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Summary 

 

Subwavelength nanostructures have exhibited different and controllable optical 

characteristics from their original material, leading a way to artificial metamaterials and 

metasurfaces. These nanostructures interact with light with surface plasmon resonances, 

cavity and waveguide modes, scattering and diffractions and etc., so they can realize the 

manipulation of light, which has attracted enduring and fanatic research interest, ranging 

from visible light, infrared light, THz to microwaves. Nanostructures, which are well-

designed and patterned to control and engineer the resonances, have realized and 

improved the performance of numerous optical applications such as color printing, 

perfect absorption, waveplates, planar lens, holograms, cloaking, optical trapping and 

sensing. 

This thesis has presents several works on manipulating light with subwavelength 

nanostructures, which can be generalized into two main parts. In the first part our works 

are manipulating far-field characteristics of light by meta-surfaces, including the high 

resolution color printing and imaging with spectra manipulation, and quarter wave plate 

(QWP) with the phase and polarization manipulation. For the color generation 

applications, we have presented a comprehensive literature review on the recent 

developments of plasmonic colors, and then we reported our ultra-high resolution non-

plasmonic color printing with ultra-narrow Si fin nanostructures and an efficient TMM 

calculation. For the quarter wave plate, we present a series works of plasmonic QWPs 
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including active hybrid QWPs working at multi-wavelength in visible/near-infrared light, 

and in THz range based on similar mechanism. 

The other main part is the near-field manipulation of light by nanostructures including 

two aspects. One is the direct excited dark modes, and the other is the photoluminescence 

(PL) enhancement by nanostructures. We have proposed a new mechanism to directly 

excite dark modes by using an electrical shorting approach with a continuous metal cover 

on a periodic HSQ pillar template without any asymmetry in geometry, environment and 

incidence. And we will also present a cooperative work on giant PL enhancement of 

WSe2-Au plasmonic hybrid nanostructures. In simulation, we have explained how a 

squared trenched Au nanostructure with gap plasmon enhances the PL of monolayer 

WSe2 on top of it, in both excitation process and emission process. 

 

 

 

 

 

 

 

 

 



ix 
 

List of Figures 

2.1 Ag nanorod arrays…………………………………………………………………....10 

2.2 Cross nanoantennas………………………………………………………………..…12 

2.3 Hole arrays on metal film……………………………………………………………15 

2.4 Dielectric matching of hole arrays………………………………………….………..17 

2.5 Nano-disks with back reflector………………………………………………………19 

2.6 Butterfly wing structures……………………………………………………………..24 

2.7 Si fin nanostructure…………………………………………………………………..27 

2.8 Relative reflectance spectra………………………………………………………….28 

2.9 Bright-field optical microscope images……………………………………………...29 

2.10 Simulated electric field distribution……………………………………………..….31 

2.11 Si nanostructure equivalent to a homogeneous layer…………..…………………..32 

2.12 Reflectance spectra with different height…………………………………..………36 

2.13 Reflectance spectra with different periodicity…………………………………..….36 

2.14 Reflectance with different polarization………………………………………....….38 

3.1 Dielectric function for various phase change materials……………………………..43 

3.2 Schematic of switchable MMQWP………………………………………………….46 



x 
 

3.3 Simulation of reflectance and reflected phase of hybrid nano-rods…………………47 

3.4 Reflectance and reflected phase for linear polarized………………………………...49 

3.5 Reflectance and ellipticity……………………………………………………………51 

3.6 Transmittance and transmitted phase of apertures…………………………………...56 

3.7 Schematic of Babinet-inverted cross aperture QWP…………………..……….........58 

3.8 Transmission and phase delay of QWP……………………………………………...59 

3.9 Stokes parameter and ellipticity…………………………………………………...…60 

3.10 Schematic of switchable THz QWP………………………………………………..62 

3.11 Transmission and phase delay of switchable QWP………………………………...63 

3.12 Stokes parameter and ellipticity with different temperature………………………..64 

4.1 Schematic of proposed nanostructures and reflectance………………………...……70 

4.2 Schematic diagram of proposed fabrication process…………………………...……71 

4.3 Higher-order dark modes excited by visible light……………………………………74 

4.4 The electric-field, current and Poynting vector distribution…………………………77 

4.5 Reflectance with varied dimensions…………………………………………………80 

4.6 Reflectance for size toleration setting………………………………………………..82 

5.1 Schematic of PL emission and Au nanostructures…………………………………...88 



xi 
 

5.2 PL spectra with different pump laser………………………………………………...90 

5.3 Relative reflectance spectra……………………………………………………..…...92 

5.4 Field distribution of gap plasmon……………………………………………………94 

5.5 Relative electric energy enhancement…………………………………………....….95 

5.6 Purcell factor…………………………………………………………………..……..97 

5.7 Simulated and experimental PL enhancement…………………………………….....99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

List of Symbols 

Alphabet and Greek Symbols 

λ   Wavelength of operating light in free space 

k  The wavenumber 

ω  The angular frequency 

c  The speed of light in vacuum 

α  Polarizability 

ε  Permittivity 

𝜒  Geometrical factor 

𝜑  Polarization angle 

 

Acronyms 

AAA  Annular Aperture Array 

Ag  Silver 

Al  Aluminum 

ALD  Atomic Layer Deposition 

Au  Gold 

CST  Computer Simulation Technology 

CVD  Chemical Vapour Deposition 

d.p.i  dots per inch 

EBL  Electron-Beam Lithography 

EELS  Electron Energy Loss Spectroscopy 

EF  Enhancement Factor 



xiii 
 

EMW  Electromagnetic wave 

EOT  Extraordinary Optical Transmission 

FDTD  Finite-Difference Time-Domain 

FIB  Focused Ion Beam 

GSP  Gap Surface Plasmon 

GST  Ge2Sb2Te5 

HSQ  Hydrogen Silsesquioxane 

LC  Liquid Crystal 

LCP  Left-hand Circular Polarization 

LSPR  Localized Surface Plasmon Resonance 

MMQWP Metasurface-based Multi-wavelength Quarter Wave Plate 

MoS2  Molybdenum Disulfide  

MoSe2  Molybdenum Diselenide  

PCM  Phase-Change Material 

PEC  Perfect Electric Conductor 

PEN  Polyethylene Naphthalate 

PL  Photoluminescence 

QWP  Quarter Wave Plate 

RCP  Right-hand Circular Polarization 

SEM  Scanning Electron Micrograph 

Si   Silicon 

SP  Surface Plasmon 

SPP  Surface Plasmon Polariton 

SPR  Surface Plasmon Resonance 

TE  Transverse Electric 



xiv 
 

THz  Terahertz 

TM  Transverse Magnetic 

TMDC  Transition Metal Dichalcogenide 

TMM  Transfer-Matrix Method 

UV  Ultraviolet 

VO2  Vanadium Dioxide 

WSe2  Tungsten Diselenide  

1D  One Dimensional 

2D  Two Dimensional 

3D  Three Dimensional 

 

 

 

 

 

 

 

 



1 
 

Chapter 1 Introduction 

The interaction between light and matters has attracted enduring and fanatic research 

interest. With the development of nanotechnology in recent few years, the researches 

concentrate on manipulating light by well-designed subwavelength structures, to be more 

specific, by ultrathin patterned or layered nanostructures, so-called meta-surfaces. An 

electromagnetic meta-surface refers to a kind of artificial sheet material with 

subwavelength thickness and electromagnetic properties on demand. These meta-surfaces 

interact with light with surface plasmon resonances, cavity and waveguide modes, 

scattering and diffractions and etc. Unlike conventional optical components, meta-

surfaces don’t need to gradually accumulate changes of the amplitude, phase or 

polarization of electromagnetic waves (EMWs) along the optical path, they can produce 

abrupt changes in amplitude, phase or polarization by all kinds of resonances within 

subwavelength spatial dimensions. The mechanism of controlling EMWs by meta-

surfaces is to eningeer the resonances on the nanostructures excited by EMWs from 

visible light to microwave. These modulations of amplitude, phase, polarization and local 

fields are realized by well-designed geometry and size of subwavelength artificial 

structures. In recent researches, meta-surfaces are widely used in negative index [1-4], 

ultra-high resolution color printing [5-20], planar lens [1, 21],  wave plates [22-28], 

holograms [29], invisibility cloaking [30, 31], perfect absorption [32-37], chiral 

manipulation [38-45], amplitude and phase modulation [29, 46-54]  etc.  
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To manipulate light by artificial subwavelength structures, this thesis will investigate the 

methods and applications of engineering resonances  to control the interaction between 

light and structures, and further control the intensity, phase and polarization of output 

light in far-field and the local effects and field distribution around the structures. The 

overall contribution of this thesis is to introduce different novel ways of engineering 

resonances on nanostructures to realize applications in different terms. Basically we 

divide our researches into far field applications and near field applications and 

investigations. For far field applications, current research hot spots can be concluded into 

three main areas: 1) manipulating the transmitted/reflected spectra of light by meta-

surfaces, especially in visible light range, which means color filters or printings with 

plasmonic and non-plasmonic nanostructures; 2) manipulating the polarization and 

relative phase shift of EMWs by meta-surfaces, for instance, plasmonic wave plates; and 

3) generating specific kinds of beams [53, 55, 56] and holographic patterns [57-61] by 

meta-surfaces. Our research works includes the first two areas, which will be presented in 

Chapter 2 and Chapter 3 of this thesis respectively. In Chapter 2, we investigate color 

printing and imaging based on manipulation of reflective and transmissive intensity by 

resonances. To compare the manipulation of light by plasmonic resonances (free electron 

oscilations) and non-plasmonic resonances (electicmagnetic field oscilations of 

waveguides, cavities and scatterers) of nanostructures, we have presented a 

comprehensive literature review on the recent developments of plasmonic color printing, 

and then we reported our non-plasmonic color printing with Si nanostructures and an 

efficient TMM calculation. And in Chapter 3, we investigate plasmonic quarter wave 

plate based on manipulation of the relative phase difference between different 
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polarizations by plasmonic resonances. To be specific, we present a design of actively 

switchable plasmonic quarter wave plate working at multi-wavelength in visible and 

near-infrared light, which is hybrid meta-surface with a spacing layer of phase change 

material GST. In addition, we have also reported two cooperative works on plasmonic 

quarter wave plates in THz range, based on similar mechanism. Moverover, the active 

control of plasmonic resonances of hybrid nanostructures could further contribute to 

optical applications other than quarter wave plates. 

The other main part is the local-field manipulation of light by nanostructure resonances. 

As well as the fantastic far-field functionalities realized by subwavelength structures, 

researchers are also deeply interested in the diversity of the resonance modes on the 

subwavelength structures, especially plasmonic resonance modes. Specific resonant 

behaviors like dark modes [62-66], Fano resonances [67, 68], gap plasmons [69-72] and 

dielectric magnetic modes [73-77] have been deeply investigated, and their giant 

potential in optical applications is revealed. Generally, these resonance modes have their 

characteristic local electric or magnetic field distribution, which would be utilized in 

photoluminescence (PL) [70, 78-80], sensing [81-84], optical tweezers and trapping [85-

87] and other biological applications. These local field researches also relay on the 

engineering of resonances on nanostructures, which will be discussed in this thesis as 

well. In Chapter 4, we have proposed a new mechanism to directly excite dark modes by 

using an electrical shorting approach with a continuous metal cover on a periodic HSQ 

pillar template. The key point of the research is to induce and engineer the dark 

plasmonic resonances on continuous metal structure without any asymmetry in geometry, 

environment and incidence. Another research on engineering plasmonic resonance to 
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influence local field and other materials is a cooperative work on giant PL enhancement 

of WSe2-Au plasmonic hybrid nanostructures, which is reported in Chapter 5. In 

simulation, we have revealed how a squared trenched Au nanostructure with gap plasmon 

resonances enhances the PL of monolayer WSe2 on top of it. The enhancement was 

generated in both excitation process by strong local electric field of plasmonic resonances 

and emission process by large Purcell effects. 

Overall, our research works in the following chapters concertrate on manipulation of light 

via subwavelength nanstructures, with both plasmonic and non-plasmonic resonances, 

and targeting on different kinds of applications. Although the manipulation of light in our 

works is quite different in form, the critical point is to engineer the resonance by well-

designed nanostructures, which results in controlling of resonance modes, local field and 

far-field optical characteristics. We have shown the outstanding ability and great potential 

of nanostructures to manipulate and control light in optical applications. And our works 

can contribute to optical and photonic research by controlling the intensity, phase and 

polarization of light, and investigating the local fields and resonance modes of the 

nanostructures. 

 

 



5 
 

Chapter 2 Manipulating Light Intensity Spectra by Meta-

Surface 

2.1 Introduction: color generation via meta-surface 

As we claimed in the introduction, by well-designed resonances of subwavelength 

nanostructural unit cells and their planar periodic array as a meta-surface, we can 

therefore manipulate the transmittive and reflective intensity spectra of these ultra-thin 

surficial nanostructure patterns. To be specific, we concentrate on the resonances within 

the wavelength range of visible light (with wavelength from 400 to 750nm), so that the 

transmitted or reflected light could be observed directly by human eyes and colors are 

generated by the meta-surfaces. For human eyes, colors are the visual perceptual property 

derived from the spectrum of light interacting in the eye with the spectral sensitivities of 

the light receptors (three retinal cone photoreceptors of red, green and blue). Therefore, 

by engineering resonance wavelength of meta-surfaces and thus manipulating the light 

intensity spectra, colors can be generated. 

In nature, colors are mainly produced by objects or materials based on their physical 

properties such as light absorption, reflection, transmission or emission spectra. Color 

related technologies such as emissive liquid-crystal displays employ pigment-based color 

filters to absorb the complementary colors to produce the red, green, and blue channels 

[88, 89]. The highest possible spatial resolution in theory for color printing and imaging 

is set by the diffraction limit of the accompanying optics [90], which is ~250-nm-pitch 

for imaging through high numerical-aperture objectives with visible light. However, the 
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highest spatial resolution of existing industrial techniques for color printing cannot reach 

10,000 dots per inch (d.p.i) yet, with the pixel size at the level of ten micrometers, still 1 

or 2 orders away from diffraction limit.  

Recent developments in color filtering and printing technologies focus predominantly on 

high spatial resolution, color vibrancy, high efficiency, and slim dimensions. 

Conventional pigment-based color filters encounter more and more difficulties in 

satisfying these gradually increasing requirements. Especially with the drive towards 

higher-resolution imaging and displays, new innovations are needed to achieve higher 

spatial resolution, lower power consumption, higher compactness, and also color 

tunability in devices. Meta-surfaces with subwavelength nanostructures, either plasmonic 

or non-plasmonic, are promising to overcome those difficulties due to their ultra-small 

dimensions and the ability to efficiently manipulate light [13, 16, 19]. Thickness of meta-

surfaces for visible light is usually around 100nm or even less, which can greatly improve 

the compactness of devices. The spatial resolution of both plasmonic and non-plasmonic 

color nano-printing can be larger than 100,000 d.p.i, which is already beyond the optical 

diffraction limit. In addition, these meta-surfaces have wide color tunability and 

robustness to high temperature and ultraviolet radiation exposure. Separately, we will 

comprehensively review the recent developments of plasmonic color nano-printing 

research in section 2.2, and report our non-plasmonic color nano-printing based on silicon 

nano-fins in section 2.3 
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2.2 Color generation via plasmonic meta-surface 

Surface plasmons (SPs) are collective free-electron oscillations at metal-dielectric 

interfaces. They exhibit enhanced near-field amplitude of electric field at the resonance 

wavelength. This field is highly localized and decays exponentially away from the 

metal/dielectric interface [90-94]. Unlike photon absorption in pigments, which is 

determined by the energy level transitions of the molecules, the scattering and absorption 

of plasmonic nanostructures are determined by their geometry and dimensions. 

Leveraging on the development of nanofabrication technologies such as electron-beam 

lithography (EBL) and focused ion beam (FIB), the shape and size of metallic 

nanostructures can be well-controlled with sub-10-nm precision [95, 96]. With these 

subwavelength elements, the pixels of color imaging can be extremely small and the 

spatial resolution can be improved up to the diffraction limit, with thickness of resonators 

of only tens of nanometers, so that they can be regarded as elements of meta-surfaces. In 

addition to the advantage of high spatial resolution and ultrathin characteristics, 

plasmonic meta-surfaces have also the following attributes: (1) as the nanostructures are 

made of metal, they are chemically stable and can endure long-duration ultraviolet 

irradiation and high temperature compared to chemical pigments; (2) the device can 

realize a broad range of colors using a single element of metal, by just varying the lateral 

size and geometry of structures. This avoids the sequential deposition of inks, reduces 

process steps, and misalignment between color channels; (3) the surface plasmon 

resonances (SPRs) can be tuned by factors such as environment index, incident angle and 

polarization, it is possible to make the optical element active [5, 6, 9, 97-99] which could 

be useful for dense optical data archival [100], and contributes to security applications. 
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Here we will provide an overview of the most recent development of color generating via 

plasmonic meta-surfaces. In terms of mechanisms, we have concluded them into three 

types: 1) color generated by localized surface plasmon resonances (LSPRs); 2) color 

generated by propagating surface plasmon polaritons (SPPs); 3) color generated by 

coupling of localized and propagating surface plasmons. We will introduce them in 

following sections respectively. 

 

2.2.1 Color generation via LSPRs 

LSPRs are collective electron charge oscillations in plasmonic nanoparticles that are 

excited by light, and well-designed plasmonic nanoparticles can be viewed as optical 

nanoantennas that receive optical radiation from the far field to the near field at specific 

frequencies and vice versa. Due to the geometry- and dimension-dependence, the LSPRs 

of these nanoantennas can be manipulated to achieve desirable reflection and 

transmission spectra [5, 12, 98, 101], and further generate the imaging pattern with pre-

designed plasmonic structures [29, 102]. Considering a simplified model of an array of 

identical metallic nanoparticles, which are typical plasmonic resonators, with a dipole of 

polarizability α for each nanoparticle, the LSPR can be estimated by the coupling dipole 

theory [103]. When the resonator is excited, it will radiate a scattering field in proportion 

to its dipole moment. The static polarizability of each resonator can be written as [104] 

    dm

dmV










d

static
        (2.1) 
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where εm and εd are the relative permittivities of metal and surrounding environment, 

respectively; 𝜒 is the geometrical factor along the dipole direction relating to the physical 

shape of resonator and V is the volume of resonator. When the resonator is a sphere, 𝜒 = 

1/3 for every direction. If the size of resonator is large enough (radius a is of order 50nm 

or more) to consider the dynamic depolarization and radiative damping, we need to 

modify the polarizability by: 

static
2

static3

static

3

2
1 




a

k
ik 

                                        (2.2) 

Assuming the whole array is infinite, the effective polarizability α* of the LSPR on single 

dipole resonator can be generally expressed as 

                

* 1

1
S








                                          (2.3) 

where the array factor S for the square array with normal incidence can be written as 

  2 2 2

3

1 3cos 1 k sinikr

dipoles

ikr
S e

r r

   
  
  

                            (2.4) 

θ and r denote the position of dipole resonators. From eqn. (2.3), when the absolute value 

of S-1/α is minimized, the effective polarizability would be maximized, leading to a 

resonance of the dipole array with strong scattering. Regarding this planar array of 

plasmonic resonators as a meta-surface, the wave scattering backward at resonance could 

result in a reflected peak and a transmitted dip correspondingly. 
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Although these collective plasmonic resonances are also influenced by other factors such 

as the Wood's anomaly and Bloch wave surface plasmon polaritons [105-107], and all 

these  factors are mutually coupled, these expressions can basically provide a good 

estimate to describe the LSPR of the resonator array. For instance, Jinghua Teng et al, 

had presented a reflective plasmonic color filters based on Ag nanorod arrays [12], which 

is typically generating color by meta-surface with LSPRs. In Fig 2-1, the dimensions and 

the periodicities of the Ag nanorods are designed to control the wavelength and intensity 

of LSPRs, so that they can control the resonance peaks in reflected spectra. To achieve 

abundant color band, especially the blue color in Fig 2-1 (b) and (c), small periodicity 

and very high diameter/periodicity ratio of the nanostructure is required, which means the 

gap between two nanorods needs to be ultrasmall. This requires high fabrication accuracy, 

 

Fig 2-1 (a) Scanning electron microscope (SEM) image of the top view of a Ag vertical 

nanorods array on a quartz substrate with periodicity p=550 nm. (b) Optical image of the 

reflective colors from different Ag nanorod arrays. (c) Measured reflection spectra of the 

corresponding arrays as a function of wavelengths. Reproduced with permission [12]. 

Copyright 2013, RSC. 
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but on the other hand, provides high spatial resolution. The periodicity is close to the 

wavelength, so the color pixels are much smaller than those of conventional chemical 

pigment-based methods. 

More generally, resonators with LSPRs can be manipulated by changing not only the 

dimensions of nanostructures, but also the shapes. For more complicated resonators, they 

should be considered as optical nanoantennas instead of simple nanoparticles. The break 

of geometry symmetry of these nanoantennas will lead to different responses to incident 

light with different polarization. In Fig 2-2, the polarization-dependent plasmonic meta-

surface is reported by Crozier et al [5]. The resonators in unit cells are Al nano-crosses 

with different arm length. As shown in Fig 2-2 (a) and (b), either vertical or horizontal 

polarized incident light can only excite the LSPR of their corresponding arms, so that 

they have different transmission spectra and render different colors. At arbitrary 

polarization angle 𝜑, the transmission spectra is a linear superposition of vertical and 

horizontal polarization states, represented as 

            (2.5) 

where TV(λ) and TH(λ) are the transmittances for light polarized vertically and 

horizontally. In Fig 2-2 (b), for incident polarization along their short arms, the light with 

shorter wavelength is absorbed and the transmitted color is yellow; while for incident 

polarization along long arms, the light with longer wavelength is absorbed and the color 

is blue. With controlled position and rotating angle of these elements, it can achieve 

active polarized images. Fig 2-2 (c) (ii—v) shows a sample with different colors of the 

acronym ―LSP‖ and background according to different incident polarization. Fig 2-2 (c) 

     2 2T , sin cosV HT T      
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(vi—xi) shows another example that the cross nanoantennas are patterned with a rotating 

angle θ(x) =180
o
 x/L, where x is the spatial coordinate and L is the extent of the sample 

in the x direction. As the incident polarization angle varies, the transmitted color image 

along x direction is also gradually changed, moving like a wave.  

 

Fig 2-2 (a-c) Conversion of polarization state to visible color by cross nanoantennas: (a) 

Polarized white light is color filtered by the LSPs on the arms of the cross nanoantennas, 

the output color results from additive color mixing of the filtering functions of the two 

arms of the cross. (b) Simulated transmission spectra for linearly polarized illumination 

with polarization angles ranging from φ = 0°, at which yellow is blocked, to φ = 90°, at 

which blue is blocked, in steps of 10°. (c (i)—(xi)) c (i) Schematic representation of 

experimental setup. c(ii)—(v) Transmission images of LSP pattern sample for (ii) 

unpolarized incident light, (iii) 90°, (iv) 45° and (v) 0° polarized light. C (vi)—(xi) 

Transmission images of twisted sample for 0°—90° polarized light in steps of 30°. (d) 

SEM image of part of LSP sample. (d) Schematic diagram of polarization dependent 

nanostructure with elliptical nano-pillars and coupled nano-square pair pillars with Al on 

top and at the bottom. (a)—(d)  Reproduced with permission [5]. Copyright 2012, ACS. 

 



13 
 

Polarization dependent color filtering and imaging provides another degree of freedom to 

manipulate color information [5, 6], which is important and has potential applications in 

many fields. First of all, it can be applied to polarization- related measurements, such as 

birefringence measurements of cancerous tissues [108] and other bio-sensing applications. 

Secondly, it can improve data storage efficiency by having two different resonances for a 

single structure. The polarization dependence could at least double the information 

capacity by recording data in different polarization states. In addition, it can also be 

useful in security applications by patterned surfaces that have concealed messages that 

can be read out only through the right combination of polarizers. 

As well as the nanoantenna arrays, the one-dimensional (1D) metallic gratings, periodic 

metal long rods array in one direction, are widely used as meta-surfaces in color filtering 

and imaging. The most significant advantage of 1D plasmonic grating color filter and 

image among the plasmonic nanostructures is their high efficiency (usually 60% to 90%), 

which is always an important parameter in practical applications. Another superiority is 

that gratings are usually highly wavelength selective and sensitive. For those grating 

nanostructures coupled with guided modes, the bandwidth of resonance can be very 

narrow (with FWHM of 30nm [109]), so that the filtered color can be pure. The spatial 

resolution of these 1D gratings can be also ultrahigh, closed to the diffraction limit [17, 

20]. The period of grating can be minified to half wavelength, and when the length of 

grating is shortened to subwavelength, it evolves to the plasmonic nanoantenna arrays we 

mentioned above, or so-called two dimensional (2D) gratings. Furthermore, 1D grating is 

the polarization dependent. Only transverse magnetic (TM) waves (the electric field is 

perpendicular to the grating direction) can be filtered, while the transverse electric (TE) 
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waves (the electric field is parallel to the grating direction) will be mostly reflected or 

transmitted. Therefore they are suitable to work for many polarization-related 

applications as discussed above. 

 

2.2.2 Color generation via propagating surface plasmon 

SPPs are EMWs travelling along a metal-dielectric interface. With normal incident light 

onto a flat metal film, SPPs cannot be excited because of the momentum conservation. 

However, when we pattern periodic structures on the film, like nano-holes and 

nanoantennas, they can provide the momentum and excite SPPs. With SPPs generated by 

nano-hole arrays, the transmittance of the metal film can be greatly enhanced, which is 

called the extraordinary optical transmission (EOT) effect. These kinds of meta-surfaces 

with EOT effect are good candidates for color generating. 

Considering a single hole in a metallic film, the transmission efficiency should be 

proportional to (r/λ)
4
, where λ is the incident wavelength and r is the radius of the hole 

[110, 111]. It means the transmission of subwavelength hole would be extremely low. 

However, the periodic metallic structures can provide the momentum for converting 

incident light into SPs, so that the hole array on the metal film can give rise to the EOT 

effect [112-114]. In the past few years, the hole arrays had been theoretically and 

experimentally [11, 115-125] studied in many aspects, such as the selective extraordinary 

transmission for color filtering. The wavelength of transmission peak λmax depends on the 

periodicity and the constituent of the hole array. At normal incidence, for the square array: 



15 
 

 

Fig 2-3 (a-b) Polarization dependence of the transmission spectra of RGB color filters 

with (a) triangular holes and (b) circular holes in hexagonal array. (c (i)—(iv)) Optical 

microscope images of Al color filters with (i) circular holes in hexagonal array, (ii) 

triangular holes, (iii) circular holes in square array, and (iv) square holes. (a)—(c) 

Reproduced with permission [126]. Copyright 2011, AIP Publishing LLC. 
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And for the hexagonal array: 
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where a is the periodicity of array, εm and εd are the relative permittivities of metal and 

dielectric material, and i and j are the scattering orders of the array [110, 127, 128]. 
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Considering the interference of the scattering losses of the holes and the Fano-type 

interaction [107, 129], λmax would be slightly blue shifted. 

In particular, for the lowest order mode (i = ±1, j = 0), the SPR peak wavelength of 

hexagonal array is smaller than that of square array with the same period and material, 

according to eqn. (2.6) and eqn. (2.7). Moreover, the wavelength interval of transmission 

peak between the first two modes of hexagonal array is also larger, which makes 

hexagonal array more favorable to reduce the color cross-talk and improve the purity of 

color. On the other hand, the shape of holes also affects the transmitted color. As reported 

by Yasuo et al [126], they had compared the color generated by the nano-hole arrays on 

Al films with triangular holes in hexagonal array, circular holes in hexagonal array, 

triangular holes in square array and circular holes in square array. The spectra and colors 

are shown in Fig 2-3. The triangular hole arrays give narrower resonance peaks than the 

circular hole arrays, but with lower efficiency. After comparing, it is also found that 

lattice construction has larger influence on than hole shapes. Overall, the hexagonal array 

performs much better in building a full color map. 

In experiments, the metallic film with hole array is usually fabricated on a glass or quartz 

substrate, which leads to an asymmetric dielectric environment. Therefore, two SP modes 

on both sides of the metal film are resonating at different wavelengths, as indicated in eqn. 

(2.6) and (2.7), which would reduce the color purity due to peaks overlapping. Owing to 

such asymmetry, momentum mismatch also results in an inefficient coupling between 

two sides and then a reduced transmittance. In order to deal with this, Cumming et al had 

employed an index-matching layer to coat the air side [127]. As shown in Fig 2-4, the 
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transmittance was efficiently improved in the presence of SiO2 layer in comparing with 

the case in the absence of SiO2. 

The refractive index of environment can be also utilized to modulate the transmitted 

spectra of these meta-surfaces. An active plasmonic color filter was reported by  

 

Fig 2-4 Measured transmission spectra of RGB color filters of circular hole array, with 

no cap layer, 100 nm and 200 nm SiO2 cap layer for (a) red, (b) green and (c) blue color. 

The transmitted light image of the structure with a 200 nm SiO2 cap layer is shown in the 

inset. (a)—(c) Reproduced with permission [127]. Copyright 2010, OSA. 
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overlaying photoresponsive liquid crystals (LCs) onto Au annular aperture arrays (AAAs) 

[99]. The photochromic LC molecules would change their form upon ultraviolet (UV) 

irradiation, and further generate a photo-induced refractive index modulation. With this 

refractive index modulation, the transmittance could be easily controlled by UV 

irradiation. 

Overall, the nano-hole arrays on metal films, with their EOT effects, can provide a 

variety of colors with promising visual effects, already satisfying the resolution 

requirement of most practical applications. The transmission efficiency of nano-hole 

arrays is one aspect needed to be further improved, and their sensitivity to the refractive 

index of environment provides them the tunability to service as active optical control 

color devices. 

 

2.2.3 Color generation via coupling SPs 

We have already introduced some representative works on color filtering and imaging in 

previous two sections. In terms of color generating mechanism, they just simply based on 

either localized or propagating SPs. However, there is still plenty room for improvement 

of the spatial resolution and color vibrancy for the plasmonic meta-surfaces. One of the 

most efficiency ways to promote the performance is to take advantage of the coupling 

between localized and propagating SPs. This coupling can provide an additional degree 

of freedom to manipulate the SPR and thus control the color more accurately.  
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One of the representative coupled plasmonic nanostructures is reported by Joel Yang’s 

group. It contains a metallic nano-disk suspended on top of a dielectric pillar and a 

complementary metallic hole as a back reflector [6, 8, 14, 130, 131]. The top disks  

 

Fig 2-5 (a) Plasmonic color pixels composed of Al nano-disks with back reflector of 

varying disk size palette, varying disk size and spacing palette and mix-disks palette. (b) 

Full color palette for pixels in (a). (c) Schematic diagram of polarization dependent 

nanostructure with Al elliptical nano-disks and coupled nano-square pair with 

corresponding holes at the bottom Al layer. (d) Schematic of a stereomicroscope setup. 

By adding polarizers to the eyepieces of a bright-field microscope, the imaging of two 

superposed microprints encoded in orthogonally polarized pixels present two laterally 

displaced images to the left and right eyes of a viewer, resulting in depth perception. 

(a)—(b) Reproduced with permission [14]. Copyright 2014, ACS. (c)—(d) Reproduced 

with permission [6]. Copyright 2014, NPG. 
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provide LSPRs and the back reflector provides SPPs, and the height of the dielectric 

pillars determines the coupling between them. Previously this kinds of structure had been 

used for ultrahigh and uniform surface-enhanced Raman scattering [131], and 

demonstrating extraordinary light transmission effect with transparent substrate [130]. By 

depositing a thin layer of Au-Ag on hydrogen silsesquioxane (HSQ) pillars on a silicon 

substrate, a high spatial resolution nano-printing technology at diffraction limit was 

fabricated. Manipulating the separation between pillars and the sizes of the metal top 

disks, the coupling between the resonances of disks and the back reflector can be tuned to 

affect the reflected color. In this nanostructure the size of the unit cell varies from only 80 

to 260 nm, much smaller than the wavelength, so that it is beyond the optical diffraction 

limit. 

To enrich the color gamut and increase the practicality of this nano-printing technology , 

the constitute materials Au and Ag are replaced by Al, which is a more preferable metal 

for plasmonic color printing because of its neutral tint, durability, high reflectance in the 

visible regime, and low cost. Furthermore, as the schematic diagram of nanostructure 

shown in Fig 2-5 (a), developing from just varying gap and disk sizes, individual pixels 

are constructed by mixing disks of different sizes [14]. To complement the limited color 

palette produced by just modifying gap and disk sizes, dual-size-disk pixels (2×2 disks 

array mixed with different sizes) are constructed, which greatly increases the range of 

colors and provides an approach for plasmonic color mixing, and full color palette is 

present in Fig 2-5 (b). Even 3D plasmonic stereoscopic prints can be realized based on 

the localized-and-propagating-SP-coupled nanostructures by utilizing their polarization 

dependence [6]. Using biaxial color pixels composed of elliptical nano-disk—hole 
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structures (shown in Fig 2-5 (c)) can independently control the reflected spectra of 

orthogonal polarized incident lights, so that two different color images can be encoded 

into the same area. Fig 2-5 (d) shows the process of generating depth perception by fine 

modulation of the differences between two images with different polarization. When the 

eyes see these two images of the same object but with small visual distance difference, 

the object looks like 3D. Therefore, the stereoscopic effects can be realized and high 

spatial resolution color imaging can be achieved. 

 

2.2.4 Conclusion of plasmonic colors 

All these nanostructures with LSPRs, SPPs and coupling of them are slim in thickness 

dimension, usually around 100nm or less, so we can consider them as meta-surfaces. 

Their excellent ability to generate color results from the wavelength-selective 

transmission or reflection based on SPs. Compared to the conventional pigments, 

plasmonic color shows more advantages including ultrasmall dimensions, impressive 

optical response, wide color tunability and compatibility for device integration. This thin 

geometry makes them easy for integration with miniaturized devices. The well-controlled 

plasmonic resonance also provides wide color range and accurately distinguished color. 

Moreover, diversity of plasmonic nanostructures contributes in achieving specific targets, 

such as high efficiency in transmission or reflection, narrower band-width for purer color, 

reduced incident angle dependence, tunable polarization applications, and electro-optic 

modulations. 
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Although plasmonic nanostructures have so many advantages and great potential in next 

generation color relevant applications, there are still some problems to be addressed. The 

first commercial applications would require a drastic reduction in patterning costs. 

Fabrication methods such as EBL and FIB are necessary to create master templates from 

which high-throughput replication processes such as nano-imprint can be used to create 

large volume of copies. On the other hand, the commonly used plasmonic materials, Au 

and Ag, are also expensive for mass production, leading to the recent trend to use Al. In 

addition to cost reduction, the performance of plasmonic devices needs to be comparable 

or better than existing technologies. For instance, in the application of plasmonic color 

filters for digital imaging products, the limiting factor is still the insufficient 

transmittance when compared to pigment-based filters. Hence, while many novel 

phenomena have been reported in literature, a strong need now is to significantly improve 

the optical performance of plasmonic color structures.  

In summary, plasmonic nanostructures show great potential in development of color 

filtering, high-resolution printing and imaging, optical data storage and security. With 

improved low-cost fabrication technology, they are slated to offer improved performance 

and lower cost in applications ranging from digital displays, imaging sensors, molecular 

sensing, optical security devices, and optical data archival. 
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2.3 Color generation via non-plasmonic meta-surface 

In section 2.2, we have introduced recent development of generating color by plasmonic 

meta-surfaces and reviewed some of the representative research works. Plasmonic color 

can provide high spatial resolution, vibrant colors and good compactness in devices. 

However, using metallic materials unavoidably results in large Ohmic loss in visible 

range, which is the primary limitation to improve efficiency for plasmonic meta-surfaces. 

Moreover, considering mass production, the costs of plasmonic noble metals, mostly Au 

and Ag, are expensive. Moreover, Ag even suffers the problem of oxidation, which 

reduces the working life of devices. Therefore, generating color with non-plasmonic 

structures has recently attracted a lot of interests. 

Non-plasmonic structural color is not unfamiliar to people. Some living creatures, 

including some types of insects, birds and aquatic animals [132-139], naturally produce 

their colorful appearance with micro or even nano sized structures on their surface such 

as feathers, shells and scales. These colors usually come from the combined effects of 

thin film/multilayer interferences, grating diffraction, photonic crystals and light 

scattering. Nowadays, a great number of researches have been done to investigate and 

imitate the natural structural colors. For example, in Fig 2-6, the image of a butterfly 

wing shows the multilayered nanostructure arrangement, which can produce abundant 

colors. The bionic nanostructure has been fabricated to achieve the similar optical effects 

[135]. 

 



24 
 

 

Fig 2-6 Morphology of butterfly wing scales (A. meliboeus). (a) SEM image of the wing 

scales (inset shows a photograph of the butterfly wing). Scale bar: 50μm. (b) Higher 

magnification SEM images of a butterfly wing scale, showing a multilayered 

nanostructure arrangement. Scale bar: 10μm. (a)—(b) Reproduced with permission [135]. 

Copyright 2009 John Wiley & Sons. 

 

In addition to the bionic nanostructures, many artificially designed non-plasmonic 

nanostructures present their capacities to generate colors, such as the dielectric horizontal 

or vertical nanowires, gratings, multi-layer structures, high-index resonators, etc [16, 

140-145]. These nanostructures are designed with many specific mechanisms, including 

waveguide modes scattering, diffractions, Mie scattering of high index particles with 
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magnetic and electric resonance modes. In many of these research works, Si, as a widely 

used semiconductor, is a desirable material because of its high refractive index and 

relative low intrinsic loss compared to metals in the visible regime, and the advancement 

of related fabrication and characterization techniques. 

However, in most of the recent researches, the dimensions of non-plasmonic 

nanostructures are larger than plasmonic ones in some extent. To deal with this problem, 

in the following section, we have presented a Si fin nanostructure for color printing with 

high spatial resolution beyond the optical diffraction limit and slim thickness to serve as a 

meta-surface. The dimension parameters for specific color can be easily designed and 

controlled based on the effective medium approach.  

 

2.3.1 Color generated by Si nanostructure 

To propose a non-plasmonic meta-surface for color generation, silicon (Si) could be a 

suitable candidate material. Si is the most widely used material in semiconductor industry. 

Relying on its mature technology platform, fabrication and characterization techniques of 

silicon-related devices has undergone tremendous developments in the past several 

decades. Recently, the optical characteristics of Si nanostructures have attracted a lot of 

interests in the area of nano-photonics due to the following two advantages. First, the 

permittivity of Si in the visible regime ranges approximately from 15 to 30, so that Si 

nanostructures are suitable for performing as optical cavities with ultra-small sizes [146]. 

Second, as the key advantage of Si compared to typical noble metals with SPRs, it has a 
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much smaller Ohmic loss, which enhances its potential to be an ideal material for high 

quality factor optical cavities [147]. 

Due to the above advantages, Si nanostructures have been used for various optical 

applications in different areas, such as dielectric gradient meta-surface [47], chirality 

beam splitter [148], negative-angle refraction [149], color display with Si nanowires [141, 

142, 150] and multispectral imaging with vertical silicon nanowires [140, 151, 152]. In 

these researches, the Si nanostructures essentially support waveguide modes or optical 

scattering modes to realize the designed functionalities. For these waveguide modes in 

visible light range, the dimensions of Si nanostructures have to be above the cut-off 

wavelength, typically above 30nm. Therefore, the Si nanostructures with dimensions 

below the cutoff are rarely investigated. Recently, with the development of the 

fabrication technology, Si nanostructures below 20nm can be realized already. 

In this section, we present a sub-diffraction color printing with the color pixel made of 

silicon nanostructures with width dimensions of below 20-nm, and height dimensions of 

around 100nm as a meta-surface. Dr. Dong Zhaogang had fabricated the sample and 

measured the spectra, and I had simulated the nanostructures and built up the theoretical 

model. Our work is different from the research works in the literature on Si 

nanostructures, where were utilizing the scattering to manipulate light and generate colors. 

In comparison, the scattering from our presented Si nano-fin structure, with width of less 

than 20 nm, is negligible, and the periodicity is also small that the grating effects can be 

avoided. It is shown that the Si fin nanostructures could be approximated by an effective 

medium with the refractive index calculated based on the volume ratio. We believe this 
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high spatial resolution Si color pixel has great potential in on-chip color nano-printing 

and related applications in semi-conductor industry. 

 

Fig 2-7 (a) Schematic of single color pixel made of Si nano-fin structure. (b) Scanning 

electron micrograph (SEM) images of the silicon nano-fin structures with a width of 9nm.  

 

2.3.1.1 Structure and results 

Our structure is an ultra-narrow Si square fin on the Si substrate, as shown in Fig 2-7. Fig 

2-7 (a) presents the schematic of structure, the height h of the fin is about 90nm; the 

width w of the fin varies from 8nm to 16nm, which is much below the cut-off of 

waveguide modes; and the periodicity P of the fin varies from 60nm to 400nm, so in the 

small part of these periodicities the pixel sizes can be beyond the optical diffraction limit. 

Fig 2-7(b) presents a typical scanning electron micrograph (SEM) image of the silicon 

nano-fin structures with a typical width of 9 nm. 

These Si fin nanostructures were obtained by ion reactive plasma dry etching, and the 

HSQ protection mask was fabricated by EBL with a corresponding exposure time of 0.75 

μs. If the EBL exposure time is increased further, the HSQ protection mask will have a 

thicker line so as to result in a wider Si nano-fin. 
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Fig 2-8 (a) Experimental measured relative reflectance spectra for various exposure times. 

The increasing exposure time refers to increasing width, which varies from 9nm to 14nm. 

(b) Simulated relative reflectance spectra for various fin widths with respect to flat silicon 

substrate. The nano-fin has a height of 90 nm and a pitch of 140 nm. 

 

Fig 2-8 shows the (a) experiment and (b) Finite-difference time-domain (FDTD) 

simulation relative reflectance spectra with respect to the flat Si substrate for a set of Si 

fin nanostructures with height h=90nm and periodicity P=140nm. In experiment, the 

exposure time varies resulting in a range of width from 9nm to 14nm. The width 

increases as the exposure time increases. Accordingly, the simulation was done on the 

nanostructures with width increasing from 9nm to 14nm with a step of 1nm. It is shown 

that the simulation results resemble the key features of the experimental measured results, 
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where the spectra show a red shifted trend as the width increasing and the dip wavelength 

is shifted from 500 nm to 600 nm. 

Meanwhile, the variation of periodicities of the nanostructures can also affects the 

reflected spectra. By controlling both the width and the periodicity of Si fin, the reflected 

spectra can be manipulated and designed color can be generated. As shown in Fig 2-9, 

optical microscope images of Si fin nanostructures with different dimensions present 

different colors. With this color palette, high spatial resolution color imaging can be 

achieved. 

 

Fig 2-9 Bright-field optical microscope images of the fabricated silicon nano-fin 

structures with respective pitch sizes and widths.  
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2.3.1.2 Effective Medium Approximation 

In order to have a clearer understanding of the physical origin at both the peak and dip 

wavelengths, we plot out the respective electric field distributions at these two 

wavelengths (i.e. 426 nm and 600 nm) as shown in Fig 2-10 (c)-(f), respectively. Since 

the incident optical field is polarized along x-direction, in this case, this incident optical 

field will possibly excite the transverse magnetic (TM) modes for the silicon nano-fin 

along Plane B and transverse electric (TE) modes for the one along Plane A, respectively. 

However, considering the sub-20nm width, TE modes in Si nano-fin along Plane A 

cannot be excited. That’s why in these figures the electric field inside Si nano-fin along 

Plane A is weak (no TE modes) and inside nano-fin along Plane B is strong (excited TM 

modes). Moreover, for Plane A in Fig 2-10 (c) and Plane B in Fig 2-10 (d), the electric 

field distribution has a constructive interference within nano-fin structure along z 

direction, and it satisfies the condition that: 

2 h=λ/ neff     (2. 8) 

where λ is the wavelength in vacuum, neff and h denote the effective refractive index of 

the silicon nano-fin structure, and the height of the silicon fin, respectively. Similarly, for 

Plane A in Fig 2-10 (e) and Plane B in Fig 2-10 (f), the dip wavelength satisfies the 

condition: 

 2 h=λ/(2 neff)     (2.9) 

so as to result in a destructive interference within this nano-fin structure along z direction. 

In addition, when the width of nano-fin is becoming smaller from 14 nm to 9 nm as 

shown in Fig 2-8, the silicon ratio of the fin structure is reducing. As a result, the 
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effective refractive index neff will decrease, and thus both the peak and dip wavelengths 

will shift to smaller values. 

 

 

Fig 2-10 FDTD simulation schematic with the defined monitor planes, i.e. (a) Plane A 

and (b) Plane B. The nano-fin has a height of 90 nm and a pitch of 140 nm. (c)-(f) Spatial 

distribution of the electric field magnitude at Plane A and Plane B, respectively, with a 

silicon fin width of 14 nm. (c)-(d) and (e)-(f) present the electric field magnitude at the 

peak wavelength and the dip wavelength of the reflectance spectra, respectively. The 

green dash line denotes the boundary of the nano-fin structure. 
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Fig 2-11 Schematic of the Si fin nanostructure equivalent to a three-layer Fabry-Perot 

cavity, considering the fin as a homogeneous layer. 

 

Next, we would like to present the effective medium theory to explain the resonances of 

the silicon nano-fins as observed in Fig2-2. Most research works on silicon 

nanostructures are utilizing their scattering to manipulate light and generate colors. 

However, the scattering of our silicon nano-fin with width of sub-20 nm is negligible, and 

the periodicity is also small to avoid the grating effects. The resonance of the structure 

results from the multiple reflections of ―air – Si fin – Si substrate‖, which can work as a 

Fabry-Perot cavity as shown in Fig 2-11. Since this silicon nano-fin is in such a small 

size as compared to the wavelength, the whole macroscopic fin layer can be regarded as a 

homogeneous layer, as shown in Fig 2-11. Here we use the Lichtenecker’s equation [153] 

to model this Si fin layer: 

  
kkk

L ff 2211        (2.10) 

where εL is the Lichtenecker’s effective permittivity, f1 and f2 are the filling factors (f1 + 

f2=1), ε1 and ε
2
 are the permittivity of material 1 and 2, respectively. Parameter k is 

related to the specific microgeometry topology of the composite, and ranges from -1 to 1. 

In specific cases, k=1 denotes that the composite is a system consisting of plane-parallel 



33 
 

layers disposed along the field, while k=-1 denotes that the composite is a system 

consisting of plane-parallel layers disposed perpendicular to the field. In our fin 

nanostructure, due to the geometry symmetry and the polarization dependence, when the 

incident polarization is along one of the Si fins, the Si fin nanostructure can be regarded 

as a composite of parallel slabs perpendicular to E field (k=-1) and parallel slabs along E 

field (k=1), neglecting the coupling between Si fins with different directions. However, 

the permittivity of Si is much larger than that of air, and the filling factor of Si is much 

smaller than air. So that when considering the Si fin perpendicular to E field (k=-1), εL 

will be closed to 1, which means the Si fin along this direction contributes little to the 

effective permittivity. This agrees with the previous discussion that TE modes in the 

nano-fins perpendicular to E field cannot be excited, and only TM modes in nano-fins  

along E field are excited. Thus, the effective permittivity of Si fin structure will be 

mainly determined by the Si fin along E field (k=1), so that the effective permittivity can 

be simplified to the following equation: 

  εeff = A εSi + (1-A) εAir    ,          εeff = neff 
2
  , (when μ0=1)                (2.11) 

where εAir, εSi and εeff denote the permittivity of air (εAir=1), Si, and the effective 

permittivity of the Si nano-fin structure. A is the effective volume fraction of Si fin along 

the E field direction. 

Based on this effective medium approximation, we can easily calculate the multilayer 

reflectance by transfer-matrix method (TMM) [154]. The TMM used in optics is a 

method to analyze the propagation of electromagnetic waves through a layered medium. 

The TMM is based on the continuity conditions for the electric field across boundaries 
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from one medium to the next according to Maxwell's equations. The field at the end of a 

layer can be derived from the field at the beginning of the layer by a simple matrix 

operation. A stack of layers can then be represented as a system matrix, which is the 

product of the individual layer matrices. The final step of the method involves converting 

the system matrix back into reflection and transmission coefficients. In a simplified case, 

a normal incidence from material 1 to material 2, at the interface of two materials, we 

have: 
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and inside material 1, we have: 
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where M12 and P1 are the transfer-matrixes, M is at interface and P is inside material, the 

numbers denote the materials; n1 and n2 are the refractive index of material 1 and 2; d1 is 

the thickness of material 1 and λ is the wavelength in vacuum. With these transfer-

matrixes M and P, we can calculate the reflectance by: 
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                               (2.14) 

where r and t are the reflection and transmission coefficients, respectively. 

With the calculation of TMM, we can compare the TMM and FDTD results of structure 

with different dimensions. In Fig 2-12, the height of Si nano-fin varies, which changes 
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the transfer-matrix P in eqn. (2.13). When the height is too small, the fin layer is almost 

negligible, so the reflected spectra would be similar to a flat Si film. As thin film 

interference, when the height becomes larger, the wavelength of main resonance peak, 

which refers to 2neff h=λ0, is increasing. When the height of the silicon nano-fin is larger 

than 140 nm, the structure will start to support higher-order mode (when 2neff h=2λ0 for 

reflected peak). 

In Fig 2-13, the periodicity of Si nano-fin varies, thus the effective volume fraction of Si 

A in eqn. (2.11) is changed. So the effective permittivity and refractive index of Si nano-

fin also changes. When the periodicity of fin structure increases, the volume fraction of 

silicon decreases, so that the effective refractive index will decrease, and the reflected 

peak (constructive interference) will shift to a shorter wavelength. And when periodicity 

is large, the incremental of periodicity leads to less reduction of effective refractive index, 

so the resonance wavelength shifts slightly with large periodicity. 

In Fig 2-12 and Fig 2-13, the FDTD and TMM results match each other very well 

substantially. There are only a few minor differences, which are relatively clear at shorter 

wavelength. The reflected peak bandwidth is a bit smaller in FDTD results; in Fig 2-12, 

for FDTD, it is likely to see the high order mode referring to 2neff h=3λ0 with large height, 

but this mode can hardly be seen in TMM; and in Fig 2-13, for FDTD, resonance 

intensity with smaller periodicity is a bit larger than that with large size, while for TMM, 

resonance intensity with larger periodicity is relatively larger. At shorter wavelength, the 

Si fin nanostructures are relatively larger in terms of wavelength. And the effective  
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Fig 2-12 Comparison of the simulated reflectance spectra by (a) FDTD and (b) TMM 

approach based on the effective medium theory, with the Si nano-fins with periodicity of 

140nm, and width of 14nm and different height. 

 

 

Fig 2-13 Comparison of the simulated reflectance spectra by (a) FDTD and (b) TMM 

approach based on the effective medium theory, with the Si nano-fins with height of 

90nm, and width of 17nm and different periodicity. 

 

medium approximation ideally applies to structures much smaller than wavelength, so 

that the Si fin layer becomes not so ―homogeneous‖ at short wavelength as at long 

wavelength, which leads to minor differences between FDTD and TMM results. And at 

shorter wavelength, the refractive index of Si is larger, making the optical path inside Si 

nanostructure even smaller. In spite of this condition, the fin width is still much smaller 
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than wavelength and the spectra from two methods agree with each other quite well. That 

is a key advantage of our ultra-narrow fin nanostructure. If the width is above 30nm, the 

effective medium theory cannot work so well. 

The TMM has an overwhelming advantage in calculation time and requirement of 

computer performance. For FDTD simulation, we were using 3D FDTD method Maxwell 

solver from the commercial software package Lumerical FDTD Solutions. We use 

periodic boundary conditions with the maximum unit cell size up to 300nm, and the 

finest mesh size should be 0.5nm because the minimum width of the Si fin is just 8nm. 

And in the z direction, which is along the plane wave light incident direction, the 

simulation distance is comparable to wavelength. Although we have used symmetric (y 

direction with E field polarized in x direction) and asymmetric (x direction) conditions to 

reduce the amount of calculation, such an ultra-fine mesh compared to simulation region 

requires large memory and long calculation time. To achieve a spectra map like Fig 2-12 

and Fig 2-13 by sweeping parameters, FDTD takes quite a few hours or even several days 

on high-profile server, while it just needs several seconds or less by TMM on low-profile 

computer. Therefore, the design of Si fin nanostructure for specific color by TMM is 

much more convenient and efficiency. 

Another characteristic should be noticed is the polarization dependence. As the electric 

field distribution shown in Fig 2-10, only TM modes can be excited. Therefore, the 

electric field inside the Si bar along the direction which is perpendicular to the incident 

polarization can be almost neglected. And in the effective medium model, we also 

mentioned the polarization dependence. Fig 2-14 presents the FDTD simulated 

reflectance of the nanostructures with Si bar array only along x direction and only along y 
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direction, with incident light polarized at x direction, and compares them with the whole 

Si fin and the flat Si substrate. It is clear that the result of only x-direction Si bar is closed 

to the whole Si fin, while the only y-direction is similar to the Si substrate, which means 

that the contribution to the cavity mostly comes from the bars along the incident 

polarization direction in the fin structure. This also supports the appromxiation in 

effective medium that we only consider the Si fin along E field direction as the effective 

volume, and for Si fin along the other direction, the effective permittivity is closed to air, 

as claimed above. Based on this polarization dependence, the Si fin meta-surface can also 

be used in polarization related applications like bio-sensing, data security and 

stereoscopic prints, which is usually done by plasmonic meta-surfaces as we discussed in 

section 2.2.1. 

 

Fig 2-14 Reflectance of Si fin nanostructure, only Si bar array along x direction, only Si 

bar array along y direction and flat Si substrate with incidence polarized in x direction. 

The periodicity is 140nm, height is 90nm and width is 14nm. 
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To conclude, in this section we present an ultra-narrow Si fin nanostructure based color 

printing technique with ultra-high spatial resolution. For the Si fin with such small width 

and periodicity, which is much smaller than wavelength, the fin layer can be equivalent to 

an effective medium with a homogeneous refractive index. Such a simplified effective 

medium will enable a direct TMM calculation of required Si nanostructures for achieving 

certain designed color. We believed that the presented Si color pixel beyond optical 

diffraction limit will have a very good compatibility with the existing semi-conductor 

industry and it paves a way towards the full potential for on-chip color nano-printing 

applications. 
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Chapter 3 Manipulating Polarization of EMWs by Meta-

Surface: Plasmonic Quarter Wave Plates 

3.1 Introduction: polarization and phase manipulation via meta-surface 

In last chapter we have investigated the light intensity spectrum manipulation by meta-

surface. Other than the intensity or amplitude of EMWs, meta-surfaces can also control 

the phase and polarization of EMWs, because the resonance is always accompanied by a 

large phase shift, and the polarization is determined by the relative phase difference 

between orthogonal directions. To be specific, in this chapter we will only discuss about 

the plane waves, and the polarization only refers to linear polarization and circular/ 

elliptical polarization. As well as the manipulation of light intensity spectra which can 

provide abundant colors and images, the manipulation of polarization state of EMWs is 

also of great importance, due to the information carried by polarization states in 

applications such as chemical and biological sensing, optical data storage and 

transmission. Conventional methods to control the polarization state of light are using 

birefringent materials, which are anisotropy in refractive index along the two orthogonal 

axes [155]. In this way, the difference in phase delay of different polarization needs to be 

gradually accumulated along the optical path inside the birefringent materials, leading to 

large bulk size, high loss and limitation in choice of materials. In terahertz (THz) 

frequency regime, the problem is even more serious. As well as the longer wavelength, 

the limited natural birefringent materials only provide small birefringence index, 

resulting in large thickness of the elements. It brings much difficulty in integrating 

polarization manipulators into compact devices and systems. For instance, one of the 
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most commonly used polarization controlling optical devices is wave plate. A quarter 

wave plate (QWP) is an optical device that alters the polarization state of a transmitted or 

reflected light wave, which converts linearly polarized light into circularly polarized light 

and vice versa [155]. It can be used to produce elliptical polarization as well. However, 

conventional QWPs constructed of birefringent materials suffer difficulties of reducing 

dimensions, which limits their integration into compact optical systems. Recently, more 

and more researches concentrate on QWPs made by plasmonic meta-surfaces. 

Plasmonic meta-surfaces are able to manipulate polarization states with an ultra-thin 

layer, based on the abrupt phase shift on the resonators. With the asymmetry in geometry 

of the plasmonic nanostructures, the resonance response to different polarized incidence 

can be conveniently controlled. Particularly, quite a lot of research works have been done 

on QWPs and other polarization related optical applications like chiral manipulation and 

half wave plates based on meta-surfaces. Most of these polarization related applications 

are realized in infrared range [28], THz [22-27] and microwave [156, 157]. 

In this chapter, we will present several works on plasmonic QWPs which are ultra-thin 

compared to the working wavelength, in visible/near-infrared and THz range. These 

QWPs, although working at quite different wavelength, base on surface plasmons. One of 

the QWPs works at the boundary of visible light and infrared, and it is hybridized with a 

phase-change material, Ge2Sb2Te5 (GST), which makes this wave plate switchable. 

Another QWP works at THz range, where the metal is more ―ideal‖, and it can achieve 

better converting ratio and efficiency. An improvement on this QWP is realized by 

hybridizing another phase change material, vanadium dioxide (VO2), also making it 

switchable. These switchable phase-change meta-surfaces provide a promising way for 
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realization of polarization manipulating components, enabling novel applications with 

integrated optical devices. 

 

3.2 Switchable plasmonic QWP in visible/near—infrared light 

Since many research works had been done on QWPs by plasmonic meta-surface, it is 

necessary to improve the performance of plasmonic QWPs. One of the promising ways is 

to make this device active. For meta-surface, usually the functionality is settled once it is 

fabricated, and can never be changed. However, when we bring phase-change material 

(PCM) into the meta-surface, it is possible to control the functionality or working 

wavelength of the optical devices and make them switchable. In the following sections 

we will introduce some PCMs and then report our switchable plasmonic QWP based on 

metal—PCM meta-surfaces. 

 

3.2.1 Phase-change materials 

PCM technology has provided the possibilities to achieve meta-surfaces with active 

functionalities. The amorphous and crystalline phases of PCMs can present significantly 

different optical properties, and the phase states can be rapidly switched [158, 159]. The 

phase state refers to the arrangement of the constituents (atoms or molecules) of the 

materials. When the environment changes, such as changing temperature and illumination, 

the arrangement of the constituents of PCMs will be changed, leading to the phase  
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Fig 3-1 Dielectric function ε1(ω) and ε2(ω) for various materials. (a) and (b): Amorphous 

phase-change sample. (c) and (d): Crystalline sample including Drude-type contribution. 

(e) and (f): Crystalline sample with Drude contribution subtracted. (a)—(f) Reproduced 

with permission [160] Copyright 2008 NPG.  

 

change. In crystalline state, the constituents of material are arranged in a highly ordered 

microscopic structure, forming a crystal lattice that extends in all directions; while the 

amorphous state lacks the long-range order characteristic of a crystal and has an internal 
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structure made of interconnected structural blocks. Based on the distinct properties of 

their amorphous and crystalline phases, PCMs are widely used in applications of 

rewritable optical data storage [161]. In addition, these PCMs can also be hybridized with 

surface plasmons for tunable plasmonic applications, including research works on 

negative index metamaterials [162], Fano resonances [163, 164], flat lens [165] and 

perfect absorbers [32-34], etc. 

Fig 3-1 has shown the dielectric functions of some of the PCMs calculated by ref. [160]. 

ε1(ω) and ε2(ω) are the real part and imaginary part of the dielectric functions, 

respectively. At low energy, the Drude contribution from free carriers should be 

subtracted, as shown in Fig 3-1 (e) (f). The shift of dielectric functions between 

amorphous and crystalline states of these PCMs is obvious in visible and near-infrared 

light range, providing the potential to be employed as active material in our design of 

switchable QWPs at respective wavelength. In the following of this section, the data of 

dielectric functions for Ge2Sb2Te5 (GST) is adopted from this paper. 
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3.2.2 Switchable plasmonic QWP with GST 

We have designed a switchable reflective metasurface-based multi-wavelength QWP 

(MMQWP) in visible and near-infrared range. This MMQWP is constructed by arrays of 

Au-GST hybrid cross nanostructure with different arm length. The Au nano-cross is 

strutted by GST, on a flat Au film. Due to the difference in arm length, these 

nanostructures can support two orthogonal resonant modes, and the asymmetry results in 

a π/2 phase delay between the polarizations along different arms, working as a QWP. In 

addition, when the phase state of GST is switched by heating, the resonances of both 

arms shift. By properly design of the dimensions of the nanostructure, we have realized a 

switchable dual-band QWP, with amorphous GST working at 732nm in visible light and 

crystalline GST working at 781nm in infrared range, with more than 95% of the energy in 

reflected light converting from linear polarized light into circular polarized light. When 

the phase state of GST is switched, the performance of QWP is obviously reduced, which 

enables the active control of polarization states. 

Fig 3-2 shows a schematic of the switchable MMQWP, which is composed of a flat Au 

film with cross-shape GST array supporting the Au cross resonators. The periodicity P of 

the unit cell is 500nm, the bottom Au film is optically thick, the height of GST h is 

100nm, the thickness of top Au cross is 50nm, the width of the cross w is 50nm, and the 

arm length of cross Lx and Ly is 300nm and 385nm, respectively. Thin Si3N4 layers of 

2nm are added between Au and GST to prevent diffusion. This meta-surface could be 

fabricated by firstly patterning PMMA nano-cross aperture array on Au film by EBL, and 

then sputtering Si3N4, GST, Si3N4 and Au on it layer by layer, at last lifting-off the 

PMMA. The heater can be located behind the meta-surface to control the temperature.  
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Fig 3-2 (a) Schematic of light reflected by the switchable MMQWP. (b) Schematic of 

heating system. (c) Schematic of the unit cell, in which P=500nm, h=100nm, t=50nm, 

Lx=300nm and Ly=385nm. In the structure gold color presents Au, purple presents GST 

and red presents Si3N4. 

 

With normal incident light linearly polarized with 45 degree to x axis, the Localized 

surface plasmon resonance is excited on both arms of the top Au nano-cross, while the 

propagating surface plasmon is excited on the bottom Au film. The coupling of localized 

and propagating surface plasmon can be manipulated by the height and phase state of 

GST.  

To design the dimension of the arm length of nano-cross, we have investigated the 

intensity and phase of reflected lights for nano-rod arrays supported by GST layer on Au 

film with different length, from 250nm to 450nm, with incident light polarized along the  
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Fig 3-3 FDTD simulation of (a) reflectance and (b) reflected phase of Au-GST hybrid 

nano-rods with different length (L) at 300K (amorphous state); and (c) reflectance and (d) 

reflected phase of Au-GST hybrid nano-rods with different length (L) at 425K 

(crystalline state). The star and ring denote the length (Lx=300nm and Ly=385nm) chosen 

to form the cross and the corresponding working wavelength. 

 

rods. Fig 3-3 shows the reflectance and reflected phase of nanostructures at 300K (room 

temperature) and 425K. The crystallization temperature of GST is between 373K and 

423K, so Fig 3-3 (a) (b) and (c) (d) refer to GST in amorphous and crystalline states, 

respectively. The reflected phase is collected at a distance away from the meta-surface, so 

the reflected phase contains the phase generated by propagating path. However, we just 

need to care about the phase difference of nanostructures with different length at the same 

wavelength, so the propagating distance can be neglected. For reflectance, we can see the 

resonance wavelength is shifted about 50nm to 100nm for the same nanostructure when 
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GST transfers from amorphous to crystalline, depending on the length. For the reflected 

phase, the phase changes abruptly at resonances, as the typical characteristics for a 

Lorentzian resonance, and at the resonance wavelength, the phase difference which 

would be achieved by two different arm lengths, is much more obvious for nanostructure 

with crystalline GST than that with amorphous GST. 

Because of the independence of the resonance on each arm of nano-cross, the phase delay 

between different polarization states can be achieved by different arm length, and the 

birefringence of meta-surface can be realized. Using either amorphous or crystalline GST, 

the QWP can be designed by controlling a phase delay of π/2 with the same reflectance, 

at different wavelength, as the arm length marked by star and ring in Fig 3-3. In addition, 

in Fig 3-3 (d), we can see the phase difference can almost approach π, which implies this 

kind of hybrid nanostructure is also possible to serve as a half wave plate. However, with 

the parameters for π phase delay, the reflectance is low and doesn’t match each other, 

significantly reducing the performance. 

As the normal incident wave is polarized at θ = 45 degree to x-axis, the incident and 

reflected electric field can be noted as: 
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where θ is the polarization angle, rx and ry are the reflection coefficients for unit incident 

intensity along x and y direction, respectively. And we simply assume that  ⃗=0 and t=0. 

And 
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where Rx and Ry are the reflectance for unit incident wave polarized at θ, Φx and Φy are 

the reflected phase and 𝛥Φ is the phase difference between the two polarization states, 

respectively. 

 

 

Fig 3-4 Reflectance for linear polarization along x and y direction for hybrid nano-cross 

structure (a) at 300K (amorphous) and (b) at 425K (crystalline). (c) Reflected phase 

difference between x and y polarization for hybrid nano-cross structure at 300K 

(amorphous) and 425K (crystalline). (d) The permittivities of GST in visible and near-

infrared light range (referred to ref. [160].): the black lines denote amorphous states; the 

green lines denote crystalline states; the solid lines denote real parts and the dash lines 

denote imagery parts. 
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Therefore we present the reflectance of polarization in x axis and y axis for GST in 

amorphous at 300K in Fig 3-4 (a) and crystalline at 425K in Fig 3-4 (b). The resonance 

wavelength in x direction is 693nm for amorphous and 729nm for crystalline, while the 

resonance wavelength in y direction is 760nm for amorphous and 816nm for crystalline. 

And we should note that around 735nm for amorphous and 775nm for crystalline, the 

reflectance of x and y direction is closed. So we also plot the phase difference between x 

and y polarization for both states in Fig 3-4 (c). At 425K, the phase difference can be 

larger than π/2, so it is possible to generate circular polarized light with a π/2 phase 

different while Rx and Ry are closed; at 300K, although the phase difference cannot reach 

π/2, it is also maximized around the wavelength where x and y direction has the same 

reflectance. All the differences result from the changes of permittivities of GST at phase 

state transition, as shown in Fig 3-4 (d). The permittivity data is adopted from ref. [160]. 

To analyze the problem more clearly, the reflected wave is converted into right-hand 

circular polarization (RCP) and left-hand circular polarization (LCP), as following 

expression: 
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where rRCP, rLCP and RRCP, RLCP are the reflection coefficients and reflectance of RCP and 

LCP waves, respectively. Please note that the incident wave is linear polarized at θ =45 

degree, E0 is the total incident intensity, so the total reflection should be the sum of RRCP 

and RLCP. 
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In Fig 3-5 (a) (b), which shows the reflectance in term of circular polarization, it is 

obvious at the wavelength of 732nm at 300K and at the wavelength of 781nm at 425K, 

RCP is nearly zero, thus the reflected wave is almost LCP wave. Furthermore, the 

ellipticity of polarization can be calculated by: 

RCP LCP

RCP LCP

r r
Ellipticity

r r





   (3.4) 

 

 

Fig 3-5 Reflection of RCP and LCP light with incident wave linearly polarized at 45 

degree to x axis for hybrid nano-cross structure (a) at 300K (amorphous) and (b) at 425K 

(crystalline). (c)  Ellipticity of polarization of reflected light with normal incident wave 

linearly polarized at 45 degree to x axis for hybrid cross nanostructure at 300K 

(amorphous) and 425K (crystalline). (d) Ellipticity of polarization of reflected light with 

titled incident wave at working wavelength marked in (c), 732nm for amorphous state at 

300K and 781nm for crystalline state at 425K, respectively. 
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Ellipticity =1 refers to RCP, ellipticity = -1 refers to LCP and ellipticity = 0 refers to 

linear polarization, as shown in Fig 3-5 (c). At 300K, as the GST is in amorphous state, 

the ellipticity is about -0.75 at 732nm, which means that the energy ratio of LCP light in 

total reflected light RLCP/( RLCP+ RRCP) could reach 98%. When the temperature is heated 

up from room temperature to 425K, GST is switching to crystalline state, and the 

ellipticity changes to -0.09, which means a linear reflected light. So the reflected light at 

this wavelength is LCP for nanostructures with amorphous GST and linearly polarized 

with crystalline GST. On the other hand, the ellipticity is -0.68 with crystalline GST at 

working wavelength of 781nm, so the energy ratio of LCP light in total reflected light is 

also over 95%. While GST is in amorphous state, the performance of QWP is largely 

reduced. With the ultra-fast phase transition of GST [159], this meta-surface can 

efficiently control the polarization of output lights, switching between circular and linear 

polarization states.  

In addition, we have investigated the incident angle dependence of this MMQWP. As 

shown in Fig 3-5 (d), the incident angle varies from -30 degree to 30 degree, keeping the 

polarization angle at 45 degree. At room temperature, at the working wavelength of 

732nm, the absolute value of ellipticity drops rapidly (black curve), the meta-surface fails 

to work as a QWP with large incident angle. However, when the GST is crystallized at 

425K (green curve), the meta-surface presents a much better tolerance. The absolute 

value of ellipticity can still keep around 0.5 with incident angle of ±30 degree. The large 

difference in incident angle dependence of meta-surface with GST in difference phase 

states may also contribute to active manipulation of light polarizations. 
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In summary, we have numerically demonstrated an ultrathin active MMQWP in 

visible/infrared range using asymmetric cross shape Au-GST hybrid meta-surface. The 

refractive index of GST layer between Au nanostructures can be controlled by switching 

the phase states. At 732nm in visible light, the nanostructure with amorphous GST is a 

reflective QWP with very high polarization converting ratio, changing linear incident 

light to circular polarized reflections; while it still keeps the linearity of polarization 

unchanged with crystalline GST. And at 781nm in near-infrared light, the nanostructure 

with crystalline GST can also work as QWP, while that with amorphous GST does not 

work so well. Furthermore, the MMQWP exhibits a much better incident angle tolerance 

with crystalline GST than with amorphous GST. This switchable phase-change meta-

surface provides a promising way for realization of polarization manipulating 

components, enabling novel applications with integrated optical devices. 
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3.3 Plasmonic QWP in THz range 

In last section, a switchable MMQWP at the boundary of visible and near-infrared light 

was presented. One of the most important problems of plasmonic QWPs in visible and 

near-infrared light is the large Ohmic loss, for example, the total efficiency at working 

wavelength of the QWP in last section is just about 10% even though it is in reflective 

mode. If the nanostructure was designed in a transmitted mode, the efficiency might be 

even lower. This problem can be solved in a large extent in THz regime, where metals are 

more closed to perfect electric conductor (PEC) and the loss could be much lower. In 

addition, the fabrication of meta-surfaces in THz is much easier than those in visible light, 

since the THz structures can be about thousands of times larger than those for visible 

light (usually hundreds of micrometers vs. hundreds of nanometers). 

On the other hand, optical devices, such as QWPs, with meta-surfaces are of great 

importance in THz. In particular, information conveyed by the polarization state promises 

applications for sensitive detection of explosive materials, THz imaging and THz 

wireless communication. And conventional QWPs with natural birefringent materials 

could be at least a few millimeters thick [24], which is difficult to be integrated into ultra-

compact THz optical systems. Therefore, QWPs based on ultra-thin meta-surfaces can 

efficiently overcome the difficulties in bulky size and compact integration. 
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3.3.1 An ultrathin THz QWP using planar Babinet-inverted meta-surface 

In this section, we will report a cooperative project with Wang Dacheng and etc., in 

which an ultrathin THz QWP for polarization control based on planar Babinet-inverted 

meta-surface is demonstrated. I have done the simulation for structure designing and 

Wang Dacheng has done the fabrication and measurement. The QWP is constructed by 

arrays of asymmetric metallic cross apertures, according to the Babinet’s principle which 

states that the diffraction pattern from an opaque body is identical to that from a hole of 

the same size and shape except for the overall forward beam intensity, the Babinet-

inverted cross apertures can support two orthogonal resonant modes in THz range. Each 

resonant mode gives rise to EOT effects accompanied by a specific phase shift at the 

resonance. It only allows the resonant wave to pass through, which eliminates the 

interference of the non-resonant waves. According to the dispersion equation of surface 

plasmon in metallic slots, the propagation constants as well as the phase delays are 

tunable by varying the width and length of the slots [166, 167]. By properly choosing the 

size of the asymmetric cross aperture, two resonant modes superpose with each other, 

producing equal transmitted amplitudes with a phase difference of π/2 at a certain 

frequency and operating as a THz QWP. A simple Lorentz oscillator model is also 

employed to analytically describe the performance of the QWP, which is in good 

agreement with the experimental and simulation results. 
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3.3.1.1 Simulation 

To accurately design the dimensions of the asymmetric cross aperture, we investigate the 

transmittance and the transmitted phase delay of rectangular slots on metal film first. For 

narrow cross apertures, the coupling of resonances along different arms of the cross can 

be neglected, so the transmitted intensity and phase in x and y direction can be adopted 

from those of slots, respectively. In Fig 3-6, FDTD simulation results of transmittance 

and the transmitted phase delay of slots with different length L are presented. The width 

of slots is 6μm, the thickness of metal film is 5μm and the periodicity of unit cell is 

150μm. The metal film is set as Cu and the substrate is polyethylene naphthalate (PEN).  

To design the length of slots, we just need to find out two length data with the same 

transmittance in Fig 3-6 (a) and with a phase difference of π/2 in Fig 3-6 (b) at the same 

working frequency. Advanced optimization can be done to get higher transmittance to 

improve the efficiency of QWP. Synthetically, the arm lengths of the cross aperture is 

decided to be Lx=105μm and Ly=125μm. 

 

Fig 3-6 (a) The normalized transmittance and (b) transmitted phase delay of Babinet-

inverted rectangular apertures with different length. 
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3.3.1.2 Analytical model 

To better understand the physics behind the THz QWP with Babinet-inverted cross meta-

surface, a Lorentz oscillator model was employed to analytically describe the transmitted 

amplitude and transmitted phase delay. Based on Babinet’s principle, a slot antenna can 

be depicted by a Lorentz oscillator model similar to a rod antenna [168]. We can assume 

in our THz QWP the apertures harmonically oscillate along the incident electric field and 

present a transmission peak in far field. For x-polarized incident wave, the transmitted 

amplitude can be described as [43]: 
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where tx and γx are the amplitude and damping rate of transmitted electromagnetic field. 

gx is the geometric factor, revealing the coupling between the resonator and the incident 

electromagnetic field. ω0x is the fundamental resonance frequency of the aperture and 

Exexp(iωt) is the incident electromagnetic field. And the transmitted amplitude tx and 

phase delay φx can be described as: 
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Similarly, transmitted amplitude ty and phase change φy can be obtained when the 

incident electromagnetic wave is y polarized. When the incident electromagnetic wave is 

polarized at θ degrees to x axis, the total output electric field can be treated as a 

superposition of two orthogonal components. Based on simulation results, the damping 
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rate and geometric factor can be fitted as gx = 3.26, gy = 3.66 and γx = γy = 0.75 THz for 

Lx = 105μm and Ly = 125μm. 

 

3.3.1.3 Experimental results 

 

Fig 3-7 (a) Schematic of one unit cell. (b) Schematic of working principle of the QWP. 

The normal incident THz wave is polarized at θ = 45 degrees to x axis. (c) Microscope 

image of the fabricated asymmetric cross apertures with a zoomed image as the insert. 

The scale bar is 100 μm. (d) Photograph of the fabricated THz QWP. 

 

The fabrication of the QWP sample and the characterization of its performance are done 

by Wang Dacheng. The schematic and image of the sample is shown in Fig 3-7. During 
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the measurement, the incident THz wave was polarized at θ = 45 degrees to the two slots 

in the QWP. The measured amplitude transmission of the QWP along x and y direction 

and the phase difference between two orthogonal slots are shown is Fig 3-8 (a) and (d). 

From the measured results, two resonant peaks at 0.806 and 0.925 THz were observed, 

which correspond to fundamental resonant modes with x and y polarized incident light. 

The superposition of these two peaks presents an equal transmitted amplitude of 0.545 at 

0.870 THz along both x and y directions. The measured phase difference between x and y 

directions is around π/2 at 0.870 THz as well. These indicate that the incident linearly 

polarized THz wave is converted into a circular polarized THz wave at 0.870 THz. The  

 

Fig 3-8 (a) Measured, (b) FDTD simulated and (c) analytical model calculated 

transmission and phase delay between two resonant modes for (d) experimental, (e) 

simulation and (f) theoretical results. 
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simulated and analytical amplitude transmission and phase difference are shown in Fig 3-

8 (b), (e) and (c), (f), respectively. In simulation, at 0.874 THz, transmitted amplitude of 

0.628 with a phase difference of around π/2 is presented, which is in good agreement 

with the experimental results. The resonance frequency is slightly shifted and the 

amplitude is a bit suppressed in experiment comparing to the simulation, which might 

results from the reduction of metal film thickness, size fluctuation in fabrication and the 

loss in metal film and substrate. 

Then the ellipticity of the transmitted wave have been measured and simulated, as shown 

in Fig 3-9. The Stokes parameter S0 is calculated as S0 = (|Ex|
2
 +|Ey|

2
)/ |E0|

2
, which is the 

output electric field power. At 0.870 THz, the QWP presents an output power of 0.297 in  

 

Fig 3-9 (a) Measured and (b) simulated Stokes parameter S0, and calculated ellipticity for 

(c) experiment and (d) simulation. 
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experiment, while in simulation the output power is 0.394 at 0.874 THz, which is much 

higher than similar plasmonic structures in visible and near-infrared range. In the 

experiment, the ellipticity at 0.870 THz is 1, indicating the output THz wave is a perfect 

LCP light. The simulated ellipticity presents similar results with 0.999 at 0.874 THz. The 

simulation and experiment results are in good agreement with each other. Therefore, this 

ultrathin device shows good performance as a THz QWP, and it opens up avenues for 

new functional terahertz devices design. 

 

3.3.2 Switchable ultra-thin THz QWP using active phase-change meta-surface 

In this section, we will present a further extending research of the ultra-thin THz QWP in 

last section, making the QWP active and switchable by introducing the phase-change 

material, VO2, into the meta-surface. Fig 3-10 (a) shows the schematic of the switchable 

QWP, which is composed of ultrathin asymmetric cross-shaped resonator arrays with 

VO2 pads inserted at the end of the cross-shaped resonators. The geometrical parameters 

are P=150 μm, Lx=90 μm, Ly=124 μm, lx=9 μm, ly=5 μm and w=9 μm, respectively. The 

birefringence is generated by the difference between the arm lengths of the cross. The 

switching property of the QWP is controlled by a resistive heater as a proof of concept to 

manipulate the VO2 phase transition at different temperatures, which can also be realized 

by optical pumping [169]. At 300K, VO2 behaves as a semiconductor, while at 400K, its 

electrical conductivity significantly increases from 140 S/m to 5x10
5
 S/m and changes to 

a metal phase, as shown in Fig 3-10 (c). Therefore, the inserted VO2 pads can change the 

effective lengths of the cross arms at different temperatures.  
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Fig 3-10 (a) Experimental switching schematic of the THz QWP. The top left inset is a 

microscope image of one unit cell in the fabricated samples. The scale bar is 50 μ m. The 

top right inset is the simulated ellipticity of the output THz waves, indicating that at both 

f1 and f2 the output THz waves are circularly polarized. (b) Schematic backside view of 

the resistive heater with a square aperture (6 × 6 mm
2
) milled at the center to allow THz 

to pass through. (c) Measured electrical conductivity of fabricated VO2 films at different 

temperatures during the heating and the cooling cycles. 
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By properly design of the geometrical parameters, this meta-surface can work as QWP at 

different frequency at corresponding temperature. Fig 3-11 shows the measured 

transmission coefficients and phase delays of THz QWP before and after the VO2 phase 

transition. In experimental results, at 300 K, the QWP presents a transmission coefficient 

of 0.59 at 0.468 THz and a phase delay of 80° between y and x axes, which means the 

incident linearly polarized THz wave is converted into a circularly polarized wave. When 

the QWP is heated to 400 K, the VO2 phase transition changes the performance of the 

QWP. As it can be seen, a transmission coefficient of 0.28 at 0.502 THz and a phase 

 

Fig 3-11 (a) Measured transmission spectra along two slots at 300K (solid line) and 400K 

(dot line). (b) Measured phase difference between y and x axes at 300K (solid line) and 

400K (dot line). The inserted triangle indicates at 300 K, the transmission coefficients 

along two axes are the same, while their phase difference is close to 90°. The marked 

cross shows similar results at 400 K. (c) Numerically simulated transmission spectra with 

the corresponding phase delay (d) based on different measured VO2 electrical 

conductivities. (e) Analytical fitted transmission spectra and (f) the corresponding phase 

delays, according to the analytical model in section 3.3.1.2. 
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delay of 75° between y and x axes are obtained. Therefore, the THz QWP is able to 

switch its operating frequency with a switching range of 34 GHz. One thing to note is 

that experimental phase delays at both 300 and 400 K are smaller than 90°, due to the size 

fluctuation in the fabrication process and the damping effect in the fabricated samples. To 

compensate the phase difference and obtain a perfect circularly polarized output THz 

wave in experiment, the optimized parameters in simulation should give a phase 

difference larger than 90°. 

 

Fig 3-12 (a) Calculated Stokes parameter S0 with respect to different temperatures based 

on measured results, indicating that the output power decreases when the temperature 

increases. (b) Measured ellipticity of the output THz wave at different temperatures, 

indicating the operation frequencies switching of the output circularly polarized THz 

wave. (c) Numerically simulated Stokes parameter S0 with respect to different 

conductivities of VO2 and (d) the corresponding ellipticity of the output THz wave. 
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To directly evaluate the performance of the QWP, the measured and simulated Stokes 

parameter S0 and ellipticity of the output wave at different temperature (with different 

conductivity in simulation) is shown in Fig 3-12. It is observed that when the temperature 

increases from 300 to 400 K, the output power decreases. This is because of the 

increasing loss in the VO2 pads. At 300 K, the VO2 pads behave as a semiconductor and 

the corresponding loss is low. When the temperature increases, free carries in the VO2 

pads increase, leading to a high damping loss and small output power. In experimental 

results, at 300K, the ellipticity of the output THz wave is around 0.98 at 0.468 THz; at 

400 K, the ellipticity is around 0.97 at 0.502 THz. Between 300 and 400 K, the ellipticity 

is close to 1 with the operating frequency shifting from 0.468 to 0.502 THz, which agrees 

quite well with the simulation results. This indicates that the output THz wave is 

circularly polarized at different temperatures.  

In summary, by hybridizing meta-surfaces with VO2, an ultrathin switchable THz QWP 

with a switching range of 34 GHz is demonstrated. The inserted VO2 is able to change 

the effective length of the aperture resonators on metal film through the phase transition. 

At 300K, VO2 behaves like a semiconductor and the THz QWP operates at 0.468 THz. 

While at 400K, VO2 acts as a metal and the operating frequency of the QWP is switched 

to 0.502 THz. The simulation and analytical fitted results are in good agreement with the 

measured results. This switchable phase-change meta-surface promises a new route for 

active THz polarization manipulation devices and can be applied to other ultra-thin 

tunable devices. 
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Chapter 4 Direct Excitation of Dark Plasmonic Resonances in 

Visible Light at Normal Incidence 

4.1 Introduction: excitation of dark modes on plasmonic nanostructures 

In Chapter 2 and Chapter 3 we have reported our works on manipulation of intensity and 

polarization of EMWs, which can be observed in far-field. In very fundamental sense, 

these applications origin from engineering resonances of nanostructures. To better 

manipulate light, we need to better understand and utilize the resonance. Therefore, the 

fundamental of some specific plasmon modes is also worthy investigating. One of the 

interesting phenomena is the dark plasmon resonance modes. Dark plasmon resonances 

are charge oscillations localized on metal nanostructures that are weakly radiating and 

thus difficult to excite by light. In coupled plasmonic systems, these dark modes can be 

considered as a combination of multiple dipole resonances that collectively sum to zero. 

For example, in free space two parallel asymmetry dipoles can form a quadrupole with 

zero dipole momentum, which will be response to the momentum of incident wave (when 

the polarization of wave is parallel to each dipole), therefore cannot be excited. Dark 

modes have small scattering cross-sections and are thus difficult to excite directly by 

light at normal incidence.  

Generally, on plasmonic structures like nano-disks, dimer or clusters, dark modes can be 

excited by utilizing electron beams [170-173], which can be observed by electron energy 

loss spectroscopy (EELS). These modes are also sensitive to the position of electron 

beam excitation point.  In optical method, the conventional ways to excite dark modes are 
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to generate asymmetry, including 1) asymmetry in source: with oblique incident light 

[174-176], dark modes can be excited on nano-particles, disks or ring because of the 

phase retardation; 2) asymmetry in near-field environment [177]; 3) most commonly, 

asymmetry in structures, for instance, heterogeneous dimers and clusters [178-182], 

dolmens [179, 183-185], and stacks [68, 186-188]. In these asymmetric nanostructures, 

the mechanism to excite dark modes is introducing Fano resonance. In general, a bright 

dipole resonance is excited first as the excitation source of the dark modes and thereby 

results in weak absorption. 

In practical application, one of the major characteristics of dark modes is their 

narrowband absorption. In the case of color filters and printing applications, this 

narrowband feature may lead to purer color selections. In refractive-index sensing and 

single-molecule sensing [175, 180-182, 185], the narrowband resonance of dark modes 

can provide high sensitivity. As most of these applications require normal incidence and 

strong absorption, it is valuable to design structures that allow normal incidence to 

directly excite dark modes. In the following sections, we will introduce an idealized 

design of a novel symmetry structure consisting of a continuous metal coating on 

dielectric nano-pillars. Our analysis and numerical simulations of this structure will show 

the presence of narrowband dark modes that can be effectively excited to produce perfect 

absorption of normally incident light. 
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4.2 New methods to excite dark modes 

As mentioned in last section, conventional optical methods to excite dark modes are 

utilizing asymmetry of incidence, environment and nanostructure, or indirectly exciting 

by an intermediate bright dipole mode. It is hard to directly excite plasmonic dark modes 

by electromagnetic field coupling on symmetric nanostructures with normal incident light. 

In this chapter, we provide a novel method to conquer this problem, in which the 

plasmonic dark modes are distinguished from previous research works. 

Firstly,  we take a review of the plasmonic nanostructure consisting of metal nano-disks 

on dielectric nano-pillars with a bottom back reflector plane [8],  which had been 

discussed in section 2.2.3. The top disks provide LSPRs and the back reflector provides 

SPPs, and the height of the dielectric pillars determines the coupling between them. 

These nanostructures exhibit a broad range of colors when viewed in reflection mode 

under bright-field illumination in an optical microscope. Reflectance peaks were 

observed at wavelengths corresponding to the dipole resonances of the nano-disks and the 

interplay between resonances of the disk and the back reflector. Of course these modes 

are bright modes, but based on a small modification of this kind of nanostructure, we had 

demonstrated new optical dark modes, with a sharp reflectance dip in the spectra, 

overlaying the broader peaks in the original structure. By merely introducing a 

continuous 5-nm-thick Ag coating on the sidewalls of the nano-pillars, the top disk is in 

effect electrically shorted with the bottom back reflector layer. Although this sidewall is 

thin, it is still not thin enough to consider the nonlocal effects as a shell with large inner 

radius. Reminiscent of the effects of conductive bridges across closely-spaced metal 

structures [189, 190], our introduction of this conductive sidewall coating gives rise to 
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new resonant modes. These resulting dark modes with quadrupole and higher-order 

multipoles are a consequence of the cancellation of the dipole of the nano-disk by dipoles 

of opposite polarity supported on the sidewalls, resulting in narrow-band perfect 

absorption. The metallic surface of this periodic pillar nanostructure is overall continuous. 

In contrast to the electromagnetically induced dark modes reported thus far in the 

literature [68, 174-188], we present the following three contributions. Firstly, the dark 

modes are directly excited without the need of using intermediate induced bright mode; 

this markedly improves the excitation efficiency of dark modes. Secondly, our proposed 

scheme (of excitation with normal incidence on continuous plasmonic metallic surface, in 

Fig 4-1 (a) and (b)) can be regarded as an electrical resonant method to induce dark 

modes by creating and manipulating the electric charges on the shorting sidewalls where 

the electric current behaves as a standing wave; this is different from the other reported 

methods employing, for example, oblique incidence, stacked or planarized heterogeneous 

structures, which rely on electromagnetically induced coupling. Thirdly, owing to this 

slight but non-trivial modification on the sidewall, a broad-band highly-reflective 

resonator is transformed into a narrow-band perfect absorber supporting quadrupole and 

even higher-order modes. 
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Fig 4-1 (a) Schematic diagram of the periodic HSQ pillars covered by Ag layer structure. 

(b) A cross-sectional view of the unit cell in (a), t1=t2=15nm, t3=5nm, r=50nm. (c) 

Schematic diagram of the periodic HSQ pillars without Ag sidewall. (d) A cross-sectional 

view of the unit cell in (c), t1=t2=15nm, r=45nm. (e) The reflection spectrum for the 

structure with Ag sidewall (shown in (a), (b)) and without sidewall (shown in (c), (d)), 

h=85nm, p=120nm, p is the period of unit cell, h is the height of pillar from the Ag 

bottom-layer, and g is the gap between two neighbor pillars, p=2r+g. 
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4.3 Proposed design 

Portrayed in Fig 4-1 (a) and (b) is our proposed structure comprising a periodic array of 

dielectric HSQ pillars covering by ultrathin Ag layers on a Si substrate. The covering of 

HSQ pillars is anisotropic, the thickness of the Ag layer on top of the HSQ pillars and  

 

 

 

Fig 4-2 The Schematic diagram of proposed fabrication process: (a) Negative-tone HSQ 

spin-coated onto substrate. The thickness of the HSQ layer is 85nm. (b) HSQ nano-pillars 

after EBL. The unexposed portions of the HSQ are developed away using a salty 

developer, leaving HSQ nano-pillar array. (c) A layer of Ag is deposited onto the samples 

using an electron-beam evaporator. The Ag layer is about 10nm and covers the top of 

HSQ pillars and the blank area on the substrate, leaving the side of pillars bare. (d) 

Another 5nm Ag layer is coated cover the whole structure by ALD. The gray area in 

black frame represents the Ag deposited in process (c). After ALD the top/bottom Ag 

layer is 15nm and the sidewall is 5nm. 
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bottom-layer is 15nm, and the thickness of the Ag sidewall around the HSQ pillars is 

5nm (which is much thinner than the penetration depth of Ag at visible light). Since the 

thickness of the top/bottom Ag layer and the sidewall is different, a 2-step method is 

proposed to deal with the metal deposition, as shown in Fig 4-2. Firstly, by using an 

electron-beam evaporator, a layer of Ag can be deposited on the top of HSQ pillars and at 

the bottom (Fig 4-2 (a)—(c)), which is similar to the structure in Fig 4-1 (c) and (d), but 

the thickness of this layer is about 10 nm. Secondly, another 5 nm Ag layer covering the 

whole structure (containing the top/bottom layer and the sidewall around pillars) can be 

added by Atomic Layer Deposition (ALD) [191, 192]. After that the Ag layer on top and 

bottom had increased to 15 nm and the sides of HSQ pillars are coated with 5 nm Ag 

sidewalls (Fig 4-2 (d)). Such a thin Ag sidewall allows the energy to flow into and out of 

the structure easily whilst still electrically connecting the top disks and bottom layer. This 

also makes our structure different from the pure metal pillars array [193] which blocks 

the electromagnetic wave outside the pillars. 
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4.4 Results and analysis 

4.4.1 Generating dark mode 

Fig 4-1 (e) shows the reflection spectrum of a wave at normal incidence. While the 

nanostructure is opaque with Si substrate, the reflection spectrum can also indicate the 

absorption. For comparison purposes, we also include a similar structure of the same size 

but without the 5 nm Ag sidewall in Fig 4-1 (c) and (d). For the structure without the Ag 

sidewall, there is a broadband peak in the visible light range. In contrast, the reflectance 

of our proposed structure drops to nearly 0 at 600 nm. Given that the structures sit on a Si 

substrate, the transmittance of the structure can effectively be neglected and the 

reflectance dip thus indicates absorptance instead. Hence, the thin Ag sidewall coating 

transforms this structure from a broad-band reflector to a narrow-band near-perfect 

absorber. 

For the reflection spectrum, the broad-band peak of the structure portrayed in Fig 4-1 (c) 

and (d) results from the coupling of LSPR of the Ag disks on top of the HSQ pillars and 

the SPP of Ag bottom layer on the substrate [8]. However, the Ag sidewall serves as a 

bridge connecting the top disks and the bottom layer, and the top disks thus cannot be 

regarded as simple dipoles. As can be seen from the plots in Fig 4-3 (a) depicting the 

charge distribution at resonance, the charge can be pumped into the sidewall by the 

resonance of the top disk and a plasmonic standing wave will then be generated along the 

sidewall. The charge is accumulated at the edge of the top disk while remaining zero at 

the bottom. At the antinode of the standing wave in the middle of the sidewall, however,  
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Fig 4-3 Higher-order dark modes excited by visible light. (a) The charge distribution for 

an excited quadrupolar dark mode at a wavelength of 600 nm, with h = 120 nm, p = 120 

nm. (b) The charge distribution for a hexapolar dark mode at a wavelength of 569 nm, 

with h = 120 nm, p = 120 nm. (c) For comparison, the charge distribution for bright 

dipole mode resonance of the structure without a sidewall shown in Fig 4-1 (c) and (d). 

The signs and arrows denote dipoles and their directions. It should be pointed out that 

some of the area with extremely large charge density has been smoothed; the highest 

intensity has been suppressed in order to maintain the contrast. 

 

charge is accumulated and forms another horizontal dipole in the middle of the sidewall; 

this is opposite to the dipoles of the top disks and the charge profile on the metal covering 

the pillar and thus constitutes a quadrupole (dark mode) where the two sets of dipole 

moment nullify each other and the radiation is reduced to yield zero reflection of this 

nanostructure. Different from the dark modes reported for other plasmonic oscillators (e.g. 

in plasmonic nanoparticles or nanorods) caused by the coupling of the electromagnetic 

field, this dark mode in the continuous metal structure is caused by the electric current 

oscillation and charge accumulation driven into the ultra-thin sidewall by the bright 



75 
 

dipole resonance of the top Ag disk. Seen from this perspective, we can regard it as an 

electronically induced absorption of the ultra-thin Ag sidewall (in contrast to 

electromagnetically induced absorption). 

 

4.4.2 Higher order modes 

In addition, we observe in Fig 4-1 (e) a minor dip at a shorter wavelength for the 

reflectance of our proposed structure. This is due to the same effect as explained above, 

but with a hexapolar mode on the sidewall of the pillar. At a wavelength of 508 nm, two 

more dipoles (other than the one on the top disk) are induced on the sidewall and so each 

pillar is effectively holding a hexapole also in dark mode, with a form of ―positive–

negative– positive‖ distribution. These high-order multipolar dark modes are suppressing 

the radiation and reducing the reflectance as well. In Fig 4-1 (e), this hexapolar mode is 

much weaker than the quadrupolar mode because the resonance wavelength of the 

hexapolar mode is far away from that of the top disk dipoles for the structure without the 

sidewall while the resonance wavelength of the quadrupolar mode is close to it. The dark 

modes are mainly induced by the top disk dipoles; hence, only the dark modes near the 

top-disk dipole resonance wavelength can be so strong. If we open a ring gap on the 

sidewall at the position where the charge is accumulated and the electric current is zero, 

the quadrupolar and high-order multipolar modes will not be affected and the spectrum 

near the resonance will remain almost the same; in this sense the nanostructure can be 

regarded as an optical flute which can absorb specific wavelengths (similar to the flute 

playing specific tones). 
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To further investigate how the structure performs as a perfect absorber, we plot the 

profiles of the electric field, Poynting vectors and electric current in Fig 4-4 for both 

quadrupolar and hexapolar modes to explain the energy absorption. From the electric 

field plots, we can readily determine the positions of the quadrupole and hexapole; since 

the entire structure has a continuous Ag cover, the power flow is squeezed into the gaps 

between the pillars. When the incident wavelength is at the quadrupolar mode resonance, 

the power flow penetrates through the Ag sidewall at the position of zero net charge and 

then exits at the bottom, encircling the charge like a vortex. Each time the power passes 

the sidewall, a large amount of energy is lost. Hence, the power flow is localized along 

the sidewall (either going into or out of the pillar) and then energy is lost on the sidewall. 

Interestingly, if the pillar is made of pure solid Ag without the HSQ core, power flow 

cannot freely go inside and outside the solid Ag pillars and light is thus mostly reflected. 

For our structure, the sidewall is thin enough for light to penetrate, which drives the 

power flow to encircle and flow around the accumulated charge, generating the energy 

vortexes along the sidewall of the pillars; it thus leads to greatly increased absorptance. A 

similar phenomenon can be observed for the hexapolar mode, where the charge on the Ag 

sidewall enforces the power flow to go “in–out–in” the pillar. Since we presume that 

our structure has only one type of loss (i.e. metallic loss in Ag), all of the absorption 

should take place in the Ag cover and the energy lost in Ag is proportional to the square 

of the electric current density. We observe from the electric current distributions for 

different multipoles shown in Fig 4-4 (e)–(g) that most of the energy is depleted on the 

sidewall at the resonance wavelength. Hence, energy is mostly lost on the ultrathin 

sidewall instead of the top disks or the bottom layer. 
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Fig 4-4 The electric-field distribution of (a) quadrupolar mode and (b) hexapolar mode. 

The Poynting vector distribution of (c) quadrupolar mode and (d) hexapolar mode. The 

electric current (J) distribution in Ag of (e) quadrupolar mode and (f) hexapolar mode. (g) 

3D view of the electric-current intensity profile in log scale at quadrupolar mode; it can 

also indicate the energy absorption profile in which most energy is absorbed at the 

sidewall (dissipated energy E ∝ J2
). The figures were simulated by CST (Computer 

Simulation Technology), using periodic boundary. For the structure, h = 85 nm, p = 120 

nm. Both the size and the color of the arrow show the magnitude, and all intensity is 

normalized. 

 

Fig 4-4 allows us to infer how each part of the structure works. The top metal disks, if 

separated from the other parts of the structure, can clearly be regarded as dipole 

resonators. However, once the thin metal sidewall is connected, the dipole mode no 

longer holds and the disk performs like a pump pushing the electrical current into the 

sidewall. We should thus focus on the 5 nm Ag sidewall when exciting dark modes. 
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Firstly, it electrically breaks the bright dipole mode on the disks so that there are only 

directly excited dark mode resonances in our structure (Fig 4-3 (a) and (b)); this is quite 

different from previous research on dolmen or stacked structures that utilize a bright 

dipole mode to excite the dark modes. Secondly, the sidewall performs as the carrier of 

the standing wave; our dark modes are electrically (instead of electromagnetically) 

induced such that it needs the metal sidewall to support the current oscillation. Lastly, the 

sidewall is also the energy consumer; the quadrupoles or higher-order multipoles guide 

the power to penetrate such an ultrathin metal layer again and again (Fig 4-4 (c) and (d)) 

and the energy is greatly depleted each time the power passes the sidewall (Fig 4-4 (g)). 

We infer from Fig 4-4 (e) and (f) that the electric current on the bottom layer is so small 

that we can approximately disregard it, thus implying that this Ag layer is not an 

important part of the structure. Indeed, it is not so necessary for supporting the standing 

wave on the sidewall and the incident light can hardly reach the bottom. Without this 

bottom layer, FDTD simulations likewise yield the similar narrowband absorption 

associated with the dark modes in the reflection spectrum. 

In addition to using directly excited quadrupolar dark mode to achieve perfect absorption, 

we can equally seek to enhance the hexapolar mode so as to make this structure a dual-

band near-perfect absorber targeting particular wavelengths. We infer from Fig 4-5 that 

the resonance wavelength and absorptance depend on the height h of the pillar. The red 

and green lines plotted in Fig 4-5 correspond to the quadrupole and hexapole resonances, 

respectively. The resonance wavelength is almost linear with h, and the slopes of both 

resonance wavelengths are approximately 2. When h is small, the high-order modes, such 

as hexapole mode, are not strong enough to be observed. The hexapolar mode can be  
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Fig 4-5 (a) The reflection spectrum of the structure with different h, where the red and 

green lines indicate quadrupolar and hexapolar modes respectively. (b) The fitting of the 

resonance wavelength versus h for quadrupolar and hexapolar modes (with slope of 2.06 

and 1.88 respectively). (c) The reflectance of the quadrupole resonance dip for the 

structure with different Ag sidewall thicknesses, with fixed HSQ height h = 85 nm, 

period p = 120 nm. 

 

easily observed when h exceeds 85 nm. As h becomes larger, it is easier to accommodate 

and enhance higher-order multipolar modes; for example, we observe from Fig 4-5 (a) 

that at h = 115 nm the absorption of the hexapolar mode is even more significant than 

that of the quadrupolar mode. It can be understood that the results show that the higher 

structures can support stronger hexapole modes, and when h is small, the hexapole mode 

becomes extremely weak. Although the dark mode resonances are located on the sidewall, 

they still need the top disk to drive the charge into sidewall. Therefore, the dark modes, 
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no matter quadrupole or hexapole, will become weaker as they shift further away from 

the original resonance of the disk (about 600 nm, shown by the black dashed curve in Fig 

4-1 (e), which is the resonance peak for nanostructures without sidewalls). When h is 

small, the resonance wavelength of hexapole mode would be so short, as the trend shown 

in Fig 4-5 (b), that the amount of charge pumped into the sidewall by the top disk would 

be very limited and the dark mode resonances would be too weak to be observed. In 

principle, for an even larger h, we should also be able to observe higher order modes like 

octupole. 

 

4.4.3 Size toleration 

In fabrication, it is very difficult to achieve a 5 nm homogeneous Ag sidewall and 

accurately control its thickness. By Ag evaporation, the layer may be not continuous or 

even patchy. So the sidewall is proposed to be deposited by ALD, but the thickness is still 

hard to keep uniform at such small size. To address this limitation, we also need to 

investigate whether this structure can tolerate variations in the sidewall thickness. 

Additional simulations have been performed in Fig 4-5 (c) to examine how the absorption 

(shown by reflectance) at the quadrupole resonance dip depends on the thickness of the 

Ag sidewall. The simulation results in Fig 4-5 (c) affirm that reflectance can be kept 

below 10% even when the thickness varies from 3 nm to 10 nm. 

Another way to reduce the fabrication difficulty is to simplify the 2-step Ag deposition 

method into just an ALD process. After achieving the HSQ pillar array by EBL, the Ag 

evaporation process can be skipped, and a thin Ag cover can be directly deposited on the 
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structure by ALD. As a consequence, the top layer and sidewall will have the same 

thickness (t1 = t2 = t3 in Fig 4-1 (b)). This simplified structure can still support the dark 

modes, but the strength of the mode is greatly reduced; and when t3 is increased to 10nm, 

the resonance wavelength also shifts, as shown in Fig 4-6. As discussed before, the 

sidewall should be thin enough to let the power flow penetrate into the pillar, while the 

top disks should be thick enough to prevent the power flow from directly going inside 

and guide the power flow into the gaps (see Fig 4-4 (c) and (d)). Thus, the Ag cover with 

the same thickness cannot satisfy both requirements perfectly at the same time, and the 

efficiency of dark mode excitation is reduced. And the resonance wavelength shifting of 

t=10nm is due to the narrowing of gap size since we keep the periodicity and the radius 

of HSQ pillar unchanged. 

 

Fig 4-6 The reflectance of nanostructures proposed by (1)the 2-step deposition (black 

curve), in which t1=t2=15nm, t3=5nm; (2) ALD of Ag with thickness of t1 = t2 = t3 = 5nm 

(red curve); (3) ALD of Ag with thickness of t1 = t2 = t3 = 10nm (blue curve). Where t1 is 

the thickness of the bottom Ag layer, t2 is the thickness of the top Ag disks and t3 is the 

thickness of the Ag sidewall, as shown in Fig 4-1 (b). Height and radius of HSQ pillar is 

85nm and 45nm, period of the unit cell is 120nm. 
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4.5 Conclusion 

In a conclusion, we have proposed a new mechanism to directly excite dark modes 

(including the fundamental and higher-order modes) by using an electrical shorting 

approach with a continuous metal cover on a periodic HSQ pillar template. In absent of 

the metal sidewall, the top disks and back reflector provide a background resonance, and 

when the ultra-thin sidewall (thinner than skin depth to allow light power flow to pass 

through) is introduced, the background resonance and the strong coupling of the narrow 

gaps leads to the electrical standing wave resonance on the sidewall and therefore 

generates the dark plasmon modes. Such an approach is quite different from the 

conventional (indirect) methods of introducing dark modes (which are usually only of 

fundamental order). Owing to the high efficiency of direct excitation, our mechanism and 

nanostructure can additionally be naturally employed to achieve narrow-band perfect 

absorption under visible light. Such a narrow-band perfect absorption could be with great 

potential in color vibrancy applications, subject to the improvement in fabrication 

technologies which can be able to accurately control the size parameters of the 

nanostructure. The top metal disks behave like an electric current generator, and the 

quadrupoles and high-order multipoles in the dark modes can be excited on the sidewall 

electrically. At the resonance wavelength, the reflectance can be almost zero and the 

bandwidth is around 70 nm. Furthermore, by manipulating the structure size, we can also 

enhance the hexapolar mode to make it a dual-band absorber. In addition, we have 

discussed the size parameter tolerance to ensure the feasibility of fabrication. Apart from 

the obvious application as an absorber, our proposed method of exciting the dark mode in 

an electrically continuous structure may find applications in many other optical devices. 
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Chapter 5 Giant Photoluminescence Enhancement via 

Plasmonic Hybrid Nanostructures 

5.1 Introduction: surface plasmon enhanced PL  

In last chapters, we have investigated the resonance of nanostrucutures and therefore used 

them to manipulate light, so that we can generate colors and control the polarizations. 

And we also studied the fundamentals of dark plasmon resonances and found a new way 

to excite dark modes.  Moreover, in order to better engineer the resonance of the 

nanostructures, we have to achieve deeper insight into the local effects of resonances, 

especially for plasmonic nanostructures. Based on the strong electric field enhancement 

and the cavity effects, plasmonic nanostructures have attracted a lot of research interests 

in near field applications, including  photoluminescence (PL) [70, 78-80], sensing [81-84], 

optical tweezers and trapping [85-87] and other biological applications. In this chapter we 

will talk about the PL enhancement by plasmonic nanostructures. PL is emission of light 

which is caused by the irradiation of a material with other light . It is one of many forms 

of luminescence and is initiated by photo-excitation. Usually, PL is used in the context of 

semiconductor. Therefore, PL is excited by illumination of the semiconductor device 

with light which has a photon energy above the bandgap energy, and then occurs for 

wavelengths around the bandgap wavelength. Generally, PL has processes of absoption, 

energy transition and emission. The PL of the emitter is modified by its optical 

environment, which can be tuned by plasmonic nanostructures. When the decay 

dynamics of the emitter is perturbed by the modified density-of-states associated with the 

plasmonic nanostructure, the optical properties of the emitter can be manipulated [194], 
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resulting  in PL enhancement by the enhanced local electromagnetic field caused by 

surface-plasmon resonance [195-197]. In previous researches, the PL of Au nanostructure 

itself had been reported [198], and the SP-enhanced fluorescence of single molecular 

[194] and the SP- enhanced PL of semiconductors [195, 199-202] by plasmonic 

nanostructures had been deeply investigated. The enhancement can be explained in two 

ways: 1) enhanced absorption of incident light and 2) enhanced spontaneous emission 

rate. This enhancement can improve the performance of optical applications such as 

ultrathin light emitting diodes, photo-detectors, transistors, and biosensors. 

Recently, strong PL emission enhancement by SPRs of metallic nanostructures has been 

reported in metal-semiconductor and 2D materials [78, 79, 194-197, 203-211]. In the 

following sections, we will focus on the influence of SPs to monolayer 2D materials and 

find methods to enhance the PL of 2D materials. We will introduce a cooperative work 

on giant PL enhancement in WSe2-Au plasmonic hybrid nanostructures which achieved 

much higher PL enhancement than previous reported results. We will focus on the 

explanation and simulation of this phenomenon in terms of the local field caused 

enhancement of absorption and spontaneous emission rate by the Au nanostructures. 
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5.2 Photoluminescence of 2D materials 

Since numerous research breakthrough has been achieved by investigating graphene 

[212], other kinds of 2D materials have also attracted considerable attention. One of the 

important research hot spots is the applications in ultrafast and ultrasensitive 

photodetectors, efficient light absorbers and emitters with 2D materials, which would be 

related to the PL of these 2D materials. Crystalline monolayers of transition metal 

dichalcogenides (TMDCs), such as molybdenum disulfide (MoS2), molybdenum 

diselenide (MoSe2), and tungsten diselenide (WSe2), have PL emission which is caused 

by the transition from an indirect band gap semiconductor of these bulk materials to a 

direct band gap semiconductor in their atomically thin forms. Recently, PL of monolayer 

MoS2, MoSe2 and WSe2 [213-218] has been reported. However, their application in 

photonic devices is limited by their low absolute PL caused by low quantum efficiency 

and weak absorption. One approach to boost light emission efficiency in TMDCs is 

utilizing the SPRs of metal nanostructures. Recently, the main designing strategy for 

metal nanostructure is increasing the emission rate of TMDCs by tuning the energy of 

SPRs to the exciton transition of TMDCs, and the effect of SPRs coupling to the 

excitation field of pump laser is often neglected. Based on this strategy, previous research 

works have demonstrated PL enhancement on monolayer MoS2 using Au and Ag 

nanostructures [79, 206, 207, 209-211, 219-223]. However, due to its intrinsic low PL 

quantum yield efficiency, PL enhancement in monolayer MoS2 is still modest even using 

complicated metal [79], limiting its application in optoelectronic devices. In comparison, 

WSe2 is another promising TMDC material with a larger quantum efficiency than MoS2 

offering an alternative solution for designing efficient light absorbers or emitters [224-
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229]. However, the PL response in WSe2--plasmonic metal system has not been so 

deeply investigated  as that of  MoS2--metal and the PL enhancement factor could be 

further improved so far. 

 

5.3 PL enhancement of WSe2 by square trenched Au nanostructure 

In this section, we will report a cooperative work on huge PL enhancement in WSe2-Au 

plasmonic hybrid structures. We hypothesized that plasmonic structure without resonance 

to TMDCs but with strong resonance to pump laser can also play a significant role in 

light absorption and emission of TMDCs. To verify our hypothesis and further improve 

the PL emission ability of TMDCs, a series of WSe2−Au square or disk arrays was 

prepared, and 532nm and 633nm laser were used respectively to excite the PL of WSe2 in 

order to explore the importance of template resonance at pumping laser wavelength. It is 

shown that the LSPR of the template strongly couples to 633 nm pump laser, leading to a 

giant PL enhancement factor up to three orders of magnitude in single crystal monolayer 

WSe2. We have investigated the detailed mechanism for PL enhancement, and explained 

this phenomenon by both SPR enhanced pump laser absorption and enhanced 

spontaneous emission rate by Au nanostructures. 

For the structure, a monolayer crystal WSe2 flake was paved on the Au film with ultra-

narrow square trenches, as shown in Fig 5-1. The width of the trench is sub-20nm, and 

the narrowest gap size can be ~12 ± 1 nm; the depth of trench is around 70nm; and the 

pitch size is much smaller than the pump and PL wavelength, ranging from 60nm to 

200nm. Typical square shape is observed in Au templates with pitch size of 140nm to  
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Fig 5-1 (a) Schematic of PL emission from a single crystal monolayer of WSe2 flake on a 

gold substrate. Part of the triangular flake rests on the patterned region of the substrate 

consisting of sub-20-nm wide trenches. (b) SEM images of the template-stripped gold 

nanostructures of the patterned arrays with respective pitch sizes. The inset number 

denotes the pitch size in the unit of nm. The SEM images are having the same scale bar 

and the scale in the figures is 100 nm.   

 

200nm. Nevertheless, when the pitch size is getting smaller, the Au structure transforms 

from square to disk, which is a typical shape of Au templates with pitch sizes of 60nm 

and 80nm. This is because extremely high spatial resolution for accurate definition of 

sub-20nm nanogaps is increasingly difficult to obtain when the pitch size is becoming 

small. Such a small size of the gaps between the Au squares is critical in plasmon 

coupling with light and optical field confinement, thus strong gap plasmon can be excited 
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and the local electric field is significantly enhanced. These Au trench nanostructures 

provide strong local electric field at pumping wavelength so that the absoption of 

monolayer WSe2 is largely enhanced, while they can also improve the emission rates at 

the PL wavelength. 

Compared to the PL of pristine WSe2 grown on sapphire substrate, the PL intensity of 

WSe2 transferred onto unpatterned flat Au film is enhanced 7-fold and its peak position is 

slightly blue-shifted by 2 nm. The rise of PL intensity and the slight blue shift of the peak 

position observed in WSe2 on gold flat film may be due to the charge transfer between 

gold and WSe2 [230]. In order to have a systematic investigation on PL enhancement, a 

series of templates with different pitch sizes were prepared, as shown in Fig 5-1 (b). Fig 

5-2 presents the PL spectra of WSe2 on the various templates including unpatterned flat 

Au film using 633nm and 532nm pump lasers, respectively. Typical PL spectra of WSe2 

on the unpatterned flat Au film have one pronounced emission peak at 760nm, while the 

PL peak of monolayer WSe2 on all templates is dramatically blue shifted to 745–754 nm. 

As pitch size increases, the resonance wavelength increases,  and the PL peak position of 

the WSe2 on Au templates almost continuously shifts towards longer wavelength, 

indicating the variation of PL peak position is influenced not only by charge transfer 

between gold and WSe2, but also by the plasmon resonance of the Au template. In terms 

of PL intensity, we can see a much larger PL enhancement of WSe2 on the Au templates 

than that on the unpatterned flat Au film. Here we define the average PL enhancement 

factor as PL intensity spectrally integrated from 700nm to 800nm of WSe2 on the Au 

templates divided by that of WSe2 on the unpatterned flat Au film. Moreover, it is worth 

noticing that the PL emission from bare gold templates are ranging from 532 to 700 nm, 
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where it almost does not have any overlap with the PL from WSe2, ranging from 700 to 

800 nm. As a result, PL signal, collected from 700 nm to 800 nm, can be considered 

purely from WSe2, rather than from the sum of WSe2 and plasmonic nanostructures. 

When using 633nm pump laser, the PL enhancement factor increases from 143-fold for 

pitch size of 60nm to 1810-fold for pitch size of 200nm. This 1810-fold PL enhancement 

of WSe2 by plasmonic nanostructures is the largest PL enhancement factor reported in 

metal--TMDCs hybrid system so far. In comparison, PL enhancement factors measured 

by 532nm laser are much smaller, where it could be due to that 532nm pump laser will 

excite the inter-band transition of electrons in Au so as to result in a higher material loss 

[198].   

 

Fig 5-2 PL of WSe2 on templates with different pitch size as measured by (a) 532nm 

pump laser and (b) 633nm pump laser, respectively. The different color curves represent 

PL with Au nanostructures with different pitch size from 60nm to 200nm, and the black 

curves represent PL of WSe2 on unpatterned flat Au film (multiplied by 40 in (a) and 

multiplied by 100 in (b)).  
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5.3.1 Resonance wavelength and reflectance 

The fabrication and measurement of the WSe2-Au hybrid nanostructures is done by Dr. 

Dong Zhaogang and Wang Zhuo, and I have simulated the reflectance spectra of the 

nanostructures as well as the enhancement of absorption and emission (in the following 

sections). For fabrication, Dr. Dong Zhaogang and Wang Zhuo transferred chemical 

vapour deposition (CVD)-grown WSe2 monolayer flakes onto Au substrates onto which 

trenches as narrow as sub-20 nm have been patterned by a template-stripping method 

[231]. For the Au nanostructures, the square net trenches on the Au film are with sub-

20nm width, around 70nm depth and 60nm to 200nm pitch sizes. The unit cells are much 

smaller than the half wavelength of pumping laser (532nm and 633nm) and the PL light 

(750nm), so we don’t need to consider the grating effects. With such narrow and deep 

trenches, gaps plasmons are induced by the strong coupling of the Au cubes at both sides. 

The strong gap plasmon resonance greatly enlarges the absorption, leading to reflective 

dips.  

To find out the resonance and better understand how the plasmonic resonance engineers 

the PL enhancement of WSe2, we have simulated the relative reflection spectra to 

compare with experimental results, as shown in Fig 5-3. The reflectance is normalized 

with respect to the reflectance of a flat Au film. The geometries and dimensions of 

nanostructures with different pitch sizes are set to fit the SEM images of experiment 

samples in Fig 5-1(b). The edges are rounded and the widths are varied according to the 

SEM images. For small pitch sizes, the horizontal cutting planes look like circles while 

for larger pitch sizes they become better squares. As the pitch size increases, the 

resonance wavelength of Au nanostructures shifts from about 510nm to 630nm, which is 
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closed to the wavelength of pump laser. Comparing the experimental and simulation 

spectra, the resonance wavelengths match quite well, and the experiment dip is a bit 

broader due to the size fluctuation in the fabrication. 

 

Fig 5-3 Relative reflectance spectra of patterned Au nanostructures with pitch size of 

60nm to 200 nm with respect to the flat gold film. The solid and dashed curves present 

the experimental and simulated spectra, respectively. Legends denote the pitch size in 

units of nm for each pattern.  
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We propose that a local field enhancement due to the excitation of surface plasmon of the 

tempalte is responsible for the increase in WSe2 PL intensity. This field enhancement 

increases the number of excited carriers in the WSe2, leading to the enhanced PL [195]. 

Since localized surface plasmon exhibits largest near-field amplitude at the resonance 

wavelength, it may be argued that WSe2 on template matching resonance with pump laser 

should have the largest PL enhancement factor. However, this is not the case in the 

experiment. Since we used pump lasers with wavelength of 532nm and 633nm, we can 

discuss relationship between the resonance wavelength of Au nanostructures with 

different pitch sizes and the pump laser wavelength. As shown in Fig 5-3, the resonance 

wavelength is closed to 633nm for template with 200nm pitch size, and the resonance 

wavelength is closed to 532nm for template with 100nm pitch size. Compared with the 

results in Fig 5-2, for 633nm pump laser, PL intensity is mostly enhanced for template 

with 200nm pitch size, however, for 532nm pump laser, PL intensity is mostly enhanced 

for template with 160nm pitch size, rather than 100nm pitch size. One of the explaination 

is that the match of resonance wavelength and the pump laser cannot ensure the 

maximum local field enhancement. As the resonance width reflected by the dip width in 

reflectance spectra of the templates is broad and resonance strength in each template 

varies, even if the resonance wavelength of a template deviates from the wavelength of 

the pump laser, a large PL enhancement factor can still be observed. Therefore, for 

different templates, a strong resonance with a larger wavelength shift is still possible to 

provide a stronger local electric field than a weak resonance with wavelength matching. 

On another hand, the enhancement in emission process for different templates should also 

be considered. In order to have a systematic investigation on PL enhancement, in the 
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following sections, we will discuss the absorption enhancement (local electric field 

enhancement), the emission enhancement, and compare the combination of these two 

factors with the experimental results. 

 

5.3.2 Absorption enhancement 

The PL process can be enhanced by plasmonic nanostructures in both the absorption 

process and the emission process. The PL enhancement factor (EF) of monolayer WSe2 

on patterned nanostructure, compared to that on the flat Au film, is defined as: 

                                                                      (5.1) 

 

Fig 5-4 Representative simulation of the electric field distribution of the lateral gap 

plasmons with a WSe2 monolayer flake suspended over a single trench. The polarization 

of the incident laser field is across the gap. The dashed yellow line denotes the boundary 

between air and gold. The scale bar: 20 nm.  
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where the pump laser enhancement factor is determined by the local electric field energy, 

and the Purcell factor indicates the emission enhancement.  

In absorption process, the giant increment of PL intensity as observed in WSe2-Au hybrid 

nanostructure is closely related with strong optical field induced by LSPR of the sub-20-

nm gaps on gold templates. A representative simulation of the electric field distribution 

of the gap plasmons with a WSe2 monolayer suspended over the trench is shown in Fig 5-

4. Although the maximum electric field occurs inside the trench while the WSe2 

monolayer is located on top of the trench, the enhancement of local electric field on top 

of the trench is still considerable. FDTD method is used to simulate the electric field 

intensity enhancement factor, which is the average relative electric field intensity on top 

of the trench (just the sub-20nm gap region, where is the effectively enhanced region) 

with respect to that on flat Au film, at the wavelength of pump laser (532nm and 633nm) 

for each bare Au template, respectively. The periodic nanostructures are modeled as the  

 

Fig 5-5 Relative electric energy enhancement on top of the trenches of Au nanostructures 

with different pitch sizes Λ at a pump laser of (a) 532nm and (b) 633nm. 
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image shown in Fig 5-1 (b), and since the WSe2 monolayer is just one-atom thick, its 

contibution to the local electric field could be approximately neglected, so that we don’t 

need the physical parameters for monolayer WSe2. In Fig 5-5, the electric field intensity 

enhancement factors for different pitch sizes and pump lasers are shown. At a pump laser 

of 532nm, although the resonance wavelength of nanostructure with pitch size Λ = 

100nm is closest to the pump wavelength, the maximum electric field enhancement 

occurs at Λ = 140nm. That is because the resonance intensity in this kind of 

nanostructures is generally stronger with larger resonance wavelength, and when 

resonance wavelength shifts too far away (with large Λ), the electric field at pump 

wavelength also decreases rapidly. At a pump laser of 633nm, the resonance wavelength 

of nanostructure with pitch size Λ = 200nm is closed to the pump wavelength, and the 

resonance intensity is also strong, so it obviously achieves the resonance intensity. 

Comparatively, the nanostructures can provide much stronger absorption enhancement 

with pump laser at 633nm rather than 532nm.  
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5.3.3 Emission enhancement 

As claimed in eqn. (5.1), the PL enhancement is also related to the Purcell factor. The 

Purcell factor generally describes the enhancement of spontaneous emission rates of 

atoms when they are matched in a resonant cavity. In this work the Purcell factor is the 

enhancement of the spontaneous emission rates of WSe2 on patterned Au nanostructures 

with respect to the spontaneous emission rates of WSe2 on flat Au film. Together with the 

electric field enhancement at pump wavelength, the radiation enhancement at emission 

wavelength also contributes to the giant PL enhancement.  

 

Fig 5-6 Purcell factor on top of the trenches of Au nanostructures with different pitch 

sizes Λ at emission wavelength of 750nm. 
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As shown in Fig 5-6, the Purcell factor increases as the pitch size of nanostructures 

increases, due to the reduction of interval between resonance wavelength and emission 

wavelength. Such a large Purcell factor of the ultra-narrow gap cavity has significantly 

improved the PL performance of monolayer WSe2. In simulation, we have modeled the 

monolayer WSe2 as a seris of arrayed dipole sources on top of the trenches to calculate 

the enhanced radiative power at 750nm, which is the PL wavelength of WSe2 on Au 

templates. In FDTD, the radiative power of the dipole source can be obtained in the 

source monitors, and we calculate the total radiative power of the dipole sources on top of 

the trenches (sub-20nm wide region, the same as the calculation of enhanced electric 

fields) with respect to those radiative power of the same dipole sources on flat Au film, 

regarding as the Purcell factor. We should note that the Purcell factor is calculated neither 

at resonance wavelength nor at the strongest field positions (which are approximately at 

the center inside the trenches), so the Purcell factors should be much smaller than those 

Purcell factors (PF) calculated from equation: 
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where λc is the wavelength in vacuum, n is the refractive index, Q is the quality factor 

and V is the mode volume, respectively.  
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5.3.4 PL enhancement 

Based on the absorption enhancement (by enhanced electric field energy) and the 

emission enhancement (by Purcell factor), we can calculate the simulated PL 

enhancement by eqn. (5.1), comparing with the experimental results measured by Wang 

Zhuo. As seen in Fig 5-7, the largest PL enhancement was achieved at the maximum of 

the product between the electric field enhancement factor at the excitation wavelength 

and the Purcell factor at the emission wavelength, at WSe2 on the nanostructure with the 

pitch of 200 nm with 633nm pump laser, and at WSe2 on the nanostructure with the pitch 

of 160 nm with 532nm pump laser. Therefore, the phenomenon that the maximum PL is 

not on the nanostructure with resonance matching 532nm pump laser in section 5.3.1 can 

be explained. Such a giant enhancement for the measured PL emission is due to the 

plasmon-enhanced absorption process and the plasmon-enhanced emission process 

together. With the gap plasmon resonance tuned to the 633nm pump laser wavelength, 

 

Fig 5-7 Simulated and experimental PL enhancement for different pitch sizes Λ with 

pump laser wavelength of (a) 532nm and (b) 633nm. 
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the integrated PL intensity from WSe2 on Au nanostructure with 200nm pitch size was 

enhanced up to 1,810-fold (without correction by the trench area fraction) compared with 

the reference on unpatterned flat Au film. With measured PL mapping for large pitch 

sizes (larger than wavelength), we found that the enhancements are localized to WSe2 at 

the trenches, and we assume it is also applicable to nanostructure with pitch size down to 

200nm, which cannot be resolved in PL mapping. According to the polarization 

dependence, as measurements were done with the pump laser polarized along the x-axis, 

fields are confined only within the trenches along the y-axis. Correcting for the small area 

occupied by these trenches, we obtain the maximum effective PL enhancement factor of 

around 20,000 in WSe2 over the trench using formula [219]: 

 

0patterned

eff
unpatterned gap

I A
PL

I A
     (5.3) 

where Ipatterned is the PL intensity from WSe2 on the patterned Au nanostructure and 

Iunpatterned is the PL intensity from WSe2 on flat Au film, A0 represents the excitation area 

of the laser spot size, and Agap represents the area of the trenches perpendicular to the 

polarization direction of the laser within the laser spot. Such a large effective PL 

enhancement factor hasn’t been reported in other works yet. Moreover, the curve shapes 

of simulation and experiment results agree with each other quite well for both 532nm and 

633nm pump laser. For 633nm pumping, the abrupt increasing PL enhancement appears 

at smaller pitch samples in experiment, rather than that in simulation, due to the broader 

resonance caused by imperfection in fabrication. Overall, the simulation substantially 

explains the PL enhancement observed in experiment. 
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5.4 Summary  

In conclusion, concentrating and manipulating the electromagnetic field in sub-20 nm 

trenches can achieve unprecedented PL enhancement of WSe2. Tuning the resonance of 

lateral gap plasmons to be aligned with the pump laser wavelength effectively boosts the 

light–matter interactions in WSe2, and also enhances the light emission efficiency of 

WSe2. A giant PL enhancement factor of about 20,000 was observed in WSe2 on template 

with pitch size of 200nm when using the 633-nm pump laser. We have built up a 

simulation model to explain the giant PL enhancement observed experimentally in WSe2-

Au plasmonic hybrid nanostructures. The well-designed gap plasmon resonance can 

generate large enhancement for both absorption process (electric field enhanced 

absorption) and emission process (Purcell effect). The plasmonic nanostructures can 

manipulate the light absorption and emission of 2D materials like WSe2, by the near-field 

interaction with incident pumping light and emitted light at PL wavelength. This work 

demonstrates an important method to enhance the PL of TMDCs since it could enable 

high-efficiency and high-quality photo-detectors and sensors, where photon absorption 

and emission dictate the device performance. The incorporation of Au nanostructures 

with sub-20nm trenches onto monolayer WSe2 opens up a new platform for investigating 

novel electrical/optical properties in 2D materials, such as electroluminescence and 

second harmonic generation, speeding up the applications of novel optoelectronic devices. 
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Chapter 6 Conclusions 

6.1 Summary of the thesis 

This thesis has presents our works on manipulating light with subwavelength 

nanostructures. The interaction between light and subwavelength nanostructures is 

investigated, and several ways to engineer the resonances of nanostructures are reported. 

Our works presents optical applications realized by accurately controlled resonance and 

well-designed nanostructures and meta-surfaces. 

The works can be generalized into two main parts. In the first part our works are 

manipulating far-field characteristics of light by meta-surfaces, including the spectra 

(intensity manipulation), phase and polarization of light. For the spectra manipulation, we 

have worked on the color nano-printing and imaging, controlling the spectra in visible 

light range. A comprehensive literature review was presented on the recent developments 

of ultra-high spatial resolution plasmonic colors. And then we reported our ultra-high 

spatial resolution non-plasmonic color printing with the color pixel made of ultra-narrow 

Si fin nanostructures in Chapter 2. Different from previous research works on Si colors, 

we didn’t use grating or waveguide mode scattering to manipulate light and generate 

colors. Our Si fin layer can be equivalent to an effective medium with a homogeneous 

refractive index, generating color by the Fabry-Perot resonance. And we also proposed an 

accurate quick and efficient TMM calculation to design the nanostructures for specific 

colors. 
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Another work to control far-field polarization of lights is the hybrid plasmonic QWPs. In 

Chapter 3 we present a design of actively reconfigurable plasmonic QWP working at 

multi-wavelength in visible and near-infrared light, which is hybrid meta-surface with a 

spacing layer of phase change material GST. The refractive index of GST layer between 

Au nano-cross and substrate can be controlled by switching the phase. The nanostructure 

works as a reflective QWP at 732nm with amorphous GST and at 781nm with crystalline 

GST. The polarization converting ratio is over 90% with corresponding phase state and 

very low with the other phase state at working wavelength. In addition, we have also 

reported two cooperative works on QWPs in THz range. Based on similar mechanism, 

the THz ultra-thin QWP can also enable active control of the optical functionalities. This 

switchable phase-change meta-surface provides a promising way for realization of 

polarization manipulating components, enabling novel applications with integrated 

optical devices. 

The second main part is the fundamental resonance mechanism and  local 

electromagnetic field related application research of subwavelength nanostructures. We 

have investigated in two aspects, one is the direct excited dark modes with normal 

incidence, and the other is the PL enhancement by WSe2-Au hybrid nanostructures. In 

Chapter 4, we have proposed a new mechanism to directly excite dark modes by using an 

electrical shorting approach with a continuous metal cover on a periodic HSQ pillar 

template. The nanostructures can also achieve narrow-band perfect absorption under 

visible light, which is also with potential to manipulate far-field spectra, but the noble of 

the research is the mechanism to electrically induce dark plasmonic resonances on 

continuous metal structure without any asymmetry in geometry, environment and 
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incidence. The local fields, electric charges, currents and Poynting vectors were also 

simulated and analyzed to improve the understanding of these special dark modes. 

In Chapter 5, we presented a cooperative work on giant PL enhancement of WSe2-Au 

plasmonic hybrid nanostructures. In simulation, we have explained how a squared 

trenched Au nanostructure with gap plasmon enhances the PL of monolayer WSe2 on top 

of it. The enhancement was generated in both absorption process by strong local electric 

field and emission process with large Purcell effect. This work revealed that plasmonic 

nanostructures have paved an effective way to obtain giant PL in TMDC 2D materials 

with their characteristic resonances and enhanced local fields.  

In this thesis, the optical constants of Si and all the metals are adopted from Palik, 

Handbook of Optical Constants of Solids [232]. And all the FDTD simulation is using 

commercial software FDTD Solutions from Lumerical.  
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6.2 Future research works 

The future prospect of manipulation of light by subwavelength nanostructures is bright 

and promising. One of the valuable research aspects is to investigate multiple controlling 

of light by well-designed meta-surfaces, such as the five-dimensional hologram [59]. To 

enrich the information carried by the light, we could consider studying how to control the 

intensity, phase, polarization, spatial properties and multi-wavelength channels by meta-

surface. In this field, the nanostructures need to be optimized to achieve high efficiency, 

high spatial resolution, excellent compatibility, low-cost fabrication, high wavelength and 

polarization sensitivity. 

Another interesting work that can be done in the future is to design active and multi-

functional optical devices with nanostructures. We can utilize the polarization and 

incident angle dependence, environment sensitivity of nanostructures, or we can employ 

the PCMs and semiconductors to enable active tuning of the characteristic of 

nanostructures, like the MMQWP we have designed in Chapter 3. Besides the MMQWP, 

we can still try to discover valuable optical applications with judiciously designed tunable 

nanostructures. 

It is also interesting and important to combine plasmonic nanostructures with other 

materials and matters like 2D materials (graphene, monolayer TMDCs), bio-molecules, 

semiconductors, high index materials with magnetic modes, etc. The strong local field of 

SPR modes of plasmonic nanostructures could provide a way to enhance the optical 

performance or strengthen the characterization of their optical properties. 
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