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SUMMARY 

The rapid increase in the use of high-speed rails (HSRs) for travels all 
over the world and the unfortunate occurrences of many catastrophic accidents 
involving HSRs are reasons why research on railway dynamics is becoming 
more and more important. The study on the response of high-speed trains 
subject to braking is particularly critical, as it contributes directly to ensuring 
better operational safety and superior train design. Heavy braking severely 
affects the dynamics of the train which could result in safety and train 
instability concerns. The former relates to the safe braking distance and the 
latter pertains to perilous occurrence of wheel sliding and potential disastrous 
derailment. Thus, the objective of this thesis is to formulate an efficient and 
reliable computational method for investigating the dynamics of high-speed 
trains subject to braking under various situations. 

The challenge is to obtain efficient and accurate numerical strategies that 
can capture the details of the complex interaction between train system, 
wheels, rail track and the supporting system. In the commonly adopted Finite 
Element Method (FEM), the problem is complicated by the fact that the 
moving train will eventually reach and beyond the boundary of the truncated 
finite element domain. This problem is even more serious for HSR systems 
whereby the speed is much higher than normal trains, which means the finite 
element domain has to be very large (hence computationally expensive). 
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For these reasons, the recently developed Moving Element Method 
(MEM) has been adopted. The method has been shown by several researchers 
to be novel and efficient for modeling moving train/load on rail track 
supported continuously on uniform viscoelastic foundation. In addition to 
overcoming the train running out of the truncated domain, the MEM permits 
non-uniform mesh (for better efficiency) which is not possible when using the 
FEM for moving train/load problems.  

In this thesis, numerical modeling and parametric studies have been 
carried out to investigate the dynamic response of high-speed train subject to 
braking. Compared to previous works on the MEM, the main findings in 
enhancing the method can be summarized as follows: 

(1) A solution strategy to deal with non-uniform speed. This is necessary 
to solve problems where acceleration or deceleration is not known apriori, 
which is the case for braking, especially unplanned deceleration due to 
emergency braking. 

(2) In achieving point 1 above, the system dynamics has to include 
forces on moving train such as running resistance, wheel-rail contact force 
(nonlinear Hertz model), wheel-rail adhesion force. This enables the study of 
effects of braking on wheel sliding. When the train is subject to braking under 
emergency situation, it is found that the applied braking torque should be at 
the so-called optimal torque as it represents a good compromise between train 
instability and safety. The optimal braking torque is one when all wheels are 
rolling and one of the wheels is at impending sliding condition. 
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(3) The MEM is extended to include interaction of multiple railcars 
accounting for couplers with slack action, which is the relative motion 
between railcars. Based on parametric studies, it is found that model with 
minimum three railcars is sufficient to capture the response of a multiple 
railcar train. 
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NOTATIONS 

3-DOF train model 
1m , 2m , 3m  Mass of the car body, bogie and wheel-axle, respectively 

1k , 1c  Spring  and dashpot of a secondary suspension system, 
respectively 

2k , 2c  Spring  and dashpot of a primary suspension system, 
respectively 

3k , 3c  Spring and dashpot of the contact between the wheel and rail 
beam, respectively 

u1, u2 , u3  Vertical displacements of the car body, bogie and wheel-
axle, respectively 

g  Acceleration due to the gravity 
15-DOF train model 

cm , bm , wm  Mass of the car body, each bogie and each wheel, 
respectively 

cJ , bJ , wJ  Moment of inertia about the pitch of car body, each bogie 
and each wheel, respectively 

sk , sc  Spring  and dashpot of a secondary suspension system, 
respectively 

pk , pc  Spring  and dashpot of a primary suspension system, 
respectively 

1l , 2l  Positions of the secondary and primary suspension spring-
damping units measured with respect to the centre of mass 
of the bogies and car body, respectively 

cu , c  Vertical and pitch displacements of the car body, 
respectively 

,br bru   Vertical and pitch displacements of the rear bogie, 
respectively 

,bf bfu   Vertical and pitch displacements of the front bogie, 
respectively 



xvi 
 

wiu  ( 1 to 4i  ) Vertical displacement of the ith wheel 
 1 to 4wi i   Pitch displacement of the ith wheel 

1h  Vertical distance between car body’s center of gravity and 
horizontal internal forces interlocking between car body and 
bogies 

2h  Vertical distance between the horizontal internal forces and 
center of gravity of bogies 

3h  Vertical distance between center of gravity of bogies and 
internal horizontal forces connecting bogies to wheels 

4h  Vertical distance between the coupler and the car body’s 
centre of mass  

Running resistance 
rF   Total running resistance force acting on car body 

0c , vc , ac  Aerodynamic coefficients obtained from wind tunnel test 
Wheel-rail interaction  

cF  Contact force between the wheel and rail 
ciF  Contact force between the ith wheel and rail 
y  Indentation at the contact surface 

iy  Indentation at the contact surface at the ith wheel 
HK  Hertzian spring constant 

wR , rR  Radii of the wheel and railhead, respectively 
  Poisson’s ratio of the material 

LK  Linear Hertzian spring constant 
W  Self-weight of the upper structure of the train-track system 

ry , ty  Rail displacements and the magnitude of the track 
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irregularity at the contact point, respectively 

riy , tiy  Rail displacements and the magnitude of the track 
irregularity at the ith contact point, respectively 

ta  , t   Amplitude and wavelength of track irregularity, 
respectively. 

Wheel-rail adhesion force 
 if  Adhesion force between the ith wheel and rail 

i  Gradient of tangential stress in the longitudinal direction 
Ak , Sk  Reduction factors in the adhesion and slip areas, respectively 
ia  , ib  Semi-axes of the contact ellipse at the ith wheel 
11c  Coefficient from Kalker’s linear theory 

G  Shear modulus of rigidity 
i  Friction coefficient between the ith wheel and rail 

lic  Longitudinal creep at the ith wheel 

A  Ratio of limit friction coefficient   at infinity slip velocity 
to maximum friction coefficient 0  at the zero slip velocity 

B  Coefficient of the exponential friction decrease. 
Coupler force 

cfF  , crF  Coupler forces exerted on the car body at the front and rear, 
respectively 

cfg , crg  Coupler gaps of the front and rear couplers, respectively; 

fs , rs   Relative motions of the typical railcar relative to the front 
and rear railcars, respectively 

cfc , cfk  Damping and stiffness of the coupler between the typical 
railcar and front neighbouring railcar, respectively 

crc , crk   Damping and stiffness of the coupler between the typical 
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railcar and rear neighbouring railcar, respectively 
Track-foundation model 
  ,  ,    Damping parameters 

s  ,  s , s Travel, velocity and acceleration of the train at any instant, 
respectively 

k , smk  Vertical Winkler springs and shear modulus, respectively 
y  Vertical displacement of the track 
E , I , m  Young’s modulus, moment of inertia and mass per unit 

length of rail beam, respectively 
t  Time 
  Dirac-delta function 
x , r  Fixed and moving relative coordinate, respectively 
Moving element method 

eM , eC , eK   Mass, damping and stiffness matrices of the moving 
element, respectively 

 ,r  Partial derivative with respect to r  
L  Length of a typical moving element 
N  Element nodal displacement shape function for beam 

element 
0a , 1a  Factors in calculating Rayleigh damping 

m , m  Fundamental frequency and damping ratio of the system, 
respectively 

n , n  Higher frequencies and damping ratios of the modes that 
contribute significantly to the dynamic response, 
respectively 

  Damping ratio 
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Governing equations of motion 
z , z , z  Global acceleration, velocity and displacement vectors of 

the train-track-foundation system, respectively 
M , C , K  Global mass, damping and stiffness matrices, respectively 
P  Global load vector 
Analytical solution 

iy  Generalized coordinate of the ith vibration mode of the rail 
Newmark integration method 

1nz , 1nz , 1nz  Global displacement, velocity and acceleration vectors at 
time 1nt , respectively 

nz , nz , nz  Global displacement, velocity and acceleration vectors at 
time nt , respectively 

t  Interval of time 

 ,   How much the acceleration at the end of the interval enters 
into the velocity and displacement equations at the end of 
the interval t , respectively 

1nP  Global force vectors at time 1nt  
Newton-Raphson scheme 
f  Equilibrium function 

1if  , if  Values for f  at iteration step 1i   and i , respectively 
U   Vector of variables 

1iU  , iU  Values for U  at iteration step 1i   and i , respectively 
   Numerical tolerance 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Railway transportation is one of the key modes of travel today. The 
advancement in train technology leading to faster and faster trains is without 
doubt a positive development, which makes the HSR more attractive as an 
alternative to other modes of transportation for long distance travel. As early 
as 1978, an electric train manufactured in France reached a record high speed 
of 260 km h-1. In October 1981, another high speed train named “TGV” began 
operation in France and rewrote the record for maximum speed when it 
managed to achieve a speed of 380 km h-1. Presently in China, a new series of 
high-speed trains named “CRH-3” can reach an average speed of 350 km h-1, 
and is becoming widely used. At the same time, the population of people who 
are travelling by high-speed trains regularly has grown. By 2020, a new high-
speed line between Kuala Lumpur and Singapore would have been constructed 
and commuters would enjoy a short travel time of only 90 minutes. The 
number of commuters using this high-speed line is expected to be significant. 

While train technology has greatly advanced since the introduction of 
the first HSR and the network of high-speed tracks has grown considerably, 
there is unfortunately insufficient research done to understand the dynamics of 
the HSRs. The lack of research might be cited as a contributing reason why 
there are many accidents involving HSRs all over the world. Figure 1.1 shows 
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the Eschede train disaster that occurred on 3rd June 1998 in Germany. It was 
the world's deadliest HSR accident with a recorded toll of 101 deaths and 
estimated 88 injured. It was caused by a single fatigue crack in one wheel, 
which caused the train to derail at a switch. Figure 1.2 shows CRH accident 
occurred in China on 23rd July 2011, in which two high-speed trains collided 
and derailed each other. More than 40 people were killed, at least 192 were 
injured, 12 of which were severe injuries. Figure 1.3 presents the Shinkansen 
accident in Japan on 2nd March 2013. A high speed Shinkansen train carrying 
130 people derailed when going through the Akita Province. Apparently, the 
derailment may be due to thick snow sticking to the rails. Figure 1.4 presents 
another tragedy involving HSR accidents resulting in 78 deaths and 131 
injured, which took place recently on 25 July 2013 in the northern Spanish 
region of Galicia. The accident involved a HSR train derailing due it travelling 
at a speed higher than the allowed speed over a curved part of the journey.  

The catastrophic nature of all the above-cited accidents involving HSRs 
emphasizes the importance of understanding the dynamic response of train-
track systems. Various safety concerns have to be addressed in order to 
minimize or eradicate such accidents from ever happening. Derailment is a 
key safety concern that arises mainly due to high vibrations produced. Some 
of the factors that affect the dynamic response are the speed of the train, the 
magnitude of the applied wheel braking torques, the severity of railhead 
irregularities and foundation stiffness. The high speed of trains do results in a 
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set of safety, design and maintenance issues not previously noted in trains 
travelling at moderate or low speeds.  

  
Figure 1.1.  ICE accident (1998). Figure 1.2.  CRH accident (2011). 

  
Figure 1.3.  Japan (2013). Figure 1.4.  Spain (2013). 

 While it is important to understand the response of HSR travelling at 
uniform high speed, it is also critical to study the response of non-uniform 
motion of HSR due to braking. A derailment study (China Academy of 
Railway Science 1998) revealed that 30% of derailments in Russia occurred 
due to emergency braking under poor wheel-rail contact condition. Forced 
high decelerations in order to safeguard the train to come to a halt quickly to 
avoid other possible catastrophes may be necessary under emergency 
situations. Such trains would then be subject to so-called ‘abnormal’ braking. 
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Unlike normal braking, when a train decelerates under moderate to heavy 
braking condition, instability due to train wheels sliding over the rails could 
occur. Also, unsafe levels of high dynamic response may be induced due to 
abnormal braking, which may lead to failure of structural components. Many 
of the above-cited factors influencing the dynamics of HSRs have not been 
adequately addressed in the literature. There is thus an urgent need to 
investigate the dynamics of HSRs subject to braking in order to safeguard the 
safety of HSR travels and ensure that its popularity as a viable means of safe 
and reliable transportation continues to grow. 

1.2 Literature review 

 The HSR has been investigated as a track beam resting on a visco-elastic 
foundation subject to moving loads varying both in time and space. As early as 
1926, Timoshenko proposed the use of a moving coordinate system to obtain 
the quasi-steady state solution of an infinite beam resting on an elastic 
foundation subject to a constant-velocity moving point load. In this study, the 
Fourier Transform Method (FTM) is used for solving the differential equation.  
 Various researchers have investigated the problem of loads travelling at 
non-uniform velocities. Suzuki (1977) employed the energy method to derive 
the governing equation of a finite beam subject to traveling loads involving 
acceleration. Involved integrations are carried out using Fresnel integrals and 
analytical solutions are presented. Yadav (1991) investigated the vibration 
response of a train-track-foundation system resulting from a vehicle travelling 
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at variable velocities over finite track. Analytical solutions were obtained and 
the response characteristics of the system examined. Karlstrom (2006) used 
the FTM to obtain analytical solutions for the investigation of ground 
vibrations due to accelerating and decelerating trains traveling over an 
infinitely long track. The solution is based on Fourier transforms in time and 
along the track. Although analytical solutions are elegant which provide clear 
physical insights into the nature of the problem, they are limited in dealing 
with practical applications involving multi-degrees of freedom train models 
and realistic railway tracks that suffer from railhead roughness. 
 The Finite Element Method (FEM) is a well-established numerical 
method widely used to solve many complicated problems, including problems 
involving moving loads. For example, Frýba et al. (1993) presented a 
stochastic finite element analysis of an infinite beam resting on an elastic 
foundation subject to a constant load travelling at constant speed. Another 
research study carried out based on the FEM was done by Thambiratnam and 
Zhuge (1996). They performed a dynamic analysis of a simply supported 
beam resting on an elastic foundation subjected to moving point loads and 
extended the study to the analysis of a railway track modeled as an infinitely 
long beam. 
 However, the FEM encounters difficulty when the moving load 
approaches the boundary of the finite domain and travels beyond the 
boundary. These difficulties can be overcome by employing a large enough 
domain size but at the expense of significant increase in computational time. 
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In an attempt to overcome the complication encountered by FEM, Krenk et al. 
(1999) proposed the use of FEM in convected coordinates, similar to the 
moving coordinate system proposed by Timoshenko (1926), to obtain the 
response of an elastic half-space subject to a moving load. The key advantage 
of this approach is its ability to overcome the problem produced by the 
moving load travelling over a finite domain. Andersen et al. (2001) provided 
an FEM formulation in resolving the problem of a beam on a Kelvin 
foundation subject to a harmonic moving load. Koh et al. (2003) adopted the 
convected coordinate system for solving train-track problems, and named the 
numerical algorithm the moving element method (MEM). The method was 
subsequently applied to the analysis of in-plane dynamic response of annular 
disk (Koh et al. 2006) and moving loads on a viscoelastic half space (Koh et 
al. 2007).  Ang and Dai (2013) extended the MEM to investigate the “jumping 
wheel” phenomenon in high-speed train motion at constant velocity over a 
transition region where there is a sudden change of foundation stiffness. The 
phenomenon occurs when there is momentary loss of contact between the 
wheel and rail.  
 In the above-cited studies, the HSR has so far been investigated as a rail 
beam resting on a Winkler foundation which is a rather simplistic model of the 
foundation. Interaction between the Winkler springs is not considered and thus 
may not accurately represent the characteristics of actual foundations. To 
overcome the deficiency of the single-parameter Winkler foundation, various 
researchers have proposed the use of a more accurate two-parameter soil 
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model (Filonenko–Borodich 1940; Pasternak 1954; Kerr 1964; Vlasov and 
Leont’ev 1966). This model differs from the Winkler foundation due to use of 
a shearing layer to connect the top of the Winkler springs and the adoption of 
a second foundation parameter to account for the stiffness of the shear layer. 
The accuracy and advantages of the two-parameter foundation in modeling the 
effects of elastic foundation support on structures have been investigated and 
described by Feng and Cook (1983). More recently, Kumari et al. (2012) 
investigated the dynamic response of infinite Euler-Bernoulli beam resting on 
two-parameter viscoelastic foundation subject to a constant-velocity moving 
point load. They obtained the solution of the governing differential equation 
analytically. 

Lixin and Haitao (2001) studied the 3-D dynamic response of heavy 
trains travelling at a low speed subject to normal braking, in which the 
occurrence of wheel sliding was not investigated. Handoko and Dhanasekar 
(2007) predicted the dynamics of simplified two-axle bogies of low-speed 
train both under constant speed and under variable speed due to traction and 
braking. Zhang and Dhanasekar (2009) presented a low-speed train model 
under braking conditions in order to investigate car body pitch, derailment, 
and wheel-set skid. The influence of wheel-rail contact condition and track 
geometry defects on car body pitch was also discussed. 

The aforementioned works mostly focused on the single-railcar train. As 
a typical train comprises of several railcars, it is important to investigate the 
longitudinal interaction between railcars connected by couplers, especially 
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when the train is subject to braking. The relative motion between railcars, 
known as “slack action”, plays a significant effect on the response of the train-
track system. During braking, the coupler between consecutive railcars 
develops cyclical compressive and tensile forces. The maximum compressive 
force developed in the coupler depends on many factors, such as the coupler 
stiffness and the coupler gap. Under adverse conditions, the coupler force 
developed may be large enough to cause failure in the couplers resulting in 
catastrophic train derailments (Garg and Dukkipati 1984). Pugi et al. (2007) 
developed a simple model of the longitudinal dynamics of a freight train due 
to normal braking. Vehicles are modeled as simple lumped masses connected 
by coupling system subject to normal braking. Dhanasekar et al. (2007) 
studied the longitudinal bogie dynamics of low-speed train under applied 
braking torque using an experimental method. In this study, controlling 
braking pressure and its application time were used to evaluate the occurrence 
of wheel sliding. Ansari et al. (2009) presented a comprehensive parametric 
study on the longitudinal dynamics of low-speed freight trains subject to 
traction and braking. The effect of the coupler properties on the dynamic 
response of a ten-railcar train model was investigated. Recently, Ahmad 
(2013) developed a dynamic model of a low-speed freight train due to normal 
braking. A three-railcar train model was used for performing a parametric 
study to investigate the effect of various factors on the braking distance. 
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1.3 Motivation of research 

As can be seen from the literature review, many researchers focused 
their studies on a high-speed train travelling at uniform velocity. Some 
research has been carried out on a train subject to braking but these are 
confined to heavy train traveling at low-speed under normal braking condition 
with the railhead assumed to be perfectly smooth. However, real train-track 
systems are likely to have various degrees of railhead roughness and thus it is 
important to account for the effect of track irregularity on the dynamic 
response of HSRs. Also, high-speed trains do travel at non-uniform velocities, 
especially when accelerating to attain maximum operational speed or 
decelerating to reduce speed. Controlled levels of deceleration are encountered 
when normal braking is applied such as when the train approaches a curved 
track or coming to a halt at a station. However, high deceleration may be 
necessary when abnormal braking occurs, such as under emergency situations, 
that requires the train to come to a halt quickly to avoid other possible 
catastrophes. In order to investigate a high-speed train subject to abnormal 
braking, it is necessary to include in the formulation of the governing 
equations the possibility of wheel sliding over the rail. 
 Most previous works in the literature investigated the dynamics of a 
single-railcar train. Limited research works carried out on multiple-railcar 
train dynamics however mostly focused on a long heavy train traveling at low-
speed over a smooth track subject to normal braking. Due to the gap in the 
literature, it is thus important to investigate the dynamic response of high-
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speed multiple-railcar train subject to abnormal braking, in particular, the 
interaction between railcars which could result in spikes in the forces 
developed in the train couplers.  
 From the above literature review, it can be seen that the MEM has been 
successfully used in solving problems involving trains travelling on tracks 
resting on viscoelastic foundation. The method, which is a variation of the 
FEM, is elegant and has several advantages as compared to the FEM when 
dealing with problems involving moving loads. However, the method has so 
far been limited in applications involving rail beams resting on Winkler 
foundation subject to a constant-velocity moving train. The constant velocity-
based MEM has been employed to deal with non-uniform motion of train but 
confined to cases where the train speed-time profile is given or assumed (Koh 
et al. 2003). This is achieved by dividing the total time duration into small 
time intervals and assuming that the speed of the train during each time 
interval is constant. As time changes, the constant velocity of the train in the 
MEM formulation is updated based on this piecewise approximation of the 
speed-time profile. However, under train braking conditions, the speed-time 
history of the train is unknown in advance and thus using the constant 
velocity-based MEM, as described above, is not feasible. It is thus necessary 
to extend the MEM to account for the instantaneous acceleration/deceleration 
of the train in order to investigate the dynamics of the HSR subject to braking. 
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1.4 Objective and scope of study 

The objective of the present study is to investigate the dynamic response 
of high-speed train subject to braking. The results of the study will be useful in 
the safe operation, maintenance and design of HSRs. The scope of the research 
work includes:  
(1) Efficient computational method 

The constant velocity-based MEM is inadequate for dealing with train 
dynamics involving braking. It is thus necessary to extend the MEM to 
account for the instantaneous acceleration/deceleration of the moving train.  
(2) Two-parameter elastic damped foundation 

The foundation in which the track rests on forms a crucial component of 
the HSR. Thus, an accurate model of the foundation is important in obtaining 
a correct prediction of the response of the HSR. While the Winkler foundation 
is able to reasonably model the behavior of the foundation, it may be too 
simplified to account for the actual foundation. Thus, it is necessary to adopt a 
more accurate two-parameter soil model.  

Dissipation mechanisms in the track-foundation model needs to be 
addressed appropriately. There are three mechanisms of physical damping in a 
realistic track-foundation, namely (1) external or viscous damping (interaction 
with surrounding medium or interface with other physical systems), (2) so-
called structural damping (shear diffusion damping) and (3) internal or Kelvin-
Voigt damping (caused by processes within the system, i.e. increase of heat 
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energy to the detriment of mechanical energy by means of internal friction and 
thermo-elastic effects).  
(3) Wheel-rail contact model 

The accuracy of the dynamic analysis of the HSRs depends significantly 
on the correctness of the contact model accounting for the normal wheel-rail 
interaction. Two models based on Hertz contact theory are employed, namely 
a simple linearized and a more sophisticated nonlinear version. Due to the 
nature of high speed of the train, the contact models are extended to account 
for the possible occurrence of the jumping wheel phenomenon, where there is 
a momentary loss of contact between wheels and rail.  
(4) Response of non-uniform motion of HSR 

The proposed MEM is employed to first investigate the response of non-
uniform motion of HSR, in which the speed-time profile of the train is given. 
The profile consists of three phases, namely (1) an accelerating phase in which 
the train accelerates uniformly to attain an operational speed, (2) a constant-
speed phase and (3) a decelerating phase in which the train decelerates 
uniformly from operational speed to a halt. The accuracy of results obtained 
by the proposed MEM is verified against available results in the literature. A 
parametric study is carried out to understand the effects of various factors on 
the dynamic response of HSR including the occurrence of jumping wheel 
phenomenon. Parameters considered include the magnitude of train 
acceleration/deceleration, the severity of railhead roughness (track 
irregularity) and the wheel load.  
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(5) Response of single-railcar train subject to braking 
A realistic train model that accounts for the effect of pitching moment 

arising from the longitudinal inertia effects and wheel adhesion forces is 
employed in order to deal with the case when a train is subject to braking. The 
modified nonlinear Hertz contact theory and Polach adhesive model are 
employed to account for the normal and tangential wheel-rail contact forces, 
respectively. Braking torques of constant amplitude are applied at all wheels in 
order to decelerate the train till to a halt. The effects of parameters such as 
braking torque, wheel-rail contact condition and initial train speed on the 
single-railcar train dynamics, including the dynamic amplification factor 
(DAF) in wheel-rail contact force as well as the occurrence of wheel sliding 
and jumping wheel phenomenon, will be examined.  
(6) Response of multiple-railcar train subject to braking 

A multiple-railcar train is employed in order to investigate the 
longitudinal interaction between railcars when the high-speed train is subject 
to abnormal braking. A parametric study is performed to understand the 
effects of magnitude of braking torque, coupler stiffness, coupler gap, wheel 
load, wheel-rail contact condition and initial train speed. The effect of partial 
failure in the train braking mechanism on the response of the multiple-railcar 
train subject to braking was also investigated. 

1.5 Outline of study 

The thesis is organized into following chapters as follows: 
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Chapter 1: The background, literature review as well as the motivation of the 
present study are presented. This is followed by the statement of the objective 
and some details on the scope of work carried out. 
Chapter 2: Various mathematical models of the components of the HSR 
including the train, track-foundation, normal wheel-rail interaction model are 
presented. The derivation of the governing equations of motion of the system 
is also presented.  
Chapter 3: This chapter mainly focuses on the computational method 
employed in this study. The MEM is employed to model the track-foundation, 
where element matrices are formulated based on a convected coordinate 
system attached to the center of mass of the moving train. Analytical formulas 
for simple cases of moving loads over tracks are presented for the purpose of 
comparison with the proposed computational method. Verification of the 
accuracy of the proposed scheme for simple case of moving load problem 
through comparison with available analytical and FEM results is presented. 
Chapter 4: A computational study is carried out to investigate the dynamic 
response of HSR travelling at non-uniform speeds, in which the speed-time 
profile is specified. Verification of the accuracy of the proposed MEM for 
non-uniform motion of a 3-DOF train model through comparison with 
available results in the literature is presented and discussed. The effects of 
various factors on the dynamic response of the system such as the magnitude 
of train acceleration/deceleration, train speed, severity of track irregularity and 
wheel load are presented.  
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Chapter 5: This chapter presents the proposed computational scheme for 
investigating single-railcar train dynamics subject to braking with allowance 
for the possible occurrence of wheel sliding. A more realistic 15-DOF train 
model that accounts for the effect of pitching moment arising from the 
longitudinal inertia effects and wheel adhesion forces is presented. Solutions 
obtained using the proposed MEM for dynamic response of a single-railcar 
train subject to braking with possible sliding of wheels are verified through 
comparison with results obtained via the FEM. Results of a parametric study 
to understand the effects of various factors such as braking torque, initial train 
speed and wheel-rail contact condition on the dynamic response of the system, 
duration of wheel sliding and braking distance are presented.  
Chapter 6: This chapter is concerned with the dynamics of multiple-railcar 
train subject to braking. The mathematical model of a multiple-railcar train 
traveling on a two-parameter elastic damped foundation is described and the 
governing equations are derived. The formulation of the coupler force 
connecting neighboring railcars is also presented. Solutions obtained using the 
proposed MEM for dynamic response of a multiple-railcar train subject to 
braking in which sliding of wheels occurs are verified through comparison 
with results obtained via the FEM. Results of a parametric study to investigate 
the effects of various factors such as the magnitude of braking torque, coupler 
stiffness, coupler gap, wheel load, wheel-rail contact condition, initial train 
speed and partial failure in braking mechanism on the multiple-railcar train 
dynamics are presented. 
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Chapter 7: This chapter summarizes the key findings of the thesis and 
presents the recommendations for future works. 
Equation Chapter 2 Section 1
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CHAPTER 2. MATHEMATICAL MODELING 

2.1 Introduction 

In this chapter, mathematical modeling of train-track-foundation system 
is introduced. Various train models ranging from the simplest moving load 
model to the 3-DOF train model are employed. The train and track-foundation 
are coupled through the normal wheel-rail contact force. Two normal wheel-
rail contact problems accounting for occurrence of the jumping wheel 
phenomenon are presented, namely a simple linearized and a more 
sophisticated nonlinear version. The railhead is assumed to have some 
imperfections resulting in the so-called “track irregularity”. The railway track 
is treated as an Euler-Bernoulli beam resting on a two-parameter elastic 
damped foundation. The governing equation of motion of the train-track-
foundation system is derived based on Newton’s second Law of motion. 

2.2 Train model 

In view that the track gauge is large enough and that the track is straight, 
it is reasonable to assume there is little interaction between the pair of wheels 
of each wheel set and there is negligible rolling displacement of the centroid 
of the wheel-set of the wheel axle. Thus, a 2-D model of the train-track system 
comprising of one rail and half the train is considered. 
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2.2.1 Moving load model 

 Figure 2.1 shows a moving load model involving track-foundation 
subject to a single or sequence of moving loads iF  travelling a distance s  over 
the railway track. This model is suitable for the cases involving less inertia 
effect and less wheel-rail interaction. Thus, the model may be good for the 
case when the mass of the train is much smaller as compared to the lower 
structure. 

 
Figure 2.1. Moving load model. 

2.2.2 3-DOF train model 

 In the 3-DOF model, the train is modeled as a system of three rigid 
components, namely the car body, bogie and wheel-set, inter-connected by 
spring-damper units as shown in Figure 2.2. The topmost mass 1m  represents 
the car body where the passengers are. The car body is supported by the bogie 
of mass 2m  through a secondary suspension system modeled by the spring 1k  
and dashpot 1c . The bogie is in turn supported by the wheel-axle system of 
mass 3m  through a primary suspension system modeled by the spring 2k  and 
dashpot 2c . cF  is the contact force exerted between the train and track. The 
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vertical displacements of the car body, bogie and wheel-axle are denoted by 
1u , 2u  and 3u , respectively. 

 Accounting for the effects of moving gravity loads and letting g  be the 
acceleration due to the gravity, governing equations for the train model are 
written as 

   1 1 1 1 2 1 1 2 1m u k u u c u u m g         (2.1) 

       2 2 2 2 3 2 2 3 1 1 2 1 1 2 2m u k u u c u u k u u c u u m g               (2.2) 
   3 3 2 2 3 2 2 3 3 cm u k u u c u u m g F          (2.3) 

 
Figure 2.2. Moving 3-DOF model. 

2.3 Wheel-rail contact force 

Based on the nonlinear Hertz contact model (Esveld 2001), the contact 
force cF  between the wheel and rail may be expressed as 
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3
2   0

    0      0
Hc K y for yF

for y
      

 (2.4) 

where HK  is the Hertzian spring constant given by 
2

2 2
2
3 (1 )

w r
H

E R RK    (2.5) 

in which wR  and rR  denote the radii of the wheel and railhead, respectively, 
  the Poisson’s ratio of the material and y  the indentation at the contact 
surface. The latter may be expressed as 

3r ty y y u     (2.6) 
in which ry , ty  denote the vertical displacement of the rail and track 
irregularity at the contact point, respectively, and 3u  the vertical displacement 
of the wheel.  
 Track irregularity is a major source of the dynamic excitation. The 
corrugation of the rail surface and weld imperfections are the most important 
factors accounting for irregularities with short and moderate wavelengths in 
the order of centimeters up to about 3 m. For irregularities with larger 
wavelengths in the order of 3 m and more, the key causes are due to rail 
rolling defects and uneven settlement of the foundation (Esveld 2001 and 
Clark et al. 1982). The track irregularity describes the vertical unevenness in 
the railhead surface which arises due to various factors such as wear, tear and 
plastic deformation; and is widely assumed to take the following sinusoidal 
form (Nielsen and Abrahamsson 1992) 
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2sint t
t

xy a 
  (2.7) 

where ta  and t  denote the amplitude and wavelength of track irregularity, 
respectively. 

To avoid high computational cost and complexity of the nonlinear 
contact problem, many researchers have adopted a simplified approach based 
on a linear Hertz contact model in which cF  is given by  

0
0 0
L

c
K y for yF for y

       (2.8) 

where LK  is the linear Hertzian spring constant (Esveld 2001) and may be 
computed as  

2
3 2 2

3
2(1 )

w r
L

E W R RK    (2.9) 

in which it is assumed that the reaction force at the contact point equals the 
self-weight of the upper structure W  of the train-track system. 

2.4 Shear modulus of foundation 

 Mathematically, the foundation reaction may be written as follows 
2

2
( )( ) ( ) sm

d y xp x ky x k dx   (2.10) 

where  y x  denotes the transverse deflection of the foundation; k  and smk  the 
Winkler modulus and second-parameter foundation (namely shear modulus) 
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coefficients, respectively. Note that shear modulus smk  may be called by other 
ways:  
 a constant tension by connecting the Winkler springs to a thin elastic 

membrane (Filonenko–Borodich 1940);  
 shear interaction between the springs by connecting the ends of the 

springs to a layer consisting of incompressible vertical elements which 
deform only by transverse shearing (Pasternak 1954);  

 an equivalent line load may be transformed by moment load from the 
foundation (Kerr 1964).  

 Although there is a difference from the definition of the parameters, the 
above formulations of foundation reactions proposed are equivalent. 
Therefore, it is not need to pay attention to this difference when solving the 
problems relating to a beam resting on a elastic foundation.  

2.5 Dissipation mechanisms  

Naturally, the presence of energy dissipation mechanisms is accepted in 
all models used for simulation of mechanical vibrations in elastic systems. In 
general, Herrmann (2008) presented three types of dissipation mechanisms  

     3 5
2 4; ;y y ya b ct x t x t          (2.11) 

where the term  a  denotes the so-called external or viscous damping 
(interaction with surrounding medium, interface with other physical system); 
the term  b  the so-called structural damping (shear diffusion damping); and 
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the term  c  the so-called internal or Kelvin-Voigt damping (caused by 
processes within the system, i.e. increase of heat energy to the detriment of 
mechanical energy by means of internal friction and thermo-elastic effects). 

2.6 Track-foundation model 

 The rail track is modeled as an infinite Euler-Bernoulli beam resting on 
a two-parameter elastic damped foundation. The beam is subject to a moving 
load arising from the wheel contact force cF  of the 3-DOF train model, as 
illustrated in Figure 2.3. The track-foundation is discretized into finite moving 
elements, in which the formulation of the element equations are based on 
adopting a convected coordinate r -axis with origin fixed at the origin of the 
moving load, as shown in Figure 2.3. 

 
Figure 2.3. A track-foundation model. 

 The governing differential equation of motion of the track-foundation 
may be written as 

 4 4 2 2
4 4 2 2sm c
y y y yEI EI k my y ky F x sx x x x                 

 
   (2.12) 
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where   is the Dirac-delta function; and s  the travel distance at any instant t  
of the origin of the r -axis measured with respect to the origin of the x -
coordinate; E , I , m  are the Young’s modulus, second moment of inertia, 
mass per unit length of the track, respectively; k , smk  the Winkler stiffness and 
shear modulus of foundation, respectively;  ,   ,   the so-called damping 
parameters of Winkler foundation, rail beam and shear layer, respectively.  

Interestingly, it can be seen in Eq. (2.12) that 4 4
4 4,y yEI EIx x     

 ,  

2 2
2 2,sm
y yk x x     

  and  ,ky y   denote so-called spring and damping forces of 

rail beam, shear layer and Winkler foundation, respectively. Mathematically, 
the three damping forces are the results of differentiation respect to time of the 
respective spring forces.  

Considering the special case, the train is assumed to traverse the rail 
beam on a viscoelastic Winkler foundation at constant velocity 0s , i.e. 

0   , 0smk  , Eq. (2.12) becomes 

 4
04 c

yEI my y ky F x s tx             (2.13) 

which is noted to be identical to governing equation of motion of the track-
foundation model derived by Koh et al. (2003).  
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2.7 Concluding remarks 

In this chapter, mathematical models of various components of the 
system, namely the train, track-foundation and wheel-rail contact, are 
presented. Various train models ranging from the simplest moving load model 
to the 3-DOF train model are employed. The track is modeled as an Euler-
Bernoulli beam resting on a two-parameter elastic damped foundation. The 
train and track-foundation are coupled through the normal wheel-rail contact 
force. Two normal wheel-rail contact models adopting for the “jumping 
wheel” phenomenon are presented, namely a simple linearized and a more 
sophisticated nonlinear version. The governing equation of motion of the 
train-track-foundation system is derived based on Newton’s second Law of 
motion.  

Equation Chapter (Next) Section 1
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CHAPTER 3. METHODOLOGY 

3.1 Introduction 

 In the previous chapter, the governing equations of motion of the train-
track-foundation system were presented in details. Thus, appropriate 
approaches need to be employed to solve the governing equations in both 
spatial and time domain. This chapter aims to introduce the proposed 
computational method for the purpose of solving the governing equations. The 
MEM is employed to model the track-foundation, where element matrices are 
formulated based on the convected coordinate system attached to the center of 
mass of the moving train. As an illustration, the response of an Euler-Bernoulli 
beam resting on a two-parameter elastic damped foundation subject to a 
moving load is investigated. The Newmark method is a powerful tool adopted 
to solve equations of motion of the systems. The Newton-Raphson’s scheme is 
employed for solving nonlinear equation arising from the nonlinear wheel-rail 
contact model. The accuracy of the proposed scheme for the problem of a 
moving load travelling at non-uniform motion, results obtained is verified 
against analytical solutions and FEM results. 
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3.2 Moving element method 

 The MEM was first proposed with the idea of attaching the origin of the 
r -axis moving at the same speed as the train. The relationship of the fixed 
coordinate and moving coordinate is given by 

r x s   (3.1) 
 In view of Eq. (3.1), Eq. (2.12) may be rewritten as 

4 4 2 2
4 4 2 2

22
2 2 ( )

sm

c

y y y yEI EI y s y s kr r r r r r
y y y ym s s s y y s ky F rr r r r

 
 

                       
                     

   


     

 (3.2) 

 By adopting Galerkin’s approach, the generalized mass eM , damping 

eC  and stiffness eK  matrices for a typical moving element of length L  may 
be proposed as 

T
0 dL

e m r M N N  (3.3) 

T T T T
,0 0 0 0d d 2 d dL L L L

e rr rr r r rEI r r ms r r        , , , ,C N N  N N  N N  N N   (3.4) 

   
T T T

,0 0 0
2 T T T

0 0 0

d d d
d d d

L L L
e rr rr r rr rr rrr

L L L
sm r r r

EI r s r s EI r
ms k r ms s r k r
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, , ,

K N N  N N  N N  
N N  N N  N N 

 

  
 (3.5) 

where N  is the shape function based on Hermitian cubic polynomials and 
 ,r  denotes partial derivative with respect to r .  
 By adopting Rayleigh damping (Clough and Penzien 1993), the damping 
matrix   Ce  may be expressed as  
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1 1 , 0 10 0 0    d d d
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     , , ,

C M K
N N  N N  N N  (3.6) 

where eM , eK  are determined at the initial elastic state. By equating Eq. 
(3.6) to Eq. (3.4), which is also determined at the initial elastic state, the 
damping parameters are proposed as follows 

0 1 1 1; ; sma m a k a a k       (3.7) 
It can be seen that the viscous damping parameter   is noted to be identical to 
the value derived by Clough and Penzien (1993). Note that other damping 
parameters   and   proposed in this study have not been adequately 
addressed in the literature. 
 Considering the special case, the train is assumed to traverse the rail 
beam on a viscoelastic Winkler foundation at constant velocity 0s , i.e. 

0;s  0   , 0smk  , the Eqs. (3.3), (3.4) and (3.5) thus becomes: 
T

0 dL
e m r M N N  (3.8) 

T T
0 0 02 d dL L

e rms r r   ,C N N  N N   (3.9) 

T 2 T T T
0 00 0 0 0d d d dL L L L

e rr rr r r rEI r ms r s r k r      , , , , ,K N N  N N  N N  N N  

 
(3.10) 

which are noted to be identical to the matrices derived by Koh et al. (2003).  
 By assembling the element matrices, the equation of motion for the 
combined train-track-foundation (HSR) model can be written as 

  Mz Cz Kz P   (3.11) 
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where z , z , z  denote the global acceleration, velocity and displacement 
vectors of the train-track-foundation system, respectively; M , C  and K  the 
global mass, damping and stiffness matrices, respectively; and P  the global 
load vector. The above dynamic equation can be solved by any direct 
integration methods such as the Newmark- method (Bathe 1996), which is 
discussed in Section 3.3.  

3.3 The Newmark method 

 In order to solve the differential equations of motion in Eq. (3.11), many 
numerical methods such as the Euler method, Improved Euler method, Taylor 
series method, Runge-Kutta method, Central Difference method, Houbolt 
method, Wilson method and Newmark method can be used. In this study, the 
Newmark method (Bathe 1996) is employed for solving the problems. 
 The Newmark method is based on the assumption that the acceleration 
varies linearly between two instants of time. The resulting expressions for the 
velocity 1nz  and displacement 1nz  at time 1nt  are written as 

 1 11z z z zn n n n t             (3.12) 

 2
1 1

1
2z z z z zn n n n nt t  

                (3.13) 

where nz , nz  and nz  denote the displacement, velocity and acceleration at 
time nt , respectively; the parameters   and   indicate how much the 
acceleration at the end of the interval enters into the velocity and displacement 
equations at the end of the interval t . In fact,   and   can be chosen to 
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obtain the desired accuracy and stability characteristics. When 2
1  and 

6
1 , Eqs. (3.12) and (3.13) correspond to the linear acceleration method. 

When 2
1  and 4

1 , Eqs. (3.12) and (3.13) correspond to the assumption 

of constant acceleration between nt  and 1nt .  
 Solving Eqs. (3.12) and (3.13), the velocity 1nz  and acceleration 1nz  at 
time nt  can be obtained by 

   1 12
1 1 1 12z z z z zn n n n ntt   

            (3.14) 

 1 1 1 1 2z z z z zn n n n ntt
  
   

                    (3.15) 

 In the case of linear dynamic problems for the purpose of finding the 
value of 1nz , Eq. (3.11) is thus considered at time 1nt   

1 1 1 1Mz Cz Kz Pn n n n        (3.16) 
 By substituting Eqs. (3.14) and (3.15) into Eq. (3.16), a relation for 
finding the value of displacement 1nz  may be rewritten as  
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or 
1

1n R F z  (3.18) 
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where 
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 Finally, the acceleration 1nz  and velocity 1nz  can be computed 
according to Eqs. (3.14) and (3.15), respectively. 

3.4 The Newton-Raphson scheme 

 The MEM is the first proposed to solve sets of simultaneous linear 
equations. Unfortunately, the nonlinear Hertz contact theory accounting for 
the normal wheel-rail interaction is employed in this study, resulting in 
complications in numerical implementation. In an attempt to overcome the 
aforementioned complication, the Newton-Raphson’s scheme (Bathe 1996) 
may be employed for solving nonlinear equation arising from the nonlinear 
wheel-rail contact model. Thus, this section presents the procedure of adopting 
the approach in the treatment of the nonlinear equation. 
 Upon closer combination of Eqs. (2.1), (2.2) and (2.3), the governing 
equation of the 3-DOF train model may be rewritten as 

 1 1 2 2 3 3 1 2 3cm u m u m u F m m m g         (3.21) 
 Substituting the contact force cF  in Eq. (2.4) into Eq. (3.21) 
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 For the purpose of linearizing Eq. (3.22), an assumed equilibrium 
function ( )f X  may be written as 
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(3.23) 

where  1 2 3 1 2 3, , , , , , ,r tX X u u u y y u u u     is the vector of variables.  
 The aim is to find values for the variables so that   0f X   by doing an 
iterative procedure. In view that the speed of convergence study depends on 
the nonlinearity of the equation as well as the initial trial values, there is a 
need to repeat the procedure with more iteration steps until the equilibrium 
function  1if X  at the ( 1)thi   iteration step satisfies  1 0if X  . Based on 
the Taylor series expansion, the equilibrium function  1if X may be 
linearized as 

       1 1
i

i i i i
T

f Xf X f X X XX
     (3.24) 

 To find solutions satisfying the equation  1 0if X  , the increment in 
X  should be within a given numerical tolerance   as follows 

1
1

i i
i

X X
X 


   (3.25) 
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3.5 Analytical solution 

 For purpose of comparison with the proposed computational method, the 
analytical solution for simple cases of moving loads over tracks is also 
presented in this study. The analytical steady-state response of a curved beam 
on a viscously damped foundation subjected to a sequence of moving loads 
was firstly proposed by Dai and Ang (2014). By setting the radius of the 
curved beam to zero and adding the effects of dissipation mechanisms and 
shear modulus of the foundation, the analytical solution is extended to solve 
the problems involving a straight rail beam resting on a two-parameter elastic 
damped foundation subject to moving loads. 
 As this study mainly focuses on the response of the rail when the 
moving load is away from the truncated ends, the rail displacement and 
reaction force at the boundaries are usually negligible. Thus, the rail 
displacement can be reasonably expressed as 

1
( ) sinn

i
i

i xy y t L



      (3.26) 

where iy  denotes the generalized coordinate of the ith vibration mode of the 
railway track. 
 As the mode of vibration is orthogonal with each other, the governing 
equation in Eq. (2.12) by adopting Galerkin’s approach can be rewritten as 

2
i i2

2 sini i ci
y y F i sc d yt t mL L

             (3.27) 
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where 
4 2

i
EI i ic m m L m L

                ;  
4 2

i smkk EI i id m m L m L
             .   

 The steady-state response of Eq. (3.27) may be written as 

i i
1

sin cos sinn
i

i
i s i s i xy A BL L L
  


                     (3.28) 

where iA  and iB  are coefficients determined by substituting Eq. (3.28) into 
Eq. (3.27) 
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 (3.29) 

In sum, the analytical steady-state response of a beam resting on two-
parameter elastic damped foundation subject to a moving load cF  is obtained 
in Eq. (3.28). For the case of multiple moving loads of more realistic 
complicated train models, the superposition technique should be employed. 

3.6 Verification of results 

In an attempt to test the accuracy of proposed MEM for the problem of a 
moving load travelling at non-uniform motion, results obtained will be 
verified against analytical solutions and FEM results. Note that the analytical 
method is limited in solving only the problem of a moving load travelling at a 
constant speed. For other more complicated travelling load problems, it was 
necessary to resort to writing a FEM code for the purpose of comparison.  
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 Figure 3.1 shows the general train speed profile adopted in the analysis. 
The train is assumed to be travelling initially at a constant speed 0 70s   m s-1. 
After time 1t , which is taken to be long enough for the vibration of the train-
track-foundation system to attain steady-state, the train is then assumed to 
decelerate uniformly at 2  m s-2 before coming to a halt at time 2t . This 
deceleration magnitude is typical during heavy braking. For simplicity, results 
are obtained based on a moving wheel load of 1 kN. The foundation 
supporting the track is modelled as a two-parameter elastic damped 
foundation. Values of parameters related to the properties of the track and 
foundation (Koh et al. 2003) are summarized in Table 3.1. Note that the value 
of shear modulus smk  is taken from Feng and Cook (1983). The equations of 
motion are solved using Newmark’s constant acceleration method employing 
a time step of 0.0005 s. 
 In the FEM model, a sufficiently long segment of the railway track is 
discretized uniformly with 0.25 m size elements, which has been found to be 
adequately small enough to attain converged accurate results. The segment 
may be divided into three sub-portions, a central portion and two end portions. 
The central portion, where the train travels during the period considered, is 
taken to be 140.5 m. The central portion is padded by two end portions of 
sufficient length in order to mitigate the erroneous boundary effects due to the 
moving train load approaching the boundaries of the FEM model. Through a 
convergence study, the length of the end portions is taken to be 24 m. Due to 
the advantage enjoyed by the MEM in dealing with moving load problems, a 
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relatively shorter segment is required. Also from a convergence study made, 
the length required for the truncated railway track in the MEM model is 50 m 
that is discretized non-uniformly with elements ranging from a coarse 1 m to a 
more refined 0.25 m size. 

 
Figure 3.1. Train speed profile. 

Table 3.1. Parameters for track-foundation model. 
Parameter Value 

Flexural stiffness 6.12×106 N m2 
Track section UIC 60 (60 E1) 
Stiffness of Winkler foundation k  1×107 N m-2  
Shear modulus smk  8.12×106 N 
Damping ratio   0.1 
 Figures 3.2(a) and (b) show the rail displacement profiles in the vicinity 
of the wheel-rail contact point when the train travels at constant speed and 
after the train decelerates for 1 s, respectively. Results in Figure 3.2(a) are 
predicted by the analytical solution, FEM and MEM while results in Figure 
3.2(b) are obtained by the two latter methods. As can be seen in Figure 3.2, 
good agreement between all results is obtained. In view that the FEM requires 
a longer domain length as compared to the MEM, it is not surprising that the 
computational time required is much higher than that needed in the MEM. 
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This comparison study clearly illustrated that the MEM is accurate as well as 
computationally efficient and is more suited generally for the study of moving 
load problems as compared to the FEM. 
  (a) 

 
  (b) 

 
Figure 3.2. Rail displacement profiles during: (a) Constant speed phase 

and (b) Deceleration phase. 
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3.7 Concluding remarks 

 This chapter presented the computational method for solving the 
governing equations of motion of the HSR. The MEM is employed to model 
the track-foundation and is extended to account for the instantaneous 
acceleration/deceleration of the moving train. The proposed computational 
scheme based on the MEM for the problem of a moving load travelling at non-
uniform motion is verified against available analytical solutions and FEM 
results. Results from all methods are found to be agreeable thereby validating 
the proposed MEM adopted in the present study. The MEM, which is a 
variation of the FEM, however enjoys significant computational efficiency 
over the FEM and overcomes the inherent complications faced by the FEM. 
Also, analytical formulas are derived for simple cases of moving loads over 
tracks for the purpose of comparison with the proposed computational method. 
The Newton-Raphson’s scheme is employed for solving nonlinear equation 
arising from the nonlinear wheel-rail contact model and the Newmark method 
is adopted to solve governing equations of motion of the systems. 
 Equation Chapter (Next) Section 1
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CHAPTER 4. NON-UNIFORM MOTION OF HIGH-
SPEED TRAIN 

4.1 Introduction 

 In the previous chapter, the methodology for the dynamic analysis of the 
HSR is presented. Aforementioned results revealed that the MEM is effective 
in solving the case of an Euler-Bernoulli railway track beam resting on two-
parameter elastic damped foundation subject to a moving load travelling at a 
constant speed. However, the moving load model is obviously an over-
simplified representation of a moving train. To capture the inertia effect of the 
moving train mass, a more complex 3-DOF train model needs to be employed.  
 When a train travels at a cruising speed higher than the resonant speed of 
the HSR, the dynamic response is found to be significantly larger when the 
speed of the train crosses the resonant speed as the train decelerates to come to 
a halt. The momentary spike in the dynamic response, including the higher 
chance of occurrences of the jumping wheel phenomenon, needs to be 
considered in the safe operation of the HSR. Thus, this chapter presents the 
results of a study on the dynamic response of non-uniform motion of HSR, in 
which the speed-time profile of the train is given or assumed.  
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4.2 Literature review 

In reality, high-speed trains do also travel at non-uniform velocities, 
especially when accelerating to attain maximum operational speed or 
decelerating when approaching a curved track or coming to a halt at a station. 
Various researchers have investigated the problem of loads travelling at non-
uniform velocities. Suzuki (1977), Yadav (1991) and Karlstrom (2006) 
employed the analytical solutions to investigate the response of a train-track-
foundation system due to accelerating and decelerating trains traveling over 
a/an finite/infinite track. Although analytical solutions are elegant which 
provide clear physical insights into the nature of the problem, they are limited 
in dealing with practical applications involving complicated multi-degrees of 
freedom system and the railhead roughness. 
 The finite element method (FEM) is a well-known powerful numerical 
method for solving a wide range of complex problems, including problems of 
beams subject to moving loads (Frýba et al. 1993; Thambiratnam and Zhuge 
1996). However, the FEM encounters difficulty when the moving load 
approaches the boundary of the finite domain and travels beyond the 
boundary. These difficulties can be overcome by employing a large enough 
domain size but at the expense of significant increase in computational time. 
In an attempt to overcome the complication encountered by FEM, Krenk et al. 
(1999) proposed the use of FEM in convected coordinates, similar to the 
moving coordinate system proposed by Timoshenko (1926), to obtain the 
response of an elastic half-space subject to a moving load. The key advantage 
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of this approach is its ability to overcome the problem produced by the 
moving load travelling over a finite domain. Andersen et al. (2001) provided 
an FEM formulation in resolving the problem of a beam on a Kelvin 
foundation subject to a harmonic moving load. Koh et al. (2003) adopted the 
convected coordinate system for solving train-track problems, and named the 
numerical algorithm the moving element method (MEM). Ang and Dai (2013) 
extended the MEM to investigate the “jumping wheel” phenomenon in high-
speed train motion at constant velocity over a transition region where there is a 
sudden change of foundation stiffness.  
 Safety concerns during the acceleration and deceleration phases of a 
high-speed train journey have not been adequately addressed in the literature. 
One major concern is the possible occurrence of resonance of the system when 
the frequency of the external force, in this case the rail corrugation, coincides 
with the natural frequency of a significant vibration mode of the system. When 
this happens, the response of the system is dynamically amplified and 
becomes significant large. This chapter is concerned with a computational 
study of the dynamic response of HSR systems involving accelerating or 
decelerating trains using the proposed MEM. As the dynamic response of the 
track depends significantly on the contact between wheel and track, this study 
is also concerned with examining the suitability of two contact models. 
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4.3 Problem definition 

In this chapter, the HSR system, as shown in Figure 4.1, comprises of a 
3-DOF train traveling at non-uniform motion over a rail track, which is 
modeled as an infinite Euler-Bernoulli beam, resting on a two-parameter 
elastic damped foundation in the positive x -direction. The origin of the fixed 
x -axis is arbitrarily located along the beam. However, for convenience, its 
origin is taken such that the train is at 0x   when 0t  . The railhead is 
assumed to have some imperfections resulting in the so-called “track 
irregularity”. 

The train is modeled as a system of three rigid components, namely the 
car body, bogie and wheel-set, inter-connected by spring-damper units. The 
topmost mass 1m  represents the car body where the passengers are. The car 
body is supported by the bogie of mass 2m  through a secondary suspension 
system modeled by the spring 1k  and dashpot 1c . The bogie is in turn 
supported by the wheel-axle system of mass 3m  through a primary suspension 
system modeled by the spring 2k  and dashpot 2c . cF  is the contact force 
exerted between the train and track. The vertical displacements of the car 
body, bogie and wheel-axle are denoted by 1u , 2u  and 3u , respectively.  
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Figure 4.1. A HSR model. 

4.4 Proposed computational technique 

 The MEM has so far been limited in applications involving rail beams 
resting on Winkler foundation subject to a constant-velocity moving train. The 
constant velocity-based MEM has been employed to deal with non-uniform 
motion of train but confined to cases where the train speed-time profile is 
given or assumed (Koh et al. 2003). This is achieved by dividing the total time 
duration into small time intervals and assuming that the speed of the train 
during each time interval is constant. As time changes, the constant velocity of 
the train in the MEM formulation is updated based on this piecewise 
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approximation of the speed-time profile. However, under train braking 
conditions, the speed-time history of the train is unknown in advance and thus 
using the constant velocity-based MEM, as described above, is not feasible. It 
is thus necessary to extend the MEM to account for the instantaneous 
acceleration/deceleration of the train in order to investigate the dynamics of 
HSRs subject to braking, as presented earlier in section 3.2. 
 In this chapter, the proposed MEM is employed to first investigate the 
response of non-uniform motion of HSR, in which the speed-time profile of 
the train is given or assumed. The profile consists of three phases, namely (1) 
an accelerating phase in which the train accelerates uniformly to attain an 
operational speed, (2) a constant-speed phase and (3) a decelerating phase in 
which the train decelerates uniformly from operational speed to a halt.  
 The numerical procedure based on the Newton-Raphson’s approach 
presented in Chapter 3 is proposed to solve the nonlinear equations of the train 
produced by the nonlinear contact force exerted on the wheel. For the 
nonlinear equations of the track-foundation arising from the nonlinear contact 
force exerted on the track, this approach was however found to be too 
cumbersome to use. Thus, the explicit scheme is proposed by adopting the 
nonlinear contact force exerted on the track, which is determined by 
employing constants of known values at the current step, for that at the next 
step during the iterative procedure till to satisfy the convergence requirement. 
As the contact forces produced at the wheel and track do not match, there is 
however a spurious ‘time lag’ effect in the computational procedure. Thus, it 
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is a need to use a very refined time step size in order to minimize this spurious 
effect, but at the expense of significant increase in computational effort. 
 Alternatively, the implicit scheme may be employed by replacing the 
nonlinear Hertz contact force exerted on the track by a linear combination of 
the vertical accelerations of the train components. For the ease of reference, 
the governing equations of the 3-DOF train model presented in Eqs. (2.1), 
(2.2) and (2.3) may be rewritten as 

   1 1 1 1 2 1 1 2 1m u k u u c u u m g         (4.1) 
       2 2 2 2 3 2 2 3 1 1 2 1 1 2 2m u k u u c u u k u u c u u m g               (4.2) 

   3 3 2 2 3 2 2 3 3 cm u k u u c u u m g F          (4.3) 
 Substituting Eqs. (4.1) and (4.2) into Eq. (4.3), the nonlinear contact 
force cF  exerted on the track is eliminated as  

 1 1 2 2 3 3 1 2 3cF m u m u m u m m m g         (4.4) 
Substituting Eq. (4.4) into Eq. (3.2), the governing equation of track-
foundation becomes an equation without nonlinear terms.  
 By assembling the element matrices, the equation of motion for the 
combined train-track-foundation (HSR) model can be written as 

  Mz Cz Kz P   (4.5) 
where z , z , z  denote the global acceleration, velocity and displacement 
vectors of the train-track-foundation system, respectively; M , C  and K  the 
global mass, damping and stiffness matrices, respectively; and P  the global 
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load vector. The above equation of motion can be solved by using Newmark’s 
constant acceleration method (Bathe 1996). 

4.5 Verification of results 

4.5.1 The accuracy study 

 In the proposed MEM, the stiffness matrix of the moving element 
depends on the magnitude of the train acceleration/deceleration as can be seen 
from Eq. (3.5). It is thus necessary to investigate the contribution from such 
components on the dynamic response of HSRs. 
 In an attempt to test the effectiveness and the accuracy of proposed 
MEM in the problem involving variable train speed, the solution obtained by 
present study is compared against the FEM as well as the MEM by Koh et al. 
(2003). A FEM code was written that is matched in capability as the proposed 
MEM code. The latter used the MEM formulation based on piecewise constant 
velocity by dividing the time into small time intervals and assuming that the 
travel during each time interval is at constant velocity. For the purpose of 
comparison, the train is modeled as a 3-DOF model traveling on a viscoelastic 
Winkler foundation. The same train speed profile and all technical data 
adopted by Koh et al. (2003) are employed. This speed profile is shown in 
Figure 4.2 where it can be seen that there are three phases of travel.  
 The speed profile parameters for this case are presented in Table 4.1 
under Case I. The initial phase considers the train to be moving at a constant 
acceleration of travel and reaching a maximum speed of 20 m s-1 after 2 s. 
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During the second phase of travel, the train moves at the maximum constant 
speed for another 2 s. In the final phase, the train decelerates at a constant 
magnitude to come to a complete halt after another 2 s of travel. Results 
obtained using the proposed method are found to be in excellent agreement 
with those obtained by the MEM by Koh et al. (2003) as well as the FEM. 
Figure 4.3 shows a typical comparison of the rail displacement profile at 5 s 
that shows virtually no difference in the results.  

 
Figure 4.2. Profile of train speed.  

Table 4.1. Profiles of train velocities. 

Case 
Maximum train velocity 

0s  (m s-1) 
Magnitude of train acceleration/deceleration 

s  (m s-2) 
Time parameters 

1t (s) 2t (s) 3t (s) 
I 20 10.000 2.0 4.0 6.0 II 70 10.000 7.0 9.0 16.0 III 70 2.222 31.5 33.5 65.0 IV 70 0.720 98.0 100.0 198.0 
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Figure 4.3. Comparison of the rail displacement profiles at 5 s. 

 In the present study, the stiffness matrix of the moving element depends 
on the additional term involving the magnitude of the train 
acceleration/deceleration and mass of rail beam, as can be seen from Eq. (3.5). 
However, upon close examination of the various terms contributing to the 
stiffness, the contribution from the acceleration component is expected to be 
small compared to other terms, especially the main term of foundation 
stiffness. The additional term may be significant when the train travels at 
enough large acceleration/deceleration amplitude on a sufficiently large 
structure (i.e. slab track is modeled as beam with total mass 3675 kg (Lei and 
Wang 2013) resting on the soft foundation. In view of this, only three values 
of acceleration/deceleration of train will be considered in the study. These are 
designated as Cases II, III and IV in Table 4.1 corresponding to 
acceleration/deceleration magnitudes of 10.000, 2.222 and 0.720 m s-2, 
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respectively. And subgrade stiffness is employed from soft to stiff 
(Dimitrovova´ and Varandas 2009). Note that the amplitude and wavelength 
of all track irregularities are chosen to be 0.5 mm and 0.5 m, respectively. 
Figure 4.4 shows the variation of maximum discrepancy of rail displacement 
against subgrade stiffness for various acceleration/deceleration amplitudes. All 
analyses are carried out twice, each using the MEM by Koh et al. (2003) and 
present study. It can be seen that there is virtually no difference in the results 
except for the cases that the difference is significant (by 30% and 1.5%) when 
subgrade stiffness is small, i.e. 3427 10  and 3854 10  (N m-2), respectively 
and the train travels at 10.000 m s-2. 

 
Figure 4.4. Comparison of maximum discrepancy of rail displacement 

between solutions by Koh et al. (2003) and present study.  
 In next investigations, the MEM model adopted comprises of a truncated 
railway track of 50 m length discretized non-uniformly with elements ranging 
from a coarse 1 m to a more refined 0.25 m size. Note that refined element 
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sizes are employed in the vicinity of the moving train load in order to capture 
accurately the maximum response of the train-track system. The train modeled 
as the moving 3-DOF model travels over an Euler-Bernoulli railway beam 
resting on a two-parameter elastic damped foundation. Parameters relating to 
the properties of the train-track-foundation used for this study are listed in 
Table 4.2 and Table 3.1. Note that the radii of the wheel wR , railhead rR  and 
the Poisson’s ratio of the wheel/rail material   used in determining the 
nonlinear and linearized Hertz spring constants are taken to be 460 mm, 300 
mm and 0.3, respectively.  

Table 4.2. Parameters for high-speed train model (Wu et al. 2001). 
Parameters Value 

1m  5218.75 kg 
1k  1.325×105 N m-1 
1c  22.55×103 N s m-1 
2m  760 kg 
2k  5.9 ×105 N m-1 
2c  19.6 ×103 N s m-1 
3m  890 kg 

4.5.2 Effective computational scheme 

 As presented earlier in section 4.4, two computational schemes namely 
the explicit and implicit approaches, have been proposed to account for the 
nonlinear contact force exerted on the rail. This section presents a numerical 
study on the comparison of results obtained by both schemes as well as 
discusses their computational effectiveness.  
 Figure 4.5 shows the time histories of the wheel-rail contact force 
obtained by these two schemes. Note that the train travels at a cruising speed 
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of 70 m s-1. It can be seen in this figure that results obtained are found to be 
virtually the same. When adopting the explicit approach, it is found that a time 
step size less than 0.0002 s is necessary to achieve the convergence 
requirement. For the implicit scheme adopted, a time step size of 0.0005 s is 
good enough to satisfy the convergence study. In view that the explicit 
approach requires a refined time step size as compared to the implicit scheme, 
it is not surprising that the computational time required is substantially higher 
than that needed in the implicit approach. This comparison study clearly 
illustrated that the implicit scheme is accurate as well as computationally 
efficient as compared to the explicit scheme, but is restricted only to simple 
train models. Due to the simple train model employed in this chapter, 
subsequent studies will thus be carried out based on the implicit scheme to 
obtain the dynamic response of non-uniform motion of the HSR.  

 
Figure 4.5. Time-histories of wheel-rail contact force.  
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4.6 Numerical results 

In the following sections, results from the study of two cases of HSR 
travel using the proposed MEM approach are presented. The first case studies 
the response of high speed train moving over a two-parameter elastic damped 
foundation at constant speed. The effects of track irregularity and wheel load 
on the dynamic response of train-track system and the occurrence of the 
jumping wheel phenomenon will be investigated using the Hertz nonlinear and 
linearized contact models. In the second case, the response of train-track 
system moving at varying speed will be investigated. Safety concerns during 
the acceleration and deceleration phases of a high speed train journey have not 
been adequately addressed in the literature. One major concern is the possible 
occurrence of resonance of the system when the frequency of the external 
force, in this case the rail corrugation, coincides with the natural frequency of 
a significant vibration mode of the system. When this happens, the response of 
the system is dynamically amplified and becomes significantly large. The aim 
of this study is to determine whether the magnitude of train acceleration or 
deceleration affects the dynamic response of the train-track system when the 
HSR travels at resonant speed. The effects of track irregularity and wheel load 
on the occurrence of the jumping wheel phenomenon and dynamic response of 
the system during the acceleration/deceleration phases will also be examined. 
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4.6.1 Uniform motion of HSR 

4.6.1.1 Effect of track irregularity  
As the dynamic response of the train-track system depends significantly 

on the accuracy in modeling the contact between the wheel and track, it would 
be important to examine the suitability of the aforementioned nonlinear and 
linearized contact models. The effects of train speed and track irregularity 
amplitude are investigated. The wavelength of all track irregularities 
considered is taken to be 0.5 m (Thompson 2008). 

Figure 4.6 shows the variation of dynamic amplification factor (DAF) in 
wheel-rail contact force against track irregularity amplitude for various train 
speeds typically associated with today’s HSR travels. All analyses are carried 
out twice, each using the nonlinear and linearized contact models. Note that 
DAF is defined as the ratio of the maximum dynamic contact force to the 
static wheel load which is the sum of the self-weights of car body, bogie and 
wheel-set. For the perfectly smooth ( 0ta  mm) track, the DAF is found be 1 
as to be expected in view that there is no dynamic load. Consequently, the 
linearized contact model based on spring properties computed in Eq. (2.9) 
according to the static wheel load condition (Esveld 2001) can be used.  

The results in Figure 4.6 also show that when the amplitude of track 
irregularity and/or train speed increase, the DAF is increased. Both the 
linearized and nonlinear contact models were found to produce results, which 
are in good agreement for low vehicle speeds regardless of the amplitude of 
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the track irregularity. Good agreement was also noted to occur at higher 
speeds provided the amplitudes of track irregularity are smaller than certain 
critical values, approximately 1.2 mm and 0.8 mm for 0s   70 and 90 m s-1, 
respectively. Beyond these critical values, the difference in the DAF results 
becomes significant between the two contact models. The above results clearly 
indicate that the simple linearized contact model may be used only when there 
is no large dynamic load involved. This is to be expected since the spring 
property used in the linearized contact model is based on the static wheel load. 
Thus, when the train speed is high and/or the track irregularity is considered to 
be severe, it is necessary to use the more computationally intensive nonlinear 
contact model in view of the expected high dynamic load.  

 
Figure 4.6. Effects of irregularity amplitude and train speed on the DAF.  

As the response of high-speed rails system strongly depends on the 
severity of track irregularity, it is expected that shorter irregularity wavelength 
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would lead to larger vibrations. Therefore, it would be useful to investigate the 
effects of irregularity wavelengths and train speeds on the response of the 
HSRs. The amplitude of all track irregularities considered in this investigation 
is taken to be 1.5 mm. 

Figure 4.7 shows the effects of irregularity wavelength and train speed 
on the DAF of HSRs. It can be seen that the DAF is generally close to 1.0 for 
irregularity wavelengths larger than some critical values. This critical value 
depends on the train speed, being larger when the speed is larger. As to be 
expected, when the wavelength is large enough, the track may be considered 
to be in a near smooth condition. Consequently, there is little dynamic 
amplification effect. Conversely, when the wavelength is small resulting in a 
more severe track irregularity condition, the DAF is noted to be significantly 
larger than 1 especially when the wavelength is less than 1.0 m and the train 
speed is high. However, when the train speed is low such as at 50 m s-1, there 
is little dynamic effect despite that the track irregularity is considered to be 
severe. Whenever the DAF is large, it can be seen that the difference in results 
between the linearized and nonlinear contact models is significant. As the 
linearized contact model results are consistently smaller, it may be concluded 
that it is not conservative to adopt this model especially when the dynamic 
response of the HSR is expected to be high.  

Figure 4.7 also shows that there are some localized peaks in the DAF at 
certain values of the irregularity wavelength for each train speed. The 
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frequency of the dynamic excitation ef  due to track irregularity depends on 
the train speed 0s  and irregularity wavelength t  and may be expressed as 

0e
t

sf    (4.6) 

The natural frequency of the linearized train model  

2nf 
  (4.7) 

may be determined by solving the associated characteristic equation 
 2det 0K M   (4.8) 

for the circular natural frequency  , where M , K  are the global mass and 
stiffness matrices of linearized train-track-foundation system, respectively. 
Resonance occurs when the exciting frequency ef  due to track irregularity 
coincides with the natural frequency  fn  and this occurs when the train speed 
matches the resonant speed rs  given by 

r t ns f  (4.9) 
For the train-track-foundation system considered, the natural frequency 

 fn  of the wheel-set is found to be 27.61 (Hz). The frequencies of the dynamic 
excitation computed from Eq. (4.7) for train speeds of 50, 70 and 90 m s-1 and 
track irregularity wavelengths ranging from 0.5 m to 5.0 m are presented in 
Table 4.3. As can be seen from the table, the frequency of the dynamic 
excitation approaches the natural frequency of the wheel-set when the track 
irregularity wavelengths are 2.0, 2.5 and 3.5 m (values in bold) corresponding 
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to the train speeds of 50, 70 and 90 m s-1, respectively. This explains why 
Figure 4.7 shows peak dynamic responses occurring at these combinations of 
train speed and track irregularity wavelength due to the occurrence of near 
resonance. For other wavelength track irregularities, the exciting frequency is 
noted to be appreciably different in value from the natural frequency of the 
wheel-set.  

 
Figure 4.7. Effects of irregularity wavelength and train speed on the DAF. 

Table 4.3. Exciting frequencies ef  (Hz) due to track irregularities. 
Train 
speed 
(m s-1) 

Track irregularity wavelength (m) 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

50 100.0 50.0 33.3 25.0 20.0 16.7 14.3 12.5 11.1 10.0 
70 140.0 70.0 46.7 35.0 28.0 23.3 20.0 17.5 15.6 14.0 
90 180.0 90.0 60.0 45.0 36.0 30.0 25.7 22.5 20.0 18.0 
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4.6.1.2 Effect of wheel load 
It has been shown that the accuracy of the contact force depends on the 

contact model. In order to further establish when it would be important to 
adopt the more accurate but computationally more intensive nonlinear contact 
model, it would be critical to investigate the effect of the wheel load 
parameter. In practice, there is a varying range of wheel loads for high-speed 
train. Wheel loads of 55 kN (Tokunaga and Sogabe 2012) and 75 kN (Chen 
and Li 2000) correspond to the empty passenger railcar and locomotive, 
respectively. 

Figures 4.8(a), (b) and (c) illustrate the effect of wheel load on the 
accuracy of the linearized contact model as compared to the nonlinear contact 
model in predicting the DAF in contact force of HSRs for train speed equal to 
50, 70 and 90 m s-1, respectively. All plots show the variation of DAF in 
contact force against track irregularity amplitude for the two cases of wheel 
loads considered using the linearized and nonlinear contact models. 

It can be seen from Figure 4.8(a) that when the train speed is small at 50 
m s-1, there is virtually no difference in results obtained by both contact 
models for all track irregularities and wheel loads considered. This is not 
surprising in view that the dynamic effect is expected to be small when the 
train speed is low and hence the linearized contact model is accurate enough to 
capture the dynamic response of the HSR system.  

However, when the train speed is larger as the case in Figures 4.8(b) and 
(c), the difference in solutions between the two contact models become 
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appreciable especially for larger amplitudes track irregularities. For a given 
track irregularity condition, the difference is also larger when the wheel load is 
small. On the other hand, when the wheel load is large, it appears that the 
linearized contact model is able to produce results close to the nonlinear 
contact model. Note that when the wheel load is large, dynamic effect is 
mitigated as can be seen by lower values of DAF in contact force. Under such 
a condition, it is expected that the linearized contact model is able to give 
good results, as the contact force magnitude would be largely due to the static 
wheel load effect. 

(a) 
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(b) 

 
 (c) 

 
Figure 4.8. Effects of wheel load and irregularity amplitude on the DAF in 

contact force: (a) 0 50s   m s-1, (b) 0 70s   m s-1 and (c) 0 90s   m s-1. 
From the results presented in sections 4.6.1.1 to 4.6.1.2, it can be 

concluded that the computationally cheaper linearized contact model is 
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accurate enough to be used whenever the expected dynamic effect of the HSR 
system is not large. In general, when the train speed is low, track irregularity is 
near smooth and/or wheel load is large, the DAF in contact wheel force is 
expected to be low, and hence the use of the linearized contact model would 
be acceptable. On the other hand, it should be emphasized that the 
computationally more expensive but more accurate nonlinear contact model 
must be employed whenever the dynamic effect of the HSR system is 
expected to be significant. 

4.6.1.3 Occurrence of jumping phenomenon 
As presented earlier, the contact force between the wheel and rail 

strongly depends on the train speed, track irregularity and wheel load. When 
the condition is such that the DAF is relatively large, the possibility of the 
occurrence of the jumping wheel phenomenon, where there is momentary loss 
of contact between wheel and rail, becomes high. Thus, the aforementioned 
factors are also critical in affecting the occurrence of the jumping wheel 
phenomenon. Tables 4.4 and 4.5 show the occurrence or non-occurrence of the 
jumping wheel phenomenon for various train speeds, track irregularity and 
wheel load. Note that track irregularity condition is affected by two 
parameters, namely track irregularity amplitude and wavelength. In general, 
when the wavelength is small and/or amplitude is large, the track irregularity 
condition may be rated as severe, and vice-versa. Table 4.4 shows the results 
for a track irregularity wavelength of 0.5 m, which is deemed to be small, for 
three cases of track irregularity amplitudes ranging from very small to large. 
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Table 4.5 presents the results for a track irregularity amplitude of 2 mm, which 
is deemed to be large, for three cases of track irregularity wavelength ranging 
from small to large. Note that all results presented are obtained through the use 
of the nonlinear contact model. 

It can be seen in Tables 4.4 and 4.5 that when the track condition is 
deemed near smooth, there is no occurrence of the jumping wheel 
phenomenon for all train speeds and wheel loads. On the other hand, when the 
track condition is considered to be severe, the jumping wheel phenomenon 
occurs for all wheel loads when the train speed is large enough. For the case 
when the train speed is low at 50 m s-1, the jumping wheel phenomenon is 
suppressed when the wheel load is large.  When the track condition is rated as 
moderate that is it is neither near smooth or severe, the jumping wheel 
phenomenon may or may not occur. It tends to occur when the train speed is 
high enough and when the wheel load is small. This observation is consistent 
with earlier results that a combination of small wheel load and high train speed 
promote larger dynamic effects and hence the greater chance of occurrence of 
the jumping wheel phenomenon.  

Table 4.4. Occurrence of jumping phenomenon ( 0.5t   m).  
Train speed  
     (m s-1)  

     
           Wheel load  

            (kN) 

Track irregularity amplitude (mm) 
0.01  1  2 

55  75  55  75  55  75  
50  N   N   N   N   Y   N  
70  N   N   Y   N   Y   Y  
90  N   N   Y   Y   Y   Y  
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Table 4.5. Occurrence of jumping phenomenon ( 2ta   mm)  
Train speed  
     (m s-1)  

     
           Wheel load  

            (kN) 

Track irregularity wavelength (m) 
0.5 2.5 4 

55  75  55  75  55  75  
50  Y   N   N   N   N   N  
70  Y   Y   Y   Y   N   N  
90  Y   Y   Y   Y   Y   Y  

Note that “N” denotes non-occurrence of jumping wheel phenomenon. “Y” 
non-occurrence of jumping wheel phenomenon. 
4.6.2 Non-uniform motion of HSR 

In the following sections, the effects of amplitudes of train 
acceleration/deceleration, track irregularity and wheel load on dynamic 
response of the train-track system during the accelerating/decelerating phases 
using the proposed MEM approach are presented. The parameters for various 
train speed profiles considered are presented in Table 4.6 under Cases 1 to 2.  

Table 4.6. Profiles of train velocities. 

Case 
Maximum 
velocity 
0s  (m s-1) 

Amplitude of 
acceleration/deceleration  

s  (m s-2) 
Time parameters 

1t (s) 2t (s) 3t (s) 
1 70 0.720 98.0 100.0 198.0 2 70 2.222 31.5 33.5 65.0 

4.6.2.1 Effect of magnitude of train acceleration/acceleration  
In the moving element method, the stiffness matrix of the moving 

element depends on the magnitude of the train acceleration/deceleration, as 
can be seen from Eq. (3.5). In view of this, only two values of 
acceleration/deceleration of train will be considered in the study. These are 
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designated as Cases 1 and 2 in Table 4.6 corresponding to 
acceleration/deceleration magnitudes of 0.720 and 2.222 m s-2, respectively. 
Note that the amplitude and wavelength of all track irregularities are chosen to 
be 2 mm and 1 m (Thompson 2008), respectively. Figures 4.9(a) to (d) show 
the force factor-time history plots for Case 2 during the acceleration phase of 
the travel. Note that the force factor (FF) in contact force is defined as the ratio 
of dynamic force to static force. The vertical lines drawn in Figure 4.9(a) 
demarcate the time duration in which the jumping wheel phenomenon occurs. 
Figures 4.9(b) and (d) show blow-up views of the force factor-time history 
plot in the vicinity of the onset and ending of the jumping wheel phenomenon, 
respectively. Figure 4.9(c) shows a similar blow-up view over a typical period 
where there is sustained jumping wheel. Note that when the FF equals to -1, 
there is momentary loss of contact between the wheel and rail, which is what 
is known as jumping wheel. As the plots are similar during the deceleration 
phase for Case 1 as well as for both phases in Case 2, these are thus not 
presented. It should be noted that when the instantaneous speed of the train is 
close to the resonant speed of the HSR, high dynamic response is expected to 
occur leading to the occurrence of the jumping wheel phenomenon. Hence, the 
magnitude of the acceleration/deceleration will only affect the duration in 
which jumping wheel occurs. Thus, it is not surprising that the interval of time 
in which jumping wheel occurs is found to be longer in Case 1 when the 
acceleration/deceleration amplitude is smaller as compared to Case 2. Thus, 
subject to meeting the comfort level of passengers, it is recommended that 
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HSR trains should travel at its highest possible acceleration/deceleration to 
attain its final speed in order to minimize the duration of the jumping wheel 
phenomenon. However, it is important to note that other ill effects relating to 
high acceleration/deceleration have not been considered. The maximum FF for 
both cases are found to be virtually the same thereby confirming the fact that 
the magnitude of acceleration/deceleration has negligible effect on the 
stiffness of the system and hence the dynamic response. In view of this 
finding, all other results to be subsequently presented shall pertain to Case 1, 
considered to be the typical speed profile of today’s HSR travels.  

(a) 

 
 
 
 
 



Chapter 4. Non-uniform motion of high-speed train 

66 

(b) 

 
(c) 

  
 
 
 
 



Chapter 4. Non-uniform motion of high-speed train 

67 

(d) 

  
Figure 4.9 Force factor-time history: (a) in the time duration in which the 
jumping wheel phenomenon occurs, (b) in the vicinity of the onset of the 

jumping wheel phenomenon, (c) over a typical period where there is sustained 
jumping, and (d) in the vicinity of the ending of the jumping wheel 

phenomenon.  

4.6.2.2 Effect of track irregularity  
The effect of track irregularity amplitude on the DAF is next 

investigated. The results are plotted in Figure 4.10. The 3 curves drawn 
correspond to the 3 phases of travel, namely during the acceleration, constant 
speed and deceleration phases. Note that the wavelength t  of all track 
irregularities is chosen to be 1 m. For a near smooth track ( 0.01ta   mm), the 
DAF is found to be approximately 1, as to be expected. When the amplitude of 
track irregularity increases, the DAF is noted to increase gradually and then 
significantly for the acceleration/deceleration phases. For these two phases, 
when the track irregularity amplitude is large enough for the track condition to 
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be considered as moderate or severe, the DAF increases significantly due to 
the occurrence of the jumping wheel phenomena for the brief interval in which 
the train speed is in the vicinity of the resonant speed. Note that the frequency 
of the dynamic excitation due to the track irregularity depends on the train 
speed and irregularity wavelength. Thus, when the train speed and wavelength 
are such that the frequency of the dynamic excitation approaches the natural 
frequency of the wheel-set, there will be expected resonance effect. The DAF 
is also noted to be slightly larger during the deceleration phase as compared to 
the acceleration phase. For the constant speed phase, the DAF is observed to 
increase gradually as the track irregularity amplitude increases. No jumping 
wheel is noted to occur during this phase. 

 
Figure 4.10.  Effect of track irregularity amplitude on the DAF. 

As the natural frequency of the wheel-set system is fixed, the magnitude 
of track irregularity wavelength is a significant factor in affecting the 
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occurrence of the resonant phenomenon during the acceleration/deceleration 
phases. As already mentioned, resonance occurs briefly during these two 
phases when the train speed reaches the magnitude of the resonant speed. This 
occurs only when the maximum train speed is higher than the resonant speed. 

Figure 4.11 shows the effect of track irregularity wavelength on the 
DAF for the 3 phases of train travel. Note that all track irregularity amplitudes 
are 2 mm for this study. When the wavelength is large, it is noted that the DAF 
is relatively low, as to be expected. As the wavelength decreases, the DAF is 
found to increase gradually and then abruptly when it approaches 2.5 m for all 
phases. It should be noted that the frequency of the wheel-set is close to the 
exciting frequency when the track irregularity wavelength is 2.5 m. Thus, 
resonance is noted to occur for all phases which accounts why the DAF 
increases abruptly. Also, note that when the track irregularity wavelength is 
greater than approximately 3 m, the resonant phenomenon does not occur, as 
the theoretical resonant speed is larger than the maximum train speed attained 
during the travel.  

During the acceleration/deceleration phases, the DAF seems to be 
initially constant as the track irregularity wavelength decreases below 2.5 m. 
Note that the DAF tends to increase with decreasing track irregularity 
wavelength since small values of wavelength are associated with more severe 
track irregularity conditions. However, as the resonant speed decreases with 
decreasing wavelength, the DAF tends to decrease since the train speed, as it 
crosses the resonant speed during the acceleration/deceleration phases, are 
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smaller. These two opposing effects on the DAF thus explain why the DAF is 
observed to be approximately constant when the wavelength is between 0.75 
m and 2.5 m. As the wavelength decreases further below 0.75 m, the effect of 
severity of track condition becomes more pronounced and thus the DAF is 
seen to increase abruptly. Note that the trend for the constant speed phase of 
travel is similar to the acceleration/deceleration phases except that the DAF 
decreases abruptly as the track irregularity wavelength decreases below 2.5 m.  

 
Figure 4.11.  Effect of track irregularity wavelength on the DAF. 

4.6.2.3 Effect of wheel load  
The effect of wheel load on the dynamic response of the system was 

earlier investigated and discussed for the case when the train travels at 
constant speed. The conclusion then was that the wheel load effect could be 
considerable. It would thus be important to examine the effect of wheel load 
when the train travels at variable speed as in Case 1. 
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Figure 4.12 shows the variation of the DAF against track irregularity 
amplitude for various wheel loads. The track irregularity wavelength is fixed 
at 1.0 m for this study. The results show that the DAF during all phases for 
small wheel load is always larger as compared to large wheel load. Note that 
when the wheel load is large, it is expected that the dynamic effect is 
mitigated, which explains why the DAF is found to be larger for the case of 
the smaller wheel load. This finding is the same as that obtained by Herwig 
(2006). Figure 4.12 shows that there is virtually no difference in DAF for both 
cases of wheel loads when the track irregularity amplitude is below 
approximately 0.4 mm. Beyond this critical value, the DAF increases 
significantly during the acceleration/deceleration phases and the difference in 
DAF for the two wheel loads becomes more pronounced. However, during the 
constant speed phase, it is found that the DAF grows marginally for track 
irregularity amplitude beyond 0.4 mm and that there is virtually no difference 
in DAF for both cases of wheel loads. Wheel load is thus critical in affecting 
the response of the system for a brief time interval during the 
acceleration/deceleration phases as the train speed crosses the resonant speed 
of the linearized train model. A larger wheel load has the advantage of 
mitigating the dynamic response during the critical period of travel. 
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Figure 4.12.  Effect of wheel load and track irregularity amplitude on DAF 

4.6.2.4 Occurrence of jumping phenomenon 

 In this section, the jumping wheel phenomenon is also investigated when 
train travels at varying speed. Table 4.7 shows the occurrence or non-
occurrence of the jumping wheel phenomenon for various track irregularity 
amplitudes. Note that “Y” and “N” denote occurrence and non-occurrence of 
jumping wheel phenomenon, respectively. The track irregularity wavelength is 
fixed at 1.0 m in this study. It can be seen that when the track irregularity 
amplitude is less than 0.4 mm corresponding to a near smooth track condition, 
there is no occurrence of the jumping wheel phenomenon. Beyond this critical 
value, the jumping wheel phenomenon may or may not occur during the 
acceleration/deceleration phase. When the track condition is considered to be 
severe, the jumping wheel phenomenon occurs briefly during the critical 
period of travel of the acceleration/deceleration phase. As the exciting 
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frequency is close to the natural frequency of the wheel-set, there is 
occurrence of resonant phenomenon during these phases. With such condition 
and large amplitude, the jumping wheel phenomenon occurs, as it is 
anticipated that the dynamic effect is large. Note that there is non-occurrence 
of jumping wheel phenomenon regardless of track irregularity amplitude 
during constant speed phase. 

Table 4.8 shows the occurrence or non-occurrence of the jumping wheel 
phenomenon for various track irregularity wavelengths. The track irregularity 
amplitude is fixed at 2.0 mm in this study. The jumping wheel phenomenon is 
noted to occur in all phases of travel when the track irregularity wavelength is 
small, such as at 0.5 m, since this value corresponds to the case of a more 
severe track condition and hence high dynamic effects. At a wavelength of 2.5 
m, the frequency of the wheel-set is close to the exciting frequency and thus 
there is expected occurrence of resonance resulting in the occurrence of the 
jumping wheel phenomenon too. For wavelengths higher than the critical 
value of 3 m, the track condition matches closer to a near smooth case. 
Consequently, there is no occurrence of the jumping wheel phenomenon. Non-
occurrence of jumping wheel phenomenon also is found at critical 
wavelengths, i.e. 1 m and 1.5 m when the train travels during constant speed 
phase. At these wavelengths, the frequency of the wheel-set is not close to the 
exciting frequency and thus there is non-occurrence of resonance resulting in 
the non-occurrence of the jumping wheel phenomenon. 
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Table 4.7. Occurrence of jumping wheel phenomenon ( 1t   m) 

Phase Track irregularity amplitude (mm) 
0.01 0.4 0.8 1.2 1.6 2 

Acceleration N N Y Y Y Y 
Constant  N N N N N N 

Deceleration N N Y Y Y Y 

Table 4.8. Occurrence of jumping wheel phenomenon ( 2ta   mm) 

Phase Track irregularity wavelength (m) 
0.5 1 1.5 2 2.5 3 3.5 4 

Acceleration Y Y Y Y Y Y N N 
Constant Y N N Y Y Y N N 

Deceleration Y Y Y Y Y Y N N 

4.7 Concluding remarks 

In this chapter, the proposed MEM is employed to investigate the 
response of non-uniform motion of high-speed train, in which the speed-time 
profile of the train is given. The profile consists of three phases, namely (1) an 
accelerating phase in which the train accelerates uniformly to attain an 
operational speed, (2) a constant-speed phase and (3) a decelerating phase in 
which the train decelerates uniformly from operational speed to a halt. The 
results obtained using the proposed MEM is found to agree well with results 
found in the literature using the MEM as well as FEM solutions. The 
magnitude of train acceleration/deceleration is found to be significant effect on 
the dynamic response of the system when the train travels at a theoretical 
acceleration/deceleration on a soft foundation. 
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Two computational schemes, one implicit and the other explicit, to treat 
the nonlinear normal wheel-rail contact force are discussed and presented. The 
implicit scheme is simpler to implement but is restricted only to simple train 
models. The other explicit scheme is more complicated and requires generally 
more computational effort. Due to the simple 3-DOF train model employed, it 
is thus recommended that the implicit scheme be employed to investigate the 
dynamic response of non-uniform motion of the HSR. A parametric study is 
carried out to understand the effects of various factors on the dynamic 
response of HSR including the occurrence of jumping wheel phenomenon. 
Parameters considered include the magnitude of train acceleration or 
deceleration, the severity of railhead roughness (track irregularity) and the 
wheel load.  
 To account for the wheel-rail interaction, two normal contact models 
were employed and their accuracy and suitability evaluated. It is found that the 
computationally cheaper linearized contact model is accurate enough to be 
used whenever the expected dynamic effect of the system is not large. In 
general, when the train speed is low, track irregularity is near smooth and/or 
wheel load is large, the DAF in contact wheel force is expected to be small, 
and hence the use of the linearized contact model would be acceptable. On the 
other hand, it should be emphasized that the computationally more expensive 
but more accurate nonlinear contact model must be employed whenever the 
dynamic effect of the HSR system is expected to be significant. A 
combination of small wheel load, high train speed and severe track condition 
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promotes larger dynamic effects and hence the greater chance of occurrence of 
the jumping wheel phenomenon.  
 Subject to ensuring that the comfort level of passengers is attained, it is 
recommended that HSR trains should travel at its highest possible 
acceleration/deceleration to attain its final speed in order to minimize the 
duration of the jumping wheel phenomenon. However, it is important to note 
that other ill effects relating to high acceleration/deceleration have not been 
considered. Also, such a major recommendation to the operation of HSR be 
confirmed experimentally on a real line.  
 When a train travels at a cruising speed higher than the resonant speed of 
the HSR, the dynamic response is found to be significantly larger when the 
speed of the train crosses the resonant speed as the train decelerates to come to 
a halt. The momentary spike in the dynamic response, including the higher 
chance of occurrences of the jumping wheel phenomenon, needs to be 
considered in the safe operation of the HSR.  
Equation Chapter (Next) Section 1Equation Section (Next) 
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CHAPTER 5. SINGLE-RAILCAR TRAIN SUBJECT TO 
BRAKING 

5.1 Introduction 

In the previous chapter, the computational method for analysing the 
dynamic response of non-uniform motion of the HSR is presented. To capture 
the vertical inertia effect of the moving train mass, a simple train model such 
as the 3-DOF model was presented. However, the above simple train model 
cannot be employed for the study of railway vehicle braking. Thus, a more 
realistic 15-DOF train model that accounts for the effect of pitching moment 
arising from the longitudinal inertia effects and wheel adhesion forces is 
necessary.  

Under emergency situations that require the train to come to a halt 
quickly to avoid other possible catastrophes, high-speed trains may undergo 
high deceleration. Unlike normal braking, when a train decelerates under 
moderate to heavy braking condition, there may be possible occurrence of 
instability due to train wheels sliding over the rails. The lack of research might 
be cited as the reason why there are many unfortunate catastrophic accidents 
involving HSRs all over the world. Thus, there would be a need to study the 
dynamic response of the HSR subject to braking with posibile occurrence of 
wheel sliding. 
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5.2 Literature review 

 Railway vehicle braking is an important research topic in view of the 
catastrophic nature of any failure of any structural components that may arise, 
collision when the safe braking distance is exceeded and heightened instability 
due to wheel sliding over the rails. A derailment study (China Academy of 
Railway Science 1998) revealed that 30% of derailments in Russia occurred 
due to emergency braking under poor wheel-rail contact condition. Lixin and 
Haitao (2001) studied the 3-D dynamic response of heavy trains travelling at a 
low speed and subject to normal braking, in which the occurrence of wheel 
sliding was not investigated. Handoko and Dhanasekar (2007) predicted the 
dynamics of simplified two-axle bogies of low-speed train both under constant 
speed and under variable speed due to traction and braking. Zhang and 
Dhanasekar (2009) presented a low-speed train model under braking 
conditions in order to investigate car body pitch, derailment, and wheel-set 
skid. The influence of wheel-rail contact condition and track geometry defects 
on car body pitch was also discussed. 
 In the above-cited research works, researchers mostly focused on a 
heavy train traveling at low-speed under normal braking conditions with the 
railhead assumed to be perfectly smooth. However, real train-track systems are 
likely to have various degrees of railhead roughness. High-speed trains may 
undergo high deceleration under emergency situations that require the train to 
come to a halt quickly to avoid other possible catastrophes. Such trains would 
then be subject to so-called ‘abnormal’ braking. Unlike normal braking, when 
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a train decelerates under moderate to heavy braking conditions, instability due 
to train wheels sliding over the rails could occur. Due to track irregularity and 
the high speed of the train, it cannot be assumed that the wheel is always in 
contact with the railway track. The jumping wheel phenomenon needs to be 
accounted for. Simple train models such as a moving load or moving sprung-
mass cannot be employed for the study of railway vehicle braking. A more 
realistic train model that accounts for the effect of pitching moment arising 
from the longitudinal inertia effects and wheel adhesion forces is necessary.  

5.3 Problem definition 

5.3.1 15-DOF train model 

Consider a 15-DOF half-train model traveling at a distance s  as shown in 
Figure 5.1. Without loss of generality, the locomotive of the train is modelled 
as a system of interconnected car body, two bogies and four wheels. In the 
model, 14cm m  and cJ  denote the mass and moment of inertia about the 
pitch of the car body, respectively. For brevity, the terms car body and bogie 
refer to half of these components in view of the half-train model adopted. The 
car body is supported through secondary suspensions to two identical bogies. 
The mass and moment of inertia about the pitch of each bogie are 22bm m  
and bJ , respectively. The secondary suspension consists of two spring-
damping units, each modelled by a spring 12sk k  and dashpot 2pk k . The 
bogies are supported through primary suspensions to the four wheels, each of 
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mass 3wm m  and moment of inertia about the pitch wJ . The primary 
suspension system consists of four spring-damping units, each comprising a 
spring pk  and dashpot pc . The nonlinear Hertz contact force and adhesion 
force between the ith wheel and rail beam are ciF  and if , respectively. The 
positions of the secondary and primary suspension spring-damping units 
measured with respect to the centre of mass of car body and the bogies are 
specified by 1l  and 2l , respectively, as shown in Figure 5.1.  

 
Figure 5.1. A 15-DOF train model.  

The governing equations of the car body, bogies and wheels may be 
derived from Newton’s second law of motion 
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3 3w w w bJ f R T    (5.13) 
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where cu  and c  are the vertical and pitch displacements of the car body, 

respectively;   ubr ,br  and   ubf ,bf   the vertical and pitch displacements of 

the rear and front bogies, respectively;  ,wi wiu   the vertical and pitch 
displacements of the ith wheel;  rF the total running resistance force acting on 
car body; g the gravitational acceleration;  bT the applied braking torque; 1h  
the vertical distance between car body’s center of mass and longitudinal 
internal forces interlocking between car body and bogies; 2h  the vertical 
distance between the longitudinal internal forces and center of mass of bogies; 
and 3h  the vertical distance between the center of mass of bogies and the 
longitudinal internal forces connecting bogies to wheels. 

5.3.2 Running resistance 

 Running resistance generally includes aerodynamic drag and the rolling 
resistance. Based on an experimental study by Yang and Sun (2001), the 
running resistance of a high-speed train may be written as 

2
0 v aR c c s c s     (5.16) 

where the coefficients 0 , ,v ac c c  are obtained from the wind tunnel test. The 
third term 2

ac s  denotes the aerodynamic drag and the first two terms are 
considered to be rolling mechanical resistance. The total running resistance 
force rF , acting on the locomotive, is obtained by multiplying the running 
resistance R  with the total mass of the train  2 4c b wm m m  . 
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5.3.3 Wheel-rail contact force 

Based on the nonlinear Hertz contact model (Esveld 2001), the contact 
force ciF  between the ith wheel and rail may be expressed as 

3
2   0

    0      0
H i ici

i

K y for yF
for y

        (5.17) 

where iy  denotes the indentation at the contact surface at the ith wheel, which 
may be expressed as 

i ri ti wiy y y u     (5.18) 
where riy  and tiy  denote the vertical displacement of the rail and track 
irregularity at the ith contact point, respectively, and wiu  the vertical 
displacement of the ith wheel. The track irregularity is widely assumed to take 
the following sinusoidal form (Nielsen and Abrahamsson 1992) 

2sin iti t
t

xy a 
  (5.19) 

where ta  and t  denote the amplitude and wavelength of track irregularity, 
respectively. 

5.3.4 Wheel-rail adhesion force 

 The adhesion force if  between the wheel and rail significantly affects 
the performance of the drive dynamics. A simplified wheel-rail contact model 
for the computation of the adhesion force has been introduced by Polach 
(2005). This adhesion model, which will be employed in this study, is suitable 
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for accounting the dynamics of wheel sliding resulting from braking where 
there may be an occurrence of large creep conditions.  
 The simplified wheel-rail contact model for the adhesion force if  is 
given by  

   1
2

2 tan1
i ci A ii S i

A i

F kf kk
   

       (5.20) 

where i  is the gradient of tangential stress in the longitudinal direction and 

Ak  and Sk  refer to the reduction factors in the adhesion and slip areas, 
respectively. Based on Kalker’s linear theory (Kalker 1967), i  may be 
expressed as 

11
4

i ii li
ci i

G a b c cF
   (5.21) 

in which ia  and ib  denote the semi-axes of the contact ellipse at the ith wheel, 

11c  a coefficient from Kalker’s linear theory, G the shear modulus of rigidity, 

i  the friction coefficient between the ith wheel and rail given by 

 0 1 w wiB s R
i A e A        

  (5.22) 

and lic  the longitudinal creep at the ith wheel  

w wi
li

s Rc s
 

  (5.23) 

In Eq. (5.22), A  denotes the ratio of limit friction coefficient   at infinity 
slip velocity to maximum friction coefficient 0  at the zero slip velocity and 
B  the coefficient of the exponential friction decrease. 



Chapter 5. Single-railcar train subject to braking 

85 

5.3.5 Track-foundation model 

 The rail track is modeled as an infinite Euler-Bernoulli beam resting on 
a two-parameter elastic damped foundation. The beam is subject to the typical 
wheel-rail contact forces ciF , as illustrated in Figure 5.2. The track-foundation 
is discretized into finite moving elements, in which the formulation of the 
element equations is based on adopting a convected coordinate r -axis with 
origin fixed at the centre of mass of the moving train, as shown in Figure 5.2. 
The differential governing equation of motion of the track-foundation may be 
rewritten as 

 4 4 2 2 4
4 4 2 2 1

sm ci i
i

y y y yEI EI k my y ky F x s rx x x x   


                 
   (5.24) 

where ir  denotes the r-coordinate of the ith wheel.  

 
Figure 5.2. Track-foundation model. 

5.4 Proposed computational technique 

 The MEM is also employed to model the track-foundation, where 
element matrices are formulated based on the convected coordinate system 
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attached to the center of mass of the moving train. In view of Eq. (3.1), Eq. 
(5.24) may be rewritten as  

4 4 2 2
4 4 2 2

2 42
2 1

2 ( )
sm

ci i
i

y y y yEI EI y s y s kr r r r r r
y y y ym s s s y y s ky F r rr r r r

 
 



                       
                       

   


     

 (5.25) 

 By adopting Galerkin’s approach, the generalized mass eM , damping 

eC  and stiffness eK  matrices for a typical moving element of length L  may 
be proposed as: 

T
0 dM N N L

e m r   (5.26) 

T T T T
,0 0 0 0d d 2 d dL L L L
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 (5.28) 

where N  is the shape function based on Hermitian cubic polynomials and 
 ,r  denotes partial derivative with respect to r .  
 By assembling the element matrices, the equation of motion for the 
combined train-track-foundation (HSR) model can be written as 

Mz Cz Kz P     (5.29) 
where z , z , z  denote the global acceleration, velocity and displacement 
vectors of the train-track-foundation system, respectively; M , C  and K  the 
global mass, damping and stiffness matrices, respectively; and P  the global 
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load vector. The above dynamic equation can be solved by using the 
Newmark’s constant acceleration method (Bathe 1996). 
  Two computational schemes, one implicit and the other explicit, to 
treat the nonlinear normal wheel-rail contact force were discussed and 
presented in Chapter 4. It may be recalled that the implicit scheme is simpler 
to implement but restricted only to simple train models. The other explicit 
scheme is more complicated and requires generally more computational effort 
but needs to be employed when dealing with more complicated train models. 
Where braking is involved, there is the additional complication arising from 
the nonlinear wheel-rail adhesion force. Thus, it is necessary to employ the 
explicit scheme in dealing with single-railcar train subject to braking. For the 
given condition, it is found that a time step size less than 0.0002 s is necessary 
to achieve the convergence requirement, which is consistent with the time step 
size found in the Chapter 4. 

5.5 Verification of results 

 As there are no available results in the literature on the dynamic 
response of high-speed single-railcar train subject to braking, the effectiveness 
and accuracy of the proposed MEM are verified through comparison with 
results obtained via the FEM. A FEM code was written that is matched in 
capability as the MEM code. As previously explained, the FEM code is not 
suited to solving problems involving moving loads. The computational effort 
required by the FEM is significantly higher than the MEM. 
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 In the FEM model, a sufficiently long segment of the railway track is 
discretized uniformly with 0.25 m size elements, which has been found to be 
adequately small enough to attain converged accurate results. The segment 
may be divided into three sub-portions, a central portion and two end portions. 
The central portion, where the train travels during the period considered, is 
taken to be 140.5 m. The central portion is padded by two end portions of 
sufficient length in order to mitigate the erroneous boundary effects due to the 
moving train load approaching the boundaries of the FEM model. Through a 
convergence study, the length of the end portions is taken to be 24 m. Due to 
the advantage enjoyed by the MEM in dealing with moving load problems, a 
relatively shorter segment is required. Also from a convergence study made, 
the length required for the truncated railway track in the MEM model is 68.5 
m that is discretized non-uniformly with elements ranging from a coarse 1 m 
to a more refined 0.25 m size. 

The train is assumed to be cruising at 70 m s-1 before braking torques bT  
of 25 kN m are applied at all the wheels of the train. The properties of track-
foundation are summarized in Table 5.1 (Wu et al. 2001) and the parameters 
associated with the train are given in Table 3.1. The condition of the wheel-
rail contact is taken to be dry. The degree of severity of track irregularity is 
assumed to be moderate, with the irregularity amplitude and wavelength equal 
to 1.5 mm and 4 m, respectively. The coefficients 0 , ,v ac c c  used to compute 
the resistance force in Eq. (5.16) are 1176×10-5 N kg-1, 77.616×10-5 N s m-1 kg-

1 and 1.6×10-5 N s2 m-2 kg-1 (Yang and Sun 1999), respectively. The nonlinear 
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Hertz spring constant used to model the contact between wheels and rail are 
computed from Eq. (2.4) with the radii of the wheel wR , railhead rR  and the 
Poisson’s ratio of the wheel/rail material   taken to be 460 mm, 300 mm and 
0.3, respectively. Typical parameters for wheel-rail contact condition used to 
compute the adhesion force from Eq. (5.20) are given in Table 5.2.  

Table 5.1. Parameters for train model (Wu et al. 2001). 
Notation Value 

cm  23.4×103  kg 
sk  265×103 N m-1 
sc  45.1×103 N s m-1 
cJ  1040×103 kg m2 
bm  1.52×103   kg 
pk  590 ×103 N m-1 
pc  19.6×103 N s m-1 
bJ  1.965×103  kg m2 
wm  0.89×103   kg 
wJ  92.126 kg m2 
1l  8.75 m 
2l  1.25 m 
1h  0.75 m 
2h  0.42 m 
3h  0.20 m 

Table 5.2. Typical parameters for wheel-rail contact conditions (Polach 2005). 
Notation Wheel-rail contact condition 

Dry Wet 
Ak  1.00 0.30 
Sk  0.40 0.10 
0  0.55 0.30 

A  0.40 0.40 
B  0.60 0.20 

 Figures 5.3(a) and (b) show the rail displacement profiles obtained by 
FEM and MEM in the vicinity of the wheel-rail contact point at the instants 
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0.5 s and 1.0 s after the application of wheel brakes, respectively. Note that 
there is no occurrence of wheel sliding at the first instance. At the second 
instant, wheel sliding have been found to occur at all wheels. As can be seen 
in Figure 5.3, both results are found to be virtually the same. In view that the 
FEM requires a longer domain length as compared to the MEM, it is not 
surprising that the computational time required is 11.5 times higher than that 
needed in the MEM using a desktop computer (Intel(R) Core(TM) i7-2600 
CPU @3.40GHz 3.40GHz), with a memory usage of 16.0 GB”. This 
comparison study clearly illustrated that the MEM is accurate as well as 
computationally efficient and is thus superior to the FEM for dealing with the 
dynamic response of high-speed single-railcar train subject to braking. 
  (a) 
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 (b) 

 
Figure 5.3. Comparison of rail displacement profiles at the instants: (a) 0.5 s 

and (b) 1.0 s, after the application of wheel brakes. 
5.6 Numerical results 

5.6.1 Effect of braking on wheel sliding  

The magnitude of the braking torque applied to decelerate a train will 
undoubtedly affect the stability and safety of the train. If the braking torque is 
high enough, some or all the wheels may slide, which is a cause for concern as 
possible rail derailment may occur. On the other hand, if the braking torque is 
too low, all wheels tend to roll but the braking distance, which is the total 
distance taken by the train to halt, may exceed the required safe braking 
distance. Other factors that govern the motion of the train upon application of 
braking torque, in particular the mode of motion of each train wheel, include 



Chapter 5. Single-railcar train subject to braking 

92 

the initial train speed, wheel-rail contact condition and severity of track 
irregularity.  

The case of a train travelling at an initial speed of 70 m s-1 and subject to 
the sudden application of various braking torques to halt the train is 
investigated. For high-speed trains, it has been reported that the magnitude of 
the braking torque, bT , can reach a value as high as 25 kN m (Kim 2011). In 
this study, the torque considered ranges from as low as 1 kN m to as high as 
25 kN m, corresponding to light and heavy braking conditions, respectively. 
Heavy braking may arise due to emergency conditions in which the train needs 
to halt within a certain short distance. Note that braking torques of constant 
magnitude are assumed to be applied at all four wheels of the train throughout 
the period of motion of train as it comes to a halt. The condition of the wheel-
rail contact is taken to be dry. The severity of track irregularity is assumed to 
be the same for all cases, with the irregularity amplitude and wavelength equal 
to 1.5 mm and 4 m, respectively.  

To examine the mode of motion of each wheel under a braking 
condition, wheel angular speed-time history plots of all wheels are presented 
in Figure 5.4(a) for a typical case in which a moderate magnitude of braking 
torque of 11 kN m is applied. Superimposed in the figure is the train speed-
history plot. Note that the left axis shows the wheel angular speed whilst the 
right axis shows the train speed. It can be seen that the train speed varies 
almost linearly from the initial train speed to zero throughout the train motion. 
For this case, the train took about 26.6 s to come to a halt after traveling 932 m 
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since the start of braking. To examine why the train speed varies almost 
linearly, it is necessary to view the corresponding train deceleration-time 
history plot shown in Figure 5.4(b). As can be seen in the figure, the train’s 
deceleration fluctuates at high frequency. The mean deceleration increases 
sharply from zero shortly after the application of braking torque. It then 
decreases sharply before attaining a virtually constant magnitude. The 
fluctuation in deceleration arises due to the effect of track irregularity. In view 
that the mean train deceleration is virtually constant throughout the motion 
except for a brief duration initially, the train speed is expected to vary almost 
linearly too. 

 Upon closer examination of Figure 5.4(a), it can be seen that the angular 
speed of the fourth wheel reduces to zero very quickly after the application of 
braking torque. The angular speed remains zero thereafter throughout the 
motion of the train till it comes to a halt. Thus, the fourth wheel is noted to roll 
initially for a brief duration and then slides thereafter for the rest of the 
journey. The second wheel is noted to behave similarly to the fourth wheel. 
The only minor difference is that it is noted to roll for a slightly longer 
duration than the fourth wheel. The angular speed-history plots of the other 
two wheels are virtually the same whereby the speed is seen to reduce almost 
linearly to zero from the start of braking till the train halts. Thus, there is no 
occurrence of wheel sliding for these two wheels.  
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(a) 

  
(b) 

 
Figure 5.4. Time history of: (a) train speed and angular wheel speed; and (b) 

train deceleration. 
The mode of behaviour of a train wheel with regards to whether it does 

slide for any part of the train journey depends on its position within the wheel-
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set, the magnitude of the applied braking torque, the initial train speed and the 
condition of the wheel-rail contact. For the case study considered, Table 5.3 
summarizes the mode of behaviour of each wheel for various magnitudes of 
applied braking torques. The notation st  denotes the time lapse since the start 
of braking before wheel sliding occurs for the rest of the journey. Note that no 
value is indicated for st  if the wheel does not slide at all. Also presented in the 
Table are the corresponding braking time, which is the time taken for the train 
to come to a halt. 

For the case of light braking torque of 1 kN m, wheel sliding does not 
occur for all the wheels. When braking torque is increased, the modes of 
behaviour of all wheels are found to remain the same till the magnitude 
reaches approximately 10.5 kN m. At this moderately high magnitude of 
braking torque, it is interestingly found that only the fourth wheel begins to 
slide after a brief period of rolling. When the braking torque is increased 
slightly by only 0.5 kN m, the second wheel is found to slide shortly after the 
fourth wheel began to slide. No sliding is noted to occur for the other two 
wheels. When the braking torque is increased further to 13 kN m, it is found 
that the fourth and second wheels began to slide first at almost the same 
instant, followed shortly after by the sliding of the third wheel. No wheel 
sliding is noted to occur for the first wheel. With only a slight increase in 
braking torque to approximately 13.5 kN m, the mode of behaviour of the 
wheels is similar to the previously described case except that the first wheel is 
found to slide too at virtually the same instant as the third wheel. For any 
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braking torque higher than 13.5 kN m, the mode of behaviour of wheels 
remains similar i.e. the fourth and second wheels slide first followed briefly 
later by the simultaneous sliding of the third and first wheels. As to be 
expected, the duration of initial rolling decreases when the applied torque 
increases. In other words, the duration of wheel sliding increases with any 
increase in applied braking torque beyond the critical value of 13.5 kN m.   

For a low braking torque of 1 kN m, the braking time required is 
expectedly very long as shown in Table 5.3. As the torque is increased, the 
braking time decreases initially and attains a minimal value when the torque 
reaches the optimal braking torque. The latter refers to that magnitude of 
torque in which one of the wheels, namely the fourth wheel, is at an 
impending sliding condition. For the case study considered, the optimal 
braking torque is found to be approximately 10.0 kN m. As the torque is 
increased slightly beyond the optimal value, say 10.5 kN m, the 4th wheel 
starts to slide and as a result the braking time is increased. Any further 
increase in torque results in further increase in braking time, which ensues due 
to the occurrence of wheel sliding at other wheels, hence leading to a lesser 
resistance at the wheels to decelerate the train. As can be seen from Table 5.3, 
the larger the braking torque above the optimal value, the longer the duration 
of wheel sliding which results in a longer braking time. When the braking 
torque reaches the magnitude of 13.5 kN m, the last of the four wheels begins 
to slide too. This magnitude may be termed as the critical braking torque 
which is the smallest torque to cause wheel sliding in all four wheels. It may 
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be useful to classify braking torques less than the optimal value as normal 
braking where no wheel sliding occurs at all wheels and in which the braking 
time and hence the braking distance attainable is smallest. On the other hand, 
torques larger than the critical torque may be termed as heavy braking. 
Torques in between are classified as moderately heavy braking in which wheel 
sliding occurs at some but not all wheels.  

Table 5.3. The mode of behavior of each wheel.  
Braking torque 

bT  (kN m) 
Braking 

time 
bt  (s) 

Time st (s) 
4th wheel 3rd wheel 2nd wheel 1st wheel 

1.0 203.5 - - - - 
6.0 40.5 - - - - 

10.0 24.7 - - - - 
10.5 25.3 4.65 - - - 
11.0 26.6 3.53 - 4.00 - 
13.0 26.9 2.31 3.40 2.34 - 
13.5 30.1 2.14 2.88 2.20 3.29 
20.0 30.3 1.08 1.20 1.09 1.23 
25.0 30.3 0.78 0.84 0.79 0.86 
It is necessary to explain that there is the sequence of occurrence of 

wheel sliding, ie. from fourth wheel, second wheel, three wheel to first wheel. 
Figure 5.5 shows the free body diagram of the train subject to braking with 
effect of longitudinal inertial force. Note that 12P  is the component induced by 
the car body pitching moment arising from the inertia force and shear force of 
the car body; and 2P  the component produced from the bogie pitching moment 
arising from the inertia force and shear force of the bogie.  

The contact force at wheels may be obtained as 
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1 2 1
2 2 1
3 2 1
4 2 1

c
c
c
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F P P P

  
  
  
  

 (5.30) 

where P  is the wheel load including static and dynamic components. 
Due to the fact that 1P  is smaller than 2P , the relationship between 

contact forces may be written as 4 2 3 1c c c cF F F F    and hence wheel-rail 
adhesion 4 2 3 1f f f f   . Consequently, for the same braking torque, there is 
a higher tendency for the fourth wheel to slide. When the braking torque is 
increased slightly, the second wheel is found to slide shortly after the fourth 
wheel began to slide. When the braking torque is increased further, it is found 
that the fourth and second wheels began to slide first at almost the same 
instant, followed shortly after by the sliding of the third wheel. No wheel 
sliding is noted to occur for the first wheel. For any higher braking torque, the 
mode of behaviour of wheels remains similar i.e. the fourth and second wheels 
slide first followed briefly later by the simultaneous sliding of the third and 
first wheels. 
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Figure 5.5. Free body diagram of the train. 

5.6.2 Effect of initial train speed  

The dynamic response of a high-speed rail (HSR) experiencing 
deceleration under a braking condition is dependent on many factors, 
including the initial train speed. Figure 5.6 presents the duration of wheel 
sliding against the magnitude of applied braking torque for three values of 
initial train speed. In view that the fourth and second wheels behave similarly, 
results are shown only for the fourth wheel (trailing wheel) in Figure 5.6(a). 
For a similar reason, only results for the first wheel (leading wheel) are 
presented in Figure 5.6(b).  

The minimum braking torque required to cause wheel sliding is 
dependent on the position of the wheel and the initial train speed. The 
minimum torque is smaller at higher speed and vice-versa, as can be seen from 
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Figure 5.6. This result is to be expected in view that a higher initial train speed 
poses a more serious safety situation when braking is applied where a 
relatively smaller braking torque would induce wheel sliding. Also, upon 
examining Figures 5.6(a) and (b), it can be seen that the minimum torque is 
smaller for the trailing wheel as compared to the leading wheel for the same 
initial train speed. This can be explained as being due to the additional 
pitching moment induced by the effect of longitudinal inertia and wheel 
adhesion force that results in a reduction of normal contact force at the trailing 
wheel as compared to the leading wheel. Consequently, there is lesser wheel-
rail adhesion at the trailing wheel and therefore a higher tendency for the 
wheel to slide for the same braking torque as compared to the leading wheel. 

The duration of wheel sliding depends on the initial train speed and 
braking torque, being longer for higher train speed and larger braking torque. 
Generally, the results in Figure 5.6 show that once wheel sliding has been 
initiated due to the application of a braking torque larger than a certain value, 
the duration of sliding is virtually constant and is not dependent on the 
magnitude of braking torque. 
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(a) 

 
(b) 

 
Figure 5.6. Effect of initial train speed on the duration of wheel sliding: (a) in 

the trailing wheel and (b) in the leading wheel. 
It is obvious that to avoid wheel sliding and the high dynamic effects 

encountered during train braking, the braking torque applied should be as low 
as possible and the train speed prior to the onset of braking should be low too. 
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However, light braking would result in longer braking distance, which is the 
distance taken by the train to come to a complete halt. Thus, besides strength 
and instability concerns relating to structural failure and train derailment, 
respectively, it is also necessary to consider the safe braking distance, which is 
the maximum distance allowed for the train to halt safely under emergency 
braking conditions.  

The braking distance attained is dependent on the initial train speed and 
the magnitude of applied braking torque. Figure 5.7 presents plots of the 
braking distance bs  against applied braking torque for various initial train 
speeds. As is to be expected, the braking distance is larger for higher initial 
train speed for a given braking torque. In other words, to attain the desired 
braking distance, the applied braking torque needs to be larger for higher 
initial train speed.  

As the braking torque applied is increased from zero, the braking 
distance decreases sharply initially as shown in Figure 5.7. As presented in 
earlier results in Table 5.3, the braking time, and hence braking distance, 
reaches a minimum value when the braking torque applied is at the optimal 
magnitude. The optimal torque is noted to depend on the initial train speed, 
being larger for smaller speed. However, for the three cases of initial train 
speed considered, the optimal torque for each case is noted to differ only 
slightly. These are approximately 9.0 kN m, 10.0 kN m and 11.0 kN m for the 
initial train speed of 90 m s-1, 70 m s-1 and 50 m s-1, respectively. As the 
braking torque is increased beyond the optimal magnitude, there is initially a 
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slight increase in the braking distance. It is interesting to note that any further 
increase in the braking torque does not result in any perceptible change in the 
braking distance. 

 
Figure 5.7. Effect of initial train speed and braking torque on the braking 

distance. 
The dynamic response of the HSR is significantly affected by the 

severity of track irregularity as well as the speed of the train, as shown in 
Chapter 4. When there is a deceleration of the train due to the application of 
braking torques at the wheels, the dynamic wheel-rail contact force may be 
influenced by the longitudinal inertia effects. Thus, it is important to evaluate 
the dynamic amplification factor (DAF) in contact force at the wheels when 
the train is subject to braking.  

Figure 5.8 shows plots of the DAF in contact force at both the trailing 
and leading wheels against the applied braking torque for three initial train 
speeds. As can be seen in the figure, the DAF in contact force depends on the 
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initial train speed, the position of the wheel and possibly the magnitude of 
applied braking torque. As is to be expected, the DAF increases as the initial 
train speed increases. The DAFs at both wheels are noted to be virtually the 
same when the train is not subject to any braking for both the 50 and 70 m s-1 

initial train speed cases. This is however not true for the case of the higher 
initial train speed of 90 m s-1, where it is noted that there is an abrupt 
difference in DAF between both wheels when braking torque is zero. For all 
cases of initial train speed, the DAF in the wheels begins to differ when 
braking torque is increased. For a given initial train speed, the DAF is found to 
be always larger at the leading wheel as compared to the trailing wheel. The 
magnitude of the braking torque is noted to have a small effect on the DAF 
produced in the trailing wheel, unlike the leading wheel. In the latter, the DAF 
is noted to increase to a peak by approximately 9% as braking torque is 
increased from zero to a moderate magnitude of approximately 12.5 kN m.  

When a train is subject to braking, the effect of longitudinal inertia and 
wheel adhesion force causes the train to experience a pitching moment. This 
results in the leading wheel experiencing a higher than normal contact force as 
compared to the trailing wheel. This explains why the DAF in the contact 
force at the leading wheel tends to be larger than at the trailing wheel. For a 
given initial train speed, wheel sliding occurs sequentially in the four wheels 
starting with the trailing wheel, the intermediate wheels and finally the leading 
wheel as braking torque is increased. When the applied braking torque reaches 
a certain critical value, wheel sliding occurs at all wheels when the leading 
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wheel finally starts to slide. These critical braking torques are approximately 
12.5 kN m, 13.5 kN m and 14.5 kN m for initial train speed of 90 m s-1, 70 m 
s-1 and 50 m s-1, respectively. When braking torque applied is at the critical 
magnitude, the pitching moment acting on the train is also the maximum, 
resulting therefore in a peak in the DAF.  

 
 Figure 5.8. Effect of initial train speed on the DAF in contact force. 

5.6.3 Effect of wheel-rail contact condition 

Earlier results presented correspond only to dry wheel-rail contact 
condition. It is expected that the dynamic response of HSR would be 
appreciably increased if the condition is wet. To investigate the magnitude of 
influence of the wheel-rail contact condition on the dynamic response, the case 
of a train traveling at an initial speed of 70 m s-1 before experiencing sudden 
deceleration due to the application of braking torques is considered. 
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Figure 5.9 shows the duration of wheel sliding at the trailing wheel 
plotted against the braking torque for both the dry and wet wheel-rail contact 
conditions. The minimum braking torque required to cause wheel sliding is 
dependent on the wheel-rail contact condition. This optimal braking torque 
magnitude is approximately 6.0 kN m and 10.0 kN m for the wet and dry 
wheel-rail contact conditions, respectively. Thus, a smaller optimal braking 
torque would induce wheel sliding for the wet condition. This result is to be 
expected in view that a wet wheel-rail contact condition causes lesser wheel-
rail adhesion and hence a higher tendency for the wheel to slide for the same 
braking torque as compared to the dry case. This is also the underlying reason 
why the duration of wheel sliding for the wet case is always longer as 
compared to the dry case. 

 
Figure 5.9. Effect of wheel-rail contact condition on the duration of wheel 

sliding. 
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Figure 5.10 shows the train braking distance for the wet and dry wheel-
rail contact conditions plotted against the applied braking torque. The braking 
distance for both dry and wet wheel-rail contact conditions is noted to be 
virtually the same for braking torque less than the optimal value of 6.0 kN m, 
where there is no wheel sliding in both cases. The braking distance decreases 
as the braking torque increases till it reaches the optimal value. Beyond this 
optimal value, some or all wheels will slide during the deceleration of the train 
for the wet case. This explains why the braking distance increases abruptly 
and then remains virtually constant for a braking torque larger than the optimal 
value. In the case of a dry condition, no wheel sliding occurs till the braking 
torque reaches 10.0 kN m as stated earlier. Thus, the braking distance 
continues to decrease as the braking torque increases and reaches the smallest 
value when the braking torque is equal to the optimal value when one of the 
wheels is at an impending sliding condition. In both cases of wet and dry 
conditions when the braking torque applied is greater than their respective 
optimal values, the braking distance is virtually constant. As is to be expected, 
Figure 5.10 shows that the braking distance achievable is always larger for the 
wet condition whenever wheel sliding occurs. 

Figure 5.11 shows the variation of the DAF in the leading wheel against 
the applied braking torque for the wet and dry wheel-rail contact conditions. It 
can be seen that the DAF in the dry case is generally larger as compared to the 
wet condition. In the latter case, lesser adhesion is generated at the wheel 
resulting in smaller pitching moment and hence smaller DAF in the wheel 
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contact force. The maximum difference in DAF between dry and wet 
conditions is noted to occur when the braking torque is approximately 13.5 kN 
m. 

 
Figure 5.10. Effect of wheel-rail contact condition on the braking distance. 

 
Figure 5.11. Effect of wheel-rail contact condition on the DAF in the leading 

wheel. 
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5.7 Concluding remarks 

In this chapter, a numerical study of the dynamic response of high-speed 
single-railcar train subject to braking, with possible wheel sliding, using the 
proposed MEM is carried out. Braking torques of constant magnitude are 
applied at all wheels in order to decelerate the train from its operational train 
speed to a halt. A realistic train model that accounts for the effect of pitching 
moment arising from the longitudinal inertia effects and wheel adhesion forces 
is employed. The modified nonlinear Hertz contact theory and Polach 
adhesive model are employed to account for the normal and tangential wheel-
rail contact forces, respectively. The formulation of the governing equations 
includes the possibility of wheel sliding over the rail. The effects of various 
factors on the dynamic response of single-railcar train subject to braking, 
including the DAF in wheel-rail contact force as well as the occurrence of 
wheel sliding and jumping wheel phenomenon, have been examined. 
Parameters considered include the magnitude of braking torque, wheel-rail 
contact condition and initial train speed. 

The magnitude of braking torque applied to decelerate a train to bring it 
to a halt plays an important role in the stability and safety of the train. If the 
torque is too high, some or all the wheels may slide, which is a cause for 
concern, as train instability resulting from possible rail derailment may occur. 
On the other hand, if the torque is too low, no wheel sliding occurs but the 
resistance to decelerate the train is reduced, leading to a longer braking 
distance which may exceed the required safe braking distance.  
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As to be expected, all wheels roll at low braking torque. At a sufficiently 
high torque, namely the optimal torque, all train wheels are rolling with one at 
an impending sliding condition. The wheel that is at an impending sliding 
condition occurs at the trailing wheel. When a train is subject to braking 
employing the optimal braking torque, the braking distance achieved is the 
smallest possible. Since there is no wheel sliding and the braking distance is 
the smallest, the optimal braking torque therefore represents a good 
compromise between train instability and safety. For braking torque greater 
than the optimal torque, some or all wheels of the train are in sliding 
condition. The critical braking torque refers to the smallest braking torque that 
results in the situation when all wheels are sliding. Braking below the optimal 
torque may be termed as normal braking. Braking higher than the critical 
torque may be termed as heavy braking. Braking between optimal and critical 
torques may be termed as moderately heavy braking. 

Besides initial train speed, another important parameter that has a 
considerable influence on the stability and safety of a train subject to braking 
is the wheel-rail contact condition, i.e. whether dry or wet. It is found that the 
contact condition affects the magnitude of the optimal braking torque, being 
reduced when the contact condition changes from dry to wet. For a given 
braking torque, the braking distance is increased when the condition changes 
from dry to wet. Likewise, when the train is subject to braking at their 
respective optimal torque values for both cases, the braking distance is also 
increased when the condition changes from dry to wet.  
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The DAF in the wheel contact force is governed by the initial train speed 
as well as the magnitude of the applied braking torque. The DAF is found to 
be always larger at the leading wheel as compared to the trailing wheel when 
the train is subject to braking. The difference in DAF between trailing and 
leading wheels is larger for higher initial train speed and also tends to increase 
as the magnitude of braking torque increases. The braking torque is noted to 
have a small effect on the DAF in the trailing wheel unlike the leading wheel. 
Wheel sliding at all wheels occurs when the torque applied is at a certain 
critical magnitude where it is found that the DAF in contact force at the 
leading wheel reaches a peak. The critical braking torque depends on the 
initial train speed, being smaller for higher initial train speed. The braking 
torque applied should not match the critical torque value as this increases the 
chance of failure in train structural components due to the development of 
high DAF in contact force.  

 
Equation Chapter (Next) Section 1Equation Section (Next)
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CHAPTER 6. MULTIPLE-RAILCAR TRAIN SUBJECT 
TO BRAKING 

6.1 Introduction 

In Chapter 5, a computational study on the dynamic response of single-
railcar train subject to braking with possible wheel sliding is presented. The 
train model employed comprises only one railcar, namely the locomotive, 
modelled as a 15-DOF system of interconnected car body, two bogies and four 
wheels. As a typical train comprises of several railcars, it is important to 
investigate the longitudinal interaction between multiple railcars connected by 
couplers, especially when the train is subject to braking. The relative motion 
between railcars, known as “slack action”, plays a significant effect on the 
response of the train-track system. During braking, the coupler between 
consecutive railcars develops cyclical compressive and tensile forces. The 
maximum compressive force developed in the coupler depends on many 
factors, such as the coupler stiffness and the coupler gap. Under adverse 
conditions, the coupler force developed may be large enough to cause failure 
in the couplers resulting in catastrophic train derailments (Garg and Dukkipati 
1984). This chapter presents the results of a study on the dynamics of a 
multiple-railcar train subject to abrupt braking with allowance for possible 
wheel sliding.  
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6.2 Literature review 

Multiple-railcar train dynamics, which is defined as the motion of the 
rolling stock railcars in the direction of the track (Iwnicki 2006), is a subject of 
critical interests to many researchers. Pugi et al. (2007) developed a simple 
model of the longitudinal dynamics of a freight train due to normal braking. 
Vehicles are modeled as simple lumped masses connected by coupling system 
subject to normal braking. Dhanasekar et al. (2007) studied the longitudinal 
bogie dynamics of low-speed train under applied braking torque using an 
experimental method. In this study, controlling braking pressure and its 
application time were used to evaluate the occurrence of wheel sliding. Ansari 
et al. (2009) presented a comprehensive parametric study on the longitudinal 
dynamics of low-speed freight trains subject to traction and braking. The 
effect of the coupler properties on the dynamic response of a ten-railcar train 
model was investigated. Recently, Ahmad (2013) developed a dynamic model 
of a low-speed freight train due to normal braking. A three-railcar train model 
was used for performing a parametric study to investigate the effect of various 
factors on the braking distance. 
 The above-cited research works on multiple-railcar train dynamics are 
mostly focused on heavy long train model traveling at low-speed over a 
smooth track subject to normal braking. However, as stated in previous 
chapters, real train-track systems are likely to have various degrees of railhead 
roughness. High-speed trains may undergo high deceleration under emergency 
situations that require the train to come to a halt quickly to avoid other 
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possible catastrophes. Such trains would then be subject to unplanned abrupt 
braking with possible detrimental outcomes. Unlike normal braking, when a 
train decelerates under moderate to heavy braking condition, instability due to 
train wheels sliding over the rails could occur.  
 When a multiple-railcar train decelerates due to braking, neighbouring 
railcars interact with each other due to their relative motion and the coupler 
gap distance. As a result of this interaction, the force in the train coupler 
experiences a cyclical change in its magnitude ranging from tension to 
compression. This interaction between neighbouring railcars may lead to 
significant spikes in the time history plots of the train deceleration and bogie’s 
pitching motion.  

6.3 Problem definition 

In this study, the train is assumed to comprise of a locomotive as the 
leading railcar and several passenger railcars connected to each other through 
train couplers. The train and track-foundation are coupled through the normal 
and tangential wheel-rail interactions. The railhead is assumed to have some 
imperfections which are termed as “track irregularity”. The multiple-railcar 
train is assumed to be cruising at a constant speed and subsequently subject to 
unplanned abrupt braking causing the train to decelerate to quickly come to a 
halt. 
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6.3.1 Train model 

A generalized train model comprising of multiple railcars is shown in 
Figure 6.1. The leading railcar is the locomotive and all others are passenger 
railcars. The railcars are connected to each other by couplers.  

 
Figure 6.1. A multiple-railcar train. 

Each railcar is modelled as a 15-DOF system of interconnected car 
body, two bogies and four wheels, as shown in Figure 6.2, where cm  and cJ  
denote the mass and moment of inertia about the pitch of the car body, 
respectively. The car body is supported through secondary suspensions to two 
identical bogies. The mass and moment of inertia about the pitch of each bogie 
are bm  and bJ , respectively. The secondary suspension consists of two spring-
damping units, each modelled by a spring sk  and dashpot sc . The bogies are 
supported through primary suspensions to the four wheels, each of mass wm  
and moment of inertia about the pitch wJ . The primary suspension system 
consists of four spring-damping units, each comprising a spring pk  and 
dashpot pc . The nonlinear Hertz contact force and adhesive force between the 

thi  wheel and rail beam are denoted by ciF  and if , respectively. The car body 
is connected to the car bodies of the front and rear railcars by couplers. The 
coupler forces exerted on the car body at the front and rear are denoted by cfF  
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and crF , respectively. The vertical distance between the coupler and the car 
body’s centre of mass is denoted by 4h . The positions of the secondary and 
primary suspension spring-damping units measured with respect to the centre 
of mass of car body and the bogies are specified by 1l  and 2l , respectively, as 
shown in Figure 6.2.  

 
Figure 6.2. A typical railcar model. 

The governing equations of the car body, bogies and wheels are similar 
to Eqs. (5.1) to (5.15) presented earlier for a single-railcar train. For a 
multiple-railcar train, some of these equations need to be modified to account 
for the effect of the coupler forces. The set of modified governing equations 
for a typical railcar may be written as 
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   1 1 2 1 2 1w w p w bf bf p w bf bf c wm u c u l u k u l u F m g            (6.7) 

   2 2 2 2 2 2w w p w bf bf p w bf bf c wm u c u l u k u l u F m g            (6.8) 
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1 1w w w bJ f R T    (6.11) 

2 2w w w bJ f R T    (6.12) 

3 3w w w bJ f R T    (6.13) 

4 4w w w bJ f R T    (6.14) 
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           (6.15) 

where it can be seen that all equations are the same as those in Eqs. (5.1) to 
(5.15) except for Eqs. (6.2) and (6.15) which have been modified to account 
for the effect of the coupler forces, cfF  and crF . Note that rF  denotes the total 
running resistance force acting on car body. 

6.3.2 Running resistance 

 Based on an experimental study by Yang and Sun (2001), the running 
resistance of high-speed train may be written as 

2
0 v aR c c s c s     (6.16) 

where the coefficients 0 , ,v ac c c  are obtained from wind tunnel test. The total 
running resistance force rF  acting on the car body is obtained by multiplying 
the running resistance R  with the total mass of the railcar  2 4c b wm m m  . 

6.3.3 Wheel-rail contact force 

Based on the nonlinear Hertz contact model (Esveld 2001), the contact 
force ciF  between the ith wheel and rail may be expressed as 

 3
2   0

    0         0
H i ici

i

K y for yF for y
      

 (6.17) 

where iy  denotes the indentation at the contact surface at the ith wheel, which 
may be expressed as 



Chapter 6. Multiple-railcar train subject to braking 

119 

i ri ti wiy y y u     (6.18) 
where riy , tiy  denote the vertical displacement of the rail and track irregularity 
at the ith contact point, respectively, and wiu  the vertical displacement of the ith 
wheel of the railcar. The track irregularity is widely assumed to take the 
following sinusoidal form (Nielsen and Abrahamsson 1992)  

2sin iti t
t

xy a 
  (6.19) 

where ta  and t  denote the amplitude and wavelength of track irregularity, 
respectively. 

6.3.4 Wheel-rail adhesion force 

 The simplified wheel-rail contact model for the adhesion force if  
(Polach 2005) is given by  

   1
2

2 tan1
i ci A ii S i

A i

F kf kk
   

     
 (6.20) 

where i  is the gradient of tangential stress in the longitudinal direction and 

Ak , Sk  refer to the reduction factors in the adhesion and slip areas, 
respectively. Based on Kalker’s linear theory (Kalker 1967), i  may be 
expressed as 

11
4

i ii li
ci i

G a b c cF
   (6.21) 
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in which ia  and ib  denote the semi-axes of the contact ellipse at the ith wheel, 

11c  a coefficient from Kalker’s linear theory, G the shear modulus of rigidity, 

i  the friction coefficient between the ith wheel and rail given by 

 0 1 w wiB s R
i A e A        

  (6.22) 

and lic  the longitudinal creep at the ith wheel  

w wi
li

s Rc s
 


 (6.23) 

In Eq. (6.22), A  denotes the ratio of limit friction coefficient   at infinity 
slip velocity to maximum friction coefficient 0  at the zero slip velocity and 
B  the coefficient of the exponential friction decrease. 

6.3.5 Coupler force  

The connection between railcars of a high-speed train comprises of a 
coupler with slack action, as shown schematically in Figure 6.3. The linkage 
system between the first passenger railcar and locomotive, termed the first 
coupler, is shown Figure 6.3(a). Figure 6.3(b) shows the corresponding 
linkage system between the last passenger railcar and the passenger railcar in 
front and is termed the last coupler. In these figures, ,cf crg g  denote the 
coupler gap sizes of the first and last couplers, respectively, and fs , rs  the 
travels of the front and rear railcars, respectively.  

A typical linkage system comprises of a coupler with specified gap size 
connected at each end to a draft gear. The draft gears are in turn connected to 
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the respective ends of neighbouring railcars. Should the relative motion 
between railcars be large enough to cause the closure of the coupler, 
longitudinal forces are transmitted through the draft gears to the railcars. Note 
that the coupler could close in the positive or negative sense. Consequently, 
the force in the coupler could be compressive or tensile. If the relative motion 
between railcars is not large enough to cause closure of the coupler, then no 
coupler force is produced and hence the railcars do not interact longitudinally.  

(a) 

 
(b) 

 
Figure 6.3. Linkage systems between: (a) Typical and front railcars; and (b) 

Rear and typical railcars. 
 To simplify the calculations, the coupler is assumed as a spring and 
damper with considering the effect of slack action. Thus, the coupler forces 

cfF  and crF  may be written as 
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where cfc , cfk  denote the damping and stiffness of the coupler between the 
typical railcar and front neighbouring railcar, respectively; crc , crk  the 
corresponding properties of the coupler between the typical railcar and rear 
neighbouring railcar.  Note that for the locomotive, 0cfF   in view that there 
is no railcar connected ahead of the locomotive. Similarly, for the last 
passenger railcar, 0crF   in view that there is no railcar connected at its rear. 

6.3.6 Track-foundation model 

 The track is modeled as an infinite Euler-Bernoulli beam resting on a 
two-parameter elastic damped foundation. The beam is subject to the typical 
wheel-rail contact forces ciF , as illustrated in Figure 6.4. The track-foundation 
is discretized into finite moving elements, in which the formulation of the 
element equations are based on adopting a convected coordinate r -axis with 
origin fixed at the centre of mass of the car body, as shown in Figure 6.4. 
Based on Eq. (2.12), the differential governing equation of motion of the 
track-foundation may be rewritten as 
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Figure 6.4. Track-foundation model. 

6.4 Proposed computational technique 

 The relationship of the fixed and the moving coordinate system r  is 
given by 

r x s   (6.27) 
 In view of Eq. (6.27), Eq. (6.26) may be rewritten as  

 

4 4 2 2
4 4 2 2

2 42
2 1

2
sm

ci i
i

y y y yEI EI y s y s kr r r r r r
y y y ym s s s y y s ky F r rr r r r

 
 



                       
                       

   


     

 (6.28) 

 By adopting Galerkin’s approach, the element mass eM , damping eC  
and stiffness eK  matrices for a typical moving element of length L  can be 
proposed: 

T
0 dL

e m r M N N  (6.29) 
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where N  is the shape function based on Hermitian cubic polynomials;  ,r  
denotes partial derivative with respect to r .  
 By assembling the element matrices, the equation of motion for a typical 
railcar-track-foundation model can be written as 

j j j j j j j   M z C z K z F  (6.32) 
where jz  denote the assembled displacement vector; jM , jC  and jK  the 
assembled mass, damping and stiffness matrices, respectively; and jF  the 
assembled load vector. Note that the index j  denotes the relative order of the 
railcar in a multiple-railcar train. For a train comprising of N  railcars, 1j   
refers to the last passenger railcar, 1j N   the first passenger railcar just 
before the locomotive and j N  refers to the locomotive. The governing 
equation of the train-track-foundation is obtained by assembling Eq. (6.32) as 
follows 

   Mz Cz Kz F  (6.33) 
where M , C , K  the global mass, damping, stiffness matrices, F  the global 
generalized load vector, and z  the global displacement vector are assembled 
as follows 
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The equation of motion of the multiple-railcar HSR in Eq. (6.33) can be 
solved by using Newmark’s constant acceleration method (Bathe 1996).  
 Two computational schemes, one implicit and the other explicit, to treat 
the nonlinear normal wheel-rail contact force were discussed and presented in 
Chapter 4. It may be recalled that the implicit scheme is simpler to implement 
but restricted only to simple train models. The other explicit scheme is more 
complicated and requires generally more computational effort but needs to be 
employed when dealing with more complicated train models. Where braking 
is involved, there is the additional complication arising from the nonlinear 
wheel-rail adhesion force. In the study on single-railcar train subject to 
braking presented in Chapter 5, it was explained that it is necessary to employ 
the explicit scheme in dealing with the nonlinear wheel-rail normal contact 
and adhesion forces.  In the study on multiple-railcar train subject to braking, 
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the complexity of the train model adopted is further increased and it is 
therefore necessary to employ the explicit scheme.  

6.5 Verification of results 

 As there are no available results in the literature on the dynamic 
response of high-speed multiple-railcar train subject to braking, the 
effectiveness and accuracy of the proposed MEM are verified through 
comparison with results obtained via the FEM. A FEM code was written that 
is matched in capability as the MEM code. As previously explained, the FEM 
code is not suited to solving problems involving moving loads. The 
computational effort required by the FEM is significantly higher than the 
MEM. 
 For the purpose of verification, the case of a two-railcar train comprising 
of a locomotive and a passenger railcar is considered. The two railcars are 
connected to each other by a coupler. The stiffness and damping property of 
the coupler are 0.605108 N m-1 and 0.605106 N s m-1, respectively, and the 
coupler gap is 0.04 m (Chou et al. 2007). The train is assumed to be cruising at 
70 m s-1 before braking torques bT  of 25 kN m are applied at all the wheels of 
the train. The properties of track-foundation are summarized in Table 3.1 and 
the parameters associated with the locomotive are given in Table 5.1. Note 
that all parameters related to the passenger railcar are taken to be the same 
with the locomotive except for only the mass of the car body, which is lighter 
and taken to be 20875cm   kg (Wu et al. 2001). The wheel-rail contact 
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condition is assumed to be dry. The degree of severity of track irregularity is 
assumed to be moderate, with the irregularity amplitude and wavelength equal 
to 1.5 mm and 4 m, respectively. The coefficients 0 , ,v ac c c  used to compute 
the resistance force in Eq. (6.16) are 1176×10-5 N kg-1, 77.616×10-5 N s m-1 kg-

1 and 1.6×10-5 N s2 m-2 kg-1 (Yang and Sun 1999), respectively. 
 In the FEM model, a sufficiently long segment of the railway track is 
discretized uniformly with 0.25 m size elements, which has been found to be 
adequately small enough to attain converged accurate results. The segment 
may be divided into three sub-portions, a central portion and two end portions. 
The central portion, where the train travels during the period considered, is 
taken to be 140.5 m. The central portion is padded by two end portions of 
sufficient length in order to mitigate the erroneous boundary effects due to the 
moving train load approaching the boundaries of the FEM model. Through a 
convergence study, the length of the end portions is taken to be 24 m. Due to 
the advantage enjoyed by the MEM in dealing with moving load problems, a 
relatively shorter segment is required. Also from a convergence study made, 
the length required for the truncated railway track in the MEM model is 95 m 
that is discretized non-uniformly with elements ranging from a coarse 1 m to a 
more refined 0.25 m size. 
 Figures 6.5(a) and (b) show the rail displacement profiles predicted by 
FEM and MEM in the vicinity of the wheel-rail contact point at the instants 
0.5 s and 1.0 s after the application of wheel brakes, respectively. Note that 
there is no occurrence of wheel sliding at the first instance. At the second 
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instant, wheel sliding have been found to occur at all wheels. As can be seen 
in Figure 6.5, both results are virtually the same. In view that the FEM 
requires a longer domain length as compared to the MEM, it is not surprising 
that the computational time required is 11.5 times higher than that needed in 
the MEM using a desktop computer (Intel(R) Core(TM) i7-2600 CPU 
@3.40GHz 3.40GHz), with a memory usage of 16.0 GB”. This comparison 
study clearly illustrated that the MEM is accurate as well as computationally 
efficient and is thus superior to the FEM for dealing with the dynamic 
response of multiple-railcar HSRs subject to braking.  
  (a) 
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 (b) 

 
Figure 6.5. Comparison of rail displacement profiles at the instants: (a) 0.5 s 

and (b) 1.0 s, after the application of wheel brakes. 
6.6 Numerical results 

 Numerical results obtained by the proposed MEM investigating the 
dynamic response of multiple-railcar train are presented and discussed in this 
section. For all cases investigated, the train comprises of several railcars of 
which the leading one is the locomotive and the others are passenger railcars. 
Neighbouring railcars are connected to each by coupler. The track irregularity 
is assumed to be moderate and taken to be the same in all cases investigated. 
 A realistic high-speed train would typically comprise of the locomotive 
and approximately fourteen passenger railcars (Chen and Li 2000). It seldom 
operates with less than two passenger railcars even under off-peak periods. 
Computational effort increases with the number of railcars. Thus, it would be 
useful to investigate the minimum number of railcars that would result in 
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similar dynamic response. The conclusion from this case study would then 
dictate the number of railcars to be employed for subsequent case studies. The 
effects of various parameters, such as braking torque, coupler stiffness, 
coupler gap, wheel load, wheel-rail contact condition, initial train speed and 
partial failure in braking mechanism on the dynamics of multiple-railcar HSR 
subject to braking are investigated and presented. 

6.6.1 Representation of a multiple-railcar train 

 Before investigating the effects of multiple railcars on the dynamics of 
the HSR, it would be useful to investigate what is the minimum number of 
railcars that can safely represent a multiple-railcar train as this would result in 
great computational savings. The minimum number of railcars is one in which 
the dynamic response produced would be virtually the same as that produced 
for trains with more than the minimum number of railcars. For this purpose, 
three trains with different number of railcars are considered. The three are 
designated as 2-, 3-, 4-railcar trains, which comprises the locomotive and 1, 2, 
3 additional passenger railcars, respectively. The lengths of the truncated 
railway track used in the MEM models of these trains  are 95 m, 120 m and 
145 m for the 2-, 3-, 4-railcar trains, respectively. The train is assumed to be 
cruising at 70 m s-1, a typical speed of today’s high-speed trains, before 
braking torques bT  of 13 kN m are applied at all the wheels of the train. At 
this magnitude of braking torque, sliding of wheels over the track is expected 
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to occur. The properties of the couplers connecting neighbouring railcars 
employed in the study are presented in Table 6.1 (Chou et al. 2007). 

Table 6.1. The parameters of the couplers. 
The coupler Stiffness (N m-1) Damping (N s m-1) Gap 

(m) 
Between locomotive and  

1st passenger railcar 0.605108 0.605106  0.04  
Between passenger railcars 0.245108 0.245106 0.04 
 Figures 6.6(a), (b) and (c) show the time history plots of the coupler 
force between the locomotive and 1st railcar, the acceleration/deceleration and 
bogie’s pitching motion of the locomotive, respectively, for the three multiple-
railcar trains considered. It also can be seen in Figure 6.6 that the responses of 
the 3- and 4-railcar trains are virtually the same, and differs from those of the 
2-railcar train. The minimum number of railcars is thus 3. It is not surprising 
that the computational time required for the analysis of the 4-railcar train is 
significantly higher than that needed for the 3-railcar train. In view of this 
finding, it is adequate to investigate a realistic multiple-railcar train using only 
a 3-railcar train. Thus, subsequent studies on multiple-railcar train will be 
based on a 3-railcar train. 
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(a) 

 
(b) 
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(c) 

 
Figure 6.6. Time history for various train models of: (a) Coupler force; (b) 

Train deceleration and (c) Rear bogie pitch. 
6.6.2 Single-railcar train vs. multiple-railcar train 

Passenger railcars are expected to be lighter in weight, even when fully 
loaded with passengers, as compared to the locomotive which houses heavy 
engine and machineries. Consequently during braking, passenger railcars and 
the locomotive experience different magnitude of deceleration when the same 
magnitude of braking torque is applied to all wheels. Due to the difference in 
speeds of the passenger railcars and locomotive, there will be longitudinal 
interaction between railcars during the braking of a multiple-railcar train. The 
longitudinal interaction has a significant effect on the longitudinal and vertical 
responses of the multiple-railcar train. In order to understand the impact of the 
longitudinal interaction on the dynamic response of a multiple-railcar train, a 
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parametric study is carried out and the response is compared to the simple 
single-railcar train, where inherently there is no longitudinal interaction effect.  

As already presented earlier in the preceding section, a multiple-railcar 
train shall comprise of three railcars, of which two are passenger railcars and 
the third is the locomotive. All train parameters, track foundation properties, 
coupler properties, track irregularity parameters, initial train speed and braking 
torque used for the parametric study are the same as described in the preceding 
section, unless otherwise stated. 

Figures 6.7(a) and (b) show the time history plots of the acceleration and 
rear bogie’s pitch motion of the locomotive, respectively, for both the single-
railcar and multiple-railcar trains. After the application of brakes, the 
deceleration of the locomotive is nearly the same in both single- and multiple-
railcar train initially. At a short time later, there is a significant increase in the 
acceleration of the locomotive of the multple-railcar train due to the 
development of large compressive coupler force acting on the locomotive 
when the relative motion between the neighbouring passenger railcar and 
locomotive results is larger than the coupler gap. The longitudinal interaction 
continues throughout the period of braking, during which the force in the train 
coupler experiences a cyclical change in its magnitude ranging from tension to 
compression. Thus, as can be seen in Fig. 6(a), there is periodical spiking in 
the acceleration of the locomotive which occurs whenever the relative motion 
between railcars results in the development of coupler force. The amplitude of 
the spikes decreases with time and finally disappears after a sufficient period 
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of braking. Obviously, there is no occurrence of acceleration spikes for the 
single-railcar train.  

A similar occurrence of spikes is found for the pitching motion of the 
rear bogie of the locomotive, as can be seen from Fig. 6(b). Though not 
presented, the response of the passenger railcar is expected to be similar to that 
of the locomotive. Consequently, the comfort of passengers is expected to be 
affected by the occurrence of spikes due to the longitudinal interaction. 

 (a) 
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(b) 

 
Figure 6.7. Time histories of (a) the locomotive’s acceleration and (b) Rear 

bogie pitch of the locomotive. 
Besides the longitudinal response, the longitudinal interaction between 

railcars may also have an effect on the vertical dynamic response of a 
multiple-railcar train subject to braking. Figures 6.8(a) and (b) show the time 
history plots of wheel-rail contact forces at the trailing and leading wheels of 
the locomotive for both single- and multiple-railcar trains. At the instant of 
time when there is occurrence of the first most significant spike in the 
locomotive’s deceleration, it was found that the wheel-rail contact forces in 
the trailing and leading wheels are approximately 6.75% smaller and 3.75% 
larger, respectively, for a multiple-railcar train as compared to a single-railcar 
train. It may therefore be concluded that the longitudinal interaction between 
railcars does not result in a significant but nonetheless noticeable effect on the 
vertical dynamic response. 
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(a) 

 
(b) 

 
Figure 6.8. Time history of contact force in (a) the trailing wheel and (b) the 

leading wheel. 
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6.6.3 Effect of braking torque 

In the study on single-railcar train subject to braking, which was 
presented in Chapter 5, it was found that there is an optimal and critical 
braking torque. The former refers to the maximum braking torque that can be 
applied without causing any of the wheels to slide, with one wheel at 
impending sliding condition. The braking distance of the train is minimal 
when the braking torque applied is at the optimal magnitude. The critical 
braking torque refers to the smallest torque that would result in all trains 
wheels to be sliding. Both the optimal and critical braking torques are 
dependent on the initial train speed. For a given initial train speed of 70 m s-1 
and track irregularity considered, the study in Chapter 5 found that the optimal 
and critical braking torques are 10.0 kN m and 13.5 kN m, respectively. In 
view of the significance of the optimal and critical braking torques on the 
braking dynamics of the train, it is thus necessary to determine these 
corresponding torques for the multiple-railcar train. 

Table 6.2 shows the optimal and critical torques for both single-railcar 
and multiple-railcar trains. As can be seen, the critical braking torque for the 
locomotive of the single- and multiple-railcar trains is the same. This is also 
true for the optimal braking torque. The critical braking torque for the two 
passenger railcars of the multiple-railcar train is the same and is about 7.4% 
lower than that of the locomotive. Similarly, the optimal braking torque for the 
two passenger railcars is also the same and is about 5.0% lower than that of 
the locomotive. It may therefore be concluded that the longitudinal interaction 



Chapter 6. Multiple-railcar train subject to braking 

139 

between neighboring railcars has virtually no effect on the magnitude of the 
critical and optimal braking torques. The difference noted between passenger 
railcar and locomotive is due to the difference in mass of these two types of 
railcars.  

Table 6.2. Optimal and critical torques 
Torques 
(kN m) 

Single-railcar 
train 

Multiple-railcar train 
2nd railcar 1st railcar Locomotive 

Optimal 10.0 9.5 9.5 10.0 
Critical 13.5 12.5 12.5 13.5 

The occurrence of sliding of wheels over rails may be affected by the 
longitudinal interaction between neighboring railcars. Figures 6.9(a) and (b) 
show the duration of wheel-sliding st  of the trailing and leading wheels of 
the locomotive, respectively, plotted against the applied braking torque for 
both single- and multiple-railcar trains. As can be seen in Figure 6.9, there is 
virtually no difference in the period of wheel sliding for both trains for most 
values of applied braking torque. There is only some noticeable difference in 
the case of the trailing wheel when the magnitude of the braking torque is 
between the optimal and critical braking torques. It may be concluded that 
there appears to be negligible effect by the longitudinal interaction, which 
occurs in a multiple-railcar train, on the duration of wheel sliding. Only when 
the applied braking torque lies between the optimal and critical torques, the 
longitudinal interaction results in a noticeable increase in the duration of 
wheel sliding for the trailing wheel. 
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(a) 

 
(b) 

 
Figure 6.9. Comparison of duration of wheel-sliding in: (a) the trailing wheel 

and (b) the leading wheel. 
The longitudinal interaction between neighboring railcars would induce 

force in the train coupler, which fluctuates between tension and compression 
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cyclically. The degree of interaction is obviously dependent on the magnitude 
of the applied braking torque as well as the relative masses of the connecting 
railcars. Since the masses between the two passenger railcars are the same, the 
dynamic motions of these railcars are expected to be virtually the same during 
braking. On the other hand, the mass of the locomotive is larger than the 
passenger railcar. Consequently, the dynamic motions of the locomotive and 
the first passenger railcar are different resulting in significant longitudinal 
interaction. In view that the coupler force is expected to be significantly higher 
in the train coupler between locomotive and the first passenger railcar than 
that between the two passenger railcars, results will only be presented for 
former.  

Figure 6.10 presents the variation of the maximum tensile and 
compressive coupler forces plotted against the braking torque. It can be seen 
that the train coupler tends to experience higher magnitudes of compressive 
force than tensile force. The peak value of compressive coupler force is found 
to be approximately 4 times larger than that of tensile coupler force. 
Consequently, coupler tends to fail in compression than in tension when a 
train is subject to braking.  

It can be seen from Figure 6.10 that there is virtually no force induced in 
the train coupler when the applied braking torque is smaller than the optimal 
value. When the braking torque is increased beyond the optimal torque, the 
force induced in the coupler increases significantly and reaches a peak at the 
torque of 13.0 kN m, which lies between the critical braking torques of the 



Chapter 6. Multiple-railcar train subject to braking 

142 

locomotive and passenger railcar. The coupler force reduces sharply thereafter 
when the braking torque is increased further and stays virtually zero when the 
torque is higher than approximately 18.0 kN m. 

When the braking torque applied is smaller than the passenger railcar’s 
optimal torque, all wheels of the entire train tend to roll till the train comes to 
a halt. Under such a situation, the maximum relative motion between 
neighboring railcars is smaller than the coupler gap, resulting in zero force in 
the coupler. When the braking torque is increased beyond further into the 
range of moderate braking, the motions of the passenger railcar and 
locomotive become distinctly different. This occurs because the number of 
wheels sliding or rolling depends on the weight of the railcar as well as the 
braking torque. The passenger railcar with smaller weight tends to travel faster 
than the locomotive due to more wheels in sliding condition, resulting in 
relative motions between passenger railcar and locomotive that are larger than 
the coupler gap and inducement of high coupler force.  

When the torque is increased further into the heavy braking range, all 
wheels of the entire train are in sliding condition. The train decelerates at a 
high magnitude and the speed of the train reduces rapidly. Due to decreased 
speed, the relative motion between railcars is also reduced and this leads to 
lesser longitudinal interaction and smaller coupler force. At a torque larger 
than approximately 18 kN m, there is apparently no more longitudinal 
interaction as the relative motion between railcars has reduced to a level 
smaller than the coupler gap.  
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Based on findings in the previous chapter as well as results presented in 
Fig. 6.10, it may be concluded that the braking torque should be applied at the 
optimal torque value. A train subject to braking at a torque equal to the 
optimal torque leads to the best safety in terms of smallest braking distance as 
well as ensuring structural stability and strength as there is no occurrence of 
wheel sliding and almost zero force in the train coupler. If the braking torque 
is applied unfortunately at a magnitude equal to the critical torque, the train 
coupler would experience peak compressive and tensile forces. There is 
therefore concern for the possible fatigue failure of the train coupler. 
Furthermore, all wheels of the train are in sliding motion almost throughout 
the period of deceleration. There is therefore additional unease over the overall 
stability of the train due to heightened chance of train derailment, especially if 
accompanied with occurrences of jumping wheel phenomenon.  

 
Figure 6.10. Effect of braking torque on the coupler force.  
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6.6.4 Effects of coupler stiffness and coupler gap  

In railway engineering, slack action is the amount of free movement of 
one car before it transmits its motion to an adjoining coupled car. This free 
movement results from the fact that in railroad practice cars are loosely 
coupled. Loose coupling is necessary to enable the train to bend around curves 
and is an aid in starting trains, since the application of the locomotive power to 
the train operates on each car in the train successively, and the power is thus 
utilized to start only one car at a time. This explains why there is a need for a 
coupler gap. The design of the coupler gap size constitutes an important 
component for the practical and safe operation of the train.  

In the previous section, it was also found that the coupler tends to 
experience higher magnitudes in compression than in tension. Furthermore, 
peak values of coupler force are experienced when the braking torque applied 
is equal to the critical torque value. The longitudinal interaction between the 
locomotive and first passenger railcar is also much more significant as 
compared between the first and second passenger railcars. Thus, results of 
parametric studies in subsequent sections will focus only on the coupler peak 
compressive force in the coupler between the locomotive and first passenger 
railcar due to train braking at the critical torque. As previously explained, the 
longitudinal interaction between railcars is dependent on the relative motion of 
the railcars, the coupler gap as well as the coupler stiffness. Thus, this section 
will investigate the influence of these key factors, namely the coupler stiffness 
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and coupler gap, on the coupler compressive force when a multiple-railcar 
train is subject to braking.  

For the purpose of investigating the effect of coupler stiffness, a series of 
values that are in the vicinity of the practical range (Chou et al. 2007) is 
considered. In the literature, the damping property of the coupler is taken to be 
proportional to the stiffness [Chou et al. (2007); Zhuan and Xia (2006)]. Table 
6.3 summarizes the range of coupler stiffness and corresponding coupler 
damping that is considered in the parametric study. The magnitude of the 
coupler gap ranges from 5 mm to 40 mm, which are also within the practical 
range. The special case where the gap is 0 mm is also considered. This special 
case is considered only for the purpose of comparison, as in reality, the 
coupler gap is always greater than 0 mm.  

Table 6.3. Properties of couplers. 

Cases 
Coupler between locomotive  

and 1st passenger railcar 
Couplers between passenger 

railcars 
Stiffness 107 

(N m-1) 
Damping105 

 (N s m-1) 
Stiffness 107 

(N m-1) 
Damping105 

 (N s m-1) 
1 3.90 3.90 1.47  1.47  
2 6.05 6.05 2.45 2.45 
3 8.00 8.00 3.20 3.20 
4 10.00 10.00 4.00 4.00 
5 12.00 12.00 4.80 4.80 
6 14.00 14.00 5.60 5.60 
7 16.00 16.00 6.40 6.40 
8 18.00 18.00 7.20 7.20 

Figures 6.11(a) and (b) show the variation of the maximum spike in 
locomotive’s acceleration and compressive coupler force, respectively, plotted 
against the coupler stiffness for various coupler gaps. When the coupler 
stiffness is increased, the maximum spike in acceleration and coupler force 
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also increases. The rate of increase is dependent on the size of the coupler gap, 
being higher for larger gap size and vice-versa. When the coupler gap is 
unrealistically 0 mm, there is no spike in the locomotive’s deceleration and 
coupler force since there is no longitudinal interaction between railcars. This 
trend is to be expected since the effects of the coupler stiffness and gap both 
tend to amplify the effect of longitudinal interaction between railcars. Note 
that for certain range of values of coupler stiffness and gap, the maximum 
spike in locomotive’s acceleration could be positive or negative. For the case 
of small coupler gap of 5 mm, the momentary increase in locomotive’s 
acceleration due to longitudinal interaction between railcars is not large 
enough to cause the maximum spike to be in the positive range for all coupler 
stiffness considered.  

Passenger safety becomes an issue when the acceleration/spike levels 
require passengers to take one or more steps to retain balance (Powell and 
Palacín 2015). Iwnicki (2006) as well as Powell and Palacín (2015) have 
recommended that the maximum acceleration of high-speed railcar under 
emergency braking be limited to 3 m s-2 in view of passenger comfort. In view 
of this recommendation, Figure 6.12 (a) shows that the stiffness of the coupler 
should not exceed a critical value. The critical stiffness depends on the coupler 
gap size, being smaller for larger gap size. For coupler gaps of 20 mm and 40 
mm, these critical values are approximately 12107 N m-1 and 8107 N m-1, 
respectively. As already mentioned, the spike in the locomotive’s acceleration 
is not large enough and is always in the negative range when the coupler gap 
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is small at 5 mm. In view of this, the coupler stiffness need not be limited in 
order to meet the recommendation stated earlier.  

 (a) 

 
(b) 

 
Figure 6.11. Effect of coupler stiffness and coupler gap on: (a) locomotive’s 

acceleration and (b) compressive coupler force. 



Chapter 6. Multiple-railcar train subject to braking 

148 

6.6.5 Effect of wheel load  

Passenger railcars, even when filled to full capacity, are normally lighter 
than the locomotive which houses heavy machineries and engines. In view that 
wheel load is a key factor affecting the adhesion between the wheel and rail 
and hence the longitudinal interaction between railcars, it would be important 
to investigate the effect of wheel load on the longitudinal interaction in a 
multiple-railcar train. This section presents the results of a study in which the 
weight of the passenger railcar is varied from the smallest to the largest. The 
former occurs when the passenger railcar is empty and the latter occurs when 
the railcar is filled with passengers to the full capacity. 

Figure 6.12 shows the variation of the force in the coupler between the 
locomotive and the 1st passenger railcar against the braking torque for two 
cases of wheel loads. Wheel loads of 55 kN (Tokunaga and Sogabe 2012) and 
69 kN (Chen and Li 2000) correspond to the empty and full capacity 
passenger railcars, respectively. In both cases, wheel loads of 75 kN (Chen 
and Li 2000) are assumed for the locomotive. The properties of the couplers 
connecting neighbouring railcars employed in the study are presented in Table 
6.1 (Chou et al. 2007). As can be seen in Figure 6.12, the coupler force in the 
case of full capacity railcars is noted to be generally smaller than that of empty 
railcars. There is a wider range of braking torques in which there is 
longitudinal interaction between railcars when the passenger railcars are 
empty as compared to the case when they are full capacity. This can be 
explained as due to the lesser adhesion between the wheels and rail for the 
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case of empty passenger railcars, which then tends to travel faster than the 
locomotive resulting in longitudinal interaction.   

 
Figure 6.12. Effect of passenger railcar’s wheel load on coupler force. 

6.6.6 Effect of wheel-rail contact condition  

The adhesion wheel-rail force depends on the wheel-rail contact 
condition, which ultimately affects the response of the multiple-railcar train 
subject to braking. Earlier results presented correspond only to dry contact 
condition. It is expected that the multiple-railcar train dynamics would be 
affected if the wheel-rail contact condition is wet. This section presents the 
results of a study comparing the response of the train subject to braking under 
wet and dry contact conditions. 

Figure 6.13 shows the variation of the compressive coupler force against 
the applied braking torque for both dry and wet wheel-rail contact conditions. 
Under wet condition, longitudinal interaction between railcars occurs at a 
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smaller braking torque as compared to the dry case condition. The peak value 
in the compressive coupler force is lower in the wet condition as compared to 
the dry case. In both cases, the peak coupler force is attained when the braking 
torque is at the corresponding critical value, namely, 7.5 kN m and 13.5 kN m 
for the wet and dry conditions, respectively.  

The wheel-rail adhesion depends on the wheel-rail condition, being 
smaller when it is wet.  In view there is smaller adhesion, railcars tend to be 
moving independently which explains why there is less longitudinal 
interaction and hence smaller peak compressive coupler force. While it 
appears ‘favourable’ that the wet condition results in smaller interaction and 
coupler force, it is important to take note of the unfavourable conclusions 
made earlier in Chapter 5 regarding the safe braking distance and duration of 
wheel sliding.  

 
Figure 6.13. Effect of wheel-rail contact condition on the coupler force. 
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6.6.7 Effect of initial train speed  

Earlier chapters have demonstrated that the initial train speed plays a 
significant factor on the dynamics of the HSR when a single-railcar train is 
subject to braking.  It is therefore expected that the initial train speed will also 
be a key factor in the case of a multiple-railcar train subject to braking, in 
particular the longitudinal interaction between railcars.  This section presents 
the results of a study in which three typical speeds of today’s high-speed trains 
are selected as the initial speed of the train prior to the application of wheel 
braking torque.  

Figure 6.14 shows the variation of the maximum compressive coupler 
force between the locomotive and 1st railcar against the braking torque for 
various initial train speeds. It can be seen that the magnitude of the peak 
coupler force is inversely affected by the magnitude of the initial train speed. 
In other words, the peak is smaller when the initial train speed is higher and 
vice-versa. The coupler force attains its peak when the braking torque is 
applied at the critical value. As explained in earlier chapters, the critical 
braking torque is the smallest torque that results in the condition when all 
wheels are sliding. Figure 6.14 shows that the critical braking torque is also 
inversely affected by the initial train speed, being smaller for higher initial 
train speed and vice-versa.  

The adhesion between the wheels and rail is dependent on initial train 
speed, being smaller for higher initial train speed. As explained in the previous 
section, the lesser adhesion between wheel and rail results in railcars tending 
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to travel independently. There is therefore lesser longitudinal interaction and 
hence smaller peak compressive coupler force. Thus, while it appears 
‘favourable’ that higher initial train speed results in smaller interaction and 
coupler force, it is important to take note that there is also accompanying 
unfavourable effects due to high initial train speed, including longer braking 
distance, longer duration of wheel sliding, high DAF in wheel contact force 
and higher possibility of wheel jumping.  

 
Figure 6.14. Effect of train speed and braking torque on the coupler force.  

6.6.8 Effect of partial failure in braking mechanism 

In all previous studies, the train is subject to braking through the 
application of braking torque to all wheels of the train. This is the normal 
mode of braking to bring a train from a high speed to a halt. For the 
unfortunate incidence where there is partial failure in the braking mechanism, 
it is expected that there will be substantial effect on the longitudinal 
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interaction between railcars. This section presents the results of the scenario of 
partial failure in the braking mechanism of the train in which there is failure in 
the braking mechanisms of the passenger railcars. Therefore, the braking of 
the train is dependent solely on the braking mechanism of the locomotive. 

Figure 6.15 shows the variation of maximum compressive coupler force 
between the locomotive and 1st passenger railcar against various braking 
torques, which is applied to at all wheels of the entire train (Case 1) and all 
wheels of the locomotive only (Case 2). It can be seen from the figure that 
there is virtually no force induced in the train coupler when the applied 
braking torque is smaller than approximately 8.5 kN m for the two cases 
considered. When the braking torque is further increased, the coupler force 
induced in Case 2 increases significantly whilst there is no corresponding 
immediate increase in the coupler force for Case 1.  In both cases, the coupler 
force reaches a peak when the applied braking torque reaches approximately 
13.0 kN m. The peak value for Case 2 is noticeably larger than Case 1. The 
coupler force reduces rapidly from the peak value to virtually 0 and a smaller 
non-zero value when the braking torque is increased further for Cases 1 and 2, 
respectively. From Figure 6.15, it can be seen that there is a wider range of 
braking torque that will induce high values of coupler force when there is 
partial failure in the train’s braking mechanism as compared to the case where 
there is no failure. 

The trend in the results presented in Figure 6.15 can be readily 
explained. When the braking torque is smaller than 8.5 kN m, all wheels of the 
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entire train tend to roll till the train comes to a halt for both cases. Under such 
a situation, the maximum relative motion between neighboring railcars is 
smaller than the coupler gap. There is thus no longitudinal interaction between 
railcars and no development of force in the coupler. When the braking torque 
is increased, the passenger railcars in Case 2 tend to move faster than the 
locomotive as there are no brakes applied to the passenger railcars’ wheels 
unlike in Case 1. Consequently, there is more longitudinal interaction and 
hence larger coupler force in Case 2 as compared to Case 1.  

 
Figure 6.15. Effect of braking mechanisms on the coupler force. 

6.7 Concluding remarks 

This chapter is concerned with the dynamic response of multiple-railcar 
train subject to braking using the MEM, where longitudinal interaction 
between railcars is of major concern. The mathematical model of a multiple-
railcar train subject to braking is presented. The model considers the 
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interaction between railcars connected to each other through train coupler. 
Slack action due to relative motion between railcars is considered. The model 
also considers the possibility of wheel sliding, which may occur sequentially 
when the braking torque applied is large enough. The model also considers the 
effect of the coupler gap, which tends to cause cyclical variation in the coupler 
force ranging from compression to tension.  

The MEM solutions obtained in this study are verified through 
comparison with results obtained via the FEM due to the lack of available 
results in the literature. Both methods gave results which are found to be 
virtually the same. As highlighted throughout this thesis, the MEM enjoys 
significant computational efficiency over the FEM. The minimum number of 
railcars that can accurately model a multiple-railcar train is found to be 3. In 
other words, the response of a 3-railcar train would give nearly the same 
response of a train comprising of more railcars. In view of significant 
computational cost savings, it is therefore recommended that any study of a 
multiple-railcar train need to consider only 3 railcars.  

Results of a parametric study to investigate the effects of various factors 
on the dynamic response of high-speed multiple-railcar train subject to braking 
have been presented. Parameters considered include the magnitude of braking 
torque, coupler stiffness, coupler gap size, wheel load, wheel-rail contact 
condition and initial train speed. The effect of partial failure in the braking 
mechanism of the train was also investigated. 
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When a multiple-railcar train decelerates due to braking, the longitudinal 
interaction between neighbouring railcars results in periodic significant spikes 
in the time histories of the deceleration and bogie’s pitching motion of the 
locomotive. The longitudinal interaction does not result in a significant but 
nonetheless noticeable effect on the vertical dynamic response. The 
longitudinal interaction has virtually no effect on the magnitude of the critical 
and optimal braking torques. The difference noted between passenger railcar 
and locomotive is due to the difference in mass of these two types of railcars. 
The longitudinal interaction has negligible effect on the duration of wheel 
sliding. Only when the applied braking torque lies between the optimal and 
critical torques, the longitudinal interaction results in a noticeable increase in 
the duration of wheel sliding for the trailing wheel.  

There is a wider range of braking torque that will induce high 
longitudinal interaction when the passenger railcars are empty as compared to 
the case when they are full capacity. The same finding is also found when 
there is partial failure in the train’s braking mechanism as compared to the 
case where there is no failure. The longitudinal interaction in the case of full 
capacity railcars and no failure in the train’s braking mechanism is noted to be 
generally smaller as compared to the case of empty railcars and partial failure 
in the train’s braking mechanism, respectively. While it appears ‘favourable’ 
that the wet condition and higher initial train speed result in smaller interaction 
between railcars and coupler force, it is important to take note of the 
unfavourable conclusions made earlier in Chapter 5 regarding the safe braking 
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distance, duration of wheel sliding, DAF in contact force and higher 
possibility of occurrences of the jumping wheel phenomenon. 
 Similar to a single-railcar train, the magnitude of the applied braking 
torque controls significantly the dynamic response of a multiple-railcar train. 
The braking torque should be applied at the optimal torque value as this would 
lead to the best safety in terms of smallest braking distance as well as ensuring 
structural stability and strength as there is no occurrence of wheel sliding and 
almost zero force in the train coupler.  
 When the braking torque applied is at the critical torque value, the DAF 
in wheel contact force and the compressive force developed in the train 
coupler both reached their peak values. Thus, in both single and multiple-
railcar trains, the present study reveals that the braking torque applied should 
not match the critical torque value as this increases the chance of failures in 
train structural components. In the case of multiple-railcar train, the train 
coupler would experience peak compressive and tensile forces. The peak 
compressive force is found to be higher than the peak tensile force, which has 
implications in the design of the train coupler. As there are the repetitive 
cyclical variations between peak compressive and peak tensile force, there is 
therefore an increased concern in the fatigue failure of the train coupler. In 
addition, all wheels of the train are in sliding motion almost throughout the 
period of deceleration. Thus, there is additional unease over the overall 
stability of the train due to heightened chance of train derailment, especially if 
accompanied with occurrences of jumping wheel phenomenon. 
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CHAPTER 7. CONCLUSIONS AND 
RECOMMENDATIONS FOR FUTURE WORK 

The key points and conclusions from the present study are summarized 
in the next section. Finally, this chapter concludes with a section on the 
recommendations for future work.  

7.1 Summary of key points  

The main objective of the present study is to investigate the dynamic 
response of high-speed train subject to braking. Overall, the thesis represents a 
significant contribution to the subject in the context of the relatively new 
method of MEM. Compared to previous works on the MEM, the main 
findings in enhancing the method can be summarized as follows: 

(1) A solution strategy to deal with non-uniform speed, instead of using 
the previous method of piecewise constant speed (Chapters 3 and 4). This is 
necessary to solve problems where acceleration or deceleration is not a priori 
known, which is the case for braking (especially unplanned deceleration due to 
emergency braking). 

(2) In achieving point 1 above, the system dynamics has to include 
forces on moving train such as running resistance, wheel-rail contact force 
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(nonlinear Hertz model), wheel-rail adhesion force (Chapter 5). This enables 
the study of effects of braking on wheel sliding.  

(3) Extended to include interaction of multiple railcars accounting for 
couplers with slack action (Chapter 6). This enables parametric studies of 
more realistic train-track dynamics due to braking.  

The fundamental novel features of MEM remain largely the same, i.e. let 
the elements flow with the moving train and computational efficiency is thus 
improved substantially. The above enhancements indeed expand the 
applicability of MEM in a significant way to solve practical train-track 
dynamic problems. The thesis confirms that the MEM outperforms the FEM 
by presenting many numerical examples with good results.  

7.2 Conclusions 

 The proposed computational scheme based on the MEM for the 
treatment of HSR subject to braking are verified against available analytical, 
MEM solutions as well as FEM solutions wherever necessary. Results from all 
methods are found to be agreeable thereby validating the proposed MEM 
adopted in the present study. The MEM, which is a variation of the FEM, 
however enjoys significant computational efficiency over the FEM and 
overcomes the inherent complications faced by the FEM.  
 Two computational schemes, one implicit and the other explicit, to treat 
the nonlinear normal wheel-rail contact force were discussed and presented. 
The implicit scheme is simpler to implement but is restricted only to simple 
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train models. The other explicit scheme is more complicated and requires 
generally more computational effort. This must be employed when dealing 
with more complicated train models. Where braking is involved, there is the 
additional complication arising from the nonlinear wheel-rail adhesion force. 
Thus, it is recommended that the explicit scheme be employed to investigate 
the dynamic response of single- and multiple-railcar train subject to braking. 
 To account for the wheel-rail interaction, two normal contact models 
were employed and their accuracy and suitability evaluated. It is found that the 
computationally cheaper linearized contact model is accurate enough to be 
used whenever the expected dynamic effect of the system is not large. On the 
other hand, it should be emphasized that the computationally more expensive 
but more accurate nonlinear contact model must be employed whenever the 
dynamic effect of the HSR system is expected to be significant. A 
combination of small wheel load, high train speed and severe track condition 
promotes larger dynamic effects and hence the greater chance of occurrence of 
the jumping wheel phenomenon. This has important implication on the track 
maintenance program. It is critical that track maintenance be properly 
exercised and/or the train operational speed be moderated to avoid any 
occurrence of the jumping wheel phenomenon, especially for old tracks where 
track corrugation is likely to be severe. 
 When a train travels at a cruising speed higher than the resonant speed of 
the HSR, the dynamic response is found to be significantly larger when the 
speed of the train crosses the resonant speed as the train decelerates to come to 
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a halt. The momentary spike in the dynamic response, including the higher 
chance of occurrences of the jumping wheel phenomenon, needs to be 
considered in the safe operation of the HSR. From an engineering view point, 
it is therefore important to design the train-track-foundation system and 
propose a track maintenance program such that the resonant speed of the 
system is sufficiently higher than the maximum operational speed of the train. 
 When the train is subject to braking under emergency situation, the 
braking torque should be applied at the optimal torque value as this would lead 
to the best safety in terms of smallest braking distance as well as ensuring 
structural stability and strength as there is no occurrence of wheel sliding and 
almost zero force in the train coupler. The study also revealed that the braking 
torque applied should not match the critical torque value as this increases the 
chance of failure in train structural components due to the development of 
high DAF in contact force as well as peak compressive and tensile coupler 
forces.  

The minimum number of railcars that can accurately model a multiple-
railcar train is 3. In other words, the response of a 3-railcar train would give 
nearly the same response of a train comprising of more railcars. In view of 
significant computational cost savings, it is therefore recommended that any 
study of a multiple-railcar train need to consider only 3 railcars. 
 It was found that the peak compressive force is higher than the peak 
tensile force, which has implications in the design of the train coupler. Due to 
the repetitive cyclical variations between peak compressive and peak tensile 
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force, there is therefore an increased concern in the fatigue failure of the train 
coupler. 

7.3 Recommendations for future work 

The present study focused on the 2-D train model travelling over a 
straight railway beam resting on two-parameter elastic damped foundation. 
The train is assumed to be cruising at a typical speed of today’s high-speed 
trains, before braking torques are applied at all wheels of entire train to 
decelerate the train to a halt. The railhead roughness is assumed to be 
sinusoidal. In view of the above scopes of the present study, some 
recommendations are given for further works on this subject: 
(1) Dynamic analysis of a curved HSR subject to braking 

The Spain derailment (2013) occurred when the train travels over a 
curved track at a speed that is 2.5 times higher than the design speed. This 
presents a good motivation for the study of high-speed train subject to braking 
as it travels over a curved track segment. Various parameters to be 
investigated include the initial train speed, the curvature and superelevation of 
the track and the magnitude of braking torque.  
(2) Three-dimensional MEM study of the dynamics of HSR 

In reality, train-track-foundation problems are three-dimensional (3-D) 
in nature. However, 2-D models are frequently employed by various 
researchers to solve such problems due to the high computational costs 
involved in employing 3-D models. Furthermore, 2-D models are generally 
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accepted to be able to provide reasonable estimates of the dynamic response. 
When would 3-D modeling be necessary is an important question to be 
investigated. Parameters such as train speed, track irregularity conditions, 
track-gauge and foundation properties would obviously affect the response 
and hence the accuracy of a 2-D model as compared to a 3-D model. 

 
(3) Dynamic response of HSR over a curved rail in 3-D space 

As rail tracks are often laid over realistic terrain, the tracks are typically 
curved in 3-D space. The dynamic response of HSR over a curved rail in 3-D 
space would therefore be useful. In addition to the parameters that are 
important for HSR over a straight track, other parameters that can be included 
in the study are associated with the 3-D nature of the problem including the 
angles of inclination and curvatures of the track. It is envisaged that the degree 
of curvature and angle of inclination have an appreciable effect on the stability 
and safety of the train carriage as well as the level of comfort to the 
passengers.  
(4) Dynamic response of HSR over a floating bridge 

Due to land scarcity in many parts of the world, there is increasing 
interests to harvest useable space from the sea. Many researches are presently 
carried out to investigate the feasibility of employing very large floating 
structures (VLFS) for various purposes, such as oil storage facility, floating 
city and floating wind-mill farm. These platforms are very large and 
infrastructures such as roads and train-tracks are needed to complement the 
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platform.  Floating bridges are also increasingly being considered to increase 
the network of roads and rails. Thus, a study on the dynamics of HSR over a 
floating platform or bridge would provide useful results in the research into 
the use of VLFS and floating bridges.  
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