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SUMMARY 
 

Besides neurodegeneration, cerebrovascular disease (CeVD) is also considered a 

major cause and contributor to cognitive decline and dementia. Damage to the 

cerebral small and large blood vessels has been implicated in CeVD pathology. 

Magnetic Resonance Imaging (MRI) correlates of cerebral small vessel diseases 

include lacunes and white matter hyperintensities which have been widely linked to 

stroke, cognitive decline, dementia and mortality. However, these lesions do not fully 

capture the burden of CeVD in the brain. In this context, cerebral microbleeds and 

microinfarcts have emerged as the new imaging markers of CeVD pathology. 

Moreover, large vessel disease such as intracranial stenosis has increasingly gained 

importance in Asian population due to higher prevalence of vascular risk factors. 

Advancement in MRI quantitative segmentation of the brain parenchyma (cortex and 

subcortical regions) has also revealed subtle neuronal damage in cognitive 

impairment and dementia. However, the data on the determinants and the 

consequences of these CeVD markers and involutional changes are lacking.   

Despite advances in neuroimaging techniques, damage to the cerebral small vessels is 

difficult to visualize in-vivo. Retina as an extension of the brain, can serve as a 

complimentary technique to study subtle and early microvascular and neuronal 

damage involved in CeVD and cognitive impairment. Retinal microvascular (vessel 

calibers) and neuronal changes (thinning of retinal nerve fiber layer) have been linked 

to cognitive impairment, dementia and poor cognitive performance on the 

neuropsychological testing. However, association of other retinal quantitative 

parameters such as fractal dimension, tortuosity and ganglion cell inner plexiform 

layer with CeVD and involutional changes remains to be explored.  

Hence, the major objective of this proposal is to examine cerebral and retinal imaging 

biomarkers for cognitive impairment and dementia. Based on this objective advanced 
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cerebral and retinal imaging techniques are applied in two observational studies to 

demonstrate the following;  

1) Role of cerebral small vessel diseases (cerebral microbleeds and microinfarcts) in 

cognitive impairment and dementia, 

2) Role of large vessel disease (intracranial stenosis) in cognitive impairment and 

dementia,  

3) Role of involutional changes (cortical thinning and subcortical structure volumes) 

in cognitive impairment and dementia,  

4) Association of retinal microvascular and neuronal layers changes with CeVD, 

involutional changes and cognitive impairment. 

The major findings from this thesis are:  

1) Cerebral small vessel diseases (cerebral microbleeds and microinfarcts) are 

associated with cognitive impairment and poor performance on neuropsychological 

assessment. 

2) Large vessel disease (intracranial stenosis) is highly prevalent in Chinese and is 

associated with cognitive impairment and dementia in the presence of ischemia. 

3) Cortical thinning and decreasing subcortical structure volumes are associated with 

reduced performance in global and domain specific cognitive scores. 

4) Retinal microvascular changes (fractals and tortuosity) are associated with 

cerebrovascular diseases on MRI scans and preclinical cognitive impairment. 

5) Retinal neuronal damage reflected by thinning of ganglion cell inner plexiform 

layer is associated with cerebral atrophy on MRI scans.  

In conclusion, both cerebral and retinal parameters may serve as: 
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- Surrogate markers to study the exact role of microvascular pathology and 

involutional changes 

- To develop new treatment and prevention strategies of cognitive decline and 

dementia.
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1.  INTRODUCTION 

1.1  Aging, Dementia and Cerebrovascular Diseases 

The world population is aging rapidly. The less economically developed countries 

gain about 10 hours per day in life expectancy1 while the global maximum life 

expectancy continues to increase linearly as it has over the last 160 years due to better 

health care, sanitation, education and economic wellbeing.2 People aged 60 years and 

over make up 12.3% of the global population which is expected to increase up to 22% 

by 2050. The World Health Organization (WHO) has projected that by 2025, about 

three quarters of world population aged 60 years and above will be living in 

developed countries.3 As a result of the rapid demographic aging, the burden from 

common age related diseases such as dementia is therefore expected to rise 

dramatically.4 This will not only affect the quality of life of patients and their care 

givers but will also increase the health care costs. World Alzheimer Report has 

pointed out that the annual societal and economic cost of dementia has increased by 

35% from its previous estimate of 604 billion USD.5 Asia and Europe are the two 

main regions where a number of countries will face an increase in aging population in 

the near future.6 As nearly 60% of the total world population of 7 billion is living in 

Asia, the burden of dementia will have major implications on the Asian continent 

compared to Europe and United States.7 Specifically, it is expected that not only will 

there be a rise in the proportion of persons aged ≥ 60 years among the total Asian 

population from 10% in 2010 to 24% in 2050, but also the absolute number of elderly 

will dramatically increase from 414 million to 1.2 billion.7, 8  

The most common type of dementia is Alzheimer’s disease (AD) followed by 

vascular dementia and other rare causes such as Fronto-Temporal Dementia and 

Lewy Body Dementia.9 There is increasing evidence that before a clinical diagnosis 

of AD is made, early signs of the disease are already present. Mild cognitive 

impairment (MCI) or cognitive impairment no dementia (CIND) is considered as a 
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transitional stage between normal cognitive function and AD. Persons diagnosed with 

MCI or CIND are in general, at high risk of conversion to AD paralleled by increased 

decline in disability and mortality.10, 11 However, the mechanism behind this increased 

risk remains unknown. 

Besides neurodegeneration, cerebrovascular diseases (CeVD) such as strokes and 

white matter lesions are considered a major cause and contributor to cognitive decline 

and dementia in aging population.12 Autopsy studies have shown that the vascular 

pathology commonly co-exist in subjects diagnosed with AD and may even trigger or 

potentiate the existing neurodegenerative process.13 This is possibly because both 

CeVD and AD share common vascular risk factors such as hypertension, 

hyperlipidemia and diabetes.14 Overt clinical symptoms of CeVD and dementia 

reflect irreversible brain damage thereby highlighting the importance of early markers 

of vascular pathology and involutional changes. These markers of microvascular 

damage and involutional changes may allow early identification of at-risk patients 

and hence could be a potential target for early intervention. Moreover, these 

biomarkers may also serve as surrogate markers of disease progression providing 

information on prognosis and treatment efficacy.  

1.2  Magnetic Resonance Imaging Correlates of Cerebrovascular Diseases 

Non-invasive neuroimaging techniques such as magnetic resonance imaging (MRI) 

play an important role in identifying both clinical and subclinical structural brain 

changes. Over the last two decades, MRI has been increasingly utilized in unraveling 

the role of cerebrovascular disease pathology involved in cognitive impairment and 

dementia. Manifestations of CeVD on MRI commonly include subcortical infarcts, 

lacunes, white matter hyperintensities (WMH), cerebral microbleeds, enlarged 

perivascular spaces and even brain atrophy. An extensive work on infarcts and WMH 

has demonstrated their link with cognitive dysfunction and mortality. Now with the 
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advancements in conventional MRI hard and soft wares, it is possible to visualize 

other important markers of CeVD which includes cerebral microbleeds and 

microinfarcts. Moreover, there is an increasing focus on large vessel diseases (extra 

and intracranial stenosis) in Asians due to higher prevalence of vascular risk factors. 

Besides these visible vascular diseases on MRI, it is also feasible to quantitatively 

assess underlying subtle changes involved in involutional changes which include 

cortical thickness and volumes of the brain parenchyma.  

However, conventional MRI correlates of these CeVD do not fully capture the burden 

of vascular pathology in the brain as other small parenchymal lesions and 

vasculopathologic changes remain undetected in-vivo. As an expensive technique, 

MRI cannot feasibly be applied to large population based studies. Furthermore, there 

are several contraindications to MRI which includes pacemakers, metallic implants 

and claustrophobia which makes it less practicable in the elderly. 

1.3  Retinal Imaging – A Complimentary Technique to Study Cerebral 

Microvascular and Involutional Changes 

Retina shares several embryological, physiological and anatomical features with 

cerebral microcirculation while maintaining a close contact via optic nerve. In 

contrast to MRI, retinal imaging remains a time efficient and less expensive 

technique. Hence retinal imaging can be utilized as a complimentary technique to 

non-invasively assess subtle microvascular and involutional changes in the brain. 

These retinal changes may serve as biomarker of preclinical stages of the disease and 

might also predict the onset of the disease.  

Systemic vascular diseases such as hypertension, hyperlipidemia and diabetes not 

only affects the cerebral microvessels but also the retinal vasculature which are 

visible on fundus photography as retinopathy signs- the end stage of retinal 

microvascular damage. These changes have been previously link to stroke, dementia 
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and other cardiovascular events. With the advent of the geometric computer based 

methods, it is now possible to quantify retinal vascular parameters which reflect early 

changes in the retinal vascular network. Compared to the qualitative retinopathy 

signs, changes in retinal microvessels can even be assessed in the absence of visible 

pathology and hence can provide insight into the role of microvascular pathology in 

the preclinical stages of the CeVD and cognitive impairment.  

Apart from retinal microvessels, retinal axonal and ganglion cells are connected to the 

central nervous system through the optic nerve. Structural changes to the optic nerve 

can be non-invasively measured using high resolution techniques which can quantify 

retinal nerve fiber thickness. Neurodegeneration can directly affect the retinal axons 

and cell bodies or vice versa through transneuronal degeneration. Retinal neuronal 

loss can be found in dementia, stroke and other neurodegenerative diseases 

(Parkinson’s disease and multiple sclerosis). So far, these studies have not been able 

to provide conclusive answers. Therefore, three dimensional architecture of the retina 

still remains to be analyzed. 

2.  OBJECTIVE AND SPECIFIC AIMS  

This thesis intends to explore whether both brain and retina can serve as biomarkers 

for cerebrovascular and involutional changes involved in cognitive impairment and 

dementia. 

Hence, the major objective of this thesis is to examine the age-related structural 

changes in the brain and retina related to cognition using novel structural 

cerebral magnetic resonance (MR) and retinal imaging markers. Based on the 

overall objective, the following specific aims will be addressed in this thesis; 

Specific aim 1 – Brain markers of small vessel disease 

1a. To examine the association of cerebral microbleeds and cognitive impairment. 
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1b. To determine the clinical relevance of cerebral cortical microinfarcts on 3 Tesla in 

a memory clinic population. 

1c. To study the determinants and consequences of cerebral cortical microinfarcts on 

3 Tesla in a subsample of population based study. 

Specific aim 2 – Brain marker of large vessel disease 

2a. To examine the association of Intracranial stenosis (ICS) with cognitive 

impairment and to show whether this association is mediated by MRI markers in a 

subsample of population based study. 

2b.  To examine the association of intracranial stenosis with cognitive impairment, 

dementia and their subtypes in a memory clinic population. 

Specific aim 3 – Brain markers of involutional changes 

3a.  To study the determinants and consequences of cortical thickness. 

3b. To study the risk factors of subcortical structures on neuroimaging and their 

association with cognitive impairment and dementia. 

Specific aim 4 – Retinal markers of cerebrovascular disease and involutional 

changes 

4a. To examine the link between quantitative retinal vascular parameters and MRI 

markers. 

4b. To examine the association of quantitative retinal vascular parameters and 

preclinical cognitive impairment. 

4c.  To examine the association of retinal neuronal parameters with cerebral atrophy 

on MRI. 
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3. OUTLINE OF THE THESIS 

The work described in this thesis is summarized in 14 chapters. The first 3 chapters of 

this thesis include scope of the study, aims and objectives, literature review and 

methodology. In chapters 4 to 13, the whole thesis is divided into three main parts; 1) 

Brain markers of cerebrovascular diseases, 2) Brain markers of involutional changes, 

and 3) Retinal markers of cerebrovascular diseases and involutional changes. The 

final chapter 14 covers the synthesis with future implications.  

Chapter 1 describes the scope of the study, objective and specific aims which this 

thesis attempts to study. 

Chapter 2 compiles the literature review related to established cerebrovascular 

disease markers of cognitive impairment and dementia and how the other MRI 

markers additionally add to the cerebrovascular disease burden and affect cognition. 

Moreover, I also describe how retinal imaging helps to study microvascular and 

involutional changes in the brain.  

Chapter 3 describes the study methodology in detail which consists of study 

population, study design, risk factors, determinants and outcomes of interest 

examined in each study. Retinal imaging, neuroimaging and cognitive assessments 

common among different studies are described in detail. Study specific determinants 

and imaging (brain and retina) unique to each study are further described in each 

chapter. 

Part I includes the next five chapters on the brain markers of cerebrovascular diseases  

Chapter 4 examines the effects of cerebral microbleeds on cognition from a 

subsample of population based study- the Epidemiology of Dementia In Singapore 

study (EDIS). 
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Chapter 5 investigates the feasibility of detection of cerebral cortical microinfarcts 

(CMIs) on 3Tesla MRI and further determines the clinical relevance of this emerging 

new marker of CeVD in dementia. This is performed in a memory clinic setting. 

Chapter 6 explores the determinants and consequences of CMIs. The association of 

CMIs with brief cognitive tests and cognitive domains are examined using data from 

the EDIS study. 

Chapter 7 investigates the association of intracranial stenosis (ICS) with cognitive 

impairment and whether these associations are mediated by MRI markers. This is 

again performed in the EDIS cohort. 

Chapter 8 further investigates the role of ICS in cognitive impairment and dementia.  

The association of ICS with vascular vs. non-vascular subtypes of cognitive 

impairment is also explored. This is a case control study recruiting cases from the 

memory clinic and controls from both community and memory clinic. 

Part II includes two chapters on brain markers of involutional changes. 

Chapter 9 aims to identify the risk factors of cortical thickness (a reflection of 

cerebral involutional changes) and its eventual effects on cognition. Correlations of 

cortical thickness with varying severity of cognitive impairment and cognitive 

performance are performed in the EDIS cohort. 

Chapter 10 further explores the subcortical structure volumes in cognitive 

impairment and dementia. Major determinants and consequences of subcortical 

structures are reported from EDIS study whereas the findings on specific pattern of 

subcortical volume reduction in vascular vs. non vascular cognitive impairment is 

examined in memory clinic data. 

Part III includes three chapters on retinal markers of cerebrovascular diseases and 

involutional changes 
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Chapter 11 investigates the association of the retinal vascular parameters with 

cerebral small vessel diseases. This is performed in the EDIS study where the 

subjects have both retinal and neuroimaging gradings. 

Chapter 12 examines the association of retinal vascular parameters with preclinical 

stages of cognitive impairment. These associations are explored with both the clinical 

outcomes and neuropsychological assessments in participants from EDIS study. 

Chapter 13 examines whether thinning of the retinal neuronal layers is associated 

with global and regional cerebral atrophy on MRI among participants of the EDIS 

study.   

Chapter 14 includes a synthesis of the main findings of the chapters 4 – 13, with a 

discussion on the implications of these markers in cerebrovascular diseases and 

cognitive impairment. Finally limitations and future perspectives from this thesis are 

also discussed.  

 

 

 

 

 

 

 

  



Chapter 1 

31 
 

CHAPTER 1 – REFERENCES 
 
1. World Health Organization. World Health Statistics 2014. WHO press. 2014; 

1-180. 

2. Oeppen J, Vaupel JW. Demography. Broken limits to life expectancy. 

Science. 2002; 296:1029-31. 

3. Rizzi L, Rosset I, Roriz-Cruz M. Global epidemiology of dementia: 

Alzheimer's and vascular types. BioMed research international. 2014; 2014: 908915. 

4. Larson EB, Langa KM. The rising tide of dementia worldwide. Lancet. 2008; 

372: 430-2. 

5. World Alzheimer Report. The Global Impact of Dementia - an analysis of 

prevalence, incidence, cost and trends. Alzheimer Disease International, London. 

2015; 1-88. 

6. Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi 

consensus study. Lancet. 2005;366:2112-7. 

7. Catindig JA, Venketasubramanian N, Ikram MK, Chen C. Epidemiology of 

dementia in Asia: insights on prevalence, trends and novel risk factors. Journal of the 

neurological sciences. 2012;321:11-6. 

8. Population Division of the Department of Economics and Social Affairs of 

the United Nations Secretariat. World Population Prospects: The 2008 Revision. 

2008. http://esa.un.org/unpp (accessed Jan 07 2010). 

9. Ritchie K, Lovestone S. The dementias. Lancet. 2002;360:1759-66. 

10. Artero S, Touchon J, Ritchie K. Disability and mild cognitive impairment: a 

longitudinal population-based study. Int J Geriatr Psychiatry. 2001;16:1092-7. 

11. Hunderfund AL, Roberts RO, Slusser TC, et al. Mortality in amnestic mild 

cognitive impairment: a prospective community study. Neurology. 2006;67:1764-8. 



Chapter 1 

32 
 

12. Pantoni L, Poggesi A, Inzitari D. Cognitive decline and dementia related to 

cerebrovascular diseases: some evidence and concepts. Cerebrovasc Dis. 2009;27: 

191-6. 

13. Attems J, Jellinger KA. The overlap between vascular disease and 

Alzheimer's disease--lessons from pathology. BMC medicine. 2014;12:206. 

14. de Bruijn RF, Ikram MA. Cardiovascular risk factors and future risk of 

Alzheimer's disease. BMC medicine. 2014;12:130. 

 

 

 

 

 

 

  



Chapter 1 

33 
 

CHAPTER 1 – FIGURE  
 
Figure 1: Markers of cerebrovascular diseases and involutional changes 

In the Alzheimer’s pathological cascade, amyloid and tau deposition takes place in the early 
stages of the disease followed by brain and retinal changes before the development of clinical 
symptoms. These brain and retinal changes may occur concurrently and hence certain 
biomarkers on cerebral and retinal imaging can reflect the microvascular and involutional 
changes in the brain. Manifestations of cerebrovascular diseases on MRI include infarcts, 
white matter hyperintensities, microbleeds, microinfarcts and intracranial stenosis. Retinal 
mircovascular damage is reflected by changes in calibers, fractional dimension and tortuosity. 
Neuronal damage in the brain can be measured by cortical thickness and subcortical structures 
volume whereas on the retinal images it is identified by thinning of the retinal neuronal layers.  

 

 

 

 



 

34 
 

 

 

 

 

 

 

 

CHAPTER 2:  

LITERATURE REVIEW 
  



Chapter 2 

35 
 

1. PREVALENCE OF DEMENTIA AND COGNITIVE IMPAIRMENT- 

FACTS AND FIGURES 

Dementia is one of the most important neurological disorders in the elderly. A recent 

WHO publication has reported that there are currently 35.6 million people living with 

dementia worldwide; this number is expected to triple by 2050.1 The prevalence of 

dementia rapidly increases from 2-3% in ages 70-75 years to 20-25% in ages 80 and 

above. Moreover, whilst approximately 60% of patients with dementia were living in 

developing countries in 2001, this is expected to rise to 71% by 2040.2 This is due to 

the non-uniform increase in the number of dementia patients with four fold increase 

in Asia compared to two fold increase in Europe and USA.2 The prevalence of 

dementia in Caucasian population ranges from 5.4% in those aged >60 years to 

68.3% at age 90 years and above. With respect to the pre-clinical stages of dementia 

[cognitive impairment no dementia (CIND)], the overall prevalence ranges from 

14.9% to 22.2% in Caucasians.2 Previous studies from Asian population have 

reported the corresponding figures to be 2.6-60.5% for dementia3, 4 and 7.2-22.2% for 

CIND.5, 6  

Our recent findings from Singapore population have shown an overall age 

standardized prevalence of cognitive impairment to be 15.2% in Chinese7 and 25.5% 

in Malays.8 These results on ethnic differences have implications beyond Singapore 

as they constitute the major ethnic groups in South East Asia such as Malaysia and 

Indonesia. This higher prevalence of cognitive impairment among Asia Pacific 

regions will put a significant burden on the health care systems in these regions.8 

Hence it is important to target research efforts on Asian populations so as to identify 

novel markers for pre-clinical cognitive impairment and dementia which are 

economically feasible for predicting and monitoring disease progression.  

2.  DEMENTIA AND COGNITIVE IMPAIRMENT 

2.1 Dementia 
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Dementia- a clinical syndrome – is characterized by slow and progressive loss of 

memory and other cognitive abilities (such as language, comprehension, attention, 

judgment) which are sufficiently severe to interfere with a person’s everyday 

activities. A clinical diagnosis of dementia is based on the Diagnostic and Statistical 

Manual of Mental Disorders – 4th edition (DSM-IV). According to this criteria, the 

development of multiple cognitive deficits is necessary for diagnosis of dementia 

which includes 1) memory impairment and 2) any one of the followings; language 

problems, inability to identify familiar objects/faces, impaired ability to carry out 

motor activities, disturbance in planning, organizing and sequencing, 3) significant 

impairment in social and occupational functioning, 4) sudden or gradual onset with 

progression in cognitive decline.9 The history of multiple cognitive deficits is usually 

collected from both the patients and caregivers and is also confirmed on the objective 

neuropsychological testing (either brief or detailed tests).  

Mostly dementia is underdiagnosed due to overlapping symptoms with other 

neurological and psychiatric disorders. Moreover, as memory problems are 

considered a normal part of aging process especially in the Asian population, 

dementia is often overlooked or identified at the later stage of the disease.10  

2.2  Types of Dementia  

Alzheimer’s Disease  

Alzheimer’s disease (AD) – the most common type of dementia accounts for 60-80% 

of all dementia cases.11 AD is clinically diagnosed by gradual onset and slow 

progression of cognitive symptoms predominantly memory and one or more other 

cognitive domains together with functional loss. It is distinguished from other types 

of dementia and neurological disorders by lack of substantial cerebrovascular 

diseases on MRI scans. The pathophysiology of AD has been related to the deposition 

of extracellular amyloid beta (Aß) plaques and intracellular neurofibrillary tangles.12 
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In normal conditions, amyloid ß peptides are formed during the metabolism of 

amyloid precursor protein and are rapidly removed from the brain. Due to reduced 

clearance of Aß peptides, they aggregate to form oligomers and eventually deposit in 

the brain in the form of plaques.13 On the other hand, tau protein is a microtubule 

associated protein involved in stabilizing microtubules in neurons. Abnormal 

phosphorylation of tau proteins leads to microtubule instability and their aggregation 

in the form of neurofibrillary tangles. Both amyloid and tau proteins damage neuronal 

synapses and causes neuronal cell death.14 These pathological changes are more 

common in early onset AD than in persons with late onset AD. Grossly, AD is 

characterized by loss of neuronal cell bodies and dendrites (gray matter) together with 

loss of axonal myelin sheath (white matter) of the brain.   

Vascular Dementia 

Vascular dementia (VaD) on the other hand, occurs after stroke and is the second 

most common type of dementia. Clinical history is uniquely represented by sudden 

onset of cognitive deficits after stroke with no recovery or continued deterioration 

after 3 months of clinical stroke, or abrupt deterioration of cognitive function with 

fluctuating or step wise progression in cognitive decline. VaD is primarily due to 

vascular damage and it is mostly correlated with the presence of cerebrovascular 

lesions on MRI scans.15 These lesions may appear in the form of multiple infarcts, 

strategic single infarcts, small vessel diseases, hypoperfusion, hemorrhage or any 

combination thereof.   

2.3   Cerebrovascular Disease and Alzheimer’s Disease 

Despite the clinical classification of AD and VaD, increasing evidences suggest that 

the cerebrovascular disease and AD pathology have significant overlap and similar 

brain structures might be damaged in both AD and CeVD.16, 17 Neuropathological 

studies have shown that AD is accompanied by CeVD features in about a quarter to 
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one-third cases18 and conversely about a half of dementia subjects with CeVD also 

have underlying AD pathology on autopsy.19 This CeVD can be additive with AD 

pathology in impairing cognitive function and increasing the likelihood of dementia.  

2.4  Cognitive Impairment 

Pathological cascade of AD takes place years before the onset of clinical symptoms. 

By the time clinical cognitive deficits appear, irreversible neuronal damage has 

already taken place. Hence it is imperative to identify patients at risk of converting to 

dementia so that early treatment could be targeted at this stage where there is still a 

chance of preserving cognitive function and functional independence. 

Mild Cognitive Impairment 

Mild cognitive impairment (MCI) is considered a transitional stage to dementia 

particularly AD. MCI is characterized by subjective/informant complaints of memory 

problems, impairment in at least one domain in neuropsychological assessment and 

difficulty in performing activities without loss of functional independence.20, 21 The 

annual conversion rate of MCI subjects to dementia is about 5-10% and hence is the 

potential target group for early intervention.22, 23   

Cognitive Impairment No Dementia 

Cognitive impairment no dementia (CIND) is a relatively recent concept and is 

defined based on the impairment in any objective cognitive domains in 

neuropsychological assessment.24 Unlike MCI, CIND subjects do not necessarily 

have to have subjective complaints. CIND has been regarded as an unstable group 

with some persons progressing rapidly into dementia while others experience a more 

indolent course.24, 25 Limited data is available on the subtypes of CIND based on the 

severity and their associated risk factors. 

2.5  Mechanism Behind Cognitive Impairment and Dementia 
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It is increasingly being recognized that systemic vascular diseases such as 

hypertension, hypercholesterolemia and diabetes are the major risk factors for both 

cognitive impairment and dementia.26, 27 It has been suggested that mid-life 

hypertension increases atherosclerosis and lipohyalinosis of the small vessels in the 

brain thus leading to cognitive dysfunction. The relationship between cholesterol and 

dementia is linked to the increased production of amyloid proteins in brain leading to 

neuronal death. Type-II diabetes mellitus on the hand is suggested to play an 

important role in cognitive decline by promoting ischemic cerebral changes 

secondary to hyperglycemia and function as a modulatory factor in association with 

other co-morbid conditions as hypertension and hyperlipidemia.28 This suggests that 

these vascular risk factors act synergistically and promote cerebrovascular diseases 

through microvascular damage and increase the risk of cognitive impairment and 

dementia. 

3.  CEREBROVASCULAR DISEASES 

Cerebrovascular diseases encompass both small and large vessel diseases. 

Cerebral Small Vessel Diseases 

Cerebral small vessel diseases are a group of pathological disorders such as 

arteriosclerosis, atherosclerosis, vasculitis, micro-aneurysms, fibrinoid necrosis that 

affects the small vessels (arteries, arterioles, veins and capillaries) in the brain.29 

These pathological changes dysregulate cerebral blood flow causing local ischemia. 

Disruption of the blood brain barrier results in the leakage of blood and plasma into 

perivascular tissue causing microhemorrhages, edema and tissue damage which is 

visible as ischemic infarcts. Cumulative tissue damage leads to rarefraction and 

demyelination as seen in white matter lesions.30 However, unlike large vessels, 

cerebral small vessels cannot be visualized in vivo. Therefore, lesions in the brain 

parenchyma presumably caused by these small vessel changes have been adopted as 
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markers of small vessel diseases. These markers are identified as lacunes, white 

matter hyperintensities, microbleeds and enlarged perivascular spaces on MRI. In 

order to differentiate these markers on neuroimaging and to have unified definitions 

for grading these lesions, STandards for ReportIng Vascular changes on 

nEuroimaging (STRIVE)31 criteria has been recommended which are as follows;  

Lacunar Infarcts  

Lacunar infarcts are defined as round or ovoid lesions, 3-15 mm in diameter, with 

low signal on T1weighted image and Fluid Attenuated Inversion Recovery (FLAIR); 

a high signal on T2 weighted image, and a hyperintense rim with center following the 

cerebrospinal fluid intensity.  

White Matter Hyperintensities (WMH) 

WMH are defined as signal abnormalities of variable sizes in white matter, 

hyperintense on T2-weighted image or FLAIR, without cavitation.  

Both lacunes and WMH are endemic in the elderly population with a prevalence of 

up to a quarter for infarcts and 96% for any severity of WMH in persons ≥ 60 years. 

Several studies have also shown association of lacunes and WMH with risk of 

stroke32 and development of cognitive impairment and dementia.33-35 These lesions 

are also associated with cognitive decline36, 37 and all-cause mortality35, 38, 39 (Table 2 

– 1a). Hence an extensive work is available on these established markers of CeVD.  

In the past decade, another marker that has been suggested to reflect cerebral small 

vessel disease is the presence of cerebral microbleeds. 

Cerebral Microbleeds (CMBs) 

CMB is defined as focal, rounded areas of hypointensity (T1 and T2 weighted 

images), 2-10 mm in diameter with blooming on T2*-weighted scans, which 

correspond pathologically to hemosiderin deposits surrounding small vessels. In 
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healthy populations the reported prevalence of CMBs ranges from 3.8% to 38.3%,40 

whereas in patients with stroke the corresponding figures may be as high as 50-

70%.41, 42 CMBs in the deep subcortical regions have been linked to hypertension 

whereas those in lobar are believed to be related to cerebral amyloid angiopathy 

(CAA). This amyloid plaque deposits in leptomeningeal and cortical arteries leading 

to vessel occlusion and reduction in microvessel density.43, 44 There is a considerable 

debate on the exact role of CMB in the pathophysiology of cognitive impairment and 

dementia.  The effect of CMB on cognition has been variable. Some studies have 

reported significant association,45 whereas others have either failed to find an 

independent association of CMB and cognitive decline 46-48 or found a striking effect 

on a specific domain (executive function, processing speed) with no effect on other 

cognitive domains49, 50 or brief test51 (Table 2 – 1b). These differences might be due 

to different cognitive tests used (brief tests vs. detailed) and varying criteria to define 

CMBs. 

Despite the extensive literature on cerebrovascular diseases on MRI, there is still 

debate that these MRI correlates of small vessel diseases do not fully capture the 

vascular damage in the brain parenchyma. In this context, cortical cerebral 

microinfarcts have gained increasing attention. 

Cortical Cerebral Microinfarcts (CMIs) 

Over the past decade, several neuropathological studies have suggested that CMIs are 

also manifestations of small vessel disease in addition to the established markers.52, 53 

They are reported to be the most wide spread form of brain infarction and are 

involved in the pathway between small vessel disease and cognitive impairment.54, 55 

CMIs are a common lesion in the elderly and are often seen in autopsy studies 

performed on both healthy elderly and patients with dementia. They are reported to 

be present in 24% of non-demented older adults, 43% of AD patients and 62% of 
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patients with vascular dementia.55 CMIs are most commonly present in the cortex but 

may also appear in the subcortical regions.56 Microscopically, these lesions appear as 

sharply delineated areas of tissue necrosis.57 As CMIs can only be confirmed in 

pathological specimen of autopsied brain, this has its limitations as only small 

samples of brain tissue can be assessed and thus may not represent the true burden of 

such lesions. 

With the advancement of high resolution MRI scanners, it is now possible to detect 

CMIs in-vivo using 7T MRI.58 These lesions appear as perpendicular lesions in the 

cortical ribbon, <5mm in size, hyperintense on Fluid Attenuated Inversion Recovery 

(FLAIR) and T2 sequences and hypointense on T1 weighted images. They are 

distinguished from other hemorrhagic lesion, a vessel, or an artifact if they also 

appear as hypo or iso-intense lesions on FLAIR and T2 images. However, high 

resolution 7T scanning remains an expensive technique with limited accessibility in 

clinical settings. Furthermore there are challenges in terms of image homogeneity and 

strict safety regulations due to high strength magnetic field which restricts patients 

with metallic implants and stents to undergo 7T MRI which may still be possible with 

lower field strength 3T scanning. Hence it is of note that two recent reports have now 

shown that the CMIs are also visible on 3T mainly because of the availability of 

ultrahigh resolution 3T machines58, 59 in both clinical and research settings. However 

limited data exist on the risk factors60 and consequences of CMIs on 3T MRI scans 61 

(Table 2 – 2). 

Cerebral Large Vessel Diseases 

Besides the small blood vessels, large vessel diseases such as atherosclerosis obstruct 

the lumen of both extracranial and intracranial arteries and are major risk factors of 

stroke and mortality. Mounting evidences suggest that the coronary artery disease,62, 

63 hypercholesterolemia64, 65 and atherosclerosis of the internal carotid artery66 lead to 
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thromboembolism which results in cardioembolic stroke.67 Postmortem studies have 

shown that severe arterial atherosclerosis of the Circle of Willis is also a common 

finding in dementia with reported prevalence of 53% in VaD, 30% in AD patients and 

20% in non-demented brains68, 69 (Table 2 - 3a). It has been hypothesized that Circle 

of Willis occlusion can lead to hypoperfusion with selective neuronal loss and may 

even trigger the neurodegenerative process by promoting amyloid accumulation.68 

Ante mortem studies have suggested that extracranial large artery disease is 

associated with cognitive impairment and poorer performance on several cognitive 

tests.70-73 Moreover, limited data has also reported cognitive alterations in patients 

with stroke, transient ischemic attack and internal carotid occlusion.74, 75  The effects 

of large artery stenosis on cognitive decline and risk of dementia has been 

contradictory with some reporting significant association whereas others do not 76 

(Table 2 - 3b). This disparity among studies are due to different imaging modalities 

used (transcranial doppler, magnetic resonance angiography, duplex ultrasound) to 

assess carotid stenosis. Furthermore, they are largely focused on the extracranial 

carotid artery stenosis rather than intracranial stenosis. It has been reported that ICS 

in stroke patients vary among different ethnicities with a higher prevalence in 

Chinese (40-50%) compared to Caucasians (8-10%)77-79 (Table 2 - 3a). Hence, data 

on ICS from asymptomatic and community-based subjects – especially of Asian 

populations - are largely lacking. Moreover, its association with vascular vs. non-

vascular cognitive impairment and dementia subtypes has not been explored 

previously.   

4.  NEURODEGENERATION 

Neurodegeneration is an umbrella term for progressive loss of structure and function 

of a neuron including neuronal death. Overt pathology in neurodegeneration is 

characterized by focal loss of neurons with reactive gliosis.80 Neurodegeneration 

typically appears as cerebral atrophy and remains the key neuroimaging feature of 
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AD and other dementias. It involves both cortical and subcortical structures 

(hippocampus) and remains the strongest predictor of MCI conversion to AD81, 82 and 

tracking disease progression.83, 84 Quantitative structural imaging has provided more 

insights in region specific atrophy thus assisting in early diagnosis and in increasing 

diagnostic confidence. Recent reports have suggested that brain changes, particularly 

reduction in gray matter volumes are present even during normal aging 85-89 (Table 2 

- 4c). In this regard, cortical thickness provides an advantage of capturing the 

physical property of the brain that can be measured in an individual in vivo90, with 

thinning of the cortex corresponding to pathologic observations including cellular 

shrinkage, neuronal loss, and reduction of intracortical myelin.  

A consistent pattern of cortical thinning in AD comprises the medial temporal lobes; 

inferior and anterior temporal association cortices; superior, inferior, and medial 

parietal association cortices; along with superior and inferior frontal association 

regions91-94 (Table 2 - 4a). Dickerson and colleagues have demonstrated that a set of 

regions with cortical thinning specific to AD can reliably be used to predict 

progression to AD in subjects with MCI  and in older individuals without cognitive 

impairment.95, 96 In addition, a few studies have also suggested preclinical cognitive 

impairment to be associated with worse performance on cognitive testing97, 98 (Table 

2 - 4b). However, limited data remains on the determinants of cortical thinning99 and 

its effects on cognition from elderly population in Asia.100, 101  

Besides the cortical thickness, computational segmentations can also quantify 

subcortical structures volumes which include accumbens, amygdala, caudate, 

pallidum, putamen, thalamus, hippocampus and more recently brainstem.102 Atrophy 

of these subcortical structures has been reported in a wide range of neurological and 

psychiatric disorders.103-106 Some studies have now suggested smaller volumes of 

several subcortical structures in AD107-111 (Table 2 - 5). There is only a scant 

literature available on the putative risk factors of subcortical atrophy in elderly with 
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no cognitive impairment with a primary focus on age and sex effects88, 112-115 (Table 2 

- 5). Moreover, the specific pattern of subcortical atrophies in vascular vs. non 

vascular cognitive impairment remains unclear.116  

5.  LIMITATIONS OF NEUROIMAGING 
 
Despite the rapid advancement in neuroimaging techniques in facilitating the 

diagnosis of different dementia subtypes and providing invaluable tools in advancing 

our understanding of cerebrovascular pathophysiology, it remains an expensive 

technique with several contraindications for the elderly with metallic implants. 

Moreover, quantitative structural imaging techniques require specialized skills in 

standardizing and co-registering the images with constant visual inspection and 

manual editing. Hence, this MRI processing becomes a long and tedious procedure 

and is only available in selected research settings with image analysis expertise. 

These techniques are therefore, not suitable candidates for more widespread screening 

of patients at risk of cerebrovascular disease. 

6.  RETINA – WINDOW TO THE BRAIN 

6.1  Homology in Retinal and Cerebral Microvasculature 

Retina and brain are highly metabolically active tissues with high demands on 

metabolic substrates such as oxygen via the specialized vascular network. Since both 

organs share similar pattern of vascularization (macro and microvascular blood 

supply), there is also a similarity in their regulatory processes.117-119 Aging affects 

both retinal and cerebral microvasculature by reducing blood flow and exhibiting 

decreased oxygen and glucose demand.120-123 Similarly both retinal and cerebral 

microcirculations also exhibit morphological changes in hypertension, diabetes, 

stroke and other hereditary conditions such as cerebral autosomal-dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and 

hereditary endotheliopathy with retinopathy, nephropathy and stroke (HERNS).124  
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Retinopathy is the end organ damage in retina and is reflected on the retinal 

photography as generalized and focal retinal arteriolar narrowing, arteriovenous 

nicking (from intimal thickening), media wall hyperplasia, hyaline degeneration, and 

vessel wall necrosis. These are typically seen in the two most important 

cardiovascular risk factors i.e. hypertension and diabetes.125, 126 Both conditions cause 

endothelial dysfunction and blood retinal barrier break down leading to retinal 

haemorrhages, micoraneurysms, exudates and nerve fiber layer ischemia (cotton wool 

spots).127, 128 Narrowing and occlusion of the small arterioles lead to vessel collapse 

and reduced network density129 while capillary occlusion leads to 

neovascularization.130 Similar microvascular changes occur in brain with luminal 

narrowing (replacement of tunica media and internal elastic lamina with fibrous 

tissue),131 increased vessel tortuosity and vessel permeability (break down of blood 

brain barrier).132 Thus, these diseases on pathology have illustrated that the events 

occurring in the retinal circulation are indeed, mirrored by the cerebral circulation.  

6.2  Possible Early Retinal Microvascular Changes 

As retinopathy reflects the severe late stages of retinal damage, it is imperative to 

identify the early changes taking place in retinal vessels before the development of 

the retinopathy signs. Over the last decade, computer-based retinal image analysis 

technique has enabled us to quantify possible early changes which might serve as 

potential biomarker for alterations in retinal microvasculature. It is based on the 

prevailing hypothesis that the design of the retinal vascular tree obeys simple 

physiological and physical principle that optimizes the operation of the system. 

Singapore I Vessel Assessment (SIVA) system has the ability to provide in-depth 

visualization of the retinal vasculature.  

Retinal Vessel Calibers 
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Retinal arteriolar and venular calibers, which are calculated as the central retinal 

arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE), have 

emerged as a marker for preclinical stages of the diseases such as hypertension, 

diabetes, myocardial infarction and stroke.133-136 However, as both of these calibers 

are affected by different pathological mechanisms, they are usually analyzed 

separately.137, 138 Arteriolar calibers are largely affected by blood pressure, 

hypertension whereas venular calibers are sensitive to changes in blood glucose, 

diabetes, inflammation, dyslipidemia and smoking.137 Caliber measurements are 

affected by pulse period and single measurement reflects significant variability across 

pulse cycle. Hence there is a need for other potential parameters which are less time 

dependent.139 

Retinal Fractal Dimension 

Fractal dimension uses a mathematical concept to characterize the complexity of 

natural branching vascular networks, such as those seen in the retinal, coronary and 

pulmonary vascular systems. It captures the optimality and efficiency of blood 

distribution. Fractal analysis has been used in many aspects of medicine to detect 

changes in the retinal vasculature during early stages of retinal diseases, such as 

diabetic retinopathy and glaucoma.140 Studies show that fractal dimension increases in 

eyes with new vessels, and decreases with regression of these new vessels. Fractal 

analysis thus may offer new insights into systemic microvasculogenesis.141, 142 

Retinal Vascular Tortuosity 

Retinal vessel tortuosity reflects the curvature of the vessel path and reflects vessel 

integrity and barrier dysfunction. Increased retinal tortuosity has been linked to 

retinopathy of prematurity, hypertension and diabetes.143  

Retinal Vascular Changes in Cerebrovascular Diseases 
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Several population based studies such as Atherosclerosis Risk In Communities 

(ARIC) study, the Cardiovascular Health Study and the Rotterdam Scan Study, which 

are based on healthy middle-aged and elderly population, have shown that the 

retinopathy signs were associated not only with incident stroke, but also with 

subclinical MRI-defined changes, including cerebral infarction, progression of white 

matter lesions, multiple cerebral microbleeds and atrophy (Table 2 - 6a).144-153 These 

associations were independent of other cardiovascular risk factors suggesting that 

these retinal signs may provide additional information on cerebral small vessel 

diseases. 

Previous studies have also shown that narrower arteriolar and wider venular calibers 

are associated with incident stroke.134, 135, 151, 154 With respect to the other markers of 

cerebrovascular diseases, the similar caliber parameters were also linked to incident 

lacunar infarcts, and white matter lesions progression151, 155, 156(Table 2 - 6b). 

However, conflicting results remain in terms of newer vascular parameters i.e. fractal 

dimension.157 Furthermore, the effects of vessel tortuosity on MRI markers of 

cerebrovascular diseases and cognitive impairment remain to be explored. Limited 

studies on HERNS and CADASIL have suggested that the reduced fractal dimension 

and increased vessel tortuosity coexist with microvascular pathology in the brain such 

as microbleeds and white matter lesions.158, 159 However no studies have yet examined 

the association of all retinal microvascular changes (arteriolar caliber, venular caliber, 

fractal dimension and tortuosity) with the cerebrovascular diseases in the preclinical 

stages of dementia.   

Retinal Vascular Changes in Cognitive Impairment and Dementia 

Several population based studies have shown that retinopathy signs are associated 

with AD and vascular dementia in hypertensive groups50, 160, 161 and are even linked to 

cerebral atrophy on the scans.146, 152 Besides dementia, the late changes in the retina 
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were also associated with cognitive impairment in some studies whereas others failed 

to find clear association50, 162 (Table 2 - 6c). These discrepancies might be due to the 

differences in brief cognitive tests [Mini Mental Status Examination (MMSE) vs. 

Abbreviated Mental Test (AMT)]162, 163 and limitation to specific cognitive domains 

(psychomotor speed, executive function and visual memory).50, 164   

With regards to the early changes in retinal vasculature, Rotterdam scan study has 

reported that wider venular and smaller arteriolar caliber is associated with incident 

dementia.165 Another study has reported a link between smaller venular caliber and 

AD.166 Reduction in fractal dimension was associated with cognitive impairment in 

Singapore Malay Eye Study (SiMES) and the Australian Imaging, Biomarker & 

Lifestyle Flagship Study of Ageing (AIBL) studies (Table 2 – 6d).167, 168 However, it 

remains unknown if retinal microvascular changes are also associated with preclinical 

stages of cognitive impairment measured on a detailed neuropsychological 

assessment.  

6.3  Homology in Retinal and Cerebral Neuronal Layers 

Retina is a direct extension of the mesencephalon and is connected to the brain via the 

optic nerve. Retinal ganglion cells receive information from the photoreceptors in the 

eye and share morphological characteristics with the cerebral neurons in having the 

cell body, dendrites and myelinated axons. These axonal processes relay information 

to the visual cortex in the occipital lobe. Damage to either retinal or cerebral neurons 

results in degeneration in anterograde or retrograde direction due to lack of 

regenerative ability in axons.169 Hence the degeneration in the brain is reflected as 

retinal neuronal loss or vice versa.  

Optical Coherence Tomography 

Optical coherence tomography (OCT) is a non-invasive, non-contact optical imaging 

technique for studying retinal neuronal layers in-vivo.170 It provides high resolution, 
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biopsy like cross-sectional images (10-20μm) using optical backscattering of light 

analogous to ultrasonography. First generation OCTs [time domain (TD) OCTs] are 

capable of measuring the retinal nerve fiber layer thickness (RNFL) and have been 

successfully used in research settings to measure the optic nerve damage in glaucoma 

and optic neuritis.171, 172 Second generation OCTs [spectral domain (SD) OCTs] are 

now able to measure thickness of retinal sublayers, the ganglion cell inner plexiform 

layer (GC-IPL) which is directly posterior and exterior to RNFL.173, 174 

RNFL consists of unmyelinated axons of the retinal ganglion cells and is thickest at 

the peripapillary region around the optic disc. GC-IPL contains the cell bodies and 

dendrites of the retinal ganglion cells, and is thickest at the macular region. Damage 

to the retinal neuronal layers affects the dendrites prior to the ganglion cell body, 

hence GC-IPL is more sensitive to neuronal damage compared to RNFL.175, 176  

Retinal Neuronal Changes in Cognitive Impairment and Dementia 

Several small studies using TD- OCT have shown that retinal nerve fiber thickness is 

reduced in subjects with AD and MCI.166, 177-181 Conversely, studies using the SD- 

OCT have shown either in-consistent or mixed results with cognitive performance.182-

184 More recent studies have shown that both RNFL and GC-IPL thickness is reduced 

in AD patients (Table 2 – 7).185 However, these were limited by small numbers and 

did not take into account the other cardiovascular risk factors. 

Besides the cognitive impairment and dementia, retinal neuronal changes (RNFL and 

GC-IPL) have also been reported in other neurodegenerative diseases such as 

multiple sclerosis and Parkinson’s disease.186-188 However, there is no data on the GC-

IPL thinning in relation to cerebral atrophy among subjects with preclinical cognitive 

impairment.    
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Hence the main focus of this thesis is to examine how the age-related structural 

changes in the brain and retina are related to cerebrovascular diseases on MRI 

and cognition using cerebral and retinal imaging markers.  
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CHAPTER 2 – TABLES 
 

Authors and Study Study type and population Cerebrovascular 
disease markers 

Outcome/Evaluation Findings with effect measure and 95% 
confidence interval or p value 

Vermeer S, et al. 2003 32  
(Rotterdam Scan Study) 

Prospective population based study; 
n= 1015; ages 60-90 years  

Silent brain infarcts 
and white matter 
hyperintensities 

Risk of stroke - Silent brain infarcts, HR: 3.5 (2.0 , 6.0) 
- White matter hyperintensities, HR: 3.5 (1.4 , 8.6) 

Vermeer S, et al. 2003 33 
(Rotterdam Scan Study) 

Prospective longitudinal population 
based study;  
n= 1015; ages 60-90 years 

Silent brain infarcts Risk of dementia and cognitive decline   HR: 2.26 (1.09 , 4.70) 

Vermeer S, et al. 2007 38 
(Review) 

Population and hospital based, case 
series; 
 n= 105; 
ages 34-97 years 

Silent brain infarcts Physical, cognitive disabilities, risk of stroke - Associated with physical, depressive symptoms, 
worse cognitive ability, subsequent stroke, risk of 
dementia 

Benjamin P, et al. 2014 34 
(St George’s Cognition and 
Neuroimaging in Stroke 
(SCANS) study) 

Cross sectional study; 
 n= 120; ages ≥ 60 years 

Lacunes count Cognitive tests:  Trail making test, Modified 
Wis- consin Card Sorting Test, Phonemic 
Fluency, Wechsler Adult Intelligence Scale-
III, Digit symbol substitution, Speed of 
Information Processing Task, Grooved 
Pegboard Task, Digit Span Task, Wechsler 
Memory Scale-III, Logical Memory and 
Visual Reproduction 

- Executive function, ß: −0.377 (p= 0.001)  
- Processing speed, ß: −0.430 (p= 0.001)  
- Working memory, ß: −0.207 (p= 0.028)  
- Episodic memory, ß: −0.189 (p= 0.045) 

Debette S, et al. 2010 35 
(Systemic review) 

Longitudinal studies; n= 53 articles White matter 
hyperintensities 

Dementia, mortality - Incident dementia, HR: 1.9 (1.3 , 2.8) 
- Mortality, HR: 2.0 (1.6 , 2.7) 

Mortamais M, et al. 2013 37 
(Review) 

Longitudinal studies in general 
population  

White matter 
hyperintensities 

Risk of dementia, risk of conversion to 
dementia and cognitive decline 

- Risk of dementia, HR: 2.9 (1.3 , 6.3) 
- Conversion to AD, HR: 1.2 (0.7 , 2.2) 
- Conversion to other dementias, HR 5.8 (1.2 – 26.6) 
- Cognitive decline, HR: 3.30 (1.33 , 8.22) 

Prins ND, et al. 2015 39 
(Review) 

Population and hospital based 
studies 

White matter 
hyperintensities 

Risk of dementia, cognitive decline, 
disability 

- WMH severity and progression linked to cognitive 
decline and dementia risk 
- Large confluent WMH with normal cognition can 
lead to disability within one year of assessment,  
HR: 2.36 (1.65, 3.81) 

Table 2 – 1 (a): Association of established cerebral small vessel disease markers (infarcts and white matter hyperintensities) with stroke and cognition 

HR= Hazard ratio; ß= mean difference 
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Table 2 – 1 (b): Association of cerebral small vessel disease marker (cerebral microbleeds) with cognition 

  

Authors and Study Study type and population Cerebrovascular disease 
markers 

Outcome/Evaluation Findings with effect measure and 95% confidence 
interval or p value 

Werring DJ, et al. 2004 49 Case-control hospital based 
study; n= 55; age ≥ 60 years 

Cerebral microbleeds Cognitive dysfunction 
assessed by detailed 
neuropsychological tests 

- Microbleed an independent predictor of executive 
function impairment OR: 1.32 (1.01 , 1.70) 
- Modest correlation with other domains  
Spearman’s r = 0.44, (p = 0.03) 

Qui C, et al. 2010 50 
(AGES-Reykjavik Study) 

Cross-sectional study;  
n= 3906; age= 76 years 

Cerebral microbleeds California Verbal Learning 
Test, Digit Symbol 
Substitution Test, Salt house 
Figure Comparison Test, 
Stroop Test, Digit backwards 

People with multiple (≥2) CMBs had lower Z scores 
on tests of processing speed (ß: -0.25 (-0.37, -0.12) 
and executive function (ß: -0.19 (-0.31, -0.07) 

van Es AC, et al. 2011189 
(PROSPER study) 

Hospital based study; 
 n= 439; 
age 70-82 years 

Cerebral microbleeds MMSE, Picture Word 
Learning Test (immediate 
and delayed), Letter Digit 
Coding Test, Stroop Color 
Word Test 

Only infratentorial MBs associated with lower score 
on the Immediate Picture-Word Learning test 
(p=<0.01) and delayed Picture-Word Learning 
(p=0.01) 

Lei C, et al. 2013 45 
(Systemic review) 

Cross sectional studies; 
 n= 7 articles 

Cerebral microbleeds  Cognitive function using 
brief and detailed tests 

- Cerebral microbleeds (presence vs. absence),  
OR: 3.06 (1.59 , 5.89)  
- Cerebral microbleeds (count), ß: -1.06 (-2.10 , -0.02) 

Poels MMF, et al. 2012190 
(Rotterdam Scan Study) 

Prospective population based 
study; 
n= 3979; age 60-90years 

Cerebral microbleeds MMSE, Word Verbal 
Learning Test, Stroop test, 
Letter-Digit Substitution 
Task, Purdue Pegboard test, 
Word Fluency Test 

Higher number of microbleeds was associated with 
lower MMSE score (ß: -0.54) and worse performance 
on tests of information processing speed (ß: -0.46) and 
motor speed (ß: -0.42) 

van der Vlies A, et al. 2012 
48 

Prospective memory clinic study; 
n= 221; age ≥ 60 years 

Cerebral microbleeds Cognitive decline using mini 
mental status examination 
(MMSE) 

Microbleeds not associated with cognition 
- Baseline MMSE score, ß: 0.34 (p= 0.65) 
- Rate of decline, ß: 0.09 (p= 0.79) 

PROSPER=Prospective Study of Pravastatin in the Elderly at Risk; MMSE= mini mental status examination; OR= odds ratios; CMB= cerebral microbleeds; ß= mean difference 
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Table 2 – 2: Studies with prevalence and association of cerebral small vessel disease (microinfarcts) with other neuroimaging correlates and cognition 

Authors and Study Study type and 
population 

Cerebrovascular 
disease markers 

Methodology Diagnosis/Evaluation Findings with effect measure and 95% confidence 
interval or p value 

Postmortem 
Launer LJ, et al. 201152 
(Honolulu Asia Aging Study) 

Hospital based 
neuropathological study;  
n=436; age > 73 years 

Cerebral 
microinfarcts  

Autopsy Cognitive Abilities 
Screening Instrument/ 
Dementia and non-
dementia  

- Microinfarcts associated with poorer performance in 
cognitive testing in non-demented group, β: −0.103 
(p=0.003) 
- No association in demented group, β: −0.56, 
(p=0.104) 

Brundel M, et al. 2012 55 
(Systemic review) 

Neuropathological 
studies;  
n= 32 articles; age 44-
101 years 

Cerebral 
microinfarcts 
 

Autopsy Dementia and non-
dementia  

- Prevalence of microinfarcts in non-demented 24%, 
AD 43% and VaD 62% 
- Microinfarcts associated with clinical diagnosis of 
dementia, neuropathological confirmed AD, clinical 
diagnosis of VaD and cognitive dysfunction 
- Microinfarcts associated with other cerebrovascular 
diseases (infarcts, leukoencephalopathy and CAA) 

Smith EE, et al 2012 54 
(Review) 

Neuropathological-
imaging studies 
 

Cerebral 
microinfarcts 

Autopsy Dementia and non-
dementia 

Microinfarcts disrupt important cognitive networks 
and account for some of the neurological dysfunction 
associated with other MRI lesions such as lacunar 
infarcts and white matter hyperintensities 

Antemortem 
van Veluw  SJ, et al 2013 58 Hospital based study;  

n= 24;  
age 65-80 years 

Cerebral cortical 
microinfarcts  

7T and 3T imaging Dementia and non-
dementia 

CMIs can be detected noninvasively using 7T and on 
3T MRI. Histopathologic validation of these lesions 
with similar characteristics on ex vivo MRI confirmed 
these lesions as CMIs 

Ii Y, et al. 2013 59 Hospital based study; 
n= 70;  
age 41-86 years 

Cerebral cortical 
microinfarcts  

3T imaging Cognitively impaired Multiple small CMIs visible in intracortical regions on 
3T  

van Rooden S, et al 2014 61 
 

Hospital based study;  
n= 32;  
age > 50 years 

Cerebral cortical 
microinfarcts  

7T imaging AD and controls/ MMSE Patients with AD have more microinfarcts than 
controls on 7T and is associated with worse global 
performance on MMSE (p= 0.009) 

van Dalen JW, et al 2015 60  Population based study;  
n= 194; age 72-80 years 

Cerebral cortical 
microinfarcts  

3T imaging Non demented 
hypertensive  

Prevalence of CMIs on 3T is 6%. Age and history of 
stroke are the major risk factors.  

T= Tesla; AD= Alzheimer’s disease; MMSE= Mini Mental Status Examination; β = mean difference; VaD=Vascular dementia; CAA= cerebral amyloid angiopathy; MRI= Magentic resonance 
imaging; CMIs= cortical cerebral microinfarcts   
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Table 2 – 3 (a): Studies with prevalence of cerebral large vessel disease -extra and intracranial arterial stenosis in asymptomatic, stroke & demented subject 

Authors and 
Study 

Study type and 
population 

Cerebrovascular 
disease markers 

Methodology Diagnosis/Evaluation Findings with effect measure and 95% confidence 
interval or p value 

Postmortem 
Roher, et al. 2003 
68 

Neuropathological study;  
n= 54;  
age > 80 years  

Large artery 
stenosis 
(intracranial) 

Autopsy AD and non-dementia - Average stenosis in AD is 30% and in non-demented 
brains is 20%.  
- Atherosclerosis-induced brain hypoperfusion contributes to 
the clinical and pathological manifestations of AD 

Beach, et al. 2007 
69 

Case-control 
neuropathological study; 
controls n= 92, cases n= 
305; 
age ≥ 70 years 

Large artery 
stenosis 
(intracranial) 

Autopsy  Dementia  and non-
dementia 

- AD vs. controls, OR: 1.31 (1.04 ,1.69)  
- VaD vs. controls, OR: 2.50 (1.52, 4.10) 

Antemortem 

Huang YN, et al. 
1997 77 

Hospital based study; n= 
96; 
age 12-81 years 

Large artery 
stenosis  
(extracranial and 
intracranial) 

Transcranial 
doppler and duplex 
ultrasound 

Transient ischemic attack - Extracranial stenosis was 19% and intracranial stenosis 
was 51%.  
- Stenosis of internal carotid and middle cerebral arteries is 
common in Chinese  

Li H, et al. 2003 78 
(Review) 

Hospital based studies Large artery 
stenosis  
(extracranial and 
intracranial) 

Angiography, 
ultrasound, MR 
angiography 

Stroke  - Intracranial stenosis in Asians is 30-83% and in whites it is 
8-10%. 
- Extracranial stenosis in Asians is 6-33% whereas in whites 
it is 85%  

Wong KS, et al. 
2007 191  

Population based study;  
n= 642;  
age ≥ 40 years 

Large artery 
stenosis 
(intracranial) 

Transcranial 
doppler ultrasound 

Asymptomatic Chinese 
subjects 

- Prevalence of intracranial stenosis was 6.9%.  
- Significant risk factors were hypertension, glycosuria, heart 
disease and history of stroke 

De Silva DA et al. 
2009 192 

Hospital based study;  
AD n= 56,  
VaD n= 47;  
age 69-89 years 

Large artery 
stenosis 
(intracranial 
stenosis) 

Magnetic 
Resonance 
Angiography 

AD and VaD Prevalence of intracranial stenosis among VaD patients was 
53%, significantly higher than AD patients  
(18%; P = < 0.001) 

AD= Alzheimer’s disease; VaD=Vascular dementia; OR= odds ratios 
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Table 2 – 3 (b): Studies showing association of cerebral large vessel disease- extra cranial arterial stenosis with cognition in stroke, asymptomatic 
and symptomatic subjects 

Authors and 
Study 

Study type and 
population 

Cerebrovascular 
disease markers 

Methodology Diagnosis/Evaluation Findings with effect measure and 95% confidence 
interval or p value 

Bakker FC, et al. 
2003 74 

Hospital based 
study;  
cases n= 39; 
controls n= 46; 
age 40-78 years 

Large artery 
stenosis 
(extracranial) 

Digital 
subtraction 
angiograms 

Transient ischemic attack 
 
Cognitive tests include: Standard 
progressive matrices, Wechsler memory 
scale, Verbal learning and memory test; 
Visual retention test, Modified card sorting 
test, Trail making test, Word production 
test, Reaction time 

Patients with carotid artery occlusion and ipsilateral TIA 
performed worse on cognitive testing compared to controls 

Silvestrini M, et al. 
2009 75 

Hospital based 
study; n= 102 
age ≥ 60 years 

Large artery 
stenosis 
(extracranial) 

Duplex 
ultrasound 

Asymptomatic subjects 
 
Cognitive tests include: Phonemic Verbal 
Fluency, Category Verbal Fluency, 
Coloured Progressive Matrices, Complex 
Figure Copy Test 

Subjects with stenosis had significantly worse 
performance on phonemic verbal fluency compared to 
controls (p= <0.05) 

Bossema ER, et al. 
2006 71 

Case control 
hospital based 
study; n= 64; age 
≥ 60 years 

Large artery 
stenosis  
(extracranial) 

Duplex 
ultrasound 

Symptomatic and asymptomatic  Patients with severe stenosis of one or both carotid arteries 
were impaired in cognitive functioning (p=0.042) 

Bossema ER, et al. 
2005 70  

Case control 
hospital based 
study;  
cases n= 60, 
controls n= 23  
age ≥ 60 years 

Large artery 
stenosis 
(extracranial)  

Duplex 
ultrasound 

Symptomatic and asymptomatic subjects 
 
Cognitive tests include: Digit Span, Word 
Learning Test, Doors Test, Verbal Fluency, 
Trail Making Test, Motor Planning Test, 
Finger Tapping Test 
 
Subjects underwent carotid endarterectomy 

Significant improvements up to 1 year were demonstrated 
for the  
- Retrieval of verbal material  (p=0.008),  
- Planning speed of movement (p=0.02), 
- Finger tapping (p=0.04) 

TIA= transient ischemic attack 
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Table 2 – 3 (b) continued: Studies showing association of cerebral large vessel disease (extra cranial arterial stenosis) with cognition in stroke, 
asymptomatic and symptomatic subjects 

  

Authors and Study Study type and 
population 

Cerebrovascular 
disease markers 

Methodology Diagnosis/Evaluation Findings with effect measure and 95% confidence 
interval or p value 

Mathiesen EB, et al. 
2004 73 
(Tromso study) 

Case control 
hospital based 
study; 
cases n= 189, 
controls n= 201 
age 55-74 years 

Large vessel 
stenosis 
(extracranial) 

Doppler 
ultrasound 

Asymptomatic subjects 
 
Digit Span Forward and 
Backward Test, Seashore Rhythm Test, 
Trail Making Test (Parts A and B), 
Grooved Pegboard, Verbal and Visual 
Paired Associates immediate 
and 30-minute delayed recall,  Controlled 
Oral Word Association Test, Wechsler 
Adult Intelligence Scale 

Patients with stenosis perform worse in the following 
tests; 
- Seashore Rhythm,  OR: 2.28 (1.67, 4.47) 
- Trail Making Test A, OR:3.88 (1.85, 8.14) 
- Trail Making Test B, OR:4.21 (1.94, 9.14) 
- Verbal Pair Association, immediate recall,  
  OR: 2.83 (1.43, 5.62) 
- Visual Pair Association, immediate recall,  
  OR: 3.21 (1.58, 6.49) 
- Grooved Pegboard Test, OR: 4.38 (1.93, 9.91) 
 

Landgraff NC, et al. 
2010 72 

Hospital based 
study; n= 79; age 
48-88 years 

Large vessel 
stenosis 
(extracranial) 

Computed 
Tomographic 
Arteriography/ 
MRI 

Asymptomatic subjects 
 
Cognitive tests include RBANS testing 
for immediate memory, visuospatial/ 
constructional, language, attention and 
delayed memory 

- In complete occluded group significant cognitive 
deficits were found in all domains except immediate 
memory  
- In the moderately stenotic group, there was 
significant cognitive decline in all domains  
- In the severely stenotic group, there was significant 
cognitive deficit in all domains with the exception of 
language 

Poels MMF, et al. 
2007 76 
(Rotterdam scan 
study) 

Prospective 
population based 
study;  
n= 2767; 
age ≥ 55 years 

Large vessel 
stenosis 
(extracranial) 

Arterial stiffness 
measured by Pulse 
wave velocity  
and Carotid 
distensibility  

Normal subjects 
 
Cognitive tests include MMSE, Letter-
Digit Substitution Task, Stroop Test and 
Word Fluency Test 

Arterial stiffness is not associated with cognitive 
decline and risk of dementia, HR: 0.91 (0.75 , 1.10) 

MRI= magnetic resonance imaging; RBANS= Repeatable Battery for the Assessment of Neuropsychological Status; MMSE= mini mental status examination; OR= odds ratios; HR= hazards 
ratios 
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Table 2 – 4 (a): Studies showing cerebral thickness/volume in cognitive impairment and Alzheimer’s dementia 

Authors and 
Study 

Study type, population and 
ethnicity 

Markers of 
involutional changes 

Methodology Diagnosis/ 
Evaluation 

Findings with effect measure and 95% confidence interval or p 
value 

Karas GB, et al. 
2004 193 

Hospital based study; AD = 33, 
controls = 14, MCI = 22 
age ≥ 70 years; 
 
Caucasians 

Gray matter volume 
(GM) 

Voxel based 
morphometry 
(VBM) 

Dementia, MCI 
and controls 

- AD subjects had lower mean global GM volume compared to 
controls (p= < 0.001) 
- Global GM volume in the MCI group was intermediate between 
AD and controls (p=<0.001) 
- VBM showed MCI had local reductions in gray matter in the 
medial temporal lobe, the insula, and thalamus compared to controls 
- MCI subjects had more GM in the parietal association areas, 
anterior and the posterior cingulate compared to AD 

Trivedi MA, et al 
2006 194 

Hospital based study; MCI = 
15, 
controls = 15 
age ≥ 70 years; 
 
Caucasians 

Gray matter, white 
matter volumes 

Voxel based 
morphometry 

MCI and 
controls 

- MCI patients display significantly less GM volume in medial 
temporal lobe and posterior cingulate gyrus compared to controls 
(p=<0.01) 
- Discriminative accuracy for distinguishing MCI from controls was 
87% 

Karas G et al. 
2008 96 

Hospital based study; MCI = 
24; 
age ≥ 70 years; 
Caucasians 

Gray matter volume Voxel based 
morphometry 

MCI - Converters had more left parietal atrophy and left lateral temporal 
lobe atrophy than stable MCI patients (p=<0.001) 

Frisoni et al. 2002 
93 

Hospital based study; AD = 29 
controls = 26; 
age ≥ 65 years;   Caucasians 

Gray matter density Voxel based 
morphometry 

AD and controls  AD subjects had more localised atrophic regions in the temporal 
and cingulate gyri, precuneus, insular cortex, caudate nucleus, and 
frontal cortex compared to controls (p=<0.0001) 

Singh V et al. 
2006 94 

Hospital based study; controls= 
34, MCI = 62 and AD = 42; 
age ≥ 70 years; 
  
Caucasians 

Cortical thickness Automatic 
segmentation MNI 

AD, MCI and 
controls 

- Cortical thickness decreased significantly when controls were 
compared to MCI, mainly in the medial temporal lobe region and in 
some regions of the frontal and the parietal cortices (p<0.05).  
- With the progression of disease from MCI to AD, a general 
thinning of the entire cortex was observed  

Lerch JP et al. 
2005 91 

Hospital based study; AD = 19, 
controls=17; 
age ≥ 60 years; 
Caucasians 
 

Cortical thickness Automatic 
segmentation 

AD and controls - Cortical thickness decline in AD in temporal, orbitofrontal and 
parietal regions, with the most in medial 
temporal lobes with a loss of >1.25 millimeters of cortical thickness. 
- Focal cortical areas decline with progression of the disease as 
measured by time from baseline scan (p= <0.006) as well as the 
Mini-Mental State Exam (p=0.06) 

AD= Alzeimer’s disease; MCI= mild cognitive impairment 
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Table 2 – 4 (b): Studies showing association between cortical thickness and cognition in cognitive impairment and Alzheimer’s dementia 

Authors and 
Study 

Study type and 
population 

Markers of 
involutional changes 

Methodology Diagnosis/Evaluation Findings with effect measure and 95% confidence 
interval or p value 

Chang YL, et al. 
2010 97 
(ADNI study) 

Hospital and 
community based; 
MCI= 358 
controls = 222 
age 55-90 years; 
 
Caucasians 

Cortical thickness FREE SURFER MCI and controls 
Cognitive tests include; MMSE,  
Auditory Verbal Learning Test,  Long 
delay free recall and a recognition trial,  
logical memory  subtest, Trail making 
test (A & B), Digit span (backward), 
Animal fluency and ADAS- Cog 

- Compared to MCI high executive function (EF) group, 
MCI low EF demonstrated cortical thinning in frontal 
lobe (p=<0.0025) 
- Compared to MCI high EF, MCI low EF performed 
worse in verbal memory (p=<0.005) 

Paajanen T, et al. 
2013 98 

Hospital and 
population based 
study; AD = 27, 
MCI = 30,  
controls = 16 
age ≥ 70 years; 
 
Caucasians 

Cortical thickness FREE SURFER AD, MCI and controls 
 
Cognitive tests include; CERAD battery 
(Verbal Fluency, 15-item Boston 
Naming Test, MMSE, 10-item Word 
List Learning, Recall and Recognition 
Test, Constructional Praxis, 
Constructional Praxis Recall) 

- CERAD total scores correlated with mean cortical 
thickness, (r: 0.34–0.38, p= < 0.001) and MMSE (r: 
0.19, p = 0.01).  
- Of the vertex clusters that showed thinning in 
progressive MCI, 60–75% related to the CERAD total 
scores and 3% to the MMSE 

Seo SW, et al. 
2007 100 

Hospital based study; 
MCI = 31, 
controls = 61 
age ≥ 65 years; 
 
Asian (Korean) 

Cortical thickness Automatic 
segmentation 
using CLASP 
algorithm 

Single and multiple domain a MCI and 
controls 
 
Cognitive tests include; Digit Span, 
Boston Naming Test,  Rey–Osterrieth 
Complex Figure Test,  Seoul Verbal 
Learning Test,  Controlled Oral Word 
Association Test, Stroop Test 

- Relative to controls, Single domain –aMCI patients 
showed cortical thinning in the left medial temporal lobe 
(p=<0.05) 
- Multi domain - aMCI patients showed cortical thinning 
in the left medial temporal lobe, precuneus, and anterior 
and inferior basal temporal, insular, and temporal 
association cortices (p=<0.01) 
 

Seo SW, et al. 
2011 101 

Hospital based study; 
AD = 196, 
controls = 142, 
age ≥ 60 years; 
 
Asian (Korean) 
 

Cortical thickness Automatic 
segmentation 
using CLASP 
algorithm 

AD and controls 
 
Cognitive tests include; Digit Span, 
Boston Naming Test,  Rey–Osterrieth 
Complex Figure Test,  Seoul Verbal 
Learning Test,  Controlled Oral Word 
Association Test, Stroop Test 

High levels of education in the AD group correlated 
with cortical thinning in the frontal and temporo-parietal 
association cortices (p=<0.001) 
 

ADNI= Alzheimer Disease Neuroimaging Initiative; AD= Alzheimer’s disease; MCI= mild cognitive impairment; MMSE= mini mental status examination; CERAD= Consortium to 
Establish a Registry for Alzheimer’s Disease; CLASP= Consortium Of Local Authorities Special Programme; r= spearman’s correlation coefficient 
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Table 2 – 4 (c): Studies showing effects of demographics and other risk factors on cortical thickness/volumes in healthy subjects 

Authors and 
Study 

Study type, 
population and 
ethnicity 

Markers of 
involutional changes 

Methodology Diagnosis/ 
Evaluation 

Findings with effect measure and 95% confidence interval or p value 

Magnotta VA, et al. 
1999 86 

Community based 
study; n=148; 
age 18-82 years; 
Caucasians 

Gyral curvature, 
sulcul curvature, and 
cortical depth 
(cortical thickness) 

BRAIN SURF 
Gyrification 
measurement  

Healthy volunteers - Sulcal (more flattened and less curve) and gyral (sharp and steeply curved) 
changes over time (p=<0.001).  
- Cortical thickness decreases over time (p=<0.001) 

Preul C, et al 2006 
87 

Community based 
study; n= 525; 
age 17-68 years; 
 
Caucasians 

Cortical thickness and 
ventricular 
enlargement 

Automatic 
segmentation 
using voxels  

Healthy volunteers - Cortical thickness decreases with age (r: –0.49, 
p =0.01; r: –0.502, p= <0.01 in males and r: –0.461, p= <0.01 in females). 
- Ventricles enlarge with age (r: 0.67, p= 0.01; r: 0.71, p=  0.01 for males, and 
r: 0.63, p= 0.01 for female subjects 

Lemaitre H, et al. 
2012 85  

Community based 
study; n= 216; 
age 18-87 years; 
 
Caucasians 

Cortical thickness, 
volume and surface 
area 

FREE SURFER Healthy volunteers - Age related volume reductions in middle frontal 
gyrus, the superior frontal gyrus and the frontal pole (p=<0.001) 
- Age-related changes in cortical thickness reductions in superior frontal gyrus, 
the paracentral gyrus,  
pars opercularis and triangularis of the inferior frontal gyrus (p= <0.001) 
- Age-related reduction in surface area in  middle frontal gyrus and the superior 
frontal gyrus 

Long X, et al. 2012 
88 

Community 
subjects; n= 314; 
age 18-94 years; 
Caucasians 

Cortical surface area, 
cortical thickness, 
curvature index, white 
matter volume  

FREE SURFER Healthy subjects -  Significant cortical thinning observed in parietal (r: 0.553, p= < 0.001) and 
insula regions (r: 0.405, p= < 0.001) with aging  
-  Surface area and mean curvature less affected by aging relative to cortical 
thickness and white matter volume 

Salat DH, et al. 
2004 89 

Community based 
study; n= 106;  
age 18-93 years;  
Caucasians 

Cortical thickness FREE SURFER Healthy subjects - Aging associated with prefrontal lobe atrophy (r2: 0.25) 
- Additional atrophy in in frontal cortex near motor cortex (r2: 0.34) and 
calcarine cortex (r2: 0.38) 

van Velsen EF, et 
al. 201399 
(Rotterdam scan 
study) 

Prospective 
population based 
study; n= 1092 
age ≥ 55 years; 
 
Caucasians 

Cortical thickness FREE SURFER Healthy subjects - Women had thicker cortex than men (p=< 0.01) 
- With increasing age, cortical thickness decreased (approximately 0.2% per 
year), with the largest age effects for the occipital and temporal lobes 
- Higher education, higher diastolic blood pressure and larger intra-cranial 
volume were related to a larger cortical thickness 
- Diabetes mellitus and higher HDL cholesterol levels were related to a thinner 
cortex 

r= spearman’s correlation coefficient; r2= Pearson’s correlation coefficient 
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Table 2 – 5: Studies showing association of subcortical volumes/density in Alzheimer’s dementia, cognitive impairment and cognitively normal subjects 

Authors and 
Study 

Study type and 
population 

Markers of 
involutional changes 

Methodology Diagnosis/ Evaluation Findings with effect measure and 95% confidence 
interval or p value 

Frisoni, et al. 
2002 93 

Hospital based study; 
AD = 29 
controls = 26; 
age ≥ 65 years 

Gray matter density Voxel based 
morphometry 

AD and controls - AD patients had more atrophy in right and left 
hippocampal/amygdalar complex (p=<0.0001). All parts 
of the hippocampus (head, body, and tail) were affected.  
- More localised atrophic regions observed in the 
temporal and cingulate gyri, precuneus, insular cortex, 
caudate nucleus, and frontal cortex p=<0.0001) 

de Jong LW, et 
al. 2008 108 

Hospital based study; 
AD = 69, 
memory complainers= 
70; 
age ≥ 60 years 

Subcortical structure 
volume  

FMRIB’s 
Integrated 
Registration and 
Segmentation 
Tool (FIRST) 

AD and subjective memory complaints 
 
Cognitive tests used were; Cambridge 
Cognitive Examination-Revised and MMSE 

- Significant reduction in hippocampus (p=<0.05), 
thalamus (p=<0.01) and putamen (p=<0.01) in AD 
patients compared to memory complainers  
- Decreased volumes of left putamen and thalamus 
correlate independently to poorer cognitive test results 
(p=<0.001) 

Mrzilková J, et 
al. 2012 111 

Hospital based study; 
AD = 26 
controls = 29; 
age ≥ 65 years 

Volumes Manual 
volumetric MR 
analysis 

AD with MMSE ≥ 18 and < 18 scores 
 
Cognitive tests include: MMSE, Mattis 
Dementia Rating Scale, Trail Making Test 
version A and B, Disability Assessment in 
Dementia, 7-Minute Screen, verbal fluency 
tests and Edinburgh Handedness 
Inventory 

- Hippocampus volume reduction in both AD groups ≥18 
MMSE score (p=0.006) and <18 MMSE score (p=0.02) 
compared to controls 
- No reduction in pons and cerebellar volumes 

Roh JH, et al. 
2011 109 

Hospital based study; 
AD= 179, 
controls = 57; 
age ≥ 60 years 

Subcortical structure 
volume 

Automatic 
segmentation 
using Markov 
random field 
model 

AD and controls. Severity of disease 
defined by clinical dementia rating scale 
(CDR) 
 
Cognitive tests include; Digit Span, Boston 
Naming Test,  Rey–Osterrieth Complex 
Figure Test,  Seoul Verbal Learning Test,  
Controlled Oral Word Association Test, 
Stroop Test 

- Volume loss in amygdala and hippocampus in very 
mild stage of AD (CDR=0.5) 
- Volume reduction in thalamus and putamen in mild to 
moderate stages of AD (CDR= 1and 2) 
- Globus pallidus and caudate reduction in moderate 
stages (CDR= 2, p = <0.01) 
- All these structures correlated with cognitive 
performance (p=<0.01) 

Ryan N, et al. 
2013 195 

Hospital based; 
AD = 20, controls =20; 
age 30-50 years 

Gray matter density Voxel based 
morphometry 

Presymptomatic, symptomatic AD and 
controls 

Atrophy in caudate (p=<0.001) and thalamus 
(p=<0.0025) in presymptomatic mutation carriers 
compared to controls  

AD= Alzheimer’s disease; MCI= mild cognitive impairment; MMSE= mini mental status examination 
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Authors and 
Study 

Study type and 
population 

Markers of 
involutional changes 

Methodology Diagnosis/ 
Evaluation 

Findings with effect measure and 95% confidence interval or p value 

Fjell AM, et al. 
2009 113 

Case control study; 
AD = 96, 
controls = 1143; 
age 18-87 years 

Subcortical structure 
volume 

FREE SURFER AD and controls - Pallidum corrected for intracranial volume showed slightly 
higher age correlations for men (p=<0.05) 
- No age effects on men and women cortex 
- Analysis in AD subjects showed no age and sex interactions 

Cho H, et al. 
2013 110 

Case control study; 
AD = 36, 
controls = 14 
age 50-80 years 

Subcortical structure 
volumes 

FREE SURFER Early onset (EO) and 
late onset (LO) ADs 
and controls  

- No differences in the volumes of subcortical structures between patients 
with EOAD and LOAD.  
- Patients with EOAD showed more rapid volumetric decline in the caudate 
(p=<0.001), putamen (p=0.003), and thalamus (p=0.001) than patients with 
LOAD on 3 years of longitudinal follow-up, 

Thong JY, et al. 
2014 116 

Case control study; 
VCI = 55, 
controls = 25 
age ≥ 55 years 

Cortical thickness, 
subcortical shapes 

Automatic 
segmentation 

VCI (moderate/ 
severe and mild) and 
controls 

- Cortex in moderate/severe VCI was thinner in the parietal and lateral 
temporal cortices than that in VCI mild. 
- Compared to controls, mild VCI and moderate/severe VCI 
showed smaller shapes in the thalamus, putamen and globus pallidus 

Walhovd KB, et 
al. 2005 114 

Community study; 
n= 73;  
age 20-88 years 

Cortical thickness, 
subcortical structures 

FREE SURFER Healthy volunteers - Age effects all cortical and subcortical structures (p= <0.0001) except 
pallidum and the 4th ventricle 
- Age relationships for cortex, amygdala, thalamus, accumbens and caudate 
were linear (p=<0.003) 
- Age relationship for cerebral white matter, hippocampus, brainstem, 
cerebellar white, and gray matter, lateral, inferior lateral and 3rd ventricles 
volume were curvilinear (p=<0.05) 

Long X, et al. 
2012 88 

Community 
subjects; n= 314; 
age 18-94 years 

Cortical surface area, 
cortical thickness, 
curvature index, 
white  

FREE SURFER Healthy subjects Moderate atrophy observed in subcortical gray matter structures, including 
the thalamus (r2: 0.476, p= < 0.001), nucleus accumbens (r2: 0.525, p= < 
0.001), pallidum (r2: 0.461, p= < 0.001) and putamen (r2: 0.533, p= < 
0.001) with age 

Goodro M, et al. 
2012 115 

Community 
subjects; n= 226; 
age 19-86 years 

Subcortical structures 
volumes 

FMRIB’s Integrated 
Registration and 
Segmentation Tool 

Healthy volunteers Older subjects (60–85 years of age) showed a stronger correlation with 
structural volume for the ventricles (p=<0.001), hippocampus (p=<0.07), 
amygdala (p=<0.01) than middle aged (35–60 years of age) subjects 

Li W, et al. 2014 
112 

Community study;  
n= 76; 
age 19-69 ye  ars 

Subcortical structure 
volumes 

FREE SURFER Healthy subjects - Age-related absolute atrophy found in the basal ganglia and thalamus in 
males, females showed disproportionate degeneration 
- Hippocampus decline only observed in males (p=0.004) 
- Subcortical structures showed significantly smaller absolute volumes in 
females than in males (p= < 0.05) 

 

Table 2 – 5 (continued): Studies showing association of subcortical volumes in Alzheimer’s dementia, cognitive impairment & cognitively normal subjects 

AD= Alzheimer’s disease; VCI = Vascular cognitive impairment; MMSE= Mini Mental Status Examination; r2= Pearson’s correlation coefficient; 
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Table 2 - 6 (a): Studies showing association of retinopathy signs with MRI markers of cerebrovascular diseases 

  

Authors and 
Study 

Study type and population Retinopathy  Outcome Findings with effect measure and 95% confidence interval 
or pvalue 

Wong TY, et al. 
2001144 (ARIC) 

Prospective population based 
study; n= 10358; 
age 51-72 years 

Microaneurysms, soft exudates, blot 
and flame-hemorrhages, 
arteriovenous nicking 

Incident stroke Any retinopathy associated with incident stroke,   
- HR: 2.58 (1.59, 4.20)  
Arteriovenous nicking associated with incident stroke, 
- HR: 1.60 (1.03, 2.47) 

Wong TY, et al. 
2002145 (ARIC) 

Prospective population based 
study; n=1684;  
age 51-72 years 

Microaneurysms, soft exudates, blot 
and flame-hemorrhages, 
arteriovenous nicking 

Incident clinical stroke - Persons with WMH had higher incidence of stroke, 
HR: 3.4 (1.5, 7.7) 
- Persons with both WMH and retinopathy had higher incidence 
of stroke,  HR: 18.1 (5.9, 55.4) 

Wong TY, et al. 
2003 146 (ARIC) 

Prospective population based 
study; n=1684;  age 51-72 years 

Microaneurysms, soft exudates, blot 
flame-hemorrhages, AV nicking 

Sulcal widening and 
ventricular enlargement 

- Sulcal widening, OR: 1.9 (1.2, 3.0) 
- Ventricular enlargement, OR: 1.5 (1.0, 2.3) 

Mitchell P, et al. 
2005 147 (BMES) 

Prospective population based 
study; n=3583; age>49 years 

Microaneurysms, retinal 
hemorrhages 

Incident stroke/TIA/ 
death 

Combined (stroke, TIA and death), RR: 1.7 (1.0, 2.8) 
Incident stroke,  RR: 3.5 (1.5, 8.2) 

Cooper LS, et al. 
2006 148 (ARIC) 

Cross-sectional population-based 
study; n=1684;  
age 55-74 years 

Arteriovenous nicking, focal 
arteriolar narrowing, retinal 
hemorrhages, soft exudates and 
microaneurysms, arterio-venous 
ratio 

MRI defined infarcts Cerebral infarcts associated with retinal microvascular 
abnormalities,  
-  Arteriovenous nicking, OR: 1.90 (1.25, 2.88)   
-  Focal arteriolar narrowing, OR: 1.89 (1.22, 2.92)  
-  Blot hemorrhages, OR: 2.95 (1.30 , 6.71) 
-  Soft exudates, OR: 2.08 (0.69, 6.31)  
-  Microaneurysms, OR: 3.17 (1.05, 9.64)  
-  Arteriovenous ratio, OR: 1.74 (0.95, 3.21)  

Longstreth W, et 
al. 2007 149 (CHS) 

Prospective population based 
study; n=1285; age>65 years 

Retinopathy, focal arteriolar 
narrowing, arteriovenous nicking, 
and arteriovenous ratio 

Prevalent infarcts and 
WMH,  
incident infarcts and 
worsening of WMH 

Arteriovenous ratio associated with, 
- Prevalent infarcts, OR: 1.18 (1.05, 1.34),  
- White matter grade, ß: 0.093; (p =0.011),  
- Incident infarct, OR: 1.26 (1.09, 1.46)  
- Worsening white matter grade, OR: 1.12 (0.98, 1.29) 
Arteriovenous nicking associated with,  
- Prevalent infarcts, OR: 1.84 (1.23, 2.76)  
- Incident infarcts, OR: 1.84 (1.15, 2.94) 

ARIC= Atheroscelorsis Risk in Communities Study; BMES= Blue Mountain Eye Study; CHS= Cardiovascular Health Study; TIA= Transient Ischemic Attack; Magnetic Resonance Imaging; 
WMH= white matter hyperintensities; HR= hazard ratios; OR= odds ratios; RR= relative risk; β = mean difference  
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Table 2 - 6 (a) continued: Studies showing association of retinopathy signs with MRI markers of cerebrovascular diseases  

Authors and Study Study type and population Retinopathy  Outcome Findings with effect measure and 95% confidence interval or 
p value 

Qiu C, et al. 2009150 
(AGES- Reykjavik 
study) 

Cross-sectional study; n=4176; 
mean age=76 years 

Retinal focal arteriolar signs 
(arteriolar narrowing arterio-venous 
nicking), Retinopathy lesions 
(retinal blot hemorrhages, 
microaneurysms) 

Cerebral infarcts and WMHs - Retinal focal arteriolar signs associated with increasing load of 
subcortical, OR: 1.40 (1.09, 1.79) and periventricular WMHs, OR: 1.64 
(1.36, 1.97) 
- Arteriovenous nicking was significantly associated with subcortical 
infarcts,  OR: 1.33 (1.09, 1.62) 

Yatsuya H, et al. 
2010 151 (ARIC) 

Prospective population based 
study; n=10496;  
age 45-64 years 

Microaneurysms, retinal 
hemorrhages, arteriovenous 
nicking, arteriolar narrowing 

Incident non-lacunar 
thrombotic and 
cardioembolic  

Retinopathy signs (aneurysm, hemorrhage),  
- Non-lacunar thrombotic, HR: 2.41 (1.47, 3.95) 
- Cardioembolic, HR: 2.25 (1.09, 4.65) 
- Retinal narrowing associated with incident infarct, HR: 2.22 
(1.11, 4.48) 
- Arteriovenous nicking associated with incident infarct,  HR: 
2.38 (1.20, 4.71) 

Cheung N, et al. 2010 
196 (ARIC) 

Prospective population based 
study; n=810;  
age≥ 55 years 

Microaneurysms, soft exudates, 
blot and flame-hemorrhages, 
arteriovenous nicking 

Incident infarct, incident 
WMH, WMH progression 

Retinopathy (microaneurysms, retinal hemorrhages) with; 
- Incident cerebral infarct, OR: 2.82 (1.42, 5.60)  
- Incident lacunar infarct, OR: 3.19 (1.56, 6.50) 
Retinal arteriovenous nicking with; 
- Incident cerebral infarct, OR: 2.82 (1.66, 4.76)  
- Lacunar infarct, OR: 2.48 (1.39, 4.40) 
- WMH incidence, OR: 2.12 (1.18, 3.81) 
- Progression of WMH, OR: 2.22 (1.00, 5.88) 

Kawasaki, et al. 2010 
152 (ARIC) 

Prospective population based 
study; n=810;  
age≥ 55 years 

Microaneurysms, soft exudates, 
blot and flame-hemorrhages, 
arteriovenous nicking 

10-year sulcal widening 
and ventricular 
enlargement 

- Retinopathy, OR: 2.03 (1.20, 4.42)  
- Arteriovenous nicking, OR: 2.19 (1.23, 3.90) 

de Silva DA, et al. 
2011197 (MCRS) 

Prospective population based 
study; n=652, 

Arteriovenous nicking, 
arteriolar narrowing 

Recurrent vascular events 
(cerebrovascular, 
coronary, vascular death, 
and composite vascular 
events) 

- Arteriovenous, HR: 2.28 (1.20, 4.33) 
- Focal arteriolar narrowing, HR: 2.75 (1.14, 6.63)  

Qiu C, et al. 2008153  
(AGES- Reykjavik 
study) 

Cross-sectional study; n=4218, 
mean age=76 years 

AV nicking, focal arteriolar 
narrowing, microaneurysms/ 
hemorrhages 

Multiple cerebral 
microbleeds 

- AV nicking, OR: 1.44 (1.06, 1.95) 
- Focal arteriolar narrowing, OR: 1.45 (1.01, 2.09) 
- Microaneurysms/ hemorrhages, OR: 1.75 (1.25, 2.45) 

ARIC= Atheroscelorsis Risk in Communities Study; MCRS= Multi-center Retinal Stroke Study; WMH= white matter hyperintensities; OR= odds ratios; HR= hazard ratios 
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Table 2 - 6 (b): Studies showing association of retinal vascular parameters with MRI markers of cerebrovascular diseases 

 

  

Authors and 
Study 

Study type and population Retinal vascular 
parameters 

Outcome Findings with effect measure and 95% confidence interval or 
p value 

Wong TY, et al. 
2006 134 (CHS) 

Prospective cohort study; n=1992; 
age 69-97 years 

Retinal vascular calibers Incident stroke Venular widening, HR: 2.2 (1.1, 4.3) 

Ikram MK, et al. 
2006 135  (RSS) 

Prospective cohort study; n=5540; 
age ≥ 55 years 

Retinal vascular calibers Incident stroke Large venular diameters associated with increased risk for 
- Stroke, HR: 1.12 (1.02, 1.24)  
- cerebral infarction, HR: 1.15 (1.02, 1.29) 

Ikram MK, et al. 
2006 155 (RSS) 

Prospective cohort study; n=490; 
age 60-90 years 

Retinal vascular calibers Changes in WMH and 
incident lacunar infarcts 

Large venular diameters associated with increased risk for, 
- Periventricular WMH progression, HR: 1.71 (1.11, 2.61)  
- Subcortical WMH progression, HR: 1.72 (1.09, 2.71)  
- Incident lacunar infarcts, HR: 1.59 (1.06, 2.39) 

Yatsuya H, et al. 
2010 151 (ARIC) 

Prospective population based study; 
n=10496; age 45-64 years 

Retinal vascular calibers Incident lacunar stroke  - Arteriolar narrowing, OR: 1.67 (1.23, 2.26) 
- Venular widening, OR: 1.44 (1.09, 1.91) 

Wieberdink RG, 
et al. 2010 154 
(RSS) 

Prospective cohort study; n=5518; 
age≥ 55 years 

Retinal vascular calibers Incident stroke Large venular caliber associated with an increased risk for  
- Stroke, HR: 1.20 (1.09, 1.33),  
- Cerebral infarction, HR: 1.28 (1.13, 1.46)  
- Intracerebral hemorrhage, HR: 1.53 (1.09, 2.15) 

Kawasaki R, et 
al. 2011157 
(BMES) 

Nested case-control study; stroke 
=10, controls=184, age ≥ 70 years 

Fractal dimension Incident stroke or 
mortality 

OR: 1.39 (1.06, 1.83) 

Bettermann K et 
al. 2012 156 

Case-control study; chronic 
ischemic white matter disease =12, 
controls = 14; 
age 43-85 years 

Retinal vasoreactivity Chronic WMH Increased WMH (p=0.006) 

ARIC= Atheroscelorsis Risk in Communities Study; BMES= Blue Mountain Eye Study; CHS= Cardiovascular Health Study; RSS= Rotterdam Scan Study; WMH= white matter 
hyperintensities; HR= hazard ratios; OR= odds ratios 



Chapter 2 

87 
 

Table 2 - 6 (c): Studies showing association of retinopathy signs with cognition 

Authors and Study Study type and population Retinopathy signs Outcome/ Evaluation Findings with effect measure and 95% 
confidence interval or p value 

Baker et al. 2007 160 
(CHS) 

Cross-sectional population based 
study, n=2211, age 69-97 years 

Microaneurysms, soft 
exudates, blot and flame-
hemorrhages, arteriolar 
narrowing 

Dementia  
 
Cognitive test: Digit-Symbol Substitution 
Test, MMSE 

Retinopathy associated with; 
- Dementia, OR: 2.10 (1.04, 4.24) 
- Lower mean Digit-Symbol Substitution Test 
scores (p=0.002) 
Focal arteriolar narrowing associated with  
- Dementia, OR: 3.02 (1.51, 6.02)  

Qiu C, et al. 2010 50 
(AGES-Reykjavik 
Study) 

Cross-sectional study; n=3906, age 
66-96 years 

Microaneurysms, soft 
exudates, blot and flame-
hemorrhages 

Vascular dementia 
 
Cognitive test: California Verbal Learning 
Test, Digit Symbol Substitution Test, Salt 
house Figure Comparison Test, Stroop Test, 
Digit backwards 

OR: 1.95 (1.04 to 3.62) 
 
Persons with multiple microbleeds and 
retinopathy had lower Z scores on tests of  
- Processing speed, ß: -0.25 (-0.37, -0.12)   
- Executive function, ß: -0.19 (-0.31, -0.07) 

Schrijvers EM, et al. 
2012 161 (RSS)  

Cross-sectional population based 
study, n=6273, age≥55 years 

Microaneurysms, soft 
exudates, blot and flame-
hemorrhages, 

Dementia, AD and Vascular dementia - Dementia, OR: 1.92 (1.24, 2.98) 
- AD, OR: 1.89 (1.15, 3.10) 
- Vascular dementia, OR: 2.00 (0.71, 5.63) 

Wong TY, et al. 2002 
198 (ARIC) 

Cross-sectional population based 
study; n=8734, age 51-70 years 

Microaneurysms, soft 
exudates, blot and flame-
hemorrhages 

Cognitive function tested on; Delayed word 
recall test, Digit Symbol subtest, Word 
Fluency test 

- Delayed Word Recall Test, OR: 2.60 (1.70, 
3.99) 
- Digit Symbol subtest, OR: 1.91 (1.04, 3.49) 
- Word Fluency Test, OR: 2.03 (1.07, 3.86) 

Liew G, et al. 2009 163 Cross-sectional population based 
study; n=1988, age 49-97 years 

Microaneurysms, hemo-
rrhages, hard/soft exudates 

Cognitive impairment defined on MMSE  
(≤23) 

OR: 1.7 (1.0, 3.2) in hypertensives 

Lesage SR, et al. 2009 
164 (ARIC)  

Prospective population based study; 
n=803, age 55-72 years 

Microaneurysms, soft 
exudates, blot and flame-
hemorrhages 

Cognitive function tested on; Delayed word 
recall test, Digit Symbol subtest, Word 
Fluency test 

- Decline in Word Fluency, score difference: -
1.70 (-3.3,  -0.02) 
- Decline in Digit Symbol, OR: 2.18 (1.02, 4.64) 

Ding J, et al. 2010 199 
(The Edinburgh Type 2 
Diabetes Study) 

Cross-sectional population based 
study; n=1044; age 60-75 years 

Retinopathy  Faces and Family Pictures Sub-test, Matrix 
Reasoning, Letter-Number Sequencing, 
Digit Symbol Test, Borkowski Verbal 
Fluency Test, Trail Making Test 

- General cognitive ability (Ƞ2= 0.020, p=<0.001) 
- Verbal Fluency Test, (Ƞ2= 0.020, p=0.001)  
- Trail Making Test, (Ƞ2=0.012, p=0.009)  
- Digit Span Test, (Ƞ2=0.032, p=0.001) 

Haan M, et al. 2012 200  
(WHIMS & WHISE) 

Prospective population based study; 
n=505 women; age 64-79 years 

Retinopathy Cognitive dysfunction defined on 10 year 
follow up change in Modified MMSEscores 

Lower MMSE score, mean difference: 1.01, (p = 
0.019) 

Ong SY, et al. 2012 201 
(SIMES) 

Cross-sectional population based 
study, n=1179, age 60-80 years 

Retinopathy  Cognitive dysfunction defined on 
Abbreviated Mental Test 

OR: 5.57 (1.56, 19.91) in diabetics 

ARIC= Atheroscelorsis Risk in Communities Study; CHS= Cardiovascular Health Study; RSS=Rotterdam Scan Study; WHIMS= Women’s Health Initiative Memory Study; WHISE=Women’s Health Initiative Sight; 
Examination Study; SIMES= Singapore Malay Eye Study; MMSE= mini mental status examination; AD= Alzheimer’s disease  
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Authors and Study Study type and population Retinal structural 
changes 

Outcome/ Evaluation Findings with effect measure and 95% confidence 
interval or p value 

Berisha F, et al. 2007 
166 

Case-control study;  
AD =9, controls = 8 
mean age= 74.3 years (AD),  
mean age= 74.3 years (controls) 

Retinal vascular calibers AD - Significant narrowing of the retinal venous blood column 
diameter in AD (131.7 +/- 10.8 μm) compared with control 
(148.3 +/- 12.7 μm), (p= 0.01) 

de Jong FJ, et al. 
2011165 (RSS) 

Prospective cohort study;  
n=5553, age≥50 years, 

Retinal vascular calibers Incident dementia, 
Incident vascular dementia 

Large venular caliber associated with; 
- Incident dementia, HR: 1.11 (1.00, 1.22) 
- Incident Vascular dementia, HR: 1.44 (1.10, 1.89) 
Smaller arteriolar caliber associated with; 
- Incident dementia, HR: 1.05 (0.96, 1.16) 
- Incident Vascular dementia, HR: 1.33 (0.99, 1.78) 

Liew G, et al. 2009 
163 

Cross-sectional population based 
study; n=1988, age 49-97 years 

Retinal vascular calibers Cognitive impairment defined 
on MMSE 
(≤ 23) 

Retinal venular dilation, OR: 1.8 (1.0, 3.2)  
Retinal venular dilation, OR: 2.7 (1.2, 6.1) in hypertensives 

Ding J, et al. 2011 202  
(The Edinburgh Type 
2 Diabetes Study) 

Cross-sectional population based 
study; n=954; age 60-75 years 

Retinal vascular calibers Faces and Family Pictures 
Sub-test, Matrix Reasoning, 
Letter-Number Sequencing, 
Digit Symbol Test, 
Borkowski Verbal Fluency 
Test, Trail Making Test 

- Increasing venular caliber associated with lower logical 
memory score, β: -0.069, (p=<0.05) 
- Increasing arteriolar caliber associated with lower 
Logical memory scores, β: -0.080, (p=<0.01)  

Kim DH, et al. 
2011203 (CHS) 

Cross-sectional population based 
study; n=1744, age≥ 65 years 

Retinal vascular calibers Digit Symbol Substitution 
Test score 

- Large venular caliber, mean difference: −4.81 
(−8.81,−0.81), p = 0.018 
- Smaller arteriolar caliber, mean difference: −4.51 (−6.38, 
−2.64), p = <0.001 
 

Gatto NM, et al. 
2012 162  (Los 
Angeles Latino Eye 
Study) 

Cross-sectional population based 
study; n= 809; mean age=70.3 
years 

Retinal vascular calibers Low Cognitive Abilities 
Screening Instrument-Short 
(CASI-S) score 

OR: 2.04 (1.14, 3.66) 

Cheung CY, et al. 
2010 167 (SIMES) 

Cross-sectional population based 
study, n=1202, age≥ 60 years 

Fractal dimension Abbreviated Mental Test OR: 1.71 (1.03, 2.82) 

Table 2 - 6 (d): Studies showing association of retinal vascular parameters with cognition  

 

RSS= Rotterdam Scan Study; CHS= Cardiovascular Health Study; SIMES= Singapore Malay Eye Study; AD= Alzheimer’s disease; MMSE= mini mental status examination; OR= odds 
ratios; β= mean difference 



Chapter 2 

89 
 

 

  Table 2 – 7: Studies showing retinal neuronal changes with cognitive impairment and Alzheimer’s dementia   

Authors and 
Study 

Study type and population Retinal 
structural 
changes 

Methodology Outcome Findings with effect measure and 95% confidence interval or p 
value 

Kergoat H, et al. 
2001 203 

Case-control study;  
AD = 30, controls = 30,  
mean age= 72.0 years (AD),  
mean age= 72.1 years (controls) 

RNFL thickness Scanning laser 
polarimetry 

AD RNFL thickness was not significantly different in AD compared to 
controls (p=>0.05) 

Kergoat H, et al. 
2001 174 

Case-control study;  
AD =27, controls = 27,  
mean age=70.1 years (AD),  
mean age=71.7 years (controls) 

RNFL thickness Scanning laser 
polarimetry 

Early AD RNFL thickness was not significantly different in AD compared to 
controls (p=>0.05) 

Parisi V, et al. 
2001 180 

Case-control study,  
AD =17, controls= 14 
mean age=70.4 years (AD),  
mean age=71 years (controls) 

RNFL thickness  Time-domain 
OCT 

AD - Significant reduction in RNFL thickness in AD (99.9±8.95μm) 
compared to controls (59.5±16.7μm) (p=<0.01), - Significant 
reduction in RNFL thickness in all quadrants (p=<0.01) 

Iseri P, et al. 
2001 181 

Case-control study,  
AD =14, controls= 15, 
mean age= 70.1 years (AD),  
mean age= 65.1 years (controls) 

RNFL thickness Time-domain 
OCT 

AD  - Significant reduction in mean RNFL thickness in AD 
(59.5±16.70μm) compared to controls (99.9±8.95μm) (p=<0.01) – 
Significant reduction in RNFL thickness in all quadrants (p=<0.05) 

Berisha F, et al. 
2007 166 

Case-control study;  
AD =9, controls = 8 
mean age= 74.3 years (AD),  
mean age= 74.3 years (controls) 

RNFL thickness Time-domain 
OCT 

AD - Significant reduction in RNFL thickness in superior quadrant of AD 
patients (92.2 ± 21.6 μm) compared to controls (113.6 ± 10.7 μm)  
(p=0.02) 

Paquet C, et al. 
2007 204 

Case-control study;  
AD= 26, MCI= 23, controls= 15  
mean age=78.3 years (AD),  
mean age=78.7 years (MCI),  
mean age=75.5 years (controls) 

RNFL thickness Time-domain 
OCT 

mild, 
moderate-
severe 
AD, 
MCI 

- Significant reduction in mean RNFL thickness in MCI (89.3 ± 
2.7μm, p<0.001), mild AD (89.2 ± 2.9μm, p=<0.01) and moderate-
severe AD (76.6 ± 3.8μm, p=<0.001) compared to controls (102.2 ± 
1.8μm) 
- Significant reduction in RNFL thickness in moderate-severe AD 
compared to MCI patients (p=<0.01) 

AD= Alzheimer’s disease; MCI= mild cognitive impairment; RNFL= retinal nerve fiber layer; OCT= Optical Coherence Tomography  
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     Table 2 – 7 (continued): Studies showing retinal neuronal changes with cognitive impairment and Alzheimer’s dementia  

Authors and 
Study 

Study type and population Retinal structural 
changes 

Methodology Outcome Findings with effect measure and 95% confidence interval 
or p value 

Kesler A, et al. 
2011 205 

Case-control study;  
AD= 30, MCI= 24, controls= 24, 
mean age=72.1 years 

RNFL thickness Time-domain 
OCT 

AD and 
MCI 

- Reduced average RNFL thickness in AD and MCI (p<0.05) 
compared to controls  
- Reduced RNFL thickness in superior and inferior quadrants 
in AD (p<0.05) compared to controls  
- Reduced RNFL thickness in inferior quadrant in MCI 
compared to controls (p<0.05)  
- No significant difference between AD and MCI 

Moschos MM, 
et al 2012 177 

Case-control study;  
AD= 30, controls = 30;  
age 42-84 years 

RNFL thickness Time-domain 
OCT 

AD Reduced RNFL thickness in inferior (p=<0.0001), superior 
(p<0.0001) and temporal quadrants (p=0.024) in AD compared 
to controls 

Kirbas S, et al. 
2013 178 

Case-control study;  
AD= 40, controls= 40;  
mean age=69.3 years (AD),  
mean age=68.9 years (controls) 

RNFL thickness Spectral domain 
OCT 

AD - Reduced average RNFL thickness in AD compared to 
controls (p=0.001)  
- Reduced RNFL thickness in superior quadrant in AD 
compared to controls (p=0.001) 

Larossa JM, et 
al. 2014 179 

Case-control study;  
AD=151, controls= 61   
age 55-90 years 

RNFL thickness Spectral domain 
OCT and 
Spectralis OCT 

AD - Reduced superior (p=0.010), inferior (p<0.001), temporal 
(p=0.023) RNFL thickness in AD by Spectral domain OCT  
- Reduced average (p=0.049), nasal (p=0.005), nasal inferior 
(p=0.020), temporal inferior (p<0.001), temporal superior 
(p<0.001) RNFL thickness by Spectralis OCT 

Garcia-Martin 
ES, et al. 2014 
182  

Case-control study;  
AD=20, controls = 28,  
mean age=79.3 years (AD),  
mean age=72.1 years (controls) 

Macular RNFL 
thickness 

Spectral domain 
OCT and 3D 
OCT 

AD - Reduced RNFL thickness in macular region (p=<0.01) 

Marziani E, et 
al. 2013185 

Case-control study;  
AD=21, controls=21;  
mean age=79.3 years (AD),  
mean age=77.0 years (controls) 

Macular RNFL and 
GCIPL thickness  

Spectral domain 
OCT and 
Spectralis OCT 

AD - Reduced macular RNFL thickness in all sectors, mean diff -
8.5 to-4.2μm (p<0.02) in AD compared to controls 
- Reduced macular RNFL+GCL thickness in all sectors, mean 
diff -15.7 to 7.3μm (p<0.005) in AD compared to controls 

 

              

 

AD= Alzheimer’s disease; MCI= mild cognitive impairment; RNFL= retinal nerve fiber layer; GCIPL= ganglion cell inner plexiform layer; OCT= Optical Coherence Tomography  
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1.  STUDY POPULATION 

To achieve the specific aims mentioned in chapter 1, the following studies were 

used; 

a. Epidemiology of Dementia In Singapore study (EDIS) 

b. Case Control study from memory clinic  

a. Epidemiology of Dementia In Singapore study (EDIS) 

The EDIS study drew subjects from the on-going population-based community-

dwelling study of Chinese, Malays and Indians cohorts aged 40-80 years who 

participated in the Singapore Epidemiology of Eye Disease (SEED; n=7,454), which 

comprises the Singapore Chinese Eye Study (SCES; n=3,353), Singapore Malay Eye 

Study -2 (SiMES-2; n=1,901) and Singapore Indian Eye Study -2 (SINDI-2; 

n=2,200).  

As part of the SEED study, participants were randomly selected from the community, 

and were invited to Singapore Eye Research Institute (SERI) for interview and 

clinical assessments.1, 2 Briefly, SiMES, SINDI and SCES were designed to study the 

prevalence and risk factors for major eye diseases including age-related macular 

degeneration,3 diabetic retinopathy,4 glaucoma,5 cataract 6 and myopia.7 Information 

on participants was collected by means of a questionnaire, physical examination and 

laboratory based tests. The questionnaire included data on demographics, lifestyle 

factors, personal and family health history and medication use. Physical examination 

included anthropometry, blood pressure, pulse rate measurement and extensive eye 

examination including digital fundal photography. Laboratory examinations included 

serum creatinine, serum lipids, plasma glucose, glycosylated hemoglobin (HbA1c) 

and urine for albumin and creatinine. Blood samples were stored for future 

biomarkers and genetic analysis. 

As part of the first phase of the EDIS study, SEED participants who were 60 years 

and above (n=3,800) (44% of the total population) also underwent cognitive 

screening using the Abbreviated Mental Test (AMT) and a self-report of progressive 
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forgetfulness (PF), both of which have been previously validated in Singapore.8-10 

Screen positives were defined  as AMT  ≤ 6, among those with up to 6 years of 

formal education, or ≤ 8 among those with more than 6 years of formal education; or 

if the caregiver confirmed progressive forgetfulness. Subsequently, these screen-

positive subjects (n=1,598) were invited to participate in the second phase of the 

EDIS study, which was conducted at the Centre for Life Sciences, National 

University of Singapore (NUS). Participants who declined the initial invitation were 

contacted again at a later time to increase the participation rate. Those who declined 

at the first attempt were mailed study brochures, and offered free transportation and 

pick up services. A person was termed ‘uncontactable’ if he/she failed to respond 

after 6 attempts.11 The total number of subjects who agreed to participate in phase II 

were 957. Brief study assesment flow chart is provided in (Figure 3 – 1).  

b.    Case Control Study 

For the case control study, the cases (CIND and dementia) with subjective complaints 

of memory loss and cognitive impairment on neuropsychological assessment were 

recruited from two study sites in Singapore (i.e. memory clinics from National 

University Hospital and Saint Luke’s Hospital). Controls were recruited from both 

memory clinics and the community (Epidemiology of Dementia In Singapore study, 

with a similar catchment area as cases). Controls (from memory clinic and 

community) were defined as those with subjective cognitive complaints but were 

cognitively normal on objective neuropsychological assessment (Figure 3 – 2). 

Patients with other diagnoses, or significant neurological comorbidities (e.g. 

Parkinson’s disease), or loss of functional independence (modified Rankin Scale 4), 

were excluded from the study.  
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2.  EXAMINATION PROCEDURES 

Participants in the EDIS study (during the second phase) and of case control study, 

underwent standardized extensive clinical, neuropsychological evaluation, laboratory 

tests, neuroimaging, and retinal photography. 

Questionnaire 

A detailed questionnaire was administered by the interviewer to collect relevant 

demographic and medical information. Data collected included age, gender, 

education, marital status, occupation, ability to live independently, handedness, 

previous head trauma, smoking, alcohol consumption and family history of dementia. 

Previous medical history including stroke, cardiovascular diseases, hypertension, 

hyperlipidemia, diabetes mellitus, vitamin B 12 deficiency, thyroid disease, urinary 

and bowel incontinence, Parkinson’s disease and psychiatric illnesses were noted, and 

subsequently verified by medical records. The Instrumental activities of daily living 

and Barthel activities of daily living indices were assessed for functional status.12, 13 

Physical Examination and Clinical Assessment 

Clinical assessment included height, weight, blood pressure, pulse rate, ankle and 

brachial blood pressures and indices (e.g. ankle brachial index), modified versions of 

National Institutes of Health Stroke Scale, Hachinski Ischemic Scale and frontal 

release signs. Clinical history and Clinical Dementia Rating Scale (CDR) evaluations 

were performed by clinicians, in accordance with established clinical guidelines for 

the evaluation of cognitive impairment and dementia. 

Vascular risk factors 

Systolic and diastolic blood pressures were measured using a digital automatic blood 

pressure monitor (OMRON-HEM 7203, Japan) after the subject rested for five 

minutes. Blood pressure was measured twice, five minutes apart. The mean of the 



Chapter 3 

95 
 

two readings was considered as the relevant blood pressure. Hypertension was 

defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥ 90 

mmHg, or use of antihypertensive medication. Mean arterial blood pressure was 

calculated as two-thirds of the diastolic blood pressure plus one-third of the systolic 

blood pressure. Diabetes mellitus was defined as glycated hemoglobin ≥ 6·5 %, or 

use of anti-diabetic medication. Hyperlipidemia was defined as total cholesterol 

levels ≥ 4·14 mmol/l, or use of lipid lowering medication. 

Blood Tests 

A total of 20 cc of blood was drawn in the fasting state. All blood samples were sent 

to National University Hospital Laboratory for measurements on the same day. Blood 

tests included the following: full blood count, glucose, lipids, creatinine, alanine 

transaminase, aspartate transaminase, calcium, albumin, thyroid function, vitamin 

B12, folate, syphilis screen, homocysteine, high sensitivity C-reactive protein. 

Additionally the blood samples from case control study were collected and stored at 

the Neuroscience Research Laboratory for future genetic and biomarker analysis. 

Neuroimaging 

Sequences 

MRI scans were performed on a 3T Siemens Magnetom Trio Tim scanner, using a 

32-channel head coil, at the Clinical Imaging Research Centre of the NUS. A number 

of standardized and advanced MRI brain sequences were performed to allow 

morphologic, microstructure and functional assessments. These included; 

- High-resolution T1-weighted Magnetization Prepared Rapid Gradient Recalled 

Echo (MPRAGE) sequence (repetition time, TR = 7.2 ms, time to echo, TE =3.3 ms, 

matrix = 256×256×180 mm3) was used to obtain high resolution anatomical 

information and to detect microinfarcts. 
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- Fluid attenuated inversion recovery (FLAIR) (TR = 9.3 ms, TE = 140 ms, matrix = 

256×192 mm3) and T2 sequences (TR = 3,000 ms, time to echo, TE = 10.1 ms, matrix 

= 256×247 mm3) for assessment of signal alterations in brain tissues and to detect 

infarcts, white matter hyperintensities and confirm microinfarcts (previously detected 

on T1).  

- Susceptibility Weighted Imaging (SWI) sequence (TR = 27 ms, TE = 20 ms, matrix 

= 240× 240 mm3) was used to detect microbleeds.  

- Finally, a three dimensional Time of Flight (ToF) Magnetic Resonance 

Angiography (MRA) (TR = 24 ms, TE = 4.1 ms, spatial resolution = 0.6×0.6×0.6 

mm3, flip angle of 20°, 192mm field of view, 218 × 256 acquisition matrix, slice 

thickness of 0·80mm, distance factor -22.73% and an acquisition time of 6 minutes 

and 28 seconds) was conducted to assess the intracranial vessels.  

Scanning time was approximately 60 minutes. Subjects with claustrophobia, 

contraindications for MRI, or those who were unable to tolerate the procedure, 

underwent a non-contrast enhanced Computed Tomography (CT) scan, which was 

performed in axial slices at 5mm intervals rostrally from the orbitomeatal line. 

Scanning time was approximately 3 minutes. 

Visual grading of MRI scans 

All MRI scans were visually graded for infarcts, white matter hyperintensities, 

cerebral microbleeds, atrophy, intracranial stenosis and cerebral cortical microinfarcts 

(Figure 3 – 3). The details of each marker is described below; 

Infarcts: 

- Lacunar infarcts were defined on focal lesions measuring ≥ 3mm to < 15mm, 

hyperintense rim on T2 FLAIR with center following CSF intensity and 

hyperintensity on T2 weighted images. Differentiation of lacunes from 

perivascular spaces was based on morphology of typical vascular shape and 

following the orientation of perforating vessels and absence of FLAIR rim.14  
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- Cortical infarcts were defined as focal lesions involving cortical gray matter, 

signal following cerebrospinal fluid intensity, hyperintense rim on FLAIR 

images, and tissue loss of variable magnitude, with prominent adjacent sulci 

and ipsilateral ventricular enlargement.14  

The anotomical location together with arterial territory of these infarcts were 

noted and collected. The inter- and intrarater reliability as expressed by kappa 

statistic ranged from 0.59 to 0.80. 

Cerebral microbleeds (CMBs): 

CMBs were defined as focal, rounded areas of hypointensity (T1 and T2 weighted 

images), 2-10 mm in diameter with blooming on Susceptibility Weighted Imaging 

(SWI) sequences using Brain Observer Micro Bleed Scale (BOMBS).15 Symmetrical 

hypointensities in the basal ganglia, choroid plexus and pineal gland caused by 

calcification, hypointense lesions within the subarachnoid space, or those possibly 

associated with traumatic brain injury, hemorrhagic infarcts or vascular malformation 

were carefully excluded. CMBs were categorized according to their location into 

cortical [cortical gray matter and gray-white matter junction], subcortical white 

matter [subcortical or periventricular white matter], subcortical gray matter [basal 

ganglia and the thalamus] and infratentorial [brain stem and cerebellum] (Figure 3 - 

4). Furthermore, lobar location was defined as cortical, subcortical or periventricular 

white matter, whereas deep as subcortical gray matter, and the white matter of the 

corpus callosum, internal and external capsule. 

Cortical cerebral microinfarcts (CMIs): 

CMIs were defined as hypointense on T1, <5 mm in diameter, restricted to the cortex, 

perpendicular to the cortical surface, and distinct from perivascular spaces. The 

location of a hypointense cortical lesion found on T1 was explored on FLAIR and 

T2-weighted images. The lesion was rated as a definite cortical CMI if the location 

was hyperintense or isointense on FLAIR and T2. The lesion was discarded as a CMI 

if at the same location a hypointense signal was found on FLAIR or T2, indicating the 



Chapter 3 

98 
 

T1 hypointense lesion was either due to a hemorrhagic lesion, a vessel, or an artifact 

(Figure 3 – 5).  Possible cortical CMIs in tissue affected by larger cortical infarcts 

were discarded. 

Intracranial stenosis (ICS): 

ICS was defined as narrowing exceeding 50% of the luminal diameter in any of the 

intracranial vessels assessed on 3D TOF MRA. The images were first visually 

assessed on the coronal sequences and then on reconstruction. The final decision on 

stenosis (>50%) was based on the reconstruction sections. The arteries that were 

assessed were vertebral, basilar, internal carotids, posterior cerebral, middle cerebral 

and anterior cerebral arteries. Radiologists and clinicians, who were blinded to 

clinical data, graded each participant’s MRA independently. The inter-rater reliability 

expressed as kappa statistic ranged from 0.51 to 0.79. 

Quantitative MRI grading 

Intracranial volume and white matter hyperintensities volume 

Total intracranial volume and white matter hyperintensities were quantified by 

automatic segmentation using the proton density-weighted T1 sequence, T2 weighted 

images and FLAIR sequences. Briefly, cerebrospinal fluid, gray matter and white 

matter were segmented by an atlas-based k-nearest neighbour classifier on multi-

modal MRI data. This classifier was trained by registering brain atlases to the subject. 

The resulting gray matter segmentation was used to automatically find a white matter 

hyperintensities threshold in a FLAIR image. False positive lesions were removed by 

ensuring that the lesions are within the white matter. This method has been previously 

validated on the manual segmentations.16, 17 Total brain volume and white matter 

hyperintensities were calculated for the five regions (frontal, parietal, occipital, 

temporal and central regions) (Figure 3 – 6).  

Cortical thickness 
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Cortical thickness was calculated using a model-based automated procedure 

(FreeSurfer, v.5.1.0) on T1-weighted images (TR = 7.2 ms, TE = 3.3 ms, matrix = 

256 × 256 × 180 mm3). Cortical thickness was measured at each vertex by taking the 

shortest distance between white matter/gray matter boundary and pial surface.18 

Whole brain (global) and regional (lobar) averages of cortical thickness were 

expressed in micrometers (μm). Lobar average was calculated from right and left 

thicknesses using the parcellation guide on gyral and sulcal structures of cerebral 

cortex.18 Lobar averages were calculated for the frontal, parietal, occipital, temporal, 

insular and limbic regions. 

Subcortical structure volume 

Volumes of subcortical structures (accumbens, amygdala, caudate, pallidum, 

putamen, thalamus, hippocampus and brainstem) were segmented using a model 

based automated procedure (FreeSurfer, v.5.1.0) on T1 weighted images (TR= 7.2 

ms, TE= 3.3 ms, matrix = 256×256×180 mm3). Segmentation was performed by 

rigid-body registration and nonlinear normalization of images to a probabilistic brain 

atlas. In the segmentation process, each voxel of the MRI volumes was labeled 

automatically as a corresponding brain region based on a parcellation guide. Finally 

the volumes of accumbens, amygdala, caudate, pallidum, putamen thalamus and 

hippocampus were calculated separately for left and right hemispheres.19 

The segmentation technique of both cortical thicknesses and subcortical structures is 

shown in Figure 3 – 7.  

Retinal assessment 

Assessment of Retinal Vasculature 

Retinal microvascular changes were assessed using non-mydriatic retinal fundus 

photography. Retinal photographs centered on the optic disc and the macula was 

taken from both eyes after pupil dilation using 1% tropicamide. The Singapore I 
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Vessel Assessment (SIVA) system is a semi-automated computer-based program 

designed to assess quantitative structural retinal vascular parameters from optic-disc. 

Retinal fundus images were centered at the optic disc and were taken 0.5 to 2.0 disc 

diameter away from the optic disc margin. The major parameters extracted from this 

system include retinal vascular diameter, fractal dimension, and tortuosity (Figure 3 

– 5).   

Retinal Vascular Caliber 

The program calculates retinal arteriolar and venular calibers as central retinal artery 

equivalent (CRAE) and central retinal vein equivalent (CRVE), based on the revised 

Knudtson-Parr-Hubbard formula.20, 21 

Retinal Vascular Fractal Dimension 

Retinal vascular dimension was evaluated from the skeletonized vascular network 

using the box-counting method, and represents a “global” measure that summarizes 

the whole branching pattern of the retinal vascular tree.20, 21 Larger values indicate a 

more complex branching pattern.  

Retinal Vascular Tortuosity 

Retinal vascular tortuosity was computed as the integral of the curvature square along 

the path of the vessel, normalized by the total path length; this measure is 

dimensionless as it represents a ratio measure.20, 21 The estimates were summarized as 

retinal arteriolar and venular tortuosity separately, representing the average tortuosity 

of arterioles and venules, respectively. Retinal vascular tortuosity reflects the extent 

of curvature in the vessels; a smaller tortuosity value indicates a straighter retinal 

vessel. 

Assessment of Retinal Neuronal Layers 

Besides the retinal microvascular changes, spectral domain optical coherence 

tomography (SD-OCT) was used to assess the retinal neuronal changes. SD-OCT can 

quantify the thicknesses of both retinal nerve fiber layer and ganglion cell inner 
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plexiform layer. After pupil dilatation, SD-OCT (Cirrus HD-OCT; Carl Zeiss 

Meditec) was used to acquire macular and optic disc scans using the macular cube 

200x200 and optic nerve head cube 200x200 scan protocols respectively in each eye. 

Scans were repeated if motion artifacts (as indicated by blood vessels discontinuity) 

or saccades were detected. Details of the Cirrus HD-OCT macular and optic disc scan 

protocols have been described in detail elsewhere.22, 23 Peripapillary RNFL thickness 

parameters (average, superior quadrant, nasal quadrant, inferior quadrant and 

temporal quadrant) were derived automatically from optic nerve head cube scan. The 

built-in algorithm automatically detects the optic disc center and positions a 

calculation circle of diameter 3.46mm around the optic disc on the RNFL thickness 

map.  

Using the same software, a series of GC-IPL parameters (average, superior, 

superonasal, inferonasal, inferior, inferotemporal, superotemporal sectors) from 

macular cube scan were derived automatically. The software detects and measures the 

GC-IPL thicknesses automatically within a 14.13mm2 elliptical annulus area centered 

on the fovea from 3-dimensions. The ganglion cell analysis algorithm detects and 

yields the combined thickness of the GCL and the IPL (Figure 3 – 8). Additional 

details are available in chapter 13. 

Neuropsychological Test Battery 

Trained research psychologists administered brief cognitive screening tests, the Mini-

Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), 

the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) and a 

formal neuropsychological battery locally validated for Singaporean elderly.11 This 

battery assessed seven domains, five of which were non-memory domains (executive 

function, attention, language, visuoconstruction and visuomotor speed) and two 
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memory domains (visual and verbal memory). The list of the neuropsychological 

tests used for respective domains are described below; 

- Executive Function (Frontal Assessment Battery,24 Maze Task25),  

- Attention (Digit Span, Visual Memory Span26 and Auditory Detection27),  

- Language (Boston Naming Test28 and Verbal Fluency29),  

- Visuomotor speed (Symbol Digit Modality Test30, Digit Cancellation31),  

- Visuoconstruction (Weschler Memory Scale – Revised (WMS-R) Visual 

Reproduction Copy Task,24 Clock Drawing,32AIS-R subtest of Block Design),33 

- Verbal Memory (Word List Recall34 and Story Recall),  

- Visual Memory (Picture Recall, WMS-R Visual Reproduction). 26  

For each participant, raw scores from each individual test within a domain were first 

transformed to standardized Z-scores using the mean and standard deviation [SD] of 

that test in this cohort. A higher Z-score reflected a better performance on that test. 

Subsequently, for each participant a mean Z-score for each domain was calculated by 

averaging the Z-scores of all the individual tests within that domain. These mean Z-

scores of each domain were then standardized using the mean and SD of that domain-

specific mean Z-score. Finally, composite Z-score reflecting global cognitive 

functioning was calculated by averaging the seven domain-specific mean Z-scores, 

which were also standardized using the corresponding mean and SD.  The modified 

15-item Geriatric Depression Scale (GDS) was also administered to all subjects.35 

Diagnosis of Cognitive Impairment and Dementia 

Diagnoses of cognitive impairment and dementia were made at weekly consensus 

meetings attended by study clinicians, neuropsychologists, clinical research fellows, 

research coordinators and research assistants. The clinical features, blood 

investigations, psychometrics and neuroimages were reviewed. Subjects with no 

objective evidence of impairment in cognitive domains were classified as no 

cognitive impairment (NCI). Cognitive impairment without dementia (CIND) was 
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defined as impairment in at least one domain of the neuropsychological test battery 

without functional impairment.  

- CIND-mild was diagnosed when less than or two domains were impaired,  

- CIND-moderate was diagnosed when more than two domains were impaired. 

Dementia was diagnosed according to the DSM-IV criteria. Details on the CIND 

severity, vascular CIND and etiological diagnosis of dementia are described in details 

in chapters 5 and 10. 
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Epidemiology of Dementia In Singapore 
study (EDIS), ≥60 years, (n=3800) 

Screened negatives 
Passed AMT and PFQ, (n=2202) 

Screened positive subjects who 
participated in phase II and 

underwent questionnaire, clinical 
evaluation, neuropsychological tests 

and neuroimaging, (n=957) 

Screened positives subjects who 
refused phase II, (n=641)  

Singapore Epidemiology of Eye 
Diseases (SEED), 40-85 years,  

(n= 10,051) 

Questionnaire, clinical, physical and 
retinal assessments, (n= 7454) 

Screened positives 
Failed AMT and/or PFQ, (n=1598) 

CHAPTER 3 – FIGURES 
 
Figure 3 – 1: Flow chart of study assessments performed in Epidemiology of Dementia In Singapore study 

 

 
Phase I 

Phase II 

AMT= Abbreviated Mental Test; PFQ=Progressive forgetfulness Questionnaire 
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Figure 3 – 2: Flow chart of study assessments performed in case control study 

 

 

 

 

 

 

 

 

 

 

 

  

Case control study, ≥50 years,  
(n= 486) 

Cases, from memory clinic diagnosed as either  
- Cognitive impairment no dementia (CIND), (n= 85) 

- Vascular CIND (VCIND), (n= 69) 
- Dementia (AD, Mixed, VaD), (n= 188) 

-  
Controls, from both community and memory clinic 
- No cognitive impairment (NCI), (n= 144) 

Questionnaire, clinical evaluation, detailed cognitive 
assessments and 3T MRI, (n= 464) 
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Figure 3 – 3: Markers of cerebrovascular diseases visually graded on MRI scans.  

(A) Lacunes, visible on Fluid Attenuated Inversion Recovery (FLAIR) as round or ovoid 
hypointense lesions with hyperintense rim. (B) White matter hyperintensities, identified as 
signal abnormality of variable size in white matter without cavitation on FLAIR. (C) Cerebral 
microbleeds, visible as focal, rounded areas of hypointensity on Susceptibility Weighted 
Images (SWI). (D) Cortical cerebral microinfarcts, appear as hypointense, perpendicular 
lesions in cortical ribbon on T1. (E) Intracranial stenosis, identified as flow void in internal 
carotid artery on Magnetic Resonance Angiography (MRA). (F) Atrophy, visible as widening 
of sulcus, enlargement of ventricles and shrinkage of medial temporal lobe (enlargement of 
choroid fissure, widening of temporal horns and reduced height of hippocampus. 
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Figure  3 – 4: Cerebral microbleeds on Susceptibility Weighted Images (SWI) 

Microbleeds visible as focal, rounded areas of  hypointensity, 2-10 mm in diameter with 
blooming on SWI. Mircobleeds were categorized according to their location into infratentorial 
(A), deep (B) and lobar (C). 
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Figure 3 – 5: Cortical cerebral microinfarct (CMI) on 3T MRI 

CMI in an 87-year old woman, visible as a hypointense lesion on T1 in sagittal (A), coronal 
(B), and axial sections (C). This CMI was confirmed as a hyperintense lesion on fluid-
attenuated inversion recovery (D) and T2 weighted images (E) and not hypointense on 
susceptibility weighted sequence (F).  Scale bar is set at 5mm.  
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Figure 3 – 6: Quantitative segmentations of the brain parenchyma. 

(A) Segmentations of the white and gray matter and cerebrospinal fluid (in colours). (B) 
Segmentations of the white matter hyperintensities together with the brain parenchyma. (C) 
Cerebral cortex parcellated into sulci and gyri cortices (displayed by colours) based on 
anatomical regions. (D) Subcortical gray matter structures identified as colours 
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Figure 3 – 7: Measurement of retinal microvascular parameters using Singapore I Vessel 
Assessment (SIVA) 

All retinal microvascular parameters are measured within the grid drawn over a region 0.5 to 2 
disc diameter away from the optic disc. SIVA programme automatically traces the vessels (A) 
Calibers are calculated separately for arterioles (red) and venules (blue). (B) Fractal dimension 
calculated from the skeletonized line using box counting method. (C) Tortuosity is derived 
from the integral of the curvature square along the path of the vessel, normalized by the total 
path length. 
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Figure 3 – 8: Measurement of retinal neuronal layers using spectral domain optical 
coherence tomography (SD-OCT) 

Retinal nerve fiber layer (RNFL) is measured at the purple circle (A) around the optic disc 
using optic nerve head cube scans where RNFL is automatically delineated as seen in a cross 
section (between two red lines) (B). Ganglion cell inner plexiform layer (GC-IPL) is measured 
at red circle on the fovea (C) using macular cube scans where GC-IPL is automatically 
delineated as shown on the cross section (between the two red lines) (D).  
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1.  INTRODUCTION 

Cerebral microbleeds (CMB) are radiologically defined lesions on magnetic 

resonance imaging (MRI) sequences, most commonly on gradient-echo (GE) T2* or 

susceptibility weighted images (SWI), which correspond pathologically to 

hemosiderin deposits surrounding small vessels.1, 2 In healthy populations the 

reported prevalence of CMBs ranges from 3.8% to 38.3%, whereas in patients with 

stroke the corresponding figures may be as high as 50-70%.3-6  

Histo-pathological studies have shown that CMBs are associated with surrounding 

tissue damage.7, 8 Although a direct impact of CMBs on cognitive function has been 

hypothesized, results from studies have varied.9-12  CMBs are associated with both a 

higher amyloid burden and are also known to occur in patients with Alzheimer’s 

disease. Furthermore, previous studies showed that CMBs occur concomitantly with 

white matter hyperintensities (WMH) and lacunar stroke.12-14 Thus, an independent 

effect of CMBs on cognition may be implicated only if other associated pathologies 

are accounted for.15  

With respect to Asian populations, studies from Japan reported that presence of 

CMBs is related to a poorer cognitive function.16, 17 However, in these studies 

cognitive function was assessed solely by the mini mental status examination 

(MMSE), and 1.5T MRI was utilized for assessment of CMBs. As yet, there are no 

data from Chinese populations on the association with cognitive impairment as 

assessed by an extensive neuropsychological test battery. Therefore, in the present 

study, we investigated the association of CMBs with cognition, as assessed by a 

comprehensive neuropsychological evaluation among Chinese subjects from the 

population-based Singapore Chinese Eye Study (SCES), who failed an initial 

cognitive screening and were recruited into the on-going Epidemiology of Dementia 

in Singapore (EDIS) Study. Furthermore, when examining this association we took 

into account the presence of other MRI features, as reflected by markers of cerebral 

small vessel disease and involutional changes on MRI. 
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2.  METHODS 

2.1  Study Population 

The ongoing Epidemiology of Dementia in Singapore (EDIS) study drew subjects 

from the population-based study among Chinese aged 40-85 years, who participated 

in the Singapore Chinese Eye Study (SCES). In order to use the limited resources in 

an efficient way, it was decided to focus on those subjects who were most likely to 

have some cognitive problems. Hence, in the first phase of the EDIS Study, Chinese 

participants from SCES aged ≥ 60 years (n=1,538) were screened using the 

Abbreviated Mental Test (AMT) and a self-report of progressive forgetfulness. 

Screen-positives were defined as AMT score ≤ 6, among those with ≤ 6 years of 

formal education, or ≤ 8 among those with > 6 years of formal education; or if the 

subject or caregiver reported progressive forgetfulness. Screen-positive subjects 

(n=612) were invited to take part in the second phase of this study, which included an 

extensive neuropsychological test battery and brain magnetic resonance imaging 

(MRI). Of these 612 participants, 300 agreed to participate in phase II and hence were 

included in the present study. Ethics approval for EDIS was obtained from the 

Singapore Eye Research Institute (SERI) and National Healthcare group (NHG) 

Institutional Review Boards. Informed consent was obtained for all participants prior 

to recruitment. The details of the study methodology have been described 

elsewhere.18 

2.2  Neuroimaging 

MRI Acquisition  

MRI scans were performed on a 3T Siemens Magnetom Trio Tim scanner using a 32-

channel head coil at the Clinical Imaging Research Centre, National University of 

Singapore, Singapore. A number of standardized and advanced MRI Brain sequences 

were performed including Susceptibility Weighted Imaging (SWI) sequences to 

detect CMBs as described in Chapter 3. Subjects with claustrophobia, 
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contraindications for MRI, or those who were unable to tolerate the procedure were 

excluded. 

Grading of Cerebral Microbleeds (CMB)  

The presence, location and number of CMBs were graded on SWI images according 

to the Brain Observer Micro Bleed Scale (BOMBS)19 (Chapter 3).  

Other markers on MRI 

Other MRI markers of cerebrovascular diseases (lacunes and WMH volume) and 

involutional changes (total brain volume) have been described in detail in Chapter 3. 

2.3  Cognitive Assessment 

A formal neuropsychological battery, previously validated for the Singaporean 

elderly, was administered to all participants.20 The details of cognitive domains, 

utilizing respective neuropsychological tests have been described in Chapter 3.  

2.4  Assessment of Other Risk Factors  

Demographic and vascular risk factors including age, sex, education, smoking, 

hypertension, diabetes, hyperlipidemia, height, weight and history of stroke were 

collected and verified by medical records.18 Data on medication use included use of 

antiplatelets or anticoagulants. Education was categorized into < Primary 6 and ≥ 

Primary 6. Smoking was categorized into ever smokers (past and current smokers) vs. 

never smokers. Body mass index (BMI) was calculated as the weight in kg divided by 

the square of height in meters. 

2.5  Statistical Analysis 

Baseline characteristics are presented as means ± standard deviation [SD] or number 

(percentage), and were compared between subjects with and without CMB. Chi-

square test was used for categorical variables, student’s t-test for normally distributed 

continuous variables and Mann-Whitney U test for skewed distributed continuous 

variable (WMH).  

Regarding quantitative MRI markers, WMH volume was logarithmically 

transformed, to ensure a normal distribution. With respect to the associations between 
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CMBs and other MRI markers: logistic regression models were constructed for 

lacunes, and linear regression models for WMH and total brain volume. These 

models were adjusted initially for age and sex; subsequently for smoking, mean 

arterial blood pressure, cholesterol, random blood glucose and, finally, for the other 

MRI markers.  

For the associations of CMBs with cognition, linear regression models were 

constructed for composite and domain-specific Z-scores. These regression models 

with cognition were adjusted initially for age, sex and education; subsequently for 

mean arterial blood pressure, cholesterol, random blood glucose, smoking, BMI, 

antiplatelet/ anticoagulant, GDS and, finally, for the other MRI markers.  

For all the models, measures of association were expressed with the corresponding 

95% confidence intervals (CI). In order to examine the robustness of the associations, 

CMBs were included in these models as (1) per CMB increase and (2) multiple (≥2) 

versus none/single (<2) CMB. P-values < 0.05 were considered statistically 

significant. In view of the multiple tests performed on the specific cognitive domains 

(7 domains), we also used the Bonferroni correction to obtain an adjusted significance 

level for each domain-specific test: 0.05/7=0.007. These analyses were performed 

using standard statistical software (Statistical Package for Social Science, SPSS V20, 

SPSS Inc., USA). 

3.  RESULTS 

A total of 1,538 Chinese subjects participated in phase I of the EDIS Study, of whom 

612 were screen positive and thus were invited for the second phase. Out of 612 

screened positive participants, 300 subjects agreed to participate in phase II. 

Compared to those who did not participate in phase II (n=312), those who 

participated were younger (mean age 69.9), more often women, had a higher 

education and higher socio-economic status, less often hypertensive, whereas the 

proportion of hyperlipidemia was higher (Table 4-1). Of these 300 participants, 18 
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subjects had MRI scans that could not be graded.  Of the remaining 282 subjects, 

91(32.3%) subjects had any CMBs. Among subjects with CMBs, 55 (60.4%) had a 

single CMB, 19 (20.8%) had 2 CMB and 17 (18.7%) > 2 CMBs. Lobar CMBs were 

present in 75 (82.4%), of which 36 (39.6%) were cortical CMBs. The range of CMB 

counts was 0 to 43. Baseline characteristics of the participants with and without CMB 

are shown in Table 4–2. Subjects with CMB more often used antiplatelets and 

anticoagulants and had more lacunes and a higher WMH volume compared to those 

without CMBs.  

Increasing age was associated with higher prevalence of CMBs: among persons aged 

60-64 years the prevalence was 28.6% increasing to 35.7% in those older than 75 

years. With respect to other MRI markers, the most consistent associations were 

found between CMBs and lacunes, which were independent even after adjusting for 

WMH and total brain volumes. For WMH, only the model, which included CMBs as 

“a one lesion increase”, suggested an association with WMH volume: 0.05 (95% CI 

0.01; 0.09) (Table 4-3). However, this was not supported by the categorized analysis. 

Finally, CMBs were not associated with total brain volume.  

With respect to cognition, Table 4-4 shows that there was an association between 

CMB and global composite Z–score (difference in mean Z-score per CMB increase: -

0.06 [-0.11; -0.01]). Furthermore, these associations were independent of other 

cardiovascular risk factors and other markers of cerebral small vessel disease. The 

findings were further supported when CMBs were categorized as multiple versus 

none/single.  

As we found a significant association with the global composite Z-score, further 

analyses were conducted with domain-specific Z-scores (Table 4-5). In the fully 

adjusted models CMBs were associated with executive function, attention and 

visuoconstruction. Similar associations were observed when CMBs were categorized 

as ≥ 2 versus < 2. Finally, when applying Bonferroni-corrected significance level of 
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0.007 to the domain specific analyses, only the association with visuoconstruction 

reached this revised level of significance.  

4.  DISCUSSION 
 
In this study of an elderly Chinese population, we showed that the presence and 

number of CMBs were - independent of other markers of cerebral small vessel 

disease – associated with poorer cognitive function.  

There is considerable debate about the exact role of CMBs in the pathophysiology of 

cognitive impairment and dementia. A recent systemic review and meta-analysis 

reported an association between CMBs and cognitive impairment.21 Furthermore, the 

RUN DMC study examining non-demented subjects (50-85 years) with cerebral 

small vessel disease also reported significant associations of presence and number of 

CMBs with global cognitive function, as measured by the Cognitive Index, 

psychomotor speed and attention, though no association was found with the MMSE.9  

On the other hand, data from the Rotterdam Study (n=3,979) has suggested that the 

number of CMBs is associated with MMSE scores after additional adjustment for 

brain atrophy, WMH volume and lacunar infarcts, suggesting that concomitant 

occurrence of traditional markers of cerebral small vessel disease explained their 

findings.10 In contrast, several other studies in Caucasians have failed to find an 

independent association between CMB and cognitive decline.22,23 Finally, a clinic-

based study among subjects with Alzheimer’s disease (mean age 68 ± 9 years) 

showed that the presence and number of CMB was neither associated with baseline 

MMSE, nor with change in MMSE over a period of 3 years.24  

With respect to Asian populations, thus far two Asian studies have shown an 

association of CMB with lower scores on MMSE.16, 17 However, these studies lacked 

detailed neuropsychological assessment, utilized low resolution MRI scans and other 

cerebrovascular diseases (strokes and WMH) were not taken into consideration. With 

respect to the Chinese population, ours is the first study to suggest that CMBs are 
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associated with cognitive function independent of other markers of cerebral small 

vessel disease. In order to examine the robustness of our findings, we also examined 

these associations using a different categorization (≥2 versus <2), apart from the “per 

CMB increase” analyses. This categorization further supported our original findings.  

In relation to MRI markers of cerebrovascular disease, previous studies have reported 

an association of CMBs with silent brain infarcts, lacunar infarcts and WMH.14,25,26 

Our observations confirm the association of cerebral CMBs with other markers of 

cerebral small vessel disease, including lacunes and – less clearly – WMH.  

Some methodological issues need to be discussed. First, only half of the screen 

positive subjects took part in phase II of the study, as described previously.18 This 

might have led to an underestimation of the prevalence of CMBs on MRI and 

subjects with poorer cognitive function and subsequently attenuation of the effect 

sizes. Despite this underestimation, we still found an association with the composite 

and several domain-specific Z-scores. Second, we did not have sufficient number of 

CMBs to specifically examine the association between location of CMBs (such as 

lobar region) and cognition. Third, due to the cross-sectional design of our study the 

temporal relationship between the presence of CMBs and the development of 

cognitive decline cannot be assessed. Fourth, due to the small number of dementia 

cases (n=5) in this sample, we were unable to determine the effect of CMBs on 

clinically defined dementia. Fifth, even after adjusting for MRI markers such as 

WMH, lacunes and total brain volume, we cannot exclude the possibility of residual 

confounding by other effects of small vessel disease not fully captured by the current 

MRI markers. Finally, for the domain specific analyses, although we found several 

significant associations at a nominal significance level of 0.05, after applying 

Bonferroni correction only the association with visuoconstruction reached the revised 

significance level of 0.007. Probably due to low power of our study we were not able 

to examine the large number of specific cognitive domains separately. 
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The strengths of this study include: utilization of a validated comprehensive 

neuropsychological test battery for the evaluation of cognitive function and a multi-

modal MRI (3T) to visualize CMBs and other markers of cerebral small vessel 

disease. Furthermore, quantitative MRI markers, such as WMH and total brain 

volume were utilized and adjusted for in our analysis.   

5.  CONCLUSION 

In this study among Chinese subjects, CMBs were, independent of other concomitant 

markers of cerebral small vessel disease, associated with poorer cognitive function. 

Future studies with a prospective design are required to further elucidate the exact 

role of this novel marker of cerebral small vessel disease in the pathophysiology of 

cognitive impairment and dementia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Chapter 4 

126 
 

CHAPTER 4 – REFERENCES 
 
1.  Nandigam RN, Viswanathan A, Delgado P, et al. MR imaging detection of 

cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, 

and field strength. AJNR Am J Neuroradiol. 2009;30:338-43. 

2.  Koennecke HC. Cerebral microbleeds on MRI: prevalence, associations, and 

potential clinical implications. Neurology. 2006;66:165-71. 

3.  Poels MM, Ikram MA, van der Lugt A, et al. Incidence of cerebral 

microbleeds in the general population: the Rotterdam Scan Study. Stroke. 

2011;42:656-61. 

4.  Werring DJ, Coward LJ, Losseff NA, et al. Cerebral microbleeds are 

common in ischemic stroke but rare in TIA. Neurology. 2005;65:1914-18. 

5.  Lee SH, Bae HJ, Kwon SJ, et al. Cerebral microbleeds are regionally 

associated with intracerebral hemorrhage. Neurology. 2004;62:72-6. 

6.  Jeerakathil T, Wolf PA, Beiser A, et al. Cerebral microbleeds: prevalence and 

associations with cardiovascular risk factors in the Framingham Study. Stroke. 

2004;35:1831-35. 

7.  Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small 

vessel disease: a systematic review of MRI and histopathology correlations. J Neurol 

Neurosurg Psychiatry. 2011;82:126-35. 

8.  Tatsumi S, Shinohara M, Yamamoto T. Direct comparison of histology of 

microbleeds with postmortem MR images: a case report. Cerebrovasc Dis. 

2008;26:142-46. 

9.  van Norden AG, van den Berg HA, de Laat KF, et al. Frontal and temporal 

microbleeds are related to cognitive function: the Radboud University Nijmegen 

Diffusion Tensor and Magnetic Resonance Cohort (RUN DMC) Study. Stroke. 

2011;42:3382-86. 



Chapter 4 

127 
 

10.  Poels MM, Ikram MA, van der Lugt A, et al. Cerebral microbleeds are 

associated with worse cognitive function: the Rotterdam Scan Study. Neurology 

2012;78:326-33. 

11.  Cordonnier C, van der Flier WM, Sluimer JD, et al. Prevalence and severity 

of microbleeds in a memory clinic setting. Neurology. 2006;66:1356-60. 

12.  Patel B, Lawrence AJ, Chung AW, et al. Cerebral microbleeds and cognition 

in patients with symptomatic small vessel disease. Stroke. 2013;44:356-61. 

13.  Yates PA, Sirisriro R, Villemagne VL, et al. Cerebral microhemorrhage and 

brain beta-amyloid in aging and Alzheimer disease. Neurology. 2011;77:48-54. 

14.  Wardlaw JM, Lewis SC, Keir SL, et al. Cerebral microbleeds are associated 

with lacunar stroke defined clinically and radiologically, independently of white 

matter lesions. Stroke. 2006;37:2633-36. 

15.  Charidimou A, Krishnan A, Werring DJ, et al. Cerebral microbleeds: a guide 

to detection and clinical relevance in different disease settings. Neuroradiology. 

2013;55:655-74. 

16.  Takashima Y, Mori T, Hashimoto M, et al. Clinical correlating factors and 

cognitive function in community-dwelling healthy subjects with cerebral 

microbleeds. Journal of stroke and cerebrovascular diseases : the official journal of 

National Stroke Association. 2011;20:105-10. 

17.  Yakushiji Y, Nishiyama M, Yakushiji S, et al. Brain microbleeds and global 

cognitive function in adults without neurological disorder. Stroke. 2008;39:3323-28. 

18.  Hilal S, Ikram MK, Saini M, et al. Prevalence of cognitive impairment in 

Chinese: Epidemiology of Dementia in Singapore study. J Neurol Neurosurg 

Psychiatry. 2013;84:686-92. 

19.  Cordonnier C, Potter GM, Jackson CA, et al. improving interrater agreement 

about brain microbleeds: development of the Brain Observer MicroBleed Scale 

(BOMBS). Stroke. 2009;40:94-9. 



Chapter 4 

128 
 

20.  Yeo D, Gabriel C, Chen C, et al. Pilot Validation of a customized 

neuropsychological battery in elderly Singaporeans. Neurological Journal of South 

East Asia. 1997:123. 

21. Lei C, Lin S, Tao W, Hao Z, Liu M, Wu B. Association between cerebral 

microbleeds and cognitive function: a systematic review. J Neurol Neurosurg 

Psychiatry. 2013;84:693-97. 

22. Martinez-Ramirez S, Greenberg SM, Viswanathan A. Microbleeds do not 

affect rate of cognitive decline in Alzheimer disease. Neurology. 2013;80:1266. 

23. Schneider JA. Brain microbleeds and cognitive function. Stroke. 

2007;38:1730-31. 

24. van der Vlies AE, Goos JD, Barkhof F, Scheltens P, van der Flier WM. 

Microbleeds do not affect rate of cognitive decline in Alzheimer disease. Neurology. 

2012;79:763-69. 

25. Lovelock CE, Cordonnier C, Naka H, et al. Antithrombotic drug use, cerebral 

microbleeds, and intracerebral hemorrhage: a systematic review of published and 

unpublished studies. Stroke. 2010;41:1222-28. 

26. Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors 

of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008;70:1208-14 



Chapter 4 

129 
 

CHAPTER 4 – TABLES 
 
Table 4 – 1: Baseline characteristics of screen positive participants in phase II compared 
to non-participants  

 

 

Risk Factors 

 

 

Participated in phase II 

Yes (n = 282)            No (n = 312) 

 

P-value* 

 

Age (years) 

 

69.8 (6.3) 

 

71.4 (6.5) 

 

0.003 

Women, no. (%) 146 (51.8) 172 (55.1) 0.408 

No formal education, no. (%) 124 (43.9) 171 (55) 0.007 

Low Socioeconomic status, no. (%)  184 (65.2) 242 (77.5) <0.001 

Hypertension, no. (%) 208 (73.5) 258 (83) 0.005 

Diabetes mellitus, no. (%) 78 (27.6) 77 (24.8) 0.698 

Hyperlipidemia, no. (%) 245 (74.8) 147 (47.3) <0.001 

Mean arterial blood pressure, mmHg, (SD)  97.1 (9.7) 99.1 (11.9) 0.026 

Random blood glucose, mmol/l (SD) 6.6 (2.7) 6.7 (2.9) 0.603 

Total cholesterol, mmol/l (SD) 5.8 (1.7) 5.2 (1.1) 0.010 

Ever smokers, no.  (%) 86 (30.5) 93 (29.9) 0.271 

Alcohol drinking, no. (%) 

Body mass index, kg/m2, (SD) 

18 (6.4) 

23.9 (3.4) 

19 (6.1) 

23.5(3.4) 

0.883 

0.166 

Abbreviation: SD, standard deviation; kg/m2, kilogram per meter square; mmHg, millimeters 
of mercury; mmol/l, millimoles per liter 

* p < 0.05; significant 
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Table 4 – 2: Baseline characteristics of the participants with and without cerebral 
microbleeds on MRI (n= 282) 

 

Baseline characteristics CMB absence   
(n=191) 

CMB present  
(n=91) 

P value 

 
Age, years (SD) 

 
70.1 (6.4) 

 
71.2 (5.9) 

 
0.19 

 
Women, n (%) 

 
105 (55) 

 
45 (49.5) 

 
0.44 

 
Education,  (Primary ≤ 6 years) 

 
124 (64.9) 

 

60 (65.9) 
 

0.89 
 
Body mass index, kg/m2  (SD) 

 
19.1 (2.8) 

 

18.9 (2.8) 
 

0.62 
 
Hypertension, n (%) 

 
146 (76.4) 

 
69 (75.8) 

 
1.00 

 
Diabetes, n (%) 

 
50 (26.2) 

 
25 (27.5) 

 
0.89 

 
Hyperlipidemia, n (%) 

 
112 (58.6) 

 
55 (60.4) 

 
0.80 

 
Mean arterial blood pressure, mmHg (SD)  

 
100.2 (10.1) 

 
100.0 (13.3) 

 
0.88 

 
Random blood glucose, mmol/l (SD) 

 
6.7 (2.9) 

 
6.6 (2.5) 

 
0.65 

 
Total cholesterol, mmol/l (SD) 

 
5.0 (0.9) 

 
4.8 (0.8) 

 
0.12 

 
Ever smokers, n (%) 

 
54 (28.3) 

 
32 (35.2) 

 
0.27 

 
Antiplatelets/ Anticoagulants, n (%) 

 
23 (12) 

 
26 (28.6) 

 
0.001 

 
Presence of lacunes, n (%) 

 
25 (13.1) 

 
27 (29.7) 

 
0.002 

 
Total brain volume, ml (SD) 

 
889.0 (87.8) 

 
902.6 (90.9) 

 
0.23 

 
Total WMH volume, ml, median (IQR)# 

 

 
1.7 (0.5-4.4) 

 
2.9 (0.5-6.9) 

 
0.02 

 
Abbreviations: CMB, cerebral microbleed; MRI, magnetic resonance imaging; WMH, white 
matter hyperintensities; SD, standard deviation; kg/m2, kilogram per meter square; mmHg, 
millimeters of mercury; mmol/l, millimoles per liter; ml, milliliters; IQR, interquartile range 

* p < 0.05; significant 

# The median, IQR and Wilcoxon Rank-Sum test was used as the variable had a skewed 
distribution 
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Table 4 – 3: Association between the presence of cerebral microbleeds and MRI markers 
of cerebrovascular disease and involutional changes (n = 282) 

 

Abbreviations: OR, odds ratios; CI, confidence interval; CMB, cerebral microbleed; MRI, 
magnetic resonance imaging; WMH, white matter hyperintensities. 

*Adjusted for age and sex. 

†Adjusted for age, sex, smoking, mean arterial blood pressure, cholesterol, and random blood 
glucose. 

‡Adjusted for age, sex, smoking, mean arterial blood pressure, cholesterol, random blood 
glucose, and other MRI markers. 

§Other MRI markers include WMH and total brain volume. 

║Other MRI markers include lacunes and total brain volume. 

¶Other MRI markers include lacunes and WMH volume. 

Bold values represent statistically significant associations at P<0.05. 

 

 
Presence of lacunes 

OR  
(95%CI) 

WMH volume 
 

Mean difference 
(95%CI) 

Total brain volume 
 

Mean difference 
(95%CI) 

Per CMB increase 

Model I* 

 

1.34 (1.09; 1.63) 

 

0.04 (0.01; 0.07) 

 

0.63 (-2.12; 3.37) 

Model II† 1.33 (1.05; 1.69) 0.07 (0.03; 0.12) -1.31 (-6.27; 3.66) 

Model III‡  1.25 (0.95; 1.63)§  0.05 (0.01; 0.09)║  -2.47 (-7.53; 2.59)¶ 

CMB, ≥ 2 versus <2 

Model I* 

 

3.42 (1.55; 7.54) 

 

0.25 (-0.01; 0.49) 

 

13.94 (-11.92; 39.82) 

Model II† 3.23 (1.38; 7.56) 0.17 (-0.08; 0.42) 4.05 (-22.52; 30.61) 

Model III‡ 2.94 (1.16; 7.45)§ 0.07 (-0.17; 0.31)║ 2.51 (-24.15; 29.17)¶ 

CMB 0, 1, or ≥ 2    

Model I*    

0 Reference Reference Reference 

1 1.83 (0.82; 4.06) 0.11 (-0.10; 0.32) 5.71 (-16.18; 27.60) 

≥ 2 4.00 (1.74; 9.23) 0.26 (0.02; 0.51) 16.06 (-10.47; 42.58) 

Model II†    

0 Reference Reference Reference 

1 1.69 (0.71; 4.08) 0.14 (-0.07; 0.35) 0.48 (-22.25; 23.22) 

≥ 2 3.77 (1.53; 9.33) 0.20 (-0.05; 0.46) 4.87 (-22.21; 31.95) 

Model II†    

0 Reference Reference Reference 

1 1.63 (0.61; 4.38)§ 0.09 (-0.10; 0.28)║ -1.31 (-23.83; 21.22)¶ 

≥ 2 3.24 (1.30; 9.06)§ 0.11 (-0.15; 0.36)║ 3.03 (-24.50; 30.55)¶ 
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Table 4 – 4: Association between cerebral microbleeds and cognitive-impairment 
expressed as odd ratios and mean difference with 95% confidence intervals 

 Composite Z-score 
 

Mean difference (95% CI) 
Per CMB increase 
 
Model I* 

 
 

-0.04 (-0.07;-0.01) 
 
Model II† 

 
-0.09 (-0.14; -0.04) 

 
Model III‡ 

 
-0.06 (-0.11; -0.01) 

CMB, ≥ 2 versus <2 
 
Model I* 

 
 

-0.34 (-0.59; -0.08) 
 
Model II† 

 
-0.31 (-0.57; -0.04) 

 
Model III‡ 

 
-0.18 (-0.43; 0.08) 

CMB 0, 1, or ≥2 
 
Model I 
0 

 
 

 
Reference 

 
1 

 
0.08 (-0.13; 0.29) 

 
≥2 

 
-0.32 (-0.58; -0.06) 

Model II 
0 

 
Reference 

 
1 

 
0.06 (-0.16; 0.28) 

 
≥2 

 
-0.32 (-0.59; -0.05) 

Model III 
0 

 
Reference 

 
1 

 
0.08 (-0.13; 0.29) 

 
≥2 

 
-0.18 (-0.45; 0.09) 

Abbreviation: CI, confidence interval; CMB, cerebral microbleed; MRI, magnetic resonance 
imaging; WMH, white matter hyperintensities 

* Adjusted for age, sex and education 

† Adjusted for age, sex, education, mean arterial blood pressure, cholesterol, random blood 
glucose, smoking, body mass index, antiplatelets/anticoagulants and Geriatric Depression 
Scale 

‡ Adjusted for age, sex, education, mean arterial blood pressure, cholesterol, random blood 
glucose, smoking, body mass index, antiplatelets/anticoagulants, Geriatric Depression Scale 
and other MRI markers (lacunes, WMH and total brain volumes) 

Bold values represent statistically significant associations at P<0.05 
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Table  4 – 5: Association between the number of cerebral microbleeds (per lesion increase) and specific cognitive domains expressed as mean differences 
with 95% confidence intervals 
 

  Executive function Attention Language Visuomotor speed Visuoconstruction Verbal memory Visual memory 

 B (95%CI) B (95%CI) B (95%CI) B (95%CI)  B (95%CI) B (95%CI) B (95%CI) 

Model I* -0.05 (-0.08; -0.02) -0.02 (-0.05; 0.01) -0.03 (-0.06; 0.00) -0.02 (-0.05; 0.00) -0.05 (-0.07; -0.02)# -0.02 (-0.05; 0.01) -0.04 (-0.06; -0.01) 

Model II† -0.10 (-0.16; -0.04) -0.09 (-0.15; -0.04) -0.08 (-0.14; -0.02) -0.05 (-0.09; -0.00) -0.09 (-0.15; -0.04)# -0.06 (-0.11; -0.00) -0.06 (-0.12; -0.01) 

Model III‡ -0.07 (-0.13; -0.02) -0.06 (-0.12; -0.01) -0.06 (-0.12; 0.01) -0.02 (-0.07; 0.03) -0.08 (-0.13; -0.02)# -0.03 (-0.08; 0.03) -0.03 (-0.08; 0.02) 

Abbreviations: B= mean difference; CI= confidence interval 

* Adjusted for age, sex and education 

† Adjusted for age, sex, education, mean arterial blood pressure, cholesterol, random blood glucose, smoking, body mass index, antiplatelets/anticoagulants and 
Geriatric Depression Scale 

‡ Adjusted for age, sex, education, mean arterial blood pressure, cholesterol, random blood glucose, smoking, body mass index, antiplatelets/anticoagulants, 
Geriatric Depression Scale and other MRI markers (lacunes, WMH and total brain volumes) 

# Significant after accounting for multiple testing with Bonferroni correction 

Bold values represent statistically significant associations at P<0.05 
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CHAPTER 5:  

Cortical Microinfarcts on 3T MRI: Clinical Correlates in Memory-
Clinic Patients 
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1.  INTRODUCTION 

Cerebrovascular disease is an important contributor to cognitive decline and dementia in 

the aging population.1 On autopsy, vascular pathology is found in the majority of patients 

with clinically diagnosed dementia.2 This vascular pathology frequently involves the 

cerebral small vessels. In vivo, signs of cerebral small vessel disease (SVD) on 

conventional magnetic resonance imaging (MRI) include white matter hyperintensities 

(WMHs), lacunes, and microbleeds.3,4 However, these conventional MRI markers do not 

fully capture the burden of SVD in cognitive decline and dementia. In this context, 

cerebral microinfarcts (CMIs) have attracted increasing attention.5 CMIs are regarded as 

the most widespread form of brain infarction and hence could play an important role in 

cognitive decline and dementia.5,6 A systematic review with a pooled analysis of autopsy 

studies showed that CMIs are observed in 24% of non-demented older subjects, in 43% of 

patients with Alzheimer’s disease (AD), and in 62% of patients with vascular dementia 

(VaD).6  Moreover, autopsy studies link CMIs to ante-mortem cognitive decline, also 

independent of Alzheimer pathology.7,8  Recently, it has been shown that cortical CMIs 

can be visualized in vivo using high-field 7 tesla (7T) MRI,9 and that these CMIs can also 

be detected on 3T MRI scans.9,10 

In this study, we examined the frequency of cortical CMIs on 3T MRI in a multi-ethnic 

Asian memory clinic population with a high vascular burden from Singapore. 

Furthermore, we investigated their association with vascular risk factors, cognition, and 

conventional SVD markers. 

2.  METHODS 

2.1  Study Population 

This study involves patients from the National University Health System Memory Ageing 

and Cognition Centre Cohort recruited from the memory clinics of the National 
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University Hospital and St. Luke’s Hospital in Singapore. Patients received a referral 

diagnosis prior to enrolment into the study. Five diagnostic categories were eligible for 

inclusion in this study, which were based on the referral diagnosis. 1) ‘No cognitive 

impairment’ (NCI): this diagnosis was given to patients visiting the memory clinic who 

had no objective cognitive impairment on formal neuropsychological tests, or functional 

loss. 2) ’Cognitive impairment no dementia’ (CIND), with (2a) or without (2b) a history 

of stroke was diagnosed in patients who were impaired in at least one cognitive domain of 

a formal neuropsychological test battery, but did not meet DSM-IV (Diagnostic and 

Statistical Manual of Mental Disorders - Fourth Edition) criteria for dementia. Subjects 

were considered to have failed a test it they scored lower than age and education-adjusted 

1.5 SDs below established normal means on individual tests. Failure in at least half of the 

tests in a domain was considered as impairment in that domain. Ischemic stroke was 

assessed based on medical history, and confirmed by neuroimaging. Patients with a 

history of hemorrhagic stroke were excluded. 3) AD was diagnosed in accordance with 

the NINCDS—ADRDA criteria.11 4) VaD was diagnosed in accordance with the NINDS-

AIREN criteria.12 Patients with other diagnoses, or significant neurological co-morbidities 

(e.g. Parkinson’s disease), or loss of functional independence (modified Rankin Scale 

>4), were not included in the cohort. 

As part of the cohort study these diagnoses were confirmed in a multidisciplinary 

consensus meeting, attended by neurologists, psychologists, and a neuroradiologist. All 

study patients underwent a standardized extensive physical, clinical, and 

neuropsychological assessment as well as 3T MRI, all on the same day, at the National 

University of Singapore. For the present study, we selected all consecutive patients 

(N=251), meeting the abovementioned criteria, included between December 2010 and 

September 2013. Of these 251 subjects, 13 were excluded due to missing T1-, FLAIR, or 

T2-weighted images, resulting in a total of 238 patients included in the current analyses. 
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Ethical approval for this study was obtained from the National Healthcare Group 

Domain-Specific Review Board (DSRB). The study was conducted in accordance with 

the Declaration of Helsinki. Written informed consent was obtained, in the preferred 

language of the patients, by bilingual study coordinators prior to recruitment into the 

study. Consent for patients lacking capacity was provided by their legal representative, as 

allowed by the DSRB. 

The vascular risk profile was recorded for each patient, which included: a) Diabetes 

mellitus: defined as a history or previous diagnosis of diabetes mellitus, or use of glucose-

lowering medication; b) Hypertension: defined as a history or previous diagnosis of 

hypertension, or use of antihypertensive medication; c) Hyperlipidemia: defined as a 

history or  previous diagnosis of hyperlipidemia, or use of lipid-lowering medication; d) 

Cardiovascular disease: defined as a previous diagnosis of myocardial infarction, 

congestive heart failure, atrial fibrillation, or intervention procedures such as angioplasty, 

or stenting. 

2.2  Cognitive Assessment 

The Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment 

(MoCA) as well as a formal neuropsychological battery, previously validated for elderly 

Singaporeans,13 were administered. The subtests to assess the seven cognitive domains 

have been described previously in Chapter 3. 

The assessment was administered according to the patient’s preferred language (i.e. 

English, Mandarin, or Malay). All individual raw test scores were transformed to 

standardized z-scores using the means and SDs of the whole group (N=238). Further 

information on calculation of Z scores have been described in Chapter 3. 

2.3  MRI Protocol 

All scans were acquired on a 3T Siemens Magnetom Trio Tim system, with a 32-channel 

receiver head-coil, at the Clinical Imaging Research Centre of the National University of 
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Singapore. The standardized protocol for 3D T1-weighted, a 2D multislice T2-weighted, 

fluid-attenuated inversion recovery (FLAIR) and susceptibility weighted imaging (SWI), 

for the assessment of markers of SVD and intracranial stenosis has been described 

previously in Chapter 3.  

2.4  MRI Rating 

Rating criteria for cortical CMIs were based on a previous study that included 

histological validation (Figure 5-1).9 In that study 15 CMIs were found on 7T in 6/22 

subjects. A proportion (4/15 = 27%) of those CMIs in 2 subjects could also be visualized 

on 3T MRI, especially on the 3D T1-weighted image (Figure 5-2).9 Based on those 

results, the rating criteria for cortical CMIs on 3T for the present study were defined in 

the similar fashion as decribed in Chapter 3 (Figure 5-3).  

The reliability of these 3T rating criteria were tested, using scans from the database of a 

previous study.14 From this dataset, 3T scans were selected based on the earlier 7T 

evaluation by a single rater [SvV]. The validation set included 12 subjects with CMIs on 

the 7T MR images with appropriate 3T MR images, and 11 subjects without CMIs on 7T. 

Cortical CMIs were identified by one visual rater [SvV] on the 3T FLAIR, T1, and T2 

images of these 23 subjects, using the 3T rating criteria as described above, blinded to the 

7T results and clinical information. Identified cortical CMI locations on 3T were then 

compared to the 7T FLAIR, T1, and T2 of the same subject to verify the presence of a 

CMI. It was found that 7/8 (88%) of the identified cortical CMI locations on 3T in these 

subjects, matched with CMIs on the 7T MRI. One of the 8 CMI locations proved to be a 

sulcus on the higher resolution 7T images. The 7 CMIs identified on 3T represented 27% 

of the total number of CMIs (N=26) identified by the same rater on the 7T MRI scans in 

this dataset.  

Cortical CMIs were assessed by one experienced rater [SvV]. The intra-rater agreement 

for cortical CMIs, as assessed with the intraclass correlation coefficient (ICC) on a 
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representative subset of 3T MRI scans, was excellent (ICC=0.97) and good, as assessed 

with Dice’s similarity coefficient (DSC) (DSC=0.65).15 CMI size was estimated on T1 

along the longest axis of the lesion. 

Microbleeds were assessed by one rater [SH] on T2*-weighted images using the Brain 

Observer MicroBleeds Scale (BOMBS) criteria. The intra-rater agreement was excellent 

(ICC=0.89). 

The presence of any large cortical infarct (>5 mm), any cerebellar infarct, or any 

subcortical infarct (i.e. a large subcortical infarct and/or a lacunar infarct) was assessed 

on FLAIR and T1, by two independent raters [SH, NW]. Subsequently, both infarct and 

WMH volume were segmented manually [NW] on FLAIR and T1-weighted images 

using an in-house developed tool based on MeVisLab (MeVis Medical Solutions AG, 

Bremen, Germany).16,17 

Total brain volume and intracranial volume were quantified using a unified segmentation 

approach as implemented in Statistical Parametric Mapping 12b.18 WMH and infarct 

volumes were censored in the segmentation using a mask based on the manual 

delineation of WMHs and infarcts, but were considered as part of total brain volume. 

Intracranial volume was calculated using total brain volume, intraventricular, and 

extracortical cerebrospinal fluid volume. 

The presence of intracranial stenosis, assessed by one rater [SH] on time of flight, was 

defined as a narrowing exceeding 50% of the luminal diameter of either the vertebral, 

basilar, internal carotid, posterior cerebral, middle cerebral, or anterior cerebral artery.  

All MRI ratings were performed blinded to clinical information and without knowledge 

of cortical CMI ratings. 

2.5  Statistical Analyses 

Differences between patients without and with ≥1 or ≥3 (upper tertile) cortical CMIs on 

MRI were assessed using independent t-tests for continuous variables, chi-square tests for 
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dichotomous variables, and Mann-Whitney U tests for non-parametric data. Linear 

regression was used for the association of cortical CMIs (determinant) with MMSE, 

MoCA, cognitive domains, the composite z-score, and diagnosis (outcomes), adjusted for 

age, gender, and level of education. Linear regression was used for the association of 

cortical CMIs (determinant) with total brain volume and WMH volume (log transformed) 

(outcomes), adjusted for age, gender, and intracranial volume. The B from the linear 

regression models reflects a ‘mean difference’ between patients with cortical CMIs and 

those without cortical CMIs on MRI. Binary logistic regression was used for the 

association of cortical CMIs with vascular risk factors (except BMI, which was assessed 

using linear regression), the presence of intracranial stenosis, (subcortical and cortical) 

infarcts, (deep and lobar) microbleeds, and the presence of confluent WMHs, adjusted for 

age and gender. Dummy variables were constructed for the analysis, using chi-square 

tests, of diagnosis in relation to cortical CMIs. P-values <0.05 were regarded as 

statistically significant. All analyses were performed using IBM SPSS Statistics, version 

20.0. 

3.  RESULTS 

3.1  Demographics and Vascular Risk Factor Profile 

The mean age of the 238 patients in this study was 72.5 ± 9.1 years (range 50 - 95), 

including 117 (49%) men. Demographic and vascular risk factor profile characteristics of 

patients with and without cortical CMIs on MRI are presented in Table 5-1. Seventy-five 

patients (32%) had cortical CMIs (Figure 3), ranging between 1 - 43 CMIs, with a 

median of 1. Of the patients with cortical CMIs, 39 (52%) had one, 11 (15%) had two, 

and 25 (33%) had three or more cortical CMIs (median 1in those with ≥3 CMIs: median 

5, range 31 - 43). Median size of CMIs was 3 mm, only 8% was larger than 3 mm. 

Cortical CMIs were found throughout the brain, with a slight predilection for parietal 
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cortical areas (Supplementary Figure 5-1). Presence of cortical CMIs was not related to 

age, gender, race, or level of education. Presence of CMIs was associated with 

hyperlipidemia, a history of stroke, and cardiovascular disease, but not with other 

vascular risk factors. 

3.2  Cognitive Profile 

The association of cortical CMIs with cognition is presented in Table 5-2. The presence 

of cortical CMIs was associated with lower MMSE score and a lower overall composite 

z-score, and worse performance on the specific domains, including language and 

visuoconstruction. The presence of ≥3 cortical CMIs was also associated with impaired 

executive function.  

3.3  MRI Findings 

The association of cortical CMIs with other MRI findings is presented in Table 5-3.  

The presence of cortical CMIs was associated with the presence of both large cortical and 

subcortical infarcts, and both deep and lobar microbleeds. In patients with a large cortical 

infarct, cortical CMIs were often not always restricted to the same hemisphere as the 

infarct. The relation between cortical CMIs with hyperlipidemia and cardiovascular 

disease did not alter when we adjusted for presence of large cortical infarcts. 

The presence of cortical CMIs was associated with smaller brain volume, and larger 

WMH volume. The association of the presence of cortical CMIs with brain volume did 

not alter when we subsequently adjusted for WMH volume, presence of infarcts, or 

presence of microbleeds. 

The presence of cortical CMIs was associated with the presence of any intracranial 

stenosis. Of note, location of the CMI and the stenosis appeared to be interrelated. 

Cortical CMIs in the right middle cerebral artery (MCA) territory were more common in 

patients with a right MCA stenosis (patients with a right MCA stenosis N=16; 50% CMIs 

in right MCA territory; patients without a right MCA stenosis N=213; 17% CMIs in right 
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MCA territory; p=0.001). The same was true for left MCA stenosis (patients with a left 

MCA stenosis N=14; 36% CMIs in left MCA territory; patients without a left MCA 

stenosis N=215; 12% CMIs in left MCA territory; p=0.010). 

The association of the presence of cortical CMIs with MMSE was independent of the 

presence of infarcts, attenuated after adjusting for WMH volume, the presence of 

microbleeds, and after adjustment for brain volume (as percentage of intracranial 

volume), a marker for brain atrophy. The association of the presence of cortical CMIs 

with the domain language was independent of the presence of infarcts and microbleeds, 

and attenuated after adjusting for WMH volume, and after adjustment for brain volume. 

The association of the presence of cortical CMIs with the domain visuoconstruction was 

independent of the presence of infarcts, microbleeds, and WMH, and attenuated after 

adjustment for brain volume (Table 5-4). 

3.4  Clinical Diagnosis 

The presence of cortical CMIs was linked to the assigned referral diagnoses (Table 4). 

Patients with cortical CMIs on MRI were less often diagnosed with NCI (0.27 [0.09 ; 

0.85] p=0.025) or CIND without stroke (0.34 [0.12 ; 0.92] p=0.033), whereas patients 

with cortical CMIs were more often diagnosed with VaD (2.86 [1.17 ; 6.99] p=0.021), 

compared to patients without cortical CMIs (Supplementary Table 5-1). 

4.  DISCUSSION 

This study showed that cortical CMIs are a common finding on 3T MRI in a memory 

clinic population. Presence of CMIs was associated with several distinct clinical features, 

including reduced performance in the domains of language and visuoconstruction, 

domains that are not typically related to other MRI markers of vascular disease. On MRI, 

presence of cortical CMIs was related to markers of SVD as well as large vessel disease. 
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Until recently, cortical CMIs could not be visualized on MRI, giving rise to the term ‘the 

invisible lesion’.5 Recently, it was shown that cortical CMIs can be visualized with 7T 

MRI, but also with 3T MRI.9 In the present study we show that CMIs are a common 

finding on 3T MRI scans from a memory clinic population. This is important because 3T 

is more widely available than 7T, allowing a more widespread evaluation of the clinical 

relevance of CMIs in the context of aging, cerebrovascular disease, and dementia in 

future clinical studies. In the present cohort, cortical CMIs were more common in 

patients with dementia (36%) compared to patients without dementia (27%), which is in 

line with neuropathological findings6 and a previous 7T MRI study.19 It should be 

acknowledged, however, that 3T MRI only detects the larger CMIs. Neuropathological 

studies report that sizes of CMIs vary between 50 µm and 5 mm.6 The vast majority of 

CMIs that are captured on 3T MRI are 2-3 mm. Hence, these CMIs on MRI are likely to 

represent only a small fraction of the largest lesions from a much larger underlying total 

CMI burden. The same applies, albeit to a lesser extent, for 7T, as again only the larger 

CMIs are detected. Indeed, estimates from neuropathological studies indicate that CMI 

counts are much higher than observed in the present study.20 Nevertheless, as shown here, 

the CMIs that are detected by MRI do have important clinical correlates.  

Of the demographic and vascular risk factors examined in this study, only 

hyperlipidemia, a history of stroke, and a history of cardiovascular disease were 

associated with the presence of cortical CMIs. Relatively few autopsy studies have 

systematically examined the relation between CMIs and demographic or vascular risk 

factors. Some autopsy studies found an association of CMIs with advanced age at 

death,21,22 but other studies did not.8 No relation with gender has been found,8, 21,23 which 

is in line with our findings. Severe hypertension was identified as a risk factor for 

microscopic infarcts upon autopsy in one population-based study.23 Another population-

based autopsy study found only an association between higher systolic blood pressure 
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and CMIs in individuals younger than 80 years of age at entry.24As far as we know, the 

relation between CMIs and dyslipidemia has not been explored in post-mortem studies. 

The strong association of hyperlipidemia, rather than hypertension, with cortical CMIs in 

our study is remarkable, as hypertension is the most important risk factor for the 

conventional markers of SVD (i.e. lacunar infarcts, microbleeds, WMHs). This implies 

that CMIs may also occur in the context of other etiological processes. 

We found that cortical CMIs were associated with worse cognitive performance, in 

particular tasks assessing cortical function (i.e. language and visuoconstruction). 

Interestingly, tasks that are known to be related to vascular damage in subcortical regions 

(e.g. attention, visuomotor speed) were relatively less affected. The significant 

association with MMSE score in contrast to MoCA score further underlines this finding, 

as the MoCA incorporates more tests of executive function. Few autopsy studies have 

looked into the relation of CMIs and specific cognitive domains. A relation between 

cortical CMIs and worse performance on semantic memory, perceptual speed, and 

visuospatial abilities was found in one study, whereas subcortical CMIs were not 

associated with any of the cognitive domains.8 

Cortical CMIs were strongly associated with larger cortical infarcts. They were not solely 

found in cortical areas surrounding the infarct, but also in other cortical areas and the 

other hemisphere. This suggests global underlying vessel pathology instead of a more 

local manifestation of cerebrovascular disease. Cortical CMIs are generally considered as 

manifestations of cerebral SVD.5 Our results suggest that CMIs are likely to be 

attributable to different aetiologies. The strong associations of cortical CMIs with larger 

cortical infarcts and the spatial relation with presence of intracranial stenosis suggest that 

they are also related to large vessel disease. Possibly CMIs downstream from a large 

vessel stenosis are due to hypoperfusion, but microemboli might also be a causative 

factor. Neuropathological studies indeed confirm that CMIs are linked to SVD, in 
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particular cerebral amyloid angiopathy,22,23, 25-28 but can also be attributed to large vessel 

disease.29 The present study cohort was enriched for patients with ischemic stroke, but 

patients with hemorrhagic stroke were excluded. In future studies it would be interesting 

to assess CMI burden also in patients with hemorrhagic stroke, for example in the context 

of cerebral amyloid angiopathy, because CMIs appear to be common in such patients.26-28, 

30 

This study further showed that cortical CMIs are related to brain atrophy. 

Neuropathological studies have suggested that a single CMI on routine pathological 

examination indicates the presence of hundreds up to a thousand CMIs in a single brain.20 

It could be argued that this lesion burden by itself contributes to volume loss. With our 

current scan protocol, only the largest of the whole CMI spectrum can be captured. 

Extending the neuropathological findings, several CMIs on MRI could therefore indicate 

the presence of many more smaller CMIs. Nevertheless, whether many CMIs in a single 

brain by themselves explain global brain atrophy remains to be determined. Even 

hundreds of CMIs still only account for a total lesion volume of less than one ml, which 

is still only a fraction of total cortical volume. The relation of cortical CMIs with worse 

cognitive performance in this study lost statistical significance when we adjusted for 

atrophy measured by brain volume as part of intracranial volume. Apparently, cortical 

atrophy and CMIs may be linked through shared aetiologies or risk factors. The 

interrelation between atrophy, CMIs, and cognition should be a topic of future studies.  

There are some limitations to this study that need to be considered. Cortical CMI rating 

criteria have been developed and validated with histology on 7T MRI. The current 3T 

rating criteria proved to be very consistent with 7T MRI, in the sense that 88% of 3T 

MRI CMIs proved to be CMIs on 7T in our validation study. However, it needs to be 

acknowledged that the sensitivity of 3T to detect cortical CMIs is much lower than 7T 

(27% of CMIs on 7T are detected by 3T). The current translation of cortical CMI rating 
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that was developed on 7T MRI to conventional MRI is of importance, as it allows the 

assessment of this novel marker of cerebrovascular disease in much larger groups of 

patients and in the general population. Longitudinal studies are needed to further unravel 

the clinical importance of cortical CMIs. To further improve cortical CMI rating, we 

suggest scan protocol improvements, including the use of 3T 3D FLAIR images. Finally, 

it remains to be investigated if the current findings are generalizable to non-Asian 

populations and patients from other memory clinics, or comparable in those with a 

different vascular risk factor profile. 

5.  CONCLUSION 

Our 3T MRI study showed that cortical CMIs are a common finding in an Asian memory 

clinic population. Cortical CMIs are associated with cerebral SVD, but most strongly 

with cortical infarcts. In contrast with subcortical SVD, cortical CMIs are particularly 

related with worse language and visuoconstructive abilities, domains considered cortical 

in nature. Hence, CMIs may be regarded as a distinct marker of cerebrovascular disease 

in dementia. 
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Abbreviations: CMI, cerebral microinfarcts; OR, odds ratio; CI, confidence interval; n/a, not available; SD, standard deviation; CVD, cardiovascular diseases 
 
Bold text indicates P<0.05. *Chinese (N = 185), Malay (N = 33), Indian (N = 15), mixed (N = 2), others (N = 3) 
 
†Nil (N = 52), primary (N = 88), secondary (N = 69), tertiary (N = 28). ‡Based on self-reported stroke. Odds ratio in binary logistic regression, adjusted for age 
and gender, compared with patients without CMIs. §Mean difference in BMI between groups, adjusted for age and gender 

Characteristics Without CMIs  

(N=163) 

With CMIs 

(N=75) 

OR (95%CI) P-value Multiple (≥3) CMIs 

(N=25) 

OR (95%CI) P-value 

Demographics        

Age (years), mean (SD) 72.5 ± 9.2 72.4 ± 9.0 - 0.976 73.4 ± 9.5 - 0.643 

Male, no. (%) 76 (47) 41 (55) - 0.249 17 (68) - 0.047 

Race (Chinese)*, no (%) 130 (78) 55 (73) - 0.298 21 (84) - 0.639 

Education†, median (min-max) 1 [0-3] 1 [0-3] - 0.960 1 [0-3] - 0.792 

Vascular risk factor profile        

Current smoking, no (%) 14 (9) 10 (13) 1.58 [0.65 ; 3.86] 0.312 3 (12) 1.11 [0.28 ; 4.41] 0.884 

Alcohol use, no (%) 5 (3) 2 (3) 0.81 [0.15 ; 4.36] 0.804 0 (0) n/a n/a 

Body-mass index, mean (SD) 23.7 ± 3.7 24.6 ± 4.6 0.88 [-0.22 ; 1.98]§ 0.118 24.4 ± 4.5 0.69 [-0.95 ; 2.33]§ 0.407 

Hypertension, no (%) 120 (74) 60 (80) 1.42 [0.73 ; 2.76] 0.304 19 (76) 1.10 [0.41 ; 2.98] 0.852 

Diabetes mellitus, no (%) 56 (34) 34 (45) 1.59 [0.91 ; 2.78] 0.104 10 (40) 1.26 [0.52 ; 3.03] 0.609 

Hyperlipidemia, no (%) 103 (63) 65 (87) 3.79 [1.81 ; 7.95] 0.000 24 (96) 14.06 [1.84 ; 107.35] 0.011 

History of stroke‡, no (%) 53 (33) 39 (52) 2.40 [1.30 ; 4.41] 0.005 15 (60) 3.35 [1.29 ; 8.68] 0.013 

History of CVD, no (%) 25 (15) 28 (37) 3.28 [1.72 ; 6.24] 0.000 13 (52) 5.76 [2.29 ; 14.51] 0.000 

CHAPTER 5 – TABLES 
 
Table 5 – 1: Patient characteristics 
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Table 5 – 2: Cognitive profile 

 

 
Abbreviations: CMI, cerebral microinfarcts; CI, confidence interval 
 
 
NOTE. Data are presented as mean ± standard deviation (SD). B: Mean difference between patients with cortical CMIs and patients without, from linear 
regression analyses, adjusted for age, gender, and level of education. Z-scores were based on the mean and SDs of the whole patient group (N = 238) 

 

Characteristics without CMIs 

(N=163) 

with CMIs 

(N=75) 

B [95% CI] P-value Multiple (≥3) 

CMIs (N=25) 

B [95% CI] P-value 

Cognitive profile        

Mini-mental state examination 21.0 ± 6.2 19.5 ± 5.9 -1.49 [-2.89; -0.08] 0.038 18.8 ± 6.2 -2.17 [-4.37; 0.04] 0.054 

Montreal Cognitive Assessment  16.5 ± 7.2 15.2 ± 6.9 -1.38 [-2.96; 0.20] 0.086 14.2 ± 6.2 -2.19 [-4.63; 0.25] 0.078 

Composite z-score 0.08 ± 1.05 -0.17 ± 0.10 -0.20 [-0.42; 0.01] 0.067 -0.37 ± 0.79 -0.38 [-0.74; -0.03] 0.036 

Executive function 0.06 ± 1.00 -0.13 ± 1.00 -0.18 [-0.41; 0.05] 0.133 -0.36 ± 1.05 -0.39 [-0.76; -0.01] 0.042 

Attention  0.03 ± 1.00 -0.07 ± 1.02 -0.11 [-0.34; 0.13] 0.375 -0.19 ± 1.06 -0.21 [-0.59; 0.17] 0.282 

Language  0.09 ± 1.04 -0.21 ± 0.89 -0.28 [-0.53; -0.04] 0.023 -0.44 ± 0.62 -0.48 [-0.87; -0.09] 0.017 

Verbal memory  0.05 ± 1.05 -0.11 ± 0.88 -0.13 [-0.37; 0.10] 0.268 -0.24 ± 0.78 -0.21 [-0.59; 0.17] 0.273 

Visual memory  0.07 ± 1.06 -0.15 ± 0.84 -0.21 [-0.45; 0.03] 0.086 -0.34 ± 0.55 -0.37 [-0.77; 0.02] 0.063 

Visuoconstruction  0.10 ± 1.03 -0.21 ± 0.89 -0.30 [-0.52; -0.08] 0.008 -0.44 ± 0.77 -0.51 [-0.87; -0.15] 0.005 

Visuomotor speed  0.07 ± 1.06 -0.15 ± 0.83 -0.19 [-0.40; 0.01] 0.067 -0.27 ± 0.87 -0.25 [-0.60; 0.09] 0.153 
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CMI, cerebral microinfarcts; WMH, white matter hyperintensities; OR, odds ratio; MRI, magnetic resonance imaging; CI, confidence interval. 
 
NOTE. Data are presented as mean ± standard deviation, or number (percentage). B: mean difference between patients with cortical CMIs and patients 
without, from linear regression analyses, adjusted for age, gender, and intracranial volume. Odds ratio in binary logistic regression, adjusted for age and gender, 
compared with patients without CMIs.  
 
*Presence of WMHs is defined as beginning confluence or large confluent area, on Fazekas scale 

Characteristics Without CMIs  

 (N=163) 

With CMIs 

(N=75) 

B [95% CI] P-value Multiple (≥3) CMIs 

(N=25) 

B [95% CI] P-value 

Intracranial volume (ml)  1434 ± 137 1459 ± 152 10 [-19 ; 39] 0.506 1497 ± 166 24 [-21 ; 68] 0.298 

Brain volume (ml)  918 ± 114 897 ± 109 -32 [-50 ; -13] 0.001 905 ± 117 -35 [-64 ; -7] 0.017 

WMH volume (ml), log  15.4 ± 16.7 21.6 ± 21.1 0.4 [0.1 ; 0.7] 0.008 27.8 ± 26.9 0.5 [0.0 ; 1.0]  0.035 

   OR [95% CI]   OR [95% CI]  

Intracranial stenosis  31 (20) 24 (34) 2.04 [1.08 ; 3.84] 0.027 11 (46) 3.39 [1.37 ; 8.43] 0.009 

Presence of infarcts 56 (34) 48 (65) 3.35 [1.87 ; 6.02] 0.000 21 (84) 8.90 [2.86 ; 27.65] 0.000 

- cortical infarcts 12 (7) 27 (36) 6.91 [3.24 ; 14.77] 0.000 18 (72) 29.64 [10.26 ; 85.64] 0.000 

- subcortical infarcts 42 (26) 33 (44) 2.19 [1.22 ; 3.94] 0.009 11 (44) 1.88 [0.77 ; 4.58] 0.163 

Presence of microbleeds  83 (51) 52 (72) 2.42 [1.33 ; 4.43] 0.004 21 (84) 5.04 [1.64 ; 15.48] 0.005 

- deep microbleeds 28 (17) 25 (35) 2.46 [1.30 ; 4.65] 0.006 10 (40) 3.04 [1.22 ; 7.57] 0.017 

- lobar microbleeds 70 (43) 45 (63) 2.15 [1.21 ; 3.80] 0.009 19 (76) 4.36 [1.63 ; 11.65] 0.003 

Presence of WMH*  101 (62) 56 (75) 1.93 [1.02 ; 3.67] 0.044 21 (84) 3.53 [1.08 ; 11.55] 0.037 

Table 5 – 3: MRI findings 
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Table 5 – 4: Association of cortical CMIs with cognition, adjusted for other MRI markers 

MRI markers included in the model B [95% CI] P-value 

MMSE (in points)   

CMIs alone -1.49 [-2.89 ; -0.08] 0.038 

CMIs + presence of infarcts -1.61 [-3.07 ; -0.15] 0.031 

CMIs + WMH volume -1.22 [-2.63 ; 0.18] 0.087 

CMIs + presence of microbleeds -1.34 [-2.79 ; 0.11] 0.070 

CMIs + brain volume (% ICV) -0.68 [-2.00 ; 0.65] 0.315 

   

Language (z-score)   

CMIs alone -0.28 [-0.53 ; -0.04] 0.023 

CMIs + presence of infarcts -0.28 [-0.53 ; -0.02] 0.034 

CMIs + WMH volume -0.24 [-0.49 ; 0.01] 0.057 

CMIs + presence of microbleeds -0.27 [-0.52 ; -0.02] 0.038 

CMIs + brain volume (% ICV) -0.15 [-0.38 ; 0.08] 0.196 

   

Visuoconstruction (z-score)   

CMIs alone -0.30 [-0.52 ; -0.08] 0.008 

CMIs + presence of infarcts -0.26 [-0.49 ; -0.03] 0.027 

CMIs + WMH volume -0.26 [-0.48 ; -0.04] 0.019 

CMIs + presence of microbleeds -0.28 [-0.51 ; -0.05] 0.015 

CMIs + brain volume (% ICV) -0.18 [-0.38 ; 0.03] 0.086 

Abbreviations: CMI, cerebral microinfarcts; MRI, magnetic resonance imaging; CI, confidence 
interval; MMSE, Mini-Mental State Examination; WMH, white matter hyperintensities; ICV, 
intracranial volume. 
 
NOTE. B: mean difference between patients with cortical CMIs and patients without, from linear 
regression analyses, adjusted for age, gender, level of education, and for each of the individual 
MRI marker indicated in the corresponding row.  
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   Supplementary Table  5 – 1: Clinical diagnosis 

Characteristics Without CMIs 

(N=163) 

With CMIs 

(N=75) 

OR [95%CI] P-value Multiple (≥3) CMIs 

(N=25) 

OR [95% CI] P-value 

Referral diagnosis        

No cognitive impairment 26 (16) 4 (5) 0.27 [0.09 ; 0.85] 0.025 1 (4) 0.20 [0.02 ; 1.79] 0.151 

CIND, without stroke 29 (18) 5 (7) 0.34 [0.12 ; 0.92] 0.033 1 (4) 0.20 [0.03 ; 1.55] 0.124 

CIND with stroke 32 (20) 23 (31) 1.80 [0.94 ; 3.47] 0.078 7 (28) 1.39 [0.51 ; 3.82] 0.523 

Alzheimer’s disease 66 (40) 31 (41) 1.13 [0.60 ; 2.12] 0.708 8 (32) 0.61 [0.22 ; 1.67] 0.333 

Vascular dementia 10 (6) 12 (16) 2.86 [1.17 ; 6.99] 0.021 8 (32) 7.10 [2.37 ; 21.21] 0.000 

   

Abbreviations: CMI, cerebral microinfarcts; CIND, cognitive impairment no dementia;  

NOTE: Data are presented as number (percentage). OR: odds ratio in binary logistic regression, adjusted for age, gender, and level of education, compared to 
patients without CMIs.  
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CHAPTER 5 – FIGURES 
 
Figure 5 – 1: Cortical microinfarct on 7T postmortem MRI and histology 

A cortical microinfarct on 7 tesla post-mortem MRI and histology, in the brain of an 83 year-old 
male with pathologically confirmed vascular dementia. A presumed cortical microinfarct (arrow) 
was identified on post-mortem 7 tesla 3D T1 (A; 0.4 mm isotropic voxels), which was less 
conspicuous on post-mortem 7 tesla 3D FLAIR (B; 0.4 mm isotropic voxels). After sampling and 
histological verification of the area indicated with the white square, this cortical lesion was 
verified as a microinfarct (C; Hematoxylin & Eosin stain). The adjacent section, immunostained 
against Glial Fibrillary Acidic Protein, confirmed the presence of gliosis (D). 
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Figure 5 - 2: Same cortical microinfarct on 7T visible on 3T MRI 

The same cortical microinfarct on 7 tesla MRI (top row) and 3 tesla MRI (bottom row) in a 66 
year-old non-demented Dutch female. A cortical microinfarct (arrow) was found on 7 tesla 3D 
FLAIR (A; 0.8 mm isotropic voxels), and 7 tesla 3D T1 (B; 1.0 mm isotropic voxels). The same 
cortical microinfarct could not be retrieved on the 3 tesla FLAIR (C; 1.0x1.3x3.0 mm3 voxels), but 
could be identified on the 3 tesla 3D T1 (D; 1.0 mm isotropic voxels), made on the same day as 
the 7 tesla scans. Adapted from Van Veluw et al. 2013 JCBFM. 
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Figure 5 – 3: Cortical microinfarcts on 3T visible on different sequences 

Three cortical microinfarcts on the 3 tesla MR images of a 63-year old Singaporean male with 
vascular cognitive impairment no dementia. Depicted are a 3D T1 (A), FLAIR (B), and T2 (C) 
image. This patient had 32 cortical microinfarcts, of which 3 are captured in these images 
(arrows). 
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Supplementary figure 5 – 1:  3D representation of the cortical microinfarcts 

A 3D representation of total cortical microinfarct distribution. Cortical microinfarcts are 
represented by red dots in a transversal (A), sagittal (B), and coronal (C) view of the brain. There 
is a strong predilection of microinfarcts to be present in the parietal region 
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CHAPTER 6:  

Cortical Cerebral Microinfarcts on 3 Tesla Magnetic Resonance 
Imaging - A Marker of Cerebrovascular Diseases 
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1.  INTRODUCTION 
 

Cerebrovascular disease (CeVD) is a common pathological finding in older individuals 

and a major cause and contributor to cognitive decline and dementia.1, 2 Brain 

parenchymal damage in cognitive decline secondary to CeVD or vascular cognitive 

impairment, is conventionally visualised on magnetic resonance imaging (MRI) as 

infarcts, white matter hyperintensities (WMH), cerebral microbleeds and atrophy. 

However, autopsy studies have shown that cerebral microinfarcts (CMIs) are highly 

prevalent in dementia (43% in Alzheimer’s Disease and 62% in Vascular dementia), as 

well as in non-demented elderly subjects (up to 33%) and are strongly associated with 

cognitive impairment and dementia.3, 4 CMIs have reported sizes ranging from 50μm to 

~5mm,4 although small and previously held to be “invisible” lesions during life, they may 

be present in sufficient numbers to impair cognition and predict poor outcome in elderly 

with CeVD.5, 6  

Recently, it has been shown that CMIs can be detected in-vivo using 7 Tesla (T) 

Magnetic Resonance Imaging (MRI).7 However, due to the limited accessibility of 7T 

scanners in the clinical setting, there has been a successful effort to extend the detection 

of CMIs using 3T MRI in order to understand their clinical relevance in larger 

populations.8, 9  A recent study from a memory clinic population in Singapore, has shown 

the feasibility of detection of cortical CMIs on 3T MRI scans and an association with 

cognitive dysfunction and dementia.10 However, limited data are available on the risk 

factors of CMIs and no data exist on the effects of CMI on cognition in the general 

elderly population. We, therefore, examined the risk factors of CMIs and their association 

with cognition in a subsample from a population-based study in Singapore.  

2.  METHODS 
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2.1  Study Population 

The Epidemiology of Dementia In Singapore (EDIS) study drew participants from 

ongoing Singapore Epidemiology of Eye Disease (SEED) study, a population-based 

study of three ethnic cohorts : Chinese (Singapore Chinese Eye Study [SCES]),11 Malay 

(Singapore Malay Eye Study [SiMES-2]),12 and Indians (Singapore Indian Eye Study 

[SINDI-2]). The details of the study methodology have been described in Chapter 3.11 

Ethics approval for the EDIS study was obtained from the Singapore Eye Research 

Institute, and National Healthcare Group Domain-Specific Review Board. The study was 

conducted in accordance with the Declaration of Helsinki. Written informed consent was 

obtained prior to their recruitment into the study. 

2.2  Demographic and Cardiovascular Risk Factor Assessment  

The demographic and cardiovascular risk factors were collected for all the subjects in a 

similar fashion11 as described in Chapter 3. Hypertension, diabetes and hyperlipidemia 

were taken as presence and absence. Education was categorized into ≤ 6 years or > 6 

years. Smoking was categorized into ever (past and current smokers) and never smokers. 

Body mass index (BMI) was calculated as the weight (kg) divided by the square of the 

height (meters). Stroke was defined as the presence of focal neurological deficits whereas 

cardiovascular diseases were defined based on the presence of ischemic heart disease, 

congestive heart failure, atrial fibrillation and cardiac bypass.  

2.3  Neuroimaging 

MRI was performed on a 3T Siemens Magnetom Trio Tim scanner, using a 32-channel 

head coil, at the Clinical Imaging Research Centre of the National University of 

Singapore. Subjects with claustrophobia, contraindications for MRI, or those who were 
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unable to tolerate the procedure were excluded. For each participant, the following MRI 

markers were determined: 

Cortical CMIs 

Cortical CMIs were graded on T1, T2 weighted and Fluid-Attenuated Inversion Recovery 

(FLAIR) sequences, according to a validated protocol 10 described in Chapter 3.  

MRI rating for CMIs in EDIS study was independently performed by two trained graders 

(SH, ES). A set of 20 alternate scans were graded for CMIs by the two graders, blinded to 

subject’s characteristics. All the identified cortical CMIs were then discussed in the 

weekly consensus meetings. Any disagreement was further discussed with a third 

experienced grader (SvV) to make a final decision. A subset of 60 scans was randomly 

selected to assess inter-rater reliability, which showed good to excellent agreement 

(kappa=0.83).   

Other MRI Markers 

Quantitative MRI analyses (WMH volume) and visual gradings (cortical infarcts, lacunar 

infarcts, cerebral microbleeds and intracranial stenosis) were collected using the protocol 

and definitions as mentioned in Chapter 3.   

2.4  Cognitive Assessment 

The Mini-Mental Status Examination (MMSE), Montreal Cognitive Assessment 

(MoCA), and an extensive neuropsychological battery, which has been previously 

validated in Singaporean elderly, was administered to assess cognitive function. The 

criteria for defining CIND and calculation of z scores have been described in detail in 

Chapter 3.  



  Chapter 6 

163 
 

2.5.  Statistical Analysis 

In order to examine the differences in demographic, vascular risk factors and MRI 

markers, the chi square test was used for categorical variables, student t test for 

continuous variables and Mann Whitney U test for skewed distributed continuous 

variables (WML). WMH volume was logarithmically transformed, to ensure a normal 

distribution for regression analysis. With respect to the associations between risk factors 

and CMIs, Poisson regression models were used to compute relative risk (RR) and 95% 

confidence intervals (CI), initially adjusting for age, gender and each risk factor 

separately. The fully adjusted model consisted of risk factors significant from first model 

with each MRI marker added one at a time.  

For clinical outcomes (CIND-mild, CIND-moderate and dementia), multiple logistic 

regression analysis was used to compute odds ratios (OR) and 95%confidence interval 

(CI). These regression models with cognition were initially adjusted for age, gender, 

education and subsequently for ethnicity and vascular risk factors. In order to examine 

whether the association between CMI and cognition was independent of other MRI 

markers of CeVD, we additionally adjusted the models for each MRI marker separately. 

With regards to the association between CMIs and cognitive profile, linear regression 

models were constructed for MMSE, MoCA, composite, and domain-specific Z-scores. 

The models were adjusted in the similar fashion as described above.  P-value < 0·05 was 

considered statistically significant. In view of the multiple tests performed on the specific 

cognitive domains (7 domains), we also used the Bonferroni correction to obtain an 

adjusted significance level for each domain specific test: 0.05/7~0.007. Statistical 

analysis was performed using standard statistical software (Statistical Package for Social 

Science, SPSS V23, SPSS Inc., USA). 
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3.  RESULTS 
 
Assessments of subjects were performed from August 12, 2010 to July 24, 2015. Out of 

957 subjects who participated in EDIS study in phase II, 88 had no MRI scans and 8 had 

ungradable scans. Supplementary table 6-1 presents baseline data of included and 

excluded subjects (screened positive- non-participants and without/ungradable MRI 

scans). Those who were excluded were likely to be older, more often Chinese, had lower 

education and had higher frequency of hypertension, and lower frequency of 

hyperlipidemia. Of the 861 subjects with gradable MRIs, 54 (6·3%) subjects had ≥1 

cortical CMIs. Among subjects with cortical CMIs, 33 (61·1%) had a single cortical 

CMI, 15 (27·8%) with 2-4 and six (11.1%) had ≥ 5, with a range of 0 to 13. Cortical 

CMIs were present throughout the brain with a strong predilection for parietal lobes 

(41·9%) followed by frontal (20·9%), occipital (11·6%) and temporal (4·7%) lobes. Out 

of 861 subjects, 275 (31.9%) subjects were diagnosed with CIND-mild, 290 (33.6%) with 

CIND-moderate and 40 (4.6%) with dementia. Baseline characteristics of subjects with 

and without cortical CMIs are shown in table 6-1. Subjects with cortical CMIs were 

likely to be older, of Malay ethnicity. had higher frequency of hypertension, smoking and 

history of stroke. Moreover, compared to subjects without cortical CMIs, the prevalence 

of cerebral small (lacunar infarcts, WMH, and microbleeds) and large vessel (cortical 

infarcts and intracranial stenosis) diseases on MRI was higher in persons with cortical 

CMIs.  

Table 6-2 shows the association of risk factors with cortical CMIs. In fully adjusted 

models, the most important demographic and cardiovascular risk factors were increasing 

age (per year increase, OR: 1·09; 1·06-1·12), Malay ethnicity (Malay vs. Chinese, OR: 

2·29; 95%CI: 1·42-3·69 and Malay vs. Indians, OR: 1·79; 95%CI: 1·14-2·81), 

hypertension (yes vs. no, OR: 4·33; 95%CI: 1·58-11·83), diabetes (yes vs. no, OR: 1·59; 
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95%CI: 1·10-2·31) and history of stroke (yes vs. no, OR: 4·85; 95%CI: 3·17-7·43). MRI 

markers of both large (cortical infarcts and intracranial stenosis) and small (lacunar 

infarcts, WMH and microbleeds) vessel diseases were associated with increasing number 

of cortical CMIs. When the analysis was restricted to strictly lobar microbleeds, the 

association remains unaltered.  

The presence of cortical CMIs was significantly associated with both CIND moderate 

(OR: 3·28; 95%CI: 1·26-8·58) and dementia (OR: 11.88; 95%CI: 2.18-64.78) after 

adjusting for age, gender and education. On further adjustment with cardiovascular risk 

factors and MRI markers, the association remained unaltered. However, after including 

lacunar infarcts in the model, the association became attenuated but still showed a trend 

towards significance (Table 6-3). When the analysis was performed with cortical CMI 

numbers as risk factor, an independent association was observed between increasing 

numbers of cortical CMIs and CIND moderate and dementia. 

Cortical CMIs was significantly associated with worse performance on MMSE (mean 

difference in MMSE scores: -1·85; 95%CI: -2·84; 0·86), MOCA (mean difference in 

MOCA scores: -2·55; 95% CI: -3·79; -1·29), and composite Z-scores (mean difference in 

composite Z-score: -0·42; 95% CI: -0·62; -0·21) in age, gender and education adjusted 

models. Following further adjustments for ethnicity, cardiovascular risk factors, and MRI 

markers, the associations of CMIs with cognitive profiles remained statistically 

significant (Table 6-4). Finally, in the domain-specific analyses, CMIs were 

independently associated with executive function, visual memory, and verbal memory 

after adjustments for age, gender, education, ethnicity, cardiovascular risk factors, and 

MRI markers. After applying Bonferroni correction, most of the associations remained 

statistically significant (Table 6-5). Lastly, all the associations with cognitive profiles 

remain unaltered after excluding subjects with dementia.  
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4.  DISCUSSION 
 
In this study, we found that cortical CMIs are a novel MRI marker of cerebrovascular 

disease in a general elderly population and are associated with worse cognitive 

functioning, in particular executive function, verbal, and visual memory. In terms of the 

clinical outcomes, persons with cortical CMIs were more likely to have significant 

cognitive impairment. These associations remained independent of cardiovascular risk 

factors and other MRI markers suggesting that these lesions do play an important role in 

cognitive impairment and dementia.  

To our knowledge, this is the first study to report the detection of cortical CMIs on 3T 

MRI from a population based study. We have found a cortical CMI prevalence of 6·3%-  

comparable with the previous prevalence of 6% in hypertensive subjects9 but less than the 

32% from a memory clinic based  study10. The observed lower prevalence of cortical 

CMIs in the present study might be due to fact that our subjects were drawn from a 

population-based study. Moreover, it has been shown that only about 25% of cortical 

CMIs identified on 7T are detectable on 3T.7 However, it should be acknowledged that 

cortical CMIs identified on either 3T or 7T are usually larger and hence only reflects a 

small fraction of the total CMI burden. Indeed, autopsy studies have shown that the actual 

CMI prevalence is much higher (24%-62%) then what is observed in the present study,4 

thus indicating that the CMIs observed on MRI are an underestimate.  

So far, relatively few autopsy and MRI studies have examined the association between 

demographic and cardiovascular risk factors with CMIs. The reported effects of age on 

CMIs have been variable with some studies reporting an association with advanced age13, 

14 whereas others report no association.7, 15 The association of cortical CMIs with 

increasing age in our study is further supported by a recent study where persons with 

cortical CMIs were older compared to those without CMI.9 Moreover, we also reported 



  Chapter 6 

167 
 

that the men were more likely to have CMIs compared to women which differ from the 

findings reported previously where no relation with gender was found. 9, 10, 16 This gender 

difference might due to the increased vulnerability of males to cardiovascular risk factors 

and stroke. In terms of ethnic differences, Malays have a higher prevalence of ApoE4 

carriers17 compared to Chinese and Indians which increases their susceptibility to develop 

cerebral amyloid angiopathy (CAA) – a possible mechanism behind CMIs.18 Besides 

genetic factors, environmental factors such as lifestyle, cardiovascular risk factors and 

their complex interactions may also explain the underlying differences in CMI prevalence 

among the three ethnicities.17 

Among the cardiovascular risk factors, hypertension, systolic blood pressure and diabetes 

were identified as the major risk factors for CMIs in a few neuropathological studies.14, 19, 

20 Similar to these findings, our study has also shown an independent association of 

hypertension and diabetes with increasing numbers of cortical CMIs. The possible 

mechanism behind high systolic blood pressure and diabetes leading to microinfarcts has 

been attributed to decreased luminal diameter (atherosclerosis and lipohyalinosis) in the 

small penetrating arteries in the cerebrum.20, 21 Besides, hypertension and diabetes, history 

of stroke was also recognized as an important risk factor for CMIs in our study. This 

highlights the importance of CMIs occurring in parallel with strokes and the vascular 

pathology underlying development of CMIs. 

With respect to MRI markers, we found - in accordance with a previous study10 - that 

both cerebral large (cortical infarcts and intracranial stenosis) and small vessel (lacunar 

infarcts, white matter lesions, and microbleeds) disease markers are associated with the 

presence of cortical CMIs, thus suggesting that these lesions have a heterogeneous 

etiology. It has previously been suggested that CMIs may represent proxies for both small 

and large infarcts or even diffuse injury.16 On the basis of these findings, we could 
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hypothesize that mechanisms such as arteriosclerosis, microembolisms and 

hypoperfusion might contribute to the development of CMIs.18, 22 Moreover, we have also 

reported an association with lobar cerebral microbleeds which indicate that CMIs might 

also be CAA related- attributed to reduced blood flow in small cortical arteries due to the 

deposition of amyloid in the vessel wall. 23 

With regards to cognition, the present study shows that the persons with cortical CMIs 

are more likely to have worse cognitive function in terms of clinical outcomes (CIND / 

dementia), brief tests (MMSE and MoCA) and global cognitive performance. Moreover, 

persons with cortical CMIs performed worse in tasks of executive function, verbal and 

visual memory independent of cardiovascular risk factors and other MRI markers of 

cerebrovascular disease pathology. However, the association of cortical CMIs with 

language and visuomotor speed were attenuated only in the presence of infarcts leading 

to the possibility this association is partly mediated by cerebral ischemic damage. So far, 

only one autopsy study has shown the association of CMIs with specific cognitive 

domains such as semantic memory, perceptual speed and visuospatial function.16 The role 

of cortical CMIs in causing cognitive dysfunction has also been shown in a study on 

memory clinic patients where those with cortical CMI had worse language and 

visuoconstructive abilities.10 Possibly this association with executive function and 

memory domains can be attributed by the abundance of cortical CMIs in the frontal and 

parietal cortex.  Moreover, executive function, visuomotor speed and language are also 

commonly affected in cognitive impairment secondary to both small vessel and 

macroscopic ischemic damage. 24 Impairment of these cognitive domains in persons with 

cortical CMIs might be meditated or modified by processes such as hypoperfusion with 

hypoxia, oxidative stress, and inflammation.16 Finally, patients with single or multiple 

CMIs may also have an unrecognized burden of hundreds of thousands more CMIs in the 
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rest of the brain.16, 25 This may explain why neuropathological studies have shown that 

CMIs disrupt important cognitive networks underlying the cognitive dysfunction 

observed in these subjects.5 

Limitations of this study include: first, 46·1% of the screened positive subjects were 

excluded from these analyses. Compared to the included participants, these excluded 

subjects were relatively older, less educated, and more likely to have hypertension. 

However, despite this non-participation of subjects more likely to have cortical CMIs, we 

still found significant associations with CMIs and in turn with cognition. Second, due to 

the cross-sectional design of our study the temporal relationship between risk factors and 

cortical CMIs and its effect on cognitive impairment could not be assessed. Third, due to 

the lower resolution of 3T MRI compared to 7T, smaller cortical CMIs <2mm might have 

gone undetected. Despite this under detection on 3T, we nevertheless found significant 

associations of risk factors with CMIs and its link with cognitive functioning. 

Furthermore, as the grading of the 3T MRI scans was independent of clinical 

characteristics of the subjects, it is likely that the true effects with risk factors and 

cognition may have been even larger. Strengths of the study include: subjects were 

selected from a population-based study, extensive neuropsychological tests were used to 

diagnose cognitive impairment and dementia. The final models with cognition were 

adjusted for all possible risk factors of cortical CMIs to show an independent effect of 

cortical CMIs with cognition.  

5.  CONCLUSION 
 
In conclusion, in this study in the general elderly population, we found that cortical CMIs 

are indeed a distinct MRI marker of cerebrovascular disease and are associated with 

worse cognitive functioning, in particular executive function, verbal, and visual memory.  

Future longitudinal studies focusing on the clinical relevance of cortical CMIs may 
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provide novel insights into the pathophysiological link between cortical CMIs and 

cognition. It would be interesting to investigate the effects of this novel, emerging MRI 

marker on vascular cognitive impairment in addition to the traditional small vessel 

disease markers and its additional value in predicting cognitive decline. Finally, it would 

be of importance to determine if interventions can effectively reduce the incidence of 

CMIs and hence cognitive decline in clinical trials or observational studies. 

  



  Chapter 6 

171 
 

CHAPTER 6 – REFERENCES 
 
1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical 

characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689-701. 

2. Pantoni L, Poggesi A, Inzitari D. Cognitive decline and dementia related to 

cerebrovascular diseases: some evidence and concepts. Cerebrovasc Dis. 2009;27:191-6. 

3. Sonnen JA, Santa Cruz K, Hemmy LS, et al. Ecology of the aging human brain. 

Arch Neurol. 2011;68:1049-56. 

4. Brundel M, de Bresser J, van Dillen JJ, Kappelle LJ, Biessels GJ. Cerebral 

microinfarcts: a systematic review of neuropathological studies. Journal of cerebral blood 

flow and metabolism : official journal of the International Society of Cerebral Blood 

Flow and Metabolism . 2012;32:425-36. 

5. Smith EE, Schneider JA, Wardlaw JM, Greenberg SM. Cerebral microinfarcts: 

the invisible lesions. Lancet Neurol. 2012;11:272-82. 

6. Kalaria RN. Cerebrovascular disease and mechanisms of cognitive impairment: 

evidence from clinicopathological studies in humans. Stroke. 2012;43:2526-34. 

7. van Veluw SJ, Zwanenburg JJ, Engelen-Lee J, et al. In vivo detection of cerebral 

cortical microinfarcts with high-resolution 7T MRI. Journal of cerebral blood flow and 

metabolism : official journal of the International Society of Cerebral Blood Flow and 

Metabolism. 2013; 33:322-9. 

8. Ii Y, Maeda M, Kida H, et al. In vivo detection of cortical microinfarcts on 

ultrahigh-field MRI. Journal of neuroimaging : official journal of the American Society 

of Neuroimaging. 2013;23:28-32. 

9. van Dalen JW, Scuric EE, van Veluw SJ, et al. Cortical microinfarcts detected in 

vivo on 3 Tesla MRI: clinical and radiological correlates. Stroke. 2015;46:255-7. 



  Chapter 6 

172 
 

10. van Veluw SJ, Hilal S, Kuijf HJ, et al. Cortical microinfarcts on 3T MRI: 

Clinical correlates in memory-clinic patients. Alzheimers Dement 2015. S1552-

5260(15)00123-5. 

11. Hilal S, Ikram MK, Saini M, et al. Prevalence of cognitive impairment in 

Chinese: Epidemiology of Dementia in Singapore study. J Neurol Neurosurg Psychiatry 

2013;84:686-92. 

12. Rosman M, Zheng Y, Wong W, et al. Singapore Malay Eye Study: rationale and 

methodology of 6-year follow-up study (SiMES-2). Clinical & experimental 

ophthalmology 2012;40:557-68. 

17. Yu L, Boyle PA, Leurgans S, Schneider JA, Bennett DA. Disentangling the 

effects of age and APOE on neuropathology and late life cognitive decline. Neurobiology 

of aging. 2014;35:819-26. 

18. Longstreth WT, Jr., Sonnen JA, Koepsell TD, Kukull WA, Larson EB, Montine 

TJ. Associations between microinfarcts and other macroscopic vascular findings on 

neuropathologic examination in 2 databases. Alzheimer Dis Assoc Disord.2009;23:291-4. 

19. Brundel M, Reijmer YD, van Veluw SJ, et al. Cerebral microvascular lesions on 

high-resolution 7-Tesla MRI in patients with type 2 diabetes. Diabetes. 2014;63:3523-9. 

20. Arvanitakis Z, Leurgans SE, Barnes LL, Bennett DA, Schneider JA. Microinfarct 

pathology, dementia, and cognitive systems. Stroke. 2011;42:722-7. 

21. Venketasubramanian N, Sahadevan S, Kua EH, Chen CP, Ng TP. Interethnic 

differences in dementia epidemiology: global and Asia-Pacific perspectives. Dement 

Geriatr Cogn Disord. 2010;30:492-8. 

22. Zheng L, Vinters HV, Mack WJ, Zarow C, Ellis WG, Chui HC. Cerebral 

atherosclerosis is associated with cystic infarcts and microinfarcts but not Alzheimer 

pathologic changes. Stroke. 2013;44:2835-41. 



  Chapter 6 

173 
 

23. Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O'Brien RJ. 

Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann Neurol. 

2008;64:168-76. 

24. Wang LY, Larson EB, Sonnen JA, et al. Blood pressure and brain injury in older 

adults: findings from a community-based autopsy study. J Am Geriatr Soc. 2009;57: 

1975-81. 

25. Sonnen JA, Larson EB, Brickell K, et al. Different patterns of cerebral injury in 

dementia with or without diabetes. Arch Neurol. 2009; 66:315-22. 

26. van Rooden S, Goos JD, van Opstal AM, et al. Increased number of 

microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology. 2014;270:205-11. 

27. Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy 

revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg 

Psychiatry. 2012;83:124-37. 

28. Aggarwal NT, Schneider JA, Wilson RS, Beck TL, Evans DA, Carli CD. 

Characteristics of MR infarcts associated with dementia and cognitive function in the 

elderly. Neuroepidemiology. 2012;38:41-7. 

29. Auriel E, Westover MB, Bianchi MT, et al. Estimating Total Cerebral 

Microinfarct Burden From Diffusion-Weighted Imaging. Stroke. 2015;46:2129-35. 

 

  



  Chapter 6 

174 
 

CHAPTER 6 – TABLES 
 

 

 

Characteristics With CMIs 
(n= 54) 

Without CMIs  
(n= 807) 

P valuea 

Demographics,    

Age, years, mean (SD) 74.3 (6.6) 70.0 (6.6) <0.001 

Men, no. (%) 30 (55.6) 373 (46.2) 0.183 

Ethnicity,    

Chinese, no. (%) 13 (24.1) 268 (33.2) 0.004 

Malays, no. (%) 30 (55.6) 270 (33.5)  

Indians, no. (%) 11 (20.4) 269 (33.3)  

Cardiovascular risk factors,    

Hypertension, no. (%) 51 (94.4) 643 (79.7) 0.008 

Hyperlipidemia, no. (%) 40 (74.1) 609 (75.5) 0.818 

Diabetes, no. (%) 26 (48.1) 297 (36.8) 0.096 

Mean arterial blood pressure, mmHg, mean (SD) 100.7 (12.5) 98.1 (10) 0.071 

Total Cholesterol, mmol/l, mean (SD) 4.7 (1.2) 5.0 (1.1) 0.054 

Random blood glucose, mean (SD) 7.3 (3.0) 7.1 (3.1) 0.593 

Smoking, no. (%) 21 (38.9) 207 (25.7) 0.033 

Body mass index, kg/m2, mean (SD) 19.6 (2.8) 20.1 (3.6) 0.329 

History of stroke, no. (%) 12 (22.2) 35 (4.3) <0.001 

History of cardiovascular diseases, no. (%) 6 (11.1) 59 (7.3) 0.306 

MRI markers,    

Presence of any infarcts, no. (%) 35 (64.8) 140 (17.3) <0.001 

Lacunes, no. (%) 29 (53.7) 127 (15.7) <0.001 

Cortical infarcts, no. (%) 13 (24.1) 15 (1.9) <0.001 

White matter hyperintensity volume, median (IQR) 5.79 (18.7) 1.47 (3.9) <0.001 

Presence of cerebral microbleeds, no. (%) 27 (50.9) 267 (33.9) 0.012 

Presence of intracranial stenosis, no. (%) 17 (32.1) 98 (12.5) <0.001 

Table 6 – 1: Baseline demographic and clinical characteristics of subjects (n=861) 

Abbreviation: SD, Standard deviation; no, number; mmHg, millimeter of mercury; mmol/l, 
millimoles per liters; kg/m2, kilogram per meter square; MRI, magnetic resonance imaging; IQR, 
interquartile range; ml, milliliters; CMI, cerebral microinfarct 

a p-value < 0.05 was considered statistically significant 
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Table 6 – 2: Association of risk factors (as determinants) with cortical CMIs (as outcome) 

 

Abbreviation: CMI, cerebral microinfarct; RR, rate ratios; CI, confidence interval; BMI, body mass index; 
MRI, magnetic resonance imaging; ml, milliliters; WMH, white matter hyperintensity 

Model I included age, gender, and each associated factor separately 

Model II included age, gender, ethnicity, hypertension, diabetes and smoking (significant from model I) 

 

 

Risk factors 

Per CMI increase 

Model I 

RR (95% CI) 

Model II 

RR (95%CI) 

Demographics,   

Age, (per year increase)  1.10 (1.07-1.13) 1.09 (1.06-1.12) 

Gender (men vs. women) 1.82 (1.26-2.63) 1.77 (1.22-2.56) 

Ethnicity, 

Malay vs. Chinese 

Malay vs. Indian 

Chinese vs. Indian 

 

 

2.44 (1.51-3.93) 

1.66 (1.07-2.56) 

0.71 (0.41-1.23) 

 

2.29 (1.42-3.69) 

1.79 (1.14-2.81) 

0.78 (0.44-1.38) 

Cardiovascular risk factors,   

Hypertension, (yes vs. no) 5.69 (2.09-15.48) 4.33 (1.58-11.83) 

Hyperlipidemia, (yes vs. no) 1.42 (0.89-2.24) 0.91 (0.56-1.45) 

Diabetes, (yes vs. no) 1.82 (1.27-2.62) 1.59 (1.10-2.31) 

Smoking (ever vs. never) 1.38 (0.90-2.15) 1.36 (0.85-2.17) 

BMI (kg/m2) 1.01 (0.96-1.07) 0.98 (0.93-1.04) 

History of stroke, (yes vs. no) 4.95 (3.27-7.49) 4.85 (3.17-7.43) 

History of cardiovascular disease, (yes vs. no) 1.19 (0.69-2.07) 0.90 (0.52-1.58) 

MRI markers,   

Cortical infarct, (yes vs. no) 16.74 (11.56-24.23) 13.64 (9.40-19.78) 

Lacunar infarct, (yes vs. no) 7.03 (4.73-10.44) 4.94 (3.25-7.50) 

WMH volume, ml, log transformed 3.22 (2.24-4.61) 2.28 (1.55-3.33) 

Presence of cerebral microbleed (yes vs. no) 2.16 (1.46-3.20) 1.72 (1.15-2.57) 

Presence of intracranial stenosis (yes vs. no) 5.19 (3.54-7.62) 3.57 (2.40-5.31) 
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Table 6 – 3: Association between cortical cerebral microinfarcts (presence vs. absence) and cognition (clinical outcomes) 

 

Abbreviations: CIND, cognitive impairment no dementia; OR, odds ratios; CI, confidence interval 

Model I included age, gender, and education 

Model II included age, gender, race, education, hypertension, diabetes 

Model I + II + each individual MRI marker added separately  

 

 

 CIND mild (n=275) 

OR (95%CI) 

CIND moderate (n=290) 

OR (95%CI) 

Dementia (n=40) 

OR (95%CI) 

CIND moderate/dementia (n=330) 

OR (95%CI) 

Model I 1.26 (0.46-3.40) 3.28 (1.26-8.58) 11.88 (2.18-64.78) 3.66 (1.43-9.39) 

Model II 1.23 (0.44-3.44) 3.57 (1.31-9.68) 13.95 (2.45-79.30) 3.91 (1.47-10.39) 

Model III     

Intracranial stenosis 1.25 (0.45-3.49) 3.49 (1.26-9.68) 13.51 (2.27-80.48) 3.82 (1.41-10.36) 

Cerebral microbleeds 1.24 (0.44-3.44) 3.63 (1.33-9.93) 12.61 (2.14-74.21) 3.96 (1.48-10.62) 

White matter hyperintensity volume 1.19 (0.43-3.35) 2.94 (1.05-8.22) 11.52 (1.73-76.98) 3.23 (1.18-8.84) 

Lacunar infarcts 1.04 (0.37-2.93) 2.38 (0.86-6.64) 4.47 (0.58-34.46) 2.44 (0.89-6.73) 

Cortical infarcts 1.17 (0.41-3.31) 2.85 (1.01-8.05) 10.39 (1.65-65.25) 3.02 (1.08-8.38) 
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Table 6 – 4: Association between cortical cerebral microinfarcts (presence vs. absence) and 
cognition 

 

 

Abbreviations: CMI, cerebral microinfarct; MMSE, Mini Mental Status Examination; MOCA, 
Montreal Cognitive Assessment; CI, confidence interval; WMH, white matter hyperintensity 

Model I included age, gender, and education 

Model II included age, gender, education, ethnicity, hypertension, diabetes, smoking 

Model I + II + each individual MRI marker added separately 

CMI,  

presence vs. absence 

MMSE 

Mean difference 

(95%CI) 

MOCA 

Mean difference 

(95%CI) 

Composite Z scores 

Mean difference 

(95%CI) 

Model I -1.85 (-2.84; -0.86) -2.55 (-3.79; -1.29) -0.42 (-0.62; -0.21) 

 p=<0.001 p=<0.001 p=<0.001 

Model II -1.83 (-2.81; -0.84) -2.47 (-3.69; -1.24) -0.39 (-0.59; -0.19) 

 p=<0.001 p=<0.001 p=<0.001 

Model III    

Intracranial stenosis -1.93 (-2.90; -0.96) -2.34 (-3.57; -1.12) -0.38 (-0.58; -0.18) 

 p=<0.001 p=<0.001 p=<0.001 

Cerebral microbleeds -1.95 (-2.92; -0.99) -2.51 (-3.74; -1.28) -0.41 (-0.61; -0.21) 

 p=<0.001 p=<0.001 p=<0.001 

WMH volume -1.49 (-2.48; -0.52) -2.04 (-3.26; -0.81) -0.31 (-0.50; -0.11) 

 p=0.003 p=0.001 p=0.002 

Lacunar infarcts -1.53 (-2.53; -0.53) -2.01 (-3.25; -0.76) -0.29 (-0.49; -0.09) 

 p=0.003 p=0.002 p=0.004 

Cortical infarcts -1.11 (-2.13; -0.09) -1.95 (-3.23; -0.67) -0.31 (-0.52; -0.10) 

 p=0.032 p=0.003 p=0.003 
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Table 6 – 5: Association between cortical CMIs and specific cognitive domains expressed as mean differences with 95% confidence 
intervals

 
 
 

Executive function 
Mean difference 

(95%CI) 

Attention 
Mean difference 

(95%CI) 

Language 
Mean difference 

(95%CI) 

Visuomotor speed 
Mean difference 

(95%CI) 

Visuoconstruction 
Mean difference 

(95%CI) 

Visual memory 
Mean difference 

(95%CI) 

Verbal memory 
Mean difference 

(95%CI) 

Model I -0.42 (-0.65; -0.19) -0.30 (-0.53; -0.07) -0.37 (-0.61; -0.13) -0.29 (-0.49; -0.09) -0.22 (-0.44; -0.00) -0.46 (-0.67; -0.24) -0.41 (-0.64; -0.19) 
 p=<0.001 p=0.010 p=0.002 p=0.004 p=0.045 p=<0.001 p=<0.001 

Model II -0.40 (-0.63; -0.17) -0.28 (-0.50; -0.06) -0.36 (-0.60; -0.12) -0.26 (-0.46; -0.07) -0.19 (-0.41; 0.02) -0.44 (-0.66; -0.22) -0.39 (-0.62; -0.17) 

 p=0.001 p=0.011 p=0.003 p=0.008 p=0.070 p=<0.001 p=0.001 

Model III        

ICS -0.41 (-0.64; -0.17) -0.27 (-0.49; -0.05) -0.36 (-0.61; -0.12) -0.26 (-0.45; -0.06) -0.19 (-0.41; 0.02) -0.44 (-0.66; -0.22) -0.36 (-0.58; -0.14) 

 p=0.001* p=0.015 p=0.003* p=0.009 p=0.069 p=<0.001* p=0.002* 

CMB -0.43 (-0.66; -0.19) -0.29 (-0.51; -0.07) -0.36 (-0.61; -0.12) -0.29 (-0.49; -0.10) -0.21 (-0.42; 0.00) -0.46 (-0.68; -0.24) -0.39 (-0.62; -0.17) 
 p=<0.001* p=0.009 p=0.003* p=0.003* p=0.054 p=<0.001* p=0.001* 
WMH volume -0.33 (-0.56; -0.09) -0.22 (-0.44; -0.00) -0.27 (-0.51; -0.03) -0.21 (-0.40; -0.01) -0.11 (-0.33; 0.09) -0.35 (-0.57; -0.13) -0.33 (-0.56; -0.11) 

 p=0.005* p=0.047 p=0.028 p=0.039 p=0.295 p=0.002* p=0.003* 

Lacunar infarcts -0.30 (-0.54; -0.07) -0.21 (-0.43; 0.01) -0.29 (-0.53; -0.04) -0.18 (-0.38; 0.01) -0.12 (-0.34; 0.09) -0.34 (-0.57; -0.12) -0.32 (-0.54; -0.09) 

 p=0.011 p=0.065 p=0.021 p=0.069 p=0.275 p=0.002* p=0.005* 

Cortical infarcts -0.34 (-0.58; -0.09) -0.21 (-0.44; 0.01) -0.25 (-0.49; 0.00) -0.22 (-0.43; -0.02) -0.16 (-0.38; 0.06) -0.33 (-0.56; -0.11) -0.34 (-0.57; -0.11) 

 p=0.006* p=0.066 p=0.054 p=0.033 p=0.164 p=0.004* p=0.004* 

Abbreviations: CMI, cerebral microinfarct; CI, confidence interval; ICS, intracranial stenosis; CMB, cerebral microbleed; WMH, white matter hyperintensity 

Model I included age, gender, and education 

Model II included age, gender, education, ethnicity, hypertension, diabetes, smoking 

Model I + II + each individual MRI marker added separately  

*Statistically significant after Bonferroni correction (0.05/7 ~ 0.007) 
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Supplementary table 6 – 1: Comparison of baseline characteristics of included and excluded 

subjects  

Characteristics Included (n=861) Excluded (n=737) P valuea 

Age (years) 70.2 (6.7) 71.9 (6.9) <0.001 

Women, no. (%) 457 (53.1) 419 (56.9) 0.131 

Race, no. (%)    

Chinese 281 (32.6) 332 (45) <0.001b 

Malays 300 (34.8) 184 (25)  

Indians  280 (32.5) 221 (30)  

Primary education > 6 years, no. (%) 316 (36.7) 200 (27.1) <0.001 

Hypertension, no. (%) 679 (78.9) 618 (83.9) 0.011 

Diabetes, no. (%) 322 (37.4) 250 (33.9) 0.148 

Hyperlipidemia, no. (%) 633 (73.5) 486 (65.9) 0.001 

Mean arterial blood pressure, mmHg, (SD) 97.4 (10.5) 97.8 (11.3) 0.486 

Random blood glucose, mmol/l, (SD) 7.09 (3.12) 7.07 (3.08) 0.890 

Total cholesterol, mmol/l, (SD) 5.11 (1.2) 5.14 (1.16) 0.562 

Smoking, no. (%) 209 (24.3) 180 (24.4) 0.945 

Body mass index, kg/m2, (SD) 23.5 (4.6) 23.6 (4.6) 0.648 

 

Abbreviation: SD, Standard deviation; no, number; mmHg, millimeter of mercury; mmol/l, 
millimoles per liters; kg/m2, kilogram per meter square 

a p-value < 0.05 was considered statistically significant 

b p-value for overall ethnic comparison 
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CHAPTER 7:  

Intracranial Stenosis, Cerebrovascular Diseases and Cognitive 
Impairment in Chinese 
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1.  INTRODUCTION 

Intracranial stenosis (ICS) in stroke patients has been suggested to vary among different 

ethnicities with higher prevalence (40-50%) reported in Chinese, Africans, and Hispanics 

as compared to Caucasians (8-10%).1-3 This difference in the prevalence figures may, 

next to differences in study populations, be influenced by the imaging modalities 

[transcranial Doppler ultrasound (TCD) vs. Magnetic Resonance Angiography (MRA)] 

and criteria used to define ICS. Furthermore, data on ICS from asymptomatic and 

community-based subjects – especially Asian populations - are largely lacking. One study 

using TCD among asymptomatic subjects from rural China (mean age: 53.5 years) 

reported a prevalence of ICS of 6.9%. Another study in asymptomatic predominantly 

white US subjects, ICS was identified in 12.9% using TCD. However, this was a 

relatively older population with a mean age of 71.4 years.4 The use of TCD may limit the 

ability to diagnose ICS, as this is not feasible in patients with poor bone windows and is 

also rater dependent with high inter- and intra-observer variability.5 More recently, with 

the application of higher resolution imaging with flow enhancement, investigators have 

started to employ MRA in population-based research settings, thereby creating 

opportunities to examine the determinants and consequences of ICS.6  

With respect to cognitive impairment, studies have suggested that extra carotid artery 

disease is associated with impaired neuropsychological test performance, probably as a 

consequence of cerebral ischemic damage.7 However, the majority of these studies have 

focused on extracranial carotid artery stenosis, rather than ICS.8-12 Specifically, the 

association between ICS and cognitive impairment has not been investigated previously. 

We, therefore, examined the association of ICS with cognitive impairment in a Chinese 

population from Singapore, and whether this association is mediated by the presence of 

other markers of involutional changes or cerebrovascular diseases on magnetic resonance 

imaging (MRI). 
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2.  METHODS 

2.1  Study population 

The ongoing Epidemiology of Dementia in Singapore (EDIS) study drew subjects from 

the population-based study among Chinese aged 40-85 years, who participated in the 

Singapore Chinese Eye Study (SCES).13 The details of study population in Chinese 

subjects have been described in Chapter 4.  

2.2  Neuroimaging 

MRI Acquisition 

Magnetic Resonance Imaging (MRI) and intracranial MRA were performed on a 3T 

Siemens Magnetom Trio Tim scanner, using a 32-channel head coil, at the Clinical 

Imaging Research Centre of the National University of Singapore. The study details on 

MRA were provided previously in Chapter 3.  

Intracranial Stenosis on MRA 

ICS was defined as narrowing exceeding 50% of the luminal diameter in any of the 

intracranial vessels assessed on 3D TOF MRA  as mentioned in Chapter 3.The images 

were first visually assessed on the coronal sequences and then on reconstruction. The 

final decision on stenosis (>50%) was based on the reconstruction sections (Figure 7-1).   

Other Markers on MRI 

Other markers of cerebrovascular diseases (infarcts, white matter hyperintensities and 

cerebral microbleeds) and involutional changes (total brain volume) were also graded on 

MRI using the same methods described in Chapter 3.  

2.3  Cognitive Assessment 

An extensive neuropsychological battery, which has been previously validated in 

Singaporean elderly, was administered to assess cognitive function.14 Details on subtests 

for assessing cognitive domains and calculation of Z-scores have been described in detail 
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in Chapter 3. The modified 15-item Geriatric Depression Scale (GDS) was also 

administered to all subjects.15  

Cognitive impairment without dementia (CIND) was defined as impairment in at least 

one domain of the neuropsychological test battery using education-adjusted cutoffs of 1.5 

standard deviations below established normal means on individual tests. CIND was 

classified into mild (when ≤ 2 domains were impaired) and moderate (when > 2 domains 

were impaired).16 The diagnosis of dementia was made according to DSM-IV criteria. 

2.4  Assessment of Other Risk Factors 

Demographic and vascular risk factors including age, gender, education, smoking, 

hypertension, diabetes, hyperlipidemia, height, weight and history of stroke were 

collected and verified by medical records (details in Chapter 3). Education was 

categorized into < Primary 6 and ≥ Primary 6. Smoking was categorized into non-

smokers and smokers (past and current smokers). Body mass index (BMI) was calculated 

as the weight in kg divided by the square of height in meters.  

2.5  Statistical Analysis 

To assess the differences between included and excluded subjects, Chi-square tests were 

utilized for categorical variables and Student t-tests were used for continuous variables. 

We analyzed the associations between presence of ICS and Z-scores for cognition using 

multiple linear regression models expressing the effect sizes as mean differences in Z-

score between those with ICS and those without ICS together with 95% confidence 

intervals (CI). Models were initially adjusted for age, gender and education and 

additionally for mean arterial blood pressure, cholesterol, random blood glucose, 

smoking, BMI and GDS. For clinical outcomes (CIND-mild, CIND-moderate, dementia), 

multiple logistic regression models were used to compute odds ratios (OR) and 95% CI. 

To examine whether the association between ICS and cognitive impairment are mediated 

by the presence of specific MRI lesions, we adjusted both the linear and logistic models 
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additionally for each MRI marker. Standardized total brain volume and WMH volume, 

presence of microbleeds and lacunar infarcts were entered into the model one at a time. In 

order to calculate standardized volumes, the mean total brain volume of the study 

population was subtracted from individual volumes; the results were then divided by the 

standard deviation (of our population) to obtain standardized brain volume. The total 

brain volume was then standardized with total intracranial volume in order to have a true 

measure of atrophy. The same procedure was also applied to standardize WMH volumes 

first with the study population and then with total white matter volume. P-value < 0.05 

was considered statistically significant. In view of the multiple tests performed on the 

specific cognitive domains (7 domains), we also used the Bonferroni correction to obtain 

an adjusted significance level for each domain specific test: 0.05/7=0.007. Statistical 

analysis was performed using standard statistical software (Statistical Package for Social 

Science, SPSS V20, SPSS Inc., USA). 

3.  RESULTS 

Table 7-1 shows the comparison between included (n=278) and excluded (n=1260) 

subjects. Compared to excluded subjects, those that were included were more likely to be 

older and diabetic and less likely to be hypertensive with low mean arterial blood 

pressure. The baseline characteristics of the participants with and without ICS are shown 

in Table 7-2. Those who had ICS were more likely to have hypertension, diabetes and 

presence of infarcts on their MRI scans. Out of 278 included subjects, 77 (27.7%) were 

diagnosed with CIND-mild, 74 (26.6%) with CIND-moderate and 4 (1.4%) with 

dementia. Due to the small numbers of dementia cases, these subjects were combined 

together with CIND-moderate as “significant cognitive impairment” for further analysis.  

Twenty-nine subjects (10.4%) were diagnosed with ICS of which 10 were symptomatic 

(history of stroke) and 19 asymptomatic. Among persons aged 60-64 years, the 

prevalence was 5% increasing to 16.7% in those older than 75 years. ICS was diagnosed 
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in 5 (4.1%) subjects with normal cognition, 9 (11.7%) with CIND-mild and 15 (19.2%) 

with CIND-moderate/dementia. The presence of ICS was significantly associated with 

both CIND-moderate/dementia as well as composite Z-scores (Table 7-3). Following 

further adjustments with MRI markers including standardized total brain volume, WMH 

volume and presence of cerebral microbleeds, the associations of ICS with both the 

clinical outcomes and the composite Z-scores remained statistically significant. After 

adjustment for the presence of lacunar infarcts, however, these associations attenuated 

and partly became non-significant, suggesting that these associations are partially 

mediated through infarcts.  

With respect to specific domains, ICS was related to executive function, language, 

visuomotor speed, verbal and visual memory after adjusting for age, gender, education, 

and vascular risk factors (Table 7-4). In terms of additional adjustment for MRI markers, 

similar trends were also seen for the domain specific analyses: additional adjustment for 

standardized total brain volume, WMH volume and presence of cerebral microbleeds did 

not alter these associations. However, these associations did become non-significant after 

including presence of infarcts in the model, except for executive function. Finally, when 

applying Bonferroni corrected significance level of 0.007 (~0.05/7 domains) to the 

domain specific analyses, none of these associations in these models reached this revised 

level of significance. 

4.  DISCUSSION 

In this study we found that persons with ICS were more likely to have poorer overall 

cognitive performance. In particular, these persons performed worse on tasks of 

executive function, language, visuomotor speed, verbal and visual memory. In terms of 

clinical outcomes, persons with ICS were more likely to have significant cognitive 
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impairment. Additional adjustment for MRI markers revealed that these associations may 

be partially mediated by the presence of lacunar infarcts on MRI. 

Several studies have shown that cognitive deficits were present in both symptomatic 

(with history of stroke) and asymptomatic subjects with extracranial carotid artery 

occlusion.17,18,11,12 Additionally, a few studies on extracranial carotid stenosis and 

cognition have shown that stroke-free subjects with moderate carotid stenosis (stenosis of 

50-69%) have poorer performance on several cognitive tests than persons without carotid 

stenosis.9,19 In the Tromso study, tests of attention, particularly sustained attention, and 

psychomotor speed were strongly associated with carotid stenosis, while a weaker 

association was observed between tests of memory and carotid stenosis independent of 

clinical ischemic episodes or structural vascular MRI changes.10 Several studies have also 

shown that patients with asymptomatic carotid stenosis improved significantly with 

respect to their neuropsychological assessments after prophylactic carotid surgery, 

including improvement in attention, visual memory and psychomotor speed.8,20 However, 

it was unclear whether these associations were mediated through the presence of infarcts 

(or other lesions on MRI), as these studies lacked such data.21-23   

The present study extends these previous findings by showing that persons with ICS were 

also more likely to have poorer cognitive function.8 However, the association between 

ICS and cognitive impairment attenuated when adjusting for the presence of lacunar 

infarcts on MRI leading to the possibility that this association is partially mediated by 

cerebral ischemia. It has been hypothesized that cognitive deficits in patients with carotid 

stenosis may occur as a result of diffuse ischemic damage.24,25 It has also been suggested 

that patients with carotid stenosis have cerebral hypoperfusion which is associated with 

white matter lesions and cerebral atrophy. However, hypoperfusion was not directly 

measured in this or earlier studies.10 The specific role of carotid disease in producing 

cognitive alterations was also reported by a study in which cognitive dysfunction was 
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observed in patients with TIA and internal carotid occlusion irrespective of the presence 

of cerebrovascular disease (WMH) or the localization (retinal versus cerebral) of 

symptoms.26 However, in this study the presence of WMH was graded visually and other 

markers such as brain volume and microbleeds were not taken into consideration. 

Some methodological issues need to be discussed. First, almost half of the screened 

positive subjects refused to participate in phase II. These subjects were relatively older, 

less educated, and had higher mean arterial blood pressure compared to those who 

participated, which may have led to the underestimation of prevalence of ICS in our 

sample. Furthermore, those excluded subjects might also be more cognitively impaired 

suggesting that the effect sizes described in this study may be underestimated. Second, 

due to the cross-sectional design of our study the temporal relationship between the 

presence of ICS and the development of cognitive decline cannot be assessed. Third, due 

to the small number of dementia cases, we were unable to determine the effect of ICS on 

clinically defined dementia. However, the dose-response relationship with significant 

cognitive impairment, suggests that these findings may be extendable to dementia. Also 

with relatively small numbers of ICS, we were not able to examine asymptomatic ICS 

separately. Finally, for the domain specific analyses, although we found several 

significant associations at a nominal significance level of 0.05, after applying Bonferroni 

correction none of these associations reached the revised significance level of 0.007, 

probably due to low power of our study to examine a large number of specific cognitive 

domains separately. Finally, conventional cerebral angiograms are considered to be the 

gold standard to diagnose occlusive disease of the intracerebral arteries; however, it 

would not have been feasible or ethical to conduct such tests in these subjects, who were 

drawn from a community-dwelling population.  

The strengths of the study are: an extensive neuropsychological battery was used to 

determine the cognitive dysfunction and the use of cerebral MRI to grade the presence of 
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cerebrovascular diseases. Furthermore, quantitative MRI measures such as the total brain 

volume and WMH volume were adjusted for in this study, which are more reliable 

compared to visual scales. 

5.  CONCLUSION 

In conclusion, in this study we showed that ICS was - independent of vascular risk factor 

- related to overall poorer cognitive performance. Although the effect of ICS on cognitive 

impairment may be partly mediated through infarcts, other mechanisms may also be 

involved. Future studies focusing on perfusion and cerebrovascular reserve may provide 

novel insights into the pathophysiological link between ICS and cognition. 
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CHAPTER 7 – TABLES 
 
Table 7 - 1: Baseline characteristics of subjects who were screen positive at phase I and 
participated in phase II (n = 278) compared with those who were excluded from this analyses 
(n = 1260) 

Abbreviations: SD, standard deviation; kg/m2, kilogram per meter square; mmol/l, millimoles per 
liter; mmHg, millimeters of mercury 

*Excluded were those subjects who were either screen negative (n=926) at phase I and hence were 
not invited for phase II of the EDIS study or those subjects who were screen positive at phase I, 
but refused participation at phase II or had missing data (n=334) 

† Participants at phase II 

Values in bold indicates P<0.05.  

 
Risk Factors 
 

 
   Excluded*             Included† 

Yes (n = 1260)         No (n = 278) 

 
P-value 

 
Age (years) 

 
68.7 (6.3) 

 
69.7 (6.2) 

 
0.02 

Women, no. (%) 582 (46.2) 143 (51.4) 0.11 

No formal education, no. (%) 480 (38.1) 120 (43.2) 0.11 

Low Socioeconomic status, no. (%)  812 (66) 180 (66.4) 0.89 

Hypertension, no. (%) 991 (78.7) 204 (73.4) 0.05 

Diabetes mellitus, no. (%) 261 (20.7) 72 (25.9) 0.05 

Hyperlipidemia, no. (%) 661 (52.5) 146 (52.5) 0.98 

Mean arterial blood pressure, mmHg, (SD)  99.9 (11.2) 97.1 (9.7) <0.001 

Random blood glucose, mmol/l (SD) 6.7 (2.8) 6.6 (2.7) 0.61 

Total cholesterol, mmol/l (SD) 5.3 (1.1) 5.2 (1.0) 0.13 

Ever smokers, no.  (%) 377 (29.9) 71 (25.5) 0.15 

Alcohol drinking, no. (%) 
 

122 (9.7) 
 

18 (6.5) 
 

0.10 
 

Body mass index, kg/m2, mean (SD) 23.5 (3.7) 23.9 (3.4) 0.08 
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Table 7 - 2: Baseline demographic and clinical characteristics of the subjects with and 
without ICS (n= 278)  
 

Baseline characteristics ICS absence 

(n=249) 

ICS present  

(n=29) 

P value 

 
Age, years (SD) 

 
70.2 (6.3) 

 
72.2 (6.1) 

 
0.10 

 
Women, n (%) 

 
134 (53.8) 

 
12 (41.4) 

 
0.24 

 
Education,  (Primary ≤ 6 years) 

 
158 (63.5) 

 
22 (75.9) 

 
0.22 

 
Body mass index, kg/m2, mean (SD) 

 
18.9 (2.8) 

 
19.6 (2.9) 

 
0.24 

 
Hypertension, n (%) 

 
184 (73.9) 

 
27 (93.1) 

 
0.02 

 
Diabetes mellitus, n (%) 

 
59 (23.7) 

 
14 (48.3) 

 
0.007 

 
Hyperlipidemia, n (%) 

 
143 (57.4) 

 
22 (75.9) 

 
0.07 

 
MABP, mmHg, mean (SD)  

 
100.1 (11.3) 

 
100.1 (10.5) 

 
0.98 

 
Random blood glucose, mmol/l (SD) 

 
6.4 (2.3) 

 
8.6 (4.6) 

 
<0.001 

 
Fasting total cholesterol, mmol/l (SD) 

 
4.9 (0.87) 

 
4.6 (0.95) 

 
0.06 

 
Ever smokers, n (%) 

 
73 (29.3) 

 
13 (44.8) 

 
0.09 

 
Presence of lacunar infarcts, n (%) 

 
35 (14.1) 

 
16 (55.2) 

 
<0.001 

 
Presence of cerebral microbleeds, n (%) 

 
78 (31.5) 

 
12 (41.4) 

 
0.29 

 
Total brain volume, ml, mean (SD) 

 
893.5 (89.6) 

 
904.2 (85.5) 

 
0.54 

 
Total WMH volume, ml, median (IQR) 

 
1.90 (4.44) 

 
2.77 (11.46) 

 
0.20 

 

Abbreviations: ICS, intracranial stenosis; SD, standard deviation; kg/m2, kilogram per meter 
square;  MABP, mean arterial blood pressure; mmol/l, millimoles per liter; IQR, interquartile 
range; ml, milliliters; WMH, white matter hyperintensities volume 
 
Values in bold indicates P<0.05. 
  



Chapter 7 

194 
 

Table 7 – 3: Association between intracranial stenosis (presence vs. absence) and cognitive 
function 

 

Abbreviations: CIND, cognitive impairment no dementia; WMH, white matter hyperintensities; 
MRI, magnetic resonance imaging; OR, odds ratios 

*Model I: adjusted for age, sex, and education 

†Model II: model I+ mean arterial blood pressure, cholesterol, random blood glucose, smoking, 
body mass index, and Geriatric Depression Scale 

‡Model III: model II+ individual MRI markers 

Values in bold indicates P<0.05 

  

 CIND-mild  

(n=77) 

OR (95% CI) 

CIND-moderate/dementia 

(n=78) 

OR (95% CI) 

Composite Z scores 

(n=278) 

Mean differences (95%CI) 

Model I* 3.47 (1.00–12.03) 6.42 (1.61–25.65) -0.54 (-0.80; -0.27) 

Model II† 2.89 (0.75–11.17) 5.54 (1.23–24.98) -0.48 (-0.77; -0.18) 

Model III‡    

Total brain volume 2.89 (0.75–11.16) 5.12 (1.12–23.40) 
 

-0.47 (-0.77; -0.17) 

WMH volume 3.01 (0.78–11.60) 5.99 (1.31–27.33) -0.48 (-0.78; -0.19) 

Presence of microbleeds 2.88 (0.75–11.08) 5.35 (1.19–24.04) -0.47 (-0.76; -0.17) 

Presence of infarcts 2.54 (0.64–10.14) 3.14 (0.50–19.82) -0.32 (-0.62; -0.03) 
 

All MRI markers 2.69 (0.68-10.75) 2.99 (0.47-19.15) -0.35 (-0.64, -0.05) 
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Abbreviations: TBV, total brain volume; WMH, white matter hyperintensities; MRI, magnetic resonance imaging, CI, confidence interval 

* Model I: Adjusted for age, gender and education 

† Model II: Model I + mean arterial blood pressure, cholesterol, random blood glucose, smoking, body mass index and Geriatric Depression Scale 

‡ Model III: Model II + individual MRI markers 

Values in bold indicates P<0.05   

 Executive function 

Mean difference 

(95%CI) 

Attention 

Mean difference 

(95%CI) 

Language 

Mean difference 

(95%CI) 

Visuomotor speed 

Mean difference 

(95%CI) 

Visuoconstruction 

Mean difference 

(95%CI) 

Verbal memory 

Mean difference 

(95%CI) 

Visual memory 

Mean difference 

(95%CI) 

        

Model I* -0.60 (-0.93; -0.28) -0.29 (-0.60; 0.01) -0.44 (-0.78; -0.11) -0.42 (-0.67; -0.16) -0.41 (-0.71; -0.12) -0.51 (-0.81; -0.20) -0.51 (-0.79; -0.23) 

Model II† -0.56 (-0.93; -0.20) -0.31 (-0.64; 0.02) -0.39 (-0.76; -0.02) -0.39 (-0.67; -0.10) -0.31 (-0.63; 0.02) -0.45 (-0.78; -0.07) -0.43 (-0.75; -0.12) 

Model III‡ 

TBV 

WMH volume 

Microbleeds 

Infarcts 

All MRI markers 

 

-0.56 (-0.93; -0.20) 

-0.58 (-0.93; -0.22) 

-0.56 (-0.92; -0.20) 

-0.42 (-0.78; -0.06) 

-0.46 (-0.82; -0.09) 

 

-0.31 (-0.64; 0.02) 

-0.31 (-0.64; 0.02) 

-0.30 (-0.64; 0.03) 

-0.20 (-0.53; 0.14) 

-0.22 (-0.55; 0.12) 

 

-0.38 (-0.76; -0.01) 

-0.39 (-0.77; -0.03) 

-0.38 (-0.75; -0.01) 

-0.27 (-0.64; 0.11) 

-0.29 (-0.67; 0.08) 

 

-0.38 (-0.67; -0.09) 

-0.39 (-0.68; -0.11) 

-0.39 (-0.67; -0.10) 

-0.26 (-0.55; 0.02) 

-0.27 (-0.55; 0.02) 

 

-0.31 (-0.64; 0.02) 

-0.31 (-0.64; 0.01) 

-0.30 (-0.63; 0.03) 

-0.23 (-0.56; 0.11) 

-0.26 (-0.59; 0.08) 

 

-0.44 (-0.77; -0.11) 

-0.46 (-0.79; -0.13) 

-0.46 (-0.72; -0.06) 

-0.29 (-0.61; 0.05) 

-0.30 (-0.64; 0.03) 

 

-0.42 (-0.73; -0.10) 

-0.44 (-0.75; -0.12) 

-0.43 (-0.75; -0.12) 

-0.27 (-0.59; 0.04) 

-0.27 (-0.59; 0.04) 

Table 7 - 4: Association between intracranial stenosis (presence versus absence) and specific cognitive domains expressed as mean differences with 
95% confidence intervals (n=278) 
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CHAPTER 7 – FIGURE 
 
Figure 7 – 1: Intracranial stenosis on Magnetic Resonance Angiography (MRA) 
 
Intracranial stenosis is defined as the narrowing exceeding 50% of the luminal diameter in any of 
the intracranial vessels assessed on 3D Time of Flight MRA. The images are first visually 
accessed on the coronal view (A) and confirmed on the reconstruction (B).  
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CHAPTER 8:  

Intracranial Stenosis in Cognitive Impairment and Dementia 
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1.  INTRODUCTION 
 
Cerebrovascular diseases have been increasing implicated as a cause and contributor to 

cognitive impairment and dementia.1 There is a strong association between ischemic 

strokes and white matter hyperintensities with cognitive decline. In this context, 

intracranial stenosis (ICS) has gained increasing attention due to its role in causing 

ischemic damage and hence cognitive dysfunction.2 The occurrence of ICS has been 

attributed largely to systemic vascular risk factors such as hypertension and diabetes3, 4 – 

the risk factors also associated with Alzheimer’s disease (AD) and Vascular Dementia 

(VaD). Previous post mortem studies have shown that severe arterial atherosclerosis of 

the Circle of Willis is a common finding in dementia found in 53% of VaD and 34% of 

AD patients.5  

Reports from ante mortem studies have suggested that the ICS in stroke subjects varies 

across ethnicities with a higher prevalence (30-83%) reported in Asians compared to 

Caucasians (8-10%).6, 7 This difference in prevalence might arise from different imaging 

modalities [Transcranial Doppler ultrasound (TCD) vs. Magnetic Resonance 

Angiography (MRA)] and criteria used to define ICS. Furthermore, a high prevalence of 

ICS on MRA is also reported in VaD compared to AD patients (53% vs. 18%) in a 

hospital based study consistent with the previous neuropathological findings.8 

With respect to cognition, a few studies9-12 have shown that both extra and intracranial 

arterial stenosis affects neuropsychological test performance possibly due to 

hypoperfusion and structural brain damage.13  However, the exact role of ICS in causing 

vascular pathology in preclinical cognitive impairment and different types of dementia 

has been less studied. Moreover, these studies lacked a disease free comparison group8 

and have not taken into account the other markers of cerebrovascular diseases. In the 
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present study, we examined the association of ICS in relation to cognitive impairment 

and dementia in the presence of other markers of cerebrovascular diseases. Moreover, we 

investigated its association in vascular vs. non vascular subtypes of cognitive impairment 

from a memory clinic setting in Singapore. 

2.  METHODS 
 
For the present memory clinic-based study, we employed a case-control design. Cases 

(CIND and dementia) were recruited from two study sites in Singapore (i.e. memory 

clinics from National University Hospital and Saint Luke’s Hospital). Controls were 

recruited from both memory clinics and the community (with a similar catchment area as 

cases). Controls (from memory clinic and community) were defined as those who may 

have subjective complaints of memory impairment, but were cognitively normal on 

objective neuropsychological assessment. Details of this study have been described 

previously.14 All subjects underwent physical, clinical and neuropsychological 

assessments and neuroimaging at the National University of Singapore.  

Ethics approval was obtained from the Singapore Eye Research Institute, and National-

Healthcare Group Domain-Specific Review Board. The study is conducted in accordance 

with the Declaration of Helsinki. Written informed consent was obtained in the preferred 

language of the participants by bilingual study coordinators prior to their recruitment into 

the study. 

2.1  Demographic and cardiovascular risk factor assessment  

Detailed questionnaire collecting information on age, gender, race, education and 

smoking history was described in Chapter 3. Previous medical history of hypertension, 

hyperlipidemia, diabetes mellitus, was also noted and subsequently verified by medical 

records.  
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2.2  Neuroimaging  

MRI and three dimensional time-of-flight MRA images (3D TOF MRA) was performed 

on a 3Tesla Siemens Magnetom Trio Tim scanner, using a 32-channel head coil, at the 

Clinical Imaging Research Centre of the National University of Singapore. The MRA 

acquisition details have been described in Chapter 3.  

Intracranial stenosis on MRA 

ICS was defined based on the criteria published previously.9 Briefly, arterial narrowing 

exceeding 50% of the luminal diameter in any of the intracranial vessels were assessed on 

3D TOF MRA images and were recorded as mentioned in Chapter 3.  

Other MRI markers 

Other markers of cerebrovascular diseases (infarcts, cerebral microbleeds and white 

matter hyperintensities) and involutional changes (total intracranial volume) were also 

graded on MRI, details of which have been provided in Chapter 3.  

2.3  Diagnosis of cognitive impairment and dementia 

An extensive neuropsychological battery, which has been previously validated in 

Singaporean elderly,15 was administered to assess cognitive function. Besides the 

objective tests, the various diagnostic groups of the participants were also made at a 

weekly consensus meeting: 

- Subjects with no objective evidence of neuropsychological deficits were 

classified as having no cognitive impairment (NCI). 

- CIND was determined by clinical judgment and was defined as no significant 

loss of independence in daily activities, and impairment in at least one domain of 
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the neuropsychological test battery. Participants were considered to have failed a 

test if they scored 1.5 SD below education-adjusted cut-off values on each 

individual test. Failure in at least half of the tests in each domain was considered 

as impairment in that domain.  

- The diagnosis of dementia was made according to DSM-IV criteria. The 

etiological diagnoses of dementia were based on the internationally accepted 

criteria; 

• AD was diagnosed using the National Institute of Neurological and 

Communicative Disorders and Stroke and the Alzheimer's Disease and 

Related Disorders Association (NINCDS-ADRDA). 

• VaD was defined using the National Institute of Neurological Disorders 

and Stroke and Association Internationale pour la Recherché et l' 

Enseignement en Neurosciences (NINDS-AIREN) criteria.  

- The subtypes of vascular and non-vascular cognitive impairment were defined as; 

• Vascular cognitive impairment included (VCI) (a) CIND with a history 

of ischemic stroke within the past 6–24 months or neuroimaging 

evidence of cerebral infarction, or (b) VaD, 

• Non-vascular cognitive impairment (non-VCI) included (a) CIND 

without a history of ischemic stroke or infarcts on neuroimaging or (b) 

AD.  

2.4  Statistical Analysis 

In order to compare the baseline characteristics between cases (CIND and dementia) and 

controls (NCI), analysis of covariance or chi square tests were used. In case of non-

uniform data (WMH), difference between the groups was determined using Kruskal-

Wallis test. WMH volume was logarithmically transformed due to the skewed 
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distribution for further analysis. Association between ICS and CIND/dementia were 

determined initially using logistic regression models with odds ratios (OR) and 

95%Confidence interval (CI). Further regression analyses were then constructed 

separately for VCI and non-VCI and then stratified by its subtypes. All models were 

initially adjusted for age and gender and additionally for hypertension, hyperlipidemia, 

and diabetes. Finally in order to examine whether the association between ICS and 

CIND/dementia remains independent of other cerebrovascular diseases, we adjusted 

logistic models additionally for each MRI marker. P-value < 0.05 was considered 

statistically significant. Statistical analysis was performed using standard statistical 

software (Statistical Package for Social Science, SPSS V23, SPSS Inc., USA). 

3.  RESULTS 
 
Assessments of subjects were performed from August 12, 2010 to July 28, 2015. Out of 

the 462 subjects, 13 had no MRI scans and 25 had ungradable scans. Of the remaining 

424 subjects, there were 96 controls and 328 cases [177 (53.9%) CIND and 151 (46%) 

dementia]. Table 8-1 shows the baseline characteristics of the cases and controls. An 

increasing frequency of risk factors was observed from NCI to CIND and dementia. 

Compared to controls, subjects with CIND or dementia were older, had more women and 

attained lower education. A higher prevalence of hypertension and diabetes and lower 

BMI was present in the cognitively impaired subjects. Moreover, an increasing trend was 

observed for all the MRI markers whereas a decreasing trend for brain atrophy was 

observed from NCI to dementia. Among different diagnostic groups, ICS was identified 

in 8 (8.3%) NCI, 6 (5.6%) CIND, 24 (19.8%) AD, 20 (28.6%) VCIND and 17 (56.7%) 

VaD subjects.  

Table 8-2 shows the association of ICS with CIND and dementia. ICS was only related 

to dementia (age/gender adjusted OR: 4.56; 95%CI: 1.88-11.11) but not with CIND 
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(age/gender adjusted OR: 2.07; 95%CI: 0.87-4.94). After adjustment for cardiovascular 

risk factors, the presence of ICS remain significantly associated with dementia (OR: 3.69; 

95%CI: 1.46-9.31). Following further adjustments with MRI markers including total 

intracranial volume, presence of cerebral microbleeds, and infarcts, the associations of 

ICS with dementia remained statistically significant. On adding WMH volume into the 

model, these associations attenuated and partly became non-significant. 

On further analysis comparing VCI vs. non-VCI groups, ICS was only associated with 

VCI in age/gender adjusted model (OR: 5.85; 95%CI: 2.52-13.56). This association 

remained independent of cardiovascular risk factors and other MRI markers. No 

association was observed with non-VCI (Table 8-3). With respect to subtypes analysis, 

ICS was related to both AD (OR: 3.51; 95%CI: 1.28-9.62) in non-VCI group and VCIND 

(OR: 3.97; 95%CI: 1.59-9.87) and VaD (OR: 11.36; 95%CI: 3.84-33.64) in VCI group in 

age and gender adjusted models (Table 8-4). These associations remain unaltered after 

including cardiovascular risk factors in the model. In terms of additional adjustment for 

total brain volume and cerebral microbleeds, similar trends were seen for both VCI and 

non-VCI subtypes.  However, these associations become non-significant after including 

WMH volume in the model in case of AD and presence of infarcts and WMH for VaD. 

An independent association was only observed for VCIND group (OR: 4.23; 95%CI: 

1.43-12.51).  

4.  DISCUSSION 
 
This study showed that the persons with ICS are more likely to have vascular cognitive 

impairment and dementia compared to the controls independent of cardiovascular risk 

factors. Additional adjustments with MRI markers revealed that the ICS induce cognitive 

dysfunction possibly through decreased perfusion and cerebral ischemic damage.  
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Several studies have previously reported the prevalence of ICS in stroke and cognitively 

impaired individuals including dementia.16-18 The range of reported prevalence varies 

from 11-85% in stroke subjects17 to 18-53% in dementia.8 This wide difference in 

prevalence might be due to the diversities in, 1) imaging modalities, 2) measures of 

neuropsychological function and 3) limited information on degree of stenosis. The ICS 

prevalence of 19.8% in AD, 28.6% in VCIND and 56.7% in VaD in the present study – 

though towards the higher side – is in concordant with the previous findings using MRA. 

8, 19  

With respect to cognition, it has been reported that the cognitive deficits are commonly 

present in symptomatic (history of stroke) subjects with extra and intracranial arterial 

stenosis possibly through cerebral hypoxia.12,20-22 However, majority of these studies did 

not control for other relevant neurovascular variables such as cerebral infarction and 

white matter hyperintensities thus introducing heterogeneity in neurological condition of 

the patients.  Furthermore, no data exist on the association of ICS with vascular cognitive 

impairment and its subtypes. The present study extends these previous findings by 

showing that the persons with ICS are more likely to have vascular cognitive impairment 

independent of other structural MRI markers. This could be linked to the multiple cortical 

and subcortical ischemic damage (increased resistance and reduced vascular reactivity of 

the small vessels) or reduction in anatomic connectivity and perfusion deficits secondary 

to ICS. Moreover, due to the lack of underlying AD pathology, the cognitive reserve 

capacity of the brain is preserved and hence promotes recovery of cognitive function. By 

contrast, in dementia, vascular ischemic processes decrease the cognitive reserve of the 

brain to compensate for ongoing involutional changes thus preventing recovery of 

cognitive function. The similar mediating factors for both AD and VaD in this study 

might be due to the several overlapping neuropathological features between the two 
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disease types.23 Moreover, the pathogenesis behind AD and VaD might also involve two 

separate interaction processes. In case of AD, hypoxic injury not only accelerates 

amyloid beta deposition (especially in the hemisphere with the ICS) but also triggers 

secondary degeneration induced by inflammatory processes whereas in VaD, 

hypoperfusion interacts with the existing cerebrovascular diseases and initiates secondary 

neurodegenerative process.24 This multifactorial nature of mechanisms underlying 

cognitive impairment in patients with large-artery atheroma, may explain the link 

between ICS and dementia (AD and VaD) observed in this study. 

Our study has some limitations. First, as this data was examined cross-sectionally it is not 

possible to establish the temporal association between these ICS and the development of 

cognitive impairment. Second, cases and half of the controls were derived from two 

locations, memory clinic and community, although representative of the elderly 

population in Singapore. The control group was relatively younger and had less burden of 

vascular risk factors compared to cognitively impaired individuals which could have 

resulted in selection bias and residual confounding. Also there is a higher burden of 

vascular risk factors (hypertension, hyperlipidemia and diabetes) in our sample which 

limits generalizability of the results to the general population. Third, due to some 

overlapping symptoms and similar MRI features between AD and VaD, there is a chance 

of misclassification bias. Strengths of the study include; extensive neuropsychological 

assessment to diagnose cognitive impairment and dementia, availability of 3T MRA 

neuroimaging to grade and classify individuals with ICS which is relatively feasible to 

conduct in a large population based study.  

5.  CONCLUSION 
 
In conclusion, ICS is associated with vascular cognitive impairment and dementia in this 

study in the presence of cerebral ischemic damage. This further suggests that ICS is a 
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marker of cerebral or generalized atherosclerosis. Further studies focusing on cerebral 

perfusion and cognitive reserve are required to determine the pathophysiological link 

between ICS and cognition.  
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CHAPTER 8 – TABLES 
 

Table 8 – 1: Baseline demographic and clinical characteristics of the subjects (n=424) 

Characteristics NCI (n=96) CIND (n=177) Dementia (n=151) P value 

Age, years, mean (SD) 68.4 (6.1) 71.5 (8.3) 76.1 (7.9) <0.001 

Males, no. (%) 

Education, (Total number of years), mean (SD) 

44 (45.8) 

9.86 (5.04) 

91 (51.4) 

7.20 (4.81) 

57 (37.7) 

4.87 (4.51) 

0.046 

<0.001 

Hypertension, no. (%) 58 (60.4) 121 (68.4) 126 (83.4) <0.001 

Hyperlipidemia, no. (%) 70 (72.9) 136 (76.8) 110 (72.8) 0.653 

Diabetes, no. (%) 20 (20.8) 63 (35.6) 64 (42.4) 0.002 

Smoking, no. (%) 

Body mass index, mean (SD) 

20 (20.8) 

19.5 (3.1) 

49 (27.7) 

19.1 (3.2) 

38 (25.2) 

18.3 (3.3) 

0.461 

0.017 

Cardiovascular disease, no (%) 8 (8.3) 31 (17.5) 28 (18.5) 0.072 

Presence of infarcts, no (%) 

White matter hyperintensities volume, ml, median (IQR) 

Total brain volume, ml, mean (SD) 

Presence of microbleeds, no. (%) 

Intracranial stenosis, no. (%) 

21 (21.9) 

0.69 (1.06) 

920.3 (83.9) 

49 (51) 

8 (8.3) 

76 (42.9) 

4.65 (18.87) 

888.3 (144.8) 

80 (45.5) 

26 (14.7) 

70 (46.4) 

11.77 (16.36) 

843.5 (199.6) 

93 (63.7) 

41 (27.2) 

<0.001 

<0.001 

0.007 

0.004 

<0.001 

Abbrevations: NCI, no cognitive impairment; CIND, cognitive impairment no dementia; SD, standard deviation; No., number; IQR, interquartile 
range; ml milliliters 
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Table 8 – 2: Association between intracranial stenosis (presence versus absence) and 

cognition 

 CIND (n=177) 

OR (95% CI) 

Dementia (n=151) 

OR (95% CI) 

Model I* 2.07 (0.87-4.94) 4.56 (1.88-11.11) 

Model II† 2.04 (0.83-5.01) 3.69 (1.46-9.31) 

Model III‡   

Total intracranial volume 2.35 (0.89-6.15) 3.89 (1.37-11.10) 

Presence of microbleeds 2.18 (0.88-5.38) 3.59 (1.42-9.12) 

Presence of infarcts 1.78 (0.71-4.46) 3.50 (1.38-8.92) 

WMH volume 2.26 (0.85-6.04) 2.86 (0.91-8.98) 

 

Abbreviation: CIND, cognitive impairment; OR, odds ratios; WMH, white matter hyperintensity 

* Model I: Adjusted for age and gender  

† Model II: Model I +hypertension, hyperlipidemia, diabetes 

‡ Model III: model II + individual MRI markers 
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Table 8 – 3: Association of intracranial stenosis with vascular vs. non vascular cognitive 

impairment 

 Non VCI (n=228) 

OR (95% CI) 

VCI (n=100) 

OR (95% CI) 

Model I* 1.67 (0.68-4.13) 5.85 (2.52-13.56) 

Model II† 1.64 (0.64-4.19) 4.49 (1.88-10.75) 

Model III‡   

Total intracranial volume 1.67 (0.59-4.75) 4.11 (1.59-10.65) 

Presence of microbleeds 1.64 (0.64-4.21) 4.39 (1.83-10.54) 

Presence of infarcts 1.63 (0.64-4.17) 4.11 (1.51-11.16) 

WMH volume 1.41 (0.49-4.07) 4.27 (1.54-11.86) 

 

Abbreviation: VCI, vascular cognitive  impairment; OR, odds ratios; WMH, white matter 

hyperintensity 

* Model I: Adjusted for age and gender  

† Model II: Model I +hypertension, hyperlipidemia, diabetes 

‡ Model III: model II + individual MRI markers  
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Table 8 – 4: Association of intracranial stenosis with subtypes of vascular vs. non vascular cognitive impairment 

 

 

 

 

 

 

 

 

 

 

 

Abbreviation: VCI, vascular cognitive  impairment; CIND, cognitive impairment no dementia; AD, Alzheimers disease; 
VCIND, Vascular cognitive impairment no dementia; VaD, Vascular dementia; OR, odds ratios; WMH, white matter 
hyperintensity 

 

 Non VCI (n=228) VCI (n=100) 

 CIND (n=107) 

OR (95% CI) 

AD (n=121) 

OR (95% CI) 

VCIND (n=70) 

OR (95% CI) 

VaD (n=30) 

OR (95% CI) 

Model I* 0.55 (0.17-1.82) 3.51 (1.28-9.62) 3.97 (1.59-9.87) 11.36 (3.84-33.64) 

Model II† 0.53 (0.15-1.92) 3.36 (1.17-9.65) 3.50 (1.38-8.90) 7.44 (2.33-23.77) 

Model III‡     

Total brain volume 0.55 (0.13-2.35) 3.95 (1.19-13.03) 4.31 (1.55-11.96) 9.57 (2.26-40.59) 

Presence of microbleeds 0.55 (0.15-2.01) 3.15 (1.09-9.09) 3.36 (1.31-8.63) 7.46 (2.32-24.05) 

Presence of infarcts 0.54 (0.15-1.97) 3.52 (1.23-10.08) 3.67 (1.27-10.61) 3.78 (0.92-15.63) 

WMH volume 0.56 (0.14-2.28) 3.26 (0.91-11.63) 4.23 (1.43-12.51) 4.01 (0.72-22.43) 

* Model I: Adjusted for age and gender  

† Model II: Model I +hypertension, hyperlipidemia, diabetes 

‡ Model III: model II + individual MRI markers  
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BRAIN MARKERS OF INVOLUTIONAL CHANGES 
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CHAPTER 9:  

Risk Factors and Consequences of Cortical Thickness in an Asian 
Population
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1.  INTRODUCTION 

Neurodegeneration - a hallmark of dementia - is characterized by loss of neuronal tissue 

in both gray and white matter. This brain atrophy is not only seen in clinically manifest 

Alzheimer’s disease (AD), but may already be present in the preclinical stages [for which 

the terms cognitive impairment no dementia (CIND) or mild cognitive impairment (MCI) 

have been coined].1-4 Furthermore, it has been suggested that these brain changes may 

even be present during normal aging.5-8 

Recent advances in neuroimaging enable us to assess early age-related brain changes. Of 

particular interest is cortical thickness, which reflects the width of the cortical gray 

matter,9 and has been proposed to be a reliable marker of brain atrophy.10 Previous 

studies have shown that patients with AD have cortical thinning in frontal, temporal and 

parietal regions compared to controls, consistent with pathological patterns of atrophy 

described in AD.1,11,12 In addition, a few studies has suggested that even during the 

preclinical stages of dementia cortical thinning is associated with worse performance on 

cognitive tests.13,14 Overall, these studies were mainly limited to Caucasian populations, 

had small sample sizes, 15-17 and lacked detailed neuropsychological tests.13,14  

With respect to Asian populations, it has been proposed that – besides neurodegeneration 

- cerebrovascular disease may play a prominent role in the development of dementia, due 

to the higher prevalence of vascular risk factors among Asians compared to 

Caucasians.18-21 Nevertheless, it remains important to determine the exact role of 

involutional changes in Asian populations, particularly in the preclinical stages of 

dementia. Thus far, several studies from Korea have shown regional differences in 

temporo-parietal and prefrontal regions in both AD patients and subjects with MCI 

compared to controls.22-24 However, the association between cortical thickness and 

cognitive impairment in elderly Asian populations has not been explored extensively. 
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We, therefore, examined whether demographic and cardiovascular risk factors were 

related to cortical thickness. Furthermore, we examined in an elderly Asian population 

from Singapore the association of global and lobe-specific cortical thicknesses with 

cognitive impairment, including preclinical stages of dementia. 

2.  METHODS 

2.1.  Study Population 

The on-going Epidemiology of Dementia in Singapore (EDIS) study draws participants 

from the Singapore Epidemiology of Eye Disease (SEED) study, a multi-ethnic 

population-based study among persons aged 40 to 85 years among Chinese (Singapore 

Chinese Eye Study [SCES]), Malay (Singapore Malay Eye Study [SiMES-2]), and 

Indians (Singapore Indian Eye Study [SINDI-2]). For this study, we focused on Chinese 

25 and Malay components 26 of the EDIS Study, as the recruitment of the Indians is still 

on-going. In the first phase of the EDIS study, participants aged ≥ 60 years (n=2,666) 

were screened using the Abbreviated Mental Test and a self-report of progressive 

forgetfulness. Screen-positive subjects (n=1,097) were invited to take part in the second 

phase of this study, which included an extensive neuropsychological test battery and 

brain MRI. Of these 1,097 participants, 623 agreed to participate in phase II and hence 

were included in the present study. The details of the study methodology have been 

described elsewhere.25 Ethics approval for EDIS study was obtained from the Singapore 

Eye Research Institute, and National Healthcare Group Domain-Specific Review Board. 

The study is conducted in accordance with the Declaration of Helsinki. Written informed 

consent was obtained in the preferred language of the participants by bilingual study 

coordinators prior to their recruitment into the study. 

2.2.  Demographic and Cardiovascular Factor Assessment  
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During a personal interview a detailed questionnaire was administered to collect relevant 

demographic and medical information. Details of all the study assessments have been 

described previously in Chapter 3.  

2.3.  Neuroimaging 

Cortical thickness was segmented throught an automated model based approach (Figure 

9 – 1). Details of cortical thickness and other quantitative MRI data (total intracranial 

volume and white matter hyperintensities volume) have been described in Chapter 3.   

2.4.  Cognitive Assessment 

An extensive neuropsychological battery, which has been previously validated in 

Singaporean elderly, was administered to assess cognitive function25 (Chapter 3). The 

diagnosis of CIND and dementia utilized in the study has been described previously in 

Chapter 3.  

2.5.   Statistical Analysis 

In order to examine differences in baseline characteristics between included and excluded 

subjects, chi-square test were used for categorical variables and student t-test for 

continuous variables. Trends in baseline characteristics across different diagnostic groups 

were examined using Analysis of Variance (ANOVA) and a p-value for the trend test was 

computed.  

Associations of potential demographic and cardiovascular risk factors with global and 

lobar cortical thicknesses were explored using multiple linear regression models. All 

continuous variables (age, mean arterial blood pressure, non-fasting blood glucose, total 

cholesterol, BMI, total intracranial volume) were standardized (by dividing each variable 

by its SD). For each continuous variable, mean differences in cortical thicknesses were 

expressed per SD increase/decrease in that variable. Model I was adjusted for age, gender 

and education. Subsequently, in the fully adjusted model (Model II), all potential risk 
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factors were included in the same model to determine the independent effect of each 

potential factor with cortical thickness.  

Next, we examined the associations of global and lobar cortical thicknesses with clinical 

outcomes (CIND and dementia) using logistic regression models [odds ratios (OR) with 

95% confidence interval (CI)] and with composite Z score using linear regression models 

[mean difference with 95% CI]. The effect sizes of these associations with cognition were 

expressed per SD decrease in cortical thickness.  

P-values < 0.05 were considered statistically significant. In view of the multiple tests 

performed in the lobe-specific analyses, we used Bonferroni correction to obtain a 

revised statistical significance level of 0.05/6 ~ 0.008. Furthermore, we used revised 

levels of statistical significance for the cognitive domain-specific analyses: 0.05/7 ~ 

0.007 when analyzing the associations with global cortical thickness, and 0.05/7*6 ~ 

0.001 when analyzing the associations with lobar cortical thicknesses. Statistical analysis 

was performed using standard statistical software (Statistical Package for Social 

Sciences, SPSS V22, SPSS Inc., USA). 

3.  RESULTS 

Assessments of study participants were performed from August 12, 2010 to December 

21, 2013. Out of 623 subjects who participated in phase II, 36 had no MRI scans and 3 

had ungradable scans. Furthermore, 12 subjects who had a cortical infarct were excluded, 

as these infarcts may influence the cortical thickness measurements. Supplementary 

table 9-1 presents baseline data of both the included and excluded subjects. In brief, 

excluded subjects were likely to be older, were more often Chinese, had lower education 

and had higher frequency of hypertension and lower frequency of hyperlipidemia. Out of 

572 included subjects, 171 (29.9%) were diagnosed with CIND-mild, 197 (34.4%) with 

CIND-moderate and 28 (4.9%) with dementia. Table 9-1 provides baseline 
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characteristics of the included participants according to the different diagnostic groups. In 

brief, increasing age, female gender, Malay ethnicity, higher proportion of hypertension, 

diabetes, and hyperlipidemia were related to severity of cognitive impairment. Also, an 

increasing frequency was observed for several MRI markers. Conversely, a decreasing 

trend was observed for education, BMI, total intracranial volume and IADL.  

Table 9-2 shows the association of potential risk factors with mean global cortical 

thickness. In fully adjusted models (Model II), the most important risk factors of cortical 

thickness were: increasing age [mean difference in cortical thickness per SD increase in 

age: -30.9μm; 95% CI: -40.2; -21.7; p<0.001], gender [women versus men: 25.4μm; 95% 

CI: 2.1; 48.7; p=0.029], Malay ethnicity [Malay versus Chinese: -57.4μm; 95% CI: -74.5; 

-40.3; p<0.001], BMI [mean difference per SD increase in BMI: -9.5; 95% CI: -18.1; -

0.8; p=0.022] and presence of lacunar infarct [presence versus absence: -25.8; 95% CI: -

48.6; -3.1; p=0.034]. A borderline significant association was observed for non-fasting 

glucose levels [mean difference per SD increase in glucose levels: -8.6μm; 95% CI: -

16.4.; 0.3; p=0.059]. 

The association between potential risk factors and lobe-specific cortical thickness are 

presented in Supplementary table 9-2. After Bonferroni correction, the most consistent 

associations with smaller cortical thicknesses across the different lobes were found for 

increasing age and Malay ethnicity. Women had thicker cortical thicknesses in particular 

in the parietal and temporal lobes. The association between higher BMI and smaller 

cortical thickness was most prominent in the frontal region [mean difference per SD 

increase in BMI: -14.7; 95% CI: -23.9; -5.45; p=0.002]. In terms of MRI markers of 

cerebral small vessel disease, WMH were associated with temporal thinning, whereas 

increasing number of microbleeds were related to insular thinning.  

With respect to clinical outcomes (Table 9-3), smaller global cortical thickness was 

significantly associated with CIND moderate/dementia [OR: 1.70; 95% CI: 1.19-2.44; 



Chapter 9 

221 
 

p=0.004]. This association persisted even after excluding 28 dementia cases [OR: 1.69; 

95% CI: 1.18-2.43; p=0.004]. Smaller cortical thickness was also related to poorer global 

cognitive functioning as reflected by the composite Z-scores [mean difference composite 

Z-score per SD decrease in cortical thickness: -0.094; 95%CI: -0.159; -0.030, p=0.004]. 

Lobe-specific analyses showed that these associations were mainly driven by the parietal, 

occipital, temporal and limbic lobes. Specifically, the associations with the temporal and 

occipital lobes remained statistically significant after Bonferroni correction.  

Finally, in the domain-specific analyses (Table 9-4), global cortical thickness was related 

to executive function [mean difference per SD decrease in cortical thickness: -0.129; 95% 

CI: -0.207; -0.051; p=0.001], visuoconstruction [mean difference per SD decrease in 

cortical thickness: -0.099; 95% CI: -0.172; -0.027; p=0.007] and visual memory [mean 

difference per SD decrease in cortical thickness: -0.111; 95% CI: -0.183; -0.039; 

p=0.003]. In the lobe-specific analyses, the most consistent associations at the nominal 

significance level of 0.05 were found between the occipital and temporal lobes with the 

various cognitive domains. However, after applying Bonferroni correction, most of these 

associations did not remain statistically significant. 

4. DISCUSSION 

In this study, we found that persons with smaller cortical thickness – in particular in the 

temporal and occipital lobes - were more likely to have cognitive impairment, including 

the preclinical stages of dementia. More specifically, these persons performed worse on 

tasks in executive function, visuoconstruction and visual memory. Finally, the most 

important risk factors were increasing age, male gender, Malay ethnicity, increased blood 

glucose, high BMI and presence of lacunar infarction on MRI.  

Several studies reported a smaller global cortical thickness with increasing age.7, 27, 28 

However, across these studies this effect of age was variable with some reporting the 
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largest decrease in frontal and temporal lobes,27 whereas others found the strongest 

effects in the occipital and parietal regions.6, 29 The wide age distribution of these studies 

(ranging from 18 to 82 years) may underlie these differences. Despite these variations, 

the overall trend – that increasing age was related to smaller cortical thickness – is similar 

across all these studies, which is further supported by our current findings. 

In our study women had relatively thicker cortex compared to men. This gender 

difference may be related to the protective effect of estrogen on involutional changes.30 

This is in line with other studies reporting similar gender differences in cortical thickness. 

31 In terms of ethnic differences, Malays had a thinner global and lobe-specific cortical 

thicknesses compared to Chinese. A higher prevalence of vascular risk factors 

(hypertension, diabetes and hyperlipidemia) and a higher frequency of Apoɛ4 carriers 

have been reported among Malays. These factors may lead to an increased susceptibility 

to involutional changes in Malays and hence may underlie this difference.32 

With respect to cardiovascular risk factors, we found – in accordance with other studies – 

that increased blood glucose levels were associated (borderline significantly) with global 

cortical thinning.15,31,33 The mechanisms leading to involutional changes are linked to 

episodes of hypo- and hyperglycemia, alterations to the blood-brain barrier and increased 

production of glycated endproducts.34, 35 Besides glucose levels, an independent 

association was found for BMI, especially in the frontal lobe. A previous study suggested 

that adiposity was associated with frontal gray matter atrophy in middle and old aged 

persons, possibly through increased vascular pathology and reduced blood supply 

eventually leading to brain atrophy.36 Further studies are needed to elucidate the exact 

mechanisms through which BMI and adiposity are related to cortical thinning. Finally, 

several MRI markers of cerebral small vessel disease showed some associations with 
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smaller global and lobe-specific cortical thicknesses, indicating an interaction between 

cerebrovascular and involutional changes.37-39 

With respect to cognition, we found that a smaller global cortical thickness is linked to 

cognitive impairment suggesting that diffuse involutional change beyond medial 

temporal lobe and hippocampus atrophy is already present in the preclinical stages of 

dementia.24 More specifically, thinner cortex in temporal and occipital lobes showed 

consistent patterns with worse performance in all cognitive domains. Patho-

physiologically, the temporal and occipital lobes may show thinning in the early stages of 

dementia, as these regions are especially susceptible to the toxic effects of neurofibrillary 

tangles and amyloid plaques,40,41 and hence are early sites for these depositions. It has 

been reported that the burden of these depositions was correlated with the extent of 

atrophy and reduced metabolism in these regions,42 and functionally with cognitive 

dysfunction. Our current findings suggest that in Asian populations, besides the 

contribution of cerebrovascular disease, involutional changes as reflected by cortical 

thickness plays an important role in cognitive impairment, including the preclinical stages 

of dementia.   

Limitations of the study include: first, 47.9% of the screened positive subjects were 

excluded from these analyses. Compared to the included participants, these excluded 

subjects were relatively older, less educated and more likely to have hypertension and 

hyperlipidemia. However, despite this non-participation we still found significant 

associations with cortical thickness. Furthermore, these excluded subjects might be more 

cognitively impaired, suggesting that the reported effect sizes in this study might be an 

underestimation. Second, due to the cross-sectional design of our study the temporal 

relationship between the presence of cortical thickness and cognitive impairment could 

not be assessed. Third, due to the small number of cases with dementia, we were not able 

to examine these cases separately in multi-variable models as this resulted in unstable 
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effect sizes and wide confidence intervals. However, the dose-response relationship with 

the preclinical stages of cognitive impairment suggests that these findings may also be 

extendable to dementia. Strengths of the study include: subjects were selected from a 

population-based study, extensive neuropsychological tests were used to diagnose 

cognitive impairment and dementia, and automated and standardized image processing 

was used to quantify cortical thickness. 

5.  CONCLUSION 

In conclusion, persons with smaller cortical thickness – in particular in the temporal and 

occipital lobes - were more likely to have cognitive impairment, suggesting a 

contribution of diffuse cortical thinning beyond the medial-temporal lobe to cognitive 

function. These findings support the notion that cortical thinning is a biomarker of 

involutional changes in the brain not only in dementia, but also in its preclinical stages. 
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 All subjects  
(n=572) 

NCI  
(n=176) 

CIND mild  
(n=171) 

CIND moderate  
(n=197) 

Dementia  
(n=28) 

P for trend 

Age, years, (SD) 70.5 (6.77) 67.2 (5.06) 70.1 (6.06)a 73.6 (6.58)ab 78.9 (5.11)abc <0.001 

Women, n (%) 313 (54.7) 74 (42) 83 (48.5) 132 (67)ab 24 (85.7)ab <0.001 

Race, n (%) 
Chinese 
Malays 

 
275 (48.1) 
297 (51.9) 

 
123 (69.9) 

53 (30) 

 
75 (43.9) 
96 (56.1)a 

 
73 (37.1) 

124 (62.9)a 

 
4 (14.3) 

24 (85.7)ab 

 
<0.001 

Primary education >6years, n (%) 157 (27.4) 83 (47.2) 42 (24.6)a 28 (14.2)a 0 <0.001 

Instrumental activities of daily living, (SD) 8.1 (2.8) 7.2 (0.6) 7.5 (1.2) 8.6 (2.5)ab 16.5 (6.4)abc <0.001 

Hypertension, n (%) 459 (80.2) 135 (76.7) 140 (81.9) 175 (88.8)a 25 (89.3) 0.001 

Diabetes, n (%) 172 (30.1) 43 (24.4) 49 (28.7) 69 (35) 12 (42.9) 0.008 

Hyperlipidemia, n (%) 388 (67.8) 108 (61.4) 118 (69) 155 (78.7)a 20 (71.4) 0.001 

Mean arterial blood pressure, mmHg, (SD) 97.89 (10.7) 100.3 (10.4) 101.1 (10.1) 99.6 (10.9) 104.9 (13.3) 0.750 

Non-fasting blood glucose, mmol/l, (SD) 6.88 (2.92) 6.5 (2.6) 7.0 (3.2) 6.9 (2.7) 7.9 (4.2) 0.054 

Total cholesterol, mmol/l, (SD) 5.22 (1.18) 5.0 (0.9) 5.0 (1.0) 5.1 (1.3) 5.1 (1.1) 0.777 

Smoking, n (%) 76 (25.6) 54 (30.7) 57 (33.3) 52 (26.4) 2 (7.1) 0.078 

Body mass index, kg/m2, (SD) 22.2 (4.11) 19.9 (3.2) 19.9 (3.7) 19.6 (3.6) 17.7 (4.3)ab 0.019 

Total intracranial volume, ml, (SD) 1074.8 (120.9) 1108.8 (106.5) 1072.6 (131.6)a 1054.8 (102.6)a 1001.3 (195.3)ab <0.001 

Presence of lacunar infarcts, n (%) 112 (19.6) 13 (7.4) 30 (17.5) 56 (28.4)ab 13 (46.4)ab <0.001 

WMH, ml, median (IQR) 1.91 (5.27) 1.3 (3.1) 1.6 (4.2) 2.9 (7.4) 8.5 (15.6) <0.001 

Cerebral microbleeds, no. (%) 201 (35.1) 49 (27.8) 62 (36.3) 78 (39.6) 12 (42.9) 0.002 

Global cortical thickness, μm, mean (SD) 2362.0 (108.9) 2404.1 (94.3) 2366.6 (100.0)a 2334.1 (112.3)a 2266.6 (108.1)abc <0.001 

CHAPTER 9 – TABLES 
 

Table 9 – 1: Baseline characteristics of study participants 

Abbreviations: NCI, no cognitive impairment; CIND, cognitive impairment no dementia; SD, Standard deviation; n, number; mmHg, millimeter of mercury; mmol/l, millimoles 
per liters; kg/m2, kilogram per meter square; IQR, interquartile range; μm, micrometers; WMH, white matter hyperintensities  

Superscript letters indicate representing group is significantly different from NCI (a), CIND mild (b) or CIND moderate (c) based on ANOVA (p<0.05) 
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 Global cortical thickness (μm) 

 Model I* 
Mean difference (95% CI) 

P value Model II† 
Mean difference (95% CI) 

P value 

Age (years), per SD decrease -36.7 (-45.6; -27.8)‡ <0.001 -30.9 (-40.2; -21.7) <0.001 

Gender (women vs men) 34.7 (17.4; 52.0)‡ <0.001 25.4 (2.1;48.7) 0.029 

Primary education > 6 years 16.0 (-4.8; 36.8)‡ 0.131 5.3 (-14.9; 25.5) 0.606 

Ethnicity (Malay vs Chinese) -63.1 (-79.0; -47.3) <0.001 -57.4 (-74.5; -40.3) <0.001 

Instrumental activities of daily living, per score increase -6.14 (-9.3; -2.9) <0.001 -2.43 (-5.8; 0.9) 0.161 

Mean arterial blood pressure (mmHg), per SD increase -1.3 (-9.8; 7.2) 0.758 4.8 (-3.6; 13.2) 0.242 

Non-fasting blood glucose (mmol/l), per SD increase -14.3 (-22.8; -5.8) 0.001 -8.1 (-16.4; 0.3) 0.059 

Total Cholesterol (mmol/l), per SD increase 3.6 (-5.1; 12.2) 0.418 4.4 (-4.1; 12.9) 0.322 

Smoking (Yes vs No) -1.6 (-24.3; 21.0) 0.888 -1.8 (-23.7; 20.1) 0.860 

Body mass index (kg/m2), per SD increase -15.9 (-24.4; -7.6) <0.001 -9.5 (-18.1; -0.8) 0.022 

Intracranial volume (ml), per SD increase -2.5 (-12.3; 7.3) 0.619 -2.1 (-12.0; 7.8) 0.612 

Presence of lacunar infarcts -41.6 (-63.1; -20.1) <0.001 -25.8 (-48.6; -3.1) 0.034 

WMH (ml, Log-transformed) per SD increase  -32.3 (-52.7; -11.9) 0.002 -16.5 (-38.7; 5.8) 0.169 

Per cerebral microbleed increase -0.8 (-1.6; 0.0) 0.051 -0.5 (-1.2; 0.3) 0.300 

Table 9 – 2: Multi-variable adjusted associations between potential risk factors and global cortical thickness (n=572) 

Abbreviations: μm, micrometer; CI, confidence interval; SD, standard deviation; Log, log transformed; mmHg, millimeter of mercury; mmol/l, millimoles per liters; 
kg/m2, kilogram per meter square; ml, milliliters; WMH, white matter hyperintensities 
* Model I adjusted for age, gender and education 

‡ In Model I, the effect sizes for these three variables were from a basic model containing only age, gender and education.  

† Model II fully adjusted for age, gender, education, race, non-fasting blood glucose, blood cholesterol, mean arterial blood pressure, BMI, smoking, presence of 

lacunes, white matter hyperintensities volume, number of cerebral microbleeds, intracranial volume and independent activities of daily living 
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Abbreviations: CIND, cognitive impairment no dementia; OR, odds ratios; CI, confidence interval 

*Fully adjusted models (age, gender, education, race, non-fasting blood glucose, blood cholesterol, mean arterial blood pressure, BMI, smoking, presence of 
lacunes, white matter hyperintensities volume, number of cerebral microbleeds and intracranial volume) 

† Statistically significant after Bonferroni correction (0.05/6~0.008) 

 

Per standard deviation  decrease  

CIND mild (n=171) 

OR (95%CI)* 

CIND moderate (n=197) 

OR (95%CI)* 

CIND moderate/dementia (n=225) 

OR (95%CI)* 

Composite Z scores 

Mean difference (95%CI)* 

Mean global thickness 1.19 (0.88-1.61) 

p=0.252 

1.69 (1.18-2.43) 

p=0.004 

1.70 (1.19-2.44) 

p=0.004 

-0.094 (-0.159; -0.030) 

p=0.004 

Lobe-specific cortical thickness: 

                      Frontal lobe 

 

1.14 (0.87-1.50) 

p=0.332 

 

1.26 (0.92-1.73) 

p=0.153 

 

1.26 (0.92-1.72) 

p=0.157 

 

-0.027 (-0.086; 0.032) 

p=0.364 

                             Parietal lobe 1.12 (0.84-1.51) 

p=0.444 

1.51 (1.07-2.13) 

p=0.020 

1.51 (1.07-2.13) 

p=0.020 

-0.083 (-0.146; -0.020) 

p=0.010 

                             Occipital lobe 1.27 (0.94-1.72) 

p=0.122 

1.68 (1.21-2.33)† 

p=0.002 

1.68 (1.21-2.33)† 

p=0.002 

-0.118 (-0.181; -0.054)† 

p=<0.001 

                             Temporal lobe 1.08 (0.79-1.47) 

p=0.640 

1.68 (1.14-2.47) 

p=0.009 

1.70 (1.16-2.50)† 

p=0.007 

-0.135 (-0.203; -0.067)† 

p=<0.001 

                             Insula 0.89 (0.68-1.17) 

p=0.425 

1.31 (0.95-1.79) 

p=0.096 

1.31 (0.96-1.79) 

p=0.092 

-0.031 (-0.092; 0.029) 

p=0.313 

                             Limbic lobe 1.16 (0.86-1.55) 

p=0.326 

1.49 (1.06-2.11) 

p=0.021 

1.51 (1.07-2.13) 

p=0.018 

-0.080 (-0.143; -0.017) 

p=0.013 

Table  9 – 3: Multivariable-adjusted odds ratios for clinical outcomes and mean differences in global cognitive functioning per standard 
deviationdecrease in global and lobe-specific cortical thickness 
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SD decrease in  

cortical 

thickness 

Executive function 

Mean difference 

(95%CI)* 

Attention 

Mean difference 

(95%CI)* 

Language 

Mean difference 

(95%CI)* 

Visuomotor speed 

Mean difference 

(95%CI)* 

Visuoconstruction 

Mean difference 

(95%CI)* 

Visual memory 

Mean difference 

(95%CI)* 

Verbal memory 

Mean difference 

(95%CI)* 

Global 
 

-0.129 (-0.207; -0.051)† 

p=0.001 

 

-0.065 (-0.134; 0.004) 

p=0.065 

 

-0.059 (-0.137; 0.019) 

p=0.138 

 

-0.060 (-0.126; 0.006) 

p=0.076 

 

-0.099 (-0.172; -0.027)† 

p=0.007 

 

-0.111 (-0.183; -0.039)† 

p=0.003 

 

-0.058 (-0.135; 0.019) 

p=0.141 

 

Lobes 

 

Frontal   

 

 

 

-0.057 (-0.128; 0.015) 

p=0.120 

 

 

 

-0.001 (-0.064; 0.062) 

p=0.979 

 

 

 

-0.016 (-0.087; 0.055) 

p=0.657 

 

 

 

-0.013 (-0.074; 0.047) 

p=0.662 

 

 

 

-0.053 (-0.119; 0.013) 

p=0.114 

 

 

 

-0.038 (-0.104; 0.028) 

p=0.264 

 

 

 

0.008 (-0.062; 0.078) 

p=0.821 

Parietal  -0.142 (-0.218; -0.066)‡ 

p=<0.001 

-0.057 (-0.125; 0.011) 

p=0.098 

-0.022 (-0.098; 0.054) 

p=0.573 

-0.042 (-0.107; 0.023) 

p=0.202 

-0.078 (-0.149; -0.007) 

p=0.032 

-0.098 (-0.168; -0.027) 

p=0.007 

-0.068 (-0.143; 0.007) 

p=0.077 

Occipital  -0.138 (-0.215; -0.061)‡ 

p=<0.001 

-0.102 (-0.170; -0.034) 

p=0.003 

-0.085 (-0.161; -0.008) 

p=0.030 

-0.077 (-0.142; -0.011) 

p=0.022 

-0.110 (-0.182; -0.039) 

p=0.003 

-0.115 (-0.186; -0.043) 

p=0.002 

-0.099 (-0.175; -0.023) 

p=0.011 

Temporal -0.129 (-0.211; -0.046) 

p=0.002 

-0.107 (-0.181; -0.034) 

p=0.004 

-0.128 (-0.210; -0.046) 

p=0.002 

-0.095 (-0.165; -0.025) 

p=0.009 

-0.134 (-0.210; -0.057)‡ 

p=0.001 

-0.155 (-0.231; -0.078)‡ 

p=<0.001 

-0.081 (-0.163; -0.000) 

p=0.051 

Insula -0.008 (-0.082; 0.066) 

p=0.829 

-0.041 (-0.106; 0.024) 

p=0.213 

-0.018 (-0.091; 0.055) 

p=0.632 

-0.050 (-0.112; 0.013) 

p=0.117 

-0.045 (-0.114; 0.023) 

p=0.192 

-0.047 (-0.115; 0.021) 

p=0.178 

0.016 (-0.057; 0.088) 

p=0.668 

Limbic -0.106 (-0.183; -0.029) 

p=0.007 

-0.054 (-0.123; 0.014) 

p=0.117 

-0.061 (-0.137; 0.016) 

p=0.121 

-0.057 (-0.122; 0.008) 

p=0.085 

-0.070 (-0.141; 0.001) 

p=0.055 

-0.108 (-0.179; -0.037) 

p=0.003 

-0.037 (-0.112; 0.039) 

p=0.344 

Table  9 – 4: Multivariable-adjusted mean differences in composite and domain-specific cognitive function per standard deviation decrease in global and 
lobe-specific cortical thicknesses  

Abbreviations: CI, confidence interval ; SD, standard deviation 

* Fully adjusted models (age, gender, education, race, non-fasting blood glucose, blood cholesterol, mean arterial blood pressure, BMI, smoking, presence of lacunar infarcts, white 
matter hyperintensities volume, number of cerebral microbleeds and intracranial volume) 

† Statistically significant after Bonferroni correction (0.05/7 ~ 0.007) 

‡ Statistically significant after Bonferroni correction (0.05/(7*6) ~ 0.001)   
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Supplementary table  9 – 1: Comparison of baseline characteristics of included and excluded 
subjects 

 

Abbreviation: SD, Standard deviation; n, number; mmHg, millimeter of mercury; mmol/l, 
millimoles per liters; kg/m2, kilogram per meter square 

* p-value < 0.05 was considered statistically significant 

 

 

 

 Included 
(n=572) 

 
Excluded 
(n=525) 

P value* 

Age (years) 70.5 (6.77) 71.9 (6.81) 0.001 

Women, n (%) 

Race, n (%) 

Chinese 

Malays 

313 (54.7) 

 

275 (48.1) 

297 (51.9) 

303 (57.7) 

 

337 (64.2) 

188 (35.8) 

0.318 

 

<0.001 

Primary education > 6 years, n (%) 157 (27.4) 110 (21) 0.012 

Hypertension, n (%) 

Diabetes, n (%) 

Hyperlipidemia, n (%) 

Mean arterial blood pressure, mmHg, (SD) 

459 (80.2) 

172 (30.1) 

388 (67.8) 

97.89 (10.7) 

450 (85.7) 

156 (29.7) 

311 (59.2) 

98.88 (11.7) 

0.016 

0.898 

0.003 

0.144 

Random blood glucose, mmol/l, (SD) 6.88 (2.92) 6.93 (3.05) 0.805 

Total cholesterol, mmol/l, (SD) 5.22 (1.18) 5.20 (1.16) 0.832 

Smoking, n (%) 76 (25.3) 40 (26.9) 0.570 

Body mass index, kg/m2, (SD)  22.2 (4.11) 22.5 (4.21) 0.342 
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 Frontal lobe (μm) 
Beta (95%CI)* 

Parietal lobe (μm) 
Beta (95%CI)* 

Occipital lobe (μm) 
Beta (95%CI)* 

Temporal lobe (μm) 
Beta (95%CI)* 

Insula (μm) 
Beta (95%CI)* 

Limbic lobe  (μm) 
Beta (95%CI)* 

 
Age (years) 

 
-0.39 (-14.2; 6.36) 

p=0.453 

 
-36.7 (-49.2; -24.3)† 

p=<0.001 

 
-48.4 (-60.6; -36.3)† 

p=<0.001 

 
-41.9 (-53.7; -30.3)† 

p=<0.001 

 
-12.4 (-26.6; 1.68) 

p=0.084 

 
-14.6 (-24.5; -4.67)† 

p=0.004 
Gender (Women vs men) 9.82 (-15.1; 34.7) 

p=0.438 
51.6 (21.6; 81.7)† 

p=0.001 
14.2 (-15.1; 43.5) 

p=0.341 
39.1 (10.9; 67.3)† 

p=0.007 
14.3 (-19.8; 48.4) 

p=0.411 
29.0 (5.01; 53.1) 

p=0.018 
Race (Malay vs Chinese) -45.0 (-63.6; -26.4)† 

p=<0.001 
-59.2 (-81.6; -36.7)† 

p=<0.001 
-39.3 (-61.2; -17.4)† 

p=<0.001 
-65.7 (-86.7; -44.7)† 

p=<0.001 
-75.6 (-101.2; -50.1)† 

p=<0.001 
-57.8 (-75.8; -39.9)† 

p=<0.001 
Primary education ≥ 6 years  5.42 (-16.1; 26.9) 

p=0.621 
3.29 (-22.7; 29.3) 

p=0.803 
4.86 (-20.5; 30.2) 

p=0.706 
9.08 (-15.3; 33.4) 

p=0.464 
20.2 (-9.30; 49.7) 

p=0.179 
3.72 (-17.0; 24.5) 

p=0.725 
IADL, per score increase -1.75 (-5.38; 1.88) 

p=0.343 
-3.44 (-7.82; 0.93) 

p=0.123 
-1.42 (-5.69; 2.85) 

p=0.513 
-5.98 (-10.1; -1.89)† 

p=0.004 
-1.89 (-6.87; 3.08) 

p=0.455 
-2.90 (-6.40; 0.60) 

p=0.104 
MABP, per SD increase 0.87 (-8.11; 9.85) 

p=0.849 
6.79 (-4.05; 17.6) 

p=0.219 
7.12 (-3.46; 17.7) 

p=0.187 
11.6 (1.39; 21.7) 

p=0.026 
7.19 (-5.14; 19.5) 

p=0.253 
1.09 (-7.59; 9.76) 

p=0.806 
NFBG, per SD increase -8.89 (-17.8; 0.05) 

p=0.051 
-6.22 (-17.0; 4.57) 

p=0.258 
-12.8 (-23.3; -2.26) 

p=0.017 
-9.05 (-19.1; 1.04) 

p=0.079 
-12.5 (-24.8; -0.28) 

p=0.046 
-9.34 (-17.9; -0.71) 

p=0.034 
Cholesterol, per SD increase -1.23 (-10.3; 7.84) 

p=0.789 
4.95 (-6.01; 15.9) 

p=0.376 
12.4 (1.73; 23.1) 

p=0.023 
-0.41 (-10.7; 9.85) 

p=0.937 
0.30 (-12.2; 12.8) 

p=0.962 
3.19 (-5.57; 11.9) 

p=0.474 
Smoking (Yes vs No) 
 
BMI, per SD increase 
 
TIV, (ml), per SD increase 
 
Presence of lacunar infarcts 
 
WMH (ml, Log) per SD 
increase 
Per CMB increase 
 

-4.61 (-27.9; 18.7) 
p=0.698 

-14.7 (-23.9; -5.45)† 
p=0.002 

-7.34 (-17.9; 3.27) 
p=0.174 

-11.7 (-36.0; 12.4) 
p=0.340 

-18.4 (-42.1; 5.33) 
p=0.128 

-0.36 (-1.20; 0.48) 
p=0.399 

5.39 (-22.7; 33.5) 
p=0.707 

-8.26 (-19.4; 2.88) 
p=0.146 

-8.95 (-21.7; 3.85) 
p=0.170 

-34.7 (-64.1; -5.54) 
p=0.020 

-1.88 (-30.5; 26.7) 
p=0.897 

-0.09 (-1.11; 0.92) 
p=0.854 

 

-12.7 (-40.2; 14.8) 
p=0.364 

-14.1 (-24.9; -3.17) 
p=0.011 

2.89 (-9.60; 15.4) 
p=0.650 

-31.7 (-60.2; -3.13) 
p=0.030 

-7.44 (-35.4; 20.5) 
p=0.601 

-0.21 (-1.19; 0.78) 
p=0.679 

 

-2.59 (-28.9; 23.8) 
p=0.847 

-8.79 (-19.2; 1.64) 
p=0.098 

4.76 (-7.22; 16.7) 
p=0.780 

-31.3 (-58.6; -3.89) 
p=0.025 

-38.9 (-65.7; -12.0)† 
p=0.005 

-0.46 (-1.41; 0.49) 
p=0.340 

 

-4.92 (-36.9; 27.1) 
p=0.763 

-11.4 (-24.1; 1.26) 
p=0.078 

-10.7 (-25.3; 3.83) 
p=0.148 

-23.7 (-56.9; 9.56) 
p=0.162 

-42.7 (-75.3; -10.1) 
p=0.010 

-1.67 (-2.83; -0.52)† 
p=0.005 

 

-2.26 (-24.8; 20.3) 
p=0.844 

-8.91 (-17.8; 0.01) 
p=0.050 

-11.7 (-21.9; -1.45) 
p=0.025 

-18.1 (-41.5; 5.29) 
p=0.129 

-24.9 (-47.8; -1.95) 
p=0.033 

-0.46 (-1.27; 0.35) 
p=0.267 

 

Supplementary table  9 – 2: Multi-variable adjusted associations between potential risk factors and lobe-specific cortical thicknesses 

Abbreviations: μm, micrometer; beta, mean difference; CI, confidence interval; mmHg, millimeter of mercury; SD, standard deviation; mmol/l, millimoles per liters; kg/m2, kilogram per 
meter square; ml, milliliters; Log, log transformed; no., number; BMI, body mass index; IADL, independent activities of daily living; MABP, mean arterial blood pressure; TIV, total 
intracranial volume 

* Fully adjusted models (age, gender, education, race, non-fasting blood glucose, blood cholesterol, mean arterial blood pressure, BMI, smoking, presence of lacunar infarcts, white matter 
hyperintensities volume, number of cerebral microbleeds, intracranial volume and IADL) 

† Statistically significant after Bonferroni correction (0.05/6~0.008) 
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CHAPTER 9 – FIGURES 
 

Figure 9 – 1: Segmentation of cortical thickness through model based automated software 

Cortical thickness is calculated on T1-weighted images at each vertex by taking the shortest distance between white matter/gray matter 
boundary and pial surface. Whole brain (global) and regional (lobar) cortical thickness are calculated using the parcellation guide on 
gyral and sulcal structures of cerebral cortex. 
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CHAPTER 10:  

Subcortical Structure Volume in Cognitive Impairment and Dementia 
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1.  INTRODUCTION 

Loss of neuronal cell bodies and their connections - referred to as atrophy - is a hallmark 

of dementia, in particular Alzheimer’s disease (AD). AD is characterized by 

neurodegeneration of the cortex and subcortical structures including hippocampus. These 

changes are not only present in clinically manifest stages of dementia, but are already 

present in preclinical-stages [mild cognitive impairment (MCI)/cognitive impairment no 

dementia (CIND)].1,2 Several postmortem and in-vivo studies have shown that such 

atrophy may even occur during normal aging.3,4 It has been reported that pathological 

changes (amyloid, tau or iron deposition) in these structures are related to cognitive 

dysfunction in a wide range of neurological and psychiatric disorders.5 Furthermore, 

several histopathological studies have shown smaller volumes of thalamus, putamen, 

pallidum and caudate nuclei in patients with AD.6,7 Magnetic Resonance Imaging (MRI) 

acquisition and analyses tools enable accurate measurement of subcortical structural 

volumes in-vivo, including the accumbens, amygdala, caudate, pallidum, putamen, 

thalamus, hippocampus and brainstem.8 Previous studies using these techniques have 

mainly focused on AD patients,6,7,9,10 whereas the preclinical-stages of dementia have 

been less well studied.11 Furthermore, reduction of subcortical structural volumes in 

vascular compared to non-vascular subtypes of cognitive impairment remains unclear.  

In view of the paucity of epidemiological data on subcortical volume in cognitive 

impairment, we first examined the risk factors of subcortical structure volumes in a non-

demented population from Epidemiology of Dementia in Singapore study, and secondly 

their association with cognitive impairment and dementia using data from a case-control 

study in a memory clinic setting. 

2.  MATERIALS AND METHODS 

2.1  Study Population 
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For the current analyses, subjects were drawn from two ongoing studies in Singapore. 

The first is the Epidemiology of Dementia in Singapore (EDIS) study which draws 

participants from the Singapore Epidemiology of Eye Disease (SEED) study.12,13 In the 

first phase of the EDIS study, participants aged ≥60 years (n=2,666) were screened using 

the Abbreviated Mental Test and a self-report of progressive forgetfulness. Screen-

positive subjects (n=1,097) were invited to take part in the second phase of this study, 

which included an extensive neuropsychological test battery and brain MRI. Of these 

1,097 participants, 623 agreed to participate in phase II and hence were included in the 

present study. The details of the study methodology has been further described in 

Chapter 3.12 

The second is a memory clinic-based study, which employs a case-control design. Cases 

(CIND and dementia) were recruited from two study sites in Singapore (i.e. memory 

clinics from National University Hospital and Saint Luke’s Hospital). Controls were 

recruited from both memory clinics and the community (with a similar catchment area as 

cases). Details of this study have been described previously in Chapter 3.14All subjects 

underwent physical, clinical and neuropsychological assessments and neuroimaging at 

the National University of Singapore.  

Ethics approval for both studies was obtained from the Singapore Eye Research Institute, 

and National-Healthcare Group Domain-Specific Review Board. The study is conducted 

in accordance with the Declaration of Helsinki. Written informed consent was obtained in 

the preferred language of the participants by bilingual study coordinators prior to their 

recruitment into the study. 

2.2  Demographic and Cardiovascular Risk Factor Assessment  

Detailed assessments for demographics and cardiovascular risk factors have been 

described in Chapter 3.  

2.3  Neuroimaging  
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Subcortical structure was segmented through an automated based model approach 

(Figure 10-1). Other quantitative MRI data (intracranial volume and white matter 

hyperintencities) together with visual gradings (lacunar infarcts and cerebral 

microbleeds) was obtained by automatic segmentation as mentioned in Chapter 3. 

2.4  Cognitive Assessment 

An extensive neuropsychological battery, which has been previously validated in 

Singaporean elderly, was administered to assess cognitive function.14 Details on subtests 

for testing cognitive function and calculation of z scores in both EDIS and case control 

study have been described in Chapter 3. 

Additionally, in the case-control study, various diagnostic groups were defined using the 

same criteria as described extensively in Chapter 8.  

2.5  Statistical Analysis 

In order to examine the differences between cases and controls, chi square test were used 

for categorical variables and t test for continuous variables. For skewed distributed 

variable (WMH), Mann-Whitney U test was utilized. All continuous variables (age, total 

intracranial volume and subcortical structures volumes) were standardized (by dividing 

each variable by its SD). For each continuous variable, mean differences in subcortical 

structures volumes were expressed as per SD increase/decrease in that variable. In the 

EDIS Study, association between risk factors and volumes of subcortical structures was 

explored using multiple linear regression models adjusting initially for age and gender. 

Subsequently, in the fully adjusted model, all potential risk factors were included in the 

same model to determine the independent effect of each factor with volumes of 

subcortical structures. Next, we examined the association of subcortical structures 

volume with composite and domain specific Z-scores [mean difference with 95% 

confidence interval (CI)]. The effect sizes of these associations with cognition were 

expressed as per SD decrease in subcortical structures volumes. In view of multiple 
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testing performed between specific domains and subcortical structures, we used revised 

statistical significance level of 0.05/8*7~0.0009.  

With respect to the clinical outcomes, data from the case-control study was utilized where 

the association of subcortical structures with CIND and dementia were constructed using 

logistic regression models with odds ratios (OR) and 95%CI. Lastly, in order to 

investigate whether reduction in subcortical structure volumes differ between vascular 

and non-vascular cognitive impairment, logistic regression models were used adjusting 

for all the possible confounders. Statistical analysis was performed using standard 

statistical software (Statistical Package for Social Science, SPSS V22, SPSS Inc., USA). 

3.  RESULTS 

Assessments of subjects were performed from August 12, 2010 to August 21, 2014. Out 

of 623 subjects who participated in EDIS study in phase II, 36 had no MRI scans and 7 

had ungradable scans. Out of the remaining 580 subjects from EDIS study, 30 were 

diagnosed with dementia and hence were excluded, leaving 550 subjects for analysis. In 

the case-control study, there were initially 410 subjects of whom 4 had no MRI scans and 

28 had ungradable scans. Of the remaining 378 subjects, there were 90 controls and 288 

cases [154 (40.7%) CIND and 134 (35.4%) dementia]. When subjects were classified 

based on VCI criteria, there were 86 (22.8%) VCI and 202 (53.4%) non-VCI cases. 

Table 10-1 presents baseline characteristics of the subjects in the two studies. Table 10-2 

shows the association of determinants with volumes of subcortical structures among 

EDIS participants. In multivariate adjusted models, increasing age was associated with 

smaller volumes of all subcortical structures. Women had significantly smaller amygdala, 

pallidum, putamen and brainstem volumes compared to men, whereas Malays had 

smaller amygdala, thalamus and hippocampus volumes compared to Chinese participants. 

Among cardiovascular risk factors, diabetes, presence of lacunar infarcts and WMH were 
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significantly associated with several subcortical structures. Lastly, increasing total 

intracranial volume was significantly associated with larger volumes of all the subcortical 

structures.   

With respect to cognitive function, analysis of the EDIS sample showed that smaller 

accumbens [mean change in Z-score per SD decrease in volume: -0.08 (95%CI: -0.16; -

0.01)], amygdala [mean change in Z-score per SD decrease: -0.13 (95%CI: -0.21; -0.05)], 

caudate [mean change in Z-score per SD decrease: -0.07 (95%CI: -0.15;-0.00)], thalamus 

[mean change in Z-score per SD decrease: -0.08 (95%CI: -0.16; -0.01)], and brainstem 

[mean change in Z-score per SD decrease: -0.09 (95%CI: -0.17; -0.03)] were 

significantly associated with lower composite Z-scores (Table 10-3). After Bonferroni 

correction in domain-specific analysis, only smaller amygdala volume remains 

statistically significantly associated with the language domain.  

In the case-control study, a trend for increasing subcortical atrophy was observed from 

CIND to dementia (Table 10-4). In multivariate adjusted models, smaller accumbens, 

caudate, putamen and hippocampus volumes were associated with CIND whereas smaller 

volumes of all subcortical structures except for pallidum were significantly associated 

with dementia. On further analysis comparing VCI and non-VCI groups, a specific 

pattern was observed in the subcortical structures with smaller volumes of caudate and 

pallidum associated with VCI whereas smaller amygdala volume was only associated 

with the non-VCI group (Table 10-4). Smaller accumbens, putamen and hippocampus 

volumes were equally related to both VCI and non-VCI groups.  

4.  DISCUSSION 

Findings from this study suggest that important risk factors for smaller subcortical 

structures were age, female sex, ethnicity, diabetes, presence of lacunar infarcts on MRI, 

and WMH volume. Moreover, reduction of subcortical grey matter volume is not only 
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observed in dementia, but also in the preclinical stages of cognitive impairment. 

Furthermore, besides VCI, subcortical structures were also related to non-VCI. 

Several studies have shown age-related volume changes in subcortical structures.15 This 

age effect has been variable among studies with some reporting the greatest decrease in 

putamen, amygdala and accumbens in elderly subjects,16 whereas other studies report or 

small reductions in caudate, putamen, thalamus and brainstem volumes.16,17 Overall our 

findings are consistent with the majority of these studies, namely subcortical volumes of 

deep gray matter nuclei decreases with increasing age.  

Our study also shows that women had smaller volumes of amygdala, pallidum, putamen 

and brainstem compared to men which are consistent with previous studies.5 This effect 

remains even after adjustments for age and total intracranial volume. Smaller subcortical 

structure volume in women has been attributed to the loss of protective effects of 

estrogen after menopause. In terms of ethnic differences, Malays had smaller amygdala, 

thalamus and hippocampus volumes compared to Chinese. It has been reported 

previously that Malays have a higher prevalence of ApoE4 carriers.18 Moreover we also 

postulate that Malays may have a lower cognitive reserve based on lower occupational 

attainment and lower education which may explain the underlying differences.  

With respect to cardiovascular risk factors, we found that the presence of diabetes was 

associated with volume reduction in putamen,19  thalamus20 and hippocampus21,22 which is 

in line with the previous literature. Moreover, we also report an independent association 

of diabetes with smaller pallidum, and brainstem volumes. The underlying mechanism 

may be the link between diabetic vascular disease, impaired circulation and silent 

ischemic damage.23 Moreover, it has also been suggested that hyperinsulinemia may 

affect brain amyloid clearance, leading to its deposition and hence its neurotoxicity.24 

Finally, vascular pathology as reflected by cerebral small vessel diseases (lacunar infarcts 

and WMH) was independently associated with volume reduction in several subcortical 
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structures. Subcortical lesions such as the lacunes and WMH may induce focal atrophy in 

the surrounding gray matter nuclei and interact with neurodegenerative process through 

disruption of white matter tracts.25, 26 However, the positive association of lacunes and 

WMH with caudate and separately of WMH with pallidum volumes in our study was 

unexpected. There could be two possible explanation to these findings; firstly, it has been 

reported that an increased neuronal hypertrophy and/or inflammation precedes clinically 

manifest AD27 giving rise to increase volumes of caudate and pallidum. Secondly, 

periventricular WMH are difficult to distinguish from gray matter especially the caudate 

nucleus on T1 sequences and hence may lead to an artificially increased volume of basal 

ganglia nuclei.16 

With respect to cognition, we found that the reduced volumes of all subcortical structures 

except pallidum and putamen were significantly associated with cognitive impairment 

reflecting that the involutional process in deep gray matter structures takes place early in 

the process of dementia. This may be explained by the fact that the amygdala, accumbens 

and thalamus are directly connected to hippocampus and reductions in these structures 

have been reported in early stages of AD.9 Pathophysiologically, amygdala, accumbens 

and hippocampus are particularly vulnerable to amyloid and tau deposition in the early 

stages of AD which then extends further to involve the thalamic nuclei and caudate. 28, 29 

Moreover, it has been reported that the anterior thalamic nuclei are directly connected to 

the medial limbic portion of the temporal lobe and cingulate gyrus,6 which controls 

language, learning and memory and hence this was reflected by the impairment in 

language and visuomotor speed domains. The association of smaller brainstem volume 

with cognitive dysfunction is inconsistent with previous findings where brainstem 

volume did not significantly change during the aging process.17, 30 This may be due to the 

low resolution MRI (1.5T) scan used in these studies which makes the accurate 
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segmentation of the whole brainstem difficult to achieve. However, deposition of 

neurofibrillary tangles and neurotransmitter alterations in brainstem nuclei has been 

shown previously in AD,31, 32 and thus supports our findings on the positive association 

between brainstem volume reduction and cognition. 

The association of basal ganglia nuclei (caudate and pallidum) volume with VCI further 

supports our previous findings that these nuclei are the common site for subcortical 

lesions (lacunes and WMH), which in turn induces volumes reduction secondary to 

ischemic changes.26 This is also in agreement with a prior study where it was shown that 

subjects with both mild and severe vascular cognitive impairment have similar pattern of 

shape abnormalities in lentiform and hippocampus.33  In contrast, a smaller amygdala was 

only associated with non-VCI consistent with previous literature where amygdalar 

atrophy is considered an early marker for AD type neuropathology.21 The preservation or 

lack of association of the similar nuclei (caudate and pallidum) in non-VCI cases is 

congruent with previous report where it has been suggested that such structures are only 

affected in the late stages of involutional changes.9 The association of accumbens, 

putamen and hippocampal atrophy with both VCI and non-VCI group suggests that these 

structures are equally affected in both vascular and neurodegenerative type cognitive 

impairment.  

Both samples included in this study had their limitations: first, in the EDIS study 43.2% 

of the screened positive subjects did not participate in the second phase of the study. 

These subjects were relatively older, less educated and more likely to have hypertension 

and hyperlipidemia (data not shown). Furthermore, those excluded subjects might also be 

more cognitively impaired. This exclusion may have led to an underestimation of the 

effect sizes. However, despite this non-participation we still found significant 

associations. Due to the relatively small number of cases with dementia (n=30) in the 

EDIS study, we could only focus on preclinical stages of dementia in this sample. 
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Second, with respect to the case-control study, controls were relatively younger 

compared to the cases, and had a lower burden of vascular risk factors, which could have 

resulted in sampling bias and residual confounding. Third, another limitation applicable 

to both samples was the cross-sectional design, which did not allow us to assess the 

temporal relationship between the subcortical volume reduction and cognitive 

impairment. Nevertheless, despite the various limitations of these two complimentary 

studies, both provided consistent associations in the same direction on the association 

between subcortical structures and cognition. Strengths of the study include: subjects for 

EDIS were selected from a population-based study, extensive neuropsychological tests 

were used to diagnose cognitive impairment and dementia, and automated and 

standardized image processing was used to quantify subcortical structure volumes.  

5.  CONCLUSION 

Smaller subcortical grey matter volume is not only observed in dementia, but also in the 

preclinical stages of cognitive impairment. Furthermore, besides VCI, subcortical 

structures were also related to non-VCI. Further prospective studies are needed to unravel 

the role of subcortical volume reduction as a biomarker in predicting cognitive decline. 
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Abbreviations: SD= standard deviation, IQR= interquartile range; WMH= white matter hyperintensities; 
TIV= total intracranial volume, mm= millimeters  
 
*p value denotes differences between cases and controls; significant < 0.05.  

Chi square test was used for categorical variables, T-test for continuous variables, and Mann-Whitney U test 
for skewed distributed variable (white matter lesions).  

 Epidemiology of 
dementia in 

Singapore (EDIS) 

Hospital based study 
 

P value* 

 
 (n= 580) 

Controls 
(n=90) 

Cases  
(n=288) 

Age (years)  70.5 (6.7) 67.6 (5.6) 73.6 (8.6) <0.001 

Women, n (%) 317 (54.7) 50 (55.6) 155 (53.8) 0.773 

Race, n (%) 

Chinese 

Malays 

Indians 

Others 

 

280 (48.3) 

300 (51.7) 

- 

- 

 

81 (90) 

2 (2.2) 

6 (6.7) 

1 (1.1) 

 

227 (78.8) 

35 (12.2) 

21 (7.3) 

5 (0.02) 

 

0.059 

Total years of education, mean 
(SD) 

6.6 (36.9) 10 (4.9) 6.6 (4.9) <0.001 

Hypertension, n (%) 466 (80.3) 51 (56.7) 215 (74.7) 0.001 

Diabetes, n (%) 175 (30.2) 19 (21.1) 116 (40.3) 0.001 

Hyperlipidemia, n (%) 394 (67.9) 64 (71.1) 212 (73.6) 0.641 

MRI markers     

Presence of lacunar infarcts, n (%) 112 (19.3) 17 (19.3) 88 (30.9) 0.035 

WMH volume, median (IQR) 2.03 (5.93) 0.99 (2.71) 4.58 (13) <0.001 

Cerebral microbleeds, n (%) 205 (35.3) 43 (47.8) 150 (52.1) 0.386 

TIV volume, mean (SD) 1075.5 (120.5) 1123.2 (115.9) 1077.7 (147.7) 0.066 

Subcortical structures     

Accumbens, mm3, mean (SD) 878.3 (183.6) 936.3 (172.1) 746.4 (198.1) <0.001 

Amygdala, mm3, mean (SD) 2652.5 (460.7) 2803.3 (483.7) 2363.5 (599.1) <0.001 

Caudate, mm3, mean (SD) 6591.1 (1050.6) 6761.9 (923.2) 6648.4 (1465.3) 0.489 

Pallidum, mm3, mean (SD) 3165.7 (460.7) 3228.9 (452.8) 3067.9 (575.3) 0.016 

Putamen, mm3, mean (SD) 9442.8 (1305.1) 9693.6 (1350.3) 8648.6 (1568.6) <0.001 

Thalamus, mm3, mean (SD) 11032.6 (1130.7) 11481.2 (1293.6) 10681.7 (1378.1) <0.001 

Hippocampus, mm3, mean (SD) 7031.0 (920.7) 7423.2 (877.4) 6173.6 (1278.6) <0.001 

Brainstem, mm3, mean (SD) 19404.8 (2422) 19982.1 (2548.3) 18620 (2422.6) <0.001 

CHAPTER 10 – TABLES 
 

Table 10 – 1: Baseline characteristics of the subjects 
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 Accumbens volume 
Mean difference 

(95%CI)* 

Amygdala volume 
Mean difference 

(95%CI)* 

Caudate volume 
Mean difference 

(95%CI)* 

Pallidum volume 
Mean difference 

(95%CI)* 

Putamen volume 
Mean difference 

(95%CI)* 

Thalamus volume 
Mean difference 

(95%CI)* 

Hippocampal volum 
Mean difference 

(95%CI)* 

Brainstem 
Mean difference 

(95%CI)* 

Age, years, per SD 
increase 

-0.39 (-0.47; -0.31) -0.39 (-0.46; -0.32) -0.11 (-0.19; -0.04) -0.19 (-0.27; -0.12) -0.32 (-0.40; -0.24) -0.24 (-0.32; -0.17) -0.44 (-0.51; -0.37) -0.12 (-0.19; -0.04) 

 p=<0.001 p=<0.001 p=0.004 p=<0.001 p=<0.001 p=<0.001 p=<0.001 p=0.004 

Gender (women vs. 
men) 

0.03 (-0.14; 0.20) -0.46 (-0.62; -0.30) -0.13 (-0.30; 0.04) -0.44 (-0.60; -0.27) -0.28 (-0.46; -0.10) -0.04 (-0.20; 0.12) 0.06 (-0.09; 0.22) -0.32 (-0.48; -0.15) 

 p=0.713 p=<0.001 p=0.124 p=<0.001 p=0.002 p=0.610 p=0.434 p=<0.001 

Race (Malays vs. 
Chinese) 

-0.06 (-0.21; 0.09) -0.18 (-0.32; -0.05) 0.03 (-0.12; 0.18) 0.08 (-0.06; 0.22) -0.04 (-0.19; 0.11) -0.24 (-0.38; -0.10) -0.24 (-0.38; -0.11) -0.13 (-0.27; 0.02) 
 

 p=0.415 p=0.009 p=0.679 p=0.252 p=0.581 p=0.001 p=<0.001 p=0.084 

Hypertension 0.10 (-0.09; 0.29) 0.00 (-0.18; 0.18) -0.13 (-0.32; 0.07) -0.17 (-0.36; 0.02) 0.02 (-0.18; 0.22) -0.13 (-0.32; 0.05) -0.14 (-0.31; 0.04) -0.23 (-0.43; -0.04) 

 p=0.304 p=0.983 p=0.206 p=0.070 p=0.864 p=0.162 p=0.138 p=0.018 

Diabetes  -0.15 (-0.31; 0.01) -0.02 (-0.17; 0.13) -0.13 (-0.29; 0.03) -0.16 (-0.31; -0.01) -0.29 (-0.44; -0.11) -0.26 (-0.41; -0.11) -0.21 (-0.35; -0.06) -0.36 (-0.51; -0.19) 

 p=0.059 0.768 p=0.103 p=0.039 p=0.001 p=0.001 p=0.006 p=<0.001 

Hyperlipidemia 0.08 (-0.08; 0.25) -0.01 (-0.16; 0.15) -0.00 (-0.16; 0.16) -0.05 (-0.21; 0.11) 0.03 (-0.14; 0.20) -0.00 (-0.16; 0.15) 0.01 (-0.14; 0.16) -0.19 (-0.36; -0.03) 

 p=0.319 p=0.923 p=0.999 p0.544 p=0.721 p=0.960 p=0.913 p=0.019 

Presence of lacunar 
infarcts 

-0.26 (-0.47; -0.06) -0.11 (-0.29; 0.08) 0.23 (0.03; 0.43) -0.23 (-0.42; -0.03) -0.22 (-0.43; -0.01) -0.23 (-0.42; -0.04) -0.02 (-0.21; 0.16) -0.22 (-0.42; -0.02) 

 p=0.011 p=0.261 p=0.026 p=0.022 p=0.038 p=0.018 p=0.817 p=0.030 

WMH volume (ml, 
log), per SD increase 

-0.48 (-0.68; -0.29) -0.29 (-0.47; -0.11) 0.56 (0.37; 0.76) 0.25 (0.06; 0.43) 0.09 (-0.10; 0.29) 
 

-0.17 (-0.35; 0.01) -0.19 (-0.37; -0.01) -0.23 (-0.42; -0.04) 

 p=<0.001 p=0.001 p=<0.001 p=0.009 p=0.350 p=0.067 p=0.034 p=0.017 

Cerebral microbleeds,  -0.01 (-0.02; 0.01) 0.00 (-0.01; 0.01) 0.00 (-0.01; 0.02) -0.01 (-0.02; 0.00) 0.00 (-0.01; 0.01) -0.00 (-0.02; 0.01) 0.00 (-0.01; 0.01) -0.00 (-0.01; 0.01) 

 p=0.374 p=0.958 P=0.643 p=0.159 p=0.942 p=0.499 p=0.832 p=0.791 

TIV, ml, per SD 
increase 

0.16 (0.07; 0.25) 0.29 (0.21; 0.38) 0.35 (0.26; 0.44) 0.42 (0.34; 0.51) 0.25 (0.16; 0.35) 0.48 (0.39; 0.56) 0.32 (0.23; 0.39) 0.38 (0.29; 0.47) 

 p=0.001 p=<0.001 P=<0.001 p=<0.001 p=<0.001 p=<0.001 p=<0.001 p=<0.001 

Abbreviations: SD= standard deviation; CI= confidence interval; WMH= white matter hyperintensities; ml= milliliters; TIV= total intracranial volume 

*Multivariate adjusted linear regression model with 95% confidence interval using risk factors as determinant and each subcortical structures as outcome. The values provided in 
each column refer to the mean difference in volume of subcortical structure with respect to the risk factors. All models are adjusted for age, gender, race, hypertension, diabetes, 
hyperlipidemia, presence of lacunar infarcts, white matter hyperintensities volume, cerebral microbleeds, total intracranial volume.  

 

Table 10 – 2: Association of demographics and cardiovascular risk factors with volumes of subcortical structures in the EDIS study (n=550) 
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Per SD 
decrease in 
volume  

Composite Z-score 
Mean difference 

(95% CI)* 

Executive function 
Mean difference 

(95%CI)* 

Attention 
Mean difference 

(95%CI)* 

Language 
Mean difference 

(95%CI)* 

Visuomotor speed 
Mean difference 

(95%CI)* 

Visuoconstruction 
Mean difference 

(95%CI)* 

Visual memory 
Mean difference 

(95%CI)* 

Verbal memory 
Mean difference 

(95%CI)* 

Accumbens  -0.08 (-0.16; -0.01) -0.09 (-0.18; -0.00) -0.07 (-0.14; 0.01) -0.10 (-0.19; -0.01) -0.08 (-0.16; -0.01) -0.05 (-0.13; 0.02) -0.08 (-0.16; 0.01) -0.01 (-0.09; 0.07) 

 
p=0.019 p=0.047 p=0.072 p=0.025 p=0.020 p=0.177 p=0.066 p=0.740 

Amygdala  -0.13 (-0.21; -0.05) -0.08 (-0.18; 0.01) -0.09 (-0.18; -0.01) -0.19 (-0.28; -0.09)† -0.05 (-0.13; 0.03) -0.11 (-0.19; -0.02) -0.13 (-0.22; -0.04) -0.08 (-0.17; 0.01) 

 p=0.001 p=0.085 p=0.024 p=<0.001 p=0.199 p=0.014 p=0.003 p=0.072 

Caudate  -0.07 (-0.15; -0.00) -0.05 (-0.14; 0.04) -0.05 (-0.13; 0.03) -0.04 (-0.13; 0.05) -0.08 (-0.15; -0.01) -0.08 (-0.15; 0.00) -0.08 (-0.16; 0.01) -0.06 (-0.14; 0.03) 

 p=0.047 p=0.297 p=0.200 p=0.422 p=0.034 p=0.062 p=0.071 p=0.187 

Pallidum  -0.04 (-0.11; 0.04) -0.04 (-0.13; 0.06) -0.04 (-0.12; 0.04) -0.01 (-0.10; 0.09) -0.06 (-0.14; 0.01) -0.05 (-0.13; 0.03) -0.02 (-0.10; 0.07) -0.02 (-0.10; 0.07) 

 p=0.354 p=0.436 p=0.353 p=0.884 p=0.110 p=0.215 p=0.713 p=0.696 

Putamen  -0.06 (-0.13; 0.01) -0.07 (-0.16; 0.01) -0.03 (-0.11; 0.04) -0.05 (-0.14; 0.04) -0.04 (-0.11; 0.03) -0.03 (-0.11; 0.04) -0.06 (-0.14; 0.02) -0.05 (-0.13; 0.03) 

 p=0.115 p=0.095 p=0.390 p=0.242 p=0.308 p=0.385 p=0.134 p=0.249 

Thalamus  -0.08 (-0.16; -0.01) -0.00 (-0.09; 0.09) -0.07 (-0.15; 0.02) -0.11 (-0.21; -0.02) -0.11 (-0.19; -0.04) -0.07 (-0.15; 0.02) -0.06 (-0.15; 0.03) -0.07 (-0.16; 0.02) 

 p=0.037 p=0.973 p=0.107 p=0.024 p=0.004 p=0.112 p=0.192 p=0.108 

Hippocampus  -0.06 (-0.14; 0.02) -0.06 (-0.16; 0.04) -0.03 (-0.11; 0.05) -0.14 (-0.23; -0.04) -0.03 (-0.10; 0.05) -0.05 (-0.13; 0.04) -0.06 (-0.15; 0.03) -0.02 (-0.11; 0.07) 

 p=0.120 p=0.226 p=0.474 p=0.007 p=0.510 p=0.280 p=0.215 p=0.692 

Brainstem  -0.09 (-0.17; -0.03) -0.04 (-0.13; 0.05) -0.06 (-0.14; 0.02) -0.11 (-0.19; -0.01) -0.12 (-0.19; -0.05) -0.07 (-0.15; 0.02) -0.09 (-0.17; -0.01) -0.12 (-0.20; -0.04) 

 p=0.008 p=0.346 p=0.125 p=0.024 p=0.001 p=0.110 p=0.036 p=0.004 

Table 10 – 3: Multivariate adjusted estimated change in cognitive performance (mean difference) per standard deviation change in volumes of subcortical 
structures (EDIS) 

Abbreviations: SD= standard deviation; CI= confidence interval 

* Multivariate adjusted linear regression model with 95% confidence interval using each subcortical structure volume as determinant and composite/domain specific Z-scores as outcome. 
The values provided in each column refer to the mean difference in Z-score per SD decrease in volume of subcortical structure. All models are adjusted for age, gender, race, hypertension, 
diabetes, hyperlipidemia, presence of lacunar infarcts, white matter hyperintensities volume, cerebral microbleeds, total intracranial volume. 

†Bonferroni corrected= P<0.0009 
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Table 10 – 4: Multivariate adjusted estimated change in cognitive performance (ratios) per 
standard deviation change in volumes of subcortical structures (case control study) 

 

Abbreviations: CIND= cognitive impairment no dementia; VCI= vascular cognitive impairment; OR= odds 
ratios; CI= confidence interval; SD= standard deviation 

* Multivariate adjusted logistic regression model with 95% confidence interval using each subcortical 
structure volume as determinant and clinical categories of cognitive impairment as outcome. All models are 
adjusted for age, gender, race, hypertension, diabetes, hyperlipidemia, presence of lacunar infarcts, white 
matter hyperintensities volume, cerebral microbleeds, total intracranial volume. 

Per SD 

decrease  

CIND  (n=154) 

OR (95%CI)* 

Dementia (n=134) 

OR (95%CI)* 

VCI (n=86) 

OR(95% CI)* 

Non VCI (n=202) 

OR (95% CI)* 

Accumbens 
volume 

1.64 (1.12-2.41) 3.57 (1.81-7.03) 2.00 (1.15 – 3.49) 1.83 (1.23 – 2.72) 

 p=0.011 p=<0.001 p=0.014 p=0.003 

Amygdala 
volume 

1.40 (0.96-2.06) 4.73 (2.13-10.48) 1.44 (0.78 – 2.65)   1.87 (1.23 – 2.86) 

 p=0.085 p=<0.001 p=0.241 p=0.004 

Caudate 
volume 

1.74 (1.09-2.78) 1.94 (1.04-3.59) 1.94 (1.07 – 3.52) 1.55 (0.98 – 2.45) 

 p=0.020 p=0.036 p=0.030 p=0.063 

Pallidum 
volume 

0.97 (0.66-1.43) 1.22 (0.72-2.06) 1.84 (1.04 – 3.24)  0.79 (0.52 – 1.21) 

 p=0.870 p=0.467 p=0.036 p=0.796 

Putamen 
volume 

1.66 (1.13-2.46) 1.92 (1.10-3.34) 1.61 (1.00 – 2.60) 1.79 (1.19 – 2.69) 

 p=0.010 p=0.021 p=0.053 p=0.005 

Thalamus 
volume 

1.16 (0.77-1.75) 2.22 (1.18-4.19) 1.64 (0.96 – 2.81)  1.11 (0.71 – 1.75) 
 

 p=0.483 p=0.014 p=0.070 p=0.640 

Hippocampus 
volume 

2.06 (1.29-3.29) 10.05 (4.02-25.15) 2.76 (1.39 – 5.48) 2.86 (1.75 – 4.69) 

 p=0.003 p=<0.001 p=0.004 p=<0.001 

Brainstem 
volume 

1.06 (0.72-1.55) 2.07 (1.14-3.76) 1.46 (0.88 - 2.43) 1.16 (0.78 - 1.72) 

 p=0.784 p=0.017 p=0.147 p=0.472 
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CHAPTER 10 – FIGURE 
 

Figure 10– 1: Volumes of subcortical structures segmented through model based automated procedure 

Each voxel of the MRI volumes on T1 sequence was labeled automatically as a corresponding brain region based on a parcellation guide. The volumes of 
accumbens, amygdala, caudate, pallidum, putamen thalamus and hippocampus were calculated separately for left and right hemispheres  
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CHAPTER 11:  

Microvascular Network Alterations in Retina of Subjects with 
Cerebral Small Vessel Disease 
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1.  INTRODUCTION 

In addition to Alzheimer’s disease (AD), cerebrovascular disease is an important cause 

and contributor to cognitive decline and dementia.1 Magnetic resonance imaging (MRI) 

has become increasingly important in unraveling the role of vascular pathology involved 

in cognitive impairment and dementia. Improvements in MR scanner hard- and software 

have made it possible to visualize brain pathology more accurately. Recently, cerebral 

microbleeds (CMB) detected on MRI have been suggested as another manifestation or 

marker of cerebral small vessel disease, in addition to traditional markers such as white 

matter lesions (WML) and lacunar infarcts.2  

However, direct in vivo visualization of the involvement of cerebral small vessels is 

difficult to achieve. As the retinal and cerebral microvasculature share several anatomical 

and physiological features,3 the retina may provide a non-invasive “window” into the 

status of these small cerebral vessels. Previous studies have shown that the clinically 

visible retinopathy signs are associated with an increased risk of clinical cerebrovascular 

disease, including stroke and dementia, and subclinical markers of cerebral small vessel 

disease.4 Furthermore, quantitative changes in retinal vessel width, such as narrower 

arteriolar caliber and wider venular caliber, have been shown to be associated with these 

subclinical and clinical age-related brain pathologies.5  

More recently, a series of novel quantitative retinal vascular parameters such as fractal 

dimension and tortuosity have been proposed to provide information on the cerebral 

microvasculature even before the appearance of retinopathy signs. It has been shown that 

both patients with ischemic stroke and those with AD have a sparser and more tortuous 

microvascular network in the retina,6,7 suggesting that AD and stroke may share similar 

underlying microvascular pathology. However, data on the association between these 

novel retinal vascular parameters and cerebral small vessel disease, in particular CMB, 
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are largely lacking. Therefore, we investigated whether there was a link between these 

novel quantitative retinal parameters and cerebral small vessel disease on MRI. 

2.  MATERIALS AND METHODS 

2.1  Study Population 

The Epidemiology of Dementia in Singapore (EDIS) study draws participants from the 

Singapore Epidemiology of Eye Disease (SEED) Study, which is a population-based 

study among Chinese, Malays and Indians.2 In the present study we restricted analysis to 

the Chinese component of EDIS, the description of which has been described in Chapter 

3.  

2.2  Retinal Photography 

Retinal vascular parameters were extracted through fundus photographs and included 

retinal vascular caliber, fractal dimension, and tortuosity.6,7 Details of these parameters 

and reliability assessment have been described in Chapter 3. 

2.3  Neuroimaging 

Markers of cerebrovascular diseases (lacunes, CMB and WML) and involutional changes 

(total brain and intracranial volume) were collated for each subject using the same 

protocol as described previously in Chapter 3.  

2.4  Assessment of Other Vascular Risk Factors 

The details of vascular risk factors assessment have been described in Chapter 3. 

2.5  Statistical Analyses  

Quantitative retinal vascular measures (retinal vascular caliber, fractal dimension, and 

tortuosity) from arterioles and venules were used as determinants and expressed as per 

standard deviation (SD) increase or decrease, whereas markers of cerebral small vessel 

disease were taken as outcomes. To examine the associations with lacunar infarcts and 

CMBs, logistic regression was used. As WML volumes were not normally distributed, 
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values were log-transformed. Linear regression was used to model log-transformed WML 

volumes. These models were initially adjusted for age and sex, additionally for smoking, 

body mass index, mean arterial blood pressure, fasting blood glucose and total 

cholesterol; and finally for other MRI markers. In order to examine the robustness of any 

association with CMB, we decided to use different categorizations for CMB, as described 

previously2: (a) multiple (≥2) versus none/single (<2) CMB, (b) multiple categories of 

CMBs (0, 1 or ≥ 2) and (c) CMB counts using Poisson regression. For the Poisson 

regression models, outliers were excluded to satisfy the goodness-of-fit criterion assessed 

with the Pearson’s Chi-square statistic. For all the models, association measures were 

expressed with the corresponding 95% confidence intervals (CI). All statistical analyses 

were performed on standard statistical software (SPSS Version 17, SPSS Inc., USA). 

3.  RESULTS  

Out of the 300 subjects who participated in the second phase of the EDIS Study, 39 

subjects were excluded from the analysis: 18 had no MRI scans (due to claustrophobia, or 

contraindications), and 21 subjects did not have gradable retinal photographs. Baseline 

characteristics of the remaining 261 subjects are shown in Table 11-1. With respect to 

qualitative MRI markers, 46 subjects (17.6%) had evidence of ischemic stroke on their 

MRI scan, of whom 36 (13.8%) had lacunes; while 83 subjects (31.8%) had CMB 

present, of whom 33 (12.6%) had multiple CMB, including 2 subjects who had more than 

20 CMB (23 and 43 CMBs). Among these 33 subjects, 22 had isolated multiple lobar 

CMBs, 9 isolated multiple deep or posterior fossa CMBs and 2 combination of lobar, 

deep or posterior fossa CMB. With respect to quantitative MRI markers, mean total brain 

volume was 895.6 ml (standard error of the mean [SEM]: 5.4) and mean total intracranial 

volume 1096 ml (SEM: 6.1). As WML volume showed a skewed distribution, the median 

WML volume was 1.90 ml (interquartile range: 4.48). Figure 11-1 shows the prevalence 
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of these markers of cerebral small vessel disease stratified according to 5-year age 

categories. All MRI lesions showed a higher prevalence with increasing age. CMBs were 

more prevalent in the younger age categories compared to lacunes, whereas in those aged 

≥80 years, the prevalence of CMB and lacunes were comparable. Although WML 

volume is not directly comparable across age categories with the other markers, the 

median WML volume in the youngest category was relatively small and showed a steep 

increase at older age. 

Table 11-2 describes age and sex-adjusted associations of retinal vascular parameters 

with log-transformed WML volumes, and the presence of lacunes and multiple CMB. 

The presence of lacunes was not associated with any retinal vascular parameters. WML 

volume was initially associated with increasing venular caliber in age and sex-adjusted 

models (Table 11-2), while multiple CMB was associated with narrower arteriolar 

caliber, wider venular caliber and reduced arteriolar fractal dimensions. However, 

associations with WML were attenuated when adjusted for cardiovascular risk factors. 

Associations with multiple CMB remained consistent, after adjustment for vascular risk 

factors and MRI markers (Table 11-3). Similar associations were observed when 

different categorizations of CMBs were used. In addition to narrower arteriolar caliber, 

wider venular caliber, and smaller arteriolar fractal dimension, analyses using Poisson 

regression models showed that higher arteriolar tortuosity was also associated with an 

increasing number of CMBs (Table 11-3). Figure 11-2 shows examples of subjects with 

CMB who had relatively smaller fractal dimension and higher tortuosity compared to 

subjects without CMB. 

4.  DISCUSSION 

In this study, persons with a sparser and more tortuous retinal vascular network were 

more likely to have CMBs, independent of vascular risk factors and other cerebral 
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markers such as WML and lacunes. These data suggest that early retinal changes may 

provide insight into specific early markers of cerebral small vessel disease, such as 

CMBs. 

Thus far there have been no data from population-based studies examining the link 

between these novel retinal changes and CMBs. Though, using the same latest computer-

assisted method to measure the retinal microvasculature, we did recently observe similar 

retinal microvascular network changes (a sparser and more tortuous retinal network) in 

patients with stroke and Alzheimer’s disease.6,7 Furthermore, there are several reports 

describing rare hereditary conditions involving both retinal and cerebral microvessels 

including cerebroretinal vasculopathy, hereditary endotheliopathy with retinopathy, 

nephropathy and stroke (HERNS), cerebral autosomal dominant arteriopathy with 

subcortical infarcts and leucoencephalopathy (CADASIL) and hereditary retinal arteriolar 

tortuosity. For example, persons with CADASIL have a decreased retinal vascular fractal 

dimension compared to healthy controls.8 In patients with hereditary retinal arteriolar 

tortuosity, besides the presence of retinal arteriolar tortuosity and retinal hemorrhages, 

CMBs have been observed on MRI.9 Although these studies in rare hereditary conditions 

affecting the retinal and brain microvessels consists of small numbers or case series, these 

data do provide initial evidence that these novel retinal parameters such as fractal 

dimension or tortuosity may be early markers of microvascular pathology in the brain as 

reflected on MRI, such as CMBs. Taken together, findings from our current study further 

support data from histopathological studies that CMBs are a marker of microvascular 

pathology.10 

Most studies that have examined the link between retinal changes and cerebral small 

vessel disease have focused on clinically visible retinopathy signs and on WMH and 

lacunar infarcts. Data from both the Atherosclerosis Risks in Communities Study and the 

Cardiovascular Health Study reported that persons with retinopathy signs were more 
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likely to have both WML and subclinical infarcts.4,11 More recently, the AGES-Reykjavik 

Study reported that retinopathy signs were also associated with the presence of multiple 

CMB.12 Taken together, these studies provided evidence that microvascular lesions in 

both the retina and the brain may occur concomitantly as part of generalized 

microvascular disease resulting from common pathophysiological mechanisms. 

Retinopathy signs are, however, relatively late indicators of target organ damage in the 

eye and probably reflect advanced stages of structural microvascular damage including 

breakdown of the blood-retina barrier (Figure 11-3; blue line).  

Initial studies using the computer analysis techniques focused on earlier markers such as 

generalized arteriolar narrowing and venular dilatation. Longitudinal data from the 

Rotterdam Study showed that specifically wider venular caliber was associated with 

progression of both periventricular and subcortical white matter lesions, and incident 

lacunar infarcts on MRI.5 However, in the cross-sectional analyses from this study there 

was no statistically significant association between retinal calibers and these markers of 

cerebral small vessel disease. The lack of an association in the cross-sectional analyses 

may suggest that early changes in the retinal microvasculature (e.g. venular dilatation) do 

not reflect the actual severity of cerebral small vessel disease, but may precede the 

development of WMH and lacunes. Furthermore, in our cohort we found that in contrast 

to WMH and lacunes, prevalence of CMB was already high at a younger age, suggesting 

that CMBs may manifest before the appearance of the other cerebral small vessels 

disease markers. These data are in accordance with observations made in the 

spontaneously hypertensive stroke-prone (SHRSP) rat model showing that the 

development of CMBs as an important early milestone in the pathogenesis of cerebral 

small vessel disease.13 Overall, our current analyses showed that these early novel retinal 

parameters such as fractal dimension and tortuosity showed a significant cross-sectional 

association with CMBs, but not with more traditional makers of cerebral small vessel 
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disease (Figure 11-3; green line). Finally, our findings suggest that although these MRI 

lesions can occur concomitantly and increase with advancing age, there may be 

differences in pathophysiology underlying these lesions.  

Several methodological issues need to be discussed. Firstly, nearly 50% of screen-

positive subjects did not participate in the second phase of the EDIS study.2 Those 

(n=312) who did not participate were relatively older and had higher mean arterial blood 

pressure. This might have led to an underestimation of the prevalence of MRI markers of 

cerebral small vessel disease. Secondly, also due to small numbers, we were not able to 

study in detail the associations with the specific location of CMB. Strengths of our study 

include quantitative assessment of retinal photographs using standardized protocols, and 

quantitative measurement of MRI markers such as white matter lesion volume. 

5.  CONCLUSION 

In conclusion, we report that elderly persons with early retinal changes such as a sparser 

and more tortuous retinal microvascular network are more likely to have CMBs on MRI 

independent of cardiovascular risk factors and other markers of small vessel disease on 

MRI. This provides further evidence that CMB may be an early manifestation of cerebral 

small vessel disease.  

As reduced fractal dimension were significantly associated with  
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CHAPTER 11 – TABLES 
 

Table 11 – 1: Baseline characteristics of study participants (n=261) 

 

Baseline characteristics Mean / N  

Age, years  70 (0.4) 

Males,  122 (46.7) 

BMI, kg/m2  24.1 (0.2) 

Hypertension, 196 (75.1) 

Diabetes,  69 (26.4) 

Hyperlipidemia,  154 (59.0) 

Systolic blood pressure, mmHg  147.0 (1.2) 

Diastolic blood pressure, mmHg  76.7 (0.7) 

Mean arterial blood pressure, mmHg  100.2 (0.7) 

Fasting blood glucose, mmol/l  5.1 (0.09) 

Fasting total cholesterol, mmol/l  4.9 (0.05) 

Ever smokers,  76 (29.1) 

 

Abbreviations: BMI= body mass index; kg/m2= kilogram per meter square;  

mmHg= millimeters of mercury; mmol/l= millimoles per liter 

Numbers between brackets are percentage or standard error of the mean 
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Table  11 – 2: Age-sex adjusted regression models of retina vascular parameters for white 
matter hyperintensities (WMH) volume, and multiple cerebral microbleeds (CMB≥2)  
 
 
Retinal Parameter WMH volume∗ 

Mean difference 

(95%CI) (n=261) 

Lacunes† 

OR (95% CI) 

(n=36/261) 

Multiple CMBs† 

OR (95% CI) 

(n=33/261)  

Caliber 

Arteriolar, per SD 

decrease‡ 

0.32 (-0.05; 0.69) 1.26 (0.65; 2.45) 2.10 (1.06; 4.15) 

Venular, per SD increase‡  0.38 (0.02; 0.75) 1.57 (0.83; 2.98) 2.29 (1.19; 4.40) 

Fractal dimension, per SD decrease 

Arteriolar  0.06 (-0.16; 0.27) 1.31 (0.90; 1.91) 1.89 (1.27; 2.82) 

Venular  -0.10 (-0.32; 0.12) 1.11 (0.95; 1.64) 1.30 (0.88; 1.92) 

Tortuosity, per SD increase 

Arteriolar  -0.05 (-0.27; 0.16) 0.78 (0.52; 1.17) 1.07 (0.73; 1.56) 

Venular  0.12 (-0.09; 0.33) 0.99 (0.67; 1.46) 0.94 (0.63; 1.40) 

 

Abbreviations: WMH= white matter hyperintensities; CMB= cerebral microbleeds; OR= odds ratios; 

CI= confidence interval; SD= standard deviation 

 
∗Linear regression models with log-transformed WMH volumes as the dependent variable. 
 
†Logistic regression models with the presence of lacunes or multiple CMB as the dependent 
variable. 
 
‡Adjusted for fellow vessel caliber 
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Table 11 – 3: Multivariable-adjusted odds ratios (ORs) for the presence of multiple cerebral microbleeds (CMBs) and rate ratios 
(RRs) for the CMB counts (with 95% confidence intervals) presented as per standard deviation difference in retinal parameters 

 ORs for presence of multiple CMB∗  RRs for CMB counts† 

Retinal Parameter 

Model I‡ 

OR (95% CI) 

(n=32/258) 

Model II§ 

OR (95% CI) 

(n=32/258) 

 Model I‡ 

RR (95% CI) 

(n=256) 

Model II§ 

RR (95% CI) 

(n=256) 

Caliber      

Arteriolar, per SD decrease# 2.17 (1.04; 4.51) 2.07 (0.98; 4.38)  1.48 (1.01; 2.17) 1.42 (0.98; 2.05) 

Venular, per SD increase# 2.40 (1.20; 4.77) 2.23 (1.09; 4.56)  1.39 (1.00; 1.93) 1.31 (0.93; 1.84) 

Fractal dimension, per SD decrease     

Arteriolar  1.84 (1.22; 2.78) 1.79 (1.17; 2.73)  1.39 (1.08; 1.80) 1.37 (1.06; 1.78) 

Venular  1.22 (0.82; 1.83) 1.24 (0.82; 1.88)  1.15 (0.91; 1.45) 1.15 (0.91; 1.46) 

Tortuosity, per SD increase      

Arteriolar  1.17 (0.80; 1.38) 1.29 (0.87; 1.93)  1.25 (1.01; 1.55) 1.29 (1.03; 1.61) 

Venular  0.96 (0.64; 1.45) 0.96 (0.64; 1.44)  0.99 (0.76; 1.29) 0.98 (0.76; 1.27) 

 Abbreviations: OR=odds ratios; RR= rate ratios; CMB= cerebral microbleeds; SD= standard deviation 

*Multivariable-adjusted odds ratios for the presence of multiple cerebral microbleeds (with 95% confidence intervals) 

†Multivariable-adjusted rate ratios for the cerebral microbleed counts (with 95% confidence intervals). Additionally, 2 outliers 
(subjects with 23 and 43 CMBs) were excluded to satisfy the goodness-of-fit criterion for Poisson regression models 

‡Model I: Adjusted for age, sex, smoking, body mass index, mean arterial blood pressure, fasting blood glucose and cholesterol  

§Model II: Adjusted for confounders from model I, and total white matter volume, total brain volume/total intracranial volume, and 
presence of stroke 

#Adjusted for fellow vessel caliber 
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CHAPTER 11 – FIGURES 
 

Figure 11 – 1: Distribution of cerebral small vessel disease markers by 5-year age categories 
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Figure 11 – 2: MRI scans and corresponding retinal photographs of study subjects 
 
MRI scans (A-D) showing absence (left column) or presence (right column) of cerebral 
microbleeds (CMB; white arrows) and retinal fundus photos graded by computer software (A'-D') 
showing vessel path tracing of images from participants, with red for arterioles and blue for 
venules. In a subject with CMB retinal arteriolar fractal dimension (C,C’) is smaller compared to a 
subject without CMB (A,A'). In another subject with CMB, retinal arteriolar tortuosity (D,D’) is 
higher compared to a subject without CMB (B,B'). 
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Figure 11 – 3:  Representation of postulated timeline of preclinical imaging markers in 
cognitive impairment 
 
Among preclinical imaging markers for cognitive impairment, white matter lesions and lacunar 
infarcts may be relatively “late” markers as they are related to retinopathy signs (blue line), 
whereas cerebral microbleeds are related to “early” retinal parameters such as fractal dimension 
and tortuosity (green line) and hence may be early manifestation of cerebral small vessel disease.  
   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

274 
 

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

CHAPTER 12:  

Retinal Microvascular Network Changes in Mild Cognitive 
Impairment 
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1.  INTRODUCTION 

An increasing amount of evidence suggests that vascular pathology is an independent and 

important contributor to the development of dementia, including Alzheimer’s disease and 

its preclinical stages.1 In particular, cerebral small vessel disease has been associated with 

increased risk of cognitive decline and dementia.2,3 Although modern neuroimaging 

modalities have contributed immensely to our understanding of microvascular pathology 

in dementia and cognitive impairment, it remains difficult to directly observe the cerebral 

microvasculature in vivo. As the retinal and cerebral microvasculature share many 

anatomical and physiological aspects, the retina provides a viable window to directly 

observe changes to the cerebral microvasculature.4 

Thus far, studies have shown that traditional signs of retinal microvascular damage, such 

as retinopathy signs (e.g. retinal hemorrhage) are associated with both dementia and its 

earlier preclinical stages.5-7 However, retinopathy signs are relatively late indicators of 

damage in the eye, and indicate advanced stages of structural microvascular damage, 

such as breakdown of the blood-retina barrier, and are not commonly seen. With recent 

advances in digital retinal imaging and analysis techniques, we are now able to quantify 

objectively the structure and pattern of the retinal microvascular network, which may 

reflect earlier and more subtle changes before the appearance of overt signs. Novel retinal 

vascular parameters such as fractal dimensions, which reflect the optimality of the 

vascular network, are of particular interest, as they have recently been found to be 

associated with both stroke and dementia.8,9 In view of these associations with clinical 

disease, we hypothesized that these early retinal vascular network changes may also be 

present even in the preclinical stages of dementia. In this study, we examined the 

association between retinal vascular network parameters, particularly vascular fractal 

dimensions, and preclinical cognitive impairment in a Chinese population from 

Singapore. 
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2.  METHODS  

2.1  Study Population  

The Epidemiology of Dementia in Singapore (EDIS) study draws participants from the 

Singapore Epidemiology of Eye Disease (SEED) Study, which is a population-based 

study among Chinese, Malays and Indians.2 In the present study we restricted analysis to 

the Chinese component of EDIS, the description of which has been described in Chapter 

3.  

2.2  Assessment of Retinal Vascular Parameters 

Retinal fundus photographs were taken from each eye after pupil dilation and graded 

according to a standardized protocol as described in Chapter 3. The following retinal 

vascular parameters were extracted and used for analysis: retinal vascular fractal 

dimension, tortuosity, and caliber. Details of these parameters and reliability assessment 

have been described in the previous Chapter 3. 

2.3  Neuropsychological Assessment 

Detailed neuropsychological assessments with subtests and Z-score calculation has been 

described in detail in Chapter 3. 

2.4  Diagnosis of Cognitive Impairment and Dementia 

Weekly consensus meetings were held with study clinicians, neuropsychologists, clinical 

research fellows, research coordinators, and research assistants. Details from the clinical 

assessment, blood investigations, neuropsychological testing and MRI scans were 

reviewed. Diagnostic criteria for CIND and dementia have been described in detail in 

Chapter 3. Seven participants who were diagnosed with dementia were excluded from 

final analysis. 

2.5 Assessment of Other Risk Factors 

Details on the demographic and vascular risk factors assessment have been described in 

detail in Chapter 3. Scans were graded by one radiologist and two clinicians blinded to 
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the neuropsychological and clinical data for the presence of stroke and cerebral 

microbleeds (Brain Observer Microbleed Scale). White matter lesions (WML) volume, 

total brain volume, and total intracranial volume were quantified by automatic 

segmentation as described in Chapter 3 at the Erasmus University Medical Center 

Rotterdam, The Netherlands.16-18 

2.6  Statistical Analysis  

For the comparison of baseline demographic and risk factors between participants with 

gradable and ungradable retinal fundus images, and between the different diagnostic 

groups, Pearson’s chi-square test was used for categorical variables with independent t-

tests and analysis of variance (ANOVA) for continuous variables. Kruskal-Wallis one-

way analysis of variance was used to compare WML volumes, MMSE scores, and MoCA 

scores as they were not normally distributed. Multinomial logistic regression models 

were constructed to calculate odds ratios (OR) and their 95% confidence intervals (CI) 

for CIND-mild and CIND moderate by per standard deviation (SD) increase or decrease 

in retinal vascular parameters. Models were firstly adjusted for age and sex, then 

additionally for risk factors of education level, socioeconomic status, mean arterial blood 

pressure, fasting blood glucose, serum cholesterol, smoking status, and MRI brain 

imaging markers. Similarly adjusted linear regression models were also constructed for z-

scores from individual domains and the composite Z-score for all domains to test for 

linear relationships between retinal vascular parameters and cognitive performance. All 

statistical analysis was performed using SPSS Version 17.0 (SPSS Inc., USA).  

3.  RESULTS  

Of the 300 Chinese participants recruited into the EDIS study, 7 participants diagnosed 

with clinical dementia were excluded from this study. From the remaining 293 

participants, the additional 25 excluded participants (due to poor retinal image quality) 
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from the analysis were similar in baseline characteristics compared to the included 

participants, except for education level (less with Primary education and above, p=0.045), 

socioeconomic status (lower, p=0.006), and presence of any previous stroke on 

neuroimaging (higher, p=0.043). In the 268 eligible participants, 121 participants were 

NCI, 78 CIND-mild, and 69 CIND-moderate. In general, participants who were CIND-

mild or CIND-moderate were more likely to be women, older, had lower education and 

socioeconomic status, higher diastolic blood pressures, prevalent stroke, higher WML 

volume, and lower total brain volume/intracranial volume ratio (Table 12-1).  

In multinomial age-sex adjusted logistic regression models, reduced retinal arteriolar 

fractal dimension was associated with higher risk of being CIND-moderate, while 

reduced venular fractal dimension was associated with higher risk of being CIND-mild 

and CIND-moderate (Table 12-2). After further adjustment for other risk factors such as 

socioeconomic status, blood pressure, glucose, cholesterol levels, and MRI markers, 

reduced fractal dimensions remained associated with both clinical outcomes of CIND-

mild and CIND-moderate (Table 12-3).  

In age-sex adjusted linear regression models for global cognitive function as expressed as 

composite VDB Z-scores in the entire cohort showed that both reduced arteriolar and 

venular fractal dimensions and reduced arteriolar vessel tortuosity was associated with 

poorer cognitive performance (Table 12-2). However, the association of cognitive 

impairment with arteriolar tortuosity was attenuated after additional adjustment for other 

risk factors and MRI markers (Table 12-3).  

As there were significant associations between fractal dimensions and global cognitive 

function, associations with specific cognitive domains were also investigated in this 

cohort. Reduced fractal dimensions were associated with lower scores in verbal memory, 

visuoconstruction, and visuomotor speed (Table 12-4).  
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4.  DISCUSSION 

In this Chinese population, persons with a sparser vascular network in the retina were 

more likely to have poorer global cognitive performance, and have significant cognitive 

impairment, independent of traditional risk factors and MRI markers. In particular, they 

performed worse in specific cognitive domains of verbal memory, visuoconstruction and 

visuomotor speed. 

Thus far, previous studies examining the relationship between retinal microvascular 

changes and cognitive dysfunction have mainly focused on clinically visible retinopathy 

signs. In the Atherosclerosis Risk in Communities (ARIC) study,10 classic retinopathy 

lesions were clearly associated with cognitive impairment. However, findings from other 

studies, including the Los Angeles Latino Eye Study (LALES), the Cardiovascular 

Health Study (CHS), the Blue Mountain Eye Study (BMES), and the AGES-Reykjavik 

Study, have been less clear.11-13 For example, in the BMES,13 these associations were 

only present among subjects with hypertension, whereas in the AGES-Reykjavik Study,6 

retinopathy combined with the presence of cerebral microbleeds was associated with 

cognition. These discrepancies could partly be due to not only differences in the cognitive 

tests used, such as the Mini Mental State Examination, or the Abbreviated Mental 

Test,11,13,14 but also differences in the specific cognitive domains tested such as 

psychomotor speed, executive function, and verbal memory.10,11 Finally, retinopathy 

signs are considered relatively late indicators of vascular damage in the eye, and indicate 

advanced stages of structural microvascular damage. Recent advances in digital retinal 

imaging have enabled us to quantify early changes in the retinal microvasculature. 

In this present study, we focused on retinal vascular fractal dimensions. In addition to its 

potential to reflect earlier and more subtle changes before the appearance of overt signs, 

fractal dimensions in particular have the advantage of being parameters that do not vary 

with pulse cycles such as vessel diameters. One previous study has shown that decreased 
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fractal dimensions was related to cognitive dysfunction.14 However, in the study only a 

brief 10-point screening test (Abbreviated Mental Test) was employed. In the current 

study, an extensive neuropsychological test battery was employed to assess a range of 

cognitive domains, allowing us to not only study individual domains, but also 

comprehensively stage our subjects into categories with increasing severity of 

impairment. Our data provide additional support that these changes in the retinal vascular 

network are associated with cognitive impairment. Furthermore, our findings that reduced 

arteriolar and venular fractal dimensions are associated with preclinical stages of 

dementia are in line with previous studies showing that these retinal parameters are 

linked to not only clinical outcomes such as acute ischemic stroke and dementia, but also 

markers of cerebral small vessel disease such as lacunar infarcts and cerebral 

microbleeds.8,9,15-17 Pathophysiologically, a sparser network as reflected by a reduced 

fractal dimension is a consequence of retinal vessel rarefaction and collapse, which may 

lead to hypoxia in the retina.18 Similarly in the brain, destruction and occlusion of the 

small perforating vessels have been observed,19 suggesting that there may be parallel 

pathological mechanisms at work in the brain and retina leading to microvascular 

changes. Taken together, these morphological changes in the retinal microvasculature 

suggest that subtle microvascular changes may already be present in the preclinical stages 

of dementia, further providing evidence for vascular disease as an important contributor 

to the development of cognitive impairment and dementia. 

Some methodological issues need to be discussed. Since approximately half of the screen 

positive subjects declined to take part in phase II of the study (cognitive assessment and 

neuroimaging phase), eligible subjects who refused to participate may have had poorer 

cognitive function leading to an underestimation of the effect sizes.20 Nevertheless, we 

still found a consistent association between retinal vascular network complexity and 

cognitive impairment, suggesting that the true association may be stronger. Strengths of 
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our study include comprehensive and standardized assessment of cognitive ability over a 

range of domains, and quantitative assessment of retinal photographs using standardized 

semi-automated protocols. 

5. CONCLUSION 

In conclusion, our study found that a sparser retinal microvascular network is associated 

with cognitive impairment and poorer performance on cognitive scores, independent of 

cardiovascular risk factors and MRI markers of cerebral small vessel disease. This 

provides additional evidence for the importance of microvascular pathology in the 

development of cognitive impairment. 
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CHAPTER 12 – TABLES 
 
Table 12 – 1: Baseline characteristics of participants by diagnosis of cognitive impairment 
 

 
 
Abbreviations: BMI= body mass index; MMSE= mini mental status examination; MoCA= 
montreal cognitive assessment; CMB= cerebral microbleeds; TBV= total brain volume; ICV= 
intracranial volume, NCI= no cognitive impairment; CIND= cognitive impairment no dementia 
 
*Chi-square test was used for categorical variables and Student’s t-test for continuous variables 
unless stated otherwise 
 
†Kruskal-Wallis test was used for white matter lesion volume, MMSE score and MoCA score 
  

Characteristic  NCI 

(n=121) 

CIND-mild 

(n=78) 

CIND-moderate 

(n=69) 

P* 

Female, n (%)  53 (43.8) 42 (53.8) 47 (68.1) 0.005 

Age, mean (SD)  67.3 (4.8) 71.1 (6.3) 74.1 (5.4) <0.001 

Above primary education, n (%)  110 (90.9) 61 (76.9) 41 (59.4) <0.001 

Low socioeconomic status, n (%)  58 (48.7) 52 (71.2) 57 (83.8) <0.001 

BMI, mean (SD)  23.9 (3.2) 23.8 (3.3) 24.5 (4.1) 0.456 

Systolic blood pressure, mean (SD)  146.3 (19.1) 145.4 (17.9) 149.1 (21.6) 0.477 

Diastolic blood pressure, mean (SD)  78.9 (10.1) 75.2 (10.1) 74.8 (10.9) 0.010 

Hypertension, n (%)  88 (72.7) 59 (75.6) 61 (88.4) 0.040 

Random blood glucose, mmol/L (SD)  6.41 (2.50) 6.61 (3.09) 6.65 (2.44) 0.810 

Diabetes, n (%)  26 (21.5) 19 (24.4) 22 (31.9) 0.278 

Serum total cholesterol, mmol/L (SD)  5.32 (1.01) 5.06 (0.97) 5.33 (1.05) 0.493 

Hyperlipidemia, n (%)  67 (55.4) 48 (61.5) 48 (69.6) 0.154 

Ever smokers, n (%)  35 (28.9) 24 (30.8) 22 (31.9) 0.906 

MMSE score, median (IQR)  27 (2) 25 (4) 21 (5) <0.001† 

MoCA score, mean (IQR)  24 (4) 20 (5) 16 (6) <0.001† 

MRI markers 

Presence of stroke, n (%)  5 (4.1) 14 (17.9) 21 (30.4) <0.001 

Presence of CMB, n (%)  33 (27.3) 24 (30.8) 23 (33.3) 0.510 

WML volume, median ml (IQR)  1.37 (3.19) 1.82 (4.26) 3.28 (10.39) 0.002† 

TBV/ICV, ratio (SD)  0.820 (0.018) 0.817 (0.018) 0.812 (0.018) 0.013 
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Table 12 – 2: Age-sex adjusted associations of retinal vascular parameters with global 
cognitive performance, expressed as mean differences (95%CI) in normalized test scores, 
and with diagnosis of cognitive impairment status expressed as odds ratios (95%CI) 
 
 

 
Abbreviations: B= mean difference; OR= odds ratios; CI= confidence interval; CIND= cognitive 
impairment no dementia; VDB= vascular dementia battery; SD= standard deviation  
 
*Expressed as mean differences with 95% confidence intervals  
 
† Adjusted additionally for other vessel caliber  
 
 
 

 

Retinal vascular 

parameters  

 

Age-sex adjusted (268) 

B (95%CI)* OR (95%CI) 

Composite VDB score 

(n=267)  

CIND-mild 

(n=78) 

CIND-moderate 

(n=69) 

Caliber  

Arteriolar, per SD decrease†  0.072 (-0.091, 0.234) 0.70 (0.39-1.24) 0.81 (0.43-1.53) 

Venular, per SD increase†  -0.080 (-0.240, 0.081) 0.99 (0.57-1.72) 1.17 (0.63-2.16) 

Fractal Dimension 

Arteriolar, per SD decrease  -0.165 (-0.247, -0.073) 1.37 (0.99-1.89) 1.73 (1.19-2.53) 

Venular, per SD decrease  -0.151 (-0.242, -0.061) 1.38 (1.00-1.90) 1.79 (1.24-2.60) 

Tortuosity 

Arteriolar, per SD increase  0.143 (0.053, 0.234) 0.86 (0.63-1.17) 0.73 (0.51-1.05) 

Venular, per SD increase  0.073 (-0.017, 0.164) 0.90 (0.67-1.23) 0.85 (0.60-1.22) 
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Table 12 – 3: Multivariable adjusted associations of retinal vascular parameters with global cognitive performance, expressed as mean differences 
(95%CI) in normalized test scores, and with diagnosis of cognitive impairment status expressed as odds ratios (95% CI) 

 
Abbreviations: B= mean difference; OR= odds ratios; CI= confidence interval; VDB= vascular dementia battery; CIND= cognitive impairment no dementia; 
SD= standard deviation  
 
* Adjusted for age, gender, race, education level, low socioeconomic status, mean arteriolar blood pressure, random blood glucose, total cholesterol and presence 
of stroke  
 
† Adjusted for age, gender, race, education level, low socioeconomic status, mean arteriolar blood pressure, random blood glucose and total cholesterol, presence 
of stroke and cerebral microbleeds, total white matter lesion volume, and total brain volume/intracranial volume 
 
‡ Expressed as mean differences with 95% confidence intervals  
 
  

 
Retinal vascular  
parameter  

 
 

 
 

Model I* (244)  Model II† (243) 

B (95%CI)         OR (95% CI)            B (95%CI) OR (95% CI)  

Composite VDB score‡  

   (n=244) 

CIND-mild 

(n=66) 

CIND-moderate 

(n=62) 

Composite VDB score‡ 

(n=243) 

CIND-mild 

(n=66) 

CIND-moderate 

(n=61) 

Fractal Dimension   
Arteriolar, per SD 
decrease  

-0.119 (-0.200, -0.037)  1.40 (0.98-2.01)  1.86 (1.20-2.88)  -0.103 (-0.187, -0.020) 1.46 (1.01-2.12) 1.86 (1.17-2.93) 

Venular, per SD 
decrease  

-0.108 (-0.190, -0.026)  1.52 (1.05-2.21)  2.09 (1.35-3.22)  -0.109 (-0.191, -0.028) 1.54 (1.06-2.25) 2.15 (1.38-3.34) 

Tortuosity  
Arteriolar, per SD 
increase  

0.072 (-0.010, 0.315)  0.95 (0.66-1.36)  0.82 (0.53-1.25)  0.063 (-0.019, 0.144) 0.93 (0.65-1.34) 0.82 (0.53-1.27) 
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Table 12 – 4: Associations between retinal vascular fractal dimensions with specific cognitive domain scores expressed as mean differences (95%CI) 
 

 
Abbreviations: B= mean difference; CI= confidence interval; SD= standard deviation  
 
∗ Adjusted for age, gender, race, education level, mean arteriolar blood pressure, fasting blood glucose, total cholesterol, and presence of stroke 
  
†Adjusted for age, gender, race, education level, mean arteriolar blood pressure, fasting blood glucose, total cholesterol, presence of stroke, cerebral microbleeds, 
total white matter lesion volume, and total brain volume/intracranial volume 
 

                               Executive Function  Attention Language Visual Memory Verbal Memory Visuoconstruction Visuomotor speed 

         B (95%CI) B (95%CI) B (95%CI) B (95%CI) B (95%CI) B (95%CI) B (95%CI) 

Arteriolar fractal dimension per SD decrease  

Model I*  -0.082 

(-0.181, 0.018) 

-0.057 

(-0.144, 0.030) 

-0.087 (-0.183, 

0.008) 

-0.083 

(-0.172, 0.005) 

-0.145 

(-0.248, -0.042) 

-0.146 

(-0.246, -0.047) 

-0.116 

(-0.199, -0.033) 

Model II†  -0.053 

(-0.154, 0.048) 

-0.041 

(-0.131, 0.049) 

-0.069 

(-0.167, 0.029) 

-0.078 

(-0.168, 0.013) 

-0.135 

(-0.242, -0.029) 

-0.126 

(-0.228, -0.025) 

-0.122 

(-0.206, -0.037) 

Venular fractal dimension per SD decrease 

Model I*  -0.022 

(-0.122, 0.079) 

-0.127 

(-0.214, -0.041) 

-0.044 

(-0.141, 0.053) 

-0.093 

(-0.182, -0.004) 

-0.113 

(-0.217, -0.008) 

-0.146 

(-0.246, -0.046) 

-0.109 

(-0.192, -0.025) 

Model II†  -0.022 

(-0.121, 0.078) 

-0.126 

(-0.213, -0.040) 

-0.047 

(-0.143, 0.049) 

-0.096 

(-0.184, -0.008) 

-0.113 

(-0.218 -0.008) 

-0.144 

(-0.243, -0.045) 

-0.110 

(-0.193, -0.026) 
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and Cerebral Atrophy 

 



Chapter 13 

290 
 

1.  INTRODUCTION  

Alzheimer’s disease is characterized by brain atrophy in the cortical and subcortical grey 

and white matter especially the hippocampus and entorhinal cortex. Structural 

neuroimaging has shown that diffuse atrophy is present even in the early stages of 

dementia.1-3 Advanced automated segmentation techniques, such as voxel based 

morphometry, allow quantification of grey and white matter volumes using magnetic 

resonance imaging (MRI).4 Grey matter loss is related to progressive mild cognitive 

impairment (MCI) and conversion to dementia in the MCI group.5-7 Global and regional 

grey matter volume measurements are now crucial biomarkers in detecting neuronal loss 

and progression of cognitive decline. However, MRI remains a time-consuming and 

expensive technique. Moreover, some patients have contraindications for undergoing 

MRI such as claustrophobia, cardiac pacemakers, and inability to tolerate the procedure.  

As the retina shares developmental, physiological and anatomical features with the 

brain,8,9 retinal imaging is now increasingly used in studying neurodegenerative disease. 

Both histopathological and clinical studies have shown that patients with Alzheimer’s 

disease have functional visual deficits and anatomical changes in retinal structures.10,11  

Structural changes to the optic nerve can be non-invasively measured in vivo using 

techniques such as spectral domain-optical coherence tomography (SD-OCT). Recent 

advances in SD-OCT have made it possible to automatically measure the retinal nerve 

fiber layer (RNFL) and the ganglion cell-inner plexiform layer (GC-IPL). Unmyelinated 

axons of the retinal ganglion cells form the RNFL, while the GC-IPL contains the cell 

bodies and dendrites of these cells. Previous studies have linked RNFL thinning to a 

number of brain diseases, such as Alzheimer’s disease,12-14 Parkinson’s disease, and 

multiple sclerosis.15-17 However, studies have not examined if neuronal changes in the 

retina are associated with global or regional cerebral atrophy assessed from MRI. 
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Therefore, we examined the relationship of RNFL and GC-IPL thickness, with cerebral 

white and grey matter volumes on MRI in an elderly population from Singapore. 

2.  METHODS  

2.1  Study Population  

The on-going Epidemiology of Dementia in Singapore (EDIS) study draws participants 

from the Singapore Epidemiology of Eye Disease (SEED) study, a multi-ethnic 

population-based study among persons aged 40 to 85 years. For this study, we focused on 

participants drawn from the first follow-up examination of the Singapore Malay Eye 

Study (SiMES) component of the SEED study who had OCT data available.18 In order to 

use the limited MRI imaging resources efficiently, it was decided to focus on those 

subjects who were most likely to have cognitive problems. Hence, in the first phase of the 

EDIS-SiMES Study, participants from SiMES aged ≥ 60 years (n=1014) were screened 

using the Abbreviated Mental Test (AMT) and a self-report of progressive forgetfulness. 

Screen-positive subjects (n=448) were invited to take part in the second phase of this 

study, which included an extensive neuropsychological test battery and brain MRI. Of 

these 448 participants, 307 agreed to participate in phase II and hence were included in 

the present study. Cognitively impaired no dementia (CIND) was defined as impairment 

in one or more domains in the neuropsychological test battery, as described previously.19 

Dementia was diagnosed in accordance to the Diagnostic and Statistical Manual of 

Mental Disorders-IV criteria. The details of the study methodology have been described 

elsewhere.19 Ethics approval for the EDIS study was obtained from the SingHealth 

Institutional Review Board and the National Healthcare Group Domain-Specific Review 

Board. The study was conducted in accordance with the Declaration of Helsinki. Written 

informed consent was obtained prior to recruitment.  

2.2  Neuroimaging  
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Intracranial volume (ICV), grey matter and white matter volumes were quantified by 

automatic segmentation at the Erasmus University Medical Center Rotterdam, The 

Netherlands as mentioned in Chapter 3. 

2.3  Assessment of Retinal Neuronal Layers  

SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec) macular and optic disc cube scans were 

obtained from study participants and assessed according to standardized protocol 

described in Chapter 3. Participants were also excluded if they had a diagnosis of 

glaucoma from study ophthalmologists. Macular GC-IPL thickness and peripapillary 

RNFL thickness measurements were taken from a randomly selected eye from each 

participant for analysis. Figure 13-1 shows detailed cross-sectional image of the retinal 

layers centered at the macula using a SD-OCT. 

2.4  Assessment of Other Vascular Risk Factors  

Other vascular risk factors assessment has been described in detail in Chapter 3. Axial 

length for study eyes was measured using IOL Master V3.01 (Carl Zeiss; Meditec AG 

Jene, Germany). 

2.5  Statistical Analysis 

Grey and white matter volumes were used as determinants and expressed as per standard 

deviation (SD) decrease, whereas GC-IPL and RNFL thickness were taken as outcomes. 

Linear regression models were used to estimate mean change [95% confidence intervals 

(CI)] in GC-IPL and RNFL thickness per SD decrease in total brain volume, grey matter, 

and white matter volumes. Models were initially adjusted for age and sex, additionally 

MABP, blood glucose, serum cholesterol, with axial length and OCT scan signal strength 

from the eye chosen, and total intracranial volume to correct for head size. RNFL models 

were additionally adjusted for optic disc area. Separate linear regression models were 

constructed for occipital, temporal, frontal, parietal lobes and the central regions. All 
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statistical analyses were performed on standard statistical software (SPSS Version 17, 

SPSS Inc., USA). 

3.  RESULTS 

Screening and assessments of the Malay cohort was performed from February 2011 to 

July 2013. Of the 307 subjects who participated in the second phase of the EDIS Study, 

143 were excluded from the analysis: 21 had no MRI scans (due to claustrophobia, or 

contraindications), 14 were diagnosed with glaucoma, 87 did not complete OCT 

scanning, while 34 had ungradable OCT scans. Comparison of the 164 participants 

included and 143 participants excluded are shown in Table 13-1. In summary, excluded 

participants were more likely to be older, have diabetes, lower BMI, and more likely to 

be CIND or dementia. Mean total brain volume was 863.5ml (SD, 89.1ml), mean grey 

matter volume 507.2ml (SD, 53.2ml), mean white matter volume 357.9ml (SD, 42.1ml) 

and mean total intracranial volume 1056.0ml (SD, 100.1ml). Mean RNFL thickness was 

90.6 μm (SD, 10.3 μm), while mean GC-IPL thickness was 78.8 μm (SD, 7.2 μm). 

Decreasing total brain volume was weakly associated with GC-IPL thinning (mean 

change in GC-IPL per SD decrease in brain volume: -1.26 μm, 95%CI -2.53 to 0.01μm), 

while decreasing total grey matter volume was more strongly associated with GC-IPL 

thinning (mean change in GC-IPL per SD decrease in grey matter volume: -1.40μm, 

95%CI -2.66 to -0.14μm) in age-sex adjusted models. In contrast, reduction in white 

matter volume was not significantly associated with GC-IPL thinning (mean change in 

GC-IPL per SD decrease in white matter volume: -0.80μm, 95%CI -2.02 to 0.41μm). 

However, these associations became non-significant after additional adjustment for 

MABP, blood glucose, plasma cholesterol levels, smoking, axial length, OCT scan signal 

strength and total intracranial volume. Both age-sex and multivariable-adjusted models 
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for RNFL thickness were not statistically associated with total brain, grey or white matter 

volume. 

Region-specific analyses (Table 13-2 and Table 13-3) showed that decreasing grey 

matter volume in both occipital and temporal lobes was associated with GC-IPL thinning 

in both age-sex and multivariable-adjusted models, whereas only decreasing temporal 

lobe grey matter volume was associated with RNFL thinning independent of risk factors, 

axial length and intracranial volume. Reduction in grey and white matter volumes in the 

frontal, parietal lobes and central regions were not significantly associated with GC-IPL 

or RNFL thickness changes. 

When participants with dementia (n=3; all Alzheimer’s Disease) were further excluded 

from analysis, these associations remained unaltered. 

4.  DISCUSSION 

In this study, we found that reduction in grey matter volume in the occipital and temporal 

lobes was associated with GC-IPL thinning in the retina, independent of systemic 

vascular risk factors, in elderly persons without glaucoma or clinical retinal diseases. 

However, there was no evidence of an association between global grey and white matter 

volumes or regional white matter volumes with GC-IPL and RNFL thickness. This 

suggests that thinning in the retinal neuronal layers may provide insight into region-

specific grey matter atrophy in elderly persons at risk of cognitive decline. 

Thickness measurements of the GC-IPL and RNFL are both markers of retinal ganglion 

cell structural integrity, with the RNFL being mainly composed of retinal ganglion cell 

axons, whereas the GC-IPL is composed of both the cell bodies and dendrites of the 

retinal ganglion cells. As reduction in dendritic complexity and area occurs prior to 

retinal ganglion cell death and loss,20 this suggests that the GC-IPL may be more 

informative and sensitive to neurodegenerative damage compared to the RNFL. 
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Our findings that reduction in grey matter volumes in the occipital and temporal lobes is 

linked to RNFL and GC-IPL thinning suggest the presence of a neurodegenerative 

pathway linking these regions of the brain directly to the eye. The visual association 

cortex in the inferior temporal lobe and the occipital lobes are particularly susceptible to 

neurofibrillary tangles and amyloid plaque deposition,21,22 and this correlates with atrophy 

and reduced metabolism especially in the occipital and temporoparietal regions.23 As a 

result, these pathological depositions disrupt connections within the visual tract, 

potentially causing retrograde neuronal degeneration down the optic nerve,21 resulting in 

region-specific relationships between the temporal and occipital lobe atrophy with retinal 

neuronal damage. Retrograde damage to the optic nerve, and hence retinal ganglion cells, 

would then be reflected as RNFL and GC-IPL thinning, as shown in a number of clinical 

studies in mild cognitive impairment and Alzheimer’s disease.12, 14, 24 

The association of occipital and temporal lobe grey matter atrophy with GC-IPL thinning 

was present in persons with no dementia. In conjunction with how the occipital and 

adjacent temporal lobes appear to be an early site of amyloid and neurofibril 

accumulation,21, 22, 25 this suggests that GC-IPL thinning may reflect involutional changes 

in these regions of interest even before the onset of dementia. Hence, the GC-IPL shows 

promise as a novel early biomarker of involutional changes in the brain. Future studies 

are warranted to further assess if the GC-IPL is useful in tracking grey matter volume 

changes longitudinally, and if this association is related to cognitive performance and 

decline.  

There are a few limitations to our study. Firstly, about 33.6% of screen-positive subjects 

did not participate in the second phase of the EDIS study, and of those who participated, 

nearly 40% of them either did not successfully complete OCT scanning or had scans 

unsuitable for analysis. Therefore, the generalizability of our study results may be 

limited. Secondly, the cross-sectional design of the study limits the interpretation of the 
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results with respect to the cause and effect. Third, visual fields were not tested in our 

subjects. Hence, we were unable to examine whether retinal thinning was correlated to 

visual field defects. Fourth, as is the case with any technology (including OCT and MRI), 

each has its own limitations and contraindications. For OCT, ocular co-morbidities and 

any inability to undergo OCT assessment form the most important limitations. In terms of 

prognostic utility, we do not think that OCT on its own will be sufficient to assess 

involutional changes in the brain. Different and complementary imaging modalities such 

as the OCT and MRI should be combined to obtain a thorough assessment of involutional 

changes in the brain. In terms of limitations, this means that subjects with prominent 

ocular co-morbidities may benefit more from a brain MRI, while subjects with 

pacemakers, claustrophobia, who cannot undergo MRI, may benefit more from OCT to 

get an impression of the extent of neurodegneration. The main strengths of our study 

include direct in vivo quantitative assessment of neuronal damage in the retina and the 

brain using OCT and MRI, and a cohort spanning varying degrees of cognitive 

impairment status.  

5.  CONCLUSION 

In conclusion, retinal neuronal damage, as reflected by GC-IPL thinning, is 

independently associated with grey matter loss in the occipital and temporal lobes. In 

contrast, there was no evidence of an association between global grey and white matter 

volumes or regional white matter volumes with GC-IPL and RNFL thickness. These 

findings suggest that changes in retinal ganglion cells as assessed by high-resolution OCT 

technology may provide novel markers for specific involutional changes in the brain.  
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CHAPTER 13 – TABLES 
 

Table  13 – 1: Comparison of baseline characteristics of included and excluded participants 
of this study  

 

Baseline characteristics Included (n=164) Excluded (n=143) p-value* 

Age, years (SD) 69.0 (6.5) 73.3 (6.8) <0.001 

Males, n (%) 70 (42.7) 69 (48.3) 0.359 

BMI, kg/m2 (SD) 21.0 (4.1) 20.0 (4.0) 0.045 

Hypertension, n (%) 138 (84.1) 131 (91.6) 0.056 

Diabetes, n (%) 44 (26.8) 59 (41.3) 0.008 

Hyperlipidemia, n (%) 133 (81.1) 112 (78.3) 0.571 

Systolic blood pressure, mmHg (SD) 150.1 (19.5) 154.1 (21.6) 0.091 

Diastolic blood pressure, mmHg (SD) 79.7 (11.6) 78.4 (12.0) 0.352 

Mean arterial blood pressure, mmHg (SD) 101.7 (11.3) 102.8 (11.5) 0.435 

Random blood glucose, mmol/l (SD) 6.86 (3.02) 7.51 (3.04) 0.073 

Total cholesterol, mmol/l (SD) 5.27 (1.31) 5.17 (1.35) 0.531 

Ever Smokers, n (%) 46 (28.0) 44 (30.8) 0.617 

Cognitive status    

Not cognitively impaired, n (%) 36 (22.0) 22 (15.4) <0.001 

CIND, n (%) 125 (76.2) 101 (70.6)  

Dementia, n (%) 3 (1.8) 20 (14.0)  

 

Abbreviations: SD= standard deviation; BMI= body mass index; kg/m2= kilogram per meter 
square; mmHg= millimeters of mercury; mmol/l= millimoles per liter; CIND= cognitive 
impairment no dementia 
 
*Bold values signifies p <0.05 
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Table 13 – 2: Age-sex-adjusted estimated mean change in GC-IPL and RNFL thicknesses 
(95%CI) per standard deviation change in MRI markers 
 
 

 GC-IPL thickness  

B (95%CI), µm 

RNFL thickness  

B (95%CI), µm 

per SD decrease in Occipital lobe   

Grey+White matter volume -1.83 (-3.05, -0.61) -2.33 (-4.16, -0.51) 

Grey matter volume -2.04 (-3.20, -0.88) -2.46 (-4.20, -0.71) 

White matter volume -0.80 (-2.04, 0.45) -1.23 (-3.08, 0.62) 

per SD decrease in Temporal  lobe   

Grey+White matter volume -2.32 (-3.52, -1.11) -2.77 (-4.58, -0.96) 

Grey matter volume -2.55 (-3.71, -1.40) -3.03 (-4.78, -1.28) 

White matter volume -1.14 (-2.35, 0.06) -1.40 (-3.20, 0.39) 

per SD decrease in Frontal lobe   

Grey+White matter volume -0.97 (-2.22, 0.28) -1.35 (-3.20, 0.50) 

Grey matter volume -0.95 (-2.19, 0.30) -0.99 (-2.84, 0.87) 

White matter volume -0.71 (-1.90, 0.48) -1.41 (-3.17, 0.35) 

per SD decrease in Parietal  lobe   

Grey+White matter volume -1.12 (-2.30, 0.06) -1.18 (-2.94, 0.58) 

Grey matter volume -1.23 (-2.39, 0.08) -1.19 (-2.91, 0.53) 

White matter volume -0.73 (-1.91, 0.44) -0.90 (-2.65, 0.85) 

per SD decrease in Central  lobe   

Grey+White matter volume -1.17 (-2.43, 0.09) -1.76 (-3.63, 0.11) 

Grey matter volume -1.50 (-2.74, -0.27) -1.94 (-3.78, -0.10) 

White matter volume -0.51 (-1.70, 0.67) -1.03 (-2.79, 0.73) 

 

Abbreviations: GC-IPL= ganglion cell inner plexiform layer; RNFL= retinal nerve fiber layer; B= 
mean difference, CI= confidence interval; µm= micrometer; SD= standard deviation 
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Table 13 – 3: Multivariable-adjusted estimated mean change in GC-IPL and RNFL 
thicknesses (95%CI) per standard deviation change in MRI markers  

 

 GC-IPL thickness 
(95%CI), µm* 

RNFL thickness 
(95%CI), µm*† 

per SD decrease in Occipital lobe   

Grey+White matter volume -1.77 (-6.55, 0.01) -1.87 (-4.44. 0.69) 

Grey matter volume -1.78 (-3.20, -0.36) -1.72 (-3.79, 0.34) 

White matter volume 0.07 (-1.68, 1.81) -0.27 (-2.79, 2.25) 

per SD decrease in Temporal  lobe   

Grey+White matter volume -3.45 (-5.40, -1.49) -2.70 (-2.61, 0.21) 

Grey matter volume -2.94 (-4.46, -1.41) -2.56 (-4.85, -0.27) 

White matter volume -0.55 (-2.57, 1.46) 0.14 (-2.76, 3.05) 

per SD decrease in Frontal lobe   

Grey+White matter volume 0.05 (-2.67, 2.76) 1.16 (-2.72, 5.03) 

Grey matter volume -0.34 (-3.20, 1.53) 0.59 (-2.09, 3.26) 

White matter volume 0.81 (-1.51, 3.14) 0.56 (-2.69, 3.82) 

per SD decrease in Parietal  lobe   

Grey+White matter volume -0.24 (-2.72, 2.23) 2.83 (-0.75, 6.43) 

Grey matter volume -0.88 (-2.79, 1.03) 0.93 (-1.85, 3.71) 

White matter volume 0.67 (-1.27, 2.61) 2.18 (-0.56, 4.93) 

per SD decrease in Central  lobe   

Grey+White matter volume -0.06 (-2.56, 2.44) -0.57 (-4.16, 3.03) 

Grey matter volume -1.10 (-2.80, 0.60) -1.28 (-3.73, 1.16) 

White matter volume 1.02 (-0.80, 2.83) 0.77 (-1.85, 3.39) 

 

Abbreviations: GC-IPL= ganglion cell inner plexiform layer; RNFL= retinal nerve fiber 
layer; B= mean difference, CI= confidence interval; µm= micrometer; SD= standard 
deviation 
 

*Adjusted for age, sex, age, gender, mean arterial blood pressure, plasma blood glucose, 
serum cholesterol, smoking, axial length, OCT signal strength and total intracranial volume. 

† Additionally adjusted for optic disc area. 
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CHAPTER 13 – FIGURE 
 
Figure 13 – 1: Detailed retinal layers of a cross-sectional SD-OCT image centered at the 
macula 
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SYNTHESIS 

One of the main goals of this thesis was to explore markers of cerebrovascular diseases 

and involutional changes on MR and retinal imaging and to subsequently link them with 

cognitive dysfunction. A range of cerebral markers and retinal parameters were identified 

and evaluated using visual and automated approaches in a large population based cohort 

and in a diseased population. A schematic representation of these markers identified 

through visual and quantitative techniques are summarized in Figure 14 – 1 and 2.  

Subsequently, these markers/parameters were applied to study several other 

manifestations of brain changes in the context of aging, cerebrovascular diseases and 

cognitive impairment. A summary of these findings and their link with cognition is 

shown in figure 14 – 3.  In the following sections, I will first synthesize my main findings 

from chapters 4 – 13 and will show their joint effects using Principle Component 

Analysis (PCA). I will also suggest a cerebrovascular disease burden score and will 

assess its clinical correlates with respect to cognitive impairment and dementia. Finally, I 

will expand on the implications of these markers which are then followed by future 

perspectives and recommendations. 

1.  SYNTHESIS OF MAIN FINDINGS 

The main findings described in the chapters above are discussed in the same order in 

which they appear in this thesis; first the MRI markers of cerebral small and large vessel 

diseases, followed by markers of involutional changes and their effects on cognition and 

finally retinal microvascular and neuronal markers of cerebrovascular diseases and 

involutional changes. A summary of these imaging markers has been presented in Figure 

14 – 4.  

1.1  Cerebral Small Vessel Disease Markers 
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Findings from both EDIS and memory clinic studies have shown that the cerebral small 

vessel disease as reflected by cerebral microbleeds and cortical microinfarcts (CMIs) 

were not only related to clinical outcomes (cognitive impairment and dementia) but were 

also associated with the worse performance on cognitive testing. This high lights the 

importance of microvascular pathology in cerebrovascular disease related cognitive 

decline. This is in line with other findings on established markers of cerebrovascular 

diseases such as lacunes and white matter hyperintensities which often co-exist in 

Alzheimer’s pathology and in vascular dementia.  

Age, gender, cardiovascular risk factors (hypertension, hyperlipidemia and diabetes), 

stroke and atrial fibrillation were the major risk factors of CMIs. The most striking 

findings were that CMIs which were previously reported to be a manifestation of small 

vessel disease were also related to large vessel disease. This shows that CMIs represent 

proxies for either small or large vessel infarcts or even diffuse cerebral injury through 

arteriosclerosis, microembolism and hypoperfusion. Using a detailed neuropsychological 

assessment, we further showed that the reduced performance in global cognitive scores 

together with domains of executive function, language, visuomotor speed, verbal and 

visual memory were associated with cerebral small vessel disease markers. However, in 

the memory clinic setting, this association was attenuated in the presence of atrophy 

suggesting common pathways involved in CMIs and atrophy. Our study findings from 

both EDIS and case control studies, therefore supports a major step in developing the 

non-invasive means of detecting CMIs on MRI scans during life and further unravel their 

role in aging and dementia. 

1.2  Cerebral Large Vessel Disease Marker  
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In the population based study (EDIS), we reported that the intracranial stenosis influence 

cognition through ischemic changes in the brain. On the formal neuropsychological tests, 

we found that the persons with ICS were more likely to have significant cognitive 

impairment and performed worse in the domains of executive function, language, 

visuomotor speed, verbal and visual memory albeit in the presence of infarcts. From the 

memory clinic study, we also showed that intracranial stenosis was associated with 

vascular cognitive impairment, and with dementia subtypes i.e. AD and Vascular 

dementia (VaD). The association with dementia became attenuated in the presence of 

white matter hyperintensities and infarcts. This suggests that the cerebral ischemia 

(through possible perfusion deficits) remains the common mechanism behind ICS and 

cognition. Moreover, despite having different etiologies, the association of ICS with 

different subtypes of dementia suggests that similar underlying micro- and macrovascular 

pathologies exist in both AD and cerebrovascular disease related cognitive decline. 

Hence, in summary both studies have shown that ICS effects cognition through cerebral 

ischemic damage.  

1.3  Markers of involutional changes 

We have used quantitative MRI techniques to segment cortical thickness and subcortical 

structure volumes and have reported their risk factors and relation to cognitive 

impairment and dementia. The major common risk factors were found to be age, gender, 

Malay ethnicity, diabetes and lacunar infarcts thus, high lighting the fact that these 

cortical and subcortical structures are sensitive to increasing age, hormonal effects, ethnic 

differences, systemic diseases and small vessel diseases. Moreover, we have also reported 

independent association of global and lobar specific region thinnings and subcortical 

structural volumes with severe cognitive impairment (CIND moderate and dementia). 

Analysis with neuropsychological testing has further confirmed our hypothesis that 
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involutional changes in the gray matter (cortex and deep gray matter nuclei) takes place 

early in the process of dementia due to the possible progression of tau and amyloid 

pathology from the hippocampus to the rest of the brain. 

Our most interesting finding was a specific pattern of subcortical volume reduction in 

vascular vs. non vascular cognitive impairment. Smaller caudate and pallidum were 

specific to vascular cognitive impairment as they are the common sites of subcortical 

lacunes whereas the amygdala was particularly affected in non-vascular cognitive 

impairment due to increased sensitivity to AD type neuropathology. However, the 

association of other subcortical structures with cognitive impairment has suggested that 

subcortical structures are equally affected in both vascular and non-vascular cognitive 

impairment.   

1.3  Retinal markers 

Microvascular Markers 

Besides the visual assessment of retinopathy signs which have been extensively studied 

previously, we have utilized the automated image analysis technique which can quantify 

subtle changes in the retinal microvasculature by identifying changes in retinal vessel 

calibers, fractal dimension and tortuosity. We have found that the retinal venular 

widening, smaller arteriolar fractals and increased arteriolar tortuosity were associated 

with cerebral microbleeds on the MRI scans. Compared with previous studies where 

lacunes and white matter hyperintensities were linked to retinopathy, we also found the 

association of cerebral microbleeds with retinal microvascular changes suggesting that 

microbleeds may be a possible early marker of cerebrovascular disease. 

In terms of the clinical outcome, we have also reported an association of reduced 

arteriolar and venular fractals with mild and moderate cognitive impairment. On detailed 
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neuropsychological assessment, we also showed that reduced retinal arteriolar and 

venular fractals were related to worse performance on verbal memory, visuoconstruction 

and visuomotor speed domains, thus further confirming that the retinal microvascular 

changes occur in preclinical cognitive impairment.  

Neuronal Markers 

Spectral domain optical coherence tomography was used to quantify retinal nerve fiber 

layer (RNFL) and ganglion cell inner plexiform layer (GC-IPL) and hence these were 

examined in relation to cognitive impairment. We found that the GC-IPL thinning was 

independently associated with cerebral atrophy in the occipital and temporal region 

whereas RNFL was related only to temporal atrophy. These findings suggest that the GC-

IPL show promise as an early and sensitive marker of involutional changes in the brain.  

2. LINKING MARKERS OF CEREBROVASCULAR DISEASES 

As mentioned previously, the aim of the work described in this thesis was to focus on 

markers of CeVD and involutional changes using both cerebral and retinal imaging and 

assess the clinical correlates of these lesions with cognitive impairment and dementia. 

Interestingly, all the markers showed a dose response relationship with increasing 

severity of cognitive impairment. The consistent pattern observed in the association of 

CeVD markers with cognitive function specifically in the domains of executive function, 

visuoconstruction, language and memory reflects underlying vascular mechanisms in 

cognitive dysfunction. 

Although my previous chapters (4-13) were concentrated on individual marker of CeVD, 

there is a need to explore the joint effect of all markers of CeVD on cognitive 

dysfunction. Previous data has suggested that small vessel diseases such as WMH, 

lacunes, and microbleeds often occur together and are inversely associated with cognitive 
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impairment. As these CeVD markers produce similar features of brain damage on 

imaging, it is appropriate to explore the inter-correlations between these variables. It is 

likely that markers with similar underlying pathology might co-exist and affect cognitive 

ability in the elderly. 

Principle component analysis  

Validated visual scores of MRI markers for CeVD (lacunes, WMH, microbleeds, 

intracranial stenosis, cortical infarcts and CMIs) were used to identify the clusters of MRI 

markers in the Epidemiology of Dementia In Singapore study (EDIS). We first performed 

principal component analysis (PCA) to reduce the selected six MRI markers into 

principal components (PCs). PCA revealed two PCs: PC1 was mainly driven by CMIs, 

cortical infarcts, and intracranial stenosis whilst PC2 by WMH, lacunes and microbleeds. 

The largest variance in PC1 was contributed by CMIs whereas in PC2, it was mainly 

driven by WMH. After identifying these components, we further performed regression 

analysis with cognition. In multivariate adjusted models, both PC1 and PC2 were 

independently linked with cognition (Table 14 – 1 and 14 – 2). On adding the two 

components into the same model, an independent association was observed with CIND-

moderate/dementia for both PC1 [Odds ratios (OR): 2.39; 95%CI: 1.26-4.56] and PC2 

[OR: 1.77; 95%CI: 1.11-2.81]. A similar association was also observed with composite Z 

scores (Table 14 – 3). 

Based on the above findings, a total CeVD measure may therefore better account for the 

global effect of CeVD on brain than the individual MRI features. Hence, it would be 

ideal to provide not only an efficient measure to assess the global CeVD burden but also 

to account for the individual contribution of small and large vessel diseases on cognition 
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using a weighted assessment which can be feasibly administered in a clinical and 

research setting. 

CeVD burden score 

In order to explore whether a weighted assessment of total CeVD burden can improve 

understanding of the cognitive consequences of CeVD, we first performed regression 

analysis between different markers of CeVD. The results showed that the presence of 

WMH was significantly correlated with multiple lacunes (φ=0.28; P<0.001) and multiple 

microbleeds (φ=0.27; P<0.001). In addition, multiple lacunes were associated with 

multiple microbleeds (φ=0.27; P<0.001) and cortical infarcts (φ=0.28; P<0.001). 

Intracranial stenosis was associated solely with cortical infarcts (φ=0.30; P<0.001). 

Moderate-to-severe WMH was independently associated with lower global cognition (β 

[SE]=−0.21 [0.16]; P<0.001).  Other CeVD markers did not show an independent 

association with global cognition. Moreover, the presence of any ≥2 CeVD indicators 

was found to be significantly associated with worse global cognitive performance (β 

[SE]=−0.09 [0.18]; P<0.01), independent of WMH. 

On the basis of linear regression coefficient established between CeVD indicators and 

cognitive performance as above, we devised a weighted CeVD burden score with 2 points 

awarded when moderate or severe WMH was present and one point awarded when at 

least 2 CeVD markers were present. 

Hence, a 4-category CeVD burden score was generated as suggested below: 

None/very mild CeVD burden score, 0= none/mild WMH and <2 other CeVD indicators. 

Mild CeVD burden score, 1= none/mild WMH and ≥2 other CeVD indicators. 

Moderate CeVD burden score, 2= moderate/severe WMH and <2 other CeVD indicators. 

Severe CeVD burden score, 3= moderate/severe WMH and ≥2 other CeVD indicators. 
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An inverse association of CeVD burden score with global cognitive score and domain-

specific cognitive performance is shown in figure 14 – 5. Poor cognitive score was 

associated with moderate CeVD, whilst severe CeVD showed further compromised 

cognitive performance in language (p=0.003) and visuomotor speed (p=0.007) domains. 

Moreover, a more impaired visual memory score was found in cases with severe CeVD 

compared to moderate CeVD (p=0.006). The association of the total CeVD burden score 

with cognition suggests that there is a threshold effect: when moderate CeVD burden is 

reached, global cognitive dysfunction begins to occur.  

In summary, we provided two measures of MRI burden. First from the PC analysis which 

showed two components comprising MRI markers of small and large vessel diseases are 

equally important in cognitive dysfunction and secondly from the simple and pragmatic 

CeVD burden score, defined by a combination of WMH and other small and large vessel 

disease markers, which is inversely related to global cognitive status. This further 

confirms that the individual MRI markers are jointly indicative of an underlying CeVD 

and hence might be useful in tracking their impact on cognition and disease over time. 

Our results imply a cumulative effect of different CeVD markers on general cognitive 

ability, possibly reflecting more extensive vascular pathology in the brain that can be 

estimated using a CeVD burden score.  

These results are promising and have already provided valuable clues on the role of 

microvascular changes in CeVD and cognitive dysfunction.   

3.  IMPLICATIONS OF STUDY FINDINGS 

This thesis has highlighted the brain imaging biomarkers of cerebrovascular disease and 

involutional changes involved in cognitive impairment and dementia. Moreover, I have 

also shown that the retinal imaging can be employed as a complimentary tool in studying 
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microvascular and involutional changes in the cerebral vascular and degenerative 

diseases. 

3.1  Cerebrovascular Disease Markers 

As mentioned in chapters 1 and 2, cerebrovascular diseases are a major cause and 

contributors to cognitive impairment and dementia. However, the exact mechanism 

underlying cerebrovascular disease pathology and its functional consequences (cognitive 

impairment) remains unknown. Currently, there are no adequate treatment options 

available. Furthermore, it is also unclear why some patients with cerebrovascular diseases 

develop cognitive dysfunction while others do not. Moreover, as Asian populations are 

reported to have a higher burden of vascular risk factors and cerebrovascular diseases 

compared to Caucasians, it is imperative to identify reliable markers of cerebrovascular 

diseases before an individual develop dementia in order to facilitate development of new 

treatments and prevention strategies. 

Brain Markers of Vascular Changes 

Cerebral microbleeds and CMIs have emerged as new imaging markers of cerebral small 

vessel disease besides the other conventional MRI visible lesions (lacunes and white 

matter hyperintensities). The development of higher resolution and sensitive sequences 

has sparked scientific and clinical interests in these lesions due to their possible link with 

cognitive dysfunction. It has previously been argued that established cerebrovascular MR 

lesions did not fully capture the burden of the total cerebrovascular disease pathology as 

the observed associations with clinical outcomes are often inconsistent and weak.1 Hence, 

microbleeds and CMIs could potentially account for the unexplained variances observed 

in the previous studies. Furthermore, as both these lesions can be feasibly detected on 

3Tesla as shown by our studies, there has been an effort to understand the clinical 
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relevance of these lesions in research settings. As described in this thesis, we were able to 

describe their prevalence and demonstrated their link with cognitive dysfunction 

independent of other cerebrovascular disease markers. Hence, microbleeds and CMIs are 

potentially early markers of cerebrovascular diseases and are related to cognitive decline 

and dementia. 

Besides the cerebral small vessel diseases, intracranial stenosis (ICS) secondary to large 

artery atherosclerosis has been reported to be highly prevalent in Asians due to higher 

prevalence of vascular risk factors. The prevalence of ICS in Chinese is much higher (40-

50%) compared to Caucasians (8-10%).2 In this context, both EDIS and case control 

studies provide an ideal platform to study the prevalence of ICS not only in asymptomatic 

Chinese subjects but also in vascular cognitive impairment, AD, Vascular dementia. We 

have already shown that ICS leads to cognitive dysfunction in the presence of cerebral 

ischemic changes (infarcts and white matter hyperintensities). The cognitive deficits 

develop as a result of microcirculation defects, increased resistance in the small blood 

vessels and reduced vascular reactivity leading to cerebral hypoperfusion. This 

hypoperfusion not only triggers but may also accelerate neurodegenerative process by 

facilitating amyloid beta deposition.3 This further suggests that the ICS does not directly 

reduce cognitive functioning but in fact is a marker of cerebral or generalized 

atherosclerosis.4  

Retinal Markers of Vascular Changes 

We have demonstrated retinal imaging to be a simple and feasible tool for studying 

microvascular changes in cerebrovascular diseases and cognitive impairment. Semi-

automated techniques for analyzing retinal photography are able to quantify subtle 

changes in the retinal vessels. Quantiative parameters such as fractal dimension and 
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tortuosity are of particular interest as they are not affected by pulse wave velocity unlike 

vessel calibers. The association of reduced fractal dimension with cerebral microbleeds in 

our study suggests that this might be an early and sensitive marker of cerebrovascular 

damage in the brain. Retinal vascular changes mirror changes in the cerebral 

microvasculature through impaired vascular perfusion, vessel wall dysfunction and blood 

retinal-brain damage. Moreover, the association of smaller fractal density with preclinical 

cognitive impairment suggests that cerebral hypoperfusion occurs relatively early in the 

course of cognitive dysfunction. This further confirms that microvascular damage is 

common in both cerebrovascular diseases and cognitive impairment. 

Hence, based on our results on brain and retinal vascular markers, we have 

consistently shown that vascular pathology is indeed an important contributor to 

cognitive impairment and dementia. This further suggests that cerebrovascular 

diseases should be accounted for in all the studies focusing on cognitive impairment, 

AD and vascular dementias.  

3.2  Markers of involutional changes 

Neurodegeneration remains the pathological hall mark of AD and is even observed in 

preclinical cognitive impairment and normal aging. This process encompasses neuronal 

loss in both cortical and subcortical structures. Although atrophy is generally considered 

a late biomarker for AD, it is the most versatile and prominent marker of neuronal 

changes in the brain. Hence it is viable to detect subtle changes in the brain which could 

potentially serve as useful markers for tracking diseases progression.  

Brain Markers of Neuronal Loss 

Robust, automated procedures have made it possible to segment gray matter in brain 

parenchyma which is present in both cerebral cortex and deep subcortical structures. Age, 
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sex, race, cardiovascular risk factors and other cerebrovascular disease markers, all 

triggers and affects the involutional changes as shown by our findings from the 

population based study. Moreover, pathological changes possibly induced by risk factors 

in both cortical and subcortical structures gives rise to wide range of cognitive deficits as 

reflected by reduced cognitive performance. The improved techniques of detecting subtle 

cortical thinning and subcortical structure volumes offer insight into early degenerative 

damage and further confirm that these changes are indeed taking place much earlier in the 

dementia cascade. Moreover, the association of subcortical atrophy in both vascular and 

non-vascular cognitive impairments suggests vascular insufficiency promoting 

neurodegeneration or vice versa, thus shedding light onto an additive or synergistic 

effects between AD pathology and cerebrovascular diseases.   

Retinal Marker of Neuronal Loss 

Development in the Optical Coherence Tomography (OCT), has resulted in the 

segmentation of two key neuronal layers; Retinal Nerve Fiber Layer (RNFL) and 

Ganglion Cell Inner Plexiform Layer (GC-IPL). Thinning of the GC-IPL was related to 

both the occipital and temporal atrophy in the brain, suggesting that the GC-IPL is a 

sensitive marker for involutional changes. By using OCT, we have demonstrated that 

cerebral atrophy, measurement of which requires expertise and depends on expensive 

technique, is now easily accessible. Hence, changes in the retinal ganglion cell can serve 

as biomarkers for region specific involutional changes in the brain.   

Thus, these sensitive cerebral and retinal neuronal markers can reflect underlying 

cerebral neuronal damage resulting from AD or cerebrovascular disease related 

pathology and for tracking disease progression.  
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4.  STRENGTHS AND LIMITATIONS 

Strengths and limitations pertaining to EDIS and case-control studies have been 

described in detail in each chapter. In the following sections, I highlight the common 

strengths and limitations relevant to the two studies.  

4.1  Strengths 

The major strengths of the studies include use of the large population based sample 

(EDIS), detailed neuropsychological assessment to diagnose cognitive impairment and 

dementia and availability of 3T MRI scans to grade and classify individuals based on the 

cerebrovascular diseases. Both studies had standardized protocols to assess MRI and 

retinal quantitative changes using semi-automated and automated techniques which 

ensured direct comparison between the two studies. All the final analyses were adjusted 

for possible confounders to show independent effects of imaging markers with cognition.  

4.2  Limitations  

Although efforts were made to minimize the potential source of bias in the two studies, 

there still remain some common limitations which can contribute to following errors: 

Temporal Relationship 

In both the EDIS (cross-sectional) and case control studies, it was difficult to determine 

the temporal relationship between MRI and retinal imaging markers with cognitive 

dysfunction which limits the interpretation of the study findings.  

Selection Bias 

In the EDIS study, 47.2% of the screened positive subjects did not participate in the 

second phase of the study. Compared to the participants, the non-participants were 
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relatively older, less educated, and more likely to have hypertension. Hence it is likely 

that they might have had poor cognitive function and/or had higher prevalence of 

cerebrovascular diseases which could lead to underestimation of effect sizes. Moreover, 

of those who participated, nearly 40% did not complete OCT scanning or had ungradable 

scans for analysis. Therefore, the generalizability of our results may be limited. Moreover 

it would have been ideal to perform the MR imaging in individuals who were cognitively 

normal (passed AMT and PFQ).  This would have allowed us to report on the prevalence 

of incidental findings of cerebrovascular diseases in cognitively asymptomatic 

individuals.  

In relation to case control study, cases and half of the controls were recruited from two 

locations i.e. memory clinic and the community. The control group consisted of relatively 

younger subjects who had less burden of cerebrovascular diseases on their MRI 

compared to cognitively impaired individuals. Also there was a higher burden of vascular 

risk factors (hypertension, hyperlipidemia and diabetes) in this sample which limited the 

generalizability of our results to the general population. 

Information Bias 

The classification of cognitive outcomes (CIND and dementia) together with functional 

loss was corroborated using clinical history which was subjected to underreporting from 

both the patients and caregivers, leading to information bias. In terms of retinal imaging, 

as only one eye was randomly selected without taking into account the severity of the 

disease in either of the eye, this may have led to misclassification bias.  

Confounding 

Even though standardized procedures were used for assessments (collection of risk 

factors, MRI markers and cognitive assessments) in both the studies, there were still 
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differences in the definition of cardiovascular risk factors (medical history vs. single 

measurement of blood pressure, cholesterol and blood sugar) which could have resulted 

in residual confounding. Other possible causes of residual confounding include 

adjustment for categorical variables instead of the continuous ones and the presence of 

unknown confounders which might not have accounted for in both the studies.  

5.  FUTURE PERSPECTIVES AND RECOMMENDATIONS 

Throughout the thesis, I have consistently demonstrated that both the brain and retinal 

imaging markers can provide novel insights into the pathophysiology of cerebrovascular 

disease and cognitive impairment. However, there are still other areas that need to be 

explored and requires attention. 

5.1 Structural to Functional Parameters 

Our present findings were based on the structural changes on both MR and retinal 

imaging which usually indicate irreversible damage. Future studies focusing on the 

functional or dynamic biomarkers would be able to help uncover early pathological 

mechanisms behind cerebrovascular diseases and involutional changes. The future 

directions and recommendations of each biomarker are given below; 

Magnetic Resonance Imaging (MRI) 

Cerebral Microbleeds and Susceptibility Mapping Images 

Susceptibility weighted imaging which is extensively used to grade microbleeds is 

limited by undesirable artifacts created by veins and calcium depositions. Addition of 

MR phase data or quantitative susceptibility mapping images which identify true iron 

containing lesions, can provide better tool for diagnosing microbleeds.5, 6 They could also 

be used in conjunction with Pittsburgh compound B Positron Emission Tomography 
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(PiB-PET)6 which better identifies amyloid deposition and hence might be able to 

provide the clinical relevance of these lesions in relation to CAA. 

Cerebral Microinfarcts, Perfusion and White Matter Integrity 

Our findings provide clues that CMIs are possible expressions of both small vessel and 

large vessel diseases which can be the result of a) small vessel changes, b) microemboli 

secondary to atrial fibrillation or stenosis in an upstream vessel, or c) hypoperfusion. 

Future studies can benefit from the use of transcranial doppler (TCD) or arterial spin 

labeling (ASL) technique with brain density maps to help unravel the perfusion deficits in 

the whole brain and in area surrounding the lesion. Another interesting aspect to explore 

the link between CMIs and heart would be to determine its link with cardiac biomarkers 

(brain natriuretic peptide, troponin T and growth differentiation factor 15) of ischemic 

heart disease, atrial fibrillation and congestive heart failure in conjunction with TCD and 

echo cardiogram. 

Moreover, the eventual outcome of CMIs on cognition remains mixed as evident from 

our samples and previous study.7 Do CMIs directly disrupt neuronal connections or co-

occur in parallel with other cerebrovascular diseases to produce cognitive dysfunction 

remains unknown? A combination of structural sequences together with its effect on 

white matter integrity using diffusion tensor imaging (DTI) or functional connectomes 

can help unravel the true meaning of these lesions. Moving on from cortical to 

subcortical microinfarcts might be another useful strategy to understand complete burden 

of cerebrovascular diseases in cognitive impairment and dementia.  

Intracranial Stenosis and Cerebral Hemodynamics 

We have demonstrated the effects of intracranial stenosis on cognitive performance 

through cerebral ischemic damage. Future studies on intracranial stenosis can benefit 
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from functional imaging such as perfusion techniques (ASL) which is able to detect  

alterations in the cerebrovascular reactivity in both the symptomatic and asymptomatic 

individuals. Detection of cerebral hemodynamics through perfusion may serve as a useful 

strategy in the management of subjects with carotid stenosis even in the absence of signs 

or symptoms of cerebrovascular disease.8 However, the contemporary medical therapy 

(antiplatelet and statin therapy) vs. surgical endarterectomy as means of treatment for 

asymptomatic carotid stenosis remains inconclusive.  Other valuable methods to identify 

high-risk asymptomatic carotid stenosis besides MRA is the transcranial Doppler 

embolus detection, advanced carotid imaging and plaque characterization.9 These various 

imaging parameters can be combined to estimate the individual risk of ischemia.10, 11 

However, their added value needs to be confirmed in large, multicenter studies. 

Cortical Thickness, Subcortical Structural Volumes and White Matter Integrity 

The automated segmentation tool has the advantage of being stable due to the 

cytoarchitectural features of the gray matter and thus is a desirable measure of disease 

related subtle alterations.12 Mesaures of cortical thinning and decreasing subcortical 

structure volume can serve as reliable tools to identify MCI from AD and it can even 

detect, at risk patients, of converting into dementia. Future studies can reliably use these 

techniques in conjunction with tractography and voxel based methods utilizing multiple 

novel analysis approaches. These will include remote effects of cortical thinning in 

relation to subcortical infarcts,13 localization of white matter hyperintensities on white 

matter tracts and their effects on cognitive domains using lesion symptom mapping 

approach14 and relation of cortical thickness and subcortical structure volume with white 

matter integrity using Diffusion Tensor Imaging (DTI) and functional MRI.15    

Retinal Imaging 
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Retinal imaging has the potential to study cerebrovascular diseases and involutional 

changes in the brain. We have demonstrated the association of structural retinal imaging 

in relation to cerebral small vessel and degenerative changes and preclinical cognitive 

impairment. The potential of retinal imaging biomarkers for screening, prognostic and 

assessment purposes need to be further evaluated in future prospective studies. 

Retinal Microvascular Changes and Cerebral Hemodynamics 

Using combined retinal vascular parameters (calibers, fractal dimension and tortuosity) 

instead of individual marker, might be better in providing specificity and etiologies for 

different subtypes of dementia and other diseases (cardiovascular and kidney diseases). 

Moreover, utilizing functional biomarkers from retinal vascular imaging which includes 

dynamic vessel analyzer,16 doppler flowmetry17 and retinal oximeter17 may be able to 

provide insights into cerebral hemodynamics in cerebrovascular diseases and dementia. 

Retinal Neuronal Changes and Cerebral Involutional Changes 

According to our findings, GC-IPL thinning was more related to cerebral gray matter loss 

compared to RNFL. The latter comprises axonal processes of the ganglion cell and hence 

may be more related to white matter changes. This might be better assessed at the 

microstructural level i.e. white matter integrity using DTI and functional connectome. 

Adaptive optics in combination with OCT may be able to provide detailed retinal 

structural images (nerve bundle layers, capillaries and photoreceptors) and hence can be 

used to study amyloid plaque deposition and dynamics.18  

5.2  Longitudinal Design  

As mentioned in the paragraph of limitations, our findings were based on the cross 

sectional and case-control data which limits the cause-effect relationship between the 
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imaging markers and cognitive impairment. Future population based studies using a 

prospective longitudinal design can provide more insights on the temporal relationship of 

these MRI (microbleeds, microinfarcts and ICS) and retinal defined structural changes 

(microstructural and neuronal layer chnages) with the risk of other cerebrovascular 

diseases, cognitive decline and conversion of MCI to dementia.  

5.3  Composite CeVD markers 

Integrating results from PCA and joint CeVD burden score can direct studies towards a 

better understanding of CeVD and should be validated across cohorts with wide age 

ranges, longitudinal design and in animal models. Specifically, studies across a wider age 

range may provide insights into the temporal sequence of CeVD markers, whilst 

longitudinal studies are necessary to demonstrate causality. Animal models are required 

to investigate mechanisms and targets for therapies which will eventually justify 

interventional clinical trials.  

5.4 Furture extension of current work 

Apart from above recommendations, I also suggest the following as future extension of 

the current work:   

1. Determine  interaction between markers of cerebral small vessel diseases and 

explore their synergistic effect on cognitive dysfunction,  

2. A meta-analysis on the previous literature based on these markers and how they 

differ from current findings, 

3. Evaluation of the causal link between markers of cerebrovascular 

diseases/neurodegeneration and cognition using Structural Equation Modelling 

and path analysis, 
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4. Longitudinal extension of the current work by repeating followup of the study 

participants 

5. Adding markers of involutional changes and retinal imaging in both PCA and 

CeVD burden score whihc might be useful to capture complete CeVD burden.   

5.5 Translating Imaging Biomarkers into Clinical Practice 

As cerebrovascular diseases remains the most common cause of cognitive impairment 

and dementia, it seems prudent that, its detection during life requires attention. Due to 

availability of 3T MRI scans in clinical settings, I recommend that the detection of 

micobleeds, microinfarcts and intracranial stenosis should routinely be conducted in 

patients presenting in the clinics with symptoms of cognitive impairment, besides the 

infarcts and white matter hyperintensities. Moreover, they should also be screened in 

subjects who are at risk of cognitive decline and dementia. In addition to MR scanning, 

retinal imaging could potentially be used as a research tool to provide a better picture of 

the underlying cerebrovascular diseases and involutional changes. Lastly, both cerebral 

and retinal imaging markers can provide new clues for the implementation of therapeutic 

and preventive interventions in clinical trials. In particular, these imaging biomarkers can 

be used as a “surrogate” for preclinical brain diseases to show efficacy of a drug in a trial 

setting and to identify and select individuals who will gain most from the use of 

particular drugs or interventions. 

5.  CONCLUSION 

Cerebrovascular diseases are a collective term including both small and large vessel 

alterations and cerebral atrophy. In this thesis, I have investigated the MRI manifestation 

of cerebrovascular diseases (microbleeds and intracranial stenosis) and uncovered clinical 

implications of a new imaging marker (CMIs). Specifically, I was able to show the 
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impact of the cerebrovascular disease markers on cognition and also identify their major 

risk factors. Furthermore, I have also shown that the retinal imaging is an additional 

imaging tool in aiding our understanding of the mechanism behind cerebrovascular and 

involutional changes. Future studies should be directed towards understanding the 

longitudinal implications of these cerebrovascular disease markers, to the 

pathophysiological mechanism that drives the formation of these markers, and their 

impact on structure and function of aging brain. This will direct the studies towards the 

development of new treatment and prevention strategies of cognitive decline and 

dementia. 
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Table 14 - 1: Association of component 1 with cognition 

 

Model I: included age, gender and education 

Model II: included age, gender, education, race, mean arterial blood pressure, total cholesterol, 
random blood glucose, smoking, BMI, peripheral arterial disease 

Model III: included age, gender, race, mean arterial blood pressure, total cholesterol, random 
blood glucose, smoking, BMI, peripheral arterial disease, total intracranial volume, gray matter 
volume, white matter volume, hippocampus volume 

  

 CIND mild 

 (n=173) 

OR (95%CI) 

CIND moderate 

(n=202) 

OR (95%CI) 

CIND moderate/Dementia 

(n=230) 

OR (95%CI) 

Composite Z scores 

(n=579) 

Mean difference (95%CI) 

Model I 1.53 (0.92 - 2.53) 3.06 (1.64 – 5.69) 3.17 (1.71 – 5.87) -0.16 (-0.23; -0.10) 

Model II 1.24 (0.75 - 2.04) 2.50 (1.31 – 4.79) 2.55 (1.33 – 4.88) -0.14 (-0.19; -0.07) 

Model III 1.36 (0.81 – 2.28) 2.46 (1.29 – 4.71) 2.51 (1.32 – 4.80) -0.14 (-0.21; -0.07) 
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Table 14 - 2: Association of component 2 with cognition 

 

Model I: included age, gender and education 

Model II: included age, gender, education, race, mean arterial blood pressure, total cholesterol, 
random blood glucose, smoking, BMI, peripheral arterial disease 

Model III: included age, gender, race, mean arterial blood pressure, total cholesterol, random 
blood glucose, smoking, BMI, peripheral arterial disease, total intracranial volume, gray matter 
volume, white matter volume, hippocampus volume 

  

 CIND mild 

 (n=173) 

OR (95%CI) 

CIND moderate 

(n=202) 

OR (95%CI) 

CIND moderate/Dementia 

(n=230) 

OR (95%CI) 

Composite Z scores 

(n=579) 

Mean difference (95%CI) 

Model I 1.52 (1.09 – 2.10) 1.74 (1.22 – 2.47) 1.78 (1.26 – 2.51) -0.18 (-0.25; -0.11) 

Model II 1.44 (1.00 - 2.07) 1.50 (1.00 – 2.25) 1.54 (1.03 – 2.31) -0.09 (-0.17; -0.03) 

Model III 1.41 (0.96 – 2.06) 1.62 (1.05 – 2.51) 1.67 (1.08 – 2.58) -0.13 (-0.21; -0.05) 
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Table 3: Association of components 1 and 2 with cognition 

 

Model I: included age, gender and education 

Model II: included age, gender, education, race, mean arterial blood pressure, total cholesterol, 
random blood glucose, smoking, BMI, peripheral arterial disease 

Model III: included age, gender, race, mean arterial blood pressure, total cholesterol, random 
blood glucose, smoking, BMI, peripheral arterial disease, total intracranial volume, gray matter 
volume, white matter volume, hippocampus volume 

  

 CIND mild 

 (n=173) 

OR (95%CI) 

CIND moderate 

(n=202) 

OR (95%CI) 

CIND moderate/Dementia 

(n=230) 

OR (95%CI) 

Composite Z scores 

(n=579) 

Mean difference (95%CI) 

Model I 
 
Component 1 
 
Component 2 
 

 
 

1.41 (0.87-2.28) 
 

1.48 (1.07-2.05) 

 
 

2.76 (1.46-5.23) 
 

1.76 (1.21-2.56) 

 
 

2.81 (1.48-5.31) 
 

1.77 (1.22-2.57) 

 
 

-0.16 (-0.22; -0.10) 
 

-0.18 (-0.24; -0.11) 

Model II 
 
Component 1 
 
Component 2 
 

 
 

1.18 (0.73-1.91) 
 

1.43 (0.99-2.06) 

 
 

2.43 (1.27-4.65) 
 

1.59 (1.04-2.44) 

 
 

2.46 (1.28-4.69) 
 

1.63 (1.06-2.49) 

 
 

-0.14 (-0.20; -0.08) 
 

-0.11 (-0.18; -0.03) 

Model III 
 
Component 1 
 
Component 2 

 
 

1.30 (0.79-2.14) 
 

1.39 (0.95-2.04) 

 
 

2.37 (1.24-4.52) 
 

1.73 (1.09-2.74) 

 
 

2.39 (1.26-4.56) 
 

1.77 (1.11-2.81) 

 
 

-0.14 (-0.21; -0.08) 
 

-0.14 (-0.21; -0.06) 
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CHAPTER 14 – FIGURES 
 

Figure 14 - 1: MR qualitative and quantitative markers of cerebrovascular diseases and 
involutional changes 

Schematic representation of MRI qualitative (visible) and quantitative (invisible) markers of 
cerebrovascular disease and involutional changes. It is now possible to detect the subtle changes in the 
brain parenchyma through the automated software. This has led to the better understanding of the 
association between qualitative and quantitative markers of cerebrovascular diseases/involutional 
changes and cognitive dysfunction.  
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Figure 14 - 2: Retinal qualitative and quantitative markers of cerebrovascular diseases and 
involutional changes  

Schematic representation of retinal qualitative and quantitative cerebrovascular disease and 
involutional changes markers. It is now possible to detect the subtle changes in the retinal 
microvascular and neuronal layers through the automated software. This has led to the better 
understanding of the association between qualitative and quantitative markers with 
cerebrovascular diseases and cognitive dysfunction.  
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Figure 14 - 3: Summary of the cerebral and retinal markers of cerebrovascular diseases and neurodegeneration and their link with cognition 
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Figure 14 – 4: Summary of the cerebral and retinal markers of cerebrovascular diseases and involutional changes 
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Figure 14 - 5: Global and domain-based neurocognitive performance in different CeVD severity groups with error bars 
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MABP Mean Arterial Blood Pressure 

MCA Middle Cerebral Artery 

MCI Mild cognitive impairment 

MMSE Mini Mental Status Examination 

MoCA Montreal Cognitive Assessment 
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RR Relative Risk 
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