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Summary

The link between roughness-induced disturbances and hydrodynamic instability theories was

unlooked-for till the advent of transient growth. Within the context of transient growth, rough-

ness induced three dimensional disturbances that manifests as streamwise vortices might either

undergo a brief growth followed by viscous decay or experience an exponential growth leading

to secondary instability. Either of the mentioned scenario is dependent upon the characteristics

of the initial disturbance which in turn is dependent upon the roughness geometry.

The main objective of the present work is to experimentally investigate the transient growth

characteristics of the boundary layer that is under the influence of a directionally dependent

roughness element, namely, convergent riblet. Smoke-wire flow visualization and hot-wire anemome-

ter experiments were carried out to obtain qualitative and quantitative data respectively. First sets

of experiments were carried out by employing isolated riblet roughness. Second set of experi-

ments were conducted by arranging the riblets of particular height in-line to force the disturbance

wavelength. Velocity measurements were carried out by means of hot-wire anemometry (single

probe) which formed the bulk of the study. The growth characteristics of the vortices were stud-

ied for 6 different roughness Reynolds number in the case of isolated convergent riblet, while in

the case of forced wavelength disturbances, the effect of vortex interactions on instability that

effects from a particular roughness Reynolds number was studied.

Results reveal that with the increasing height of the riblet, three different phenomena - tran-

sient growth, low speed streak instability and vortex breakdown due to viscous diffusion - was ob-

served in the case of isolated riblet. The instability observed in this case comprised three stages:

the development and decay of varicose mode, transition to sinuous mode and growth of sinuous

modes. The spectral characteristics showed that the energy that rested in the high frequency spec-
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Summary

trum in the varicose mode shifted to the low frequency spectrum along the downstream where

the sinuous mode dominated. The instability characteristics was found to be different from those

that would occur in the presence of hairpin vortices.

In the case of forced wavelength disturbances, the closer proximity of the wavelength paved

the way for vortex breakdown via interaction. With the increased spacing of the riblet, the spectral

characteristics of the instability modes were found to be similar to that of the isolated riblet

case. This contrasts the well known wavelength-dependent instability modes - fundamental and

subharmonic sinuous and fundamental and sub-harmonic varicose modes - that arises from the

dynamics of hairpin vortices.
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û instantaneous streamwise velocity in m/s

uk Streamwise velocity at height k) of the riblet, in m/s

u Time averaged streamwise velocity in m/s

uu Mean streamwise component of velocity at upwash

V Convergent riblet’s trailing vertex

x Streamwise co-ordinate measured from trailing vertex of the convergent riblet

x′ Streamwise co-ordinate measured from virtual leading edge

xvle Streamwise distance of Virtual Leading edge from the geometrical leading edge

y Wall-normal co-ordinate

z Spanwise co-ordinate

xvi



Chapter 1

Introduction

1.1 Background

The well-known viewpoint on the anatomy of transitional boundary layers is that they include

streamwise or longitudinal vortices. Streamwise vortices, which are the predominant flow struc-

tures in the end stages of transition result from the nature and evolution of the initial disturbances

that are infiltrated into the boundary layer, a phenomenon known as receptivity. The various paths

by which receptivity can lead to transition are well depicted by the transition road-map, as shown

in figure 1.1, laid down by Morkovin et al. (1994). In a zero pressure gradient Blasius boundary

layer, which is of primary concern here, the infiltration of the disturbances is dependent upon the

level of free-stream turbulence intensity and surface roughness. For very small disturbances, this

relates to path A in the transition road-map, the streamwise vortices results from the initiation,

development, and growth of the 2D Heisenberg-Tollmien-Schlichting(TS) waves. In analytical

perspective, this scenario is concurrent with the linear stability theory that involves the exponen-

tial growth of eigenfunctions. In the realm of physical realizations, observation of initiation and

growth of these disturbances demands controlled experiments. For instance, the classical ribbon

experiments of Klebanoff et al. (1961) show that the linear stability theory disciplines the nature

of initial disturbances in the wind tunnel. In their experiments, the initiation of TS waves was

exercised by controlled oscillation of the ribbon in the boundary layer alongside maintaining the

free stream turbulence intensity level less than 0.02%.

A more practical scenario is where the influence of random isolated surface roughness in the
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CHAPTER 1. INTRODUCTION

boundary layers and that of free stream turbulence could not be eliminated. In this case, the na-

ture of the initial disturbances, that are predominantly 3D, depends on the geometry of the surface

roughness and its height influenced by the boundary layer. Early attempts to relate the various

TS wave mechanisms to the roughness induced disturbances ended in vain. Also, the concern

for instability was directed towards 2D disturbances in accordance to Squire’s theorem which

states that, for a 3D disturbance growing at a particular Reynolds number there exists a growing

2D disturbance at lower Reynolds number. Thus the link between the 3D roughness induced

disturbances and transition was unlooked-for. This weak link that existed between the initia-

tion and evolution of the roughness induced disturbances was later bridged by the phenomenon

referred to as transient growth. By the rudiments of transient growth as put forth by Ellingsen

and Palm (1975), it has that, in shear flows, the 3D disturbances can grow algebraically in time.

The mathematical idea is that the wall-normal velocity/vorticity disturbance equations are not

self-adjoint, thereby resulting in non-orthogonal modes which is in contrary to the well known

TS wave mechanisms whose eigenmodes are orthogonal (Schmid and Henningson, 2001). The

more important point at issue is that, in a Blasius boundary layer, where the eigenmodes are dis-

crete and finite, as proved by Miklavcic and Williams (1982), the representation of an arbitrary

disturbance should come about by continuous spectrum. It is this superposition of continuous

spectrum that leads to the brief algebraic growth of the disturbance.

Treating the same temporal problem with the inclusion of viscosity, Hultgren and Gustavs-

son (1981) found that the growth of 3D disturbances is followed by viscous decay. Alongside the

physical explanation of this problem, as put forth by Landahl (1980), the definition of transient

growth lies in the very sense of the quasi-streamwise vortices. The upliftment of the low momen-

tum fluid between a pair of streamwise counter-rotating vortices, referred to as upwash, flanked

by the high momentum fluid, referred to as downwash, manifests as alternating low and high

speed longitudinal streaks respectively. These streaks might either grow in time and experience a

viscous decay or reach the maximum amplification and further incur a time dependent secondary

instability that can drift the boundary layer to turbulence. The importance of transient growth

can be well ascertained by taking a cursory glance, again, at the transition road-map where it can

be seen that this route to transition is well linked by the transient growth phenomenon. Further,
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CHAPTER 1. INTRODUCTION

Figure 1.1: Transition road map as laid down by Morkovin et al. (1994).

within the context of fundamental research, the transient growth phenomenon could be an an-

swer as to how the manifested disturbances could drift the flow to turbulence. Consequently, the

advantages that emerge out is that the theory could act as a tool to determine the most unstable

mode that could initiate the primary and secondary instability, the most common path to turbu-

lence as shown in the review by Herbert (1988). In regards to engineering applications, like any

instability mechanism, the applicability of transient growth to flow control cannot be neglected.

1.2 Motivation

In the event of pushing the boundaries of transient growth theory in relevance to boundary layers,

the studies of Andersson et al. (1999), Luchini (2000) and Tumin and Reshotko (2001) were

centred on the particular initial disturbance that offers maximum spatial growth hence referred to

as optimal disturbances. It was found that for a Blasius boundary layer, the optimal disturbances

were streamwise counter-rotating vortices with non-dimensional spanwise wavenumber of 0.45.

Wind-tunnel experiments of Westin et al. (1994) and Matsubara and Alfredsson (2001) con-
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ducted in the light of transient growth showed that the evolution of the disturbance energy ini-

tiated by free stream turbulence was in excellent agreement to those predicted by the optimal

perturbation theories. It should be mentioned, however, that the initial disturbance were far from

optimal compared to that considered in the theories. In what follows, any 3D disturbance that is

initiated in the boundary layer tends to manifest as streamwise counter-rotating vortex pair.

In contrast to the disturbances initiated by free-stream turbulence, first experiments involv-

ing surface roughness, conducted by White and co-workers (White and Reshotko 2002, White

2002 and White and Ergin 2003a) showed anomalies with respect to the streamwise location

of the maximum energy growth. In their experiments, disturbances were initiated by array of

cylindrical roughness elements. It is well known that these roughness elements, with increasing

roughness Reynolds number based on height (Rek) induce horseshoe vortices, one of the coher-

ent structures in a turbulent boundary layer. These horseshoe vortices upon near wall interaction

spews out low momentum fluid that later breaks down to hairpin vortices. Following the discrep-

ancy, almost all numerical and physical experiments conducted to study the continuous spectrum

of the initial disturbances due to surface roughness inadvertently results in flow kinematics sub-

jected to hairpin vortices - works of White et al. (2005), Rice (2004), Fischer and Choudhari

(2004), Fransson et al. (2004), all of whom used cylindrical roughness elements, and more lately

that of Cherubini et al. (2013) who used a smooth bump as a disturbance source are a few to

mention. The evolution of the disturbances in all these cases were found to be unique. In this

perspective, however, putting all known possible roughness elements (Lin, 2002) to test is not

feasible. It is in this context that the relevance of the present work nests in.

Having pointed out the dependence of the disturbance growth on the roughness geometry,

which forms the main impetus of the present work, a directionally-dependent surface roughness,

namely, convergent riblet has been put to test within the context of transient growth and instability

of longitudinal streaks. The flow structure induced by the convergent riblet, as will be discussed

in Chapter 4, is a pair of counter-rotating vortex tubes convected along the downstream either by

the free stream or by the mean shear in the boundary layer and is devoid of horseshoe and hairpin

vortices. Few other surface roughness like wishbone vortex generators and forwards wedge is

suspected to offer kinematically similar flow.
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1.3 Objectives and Scope

The main objective of the present work is to experimentally investigate, within the context of

transient growth and instability of longitudinal streaks, the evolution of the disturbances initiated

by convergent riblet in Blasius boundary layer by means of hot-wire anemometry. More specifi-

cally, the two main objectives are

i) To study the initiation and evolution of the disturbances induced by an isolated convergent

riblet. The development of the disturbances for varied riblet height to boundary layer thickness

ratio will be presented in terms of mean and fluctuating velocity distributions and amplification

parameters of the vortex growth.

ii) To study the evolution of instability modes induced by forced wavelength disturbances and

compare it with that of the isolated convergent riblet. The analysis will be presented for in-line

arrangement of riblets for three different wavelengths- λ = 10mm, 12.5mm and 15mm.

1.4 Organization of Thesis

The experimental results and the analysis of the study as mentioned earlier are presented in 6

chapters as briefly outlined in the following.

The background, motivation, objectives and scope of the present study is presented in Chap-

ter 1, followed by Chapter 2 that comprises an extensive literature review on the theory of tran-

sient growth, the streak instability and the applicability of transient growth to roughness induced

disturbances. The experimental set-up, instrumentation and experimental procedures are desribed

in Chapter 3.

The results and discussions are presented in the next two chapters. Chapter 4 discusses the

disturbance growth due to an isolated convergent riblet. In-depth analysis was done for three

different cases that corresponds to three different riblet height to boundary layer thickness ratio.

Chapter 5 comprises the results of the forced wavelength disturbances mainly focussing on the

frequency characteristics of the instability modes and its variation with isolated riblet case.

Finally, the main conclusions and recommendations for future work that could be undertaken

from the present results are given in Chapter 6.
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Chapter 2

Literature review

2.1 Transient growth: Origin and Evolution of the theory

Amidst the development of 2D linear instability theories, the first principles of transient growth

was put forth by Ellingsen and Palm (1975). Considering the infinitesimal 3D initial disturbances,

they solved the linearized stream function/velocity equations and found the streamwise velocity

disturbances grew linearly with time. Independent of the initial disturbance, they found the

solution of the equations to be a closed set of steady, streamlines that correspond to streamwise

counter-rotating vortices. Physical explanation of the problem was given by Landahl (1980)

who referred to the generation of low momentum streaks between a pair of counter-rotating

vortices as ’lift-up’ mechanism. However, these analysis were carried out by considering the

inviscid problem. Hultgren and Gustavsson (1981) studied the evolution of 3D disturbances,

taking viscosity into consideration, finding the brief growth of the disturbances to be followed by

a viscous decay.

The mathematical idea is that the disturbance equations are not self-adjoint and that the eigen-

modes are non-normal (Schmid and Henningson, 2001). Basically, in hydrodynamic instability

theory, the instability is driven by the most amplified discrete eigenmodes of the Orr-Sommerfeld

disturbance equations. However, in the case of transient growth, the instability is driven by the

superposition of continuous eigenmodes. Despite the decay of eigenmodes in the subcritical re-

gion, a brief growth of disturbances occurs prior to the exponential decay due to the superposition

of continuous eigenmodes.
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Butler and Farrell (1992) further studied the growth of the non-orthogonal eigenmodes of a

particular 3D initial disturbance whose energy growth were maximum. Such initial disturbances

were referred to as optimal perturbations. They also pointed out that an arbitrary initial condition

comprised of many non-orthogonal eigenmodes whose interactions brought about a complicated

three dimensional growth. Subsequently, Farrell and Ioannou (1993) documented that the two

types of motion that caused the maximum growth were: i) Streamwise vortices growing by ad-

vection of mean streamwise velocity to form streamwise streaks and ii) upstream tilting waves

growing by the down gradient Reynolds stress mechanism of two-dimensional shear instability.

Henningson et al. (1993) studied the transient growth phenomenon, using direct numerical simu-

lations, in the case of bypass transition by considering various initial disturbances in the Blasius

boundary layer. They concluded that for a particular strong initial disturbance, the brief growth

of the disturbances resulted in longitudinal streaks that roll up to form vortices before breakdown

to turbulence spots. Reddy and Henningson (1993) went on to study the optimal perturbations

in Poiseuille and Couette flows and pointed out that there exists a critical surface function below

which there is no growth and above which the growth is maximum. These studies were thus rather

concentrated on the temporal evolution of the disturbances with parallel flow approximations, the

rudiments of spatially evolving optimal perturbations, in conjunction with non-parallel effects, as

further brought about by Andersson et al. (1999) and Luchini (2000) based on the solution of the

linearised, perturbed wall-normal velocity/vorticity system of equations. The non-zero forcing

term in the normal vorticity equation allowed the coupling of Squire and Orr-Sommerfeld modes

thus leading to algebraic growth of the disturbances. Such studies were therefore set around pre-

diction of optimal disturbances associated to a non-dimensional spanwise wavenumber 0.45 for

Blasius boundary layer. It must be mentioned that the disturbances they considered were initi-

ated at the leading edge outside the boundary layer and at the location of maximum growth, the

disturbances being manifested inside the boundary layer.

Further studies aimed at experimentally verifying transient growth were those by Westin

et al. (1994) and Matsubara and Alfredsson (2001) who studied the evolution of 3D disturbances

induced by free stream turbulence, in the zero pressure-gradient Blasius boundary layer. They

found their results concurrent with those of Andersson et al. (2001) and Luchini (2000). Westin
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et al. (1994) specifically concluded that the transient disturbances developed into longitudinal

structures with a spanwise spacing comparable to boundary layer thickness, finding the spanwise

spacing to be dependent on forcing conditions. Matsubara and Alfredsson (2001) arrived at same

conclusions form their experiments.

The link between transient growth and the roughness-induced disturbances was particularly

highlighted in the experiments of Kendall (1981) on stationary horseshoe vortices induced by

isolated 3D cylindrical roughness elements. Between the vortex pair, along the centerline of the

cylindrical roughness element, the flow was directed towards the wall and along the sides, the

vortex pair upon interaction with the wall lifted up the low momentum fluid what was pictured

as ’lift-up’ mechanism as thoroughly discussed in Landahl (1980).

Following this, further studies have looked at the influence of roughness induced disturbance

growth in flat plate boundary layer. For instance, the influence of stationary streamwise vortices

in the flat plate boundary layer was studied by Bakchinov et al. (1995). He used square ribs in his

experiments to induce streamwise vortices and found that the instability arose due to the wave rid-

ing over these vortices and not the vortices as such. Almost a decade later, White (2002) further

attempted to address the key predictions of transient growth disturbances. The roughness ele-

ments (adhesive dots) were arranged in-line with specific spacing. The initial disturbances were

a pair of counter-rotating streamwise stationary vortex. With respect to the initial disturbances,

he found discrepancies in streamwise location of the maximum kinetic energy growth as pre-

dicted by the theories and concluded that the disturbances in his experiments were sub-optimal.

Fransson et al. (2004) performed similar experiments and explained that the discrepancies arose

as the disturbances were initiated inside the boundary layer in contrast to the optimal disturbances

considered by Andersson et al. (1999) and Luchini (2000) wherein the initial disturbances were

outside the boundary layer. In order to understand the contribution of continuous spectrum of

the Orr-Sommerfeld and Squire modes, within the scope of receptivity, Tumin (2003) solved the

Cauchy problem of a finite growth rate of disturbances, the solution of which was a bi-orthogonal

eigenfunction system. Similar bi-orthogonal decomposition of perturbations was carried out by

Denissen and White (2009) in order to study the complex perturbations induced by roughness

elements. Their main conclusion was that the occurrence of the sub-optimal disturbance, whose
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amplitude lies in the higher end of the streamwise wavenumber space, in the lower part of the

boundary layer is the reason as to why the disturbances decayed upstream than the optimal per-

turbations.

This discrepancy later triggered a series of experiments conducted in the light of behaviour

of roughness induced transient disturbances subjected to varying initial disturbances. For in-

stance, Ergin and White (2006) studied unsteady initial disturbances induced by a cylindrical

roughness element. They suspected that with the increasing height, the inflection points in the

wall-normal and spanwise directions were due to Kelvin-Helmholtz-type instability mechanism

that is associated with hairpin vortices. White and Ergin (2003b) also documented the errors

in the observed initial disturbances in the near downstream of the roughness elements when the

position of the wall normal was estimated by least square fits of the data obtained from hot-wire

measurements. In another paper, White and Ergin (2003a) performed spectral analysis and sub-

sequently studied the downstream evolution of the energy components. They also reported that

the disturbance energy scaled with k4 (where k is the roughness height). This was subsequently

verified by White et al. (2005) and Rice (2004). Ergin and White (2005) and White et al. (2005)

suggested a model function for the growth of disturbance kinetic energy contained in wavelengths

that scaled as one-third and one-fourth the roughness spacing with the aim of investigating the

effect of varying geometry on the disturbance energy as well as the effect of roughness diameter

on the disturbance energy. With decreasing roughness diameter, the disturbances were found

to undergo transient growth to pure decay. DownsIII et al. (2008) also investigated experimen-

tally the evolution of steady and unsteady boundary-layer disturbances that were generated by

quasi-random distributed roughness. He found that the spanwise disturbance mode correspond-

ing to one-fourth the roughness spacing underwent the maximum growth. Fischer and Choudhari

(2004) carried out numerical simulations on circular disks similar to that used by White (2002).

His work complimented the findings of White and Ergin (2003a).

2.2 Streak instability

The streamwise aligned vortices, by the lift-up mechanism, induces elongated streamwise streaks

with significant spanwise modulation. Due to the non-linear evolution, the streaks incur either of

the four instability modes - fundamental sinuous, sub-harmonic sinuous, fundamental varicose
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and sub-harmonic varicose modes.

A plethora of numerical experiments were carried out by Brandt and co-workers (Andersson

et al. 2001, Brandt and Henningson 2002, Brandt et al. 2003, Zuccher et al. 2006, Brandt 2007,

Schlatter et al. 2008) to study the breakdown of longitudinal streaks, streak interactions and the

difference in the manifestation of secondary instability in the presence and absence of Tollmien-

Schlichting waves. They tested the behaviour of the longitudinal streaks with respect to varying

initial disturbances. In addition, Cossu and Brandt (2002) carried out numerical simulations to

conclude that the large amplitude streamwise streaks stabilized the Tollmien-Schlichting waves.

It should be mentioned that the streak instability discussed in these studies was associated with

hairpin vortices.

Very few studies were carried out in order to relate the instabilities of the naturally occurring

transition structures to roughness induced instability. For instance, Boiko et al. (2012) experi-

mentally investigated the instability of backward-facing step flow. He mounted cylindrical rough-

ness elements on the separation line to initiate longitudinal streaks. The most important finding

was that the laminar flow destabilization accompanied the transient behaviour of the stationary

disturbance in the separation region thus implying the substantial contribution of the non-modal

growth. Lately, Denissen and White (2013) performed calculation to show how the sub-optimal

disturbances destabilize the laminar boundary layer leading to secondary instability. Their main

finding was that, increasing the modal content led to decreased stability. Experiments of Asai

et al. (2002) who used wire-gauze to initiate a single low speed streak found that the varicose

mode was prone to Kelvin-Helmholtz instability that successively manifested as hairpin vortices.

He also documented that the varicose modes were more sensitive to the streak width and died

out rapidly. However, the sinuous modes, that exhibited wake-like instability, was insensitive to

the streak width and continued its exponential growth. Subsequently, the experiments of Kon-

ishi and Asai (2004) by forced wavelength disturbances showed that the occurrence of harmonic

and sub-harmonic instability were sensitive to the wavelength of the disturbances. More recently,

Cherubini et al. (2013) conducted numerical simulations in the light of global optimization. They

used smooth bumps as roughness elements and they found that, for low roughness height, the dis-

turbances experienced transient growth while for larger roughness height the varicose modes set

10



CHAPTER 2. LITERATURE REVIEW

in to induce hairpin vortices similar to the experiments of Asai et al. (2002)

11



Chapter 3

Experimental Details

3.1 Experimental Set-up

Qualitative and quantitative experiments were conducted in two different facilities whose free-

stream conditions were exercised to be the same. Smoke-wire flow visualization experiment,

from which qualitative data was obtained, was performed in a straight plexiglass square duct

that was connected to a low speed, blow down type wind tunnel as shown in figure 3.1. The

flow from the centrifugal fan passed through honeycomb and series of fine meshes of decreasing

size in the settling chamber. Following the settling chamber was a three dimensional contraction

that reduces the cross sectional area to 160 mm x 160 mm thus achieving a contraction ratio of

9:1. The contraction section was 300 mm long and was followed by the test section with cross-

sectional area 160 mm x 160 mm and length 1500 mm. The free stream turbulence intensity at

velocities 1-5 m/s was less than 0.25%. A container holding paraffin oil was mounted on the top

of the section and a nickel-chromium alloy resistance heating wire, with diameter of 0.193 mm,

originating from the container was held taut across the wind tunnel. The oil container with the

wire was fixed on a simple two-axis manual traversing mechanism to allow fine adjustment of the

smoke wire. As the wire was coated with paraffin oil from the container, a constant DC power

supply heated up the wire to produce a white smoke. A laser sheet of 532 nm wavelength was

used to illuminate the flow field. The right angle illuminations and the positions of the camera

for visualization of streamwise planes and cross planes are shown in figure 3.1. Due to the

difference in the densities of the smoke traces and air, the buoyancy caused the streaklines to shift
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sideways. The choice of flow velocity was also restricted by the Reynolds number Red (based

on the diameter of the wire) so as to avoid the initiation of Von Karman vortex street. In this

respect experiment was carried out for flow velocity whose corresponding Red was about 36 and

hence the roughness Reynolds number Rek was matched with respect to hot-wire measurements

by changing the riblet height. Thus the presence of smoke wire did not perturb the flow and the

flow physics observed was solely due to the riblet.

Figure 3.1: Schematic of smoke-wire flow visualization Set-up.

The hot-wire experiments, which comprise the bulk of the study, were conducted in a straight

plexiglass test section connected to a blow down type wind tunnel as shown in figure 3.2. The

tunnel was earlier used by Mitsudharmadi et al. (2004) and Tandiono et al. (2013) to study Gortler

instability problem. The test section had a rectangular cross-section of 150 mm x 500 mm and a

honeycomb and five fine-mesh screens with decreasing mesh-sizes were installed in the settling

chamber prior to the contraction. The screens had the specification of ASTM E161 No. 35,

40, 50, 60 and 80 with the mesh-size of 500, 425, 300, 250 and 180µm respectively from the

blower to the entrance of the contraction section. The contraction consisted of a 300 mm straight

channel of 600 mm x 600 mm cross-section followed by a two dimensional contraction of 4:1

which reduces the cross-section to 150 mm x 600 mm.

A perspex plate, as a test surface, was mounted inside the straight plexiglass duct by means

of slots at the duct side walls at a distance of 50 mm from its bottom surface. The distance

between the test surface and its top cover was 100 mm. By this arrangement, the aspect ratio of

the test section was achieved to be 6. The wind tunnel in conjunction with the straight duct were

connected by a straight channel of 150 mm length. The test surface had a sharp leading edge
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with an angle of 15◦ which was CNC machined. The free stream turbulence levels in the test

section were less than 0.3% for a free stream velocity (U∞) range of 1.0 to 5.0 m/s. Evidently,

from figure 3.3 and 3.4, it can be seen that the set-up yielded a zero-pressure gradient Blasius

boundary layer. The flow is later shown to be non-accelerating till 600 mm downstream of the

riblet’s trailing vertex(V in figure 3.5). Measurements were thus carried out within this region to

assess the pertinent flow physics.

Figure 3.2: Schematic of the wind tunnel Set-up for hot-wire measurement.

A convergent riblet as shown in figure 3.5, manufactured using rapid prototyping with ce-

ramic as the green material, was mounted at 320 mm from the leading edge of the test surfaces

of both the set-ups. At this streamwise distance, the local Blasius boundary layer thickness was

6.4 mm. The maximum random error in height of the riblet due to the shrinkage of the green

material was found to be less than 0.1%. Two systems of laboratory co-ordinates with different

origins had been specified. Co-ordinates (x,y,z) had its origin at the trailing vertex of the riblet

(V in figure 3.5), while (x′ ,y,z) has its origin at the center of the virtual leading edge(xvle) of

the test surface plate. The virtual leading edge was obtained by determining the least squares

fit of the momentum thickness and displacement thickness as suggested by White (2002). With

respect to momentum thickness, the leading edge was found to occur at 7±1 mm and with respect

to displacement thickness, the leading edge was found to occur at 15±1 mm. An average of these

values xvle=4 mm was later subtracted from the geometrical leading edge to give the appropriate

streamwise distance, x′. The similarity variable η=(y
√

U∞
νx′ ) and the local Blasius boundary layer

thickness δ(=5

√

νx′
U∞

, where ν is kinematic viscosity of air) were calculated with respect to x′.
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Figure 3.3: Blasius boundary layer at several streamwise stations.

The riblet cross-section was chosen to be an isosceles triangle in order to avoid a large two

dimensional separation bubble that would arise behind the riblet due to adverse pressure gradient.

The near Gaussian-like profile of the riblet would hinder the formation of a huge separation

bubble. An angle of 30◦ inclination of the riblet to the flow was chosen in this study.

3.2 Instrumentation

The measurement process was carried out using computer controlled program. The block dia-

gram of the hot-wire anemometer system is shown in figure 3.6.
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Figure 3.4: Shape factor, H, showcasing Zero pressure gradient boundary layer development.

H=2.59 corresponds to Blasius solution.

Figure 3.5: An isolated convergent riblet.

3.2.1 Hot Wire Anemometer and Sensors

A single-normal (SN) hot-wire proble (Danter 55P15) with a platinum-plated tungsten wire sen-

sor of diameter 5 µm and length 1.25 mm was used to obtain mean and fluctuating streamwise

velocity data. The probe was operated in a Constant Temperature Anemometer (CTA) mode by

connecting it to a CTA 90C01 Dantec module. Overheat ratio was maintained at 1.8 throughout

the experiment. The raw analog signals from the 90C10 module was passed through an individ-

ual low pass analog filter unit before being digitized using analog to digital (A/D) data converter

system.
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Hot Wire Probe
Dantec 55P15

Ptitot Static
tube

Ttype
Thermocouple

Sensor

Transverse
Mechanism
Control

Digital
Oscilloscope

CTA system
90C01 CTA
Analog filter,
Low pass  3Khz

Pressure
Transducer

Temperature Monitoring System

A/D converter
DT 3016

Multimeter

I/O Interface
HPVEE software

Agilent 34970A Data Acquisition Switch Unit
34901A 20 channel Multiplexer

R
S

2
3

2

Figure 3.6: Block diagram of hot-wire anemometer system.

The hot wire probe in conjunction with a Pitot-static tube, connected to a pressure transducer

(Setra 235, 0-0.1 psid), was held in the traversing system and moved in the free-stream region to

calibrate the hot-wire and to monitor the free-stream velocity as well.

The free-stream temperature was measured using a T-type thermocouple that was held in the

traversing system alongside Pitot-static tube and hot-wire system. The thermocouple was con-

nected to an Agilent 34970A Data Acquisition/Switch Unit equipped with 34901A 20-Channel

Multiplexer. The temperature data was retrieved from the data acquisition module to the com-

puter using a RS-232 cable. The measured temperature was later used to compensate the hot-wire

voltage readings due to the change in ambient temperature during the hot-wire calibration and

measurements.

A two-axis traverse mechanism system was used to move the sensors in the wall-normal (y)

and spanwise (z) directions. Automation was exercised by two-stepper motors. The stepper

motors were coupled to the screw rods that were arranged perpendicularly to each other.
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3.2.2 Data Acquisition System

An analog to digital (A/D) data converter system was used to digitize the analog signals from

CTA system and pressure transducer. A high-speed multifunction DT3016 board and a DT740

formed the constituent components of the A/D converter system. The board had an analog I/O

resolution of 16 bits with a maximum sampling frequency of 250 kHz for a single channel. In

addition, the ability to send digital signal with a maximum D/A throughput of 100 kHz made it

possible to control the movement of stepper motors from the computer.

Agilent VEE Pro software was used for data collection and for control of stepper motors.

The raw data and time averaged data obtained from the computer were later post-processed using

commercial softwares like TECPLOT and MATLAB.

3.3 Experimental Procedures

Prior to calibration and subsequent boundary layer measurements, the CTA system was put to

square-wave response test at the maximum velocity expected in the experiments. It was found

that the response was greater than the sampling rate of the hot-wire signal which was 6000 Hz.

The detail of the experimental procedures is given below.

3.3.1 Calibrations

Prior to velocity measurements, in-situ calibration of the hot-wire sensor was carried out. The

sensor was calibrated against a pressure transducer which was connected to a Pitot-static tube.

The pressure transducer was calibrated against a micro-manometer. The calibration was based

on King’s law with temperature compensation. It was accomplished in free-stream flow over the

range of velocities encountered within the boundary layer.

3.3.1.1 SN-probe calibration

The pitot-static tube in conjunction with the sensor was held in the free-stream prior to calibra-

tion. The analog signals from both pressure transducer and CTA system were sampled simul-

taneously. The pressure transducer signal was sampled at 500 Hz for 10 seconds as against to

hot-wire signal which was sampled at 6000 Hz for 21 seconds. Before being digitized, the raw

signal from the CTA system was low-pass filtered at 3000 Hz. The voltage output of pressure
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transducer was converted into free-stream velocity data.

The voltage output of the CTA system E and the free-stream velocity U∞ was assumed to be

related by King’s law,

E2 = AU0.45
∞ +B (3.1)

where A,B are calibration constants. By taking into account the temperature compensation,

Eqn. 3.1 can be modified as,

E∗ =
E2

Tw −Ta
= A′U0.45

∞ +B′ (3.2)

where Tw is the hot-wire temperature, Ta is the ambient temperature and A′ ,B′ are the tempera-

ture compensated calibration constants. The hot-wire temperature was determined based on the

overheat ratio used in the measurement. Later, E∗ was plotted against U∞, and linear regression

was performed to obtain the calibration constant A′ and B′. In the midst of boundary layer mea-

surements, calibration check was carried out for the operating free-stream velocity. Experiments

were resumed if the calibration error was within ±1%, else the whole data was discarded and the

experiment was repeated.

3.3.2 Measurement of Mean and Fluctuating Streamwise Velocities

The mean and fluctuating velocities were measured by means of SN-probe. In the measurement

process, the hot-wire signal was low-pass filtered at 3000 Hz and sampled at 6000 Hz for 21

seconds. The output voltage of CTA system was subsequently converted to velocity data by

interpolation of the calibration points.

The instantaneous velocity û obtained from the hot wire measurement can be decomposed

as:

û = u +u ′ (3.3)

where u is the mean velocity and u ′ is the fluctuating velocity component. The mean velocity is

obtained by time-averaging the sampled data, which is calculated as:

u =
1

n

n
∑

i=1

ûi , i = 1,2, ...,n (3.4)

where n is the total number of samples of velocity data within the sampling duration at a given
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point. By this calculation, the maximum random error in the free stream velocity was found to

be under 0.2%.

The fluctuating velocity component is expressed in the turbulence intensity Tu, which is

obtained from:

Tu =
1

u

√

∑n
i=1(ûi − u)

2

n
, i = 1,2, ...,n (3.5)

The maximum random error in Tu was found to be 0.4%. The above procedures were repeated

at every point of the measurement domains.

The measurement of streamwise velocity component were carried out at streamwise (x) lo-

cations. In the case of boundary layer measurement by employing an isolated riblet, the mea-

surement was carried out in steps of 0.5 mm along the spanwise (z) direction for about 30 mm

and along the wall-normal (y) direction, in steps of 0.1 mm near the wall and in steps of 0.5

mm near the boundary layer edge. In the case of forced wavelength disturbances, 3 vortex pairs

were captured with the spanwise (z) and wall-normal (y) resolution same as that of the isolated

riblet case. A total of 28 y-locations were measured inside the boundary layer in the wall-normal

direction.

3.3.3 Determination of wall position

In order to determine the position of the wall, 10 points in the linear region of the Blasius bound-

ary layer were measured and least squares linear fit was performed to determine the wall-normal

position. This method is similar to that adopted by White (2002), and Tandiono et al. (2009) in

an attempt to measure wall shear stress induced by Gortler vortices. Basically, near-wall velocity

measurement is identical with the streamwise velocity measurement (Section 3.3.2). In order to

estimate the wall position, The measurement was carried out by SN-probe to capture the region

where the velocity profile was linear. The hot-wire was initially positioned very near to the test

surface (perspex plate). The streamwise velocity measurement was subsequently performed with

the step size of 50 µm across the boundary layer so that at least 10 points fall in the linear region.

As shown in figure 3.3, the points in the linear region were used for the extrapolation. Also in

figure 3.3, the anomalies in the streamwise velocity due to the wall effect can be well observed.

The wall effect arose due to the heat transfer between the probe and the perspex plate. The ex-
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trapolation was performed leaving those points which were affected by the wall region. In the

case of forced wavelength disturbances, the hot wire was moved to spanwise position where the

flow was Blasius and similar steps were repeated to determine the wall position.

3.4 Uncertainty analysis

The measurand is the instantaneous streamwise component of velocity (u m/s). The dependence

of streamwise component of velocity measurement to the half bridge voltage makes it a multi-

variate system. This calls for Calibration uncertainty analysis. Strictly speaking, the uncertainty

in the voltage signal as it passes from bridge to the low pass filter would add up to a net uncer-

tainty in the resultant voltage. However, the uncertainties here are considered negligible. The

only source that would add up to uncertainty is the stray emf. Care was taken that to common

ground the instruments to get rid off emf. Given that, a simple rearrangement of equation 3.1

results in

U∞ =
n

√

E2 −A

B
,n = 0.45 (3.6)

Following Coleman and Steele (1998), the propagation of uncertainty in the king’s law calibration

is determined by taking the standard deviation of the calibration points and is given by

ux
2 = uref

2 +

m
∑

i=1













∂U/∂Uiσ













2

(3.7)

where ux is the uncertainty in velocity, Ui is the velocity at i-th calibration point, m is the number

of calibration points, uref is the reference velocity and σ is standard deviation which is

σ =

√

√

1

m− 3

m
∑

i=1

[

Ui −U
(

Ei

)]

(3.8)

where m− 3 is the number of degrees of freedom.

The partial derivative is estimated by simple finite difference

∂U/∂Ui ≈
U
(

Ui + ǫ
)

−U
(

Ui

)

ǫ
(3.9)

where ǫ is the small increment to the calibration point velocity.
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Figure 3.7: King’s law curve fit showing uncertainty; —- Curve fit, - - - Uncertainty

Figure 3.7 plots curve fit along with its uncertainty. Apart from the uncertainty in the velocity

measurements, the systematic error in the traversing mechanism is due to the stepper motor. This

might result in uncertainties in wall normal variable estimates namely boundary layer thickness

and momentum thickness. However, this was found to negligible as evident from the Blasius

boundary layer profile in figure 3.3
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Chapter 4

Influence of an Isolated Convergent

Riblet

4.1 Introduction

Physical realizations concerning isolated surface roughness were mainly focussed on hemispher-

ical and cylindrical protuberances, both of which induces hairpin vortices - the most dominant

coherent structure that occurs in a naturally occurring transitional boundary layers. In the case of

hemispherical protuberance, hairpin vortices are induced by the balance between the centrifugal

and normal pressure gradient forces (Acarlar and Smith, 1987). In the case of the cylindrical

roughness surface, the horseshoe vortices upon interaction with the wall lifts up the spires of low

momentum fluid which in turn on interaction with the outer high momentum fluid might result

in a symmetric or single-legged hairpin vortex (Doligalski et al., 1994). The interaction of the

vortex system with its peninsula which is the Blasius boundary layer vortex lines leads to varying

vorticity dynamics and hence varying growth of the disturbances.

In the light of aberrations in flow kinematics, subjected to varying geometry of the surface

roughness, that in turn leads to varying perturbation energy growth, this chapter discusses the

initiation and evolution of the disturbances initiated by an isolated convergent riblet of different

heights. The flow structure is a pair of streamwise counter-rotating vortex, as will be discussed in

the forthcoming section. As mentioned earlier in chapter 1, geometry of convergent riblet being

similar to that of a wishbone vortex generator and vane vortex generators inclined at an angle to
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the flow, the study should generalize the nature of initial disturbances and its evolution of this

particular class of roughness elements that are directionally dependent. More specifically, this

chapter addresses:

i) The conjecture of formation of the quasi-streamwise vortices with the aid of smoke-wire flow

visualization technique

ii) The characteristics of initial disturbance from the measured hot wire anemometer data.

iii) The evolution of the initial disturbances and

iv) The streak characteristics.

Subsequently, the arguments concerning the differences between the flow kinematics sub-

jected to convergent riblet and that due to the hairpin vortices are put forth.

4.2 Flow kinematics

Six sets of experiment, as shown in Table 4.1, concerning different heights (k) of the riblet were

performed.

Table 4.1: Test cases; δk - Blasius boundary layer thickness at the leading edge of riblet (at x=320

mm), uk - Mean velocity at height k of the riblet.

k(mm) k/δk c/k uk(m/s) Rek(ukk/ν)
1 0.16 6 0.7 47

1.3 0.2 4.6 1 83

1.5 0.24 4 1 96

1.8 0.28 3.3 1.3 150

2 0.32 3 1.4 184

3 0.48 2 2 380

In order to bring out the possible flow kinematics that could arise from the roughness re-

ceptivity, the smoke flow visualization for k/δk=0.24, corresponding to height k=1.5 mm and

k/δk=0.48, corresponding to height k=3 mm are presented here.

The smoke traces dispersed in the fluid are that of paraffin oil. The Schmidt number(νsc /Dsc),

where ν is the viscous diffusion rate due to the fluid and D is the mass diffusion rate due to

smoke traces, is about order of magnitude 5 (Cimbala et al. 1988, Smits and Lim 2000). Hence

the probable flow physics is discussed to the extent where the species (the smoke particles) are

distorted by the fluid. Given so, investigation was carried out for both the case k/δk=0.24 and

k/δk=0.48 till a downstream distance of 210 mm measured from the trailing vertex of the riblet.
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From the smoke visualization results, the initial disturbance, at the station x=10 mm, as can

Figure 4.1: End on view of the cross-plane visualization of case k/δk=0.24. The flow is out of

page. Origin at the trailing vertex of the riblet.

be seen from figure 4.1 and 4.2, is a pair of stationary streamwise counter-rotating vortices.

In the case of k/δk=0.24, the streamwise vortices are found to extend throughout the region of

investigation (x=210 mm from the trailing edge of the riblet) with a gradual growth. The kink,
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Figure 4.2: End on view of the cross-plane visualization of case k/δk=0.48 (k=3 mm). The flow

is out of page. Origin at the trailing vertex of the riblet.

that is found to occur in the stem of the vortex pair at around x=210 mm, is suspected to have

occurred due to sinuous instability that sets in along the downstream (further discussed in detail

in the forthcoming sections). In the case of k/δk=0.48, the vortices diffuse at x=30 mm from the

downstream of the riblet. Around x=150 mm, the tip vortices appear in the field of view of the

smoke-wire.

The most important feature that is to be noticed to put forth a conjecture on the initiation of

the counter-rotating vortex pair is the occurrence of the tip vortices with the increasing height of

the riblet. The conjecture of flow kinematics using vortex line dynamics has been thus devised

with the aid of smoke visualization to sustain that the initiation of the vortices behind the riblet

is due to the concentration of the vorticity that arises due to the flow separation subjected to the

adverse base pressure gradient on the leeward side. The free shear layer emanating from the
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Figure 4.3: Schematic of the conjecture of flow kinematics.

Figure 4.4: Left: Flow kinematics of hemispherical protuberance from Acarlar and Smith (1987).

Right: Flow kinematics of cylindrical protuberance from Pattenden et al. (2005)

sharp edge S of the riblet could in this manner concentrate the vorticity that tends the fluid to

roll up as vortices with distinct vortex core. The cross-stream pressure gradient imparted by the

angle of the convergent riblet convects the vortices along the leeward surface of the riblet and

leaves the surface tangentially. The interaction of the vortices (counter-rotating) leaving from the
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either arms of the riblet later orients the organization along the downstream direction to result

in a stationary quasi-streamwise counter-rotating vortex. As portrayed in figure 4.3 the resultant

structure is a pair of vortex tubes of opposite sense convected along the downstream. Inside

the boundary layer, these vortices stretch due to the mean shear which enhances the streamwise

vorticity. Alongside stretching, the counter-rotating vortex pair - henceforth referred to as main

vortices - lifts up along the downstream due to the mutually induced velocity. In addition to the

main vortices, the impinging boundary fluid forked by the leading edge of the triangular base (T )

can impart horseshoe vortices both on the windward side and lee side due to the skew-induced

vorticity that results from the lateral deflection of the streamlines. If such is the case, there should

arise a streamwise counter rotating vortices (due to two arms of the riblet) within the windward

enclosed area Aw of the riblet. However, the occurrence of the horseshoe vortices depends upon

the particular angle with which the flow encounters the riblet and more importantly the ratio

of height of the riblet to the boundary layer thickness. Despite the possibility of occurrence

of the horseshoe vortices, at the downstream of the riblet, this vortex pair emanating from the

windward area should merge with the vortex pair from the leeward side as their sense of rotation

is similar and should culminate in just a pair of vortex tubes. The vorticity vectors on the surface

of the vortex tubes, thus, could supposedly be imagined to be aligned in x − y plane as shown

in figure 4.3. On the basis of hot wire measurements, we will show that the horseshoe vortices

are weak and have no contribution to the flow phenomenon for low and moderate Rek . But at

higher Rek , the occurrence of the horseshoe vortices becomes inevitable. The cross section of the

riblet was chosen to be an isosceles triangle in order to hinder the extent of the two-dimensional

separation behind the riblet and possibly the shedding of the vortices analogous to Gaussian-like

geometries.

The flow kinematics of a convergent riblet is different from that observed in a hemispher-

ical and cylindrical protuberance as shown in figure 4.4. In the former, the horseshoe vortices

formed in front of the cylindrical obstruction convect and further evolve into streamwise struc-

tures. The interaction of the vortices with the wall lifts up spires of low momentum fluid which

later break down to form hairpin vortices (Doligalski et al., 1994). However, in a hemispherical

protuberance, alongside horseshoe vortices, the hairpin vortices are ejected from the surface of
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the hemisphere due to the imbalance between centrifugal and normal pressure gradient forces

(Acarlar and Smith, 1987).

4.2.1 Initial Disturbances

Given the flow kinematics subjected to convergent riblet, one either expects the diffusion of the

vorticity in the downstream of the riblet and subsequently the flow relaxing to Blasius flow or

expects the vortices to stretch along downstream further incurring secondary instability, either

of which is dependent on the parameter circulation. But, in the arena of hot-wire anemometry,

the measurement of circulation narrows down to the resolution of the hot-wire probe (Hamilton

and Abernathy, 1991). Hence the characteristics of the initial disturbances are here chosen to be

described with respect to the concentration of the turbulence intensity (Tu) as shown in figure 4.5.
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Figure 4.5: Characteristics of initial disturbance; a) k/δk=0.16, b) k/δk=0.24, c) k/δk=0.48.

Solid lines -Isolines of turbulence intensity; Dashed lines - Isolines of streamwise component of

velocity (u/U∞).

The location of the initial disturbance was fixed as 10 mm downstream from the trailing

vertex (V) of the riblet. Given the Gaussian-like cross section of the convergent riblet, the two-

dimensional separation behind the riblet was found to be well within 10 mm for the range of

roughness Reynolds numbers considered here. From figure 4.5, for k/δk=0.16, the disturbances
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are more concentrated close to the wall. The contours of Tu are similar to that of the velocity

contours. For k/δk=0.24, the velocity and Tu contours are similar to k/δk near the wall, however

a distinct region of concentration is seen to distributed symmetrically to the upwash. In the case

of k/δk=0.48, the Tu concentrations shows the manifestation of varicose modes. The is due to

the interaction of the uplifted low momentum fluid with the outer high momentum fluid. The

initial disturbances in all these cases are considered to be sub-optimal within the framework of

transient growth.

The corresponding normal distribution of the amplitude of the spanwise harmonic modes

associated with the initial disturbances is shown in figure 4.6. Visual inspection of the velocity

contour shows that the velocity profile is spanwise symmetric and hence the harmonic modes

contains only the cosine component. Thus the amplitude of the harmonic modes is calculated

from the following expression,

an =
2

λm

∫ λm
2

−λm
2

u(x0,y0, z)cos(nαz)dz (4.1)

where, α=2π/λm is the dimensional wavelength parameter, an is the Fourier coefficient which

corresponds to amplitude of the disturbance modes, and n=1,2,.. is the spanwise harmonic mode.

λm is the wavelength which is the spanwise distance of the inflected region of the velocity con-

tour.

From figure 4.6, for all heights of surface roughness, it can be seen that the amplitude of the

first harmonic mode is found to be the most dominant mode. Considering the other modes, in

k/δk=0.16, the 2nd mode takes an S-shape, while the 3rd mode starts appearing. The 4th and 5th

mode stays dormant. In k/δk=0.24, the 2nd mode takes a more pronounced S-shape compared

to k/δk=0.16, while the 3rd and 4th mode follow a similar trend but out-of-phase and the 5th

mode starts appearing. Other than the 4th and 5th modes, k/δk=0.16 and k/δk=0.24 could be

well linked in a way that the amplitudes of k/δk=0.24 are multiples of k/δk=0.16. However,

k/δk=0.48 exhibits an entirely different scenario. The 1st harmonic mode has double peak with

opposite signs. The S-shaped double peak initiates at 2nd mode, well pronounced at the 3rd and

4th mode and mildly defined in 5th mode. It should be noted that the double peaks of the 3rd and

4th mode shares the same wall-normal position. Also, it could be noticed that, with the increasing
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Figure 4.6: Normal distribution of amplitude of spanwise harmonic modes: a) k/δk=0.16,b)

k/δk=0.24, c) k/δk=0.48.

height of the surface roughness, alongside the occurrence of inflection, the maximum peak shifts

away from the wall. This shows that the increasing height of the surface roughness necessitates

the inclusion of higher modes to describe the resultant initial disturbance velocity field rather

than a single most dominant mode. The most dominant mode could be related to the occurrence

of the maximum disturbance amplitude as shown in figure 4.7. Following Winoto and Crane

(1980), Bottaro and Klingmann (2002) the maximum disturbance amplitude, κ is determined as:

κ =
ud(η)− uu(η)

2U∞
(4.2)

where ud is velocity at downwash and uu is velocity at upwash.

Clearly the position of the peaks of the amplitudes of the most dominant mode coincides with

the amplitude of the maximum disturbance. As a precursor of a faint idea of how these initial
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Figure 4.7: Normal distribution of disturbance amplitude. � - k/δk=0.16, △-k/δk=0.24, ◦-

k/δk=0.48.

disturbances might evolve can be related to the velocity profiles of low speed streak at upwash

as shown in figure 4.8. In the case of k/δk=0.16, the inflectional velocity profile is similar to

that of the low speed streaks as considered by Asai et al. (2002)). He considered disturbances

initiated by a wire gauze trip which induces a hairpin vortices along the downstream. Such an

inflectional velocity profile which is hyperbolic-tangent function of the wall-normal co-ordinates

exists to be laminar along the downstream without forcing additional disturbances. In the case of

k/δk=0.24, the inflection point moves away from the wall. However, the streak half-value width

which is 4 mm and 5.5 mm for k/δk and k/δk=0.24 respectively are in contrast to 6.5 mm in

Asai’s experiments. In k/δk=0.48, the particular characteristic of the inflectional upwash velocity

profile wherein the low momentum fluid rides over the high momentum fluid is quite similar

to that exhibited by the hairpin vortices in the final stages of transition in Gortler instability

(Swearingen and Blackwelder (1987)). However, the concentrations of turbulence intensity in

figure 4.5 are not coherent with that of the sinuous modes that occur in the presence of hairpin

vortices. One could possibly expect that the vortices induced in case k/δk=0.48 is already at

the verge of breakdown. The breakdown however in this case should come about by vorticity

diffusion rather than a modal growth. It should be mentioned that in all these cases, the initiated

disturbances are within the boundary layer.
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Figure 4.8: Wall-normal distribution of the mean velocity of low speed streak (upwash): - - -

Blasius solution, ◦-k/δk=0.16, �-k/δk=0.24, △-k/δk=0.48.

4.2.2 Evolution of Disturbances

Strictly speaking, given the initial disturbances, their spatial evolution should be brought about

by observing the manifestation of spanwise harmonic modes along the downstream direction.

However, in the case of an isolated surface roughness where the longitudinal vorticity extends to

the ambient Blasius flow, extracting the modes is almost impossible as the spanwise wavelength

of the disturbances is not fixed. An alternative way to quantify this is by looking into evolution

of U ′rms, as shown in figure 4.9, which is the spanwise root-mean-square (rms) of the spanwise

spatial disturbance (U ′=u(z) - spanwise average of u(z))as defined in White (2002).

In k/δk=0.16, the total disturbance is found to increase for a short downstream from x=10

mm to x=15 mm and then subsides. This simple single peaked distribution is concurrent with

the results of White (2002). The maximum disturbance is found to occur at η=1.3. On the other

hand, in k/δk=0.24 and k/δk=0.48, the disturbances sustain throughout the area of investigation.

The viscous decay acts quite fast in the downstream in k/δk=0.16.

In the case of k/δk=0.24 and k/δk=0.48, the movement of the maximum disturbance peak

which is regarded to be the function of wavelength (White 2002, White and Reshotko 2002) is

supplemented by figure 4.10 that depicts the spanwise wavelength spectra of the corresponding

wall location where the maximum disturbance peak occurs. The plots are the envelopes which
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Figure 4.9: Total Disturbance profiles; a) k/δk=0.16, b) and C) k/δk=0.24, d) and e) k/δk=0.48.

are formed by connecting the peaks, using linear interpolation, in the wavelength spectra. By

doing so, the area under the curves still complies with the Parseval’s identity (White and Ergin,
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2003a). In all the three cases, the initial disturbance comprises three wavelengths - 8 mm, 10.6
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Figure 4.10: Spanwise wavelength power spectral density; a)k/δk=0.16: - x=10 mm, - - x=15

mm, -.- x=30 mm, -..- x=500 mm; b) k/δk=0.24: - x=10 mm, - - x=100 mm, -.- x=300 mm, -..-

x=500 mm, c)k/δk=0.48: - x=10 mm, - - x=90 mm, -.- x=180 mm, -..- x=240 mm. Note the

variation of the ordinate.

mm and 16 mm. In all the cases, the most dominant wavelength is found to be 16 mm. Evidently,

in k/δk=0.16, the energy encompassed in wavelength increase at x=15 mm. Further downstream,

the decay of the wavelengths 8 mm and 10.6 mm along the downstream is quicker than that of the

longest wavelength which is in accordance with the results of White (2002). But in k/δk=0.24

and k/δk=0.48, the wavelength wherein the maximum disturbance energy nests in, shifts towards

the shorter wavelength along the downstream. Relating the shifts of the maximum disturbance

peaks to the wavelength spectra, it is definitive of the fact that disturbance peaks near the wall (in

figure 4.9) corresponds to the maximum energy contained in the shorter wavelength while that

away from the wall corresponds to the maximum energy contained in the longer wavelengths.
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Also from figure 4.10, it could be noted that, in k/δk=0.48, along the downstream, peaks of

shorter wavelength appears to get accommodated in the spectra. Deeper insight into the mani-

festation of the shorter wavelength in the spectra could be obtained by studying the isosurface

of ∂u/∂z, as shown in figure 4.11. Considering the streamwise component of velocity to be

Figure 4.11: Iso-surface of ∂u/∂z (Red: 0.1x10−3s−1, Blue:-0.1x10−3s−1; a) k/δk=0.16, b)

k/δk=0.24 and c) k/δk=0.48. Iso-surface volume was formed by interpolation of the data mea-

sured at 11 stations fork/δk=0.16 and 0.48, 67 stations for k/δk=0.24.

dominant compared to the cross-stream components, ∂u/∂z could be considered to represent the
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evolution of the streamwise vorticity in regards to the following equation.

Dωx

Dt
= ωx

∂u

∂x
+ωy

∂u

∂y
+ωz

∂u

∂z
+ ν∇2ω (4.3)

where ω=(ωx ,ωy ,ωz) is vorticity vector and u=(ux,uy ,uz) is velocity vector. Although, the con-

centrations of ∂u/∂z do not necessarily represent vortex roll up. From figure 4.11, it could be

seen that the concentration allegedly subsides just downstream of x=300 mm in k/δk=0.16. In

k/δk=0.24, the concentrations extend throughout the region of investigation. The presence of

wiggles between x=200 mm and 570 mm is the region of sinuous instability. In k/δk=0.48, a

wedge-like growth of the concentrations could be observed. The secondary concentrations in all

the three cases arise due to the spanwise velocity gradient between the downwash region and the

surrounding Blasius flow, while the tertiary concentrations that appear in k/δk=0.48 are due to

the tip vortices that arise from the triangular face of the riblet. The interaction of the tip vortices

with the wall results in the spires of low momentum fluid that results in tertiary concentrations.

This extension in the spanwise inflections of the velocity near the wall results in the increase in

disturbance energy. This serves as an explanation as to why the maximum disturbance peak shifts

towards the wall from x=50 mm to x=90 mm for k/δk=0.48, and thereafter takes a constant loca-

tion along the downstream in figure 4.9. Also figure 4.11 reflects the obvious fact that the highly

inflected upwash velocity profile in k/δk=0.48 leads to the breakdown of the streamwise vortices

which occurs ahead of x=150 mm. Besides the near wall maximum peak in figure 4.9, a second

peak appear around x=200 mm at η=3.2 in k/δk=0.24 while it appears at x=50 mm, η=5.6 in

k/δk=0.48. The occurrence of the second peak though, is subjected to the secondary and tertiary

concentrations, where comparatively higher energy in the near-wall-peak is due to the stronger

streak amplitude compared to that in the outer boundary layer. Along the downstream, both the

peaks in k/δk=0.24 and k/δk=0.48, subside. This could only collectively suggest that, with the

increase in the height of the surface roughness the flow phenomenon disappears from the radar

of transient growth. The evolution of the corresponding maximum streak amplitude (calculated

using eqn. 4.2) is shown in figure 4.12. The trend of transient growth phenomenon for k/δk=0.16

complies with an increase in the streak amplitude followed by its decay. In k/δk=0.24, the streak

amplitude experiences transient growth in the near downstream of the riblet and thereafter ex-
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perience a gradual decay. This slow decay of the streak amplitude is a combinatorial effect of

viscous diffusion in the boundary layer, interaction between the convecting vortex pair and the

boundary layer and diffusion of vorticity of the vortex pair to the surrounding fluid. In k/δk=0.48,

the breakdown of the main vortices due to viscous diffusion is well reflected by a steep decrease

in the maximum streak amplitude. Also, no transient growth regime is observed in the case of

k/δk=0.48.

x(mm)

κ m
ax

100 200 300 400 500
0

0.1

0.2

0.3

0.4

Figure 4.12: Evolution of maximum streak amplitude; ◦-k/δk=0.16, �-k/δk=0.24, △-k/δk=0.48.

4.2.3 Streak Characteristics

Figure 4.13 shows the manifestation of the low-speed streaks for k/δk=0.16. It is clearly seen

that the vortex pair is embedded inside the Blasius boundary layer throughout the region of

investigation due to the weak mutually-induced interaction. The vortex pair lifts at x=15 mm

where the corresponding disturbance peaks in figure 4.9 takes the maximum value. This could

be noticed from a less flat contours at x=15 mm compared to that at x=10 mm. These maximum

disturbance contours tend to sustain few tens of millimeters downstream as could be seen at

x=30 mm and later dies down along the downstream. For the case of vortex pair inside the

boundary layer, the mean shear stretches the vortices along the downstream adding up to the
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Figure 4.13: Iso-u/U∞ contour at different cross-stream stations for k/δk=0.16; a) x=10 mm, b)

x=15 mm, c) x=30 mm, d) x=100 mm, e) x=200 mm, f) x=300 mm, g) x=400 mm, h) x=500

mm.

vorticity production (the first term of equation 4.3), which is also accompanied by the near wall

viscous diffusion. The occurrence of the maximum growth is thus the balance between the vortex

stretching and diffusion. Subsequently, it can be argued that with the increasing height of the

roughness element the station at which the maximum growth occurs should be located further

downstream. The inflection of the velocity contours shows no presence of horseshoe vortices
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implying that the roughness Reynolds number and the angle of the riblet under consideration are

not conducive for the formation of the horseshoe vortices - not only in the case of k/δk=0.16 but

also in k/δk=0.24 (see figure 4.14). Also, from figure 4.13, it can be observed that the streaks

gradually shift towards one side (upwash at z=0 between x=10 mm and x=100 mm and at z=2.5

mm from x=200 mm to x=500 mm). The spanwise component of velocity measurements earlier

conducted by Tandiono et al. (2013) in the wind tunnel shows that the cross flow non-uniformities

in the tunnel is less than 0.1%. Hence this drift is believed to be induced through amplificatoin

of minor free-stream or near-wall flow disturbances. Similar streak characteristics were observed

in the Gortler instability experiments of Mitsudharmadi et al. (2004).

Similar dislocation of the streaks can be observed in figure 4.14 that shows the streak evo-

lution along the downstream for k/δk=0.24. In the case of k/δk=0.24, from figure 4.14, it can

be seen that the vortex pair, with strength greater than that of k/δk=0.16, quickly increases the

boundary layer thickness at the upwash along the downstream with corresponding downwash re-

sponsible for secondary ∂u/∂z concentrations. In this case, the mutually induced velocity drives

the vortex pair outside the boundary layer which then gets convected by the free stream along the

downstream. The faster convecting vortices in the free stream interacts with the boundary layer

to lift up the low momentum fluid. The spanwise and wall normal inflections persist throughout

the region of investigation. Further, from figure 4.15, it can be noticed that low speed streaks near

the wall (around y=1.6 mm), that corresponds to the stem of the vortex pair, meanders between

x=200 and 500 mm. The streak amplitude, As=(ud − uu)/U∞, at this wall normal position is

found to be 0.4. With respect to the streak amplitude, the characteristics of this low speed streak

is different from the streaks induced by hairpin vortices (Cherubini et al., 2013).

The plots of isolines of turbulence intensity (Tu) in figure 4.16 further showcase the develop-

ment of instability modes. Given the concentration of Tu of initial disturbances at x=10 mm, its

evolution to a fully developed varicose modes at x=35 mm is comprised of two distinct regions

I and II. Region I occurs symmetrically on the either side of the upwash of the vortices while

the concentrations at region II occurs due to the interaction of the low momentum fluid with the

outer high momentum fluid. Along the downstream, between x=35 mm and 50 mm, Tu increases

rapidly in both the regions I and II. Further downstream, between 50 and 65 mm, decrease in
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Figure 4.14: Iso-u/U∞ contours at different cross stations for k/δk=0.16; a) x=10 mm, b) x=50

mm, c) x=100 mm, d) x=150 mm, e) x=200 mm, f) x=300 mm, g) x=400 mm, h) x=500 mm.

Tu can be seen in both the regions. Following the decay of the varicose, between 65 and 200

mm, transition from varicose to sinuous mode can be seen with the complete breakdown of the

varicose mode at x=125 mm. Thereafter, the sinuous modes leads the transitional boundary layer

throughout the area of investigation. The concentrations are found to move towards the wall

along the downstream. Basically, the occurrence of these modes is subjected to the wavelength
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Figure 4.15: Iso-u/U∞ contour for k/δk=0.24 at a) y/δk=0.25, b) y/δk=0.5, c) y/δk=0.75, d)

y/δk=1. Contours were formed by interpolation of measured data at 67 stations.

of the vortex pair (Chernoray et al., 2006). The streak half-width narrows down from 5.5 mm at

x=10 mm to 3 mm at x=200 mm. The decreasing width is associated to the vortex pair moving

out of the boundary layer due to the mutually induced velocity and narrowing down the spanwise

inflection around uplifted low speed flow. The corresponding iso-∂u/∂y and iso-∂u/∂z contours

are shown in figure 4.17.
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Figure: Caption see following page.
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The concentration of Tu which is found to be coherent with the ∂u/∂y contours at x=50

mm is a typical characteristic of the occurrence of varicose mode, while at x=200 mm where the

concentrations of Tu are coherent with ∂u/∂z contours showcases the dominant sinuous modes.
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Figure 4.16: Evolution of Turbulence intensity concentrations for k/δk=0.24; a)x=10 mm,

b)x=15 mm, c)x=20 mm, d)x=25 mm, e) x=30 mm, f)x=35 mm, g)x=40 mm, h)x= 45 mm,

i)x=50 mm, j)x=55 mm, k)x=60 mm, l)x=65 mm, m)x=70 mm, n) x=75 mm, o)x=100 mm,

p)x=125 mm, q)x=150 mm, r)x=175 mm, s)x=200 mm, t)x=250 mm, u)x=300 mm, v)x=350

mm, w)x=400 mm, x)x=450 mm, y)x=500 mm.

0.8

z(mm)

y
(m

m
)

5 2.5 0 2.5 5
0

2

4

6

a)

0
.5 0
.5

0
.0

z(mm)

y
(m

m
)

5 2.5 0 2.5 5
0

2

4

6

b)

Figure 4.17: The isolines of a)∂u/∂y at x=50 mm and b) ∂u/∂z at x=200 mm.

Figure 4.18 summarizes the growth and decay of the varicose mode and its transition to sinuous

mode in terms of the maximum turbulence intensity (u
′m

rms).

A deeper insight into the mechanism can be gained by taking a hasty glance at figure 4.19

45



CHAPTER 4. INFLUENCE OF AN ISOLATED CONVERGENT RIBLET

x(mm)

u
′m rm

s/
U

∝

100 200 300 400 500
0

2

4

6

8

10

12

14

16
varicose transition sinuous

Figure 4.18: Growth of varicose and sinuous modes in terms of maximum turbulence intensity.
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Figure 4.19: Power spectra of streamwise fluctuating velocity component at different streamwise

stations.

that plots the power spectral density (φuu ) of the streamwise fluctuating velocity at the point of

maximum Tu. The power spectra was obtained by using Welch’s power spectral estimate. The

frequency peaks around 100 Hz at x=25 mm to 50 mm corresponds to the instability waves of

the varicose modes. Further downstream, these frequencies subside and the total energy of the

fluctuating velocity is found to be distributed in the low frequency bandwidth of the spectrum.

The energy encompassed in the low frequency spectrum increases all the way downstream. This

switch from varicose to sinuous mode is clearly different from that one would expect from the

instability that arises from the occurrence of hairpin vortices. The notable scenarios in which
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the evolution of the varicose mode culminates in, are: i) The appearance of the hairpin vortices

that leads to train of vortices resulting in turbulent spots (Asai et al., 2002) and ii) as in Gortler

instability problem, the co-existence of varicose mode and sinuous mode with the sinuous mode

being the most dangerous. However, in the present case, the switch from varicose to sinuous

mode implies that the diffusing stationary counter-rotating vortex pair hinders the formation of

the hairpin vortices and the energy increase in the spectra is solely due to the growth of the

sinuous mode that results in meandering. Unlike wake-like instability wherein the internal shear

layer resulting from meandering leads to regeneration of the vortices by shear-induced vorticity

(Schoppa and Hussain, 2002), the streak instability under investigation does not play any role

in vortex regeneration. The argument comes obvious on examining the isosurface of ∂u/∂z in

figure 4.11. Should there have been vortex regeneration, the interaction of the regenerated vortex

with the wall would have resulted in tertiary concentrations of ∂u/∂z.
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Figure 4.20: Non-dimensionalised premultiplied one-dimensional spectra obtained at the posi-

tion of maximum Tu. Arrows indicate the peak.

Figure 4.20 plots the premultiplied one-dimensional wavenumber spectra (kxδφuu/U
2
∞, where

kx= 2πf /u(y) was obtained from Taylor’s hypothesis) within the region of sinuous modes (be-

tween x=200 mm and 500 mm) at different streamwise stations. The arrow mark in the plot points

the probable region of maximum energy (as the peak is smeared out due to the power spectral

algorithm). The plateau in the wavenumber spectra occurs at around kxδ=1.5 between x=200

and 350 mm. Downstream of x=350 mm, the peak shifts towards low wavenumber region of the
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spectrum. A brief shift of the peak to kxδ=1.8 can be observed between x=300 mm and 350 mm.

Given that this variation might occur from the streak not being perfectly sinusoidal (Hutchins

and Marusic, 2007), we do not tend to infer that the wavelength increases for a short span of

the streamwise distance (between x=300 mm and 350 mm). However, figure 4.19 depicts that

the energy within the sinuous mode region increases with the increase in streamwise distance.

For a streak that is subjected to a single event, namely meandering, the energy increase would

have been expected to result from the increased spatial oscillation of the streaks. Figure 4.20 and

figure 4.19 combinedly suggests that the streak experiences an increased spatial oscillation with

an increasing streamwise wavelength along the downstream.

In k/δk=0.48, as shown in figure 4.21, the greater strength of the main vortices compared

to k/δk=0.24 diffuses faster at around x=100 mm. The development of the secondary upwash

occurs at x=50 mm. Meandering of the secondary low speed streaks that extends throughout the

area of investigation can be seen in figure 4.22. The amplitude of the meandering streaks (As)

was found to be 0.3 at y/δk=0.25.

Figure 4.23 shows the concentration of the sinuous modes of the secondary low speed streaks.

The distorted concentrations are due to the tilting of the streaks. Considering the interaction of

the tip vortices with the wall shear layer wherein the low momentum fluid is spewed out, the

breakdown of the spewed low momentum fluid could result in a single cane or hairpin vortices

(Bernard, 2012).

Table 4.2: Effect of Roughness Reynolds number. Frequencies measured at station x=200 mm

in the upwash region of the main vortices at y/δk=0.25.

k(mm) k/δk Rek(uk/ν) Dominant Frequency(Main vortices) Harmonics

1 0.16 47 - (Transient growth) -

1.3 0.2 83 - (Transient growth) -

1.5 0.24 96 Low frequency oscillations(Instability) -

1.8 0.28 150 Low frequency oscillations(Instability) -

2 0.32 184 54.1HZ (Vortex breakdown) 108Hz, 218.1Hz

3 0.48 380 55.6Hz (Vortex breakdown) 111Hz, 222Hz

Table 4.2 summarizes the observed flow phenomenon with respect to Roughness Reynolds

number. It is evident that the evolution of disturbances hops from transient growth to instability

and later to vortex breakdown phenomenon by viscous diffusion. The comparison is made at

48



CHAPTER 4. INFLUENCE OF AN ISOLATED CONVERGENT RIBLET

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10

0.9

0.4

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10
a)

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10

0.9

0.6

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10
b)

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10

0.9

0.8

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10
c)

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10

0.9

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10
d)

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10

0.9

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10
e)

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10

0.9

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10
f)

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10

0.9

z(mm)

y
(m

m
)

15 10 5 0 5 10 15
0

2

4

6

8

10
g)

Figure 4.21: Iso-u/U∞ contours for k/δk=0.48; a) x=10 mm, b) x=30 mm, c) x=50 mm, d)

x=100 mm, e) x=150 mm, f) x=200 mm, g) x=250 mm.

x=200 mm where the low frequency oscillations appear for the case k/δk=0.24. For the low

Reynolds number range (Rek between 47 and 83) where the power spectrum doesn’t exhibit any

distinct peak depicts the transient growth phenomenon. The low frequency oscillations occurring

between Rek 90 and 154 denotes the instability zone. At large Rek(≥184), the dominant high

frequency and its harmonics appear. At this range, further increase in Reynolds number simply
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Figure 4.22: Iso-u/U∞ contour for k/δk=0.48 at y/δk=0.25. Contour formed by interpolation of

measured data at 11 stations.
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Figure 4.23: Evolution of Tu concentrations of the secondary streaks for k/δk=0.48; a) x=100

mm, b) x=150 mm, c) x=200 mm, d) x=250 mm.

shifts the vortex breakdown to the upstream.

Table 4.3 compares various induced-disturbances with the present results. The important

point to be noted is that the spectral peaks corresponding to the streamwise vortices and hairpin

vortices falls on the high frequency spectrum compared to the low frequency oscillations of the

present results.
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Table 4.3: Comparison of roughness induced disturbances and its instability.

Authors Method of

forcing dis-

turbances

Rek wavelength Spectral

Peaks

resultant flow

structure

Backchinov

et al(1992)

array of

square ribs

740 10mm 125, 135,

165

Streamwise

vortices in-

curring insta-

bility

Mastsubara

and Alfred-

dson (2002)

Grid gener-

ated turbu-

lence

100 mm hairpin vor-

tices as sec-

ondary insta-

bility

Asai et al

(2002)

Mesh wire

gauze and

loudspeakers

480 7.5 and 5.5

mm

100 Hz hairpin vor-

tices as sec-

ondary insta-

bility

Cherubini

(2013)

hemispherical

bump

235 and 300 12 mm hairpin vor-

tex incurring

secondary

instability

Present Convergent

riblet

96 9 mm low fre-

quency os-

cillations

switch from

varicose to

sinuous in-

stability
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4.3 Concluding remarks

In this chapter, the influence of an isolated directional dependent surface roughness, namely

convergent riblet, in Blasius boundary layer has been investigated experimentally using a single

probe hot-wire anemometer. The study leaves us with the following takeaway points.

i) The evolution of disturbance initiated by the convergent riblet leads to a pair of streamwise

counter-rotating vortices emerging at the wake of the riblet convected along the downstream.

ii) In the low roughness Reynolds number range (47< Rek <83), the vortex pair that stay

within the boundary layer undergoes transient growth phenomenon subjected to the balance be-

tween vortex stretching and vortex diffusion.

iii) In the moderate Roughness Reynolds number range (90< Rek <154), the streaks induced

by the vortex pair experiences instability. The growth of the instability modes incurs 3 stages -

Growth of varicose mode, its decay and transition to sinuous modes. The varicose modes grows

faster than the sinuous modes. Within the region of sinuous modes, the energy due to meandering

of the streaks is distributed in the low frequency bandwidth. Along the downstream, the energy

encompassed in this low frequency bandwidth increases with the increased spatial oscillation of

the streaks. The streamwise wavenumber associated with the streak meandering is found to de-

crease along the downstream. From the inception of the sinuous instability, the meandering of

the streaks extends to about 400 mm.

iv) Following the instability, breakdown of the streamwise vortices through viscous diffusion

occurs for larger Reynolds number (Rek >154).
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Chapter 5

Instability of forced wavelength

disturbances

5.1 Introduction

As concluded in Chapter 4, the interaction of disturbances with its surrounding, which is the Bla-

sius flow in the case of an isolated surface roughness, will affect the production of the Reynolds

stresses. The experiments of Asai et al. (2002), Mitsudharmadi et al. (2004), Bakchinov et al.

(1995) and Tandiono et al. (2013) were focussed on the instability characteristics of the distur-

bances subjected to different wavelength. In these experiments, the disturbances were forced

either by surface roughness inside the boundary layer or at the leading edge. The two main in-

stability modes - namely varicose and sinuous modes - were found to be strongly affected by

the wavelength of the disturbances. Four different modes (harmonic and sub-harmonic varicose

modes, harmonic and sub-harmonic sinuous modes) were found to occur by varying the wave-

length (e.g. Konishi and Asai (2004)). However, the appearance of these modes are subjected

only to the occurrence of the coherent structures in the transitional boundary layer, unlike the

disturbances caused by the convergent riblet.

The experiments performed using isolated convergent riblet in the boundary layer (Chapter 4)

showed that the route to turbulence encompassed three different phenomena namely transient

growth, instability and vortex breakdown by viscous diffusion with the increasing height of the

riblet. Laying importance to flow control, this chapter focuses on the instability characteristics
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due to interaction of the vortices and the instability modes that manifests with the varying wave-

length of the disturbances. More precisely, given the flow kinematics, this chapter focusses on

two main questions as follows:

i) How does the manifestation of the instability modes differ from that due to the occurrence

of the hairpin vortices and

ii) How are the instability characteristics different from those of isolated convergent riblet.

Tests were performed for three different wavelengths - λ = 10, 12.5 and 15 mm, following the

analysis in chapter 4 has been carried out.

5.2 Mean Velocity

Time-averaged streamwise velocities were obtained across a spanwise distance covering five

pairs of vortices. The iso-contours of the mean streamwise velocities were plotted on the y − z

and x − z planes by using the commercial software called TECPLOT. (Note no smoothing was

performed for the contours).

As shown in figures 5.1, 5.2 and 5.3, the development of the vortices depicts two scenarios - i)

Development without the intermediate vortices as in the case of λ=10 mm and ii) Development

of the vortex pairs with the presence of intermediate vortices (indicated by dashed line in the

figures 5.2 and 5.3) as in the case of λ=12.5 mm and λ=15 mm. These intermediate vortices

arises due to the momentum imbalance between the vortex pairs.

In the case of λ=10 mm, at the location of initial disturbance (x=5 mm), the signs of inter-

mediate vortices arise. After the transient growth regime (between x=10 mm and 15 mm), the

downwash is resilient to viscous diffusion that hurdles the formation of intermediate vortices.

This is primarily due to the close proximity of the vortices. The consistent growth of the vortices

culminates in the interaction of the vortices at x=300mm and hence its breakdown to turbulence.

In the case of λ=12.5 mm, the growth of the vortices is similar to that of case λ=10 mm except-

ing that the resilience to viscous diffusion occurs at x=450 mm and that, the vortex pairs exists

throughout the region of investigation. While in the case of λ=15 mm, the intermediate vortices,

alongside the vortex pairs, could be seen throughout the region of investigation.

Basically, the growth and hence the occurrence of the intermediate vortices depends on the

mutually induced velocity which is affected by the interaction of the vortex pair. This is well
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Figure: Caption see following page.
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Figure 5.1: Iso-u/U∞ contour at different cross-stream stations for λ=10 mm; a)x=5 mm, b)x=10

mm, c)x=15 mm, d)x=20 mm, e)x=50 mm, f)x=75 mm, g)x=100 mm h)x=150 mm, i)=200 mm,

j)=250 mm, k)x=300 mm, l)x=350 mm, m)x=400 mm, n)x=450 mm, o)x=500 mm.

reflected in the development of the low speed streaks, depicted as contours in x − z planes in

figures 5.4, 5.5 and 5.6.

The commonality among these three cases is that the width of the low speed streaks thins

down along the downstream. At y/δk=0.25, in the case of λ=10 mm, the thinning down of the

streaks occurs downstream of x=150 mm, while in the case of λ=12.5 mm the thinning down

occurs upstream of x=100 mm and in the case of λ=15 mm, the thinning down occurs just

downstream the transient growth regime (x=25 mm). This observation implies that the presence

of strong viscous effects is dictated by the mutually induced velocities which in turn depends

on the interaction of the vortex pair. In the upwash, the mutually induced velocity away from

the wall acts to lift up the vortex pair, while in the downwash, the mutually induced velocity is
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Figure: Caption see following page.

57



CHAPTER 5. INSTABILITY OF FORCED WAVELENGTH DISTURBANCES

1.0

0.2

z(mm)

y
(m

m
)

25 20 15 10 5 0 5 10 15 20 25
0

2

4

6

8

10m)
0.9

0.2

z(mm)

y
(m

m
)

25 20 15 10 5 0 5 10 15 20 25
0

2

4

6

8

10n)

1.0

0.2

z(mm)

y
(m

m
)

25 20 15 10 5 0 5 10 15 20 25
0

2

4

6

8

10o)
1.0

0.2

z(mm)

y
(m

m
)

25 20 15 10 5 0 5 10 15 20 25
0

2

4

6

8

10p)

Figure 5.2: Iso-u/U∞ contour at different cross-stream stations for λ=12.5 mm; a)x=5 mm,

b)x=10 mm, c)x=15 mm, d)x=25 mm, e)x=50 mm, f)x=75 mm, g)x=100 mm, h)x=150 mm

i)x=200 mm, j=250 mm, k)=300 mm, l)x=350 mm, m)x=400 mm, n)x=450 mm, o)x=500 mm,

p)x=550 mm.

towards the wall. It is this balance between the induced velocities that governs the wall-normal

position of the vortex pair. In the case of λ=10 mm, the close proximity of the vortex pair

results in stronger downwash compared to λ=12.5 mm and 15 mm and hence the vortex pair

stays closer to the wall. This is well reflected in x− z plane contours corresponding to y/δk=0.25

that corresponds to the stem of the vortex pairs. The strong viscous effects extends to x=150

mm followed by the thinning down of the streaks in the case of λ=10 mm compared to the case

of λ=12.5mm and 15 mm where the viscous effects hardly extend to x=100 mm and x=30 mm

respectively. At y/δk=0.5, the width of the low speed streaks are larger than those of y/δk=0.25

in all the cases. The low and high speed streaks in the case of λ=10 mm remain undifferentiated

above x=450 mm, due to the breakdown of the vortices. In the case of λ=12.5 mm, the low speed

streak from the intermediate vortices, at about z=±6, is found to exist till x=350 mm, while in

the case of λ=15 mm, the streaks from the intermediate vortices were found to co-exist till the

region of investigation. At y/δk=0.75 and 1, the low speed streaks, that corresponds to the head

of the vortex pair, attain higher velocities than those compared to y/δk=0.25 and 0.5.

Figure 5.7 shows the downstream development of streamwise velocity profile across the

boundary layer for the three wavelengths. From figures 5.1, 5.2, 5.3, since the development of the

vortex pair are symmetrical, the plot presented here corresponds to the center of the upwash of

58



CHAPTER 5. INSTABILITY OF FORCED WAVELENGTH DISTURBANCES

0.
2

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10a)

0
.2

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10b)

0
.2

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10c)

0.3

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10d)

0
.4

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10e)

0.3

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10f)

0.3

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10g)

0.3
1
.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10h)

0.3

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10i)

0.3

1.
0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10j)

0.3

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10k)

0.3

1.0

z(mm)

y
(m

m
)

30 20 10 0 10 20 30
0

2

4

6

8

10l)

Figure: Caption see following page.
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Figure 5.3: Iso-u/U∞ contour at different cross-stream stations for λ=15 mm; a) x=5 mm, b)

x=10 mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g) x=100 mm h) x=150 mm, i)

x=200 mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o) x=500

mm, p) x=550 mm.

the middle vortex with upwash at z=0. In all the three cases, initially at x=5 mm, the inflectional

velocity profile due to the vortex pair appears. The difference lies in the characteristics of the

inflectional points. In the case of λ=10 mm, the inflectional velocity profile is S-shaped. But,

for λ=12.5 mm, the signature of low momentum fluid riding over high momentum fluid starts

to appear while it is well pronounced in λ=15 mm. The inflection point, in transient growth

regime (between x=5 mm and 25 mm), moves away from the wall and later disappears with the

increasing downstream distance. However, a mild second inflectional point occurs around η=2.5

at x=200 mm in all the three cases. In the case of λ=10 mm, this is not important as the interac-

tion of the vortices further downstream disburses the vortex pair. But in the case of λ=12.5 and

λ=15 mm, this might be the effect of the onset of sinuous modes. This can be confirmed from

the turbulence intensity profiles as shown in figures 5.14, 5.15 and 5.16. This characteristic is

in contrast to the case of hairpin vortices, wherein the inflectional velocity profile is advected

away from the wall making the low momentum fluid more susceptible to the outer free stream

flow. This susceptibility either results in the formation of the train of hairpin vortices that is

seen to be manifested as subharmonic or harmonic varicose mode (Asai et al., 2002) or results

in co-existence of varicose and sinuous mode as in the case of Gortler instability mechanism

(Mitsudharmadi et al., 2004).
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Figure 5.4: Iso-u/U∞ contours at x − z plane for λ=10 mm; a) y/δk=0.25, b) y/δk=0.5, c)

y/δk=0.75, d) y/δk=1.
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Figure 5.5: Iso-u/U∞ contour at x − zplane for λ=12.5 mm; a) y/δk=0.25, b) y/δk=0.5, c)

y/δk=0.75, d) y/δk=1.
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Figure 5.6: Iso-u/U∞ contour at x − z plane for λ=15 mm; a) y/δk=0.25, b) y/δk=0.5, c)

y/δk=0.75, d) y/δk=1.
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Figure 5.7: Downstream development of upwash streamwise velocity profiles across the bound-

ary layer for a) and b) λ=10 mm, c) and d) λ=12.5 mm, e) and f) λ=15 mm.
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5.3 Shear stress

1.2

0
.0

1.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

a)

1.2

0
.1

1.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

b)

1.1

0.0

1.1

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

c)

1.0

0.1

1.0

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

d)

0.7

0.2

0.7

0.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

e)

0.5

0.4

1.21.
2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

f)

0.4

1.
2

1.
2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

g)

0.4

1.11
.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

h)

0.4

1.11.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

i)

0
.3

1.01.1

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

j)

0.3

0.91.0

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

k)

0.2

0.81.0

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

l)

Figure: Caption see following page.
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Figure 5.8: Iso-shear(∂u/∂y) contour at different cross-stream stations for λ=10 mm; a) x=5

mm, b) x=10 mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=100 mm g) x=150 mm, h) x=200

mm, i) x=250 mm, j) x=300 mm, k) x=350 mm, l) x=400 mm, m) x=450 mm, n) x=500 mm, o)

x=550 mm, p) x=600 mm.

Figures 5.8, 5.9 and 5.10 shows the ∂u/∂y iso-shear contours at several streamwise locations

for λ=10mm, 12.5mm and 15mm respectively. In all the cases, besides the strong shear due to

the wall, there are regions of strong positive shear in the boundary layer edge at the upwash.

The high shear regions rapidly moves outward at x=50mm in the case of λ=12.5mm and 15mm

compared to λ=10mm where the movement of the high shear regions is hindered due to the

interaction of the vortex pairs at close proximities. These strong positive shear regions are due

to the interaction between the uplifted low momentum fluid and outer high momentum fluid. In

addition to positive shear regions, regions of negative shear are seen in the cases of λ=12.5mm

and 15mm in the near downstream of the riblet (betwen x=5mm and 25mm). This is in concurrent

to the upwash velocity profiles (as shown in figures 5.2 and 5.3). Excluding the strong shear

regions near the wall, three maxima are found in shear contours in the transient growth regime:

one positive peak at the head of the vortex pair, and two relatively weak negative shear regions

distributed symmetrically to the stem of the vortex pair. In addition to the inflection points in the

wall-normal direction, the velocity profile is also inflected in the spanwise direction as depicted

by the high positive and negative ∂u/∂z regions that are distributed symmetrically to the low-

speed streaks, as shown in figures 5.11, 5.12 and 5.13. These higher positive and negative

regions which are concentrated near the wall at x=5 mm spread across the boundary layer with
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Figure 5.9: Iso-shear(∂u/∂y) contour at different cross-stream stations for λ=12.5 mm; a) x=5

mm, b) x=10 mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g) x=100 mm h) x=150

mm, i) x=200 mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o)

x=500 mm, p) x=550 mm.

the increasing streamwise distance. In the case of λ=10 mm, the high shear regions collapses

due to the breakdown of vortices, while in the case of λ=12.5 mm and 15 mm, the shear regions,

although decaying, is found to exist throughout the region of investigation. Furthermore, in the

case of λ=15 mm the shear regions due to the intermediate vortices is found to co-exist until

x=350 mm. In the case of coherent structures embedded in the transitional boundary layer,

four high regions tend to occur- two high shear regions distributed symmetrically about the low

momentum fluid lifted by the leg of the hairpin vortices and two high shear regions due to the

head of the hairpin vortices.

Evidently, the peaks corresponding to ∂u/∂y and ∂u/∂z are concurrent with the intense

regions of fluctuations as depicted in turbulence intensity profiles (figures 5.14, 5.15 and 5.16).

Clearly the instability motions of varicose modes are due to ∂u/∂y and that due to sinuous

motions are due to ∂u/∂z.
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Figure 5.10: Iso-shear(∂u/∂y) contour at different cross-stream stations for λ=15 mm; a) x=5

mm, b) x=10 mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g) x=100 mm h) x=150

mm, i) x=200 mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o)

x=500 mm, p) x=550 mm.

70



CHAPTER 5. INSTABILITY OF FORCED WAVELENGTH DISTURBANCES

0.4 0
.6 0

.5

0
.4

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

a)

0.4

0.6 0
.5

0
.4

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

b)

0.5

0.
6

0
.5 0
.4

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

c)

0.4

0.
6

0
.5 0

.4

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

d)

0
.4

0
.5

0.4 0
.3

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

e)

0
.3

0
.5

0
.3 0

.3

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

f)

0
.3

0
.4 0

.3 0
.3

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

g)

0
.2

0
.3

0
.3 0

.3

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

h)

0
.2 0.3

0
.2

0.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

i)

0
.2 0.3

0
.2

0.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

j)

 0
. 2 0.3 0.2

0.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

k)

0.2
0.2

0
.2

0
.2

0
.2

0
.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

l)

Figure: Caption see following page.

71



CHAPTER 5. INSTABILITY OF FORCED WAVELENGTH DISTURBANCES

0.2
0.2

0
.2

0.2
0.2

0.2

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

m)

0
.1

0.1
0.1 0

.1

0
.1 0.1

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

n)

0
.0

0
.0

0.0

0.0

0
.0

0
.0

0
.0

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

o)

0.0

0.0

0
.0

0
.0

0
.0

0
.0

0.0

z(mm)

y
(m

m
)

20 15 10 5 0 5 10 15 20
0

2

4

6

p)

Figure 5.11: Iso-shear(∂u/∂z) contour at different cross-stream stations for λ=10 mm; a) x=5

mm, b) x=10 mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g) x=100 mm h) x=150

mm, i) x=200 mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o)

x=500 mm, p) x=550 mm.
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Figure 5.12: Iso-shear(∂u/∂z) contour at different cross-stream stations for λ=12.5 mm; a) x=5

mm, b) x=10 mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g) x=100 mm h) x=150

mm, i) x=200 mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o)

x=500 mm, p) x=550 mm.
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Figure 5.13: Iso-shear(∂u/∂z) contour at different cross-stream stations for λ=15 mm; a) x=5

mm, b) x=10 mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g) x=100 mm h) x=150

mm, i) x=200 mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o)

x=500 mm, p) x=550 mm.
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5.4 Fluctuating Velocity
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Figure: Caption see following page.
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Figure 5.14: Iso-Tu contour at different cross-stream stations for λ=10 mm; a) x=5 mm, b) x=10

mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g) x=100 mm h) x=150 mm, i) x=200

mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o) x=500 mm, p)

x=550 mm.

The fluctuating component of streamwise velocity (u′) is presented in terms of turbulence

intensity (Tu) of the middle vortex pair at several streamwise distance for all the three cases.

Initially, as can be seen in figures 5.14, 5.15 and 5.16, the intense region of Tu is distributed

symmetrically to the upwash. Later along the downstream, at x=25 mm, these concentrations

develop into a fully developed varicose mode with regions I and II. Region I corresponds to the

interaction of the uplifted low momentum fluid with the outer high momentum fluid while region

II corresponds to the high shear regions of ∂u/∂y on either side of the stem of the vortex pair.

Further downstream, in all these cases, the varicose mode is found to decay and transition to

sinuous mode takes place at x=200 mm. Downstream of x=200 mm, the Tu concentrations are

coherent with those of ∂u/∂z contours. The only difference is that breakdown of the vortex pairs

due to its interaction leads to collapse of sinuous modes downstream of x=400 mm in the case of

λ=10 mm, while in the case of λ=12.5 mm and 15 mm, the concentrations of the intermediate

vortices co-exist with the concentrations of the vortex pair near the wall, between the streamwise

stations x=400 mm and 550 mm.

In order to compare the growth of the modes to that of an isolated convergent riblet, the maxi-

mum values of Tu were extracted from the experimental data at different streamwise stations and

are plotted as shown in figure 5.17. For varicose mode region I exhibits maximum fluctuation in
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Figure 5.15: Iso-Tu contour at different cross-stream stations for λ=12.5 mm; a) x=5 mm, b)

x=10 mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g) x=100 mm h) x=150 mm, i)

x=200 mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o) x=500

mm, p) x=550 mm.

disturbance velocity and for sinuous modes, the peaks of Tu are symmetrically distributed about

the low speed streaks. The solid line arrows in the figure marks the end of the development of

varicose mode while the dashed line marks the end of transition and inception of sinuous modes.

As evident from the plot, with increasing wavelength, the fluctuations of the streamwise veloc-

ity decrease. The steep growth of the varicose mode between x=5 mm and 25 mm is coherent

with that of the isolated riblet case (figure 4.18). However, the fluctuations of streamwise veloc-

ity are higher in the case of isolated riblet. Also, it can be seen that with respect to increasing

wavelength, the fluctuations of streamwise velocity decreases leading to a lower Tu values along

the downstream. In the case of λ=12.5 mm and 15 mm, the wall normal position of the peaks

of Tu corresponding to sinuous modes differ with respect to the isolated riblet case due to the

interaction of the intermediate vortices with the vortex pairs.
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Figure 5.16: Iso-Tu contour at different cross-stream stations for λ=15 mm; a) x=5 mm, b) x=10

mm, c) x=15 mm, d) x=25 mm, e) x=50 mm, f) x=75 mm, g)x=100 mm h) x=150 mm, i) x=200

mm, j) x=250 mm, k) x=300 mm, l) x=350 mm, m) x=400 mm, n) x=450 mm, o) x=500 mm, p)

x=550 mm.
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Figure 5.17: Growth of varicose and sinuous modes in terms of maximum Tu corresponding the

middle vortex pair: � - λ=10 mm, △ - λ=12.5 mm, ⋄ = 15 mm.
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5.5 Vortex Growth Rate

The disturbance amplitude parameter κ (Eqn. 4.2) as defined in chapter 4 is used to assess the

vortex growth rate in terms of mean streamwise velocity component.
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Figure 5.18: Evolution of maximum disturbance amplitude(κmax) corresponding to the middle

vortex pair: � - λ=10 mm, △ - λ=12.5 mm, ⋄ = 15 mm.

The development of κmax in figure 5.18 depicts two regions of disturbance growth. The blue

encircled region shows the transient growth regime followed by the region of consistent decay

of the disturbance amplitude. In the case of λ=10 mm, in the region of consistent decay, the

maximum amplitude disturbance is greater than that of λ=12.5 mm and 15 mm. This is because

the close proximities of the vortex pair resists the viscous diffusion between the vortex pairs and

hence the boundary layer is susceptible to the outer high momentum fluid, thus causing the dif-

ference between the upwash and the downwash to be higher than those of λ=12.5 mm and 15

mm. Downstream of x=400 mm, the disturbance amplitude decays rapidly due to the collapse of

the vortex pairs due to interaction. Comparing λ=12.5 mm and 15 mm, the disturbance ampli-

tude curves collapse well till x=300 mm. Downstream of x=300 mm, the disturbance amplitude

increases in the case λ=12.5 mm as the vortices diffuse leading to the reduction in space between

the vortex pair. This close proximities of the vortex pair makes the boundary layer susceptible to

the outer high momentum fluid similar to the case of the λ=10 mm, thus leading to the increased

amplitude in the case of λ=12.5 mm.
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5.6 Spectral characteristics

Spectral analysis was carried out to obtain the frequencies of the instability modes. Since the

development of the vortex pairs are identical, as evident from the time-averaged streamwise

velocity contours (figures 5.1, 5.2 and 5.3), the spectral analysis corresponding to the maximum

Tu location was carried for the center vortex pair. The locations were (y,z) co-ordinate that

corresponded to the region I of the varicose mode and Tu peak region of the sinuous mode.

Figure 5.19 plots the power spectra of the instability modes of the middle vortex, for all the

three cases. Evidently, the spectral characteristics of all the cases are identical. The dominant

peak in the transient growth regime (from x=5 mm to x=15 mm) occurs at 40 Hz in all the

three cases. Downstream of the transient regime (between x=25 mm and 75 mm), the dominant

peak shifts towards higher frequency (150 Hz) thus denoting the well developed varicose mode.

At x=100 mm, the high frequency peak subsides and the energy encompassed is found to be

distributed in the low frequency spectrum. This denotes the decay of the varicose mode and its

transition to sinuous mode. Further downstream, as seen in the isolated riblet case (figure 4.19),

the energy encompassed in the low frequency continually increases owing to increased spatial

oscillation of the streaks. Comparing the power spectra of the forced wavelength disturbances to

that of the isolated riblet, hardly any difference could be observed. This leads us to the conclusion

that the interaction of the vortices seldom affects the instability unlike in the case of coherent

structures where the instability is sensitive to wavelengths (Konishi and Asai, 2004).

5.7 Concluding remarks

Detailed investigation of the development of forced wavelength disturbances initiated by the

in-line arrangement of convergent riblets of height k=1.5mm has been carried out using single-

sensor hot-wire anemometer measurements for three different wavelengths - λ = 10 mm, 12.5

mm and 15 mm.

In all the cases, the streamwise vortex pairs exhibit transient growth in the near downstream of

the riblet. The close proximities of the vortex pairs in the case of λ=10 mm shows inconsistency

within the context of occurrence of maximum Tu peaks when compared to λ=12.5 mm and

15 mm. The reason being the balance between the two mutually induced velocities (away and
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Figure 5.19: Power spectra of streamwise fluctuating velocity component of the middle vortex

pair, at several streamwise stations: a) and b)λ=10 mm, c) and d)λ=12.5 mm, e) and f)λ=15 mm.
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towards the wall). Furthermore, in the case of λ=10 mm, the growth of the vortices leads to

interaction of the vortex pairs and later breakdown to turbulence. The development of the vortex

pairs in the case of λ=12.5 mm and 15 mm is accompanied by the growth of the intermediate

vortices between the vortex pairs.

The concentrations of Tu showcase the growth and decay of the varicose mode followed

by the transition to sinuous mode. The difference in wavelength was not found to induce sub-

harmonic modes unlike the case of coherent structures in the transitional boundary layer.

The trend of the vortex growth rate was found to be similar to that of an isolated riblet,

except that the magnitude of the parameter κ was found to vary due to the presence and absence

of intermediate vortices.

On the other hand, it was found that the spectral characteristics of the streamwise vortices

were identical for all the three cases and seldom made any difference when compared to those

of the isolated riblet. The energy in the most dominant peak (f=150Hz), which corresponded

to the varicose mode, was later found to be distributed in the low frequency spectrum along the

downstream due to the subsequent manifestation of sinuous modes.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The influence of a directionally-dependent surface roughness element, namely convergent riblet,

in a flat plate zero-pressure gradient boundary layer has been experimentally studied by means

of smoke flow visualization technique and single sensor hot-wire anemometer measurements.

Investigation was carried out for two different cases as follows

i) The first case where the Blasius boundary layer was under the influence of an isolated

convergent riblet, the initiated disturbances were in interaction with the peninsula of Blasius

flow. 6 different sets of experiments concerning 6 different heights of the riblet (k=1, 1.3, 1.5,

1.8, 2 and 3 mm) were carried out.

ii) The second case involved the study of instability due to the forced wavelength disturbances

wherein the induced vortex pairs were in interaction with their identical ones. The forcing of

wavelength was exercised by arranging the riblets of height k=1.5mm in-line with three different

spacing -10, 12.5 and 15mm - leading to three different vortex wavelengths(λ).

6.1.1 Isolated Riblet

Resultant flow phenomenon due to the effect of different heights of the riblet k/δk=0.16, 0.2,

0.24, 0.28, 0.32 and 0.48, whose corresponding roughness Reynolds number were Rek=47, 83,

96, 150, 184 and 380 respectively, were analysed.

The smoke flow visualization experiments showed that the initial disturbances were a pair of
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streamwise counter-rotating vortices convected by mean flow along the downstream. With the

increasing height of the riblet, the tip vortices appeared along the downstream.

Hot-wire measurements exposed the two different characteristics of the upwash velocity ve-

locity profiles - i) For k/δ=0.16 and 0.24, the inflectional velocity profile was a hyperbolic-

tangent of the wall normal co-ordinates and ii) for k/δ=0.48, the upwash velocity profile incurred

two inflection points similar to that of the final stage of Gortler instability mechanism.

The development of total disturbance profiles (U ′rms) for such manifested initial disturbances

showed a narrow region of transient growth in the near downstream of the riblet in the case of

k=1 mm and k=1.5 mm. In addition, the disturbance profiles showed two peaks , a near wall peak

and a boundary-layer-edge-peak, along the downstream in the case of k=1.5 mm. In the case of

k=3mm no transient growth regime was observed. However, the double peaks as in the case of

k=1.5 mm were observed.

The spanwise wavelength power spectra indicated the shift of the energy peak to higher wave-

lengths in the transient growth regime as in the case of k/δk=0.16, while in the case of k/δk=0.24

and k/δk=0.48, accommodation of the shorter wavelength peaks in the spectra was observed.

This indicated that, with the increasing roughness Reynolds number, the flow phenomena seized

to exhibit transient growth.

The streak characteristics justified the departure of the flow phenomena from transient growth.

The time-averaged streamwise velocity contours showed that the spanwise inflections subsided

in the case of k/δk=0.16 due to strong viscous effects. The mutually induced velocity due to

the vortex pair in this case wasn’t strong enough for the vortices to have them moved out of the

boundary layer and hence remained under the influence of viscous dissipation in the boundary

layer. For k/δk=0.24, meandering of the streaks due to the manifestation of instability modes

was observed. With further increasing height of the riblet, the vortex breakdown due to vorticity

cancellation and viscous diffusion were observed to be the dominant phenomenon as in the case

of k/δk=0.48. The effect of tip vortices in the case of k/δk=0.48 is reflected by the appearance

of two low speed streaks distributed symmetrically to the vortex pair.

The turbulence intensity(Tu) profiles showed that the evolution of the instability incurred 3

stages in the case of k=1.5 mm. The first stage involved a steep growth of varicose mode. The
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second stage involved the decay of varicose mode and its transition to sinuous mode, while the

third stage was the growth of sinuous mode. Subsequently, power spectral analysis in locations

pertaining to Tu peaks at different streamwise stations was performed based on Welch method.

In the near downstream of the riblet, till x=50 mm, the spectra showed that the energy rested

in the high frequency (f=150 Hz) corresponded to the varicose mode. Further downstream, the

decay of the varicose mode and its transition to sinuous was reflected in a way that the energy

was distributed in the low frequency spectrum. Above x=200 mm, the growth of the sinuous

mode was indicated by the increasing energy distribution in the low frequency spectrum. For a

streamwise counter-rotating vortex pair that is convected by the mean flow, the spectral charac-

teristics lead to the conclusion that the increase in the low frequency energy spectrum was only

due to increased spatial oscillation of the streaks. This was also reflected in the pre-multiplied

energy spectra plot wherein the streamwise wavenumber decreased along the downstream.

Putting together the observations, it can be concluded that with respect to increasing rough-

ness Reynolds number, the evolution of the disturbances inadvertently underwent three different

phenomena, namely: transient growth, streak instability and vortex breakdown by viscous diffu-

sion. The instability observed in this case is not similar to that exhibited by the hairpin vortices

in the transitional boundary layer.

6.1.2 Forced wavelength disturbances

The development of the time-averaged streamwise velocity contours showed three distinct fea-

tures with respect to three different wavelengths. Firstly, in the case of λ=10 mm, the growth

of the vortex pairs lead to interaction and breakdown of the vortices at x=400 mm downstream

of the riblet. Secondly, in the case of λ=12.5 mm, the vortex pairs were accompanied by the

intermediate vortices till x=400 mm and thereafter the vortex pairs were found to be in close

proximities due to its continuous diffusion along the downstream. Finally, in the case of λ=15

mm, the intermediate vortices were found to accompany the vortex pairs throughout the region

of investigation.

The contours of Tu were found to exhibit almost similar trend for all the three wavelengths -

the growth of varicose modes, its decay and transition to sinuous mode and finally the growth of

sinuous mode. This trend was identical to the isolated riblet case. The balance of the mutually
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induced velocities away from and towards the wall only dictated the wall normal position of the

peak of Tu.

The shear stress contours were found to be coherent with Tu in a way that the location of the

peak of Tu at certain streamwise stations collapsed well with the location of the peak of ∂u/∂y

indicating the varicose mode and for the rest of the areas of investigation the locations of the

peak of Tu were in line with those of ∂u/∂z indicating the manifestation of sinuous modes.

The vortex growth rate measured in terms of maximum streak amplitude κ showed narrow

transient growth regime in the near downstream of the riblet, followed by the decay of the streak

amplitude. In the case of λ=10 mm, the steep decay of the streak amplitude was due to the

breakdown of the vortex pair. Downstream of x=300 mm, the decay was found to be slower in

the case of λ=12.5 mm compared to that of λ=15 mm, which was due to the close proximity of

the vortex pairs in the case of λ=12.5 mm.

The spectral characteristics, again obtained at the maximum Tu, showed identical behaviour

for all the three wavelengths. Also, as identical to the case of isolated riblet, the dominant peak

shifted from the high frequency region (150 Hz) to low frequency spectrum indicating all the

three stages of development of instability modes.

From these observations, it can be sustained that the effect of wavelength seldom has any

effect over instability.

6.2 Recommendations

Further developments based on the present findings can be considered as follows:

1. The success of inducing disturbances in the boundary layer by means of surface roughness

has made it possible to control and study the evolution of disturbances, at least within the context

of fundamental research. In the present study, a convergent riblet with flow kinematics falling

in line with those of wishbone vortex generator and forwards vane vortex generator was put to

test within the context of transient growth. Likewise, from the population of vortex generators

(Lin, 2002), a certain surface roughness that could be a candidate member of a particular flow

kinematics can be considered for a similar study.

2. Considering potential wind tunnel variations in free stream turbulence intensity, which plays

a major role in instability, the repeatability of the experiment in different tunnels may be consid-
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ered so as to give a clearer picture of the disturbance growth and more importantly of instability

modes.

3. The downstream extent to which the measurements has been conducted in the present study

comes as an expediency. This did not allow to conclude whether the manifested instability modes

drove the boundary layer to turbulence. Conducting the same experiments in a tunnel with higher

cross-sectional area might answer the question.

4. The key point in turbulence production mechanism is the manifestation of the Reynolds

stresses and their evolution. In this light, numerical or physical experiments concerning the

quantification of spanwise velocity component would push the boundaries of the present study.

5. Finally, the most important problem is that the studies concerning any surface roughness is

parameter-rich. This calls for an exhaustive research for the generalization of the flow physics

for a particular surface roughness that offers specific flow kinematics. The present study dealt

with a convergent riblet with isosceles triangle cross section and 30◦ angle of inclination to the

flow. In this light, in order to broaden the scope of the present study, few exploratory studies

were undertaken as follows.

1) The effect of angle of inclination of the riblet to the flow: Figure 6.1 shows the initial distur-

bance due to the riblet of angle 45◦ and 60◦ for riblet height k/δ=0.48. It can be clearly seen that
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Figure 6.1: Characteristics of initial disturbances for riblet height k/δk=0.48; a)riblet aligned at

an angle of 45◦ to the flow and b)riblet aligned at an angle of 60◦ to the flow. Solid lines- Isolines

of Tu; Dashed lines - Isolines of normalized streamwise component of velocity(u/U∞).

with the increasing angle of inclination to the flow, the contours are flatter and the concentrations

of the turbulence intensity are quite different when compared to figure 4.5 in chapter 4. This is

one possibility of looking deeper into the problem.

2) The variation of geometry: The present study was focussed on riblet with isosceles triangle

cross-sectional area. Exploratory study on a rectangular cross-sectional riblet was undertaken in
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order to take a sneak peak into how the variation of geometry can affect the flow kinematics.

Figure 6.2 shows an isolated rectangular convergent riblet. The base b is taken to be equal to that

of that of the base of the isosceles triangle.

Figure 6.2: An isolated Convergent riblet with rectangular cross-section; k - height, b - base
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Figure 6.3: Power spectra of the streamwise fluctuating velocity with respect to different riblet

heights.

Figure 6.3 plots the power spectral density of maximum Tu at station x=200 mm from the

trailing edge of the riblet. The station is chosen in such a way that the spectra falls in the region

that either corresponds to transition from varicose to sinuous mode or corresponds to the region

of fully developed sinuous mode or corresponds to the region the vortices have already broken

down. Between the roughness heights of k=0.9 mm and 1.5 mm, the most dominant peak is

observed at 20 Hz. Between k=1.6 and 2.6 mm, the energy distributed in the low frequency

spectrum increases showcasing the manifestation of sinuous modes. For height k=2.7 mm, two

peaks corresponding to 60 Hz and 120 Hz starts appearing as harmonics denoting the breakdown
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of the vortices. On comparing the power spectra of the rectangular convergent riblet at k=1.5 mm

with that of the triangular riblet(figure 4.19), it can be seen that the curves are identical. Though

the spectra are identical, experiments can be conducted for other cross-sectional shapes of riblet

to generalize of the effect of convergent riblet on transient growth and streak instability.
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