robust Capacity Management for Multi-Tier Data Cen-

ters, ACM Transactions on Compututer Systems, 30(4):14:1–14:26, Nov.

2012.

[64] S. Garg, S. Sundaram and H. D. Patel, Robust Heterogeneous Data Center

Design: a Principled Approach, SIGMETRICS Performance Evaluation

Review, 39(3):28–30, 2011.

[65] R. Ge, X. Feng and K. W. Cameron, Performance-constrained Distributed

DVS Scheduling for Scientific Applications on Power-aware Clusters, Proc.

of SC, page 34, 2005.

[66] C. George and I. , Intel Xeon Phi X100 Family Coprocessor - the Architec-

ture, https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-

codename-knights-corner, November 2012.

168

REFERENCES

[67] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al, QUAN-

TUM ESPRESSO: a Modular and Open-source Software Project for Quan-

tum Simulations of Materials, Journal of Physics: Condensed Matter,

21(39):395502 (19pp), 2009.

[68] M. Guevara, B. Lubin and B. C. Lee, Market Mechanisms for Managing

Datacenters with Heterogeneous Microarchitectures, Transactions on Com-

puter Systems (TOCS), 32(1):3, 2014.

[69] J. Guo, J. Meng, Q. Yi, V. Morozov and K. Kumaran, Analytically Mod-

eling Application Execution for Software-Hardware Co-design, Proc of 28th

IPDPS, pages 468–477, 2014.

[70] V. Gupta and K. Schwan, Brawny vs. Wimpy: Evaluation and Analysis of

Modern Workloads on Heterogeneous Processors, Parallel and Distributed

Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE

27th International, pages 74–83. IEEE, 2013.

[71] J. L. Gustafson, Reevaluating Amdahl’s law, Commun. ACM, 31(5):532–

533, May 1988.

[72] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi et al,

Sources of Error in Full-system Simulation, Proc. of Internation Symposium

on Performance Analysis of Systems and Software, pages 13–22, 2014.

[73] V. Halyo, P. LeGresley, P. Lujan, V. Karpusenko and A. Vladimirov, First

Evaluation of the CPU, GPGPU and MIC Architectures for Real Time

Particle Tracking based on Hough Transform at the LHC, arXiv preprint

arXiv:1310.7556, 2013.

[74] T. Heath, B. Diniz, E. V. Carrera, W. Meira, Jr. and R. Bianchini, Energy

169

REFERENCES

Conservation in Heterogeneous Server Clusters, Proc. of 10th PPoPP, pages

186–195, 2005.

[75] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov

et al, Design and Implementation of the Linpack Benchmark for Single and

Multi-node Systems based on Intel® Xeon Phi Coprocessor, Parallel &

Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium

on, pages 126–137, 2013.

[76] S. Herbert and D. Marculescu, Analysis of Dynamic Voltage/frequency Scal-

ing in Chip-multiprocessors, International Symposium on Low Power Elec-

tronics and Design, pages 38–43, 2007.

[77] V. Heuveline, M. J. Krause and J. Latt, Towards a Hybrid Parallelization

of Lattice Boltzmann Methods, Computers Mathematics with Applications,

58(5):1071 – 1080, 2009, Mesoscopic Methods in Engineering and Science.

[78] M. Hill and M. Marty, Amdahl’s Law in the Multicore Era, Computer,

41(7):33–38, 2008.

[79] U. Hölzle, Brawny Cores Still Beat Wimpy Cores, Most of the Time, IEEE

Micro, 2010.

[80] C. H. Hsu and W. C. Feng, A Power-aware Run-time System for High-

performance Computing, Proc. of SC, 2005.

[81] C.-H. Hsu and S. Poole, Revisiting Server Energy Proportionality, Proc. of

42nd ICPP, pages 834–840, 2013.

[82] Intel, Intel Xeon Phi Coprocessor x100 Product Family Datasheet,

http://www.intel.sg/content/dam/www/public/us/en/documents/datasheets/xeon-

phi-coprocessor-datasheet.pdf, April 2015.

170

REFERENCES

[83] E. Ipek, B. Supinski, M. Schulz and S. McKee, An Approach to Perfor-

mance Prediction for Parallel Applications, J. Cunha and P. Medeiros, ed-

itors, Euro-Par 2005 Parallel Processing, volume 3648 of Lecture Notes in

Computer Science, pages 196–205. 2005.

[84] V. Janapa Reddi, B. C. Lee, T. Chilimbi and K. Vaid, Web Search Using

Mobile Cores: Quantifying and Mitigating the Price of Efficiency, Proc. of

37th ISCA, pages 314–325, 2010.

[85] C. L. Janssen, H. Adalsteinsson and J. P. Kenny, Using Simulation to

Design Extremescale Applications and Architectures: Programming Model

Exploration, SIGMETRICS Perform. Eval. Rev., 38(4):4–8, Mar. 2011.

[86] N. Kappiah, V. W. Freeh and D. K. Lowenthal, Just in Time Dynamic Volt-

age Scaling: Exploiting Inter-node Slack to Save Energy in MPI programs,

Proc. of SC, 2005.

[87] U. R. Karpuzcu, A. Sinkar, N. S. Kim and J. Torrellas, EnergySmart:

Toward energy-efficient manycores for Near-Threshold Computing, Proc. of

19th HPCA, pages 542–553, 2013.

[88] L. Keys, S. Rivoire and J. D. Davis, The Search for Energy-efficient Building

Blocks for the Data Center, Proc. of 37th ISCA, pages 172–182, 2010.

[89] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban and C.-L. Wang, Hetero-

geneous Computing: Challenges and Opportunities, Computer, (6):18–27,

1993.

[90] R. Krishnaiyer, E. Kultursay, P. Chawla, S. Preis, A. Zvezdin et al,

Compiler-based data prefetching and streaming non-temporal store genera-

tion for the intel (r) xeon phi (tm) coprocessor, Proc. of 27th International

171

REFERENCES

Parallel and Distributed Processing Symposium Workshops & PhD Forum,

pages 1575–1586, 2013.

[91] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan and D. M. Tullsen,

Single-ISA Heterogeneous Multi-Core Architectures: The Potential for Pro-

cessor Power Reduction, Proceedings of the 36th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO 36, pages 81–, Washing-

ton, DC, USA, 2003. IEEE Computer Society.

[92] G. Lawson, M. Sosonkina and Y. Shen, Energy Evaluation for Applica-

tions with Different Thread Affinities on the Intel Xeon Phi, International

Symposium on Computer Architecture and High Performance Computing

Workshop (SBAC-PADW), pages 54–59, 2014.

[93] B. C. Lee and D. M. Brooks, Accurate and Efficient Regression Modeling

for Microarchitectural Performance and Power Prediction, In Proc. of 12th

ASPLOS, volume 41, pages 185–194, 2006.

[94] J. Lee and N. S. Kim, Optimizing Throughput of Power and Thermal-

constrained Multicore Processors using DVFS and Per-core Power-gating,

Proc. of 49th Design Automation Conference, pages 47–50, 2009.

[95] S. Lee, S. Das, T. Pham, T. Austin, D. Blaauw et al, Reducing Pipeline

Energy Demands with Local DVS and Dynamic Retiming, Proc. of ISLPED,

pages 319–324, 2004.

[96] J. Leverich and C. Kozyrakis, Reconciling High Server Utilization and Sub-

millisecond Quality-of-service, Proc. of 9th EuroSys, pages 4:1–4:14, 2014.

[97] B. Li, H.-C. Chang, S. Song, C.-Y. Su, T. Meyer et al, The Power-

Performance Tradeoffs of the Intel Xeon Phi on HPC Applications, In-

172

REFERENCES

ternational Parallel & Distributed Processing Symposium Workshops, pages

1448–1456, 2014.

[98] D. Li, B. de Supinski, M. Schulz, D. Nikolopoulos and K. Cameron, Strate-

gies for Energy-Efficient Resource Management of Hybrid Programming

Models, Trans. on Parallel and Distributed Systems, 24(1):144–157, Jan

2013.

[99] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen et al, McPAT: An

Integrated Power, Area, and Timing modeling Framework for Multicore and

Manycore Architectures, Proc. of 42nd MICRO, pages 469–480, Dec 2009.

[100] I. M. Library, https://software.intel.com/en-us/intel-mpi-library.

[101] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan and T. F. Wenisch, Thin

Servers with Smart Pipes: Designing SoC Accelerators for Memcached, Proc.

of 40th ISCA, pages 36–47, 2013.

[102] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge et al, Under-

standing and Designing New Server Architectures for Emerging Warehouse-

Computing Environments, Proc. of 35th ISCA, pages 315–326, 2008.

[103] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso and C. Kozyrakis, Towards

Energy Proportionality for Large-scale Latency-critical Workloads, Proc. of

41st ISCA, pages 301–312, 2014.

[104] F. Lu, J. Song, F. Yin and X. Zhu, Performance Evaluation of Hybrid Pro-

gramming Patterns for Large CPU/GPU Heterogeneous Clusters, Computer

physics communications, 183(6):1172–1181, 2012.

[105] M. Luo, X. Lu, K. Hamidouche, K. Kandalla and D. K. Panda, Initial Study

173

REFERENCES

of Multi-endpoint Runtime for MPI+OpenMP Hybrid Programming Model

on Multi-core Systems, Proc. of 19th PPoPP, pages 395–396, 2014.

[106] C. Ma, Y. M. Teo, V. March, N. Xiong, I. R. Pop et al, An approach

for matching communication patterns in parallel applications, Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium

on, pages 1–12. IEEE, 2009.

[107] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi et al,

Towards Energy-proportional Datacenter Memory with Mobile DRAM,

Proc. of 39th ISCA, pages 37–48, 2012.

[108] G. Mao, D. Böhme, M.-A. Hermanns, M. Geimer, D. Lorenz et al, Catching

Idlers with Ease: A Lightweight Wait-State Profiler for MPI Programs, Proc.

of the 21th European MPI Users’ Group Meeting, Sept. 2014.

[109] J. Mars and L. Tang, Whare-map: Heterogeneity in ”Homogeneous”

Warehouse-scale Computers, Proc. of ISCA, pages 619–630, 2013.

[110] J. Mars, L. Tang, R. Hundt, K. Skadron and M. L. Soffa, Bubble-Up:

Increasing Utilization in Modern Warehouse Scale Computers via Sensible

Co-locations, Proc. of 44th MICRO, pages 248–259, 2011.

[111] H. McCraw, J. Ralph, A. Danalis and J. Dongarra, Power Monitoring with

PAPI for Extreme Scale Architectures and Dataflow-based Programming

Models, Proc. of International Conference on Cluster Computing, pages

385–391, Sept 2014.

[112] H. McCraw, J. Ralph, A. Danalis and J. Dongarra, Power monitoring with

papi for extreme scale architectures and dataflow-based programming mod-

174

REFERENCES

els, Proc. of International Conference on Cluster Computing, pages 385–391,

2014.

[113] D. S. McFarlin, C. Tucker and C. Zilles, Discerning the Dominant Out-of-

order Performance Advantage: Is It Speculation or Dynamism?, Proc. of

18th ASPLOS, pages 241–252, 2013.

[114] M. K. Mehmet-Ali, J. F. Hayes and A. Elhakeem, Traffic Analysis of a Local

area Network with a Star Topology, Trans. on Communications, 36(6):703–

712, 1988.

[115] D. Meisner, B. T. Gold and T. F. Wenisch, PowerNap: Eliminating Server

Idle Power, Proc. of 14th ASPLOS, pages 205–216, 2009.

[116] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber and T. F. Wenisch,

Power Management of Online Data-intensive Services, Proceedings of the

38th ISCA, pages 319–330, 2011.

[117] D. Meisner and T. F. Wenisch, Does Low-power Design Imply Energy Effi-

ciency for Data Centers?, Proc. of 17th ISLPED, pages 109–114, 2011.

[118] D. Meisner and T. F. Wenisch, Dreamweaver: Architectural support for

deep sleep, Proc. of ASPLOS, pages 313–324, 2012.

[119] K. Meng, R. Joseph, R. P. Dick and L. Shang, Multi-optimization Power

Management for Chip Multiprocessors, Proc. of 17th PACT, pages 177–186,

2008.

[120] A. Merkel, J. Stoess and F. Bellosa, Resource-conscious Scheduling for

Energy Efficiency on Multicore Processors, Proc. of 5th European conference

on Computer systems, EuroSys ’10, pages 153–166, 2010.

175

REFERENCES

[121] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Rajamony and R. Rajku-

mar, Critical Power Slope: Understanding the Runtime Effects of Frequency

Scaling, Proc. of 16th ICS, pages 35–44, 2002.

[122] A. Morris, A. Malony, S. Shende and K. Huck, Design and Implementation

of a Hybrid Parallel Performance Measurement System, Proc. of 39th ICPP,

pages 492–501, Sept 2010.

[123] O. MPI, http://www.open-mpi.org/.

[124] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra and

S. Vishin, Hierarchical Power Management for Asymmetric Multi-core in

Dark Silicon Era, Proc. of 50th DAC, pages 174:1–174:9, 2013.

[125] MVAPICH, http://mvapich.cse.ohio-state.edu/.

[126] R. Nathuji, C. Isci and E. Gorbatov, Exploiting Platform Heterogeneity for

Power Efficient Data Centers, Proc. of 4th ICAC, pages 5–5, 2007.

[127] NRDC and Anthesis, Scaling Up Energy Efficiency Across the

Data Center Industry: Evaluating Key Drivers and Barriers,

http://www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf,

2014.

[128] V. Patil and V. Chaudhary, Rack Aware Scheduling in HPC Data Centers:

An Energy Conservation Strategy, Proc. of IPDPSW, pages 814–821, May

2011.

[129] S. J. Pennycook, S. D. Hammond, S. A. Jarvis and G. R. Mudalige,

Performance Analysis of a Hybrid MPI/CUDA Implementation of the

NASLU Benchmark, ACM SIGMETRICS Performance Evaluation Review,

38(4):23–29, 2011.

176

REFERENCES

[130] J. Polo, D. Carrera, Y. Becerra, V. Beltran, J. Torres et al, Performance

Management of Accelerated Mapreduce Workloads in Heterogeneous Clus-

ters, Proc. of 29th International Conference on Parallel Processing, pages

653–662, 2010.

[131] M. Pricopi and T. Mitra, Bahurupi: A Polymorphic Heterogeneous Multi-

core Architecture, ACM TACO, 8(4):22:1–22:21, 2012.

[132] R. Rabenseifner, G. Hager and G. Jost, Hybrid MPI/OpenMP Parallel

Programming on Clusters of Multi-core SMP Nodes, Proc. of 17th PDP,

pages 427–436, 2009.

[133] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang and X. Zhu, No

Power Struggles: Coordinated Multi-level Power Management for the Data

Center, ACM SIGARCH Computer Architecture News, volume 36, pages

48–59, 2008.

[134] A. Ramachandran, J. Vienne, R. Van Der Wijngaart, L. Koesterke and

I. Sharapov, Performance Evaluation of NAS Parallel Benchmarks on Intel

Xeon Phi, Parallel Processing (ICPP), 2013 42nd International Conference

on, pages 736–743, 2013.

[135] A. Ramachandran, J. Vienne, R. Van Der Wijngaart, L. Koesterke and

I. Sharapov, Performance Evaluation of NAS Parallel Benchmarks on Intel

Xeon Phi, 42nd International Conference on Parallel Processing (ICPP),

pages 736–743, Oct 2013.

[136] L. Ramapantulu, D. Loghin and Y. M. Teo, An Approach for Energy Effi-

cient Execution of Hybrid Parallel Programs, Proc. of International Parallel

and Distributed Processing Symposium, pages 1000–1009, 2015.

177

REFERENCES

[137] L. Ramapantulu, B. M. Tudor, D. Loghin, T. Vu and Y. M. Teo, Modeling

the Energy Efficiency of Heterogeneous Clusters, Proc. of 43rd ICPP, pages

321–330, 2014.

[138] S. Ramos and T. Hoefler, Modeling Communication in Cache-coherent SMP

systems: A Case-study with Xeon Phi, Proceedings of the 22nd international

symposium on High-performance parallel and distributed computing, pages

97–108, 2013.

[139] D. Roca Maŕı, High Level Queuing Architecture Model for High-end Pro-

cessors, 2014.

[140] K. Rupp, CPU, GPU and MIC Hardware Characteristics over

Time, http://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-

characteristics-over-time/, June 2013.

[141] F. Ryckbosch, S. Polfliet and L. Eeckhout, Trends in Server Energy Propor-

tionality, Computer, 44(9):69–72, 2011.

[142] M. Sadiku and S. Musa, Local Area Networks, Performance Analysis of

Computer Networks, pages 167–195. Springer International Publishing, 2013.

[143] V. Sarah, Dell offers 64-bit ARM Microserver Proof-

of-concept for Hyperscale on the Heels of Open Com-

pute Summit Momentum: http://en.community.dell.com/dell-

blogs/dell4enterprise/b/dell4enterprise/archive/2014/02/04/dell-offers-

64-bit-arm-microserver-proof-of-concept-for-hyperscale-on-the-heels-of-

open-compute-summit-momentum, [online], Feb. 2014.

[144] D. Schmidl, T. Cramer, S. Wienke, C. Terboven and M. S. Müller, Assessing

178

REFERENCES

the Performance of OpenMP Programs on the Intel Xeon Phi, Euro-Par

2013 Parallel Processing, pages 547–558. Springer, 2013.

[145] Y. Shang, D. Li and M. Xu, A Comparison Study of Energy Proportionality

of Data Center Network Architectures, Proc. of 32nd ICDCSW, pages 1–7,

2012.

[146] Y. S. Shao and D. Brooks, Energy Characterization and Instruction-level

Energy Model of Intel’s Xeon Phi Processor, Proceedings of the International

Symposium on Low Power Electronics and Design, pages 389–394. IEEE

Press, 2013.

[147] A. Sharifi, A. K. Mishra, S. Srikantaiah, M. Kandemir and C. R. Das, PE-

PON: Performance-aware Hierarchical Power Budgeting for NoC based Mul-

ticores, Proc. of 21st PACT, pages 65–74, 2012.

[148] M. Si, A. J. Peña, P. Balaji, M. Takagi and Y. Ishikawa, MT-MPI: Mul-

tithreaded MPI for Many-core Environments, Proc. of the 28th ICS, pages

125–134, 2014.

[149] D. C. Snowdon, E. Le Sueur, S. M. Petters and G. Heiser, Koala: a Platform

for OS-level Power Management, Proc. of 4th ACM European conference on

Computer systems, EuroSys ’09, pages 289–302, 2009.

[150] S. Song, C.-Y. Su, R. Ge, A. Vishnu and K. Cameron, Iso-Energy-Efficiency:

An Approach to Power-Constrained Parallel Computation, International

Symposium on Parallel Distributed Processing, pages 128–139, 2011.

[151] SPEC, SPEC Power and Performance, Benchmark

Methodology V2.1, https://www.spec.org/power/docs/SPEC-

Power and Performance Methodology.pdf, 2011.

179

REFERENCES

[152] J. V.-N. Steven, Canonical claim the First ARM 64-bit Server

production Software Deployment, Linux and Open Source:

http://www.linuxtoday.com/upload/applied-micro-canonical-claim-the-

first-arm-64-bit-server-production-software-deployment-140529135505.html,

[online], May. 2014.

[153] B. Subramaniam and W.-c. Feng, Towards Energy-proportional Computing

for Enterprise-class Server Workloads, Proc. of 4th ACM/SPEC Interna-

tional Conference on Performance Engineering, pages 15–26, 2013.

[154] K. Sudan, S. Balakrishnan, S. Lie, M. Xu, D. Mallick et al, A Novel Sys-

tem Architecture for Web Scale Applications using Lightweight CPUs and

Virtualized I/O, Proc. of 19th HPCA, pages 167–178, 2013.

[155] V. Taylor, X. Wu and R. Stevens, Prophesy: an Infrastructure for Perfor-

mance Analysis and Modeling of Parallel and Grid applications, SIGMET-

RICS Perf. Eval. Review, 30(4):13–18, 2003.

[156] D. Tsirogiannis, S. Harizopoulos and M. A. Shah, Analyzing the Energy

Efficiency of a Database Server, Proc. of SIGMOD, pages 231–242, 2010.

[157] B. M. Tudor and Y. M. Teo, A Practical Approach for Performance Analysis

of Shared-memory Programs, Proc. of 25th IPDPS, pages 652–663, 2011.

[158] B. M. Tudor and Y. M. Teo, On Understanding the Energy Consumption

of ARM-based Multicore Servers, Proc. of SIGMETRICS, pages 267–278,

2013.

[159] D. Turner, A. Oline, X. Chen and T. Benjegerdes, Integrating new capabili-

ties into netpipe, Recent Advances in Parallel Virtual Machine and Message

Passing Interface, pages 37–44. Springer, 2003.

180

REFERENCES

[160] K. Van Craeynest and L. Eeckhout, Understanding Fundamental Design

Choices in Single-ISA Heterogeneous Multicore Architectures, ACM TACO,

9(4):32:1–32:23, 2013.

[161] R. F. Van der Wijngaart and H. Jin, NAS Parallel Benchmarks, Multi-zone

Versions, 2003.

[162] G. Varsamopoulos and S. Gupta, Energy Proportionality and the Future:

Metrics and Directions, Proc. of 39th ICPPW, pages 461–467, 2010.

[163] J. S. Vetter and M. O. McCracken, Statistical Scalability Analysis of Com-

munication Operations in Distributed Applications, Proc. of 8th PPoPP,

pages 123–132, 2001.

[164] J. S. Vetter and F. Mueller, Communication characteristics of large-scale

scientific applications for contemporary cluster architectures, Journal of

Parallel and Distributed Computing, 63(9):853–865, 2003.

[165] A. Vladimirov and V. Karpusenko, Heterogeneous Clustering with Homoge-

neous Code: Accelerate MPI Applications without Code Surgery using Intel

Xeon Phi coprocessors, Colfax White Paper, 2013.

[166] J. Wang, N. Rubin, H. Wu and S. Yalamanchili, Accelerating Simulation of

Agent-Based Models on Heterogeneous Architectures, Proc. of 6th Workshop

on GPGPU, 2013.

[167] V. M. Weaver, D. Terpstra, H. McCraw, M. Johnson, K. Kasichayanula et al,

Papi 5: Measuring power, energy, and the cloud, Proc. of International

Symposium on Performance Analysis of Systems and Software, pages 124–

125, 2013.

181

REFERENCES

[168] M. Weiser, B. Welch, A. Demers and S. Shenker, Scheduling for Reduced

CPU Energy, Proc. of 1st USENIX conference on Operating Systems Design

and Implementation, 1994.

[169] A. Wierman, L. L. H. Andrew and A. Tang, Power-aware Speed Scaling

in Processor Sharing systems: Optimality and Robustness, Perform. Eval.,

69(12):601–622, Dec. 2012.

[170] D. Wong and M. Annavaram, Knightshift: Scaling the Energy Proportion-

ality Wall through Server-level Heterogeneity, Proc. of 45th International

Symposium on Microarchitecture, pages 119–130, 2012.

[171] D. Wong and M. Annavaram, Scaling the Energy Proportionality Wall with

KnightShift, Micro, IEEE, 33(3):28–37, 2013.

[172] D. Wong and M. Annavaram, Implications of High Energy Proportional

Servers on Cluster-wide Energy Proportionality, Proc. of 20th HPCA, pages

142–153, 2014.

[173] D. H. Woo and H.-H. S. Lee, Extending Amdahl’s Law for Energy-Efficient

Computing in the Many-Core Era., IEEE computer, 41(12):24–31, 2008.

[174] H. Yang, A. Breslow, J. Mars and L. Tang, Bubble-flux: Precise Online

QoS Management for Increased Utilization in Warehouse Scale Computers,

Proc. of 40th ISCA, pages 607–618, 2013.

[175] S. Yeo and H.-H. S. Lee, Using Mathematical Modeling in Provisioning

a Heterogeneous Cloud Computing Environment, Computer, 44(8):55–62,

2011.

[176] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz and I. Stoica, Improv-

ing MapReduce Performance in Heterogeneous Environments, Proc. of the

182

REFERENCES

8th USENIX Conference on Operating Systems Design and Implementation,

pages 29–42, Berkeley, CA, USA, 2008.

[177] X. Zhu, C. He, K. Li and X. Qin, Adaptive Energy-efficient Scheduling

for Real-time Tasks on DVS-enabled Heterogeneous Clusters, Journal of

Parallel and Distributed Computing, 72(6):751–763, 2012.

[178] S. Zikos and H. D. Karatza, Performance and Energy Aware Cluster-level

Scheduling of Compute-intensive Jobs with Unknown Service Times , Sim-

ulation Modelling Practice and Theory, 19(1):239 – 250, 2011.

[179] Z. Zong, X. Qin, X. Ruan, K. Bellam, M. Nijim et al, Energy-efficient

Scheduling for Parallel Applications Running on Heterogeneous Clusters,

Proc. of ICPP, 2007.

183

Appendix A

Experiment Setup

This thesis presents a measurement-based modeling approach for time-energy per-

formance analysis of heterogeneous systems and hybrid programs. This section

describes the setup of the experiments conducted for this thesis. We first describe

the complete set of programs used, followed by the software setup needed, the

hardware used for the experiments and lastly the validation results.

A.1 Programs

As the core model presented in this thesis is applicable for datacenter workloads,

there are six programs representing different performance bottlenecks and with

different deadline requirements. EP, from NAS Parallel Benchmarks (NPB), is

an embarrassingly parallel distributed-memory program that generates random

numbers for Monte-Carlo numerical simulation. Memcached is widely used by

Facebook, Amazon, Twitter, among others, as an in-memory key-value distributed

storage. When a key request arrives, a front-end node dispatches the request

to a set of nodes that are responsible for storing the key-values belonging to

an application. All nodes in the pool perform a key look-up computation, but

185

Chapter A. Experiment Setup

typically few nodes return the value. However, this operation may exert complex

service demands on core, memory and I/O devices. We use memslap running on

another system to trigger requests to the memcached server over a 1 Gbps network

connection. Note that memslap generates requests with fixed key-value size and

uniform popularity.

From the PARSEC benchmark suite, x264 represents the widely used encoding

algorithm for streaming video, and blackscholes represents a quantitative model

for determining option pricing. The open source speech recognition engine Julius

represents the increasing adoption of real-time speech processing workloads orig-

inating from smart devices. To analyze the energy efficiency of web security, we

use the openssl RSA-2048 speed benchmark because major web players are in-

creasingly concerned with the in-transit data security and are hardening the https

encryptions.

While the core model is applicable on heterogeneous systems, to illustrate the

scalability of the core mode, this thesis presents a communication model applicable

on generic hybrid parallel programs. To illustrate the accuracy of the communi-

cation model, we selected a representative subset of five hybrid openMP+MPI

benchmark programs for validation. This subset was chosen to represent a wide

range of HPC domain applications that exert different inter and intra-node com-

munication resource demands and use different programming languages. We use

three hybrid programs from NASA Parallel Benchmark (NPB) suite. These solve

discretized version of Navier-Stokes equations in three dimensions, and are (i)

Lower-Upper Symmetric Gauss-Seidel (LU), (i) Scalar Penta-diagonal (SP), and

(iii) Block Tri-diagonal (BT). The fourth program uses the Car-Parinello (CP)

method to simulate H2O molecules from the Quantum Espresso suite. While

the above programs are in Fortran, we chose the fifth program in C++, to il-

lustrate that our approach is independent of the programming language. This

186

Chapter A. Experiment Setup

is an open source Lattice Boltzmann (LB) code, that simulates fluid flows in a

three-dimensional lid-driven cavity.

Table A.1 summarizes the complete set of programs used in the thesis.

Domain Benchmark Suite Program
Monte-Carlo Simulation NAS NPB (v3.3) EP
Webserver Requests memcached.org (v1.4.25) memcached
Streaming Video PARSEC (v3.0) x264
Financial PARSEC (v3.0) blacksc-

holes
Speech Recognition http://julius.osdn.jp (v4.2.3) Julius
Web Security openssl speed RSA-2048
3D Navier-Stokes NAS Multi-zone LU
Equation Solver Parallel Benchmark SP

(NPB3.3-MZ) BT
Electronic-structure Calculations Quantum Espresso (v5.1) CP
Computational Fluid Dynamics OpenLB (olb-0.8r0) LB

Table A.1: Programs used in thesis

A.2 Systems

Many datacenter workloads must obey strict service time deadlines. To service

requests within a deadline, processing is distributed over hundreds of server nodes.

Jobs arrive at front-end nodes and are forwarded to a cluster of compute nodes

that service job requests. Both response time and the energy incurred by a job are

dominated by compute nodes. Thus, this thesis focuses on the energy efficiency

of compute nodes only. Table A.2 presents the full set of compute systems used

in the thesis. The nodes are tabulated in the ascending order of number of cores

and system idle power.

The ARM server node analyzed throughout this thesis is the Odroid-X devel-

opment board with Samsung Exynos 4412 System on a Chip (SoC). Specific to

the Exynos 4412 SoC is a quad-core ARM Cortex-A9 processor. The operating

core clock frequencies supported are between 200 MHz and 1400 MHz, in incre-

187

Chapter A. Experiment Setup

Node
ARM Cortex AMD Opteron Intel Xeon Intel Xeon

A9 K10 E5 Phi (5110P)
Year procured 2012 2010 2013 2012
ISA ARMv7-A x86 64 x86 64 x8664
Clock Freq 0.2–1.4 GHz 0.8–2.1 GHz 1.2–1.8 GHz 0.6–1.0GHz
Cores/node 4 6 8 60
L1 data cache 32KB / core 64KB / core 32KB / core 32KB / core
L2 cache 1MB / node 512KB / core 2MB / node 512KB /core
L3 cache NA 6MB / node 20MB / node NA
Memory 1GB LP-DDR2 8GB DDR3 8GB DDR3 8GB DDR3
I/O bandwidth 100Mbps 1Gbps 1Gbps NA
Peak power [W] 5 60 80 225
Power efficiency [Gflops/W] 0.16 0.59 1.37 4.5

Table A.2: Systems used in thesis

ments of 100 MHz, the available bandwidth between cores and main memory is

800 MB/s, and the network device is a 100 Mbps Ethernet card. The AMD server

node consists of the K10 processor architecture with six cores, each operating at

a maximum frequency of 2.10GHz. These six cores share a 6MB L3 cache among

them and are equipped with a 8 GB dual-channel DDR3 RAM. The Intel node

is a Supermicro 813M 1U server system based on two Intel Xeon E5-2603 CPUs

with four cores each. This system has 8 GB DDR3 memory, 1 TB hard disk and 1

Gbit Ethernet network card. The data for the Intel Xeon Phi coprocessor, 5110P

is from the data sheet specification of Intel [82].

A.3 Software Setup

To derive workload dependent architectural artefacts, we use baseline executions

of the program on a single node. To determine the overlap among useful com-

putation cycles, data-accesses from shared-memory and network, we measure the

translation of a given parallel program into useful work cycles (ws). To model the

non-overlapped intra-node contention, we measure the stall cycles due to mem-

ory accesses (ms). These measurements are recorded for a single node across the

possible values of c and f using hardware performance counters. Hence, these

188

Chapter A. Experiment Setup

measurements are non-intrusive with respect to the execution of the application.

We use the linux perf tool to measure backend stall cycles and derive the work

cycles from the total cycles and the backend stall cycles.

Program dependent communication characteristics, such as number of commu-

nication calls (η) and communication volume per message call (ν) are measured

using the lightweight profiling tool mpiP. It suffices to perform baseline executions

only on a single node, as workload characteristics from these measured values can

be inferred from ℓ and τ . To measure communication overheads of MPI over

TCP for a given link bandwidth, we use NetPIPE. This is used to measure the

throughput loss due to the additional software layers between the hybrid program

and the hardware drivers. This characterization of the network link latency and

bandwidth is used to compute network service time of the communication model.

Table A.3 presents the versions of the software used for conducting the exper-

iments.

Software Version

Host OS, Linux
A9: 3.6.11 32-bit
K10: 2.6.35 64-bit
E5: 3.8.0 64-bit

perf
A9: 3.6.0
K10: 3.13.11-ckt20
E5: 3.8.13.13

Open MPI 1.6.5
NetPIPE 3.7.2
mpiP 3.4.1
Xeon Phi uOS Linux 2.6.38.8
Xeon Phi software stack MPSS 3.4.2
PAPI 5.3.2

Table A.3: Software versions used in thesis

189

Chapter A. Experiment Setup

A.4 Validation Results

In this section, we present the absolute validation numbers for both execution

time and energy. Table A.4 and A.5 present the measured and model determined

values of execution time across all possible active core values for the single ARM

and AMD node respectively.

Configuration
Execution Time [s]

EP memcached x264 blackscholes Julius RSA-2048
Freq (GHz) Cores Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted

0.2 1 2390.66 2433.86 245.72 209.66 4393.39 4603.83 282.10 280.40 78.53 90.81 25.67 27.87
0.5 1 973.43 973.54 112.86 104.04 1756.45 1841.53 112.47 112.16 31.81 36.32 10.08 11.13
0.8 1 593.77 608.46 88.03 89.35 1102.61 1150.96 70.36 70.16 20.32 22.70 6.29 6.95
1.1 1 445.65 442.52 95.67 101.14 813.05 837.06 51.26 51.12 14.93 16.51 4.57 5.05
1.4 1 343.60 347.69 87.32 94.64 642.17 657.69 40.33 40.26 11.93 12.97 3.59 3.97
0.2 2 1207.35 1216.93 175.60 194.25 2292.48 2301.92 158.60 157.97 79.65 90.81 12.72 13.96
0.5 2 493.14 486.77 74.06 69.14 920.23 920.77 63.37 63.19 32.81 36.32 5.05 5.56
0.8 2 306.45 304.23 63.73 59.92 578.91 575.48 39.63 39.49 21.19 22.70 3.15 3.47
1.1 2 217.96 221.26 70.05 65.54 426.62 422.57 28.87 28.79 15.95 16.58 2.29 2.53
1.4 2 177.74 173.85 66.96 62.92 338.43 335.53 22.83 22.70 12.91 13.42 1.80 1.98
0.2 3 826.62 811.29 139.95 152.43 1538.79 1534.61 118.35 117.67 81.07 90.81 8.48 9.31
0.5 3 332.32 324.51 69.48 64.86 619.22 613.84 47.09 46.95 33.96 36.32 3.36 3.71
0.8 3 208.49 202.82 60.13 56.17 391.46 386.52 29.40 29.31 22.23 23.09 2.10 2.32
1.1 3 151.39 147.51 66.21 62.29 289.32 286.09 21.42 21.36 17.01 17.65 1.53 1.68
1.4 3 119.51 115.90 63.58 59.92 230.38 228.02 16.88 16.82 14.00 14.52 1.20 1.32
0.2 4 617.81 608.46 135.17 125.83 1173.19 1150.96 97.63 97.19 92.79 90.81 6.34 6.98
0.5 4 244.99 243.39 65.98 61.68 474.74 461.05 38.88 38.77 41.54 36.50 2.52 2.78
0.8 4 150.97 152.12 58.56 54.71 303.56 292.55 24.29 24.21 26.36 24.22 1.58 1.74
1.1 4 112.23 110.63 63.60 59.92 224.92 217.42 17.69 17.64 21.42 19.12 1.15 1.26
1.4 4 87.33 86.92 62.03 58.26 181.30 173.53 13.93 13.89 17.70 15.90 0.90 0.99

Table A.4: Execution time validation on a single ARM node

Configuration
Execution Time [s]

EP memcached x264 blackscholes Julius RSA-2048
Freq (GHz) Cores Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted

0.8 1 329.05 328.72 56.47 51.65 119.23 119.82 37.87 37.78 7.67 8.36 0.95 0.94
1.4 1 186.84 187.84 56.45 52.08 69.17 68.89 21.58 21.78 4.32 4.72 0.54 0.54
2.1 1 124.73 125.10 56.31 51.23 47.05 46.33 14.44 14.46 2.96 3.15 0.36 0.36
0.8 2 165.79 165.44 56.84 52.08 62.81 59.86 21.23 21.15 7.61 8.32 0.48 0.47
1.4 2 94.77 94.92 56.21 51.23 36.91 34.43 12.07 12.19 4.34 4.75 0.27 0.27
2.1 2 63.72 63.60 56.65 52.08 25.44 23.21 8.04 8.10 2.96 3.18 0.18 0.18
0.8 3 110.66 110.61 56.13 51.65 42.17 39.90 15.60 15.73 7.57 8.38 0.32 0.31
1.4 3 63.65 63.64 56.78 52.00 24.76 23.04 8.94 9.00 4.34 4.78 0.18 0.18
2.1 3 42.76 42.76 55.77 52.43 17.27 15.60 6.02 5.97 2.95 3.22 0.12 0.12
0.8 4 84.93 83.22 56.76 62.05 31.75 29.93 12.77 12.83 7.53 8.42 0.24 0.24
1.4 4 47.90 48.02 55.79 52.00 18.69 17.18 7.27 7.32 4.37 4.83 0.14 0.13
2.1 4 32.34 32.35 56.41 52.00 13.11 11.65 5.07 5.03 2.94 3.25 0.09 0.09
0.8 5 67.10 66.84 55.85 56.09 25.59 23.95 11.16 11.14 7.53 8.42 0.19 0.19
1.4 5 38.61 38.65 56.38 52.00 15.09 13.85 6.34 6.34 4.34 4.81 0.11 0.11
2.1 5 26.13 26.11 56.23 51.15 10.65 9.35 4.24 4.27 2.94 3.24 0.07 0.07
0.8 6 56.18 55.93 56.66 52.00 21.46 20.03 10.03 10.02 7.55 8.45 0.16 0.16
1.4 6 32.45 32.40 56.49 52.00 12.71 11.57 5.81 5.80 4.30 4.84 0.09 0.09
2.1 6 22.00 21.96 56.39 52.00 8.94 7.82 3.83 3.82 2.99 3.25 0.06 0.06

Table A.5: Execution time validation on a single AMD node

Table A.6 and A.7 present the measured and model determined values of

energy across all possible active core values for the single ARM and AMD node

respectively.

190

Chapter A. Experiment Setup

Configuration
Energy [J]

EP memcached x264 blackscholes Julius RSA-2048
Freq (GHz) Cores Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted

0.2 1 4849.20 4537.49 550.80 471.09 8917.20 9287.42 546.12 563.61 158.40 180.15 158.40 162.04
0.5 1 1893.60 1901.16 219.60 244.45 3484.80 3912.11 221.04 234.50 72.00 75.05 158.40 170.76
0.8 1 1245.60 1269.16 190.80 218.85 2372.40 2602.40 148.32 155.75 46.80 49.95 172.80 181.25
1.1 1 1047.60 1019.13 237.60 256.81 2023.20 2085.59 120.24 124.30 36.00 39.85 187.20 199.11
1.4 1 1036.80 948.77 273.60 262.76 2185.20 1935.48 111.96 114.68 32.40 36.76 244.80 234.20
0.2 2 2466.00 2305.64 442.80 446.98 4676.40 4738.93 298.44 321.34 162.00 182.51 162.00 165.48
0.5 2 1036.80 1006.21 147.60 168.25 1958.40 2068.44 128.88 138.92 72.00 79.17 169.20 179.97
0.8 2 709.20 689.20 140.40 149.22 1389.60 1413.07 86.76 94.37 50.40 53.95 187.20 195.88
1.1 2 604.80 580.25 180.00 173.12 1278.00 1208.06 73.80 78.61 43.20 45.08 223.20 228.58
1.4 2 658.80 563.31 212.40 180.08 1342.80 1182.42 74.16 75.55 46.80 44.04 309.60 282.15
0.2 3 1663.20 1558.39 313.20 361.24 3088.80 3215.55 227.88 241.94 162.00 184.69 162.00 168.48
0.5 3 730.80 698.75 140.40 154.28 1404.00 1438.34 98.64 106.91 75.60 82.28 172.80 187.41
0.8 3 525.60 493.90 129.60 135.86 1051.20 1026.42 68.40 74.57 54.00 58.37 201.60 212.22
1.1 3 478.80 431.36 169.20 159.46 997.20 910.77 59.76 64.32 50.40 51.96 252.00 255.43
1.4 3 511.20 437.67 205.20 166.69 1105.20 944.44 60.12 64.30 54.00 52.90 370.80 335.63
0.2 4 1260.00 1191.69 262.80 300.74 2376.00 2458.31 189.00 203.05 187.20 188.04 165.60 171.67
0.5 4 565.20 546.73 133.20 145.23 1137.60 1128.96 81.72 91.58 93.60 85.92 180.00 195.79
0.8 4 410.40 395.37 126.00 130.98 874.80 830.32 56.52 65.21 68.40 64.02 216.00 227.51
1.1 4 388.80 355.08 162.00 151.20 860.40 760.54 51.12 57.73 68.40 59.36 280.80 282.82
1.4 4 442.80 377.62 187.20 160.18 928.80 829.68 56.52 60.36 61.20 62.78 432.00 392.04

Table A.6: Energy validation on a single ARM node

Configuration
Energy [J]

EP memcached x264 blackscholes Julius RSA-2048
Freq (GHz) Cores Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted Measured Predicted

0.8 1 17054.13 15263.11 2371.73 2552.49 5652.73 5851.94 1933.31 1847.54 478.08 429.74 3800.00 3911.71
1.4 1 10343.40 8886.97 2378.75 2606.23 3452.50 3433.04 1254.16 1084.51 228.98 242.59 4340.00 4000.57
2.1 1 6360.71 6132.54 2782.40 2592.70 2438.68 2402.94 823.57 745.62 151.77 162.03 4700.00 4199.27
0.8 2 9007.80 7918.46 2436.03 2657.60 3033.20 3003.36 1048.37 1063.96 497.07 462.85 3944.00 4010.23
1.4 2 5444.89 4710.13 2812.54 2648.80 1859.55 1796.33 669.27 634.87 242.06 264.36 4592.00 4193.68
2.1 2 3811.08 3373.51 3036.10 2710.11 1323.72 1304.81 528.52 450.64 171.09 176.82 5168.00 4592.40
0.8 3 5603.24 5452.45 2480.05 2718.14 1924.36 2055.87 769.89 813.06 546.11 503.30 4088.00 4110.40
1.4 3 3474.64 3304.75 2633.52 2756.49 1369.45 1255.40 497.64 489.07 313.50 287.06 4880.00 4387.41
2.1 3 2450.56 2439.77 2593.00 2697.04 1104.18 943.19 416.66 356.93 192.88 193.32 5528.00 4976.46
0.8 4 4373.74 4221.62 2927.58 3340.47 1404.03 1582.02 659.95 681.13 520.05 540.92 4556.00 4208.65
1.4 4 2913.66 2604.78 2944.78 2728.73 1031.56 977.13 417.45 414.94 270.47 310.21 5132.00 4579.36
2.1 4 2288.33 1975.66 2750.45 2654.90 713.81 755.56 352.71 320.42 231.96 208.80 5600.00 5365.82
0.8 5 3777.65 3486.42 2927.70 3060.19 -91.76 1298.12 564.17 607.51 664.83 577.85 4736.00 4308.27
1.4 5 2379.96 2185.60 2761.25 2713.05 779.32 819.00 386.01 374.42 315.67 330.33 5024.00 4768.11
2.1 5 1816.09 1699.70 2989.12 2599.30 733.91 646.24 338.47 289.50 249.21 222.30 5960.00 5768.73
0.8 6 3061.58 2997.11 2673.41 2854.37 1199.00 1111.71 516.21 560.33 588.10 616.42 4484.00 4412.33
1.4 6 1892.15 1906.97 2724.88 2701.57 810.97 710.34 367.10 355.80 327.69 353.03 5276.00 4967.60
2.1 6 1381.08 1517.75 2756.56 2633.49 650.17 573.47 324.47 274.84 268.44 236.99 6680.00 6158.39

Table A.7: Energy validation on a single AMD node

191

Appendix B

Model Parameters

The measurement-driven inputs to our model are obtained from workload char-

acterization using baseline executions and power characterization using micro-

benchmarks. Typical scale-out workloads used in datacenters exhibit a lot of

parallelism due to both user requests and data. The computations of such work-

loads can be divided into repetitive parallel execution phases within a request and

also across a batch of requests.

The representative subset Ps of the scale-out workload used in our model is this

repeating parallel phase. For example, in memcached program, each of the GET,

SET and DELETE request types are a parallel phase of execution. We measure

the number of instructions, work cycles and stall cycles for a small subset of

GET, SET and DELETE commands to capture the architecture specific workload

parameters for each type of node. The measurements used in this thesis are done

using hardware event counters in the respective nodes. The measurements are done

only once for each type of node being used. It suffices to do the measurements on

a single node of each type, because all the nodes of the same type exhibit very

similar power characteristics, which we have validated. Table B.1 presents the

192

Chapter B. Model Parameters

complete list of notations1 used in this thesis.

1Notations with ∗ denotes measured parameters of the model.

193

Chapter B. Model Parameters

Symbol Description
Workload Parameters

P program
Ps program P with smaller input size
S number of iterations in P

Ss number of iterations in Ps

W total work units of P
ri proportion of workload executed on nodes of type i, where i ∈ [1 · · ·dmax]

λI/O∗ I/O requests inter-arrival rate
η∗ number of messages sent/received by P

ν∗ volume (in bytes) per message
System Parameters

dmax maximum degree of inter-node heterogeneity of the system, i ∈ [1 · · ·dmax]
nmax maximum number of nodes of type i
cmax maximum number of cores for nodes of type i
fmax maximum core clock frequency for nodes of type i
B communication throughput

Baseline Execution
Is

∗ number of instructions in Ps

ws
∗ number of work cycles in Ps

bs
∗ number of non-memory stall cycles in Ps

ms
∗ number of memory-related stall cycles in Ps

Us
∗ Average CPU utilization for Ps

Time Model
I number of instructions in P

w number of work cycles for P
b number of non-memory stall cycles for P
m number of memory-related stall cycles for P
U CPU utilization for P
n number of nodes
c number of active cores per node
f operating core clock frequency

TCPU total CPU response time for P
Tcore total core response time for P
Tmem total memory response time for P
TI/O total I/O response time for P
TI/OT

total I/O transfer time for P
Tw,net waiting time due to network contention
Ts,net non-overlapped network service time
T total execution time of program P

Power Parameters[W]
PCPU,act

∗ CPU power when executing work cycles
PCPU,stall

∗ CPU power when memory-related stalls
Pmem

∗ power consumed by memory operations
Pnet

∗ power consumed by network card
Psys,idle

∗ power consumed by idle system
Energy Model[J]

ECPU,act total energy consumed when CPU is active
ECPU,stall total energy consumed when CPU is stalling
Emem total energy consumed by memory sub-system
Enet total energy consumed by network sub-system
Eidle total energy consumed by idle system
E total energy consumed by a program

Table B.1: Notations used in thesis

194

Appendix C

Sensitivity Analysis

C.1 What is a Good Mix of High-performance

to Low-power Nodes?

Since datacenters often have an upper bound on their peak power consumption,

we consider a fixed peak power budget drawn by our system that constrains the

maximum number of nodes. Based on peak power proportion between ARM and

AMD nodes, we analyze the impact of replacing some high-performance AMD

nodes by low-power ARM nodes such that the total peak power is within the

budget.

Figures C.1 and C.2 show1 the impact of changing the number of ARM and

AMD nodes, for a given budget of 1kW. We use an ARM to AMD power sub-

stitution ratio2 of 8:1. The graphs clearly show that heterogeneous mixes with a

larger number of ARM nodes incur lower energy for a given execution time.

1Henceforth each figure plots Pareto frontiers with x-axis in log-scale.
2Since each AMD node draws a peak power of 60W and each ARM node draws a peak power

of 5W, one AMD node can be replaced by 12 ARM nodes. Factoring the 20W peak power drawn
by the switch [3] that connects the ARM nodes, gives us a power substitution ratio of 8:1.

195

Chapter C. Sensitivity Analysis

19.0

19.5

20.0

20.5

21.0

21.5

 10 100 1000

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

ARM 0:AMD 16
ARM 16:AMD 14
ARM 32:AMD 12

ARM 48:AMD 10
ARM 88:AMD 5

ARM 112:AMD 2
ARM 128:AMD 0

Figure C.1: Heterogeneous mixes for memcached

 16

 18

 20

 22

 24

 26

 28

 30

 10 100 1000

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

ARM 0:AMD 16
ARM 16:AMD 14
ARM 32:AMD 12

ARM 48:AMD 10
ARM 88:AMD 5

ARM 112:AMD 2
ARM 128:AMD 0

Figure C.2: Heterogeneous mixes for EP

196

Chapter C. Sensitivity Analysis

Observation 1: Replacing even a few high-performance nodes based on the power

substitution ratio, introduces a sweet region.

However, using only low-power nodes may not meet the service time deadline.

For example, Figure C.1 shows that low-power ARM only configurations do not

meet deadlines smaller than 30ms.

For an application that is compute-bound, such as EP, replacing even a few

AMD nodes triggers a sweet region. However, the most energy-efficient configu-

ration is achieved by replacing all AMD nodes with ARM nodes. This is possible

because, while eight ARM nodes are power-equivalent to one AMD nodes, the ex-

ecution rate of eight ARM nodes is higher than one AMD node. The implications

of the performance difference between high-performance and low-power nodes are

further discussed in section C.3.

C.2 Are Larger Mixes of Heterogeneous Nodes

Better?

Using the same power substitution ratio, Figures C.3 and C.4 show that increasing

the number of heterogeneous nodes does not change the energy bounds of a sweet

region. Secondly, it increases the number of configurations on a sweet region.

Thirdly, as expected, increasing the number of nodes results in faster execution

time, causing the sweet regions to shift to the left.

Observation 2: Increasing the number of nodes in a heterogeneous mix, while

maintaining the same power substitution ratio increases the number of configura-

tions on a sweet region without changing its energy bounds.

197

Chapter C. Sensitivity Analysis

18.8

19.0

19.2

19.4

19.6

19.8

20.0

20.2

 10 41 100 165 1000

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

ARM 8:AMD 1
ARM 16:AMD 2
ARM 32:AMD 4

ARM 64:AMD 8
ARM 128:AMD 16

Figure C.3: Increasing cluster size for memcached

 15

 16

 17

 18

 19

 20

 21

 22

 10 37 100 148 1000

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

ARM 8:AMD 1
ARM 16:AMD 2
ARM 32:AMD 4

ARM 64:AMD 8
ARM 128:AMD 16

Figure C.4: Increasing cluster size for EP

198

Chapter C. Sensitivity Analysis

This observation has an interesting implication. Given n jobs, it is better to

schedule both on the same cluster than assigning each job to n clusters each with

1
n
of the total capacity. For example, consider four memcached jobs with a dead-

line of 165 milliseconds each, and 64 ARM and 8 AMD nodes, and two possible

setups: (i) we can create four clusters, each with 16 ARM and 2 AMD nodes, or

(ii) one large cluster with all nodes. In the first setup, Figure C.3 indicates that

the configuration that meets the deadline incurs 19.8 Joules per job. In contrast,

the configuration that meets a deadline of four times smaller (41 ms), incurs 19.6

Joules per job.

C.3 Does Static Workload Allocation Suffice?

Our matching approach ensures that the two types of nodes in a heterogeneous

mix finish servicing the job at the same time. This minimizes waiting time among

the nodes, and thus eliminates idling during job service time. Because the two

types of nodes have different execution rates, execution time of different nodes can

be bounded by different components. For example, low-power nodes can be CPU-

bounded, while the high-performance nodes can be I/O-bounded for the same

application. A perfect matching analyzes all possible combinations of boundedness

among nodes and chooses a workload distribution ratio based on the execution

rates on that configuration. Furthermore, this is applied to all configurations on

the sweet region. Thus, different points on a sweet region may require different

workload allocation ratios.

However, in practice, few workloads change from one type of boundedness

to another when the configuration is changed. For example, memcached is I/O

bounded on almost all our configurations. Similarly, EP is CPU-bounded. Thus,

it may be possible that the nodes operate at the same execution rate on all con-

199

Chapter C. Sensitivity Analysis

figurations on the sweet region. In this case, a static workload allocation based on

the differences among execution rates will result in a matching of the execution

times.

In a static workload allocation, we change the distribution ratio until it is as

close as possible to our matching distribution (i.e. mean squared error among the

Pareto frontiers is minimized). Figures C.5 and C.6 plot the Pareto frontiers for

18.5

19.0

19.5

20.0

20.5

21.0

 10 100 1000

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

Static workload allocation AMD:ARM=10:1
Matching technique

Figure C.5: Memcached static workload allocation

the static workload allocation that are closest to the distributions obtained using

the matching technique, for 16 ARM and 14 AMD nodes. The number of ARM

and AMD nodes are chosen from the power substitution ratios to meet a budget

of 1kW. It is observed that Pareto frontier for a workload distribution of 10:1

among AMD and ARM is close to the Pareto frontier of the matched workload

distribution. This is because memcached operates in an I/O bound region and the

AMD node has 10 times more I/O bandwidth compared to the ARM node. For

200

Chapter C. Sensitivity Analysis

 15

 17

 19

 21

 23

 25

 10 100 1000

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

Static workload allocation ARM:AMD=7.25:1
Matching technique

Figure C.6: EP static workload allocation

the EP program, a static workload distribution of 7.25:1 among AMD and ARM

suffices to achieve minimum energies within 1% of the matching case.

Observation 3: A static workload allocation that approximates the performance

ratio of the two types of nodes results in a Pareto frontier similar to the matching

technique.

201

Chapter C. Sensitivity Analysis

C.4 Impact of Realistic Workloads on Hetero-

geneity

In this section we extend the analysis beyond online data-intensive applications, in

a datacenter setup with variable cluster utilization. First we analyze the benefits

the heterogeneity on a class of programs with imperfect parallelization. Second,

we analyze the impact of cluster utilization on the response time, and on the

energy-deadline Pareto profile of a job in a heterogeneous cluster.

Sequential Fraction and Parallel Overhead

Although many datacenter applications show high level of scalability across nodes,

there are still workloads without good parallel scalability. For such programs, the

number of nodes that can be efficiently used depends on the fraction of work that is

parallelizable. To capture this effect, we use Amdahl’s sequential fraction, denoted

by α, to represent the fraction of work that cannot be parallelized among nodes.

Furthermore, scaling across nodes may introduce both housekeeping overhead and

contention for shared resources. These effects are captured using a coefficient for

parallelization overhead k, that models the increase in service time when using

multiple server nodes, relative to a single node. So far, our analysis assumed the

ideal case where α and k are equal to zero.

Sequential Fraction

Previous work suggests that datacenter computing favors high-performance

nodes, because the sequential fraction in Amdahl’s law limits the usage of low-

power nodes [79]. We analyze the Pareto frontier for a program that includes

a portion of work that can only be executed on a single node. To model this

202

Chapter C. Sensitivity Analysis

effect, we use the baseline memcached, but employ a work assignment strategy

that assigns α work units to a single high-performance node, and 1 − α work

units to a heterogeneous mix. Furthermore, we assume that there always exists

a high-performance node that executes the sequential fraction (i.e. even for a

configuration 128 ARMs and zero AMDs, there is still one AMD node reserved

for the sequential part).

We analyzed memcached-like workloads with sequential fraction α ranging

from 0.0 (fully parallel, identical to Figure C.1) to 0.5 (half of work is sequen-

tial, half is parallel). For each value of α, we vary the mix of high-performance

and low-power nodes for a power budget of 1kW. Figure C.7 shows an example

 18

 20

 22

 24

 26

 28

 10 100 1000 10000

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

ARM 0:AMD 16
ARM 16:AMD 14
ARM 32:AMD 12

ARM 64:AMD 8
ARM 128:AMD 0

Figure C.7: Pareto frontier with sequential fraction α = 0.1

of this analysis for α = 0.1. Counter to intuition, executing programs with large

sequential fraction does not lead to an advantage for the high-performance nodes.

Executing on any mix of high-performance and low-power nodes does not lead to

203

Chapter C. Sensitivity Analysis

a significant execution time reduction. However, the energy decreases when more

low-power nodes are added. Due to space constraints, graphs for other values of

α are omitted, but this effect is consistent across all values of α. The only effect

of increasing α is an increase in the energy required for meeting the deadline, as

larger sequential fractions imply more idleness in the system. The explanation

behind this effect is that, given enough nodes, the execution time of the program

is dominated by the sequential fraction. Thus, the only avenue for optimizing

energy is to execute the parallel part as efficiently as possible. As long as there

are enough low-power nodes to execute the parallel part faster than the sequential

part, an execution using low-power nodes achieves the same execution time, but

less energy than using only high-performance nodes. As Figure C.7 does not show

P
P
P
P
P
P
P
P
P

ARM
AMD

0 1 2 4 6 8 10 12 14

0 - 419 251 146 111 94 83 76 71
1 4194 447 248 145 111 94 83 76 71
2 2139 426 244 145 111 93 83 76 71
4 1090 367 234 143 110 93 83 76 71
6 741 323 218 141 109 93 83 76 71
8 566 290 204 138 108 92 82 76 71
10 461 263 192 133 108 92 82 75 71
12 391 242 182 130 106 91 82 75 71
14 341 225 173 126 104 91 81 75 70
16 304 210 166 123 102 90 81 75 70

Energy Legend 19 J 21 J 23 J 25 J 27 J

Table C.1: Energy and service time with α = 0.1

the configurations on the Pareto frontier, Table C.1 depicts possible service times

achieved for combinations of ARM and AMD for a sequential fraction α = 0.1.

Each cell in the table indicates the execution time for that configuration, and the

color represents the energy required to achieve that execution time. Configura-

tions on the Pareto frontier are further highlighted in bold.

204

Chapter C. Sensitivity Analysis

Observation 4: Programs with a sequential fraction still exhibit a sweet region

and save energy. However, for larger sequential fractions, the energy use increases

because of more idleness in the system.

Another interesting aspect is that the energy consumed for the single AMD node is

lower than that on multiple AMD nodes. When the program is executed on more

than one AMD node, there will be an idleness in the system, and this increases

the energy spent to finish the job.

Parallel Overhead

We study the effects of parallel overhead on the energy-deadline Pareto fron-

tier. We consider a hypothetical program similar to memcached with respect to

service requests, but with parallel overhead that increases the service time of each

node proportional to the number of nodes utilized and relative to the service time

on a single node. If T (n) is the execution time incurred on n nodes without parallel

overhead then total service time with parallel overhead is T ′(n) = T (n)+n·k·T (n).

We consider k ∈ [0.01 : 0.1]. Figure C.8 shows the Pareto frontier for an execution

with parallel overhead k = 0.01. In contrast to the small effects of the Amdahl’s

fraction, even a small parallel overhead of k = 0.01 significantly undermines the

efficiency of using low-power nodes. Another effect of the parallel overhead is that

the Pareto optimal configurations are different compared to executions without

parallel overhead. Table C.2 shows the execution time achieved for each tuple

(nARM ,nAMD) with parallel overhead k = 0.01, for a mix of 16 ARM and 14 AMD

nodes. The table shows that when parallelization overhead is considered, the

Pareto frontier does not have configurations with more than ten AMD nodes. The

parallel overhead compromises execution time when using large number of nodes,

205

Chapter C. Sensitivity Analysis

18.5

19.0

19.5

20.0

20.5

21.0

21.5

22.0

22.5

23.0

 10 100 1000 10000

M
in

im
um

 e
ne

rg
y

[J
]

Deadline [ms]

ARM 0:AMD 16
ARM 16:AMD 14
ARM 32:AMD 12

ARM 64:AMD 8
ARM 128:AMD 0

Figure C.8: Pareto frontier with parallel overhead k = 0.01

P
P
P
P
P
P
P
P
P

ARM
AMD

0 1 2 4 6 8 10 12 14

0 - 419 218 121 95 85 83 85 88
1 4194 413 218 124 98 89 87 89 92
2 2105 397 219 128 102 93 91 93 96
4 1065 346 217 134 110 101 100 101 105
6 724 310 209 141 117 109 108 109 113
8 557 285 204 146 125 117 116 118 121
10 461 268 201 150 133 125 124 126 129
12 399 255 199 155 139 133 132 134 138
14 358 246 198 160 146 141 140 142 146
16 329 239 199 165 152 148 148 150 154

Energy Legend 19 J 21 J 23 J 25 J 27 J

Table C.2: Energy and service time with k = 0.01

and favors optimal configurations with few high-performance nodes. Heteroge-

neous configurations including ARM nodes execute more than two times slower

than those with only high-performance nodes.

206

Chapter C. Sensitivity Analysis

P
P
P
P
P
P
P
P
P

ARM
AMD

0 1 2 4 6 8 10 12 14

0 - 419 209 104 69 52 41 34 29
1 4194 405 206 103 69 52 41 34 29
2 2097 384 202 103 69 51 41 34 29
4 1048 325 192 101 68 51 41 34 29
6 699 281 176 99 67 51 41 34 29
8 524 248 162 96 66 50 40 34 29
10 419 221 150 91 66 50 40 33 29
12 349 200 140 88 64 49 40 33 29
14 299 183 131 84 62 49 40 33 28
16 262 168 124 81 60 48 39 33 28

Energy Legend 19 J 21 J 23 J 25 J 27 J

Table C.3: Energy and service time for ideal case

Observation 5: Parallel overheads of a program significantly reduces the ben-

efits of using low-power nodes.

Comparing the Pareto optimal configurations of Tables C.1, C.2 and C.3 con-

firms that parallelism overhead is one of the main reasons why high-performance

nodes are necessary for achieving good performance in data centers. However, a

mix of high-performance and low-power nodes can significantly reduce the energy

required to achieve the same execution time, even for programs with sequential

fraction.

C.5 Impact of Jobs Queueing Delay

So far we assumed that each job does not wait for other jobs inside a datacenter.

Next, we extend the Pareto frontier to model job arrivals with waiting time.

We model the arrivals and departures of jobs to a datacenter using an M/D/1

queueing model. Jobs are assumed to arrive with inter-arrival time exponentially

207

Chapter C. Sensitivity Analysis

 10

 100

 1000

 10000

 10 100 1000

E
ne

rg
y

fo
r

20
s

[J
]

Response Time per job [ms]

Utilization=5%
Utilization=25%
Utilization=50%

Figure C.9: Effect of job queueing delay on cluster utilization

distributed with parameter λjob, and are queued in a dispatcher node until all

the previous jobs have been serviced. The service time for a job is considered

fixed, and modeled by our matching scheduling policy. According to the M/D/1

queueing model, the utilization of the cluster is U = Tλjob, where T is the service

time of a job.

We analyze the effect of changing arrival rate by varying the arrival rate such

that the utilization varies between 0 and 1. Figure C.9 plots in log-log scale

the total energy consumed by a cluster of 16 ARM and 14 AMD nodes servicing

multiple memcached jobs each with 50,000 requests, for an observation period

of 20 seconds. We plot three profiles of utilization, corresponding to a tenfold

increase in arrival rate. For a configuration point that does not use all 16 ARM

and 14 AMD nodes, we consider the unused nodes as turned off. As arrival rate

increases, the average waiting time in the dispatcher queue also increases. To meet

208

Chapter C. Sensitivity Analysis

the same response time deadline, jobs need to be serviced faster, which requires a

configuration with more high-performance nodes. Thus, as the utilization increases

from 5% to 50%, the energy required to meet the same deadline increases almost

by an order of magnitude.

However, Figure C.9 shows that the sweet region is still present, for all values of

utilization. Unlike our previous analysis where we considered only energy incurred

by job service time, the sweet region has a more complex shape and can be divided

into two linear regions delimited by a sharp drop in the energy used. In the leftmost

part of the sweet region, the configurations always include high-performance AMD

nodes. Because AMD idle power is 45 watts, the idle energy use is considerable.

In contrast, the rightmost part of the sweet region consists of configurations with

only ARM nodes, which idle at less than 2 watts, thus incurring much lower idle

energy.

When considering the idle energy and job queueing delay of a system, the en-

ergy reductions achievable by heterogeneous systems are much larger, spanning

almost two orders of magnitude. As cluster utilization increases due to faster job

arrivals, the energy savings are further amplified, but the minimal response time

achievable is reduced.

Observation 6: Energy savings achieved by the mix-and-match approach are am-

plified when cluster utilization increases.

209

