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Abstract

Temporal database is prevalent in many applications such as �nance, busi-

ness, bank, and health care. With a series of historical records, people are

interested in �nding information in a certain time period or that satis�es

some temporal relationships. On the other hand, keyword search in rela-

tional databases has gained popularity due to its ease of use. Instead of

writing complicated SQLs, people can issue queries with a few keywords.

However, none of the existing works have considered time associated key-

words in the query, which is important and useful.

In this thesis, we extend keyword queries to allow temporal information

to be associated with keywords, as well as support temporal relationships

between two keywords. We design a target-oriented search algorithm to

evaluate such queries. We incorporate overlapping interval partitioning

into the keyword inverted lists to �lter nodes that do not satisfy the time

constraints. We also augment selected nodes in the data graph with time

boundaries to enable time-aware pruning during the search process. Exper-

iments on 3 datasets demonstrate the e�ciency of the proposed approach

to answering complex keyword queries over temporal relational databases.
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Chapter 1

Introduction

Temporal data is prevalent in many applications such as �nance, business,

bank, and health care. This has led to the need to support querying of

temporal data. Initial e�orts has focused on extending structured query

language to temporal databases [25, 18]. However, structured query lan-

guage is not suitable for non-expert or casual users for several reasons:

First, structured query language is di�cult for them to learn and use es-

pecially when the query is complex. Second, users need to understand the

database schema when issuing a query, which is not easy when the schema

structure is complicated or if the number of attributes is large.

The success of web search engine such as Google1 and Baidu2 has shown

that keyword search is intuitive and highly acceptable by common users.

Motivated by this, keyword search over relational databases [1, 15, 10, 7, 13]

has been extensively studied to provide a simple and user-friendly inter-

face to access relational databases without having to write complicated

SQL queries. However, existing relational keyword search techniques as-

sume that keywords are not associated to time constraints and there is no

relationship among keywords in the queries.

We illustrate this with an example. Fig. 1.1 shows a relational database

1www.google.com
2www.baidu.com
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with two snapshot relations (Patient and Doctor) and two temporal rela-

tions (Visit and Symptom). The Visit relation records the date at which

a patient sees a doctor, while the Symptom relation gives the start and end

dates where a patient experiences various symptoms. For example, the �rst

two tuples (id s1 and s2) in the Symptom relation depict that a patient p1

complained of cough and headache in the same consultation visit. These

two di�erent symptoms occurred over di�erent periods of time. On the

other hand, the tuples with id s32 and s33 show that the same patient p3

visited the doctor on di�erent occasions for his cough.

If a user wants to �nd patients who have cough on 1 January 2015 in

this database, s/he can issue a keyword query such as {Patient, cough,

01/01/2015}. However, this query will return additional answers such as

patient p2 who is born on 1 January 2015 but has cough on 10 January

2015. In order to retrieve answers that match the user's intention, we need

to associate the time information to the appropriate keywords. Here, we use

square brackets to indicate this association. Hence, the query {Patient,

cough[01/01/2015]} refers to the patients who have cough on 1 January

2015 while the query {Patient[01/01/2015], cough} refers to the patients

who are born on 1 January 2015 and have cough at some point in time.

We further extend the time information to support queries with inter-

vals. For example, the query {Patient, fever[01/01/2015-01/31/2015]}

will return patient p1 who has fever in the month of January 2015. Besides

associating a keyword with time information, we also support queries with

temporal relationships between keywords. The work in [2] identi�ed 13 tem-

poral relationships between two time intervals including OVERLAP, BEFORE

which form the set of reserved words in our temporal keyword queries. For

example, query {Patient, fever BEFORE cough} will return patient p1

who has fever before cough.

We have seen the need for temporal keyword queries where the key-
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words are associated with time constraints and temporal relationships may

exist among the keywords. Next, we need to be able to answer such tem-

poral keyword queries e�ciently. A closer look at techniques for answering

normal keyword queries over relational databases shows that there are two

main approaches: schema graph approach [26, 22, 29, 15, 1, 14], and data

graph approach [7, 16, 13, 10, 20, 11]. In the schema graph approach,

the database schema is modeled as a directed graph where each node is

a relation and edges are key-foreign key reference between two relations.

The answer to a query is a minimum total joining network of tuples. In

the data graph approach, the database is modeled as a graph where nodes

represent tuples and edges represents key-foreign key. Given a data graph

GD and a query consists of a set of keywords, the problem is to �nd a

set of sub-graphs of GD where each sub-graph contains all keywords in the

query. One naive way to answer temporal keyword queries is to apply these

existing keyword search techniques to obtain an initial set of answers, and

then �lter out those answers that do not satisfy the time constraints. How-

ever, this approach will lead to the generation of a huge set of candidate

answers of which many are wasted as they eventually do not satisfy the

time constraints or the temporal relationships.
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pid YOB Gender Name Ethnicity  did Name Gender 

p1 02/03/1982 F Anna Indian  d1 Ben M 

p2 01/01/2015 M Andy Chinese  d2 Anna F 

p3 09/01/1986 M John Eurasian  d3 Pastia M 

 

vid pid did date  vid pid did date 

v1 p1 d1 05/01/2015  v6 p1 d2 20/04/2015 

v2 p1 d1 12/01/2015  v7 p2 d2 10/01/2015 

v3 p1 d1 25/01/2015  v8 p2 d3 24/01/2015 

v4 p1 d2 02/02/2015  v9 p3 d3 26/04/2015 

v5 p1 d2 26/04/2015  v10 p3 d3 16/04/2015 

 

sid vid Name start end  sid vid Name start end 

s1 v1 cough 01/01/2015 04/01/2015  s18 v5 headache 09/04/2015 18/04/2015 

s2 v1 headache 02/01/2015 05/01/2015  s19 v6 fever 08/04/2015 16/04/2015 

s3 v1 pastia 01/01/2015 03/01/2015  s20 v6 dizzy 13/04/2015 18/04/2015 

s4 v1 dizzy 02/01/2015 04/01/2015  s21 v6 pastia 12/04/2015 16/04/2015 

s5 v2 cough 05/01/2015 07/01/2015  s22 v6 cough 17/04/2015 20/04/2015 

s6 v2 headache 06/01/2015 12/01/2015  s23 v6 headache 13/04/2015 16/04/2015 

s7 v2 pastia 04/01/2015 05/01/2015  s24 v7 fever 03/01/2015 10/01/2015 

s8 v3 fever 20/01/2015 21/01/2015  s25 v7 headache 02/01/2015 06/01/2015 

s9 v3 headache 20/01/2015 25/01/2015  s26 v7 pastia 01/01/2015 05/01/2015 

s10 v3 pastia 20/01/2015 24/01/2015  s27 v8 cough 10/01/2015 15/01/2015 

s11 v4 headache 26/01/2015 29/01/2015  s28 v8 pastia 04/01/2015 24/01/2015 

s12 v4 cough 25/01/2015 01/02/2015  s29 v9 dizzy 05/04/2015 15/04/2015 

s13 v4 flu 27/01/2015 02/02/2015  s30 v9 fever 08/04/2015 13/04/2015 

s14 v4 pastia 19/01/2015 25/01/2015  s31 v9 pastia 07/04/2015 14/04/2015 

s15 v5 fever 09/04/2015 16/04/2015  s32 v9 cough 10/04/2015 26/04/2015 

s16 v5 dizzy 12/04/2015 25/04/2015  s33 v10 cough 14/04/2015 16/04/2015 

s17 v5 pastia 09/04/2015 15/04/2015  s34 v10 pastia 12/04/2015 16/04/2015 

 

Symptom 

Patient 

Visit 

Doctor 

Fig. 1.1. Example Clinic database
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1.1 Contribution

In this thesis, we propose a general framework to support keyword search

over temporal relational databases. Speci�cally, our contribution can be

summarized as follows:

1. We address the problem of keyword search in temporal relational

databases by providing support for complex queries with temporal

relationships between keywords.

2. We introduce time-associated keywords and pre-de�ned temporal re-

lationships in queries, and design a target-oriented search algorithm

to evaluate such queries.

3. We augment selected nodes in the data graph with time boundaries

to enable time-aware pruning during the search process. We also in-

corporate overlapping interval partitioning into the keyword inverted

lists to �lter nodes that do not satisfy the time constraints.

4. Experiment results on 3 datasets demonstrate that the proposed ap-

proach is e�cient and e�ective in pruning invalid answers early.

To the best of our knowledge, this is the �rst attempt to support keyword

search over temporal relational databases.
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1.2 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 reviews the related works, including keyword search in

relational databases and XML databases, as well as works on query

search targets.

• Chapter 3 gives the preliminaries of this thesis, including the de�ni-

tion of temporal keyword query, the answer to the temporal keyword

query, and the temporal ranking model.

• Chapter 4 shows our proposed solution to answer temporal keyword

queries. We �rst present a temporal index used to retrieve matching

nodes for keyword associated with time. Next we show our target

oriented search strategy, and introduce the time aware pruning to

fasten the search process. Then we integrate the above methods and

propose ATQ algorithm to answer keyword queries over temporal

relational databases.

• Chapter 5 presents the results of our experiments. We design queries

for three datasets and show the e�ciency and e�ectiveness of our

algorithm.

• Chapter 6 shows our conclusion as well as directions for future work.
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Chapter 2

Related Work

In this chapter, we review the previous works related to this thesis. First,

we survey the existing keyword search technologies over relational databases

in Section 2.1, including schema based approach and data graph based ap-

proach. Next we include some related works about XML keyword search

in Section 2.2. Then we present works for identifying query search target

in Section 2.3.

2.1 Keyword Search over Relational Database

Keyword search over relational databases allows users to issue simple key-

word queries without having to write complicated SQLs. Existing works

on keyword search over relational databases can be classi�ed into schema

graph approach and data graph approach [28].

2.1.1 Schema based Keyword Search

In the schema graph approach, the database schema is modeled as a di-

rected graph where each node is a relation and the edges are key-foreign

key reference between two relations. The answer to a query is a minimum

total joining network of tuples (MTJNT ).
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DBXplorer [1] �rst uses a symbol table to identify the relations, at-

tributes and rows that contain each keyword. Then they enumerate all

possible join trees that can cover all the query keywords. For each join

tree, they generate a SQL statement to retrieve the answers. Each answer

is presented as one row (either from one relation, or by joining multiple

relations) such that the row contains all the query keywords.

DISCOVER [15] generates a set of candidate networks by performing

a breadth-�rst traversal over the schema graph and limits the number of

joins in the query. To improve query e�ciency, they propose an optimal

execution plan by reusing the shared common components among candidate

networks, i.e. common join structures among SQL statements.

Works in [14] and SPARK [22] focus on �nding top-k answers since

it is ine�ective and ine�cient to return large number of answers. [14]

proposes algorithms for applicable use in di�erent conditions. The Sparse

algorithm avoids evaluating candidate networks that can not contribute

to top-k answers. Global-Pipelined algorithm �rst get top-k MTJNT s for

each candidate network, and then combine them together to get the �nal

results. Each time it selects candidate network that will maximize the

score. Sparse performs best when there are relatively small number of

results, while Global-Pipelined has best performance with large number of

answers. A hybrid algorithm is proposed by �rst estimating the answer

size and then choosing which algorithm to use. The SPARK [22] proposes

a ranking function by extending existing IR techniques by modeling the

joined tree as a virtual document. They takes both AND or OR semantics

into consideration. They �rst �nds a set of candidate networks, then SQL

statements are generated from the top-k networks.
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2.1.2 Data Graph based Keyword Search

In the data graph approach, the database is modeled as a graph where

nodes represent tuples and edges represents key-foreign key. Given a data

graph GD and a query consists of a set of keywords, the problem is to �nd

a set of minimal sub-graphs (Steiner tree) of GD where each sub-graph

contains all keywords in the query.

Banks [7] uses backward expansion search algorithm to �nd Steiner

trees that contain all the keywords. It models the database as a directed

data graph. For each keyword ki, a set of matching nodes Si containing

ki are retrieved by using an inverted list index. Note that the entry of the

inverted list is keyword and the posting list is a list of keys that denote

nodes. They union matching nodes of each keyword into a big set S, i.e.

S =
⋃
i Si. Then |S| copies of Dijkstra's algorithm runs concurrently in

reverse direction to �nd the shortest path. If the iterator for keyword node

u reaches a node v, then the shortest path from v to u has been found. If

there exists node that lies on all the shortest paths of keyword nodes in

each set Si, then an answer containing all keyword is returned. However,

Banks [7] is not e�cient if some keywords have a lot of matching nodes or

the iterator reaches node with large number of incoming edges.

Bidirectional [16] overcomes the limitations of Banks [7] with bidirec-

tional search technique. The main idea is to perform both forward and

backward search to improve search e�ciency. A spreading activation is

proposed to prioritize the search. There are two main iterators namely

incoming iterator and outgoing iterator. The incoming iterator is similar

to backward search iterator in Banks except that it merges iterators for

each keyword matching node into one. The outgoing iterator starts from

the nodes that have been explored by incoming iterator and follows the

outgoing edges to forward search some keyword nodes. They use a spread-

ing activation mechanism to decide the next iterator to be called and the

9



next node to be visited. Matching nodes for each keyword are added to the

incoming iterator, and the initial activation score au,ki for each node u on

keyword ki is computed as follows:

au,ki =
nodePrestige(u)

|Si|
,∀u ∈ Si (2.1)

where Si is the set of matching nodes for keyword ki, and the nodePres-

tige(u) is the node score that can be computed by algorithms such as page-

rank. An attenuation factor µ is used when spreading the activation score:

for each node u with activation score au, it spreads a fraction of score µ∗au

to its neighbors. µ ∗ au is divided equally and distributed to each neighbor

node. Suppose the neighbors number is N , then for each neighbor node v, v

received µ∗au
N

from node u. Node u remains the activation score (1−µ)∗au.

Node with the highest activation will be explored �rst.

Blinks [13] uses a bi-level index to speed up Bidirectional [16] search

process. They �rst partition graph into blocks, then build intra-block index

for each block and block index across blocks. The intra-block index keeps

the shortest distance information from each node to each keyword node

within blocks, and the block index keeps the information at block level.

To answer the query, Blinks [13] �rst retrieve blocks that contain each

keyword, then for each matching node, the intra-block index is used to

check whether this node can reach all the keywords. If the node is a portal

node among blocks, then the block index is used to expand these blocks to

�nd reachable keyword nodes.

DPBF [10] employs a dynamic programming technique to identify the

top-k answers. The primitive state is a single node tree with cost 0 and

keyword set p. There are two basic components in the search process: First,

Tree grow : given a tree T (v, p) rooted at v, and let u be the neighbor node

of v, if the growing tree T (v, p)⊕ (v, u) has smaller cost than T (u, p), then

T (u, p) is updated to the growing tree. Second, Tree merge: If there are

10



two trees T (v, p1) and T (v, p2) rooted at the same node v with di�erent

keyword sets, trees are merged if the cost of merged tree T (v, p1)⊕T (v, p2)

is smaller than the total cost of two trees.

2.2 Keyword Search over XML Database

In this section, we review some related works about keyword search over

XML database. We will only discuss a few classical XML keyword search

works, since our focus in this thesis is relational database. We also present

several works [23, 8] that have explored the keyword search problem over

temporal XML.

XML is modeled as rooted and labeled tree, where each internal node

is element node and each leaf node is value node. Each element node is

assigned a unique Dewey ID. Dewey ID for node u is concatenated with

the IDs in the path from root node to u, separated by dots. There are some

di�erences between tree model of XML and data graph model of relational

database: First, all nodes in data graph are value nodes. Second, XML

tree uses Dewey IDs to label the data nodes, while data graph of relational

database usually uses primary key to label the data nodes.

Answering keyword queries in XML trees is di�erent from that in re-

lational data graph. For the former, they use Dewey IDs to compute the

answers because Dewey IDs contain nodes position information in the XML

trees. For the latter, graph is commonly needed as it contains node con-

nection information.

Xrank [12] proposes a DIL algorithm to answer XML keyword queries.

A data structure Dewey Inverted List is designed to keep the Dewey ID

lists for each keyword, and the Dewey ID lists are sorted by Dewey IDs.

Given a query, Xrank [12] merge the Dewey ID lists for each keyword in

sorted order. Then it reads each node in order and compute the longest

11



common pre�x of of Dewey IDs for di�erent query keywords. This process

is equivalent to �nding the lowest common ancestors (LCAs) of keyword

matching nodes.

However, �nding all LCAs is expensive since as the number of keywords

and number of keyword matching nodes increases, the number of combi-

nations is huge. XKSearch [27] optimizes the search e�ciency by only

considering part of the matching lists. XKSearch [27] starts with the key-

word that has the smallest matching list size. For each matching node u,

only the left match and right match of u is considered in constructing the

answers. The left (right) match v is the nearest node in u's left (right) side

and contain some other keywords. In this way, the number of combinations

to be computed is largely reduced.

[23] is the �rst work on temporal XML keyword search. The temporal

query is composed of three components, namely, non-temporal operand,

temporal operand and temporal operator. E.g., in the query {president

after 2000}, president is non-temporal operand, after is temporal op-

erator and 2000 is temporal operand. Time information is stored as XML

nodes. An index called ClosestTemporalNode is created to determine the

closest temporal node given a node. To answer a temporal query, [23] �rst

separate the query into two parts: non-temporal keywords and temporal

predicates (temporal operator and temporal operand). The non-temporal

keywords are sent to conventional XML keyword search engine to get the

candidate answers. Then, for keyword nodes in answers, the closest tempo-

ral nodes are got by looking up ClosestTemporalNode index. The temporal

node with the shortest distance is checked with temporal predicate, and

only satis�ed answers are returned. There are some limitations in this

work: First, separating temporal predicates from non-temporal keywords

in the search process may result in wrong interpretation as time is inde-

pendent from keywords. Second, it is not e�cient to use a post processing

12



to �lter invalid answers especially when the time constraint is strict.

In [8], the temporal query is de�ned as a set of keywords attached with

time, e.g., {Anna, Peter, 2000}. To answer the temporal query, �rst a set

of candidate answers are got by conventional XML keyword search engine,

then the answers are ranked by a time-aware ranking function. The ranking

function considers both keyword similarity and temporal similarity. For

the temporal similarity, they �rst compute the temporal similarity between

each answer node time ot and query time constraint qt with scoring function

in Equ 2.2. The overall similarity score is the sum of similarity scores for

all nodes in the answer.

scoret =


|qt

⋂
ot|

|qt|×|ot| if qt
⋂
ot 6= ∅

ε otherwise

(2.2)

This temporal similarity function assumes that every node in the answers

should have similar time constraint as the query time constraint. This

assumption may not be true in general.

2.3 Identify Query Search Target

Query search target is the key part of the query, which indicates users'

search intention in mind.

XReal [3] speci�es the search target of XML keyword queries. They pro-

pose three guidelines for inferring a search target node with type T . First,

search target node should be relevant to each keyword in the query, i.e.,

there exists some nodes in its subtree that can cover the query keywords.

Second, search target node should contain enough relevant information. In

other words, search target node should be at a higher level of XML tree.

Third, search target nodes should not be near the root node that contain

overwhelming information. However, these rules are limited to the XML

13



hierarchical structure and cannot be extended easily to relational database

keyword queries.

Expressq [29] speci�es the search target of relational database keyword

queries. They regard node whose keyword matches relation name or at-

tribute name as search target node and uses it as the output object of the

query. Othere works [19, 17, 4] allow users to indicate the query inten-

tion interactively. NaLIR [19] allows users to issue complex queries using

natural language. The query is parsed to query trees and multiple interpre-

tation of query trees are presented to users for veri�cation. Once the query

interpretation is veri�ed, SQL statements are generated to get the answers.

Similarly, MeanKS [17] and ClearMap [4] also allows the user to specify

their interests and search target through a user interface and disambiguate

the query interactively.

Our focus in this thesis is to solve temporal keyword query issues, so

we allow the users to indicate the query search target at the head of query.
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Chapter 3

Preliminaries

In this chapter, we �rst give the syntax of temporal keyword query and

show a variety of example queries based on this query grammar. Then we

de�ne answers to the temporal keyword query and present the temporal

ranking model.

3.1 Temporal Keyword Query

Existing keyword queries do not include time constraints in keywords, so in

this section, we extend keyword queries to allow time associated keywords

as well as temporal relationships between two keywords.

Temporal databases are known to support two time dimensions: the

transaction time and the valid time [24]. Here, we focus on the valid time

where the attribute value holds. The temporal attributes such as �date�,

�start� are prede�ned and we assume that the system is aware of these

attributes.

We represent a temporal keyword query as {head : body} where

1. head is a set of keywords indicating the search target. The search

target is the user's search intention when issuing a query. Here, we

give users the option to explicitly indicate his search target in the

head of the query. If the user does not specify any search target, we
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would use existing methods to identify them [29, 6, 5], and rewrite

the query into the above temporal keyword query format where head

is the search targets identi�ed.

2. body is a set of keywords indicating the query condition. Some of

these keywords may be constrained by time intervals, and the user

may specify temporal relationships among the keywords.

Table 3.1 gives the syntax of temporal keyword query in Backus-Naur

Form (BNF). Based on the grammar, we can formulate a variety of tem-

poral keywords queries as shown in Table 3.2. Queries C1 to C4 are similar

to standard keyword queries, except that the search target is explicitly

speci�ed at the head of the query to facilitate the e�cient retrieval of rel-

evant answers. Queries C5 to C11 involve time information and temporal

relationships between keywords which are not handled by existing keyword

queries.

Table 3.1
Syntax of temporal keyword query in BNF

<query> = { <head> : <body> }

<head> = 𝜖 | <search_list>

<search_list> =
<relation> | <value> | <relation>,<search_list> |

<value>,<search_list>

<body> = <cond> | <cond>, <body>

<cond> = <term> | <term> <temporal_relation> <term>

<term> = <keyword> | <time_associated_keyword>

<keyword> = <relation> | <value>

<time_associated

_keyword>
=

keyword [ <time> ] | keyword [ <time> ,

<time> ]

<temporal_relation> =

BEFORE | AFTER | EQUAL |

MEET | MET BY |  START | STARTED BY |

OVERLAP |  OVERLAPED BY | CONTAIN |

DURING|  FINISH | FINISHED BY 

::

::

::

::

::

::

::

::

::
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Table 3.2
Temporal keyword queries for Clinic database

Query Meaning

C1 {Patient : fever } Find patients who have fever

C2 {Patient : fever, cough} Find patients who have fever and
cough

C3 {Patient, male : fever, cough} Find male patients who have fever and
cough

C4 {Doctor, Patient : fever,

cough }
Find doctors and patients pairs with
fever and cough

C5 {Patient : fever BEFORE cough } Find patients who have fever before
cough

C6 {Patient : fever[1/1/2015,

31/1/2015], cough[1/1/2015,

31/1/2015] }

Find patients who have fever and
cough in January 2015

C7 {Patient : fever[1/1/2015,

31/1/2015] BEFORE

cough[1/1/2015, 31/1/2015] }

Find patients who have fever before
cough in January 2015

C8 {Doctor, Patient :

Visit[1/1/2015, 31/1/2015] }
Find doctors and patients pairs with
consultation visits in January 2015

C9 {Doctor, Patient :

Visit[1/1/2015, 31/1/2015],

fever[1/1/2015, 31/1/2015]}

Find doctors and patients pairs with
consultation visits for fever in January
2015

C10 {Patient : fever[1/1/2010,

1/1/2015] OVERLAP headache}
Find patients with fever and headache,
fever from 2010 to 2015, and fever
overlap headache

C11 {Patient: fever[1/1/2010,

1/1/2015] OVERLAP cough,

headache BEFORE fever[1/1/2000,

1/1/2015]}

Find patients who have fever,
headache and cough, with fever
from 2010 to 2015, fever overlap
cough, headache before fever
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3.2 Answer to Temporal Keyword Query

An answer to a temporal keyword query Q over a data graph G (Fig. 3.1

shows the undirected data graph G of our example database in Fig. 1.1) is

a minimal subgraph which contains nodes that match all the keywords in

Q.

Fig. 3.2 shows the possible answers to the query C2 which �nds patients

who have fever and cough. Nodes that match the keywords in the query

body are highlighted and patients p1, p2, and p3 are retrieved.

Note that the placement of a keyword in the query head or query body

may lead to di�erent answers. For example, Fig. 3.3 shows the possible an-

swers to the query {Patient: male, fever, cough} which include male

patients who have fever and cough (Fig. 3.3(a), Fig. 3.3(b) and Fig. 3.3(c))

as well as female patients who have seen male doctors for fever and cough

(Fig. 3.3(d) and Fig. 3.3(e)). However, if the keyword �male" is in the head

of the query as in query C3, the answers will consist of only Fig. 3.3(a),

Fig. 3.3(b) and Fig. 3.3(c). This allows user to clearly indicate his search

intention.
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Fig. 3.2. Candidate answers for query {Patient: fever, cough}
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Fig. 3.3. Possible answers for query {Patient: male, fever, cough}
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3.3 Temporal Ranking Model

In existing works [7, 16, 10] without considering time constraints, answers

with smaller size are ranked higher. However, this is not enough if the

query is associated with time. As usual, users tend to be more interested

in recent answers. So in this thesis, we consider both answer structure and

temporal freshness into the ranking function.

We use the structure scoring function de�ned in Expressq [29], as shown

in Equ 3.1. The idea behind is that the matching nodes should be closely

connected to the search target nodes, and smaller answers that have fewer

nodes are preferred. Given an answer a, the structure scoring function

scoreS considers two factors: First, the distances from keyword nodes S to

search target nodes ST . Note that dist(st, s) is de�ned as the number of

edges between node st and s. Second, the answer size N , i.e. total number

of nodes in the answer.

scoreS(a) =
|ST | ∗ |S|

N ∗
∑

st∈ST

∑
s∈S

dist(st, s)
(3.1)

When considering answer freshness, we adopt the exponential decay

function scoreT (Equ 3.2) introduced in [21].

scoreT (a) = e−(q.te−a.te) (3.2)

q.te is the latest end time of query time constraints and a.te is the latest

end time of answer time constraints.

The scoring function that considers both answer structure and recency

is obtained by combining scoreS and scoreT , as shown in Equ 3.3.

score(a) = scoreS(a)× scoreT (a) (3.3)
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Chapter 4

Proposed Solution

We design a target-oriented search algorithm to answer keyword queries

over a temporal relational database modelled as a data graph. Existing data

graph keyword search techniques such as BANKS [7] and Bidirectional [16]

regard time constraints as keywords to be matched and will return answers

that may not satisfy users' search intention. A naive approach to process

temporal keyword queries is to extend these methods by �rst ignoring the

time constraints to retrieve all the possible matches and then using the time

constraints to �lter out invalid answers. This is computationally ine�cient.

The proposed algorithm, called ATQ, utilizes the following two strate-

gies to prune the search space:

1. Target-oriented search. Since our query allows users to specify their

search intention, we make use of the schema graph to direct the search

to the relevant nodes.

2. Time-aware pruning. Given that our query contains temporal con-

straints, we augment nodes in the data graph with time boundaries to

quickly determine if a subtree can satisfy the time constraints. Sub-

trees that cannot satisfy the time constraints will not be explored.
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Before we elaborate on these two strategies in the following subsections,

we �rst parse a given query {head : body} into 3 sets:

a. Khead is a set of <k, t> pairs where k is a keyword that occurs in

head and t is the time information associated with k.

b. Kbody is a set of <k, t> pairs where k is a keyword that occurs in body

and t is the time information associated with k.

c. TR is a set of (p1, tr, p2) where p1 ∈ Kbody and p2 ∈ Kbody and tr is

the temporal relationship between p1 and p2.

Consider query C5. We haveKhead = {<Patient, _>},Kbody = {<fever,

_ >, <cough, _ >} and TR = {(<fever, _ >, BEFORE, <cough, _ >)}. For

query C6, we haveKhead = {<Patient, _ >}, Kbody = {<fever, [1/1/2015,

31/1/2015] >, <cough, [1/1/2015, 31/1/2015] >} and TR = ∅. These in-

formation will be utilized in the ATQ algorithm.

The ATQ algorithm begins by �nding matching nodes for the keywords

in Khead and Kbody. Since our keywords may be associated with time in-

formation, it is not e�cient to use the standard keyword inverted list to

retrieve all the tuples that contain the keyword, and then �lter them based

on time constraints. Thus, we introduce a time-augmented index to e�-

ciently retrieve matching nodes that overlap query intervals.

4.1 Temporal Index for Keywords Associated

with Time

In traditional keyword search techniques where time interval is not consid-

ered, the inverted list maps each keyword to the list of nodes containing

that keyword (Fig. 4.1 shows the inverted list for keyword Pastia1).

1
Pastia's line is a clinic symptom named after the Romanian physician Constantin

Chessec Pastia. (https://en.wikipedia.org/wiki/Pastia's_lines)
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Pastia s3 s7 s10 s14 s26 s17 s21 s28 s31 s34 d3

Pastia
s3 s7 s10 s14 s26 s17 s21 s28 s31 s34

d3

Symptom

Doctor

Fig. 4.1. Inverted index for keyword Pastia in Clinic database (Fig. 1.1)

However, retrieving the whole list of matching nodes for a time associ-

ated keyword is wasteful because those nodes whose time intervals do not

satisfy the query time constraints will not contribute to the answers. Thus,

a better idea is to partition the node list along the timeline and retrieve

only the partitions that overlap with the query interval.

Here, we adapt the state-of-the-art interval index technology OIP [9]

to index the keyword nodes by their corresponding time intervals. OIP

[9] divides the whole time range (the earliest date time to the latest date

time) into m base granules, and each partition is composed of one or more

contiguous granules. Given a relation R with time range U = [US, UE], An

OIP con�guration is de�ned as (m, d, o), where m is the number of base

granules, d = d |U |
m
e is the granule length, and o = US is the earliest time of

relation time range.Pastia s3 s7 s10 s14 s26 s17 s21 s28 s31 s34 d3

Pastia
s3 s7 s10 s14 s26 s17 s21 s28 s31 s34

d3

Symptom

Doctor

Fig. 4.2. Augment inverted index in Fig. 4.1 by relation

Before partitioning the list according to time intervals, we �rst group

the list according to their relations since tuples from di�erent relations may

vary considerably in time unit, e.g., patient birthday and symptom time

interval. Fig. 4.2 shows grouped lists for keyword Pastia.

Then OIP partitions are built for the list of nodes that are associated

with time, as shown in Fig. 4.3. Each partition is associated with a time

range [ts, te], and nodes are put into this partition if their time intervals

are contained by [ts, te]. Detailed implementations can be found in [9].
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Pastia

Symptom

Doctor

[11/4/2015, 
20/4/2015]

[6/4/2015, 
15/4/2015]

[1/1/2015, 
25/1/2015]

[1/1/2015, 
5/1/2015]

RAM/DISK

[16/1/2015, 
25/1/2015]

s3, s7, s26s28s21,s34 s10, s14s31, s17

[-¥,+¥] d3

Fig. 4.3. OIP index for keyword Pastia in Clinic database (Fig. 1.1)

4.2 Target-oriented Search

Having found the matching nodes, we construct answers to the query by

connecting them. The work in [7] uses Dijkstra's algorithm to �nd the

connecting paths between all pairs of matching nodes. This leads to over-

whelming number of answers, many of which are complex and do not sat-

isfy the user's search intention. The Occam's razor principle states that the

simplest answer is always favored and this translates to the shortest path

that connects the matching nodes. Here, we utilize the schema graph to

�nd the shortest path between the relations corresponding to the matching

nodes.

Fig. 4.4 shows the schema graph of the Clinic database in Fig. 1.1.

Each node is a relation and an edge denotes the key-foreign key con-

straint between two relations. For example, in query C5 = {Patient:

fever BEFORE cough}, the keyword Patient in Khead corresponds to the

Patient relation, while keywords fever and cough in Kbody correspond to

the Symptom relation. Based on the schema graph, the shortest path be-

tween these relations is via the Visit relation. As such, when we traverse

the data graph to construct query answers, we do not need to visit nodes

that correspond to the Doctor relation as they are not part of the shortest

path.

With this, our target-oriented search consists of two phases. The �rst

phase aims to construct a partial answer by starting from a node that
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Patient DoctorVisit

Symptom

Schema graph

Fig. 4.4. Schema graph of the Clinic database in Fig. 1.1

matches a keyword in Kbody to �nd a connected component involving nodes

that match all the keywords in Khead. The second phase completes the

search process by �nding nodes that match the remaining keywords in

Kbody as well as satisfy the temporal constraints, if any.

Consider the query C5 in Table 3.2 and the data graph in Fig. 3.1. We

start with s8, a matching node for the keyword fever, and visit the node

v3, followed by p1. Note that we do not need to visit d1 as it corresponds to

the Doctor relation which does not lie on the shortest path from Symptom

to Patient (see Fig. 4.4). At this point, we have found a partial answer,

that is, patient p1 with fever. Next, we complete the search by checking

if p1 has a cough which occurs after fever. We traverse the data graph

from p1 to the V isit nodes v1 ,v2, v3, v4, v5 and v6. The nodes v3 and v5

do not have any neighbor nodes that match the keyword cough, whereas

v1 has the matching node s1, v2 has the matching node s5, v4 has the

matching node s12, and v6 has the matching node s22. Comparing the time

intervals of (s1, s8), (s5, s8), (s12, s8) and (s22, s8), only (s12, s8) and (s22,

s8) satisfy the temporal relationship BEFORE. Thus, we return this subtree

(s8− v3− p1− v4− s12) and (s8− v3− p1− v6− s22) as two answers to the

query.

4.3 Time-aware Pruning

In general, a node may have large number of neighbors. Here, we want

to use the temporal constraints in a query to prune subtrees that will not
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contribute to the query answer. We allow nodes in the data graph to be

augmented with time boundaries. In selecting which relations whose nodes

need to be augmented with time boundaries, we focus on relations which

have a key-foreign key constraint. Given two such relations R1 and R2

where R2 contains the foreign key, we estimate the pruning power obtained

by augmenting the nodes of R2 as |R2|/|R1|. For our example clinic appli-

cation, suppose the Patient relation has 100 tuples and the Visit relation

has 5000 tuples, then it will be useful to augment Visit nodes with time

boundaries to direct the search since each patient will have an average of

50 visits.

Let u be a node in the data graph, Su be the set of nodes in the

subtree rooted at u, and Su[R] be the set of nodes in Su that belong to

the relation R. Suppose min(Su[R]) and max(Su[R]) are the earliest and

latest time of the nodes in Su[R]. Then we associate u with the triplet

<R,min(Su[R]),max(Su[R])> to indicate the time boundary of a subset

of nodes for R. We use this information to eliminate subtrees whose time

boundaries are outside the query's time constraints.

Fig. 4.5 shows a data graph where the Visit nodes of patient p1 are

augmented with the time boundaries of the Symptom nodes. For Visit

node v1, it has four Symptom nodes s1, s2, s3 and s4 spanning the pe-

riods [01/01/2015, 04/01/2015], [02/01/2015, 05/01/2015], [01/01/2015,

03/01/2015] and [02/01/2015, 04/01/2015] respectively. Thus, the time

boundary covered by v1 is [01/01/2015, 05/01/2015]. A partial answer for

the query C5 = {Patient: fever BEFORE cough} over this data graph

is s8 − v3 − p1, indicating that patient p1 has fever from 20/01/2015 to

21/01/2015.

Recall that the BEFORE relation in Allen's Algebra [2] requires that the

start time of the second interval must be greater than the end time of the

�rst interval. Hence, when we try to check if p1's fever is BEFORE cough, we
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do not need to check all p1's Visit nodes. Instead, only cough that occurs

after 21/01/2015 up to the current date (currentDate) can contribute to

the query answer. Our time-aware pruning strategy determines a valid

range [21/01/2015, currentDate] and check if this range overlaps with the

time boundaries of p1's Visit nodes. In this example, we only need to

traverse v3, v4, v5 and v6 since their time boundaries overlap with the valid

range.

On the other hand, suppose cough is associated with a time interval as in

query {Patient : fever[1/1/2015, 31/1/2015] BEFORE cough[1/1/2015,

31/1/2015]}. Then the valid range for cough should be [21/01/2015,

31/1/2015]. In this case, only the time boundary of v3 and v4 overlap

with this valid range. When checking the symptom nodes connecting to v3

and v4, we �nd an answer s8−v3−p1−v4−s12 that contains both keyword

fever and cough, and has satis�ed temporal relationship.

Table 4.1 shows the valid ranges corresponding to all possible temporal

relationships when we are given the interval of a partial answer I1 = [s1, e1]

and the interval I2 = [s2, e2] of a time-associated keyword. A dash entry

(′−′) indicates that there is no valid range, and the partial answer can be

pruned in this case.
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Table 4.1
Computation of valid range

BEFORE MEET OVERLAP FINISHED BY CONTAINS STARTS EQUALS

[s2,e2] - - - - - -

[s2,e2] [e1,e2] - - - - -

[e1,e2] [e1,e2] [s2,e1] [s2,e1] [s2,e1] - -

- [e1,e2] [s2,e2] [s2,e1] [s2,e1] - -

- - [s2,e2] - [s2,e2] - -

[e1,e2] [e1,e2] [s2,e1] [s2,e1] [s2,e1] [s1,e2] [s1,e1]

- [e1,e2] [s2,e2] [s2,e1] [s2,e2] [s1,e2] [s1,e1]

- - [s2,e2] - [s2,e2] [s1,e2] -

[e1,e2] [e1,e2] [s1,e1] [s2,e1] [s1,e1] [s1,e2] [s1,e1]

- [e1,e2] [s1,e2] [s2,e1] [s1,e1] [s1,e2] [s1,e1]

- - [s1,e2] - [s1,e2] [s1,e2] -

- - - - - - -

- - - - - - -

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

I1
I2

4.4 Algorithms

We incorporate the target oriented search strategy and the time-aware

pruning strategy into our ATQ (Answering Temporal Query) algorithm

(see Algorithm 1). We �rst parse the input query into three sets: Khead

and Kbody keep the keywords and their associated time information for the

query's head and query's body respectively, while TR keeps the temporal

relationships among these keywords (Line 1).

For each tuple <k, t> in the set Khead, we retrieve the set of relations

corresponding to the nodes that match k (Lines 2-3). For each tuple <k, t>

in the set Kbody, we retrieve the set of nodes that match k and satisfy its

associated time constraint t (Lines 4-5). We select the set Vkmin
that has

the least number of matched nodes for a keyword in Kbody to start the

search (Line 6). For example, in query C4, the nodes that match the
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keyword fever are {s8, s15, s19, s24, s30}, and the nodes that match cough

are {s1, s5, s12, s22, s27, s32, s33}. We start the search with the smaller set as

it enables us to narrow the search space quickly.
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Fig. 4.6. Construction of a partial answer tree for query C4

For each node v ∈ Vkmin
, we search from v along the shortest path based

on the schema graph to connect nodes that can match the keywords in

Khead (Lines 7-25). We maintain two stacks: NodeStack keeps the traversed

nodes in G, and Partial stores the subtrees of partial answers built during

the search process. We also maintain a MatchList to keep track of the

keywords in Khead that we have found so far. In our example, suppose we

start with node s8. We �rst add it to NodeStack, and a partial tree is

created with s8 as shown in Fig. 4.6(a). Since s8's relation does not match

any keyword in Khead, we get its relevant neighbor v3 in the shortest path

{Symptom−V isit−Patient}, add v3 to NodeStack and connect v3 to the

partial answer tree (see Fig. 4.6(b)).

When a node v matches some keyword in Khead, we add v toMatchList

(Lines 14-15). If not, we call function getRelevantNeighbours() to �nd the

set of nodes to traverse next (Lines 26-39). From Fig. 4.6(b), we see that v1

does not match any keyword inKhead. Hence, we obtain v1's relevant neigh-

bor p1. Since p1's relation matches Patient, we add p1 to the MatchList

and connect p1's node to the partial answer tree. At this point, MatchList

has not satis�ed Khead as we still need to match Doctor. Hence, the al-
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Algorithm 1: ATQ Algorithm
input : query Q, data graph G, schema graph H
output: Result set Results

1 Parse query Q to get Khead, Kbody, and TR
2 foreach tuple 〈k, t〉 in Khead do

3 Rk ← the set of relations corresponding to the nodes that match k

4 foreach tuple 〈k, t〉 in Kbody do

5 Vk ← the set of nodes in G that match k and satisfy the time
constraint t

6 Let kmin be the keyword in Kbody with the least number of matched
nodes,

7 foreach v ∈ Vkmin
do

8 Initialize NodeStack, Partial to empty stacks;
9 treev ← create a tree with root v
10 push(v, NodeStack); push(treev, Partial)
11 MatchList← ∅
12 while NodeStack is not empty do

13 u ← pop(NodeStack); treev ← pop(Partial)
14 if u's relation matches some keyword in Khead then

15 add u to MatchList
16 if MatchList satisfy Khead then

17 if treev satisfy Kbody then

18 add treev to Results

19 else

20 W ← getLCA(MatchList)
21 foreach w ∈W do

22 let tree′v be a copy of treev
23 tree ← reverseSearch(tree′v, w, Kbody , TR)
24 add tree to Results

25 MatchList← ∅

26 R =
⋃
k∈Khead

Rk

27 N = getRelevantNeighbours(u, R, H)
28 foreach node n in N do

29 let tree′v be a copy of treev
30 connect n to tree′v
31 push(n, NodeStack)
32 push(tree′v, Partial)

33 Function getRelevantNeighbours(u, R, H)
34 N ← ∅
35 Let Nu be the set of nodes that are one hop away from u
36 foreach v in Nu do

37 if relation(v) is on the shortest path from relation(u) to some
relation in R in the schema graph H then

38 N ← N
⋃
{v}

39 return N
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gorithm continues with the next relevant neighbor of v1. This time, d1 is

found and is added to the MatchList. The partial answer tree obtained is

shown in Fig. 4.6(c).

When MatchList satis�es Khead, we check if the partial answer treev

satis�es Kbody (Lines 16-17). If so, treev is an answer to the query and we

add it into the result set Results (Lines 18). Otherwise, we get the set of

lowest common ancestors (LCA) for the nodes in MatchList (Lines 20).

In our example, since p1's relation matches the keyword Patient in Khead

and d1's relation matches the keyword Doctor in Khead, we add p1 and

d1 to MatchList. Although MatchList satis�es Khead, the partial answer

tree does not satisfy Kbody. As such, we obtain the LCA of the nodes in

MatchList, that is, {v1, v2, v3} in this case.

For each node in the LCA set, we call Algorithm reverseSearch to �nd

nodes that match the remaining keywords in Kbody (Lines 21-23). This

algorithm returns a tree that is an answer to the query and is added to

the result set (Line 24). Algorithm reverseSearch (see Algorithm 2) takes

as input a partial answer tree and tries to construct the complete answer

by �nding nodes that match the remaining keywords in Kbody. It also

uses a stack NodeStack to keep track of the nodes to be processed and calls

function getRelevantNeighbours() to �nd the set of nodes to traverse next

(Lines 5-6). For each node u to be traversed, if u matches a keyword in

Kbody, we check that u satis�es the time constraints and connect u to the

answer tree (Lines 7-10). When tree matches all the keywords in Kbody, we

have an answer (Lines 11-12). If u does not match a keyword in Kbody, we

perform time-aware pruning by calling the function hasOverlap() (Lines

14-17). This function computes the valid range and checks if this range

overlaps with the time boundary of node u (Lines 19-26).

Continuing with our example in Fig. 4.6, we try to match the remaining

keyword cough inKbody. The relevant neighbors of v1 are s1, s2, s3, s4. Since
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s1 matches the keyword cough, s1 is connected to the partial tree as shown

in Fig. 4.6(d). We return this tree as an answer to query C4 since it contains

all the keywords in Kbody.

Algorithm reverseSearch (see Algorithm 2) takes as input a partial an-

swer tree and tries to construct the complete answer by �nding nodes that

match the remaining keywords in Kbody. It also uses a stack NodeStack to

keep track of the nodes to be processed and calls getRelevantNeighbours()

function to �nd the set of nodes to traverse next (Lines 5-6). For each node

u to be traversed, if u matches a keyword in Kbody, we check that u satis�es

the time constraints and connect u to the answer tree (Lines 7-9). When

tree matches all the keywords in Kbody, we have an answer (Lines 10-11).

If u does not match a keyword in Kbody, we perform time-aware pruning by

calling the function hasOverlap() (Lines 13-16). This function computes

the valid range and checks if this range overlaps with the time boundary

of node u (Lines 18-25).
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Algorithm 2: reverseSearch (tree, v, Kbody, TR )
input : partial answer tree, LCA node v, Kbody, temporal relationship

TR
output: result tree

1 Initialize NodeStack to an empty stack
2 push(v, NodeStack)
3 while NodeStack is not empty do

4 u ← pop(NodeStack)
5 Let R be the set of relations that correspond to the remaining

keywords in Kbody that has not been matched in tree
6 N = getRelevantNeighbours(u, R, H)
7 foreach node u in N do

8 if u matches keyword in Kbody then

9 if u satis�es the time constraints then

10 connect u to tree
11 if tree matches all the keywords in Kbody then

12 return tree

13 else

14 Let I be the interval constrained by tree
15 if hasOverlap( I, u, Kbody, TR) then
16 connect u to tree;
17 push(u, NodeStack)

18 return ∅

19 Function hasOverlap( I, u, Kbody, TR)
20 foreach 〈k, t〉 ∈ Kbody do

21 Let TRk ⊂ TR be the set of temporal relationships involving k
22 foreach tr ∈ TRk do
23 range ← getValidRange(I, tr, t)
24 if range overlap Boundary[u] then
25 return true

26 return false
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Chapter 5

Performance Study

In this section, We evaluate the performance of ATQ and compare it with

BANKS [7] and Bidirectional [16]. All the algorithms are implemented in

Java and experiments are carried out on a 1.4 GHz Intel Core i5 CPU

with 4 GB RAM. Each experiment is repeated 10 times and we report the

average results. We use the following three datasets in our experiments.

1. Clinic dataset 1. It contains information about patient consultations

with doctors. We use 565 records from the real world dataset as

seeds whereby we generate 50 visits per day from 2006 to 2016, and

randomly choose a patient and a doctor for each generated visit. For

each visit, we randomly assign up to 5 symptoms. The start date of

each symptom varies between 1 to 14 days before the visit date. The

end date of each symptom is set to be the visit date.

2. Employees dataset 2. This dataset contains the job histories of em-

ployees, as well as the departments where the employees have worked

in from 1985 to 2003.

3. ACMDL dataset 3. This publication dataset is contains information

about authors, proceedings, editors and publishers from 1969 to 2011.

1This dataset is not available due to patient con�dentiality.
2https://dev.mysql.com/doc/employee/en/
3http://dl.acm.org/
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Table 5.1
Dataset schema and the number of tuples for each relation

Clinic # of tuples

Doctor(did, dname, gender) 149

Patient(pid, pname, gender, birthday, ethnicity, postalCode) 1,033

Visit(vid, date, pid, did) 182,600

Symptom(sid, sname, startDate, endDate, vid) 430,470

Employees # of tuples

Department(dept_no, dept_name) 9

Employees(emp_no, fname, lname, gender, hire_date) 300,024

Dept_emp(deid, emp_no, dept_no, from_date, to_date) 331,603

Title(tid, title, emp_no, from_date, to_date ) 443,308

ACMDL # of tuples

Publisher(publisherid, code, name) 40

Proceeding(procid, title, date, area, publisherid) 4,176

Editor(editorid, fname, lname) 20,008

Edit(editorid, procid) 20,712

Paper(paperid, procid, date, ptitle) 248,185

Author(authorid, fname, lname) 257,694

Write(authorid, paperid) 550,000

Table 5.1 shows the schema of these datasets and the number of tu-

ples in each relation. We design two sets of queries for each dataset. The

�rst set does not involve any time constraints, while the second set con-

tains keywords associated with time information and temporal relation-

ships. Queries for the Clinic dataset is shown in Table 3.2, while queries

for the Employees and ACMDL are listed in Tables 5.2 and 5.3 respectively.

38



Table 5.2
Temporal keywords queries for Employees dataset

Query Intended meaning

E1 {Employee: Engineer } Find employees who are engineers.

E2 {Employee: Engineer, Manager } Find employees who have been engi-
neer and manager before.

E3 {Employee, Female: Engineer,

Manager }
Find female employees who have been
engineer and manager before.

E4 {Employee, Department:

Engineer}
Find employees who are engineers and
their departments

E5 {Employee: Engineer BEFORE

Manager}
Find employees who are engineers be-
fore coming managers.

E6 {Employee:
Manager[1/1/1990,1/1/2000],

Engineer[1/1/1990,1/1/2000]}

Find employees who have been engi-
neer and manager from 1990 to 2000

E7 {Employee: Manager[1/1/1990,

1/1/2000] BEFORE

Engineer[1/1/1990,1/1/2000]}

Find employees who are engineers be-
fore becoming managers from 1990 to
2000

E8 {Employee, Department:

Engineer[1/1/1990,1/1/2000]}
Find employees and their departments
where these employees are engineers
from 1990 to 2000

E9 {Employee, Department:

Manager[1/1/1990,1/1/2000],

Engineer[1/1/1990,1/1/2000] }

Find employees who have been engi-
neer and manager from 1990 to 2000
and their departments

E10 {Employee: Engineer[1/1/1990,

1/1/2000] MEET �Senior

Engineer�[1/1/1990,1/1/2000]}

Find employees that the end time of
title �engineer� is the same as the start
time of �senior engineer� from 1999 to
2000

E11 {Employee: �Assistant

Engineer�[1/1/1990,

1/1/2000] MEET Engineer,

Engineer MEET �Senior

Engineer�[1/1/1990,1/1/2000]}

Find the employees that the end time
of �assistant engineer� is the same as
the start time of �Engineer�, and the
end time of �engineer� is the same as
the start time of �senior engineer� from
1990 to 2000
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Table 5.3
Temporal keywords queries for ACMDL dataset

Query Intended meaning

A1 {Author: Integration } Find authors who has published pa-
pers on �Integration�

A2 {Author: Integration,

Cleaning}
Find authors who has published pa-
pers on �Integration� and �Cleaning�

A3 {Proceeding, SIGMOD:

Integration}
Find papers published in the �SIG-
MOD� proceeding that are on �Inte-
gration�

A4 {Publisher, Proceeding: Data,

Integration }
Find publishers and proceedings pair
where the proceedings contain papers
on �Data Integration�

A5 {Author: Media BEFORE AI } Find authors who have published pa-
pers related to �Media� prior to pub-
lishing papers related to �AI�

A6 {Author:
Media[01/01/2000,01/01/2008],

AI[01/01/2000,01/01/2008] }

Find authors who have published pa-
pers related to both �Media� and �AI�
from 2000 to 2008

A7 {Author:
Media[01/01/2000,01/01/2008]

BEFORE AI[01/01/2000,

01/01/2008]}

Find authors who have published pa-
pers related to �Media� before publish-
ing papers related to �AI� from 2000 to
2008

A8 {Proceeding, Publisher:

Integration[1/1/2000,1/1/2008]}
Find the publishers and proceedings
that have included papers on �Integra-
tion�from 2000 to 2008

A9 {Proceeding, Publisher:

Integration[1/1/2000,

1/1/2008], Data[1/1/2000,

1/1/2008]}

Find the publishers and proceedings
that have included papers on �Data In-
tegration�from 2000 to 2008

A10 {Author: WWW AFTER CSCW } Find authors who published papers in
proceeding WWW before proceeding
CSCW

A11 {Author : SIGMOD AFTER KDD,

KDD AFTER WWW}
Find authors who published papers in
Proceedings SIGMOD after KDD and
KDD after WWW
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5.1 Experiments on Queries without Time Con-

straints

We �rst evaluate the performance of our approach using queries that do

not involve time information. These queries correspond to C1 to C4 in

Table 3.2, E1 to E4 in Table 5.2, and A1 to A4 in Table 5.3. We compare the

runtimes of ATQ with Banks [7] and Bidirectional [16]. Since both Banks

and Bidirectional do not handle keywords that match relation names, we

modify these algorithms to consider all the nodes of the queried relation as

matching nodes. For fair comparison, we report the time taken by these

methods to return the �rst 20 answers.

Fig. 5.1 shows the results for the 3 datasets. We observe that ATQ

outperforms Bidirectional and Banks for all the queries, with Banks being

the slowest. This indicates the advantage of our target-oriented search

strategy. For the Clinic dataset, we see that the runtimes of ATQ for

queries C2 and C3 are lower than C1 although these queries have more

keywords than C1. This is because ATQ will make use of the keyword

with the least number of matching nodes to generate a small set of partial

answers. This reduces the time needed to check if these partial answers are

valid during the reverseSearch process to obtain the complete answers.

On the other hand, the runtimes of ATQ for query C4 increases. This is

because C4 has an additional search target relation in the head of the query,

leading to a larger number of matching nodes, thus the time needed to �nd

the partial answers is longer. We observe similar trends for the queries on

the Employees and ACMDL datasets.
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Fig. 5.1. Runtime for queries without time constraints
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5.2 Experiments on Queries with Time Con-

straints

Next, we evaluate the performance of our approach to process keyword

queries that involve time. These queries correspond to C5 to C11 in Ta-

ble 3.2, E5 to E11 in Table 5.2, and A5 to A11 in Table 5.3. In particular,

we allow di�erent types of temporal relationships in the same query such

as C11, and we also allow keywords to be optionally associated with time

intervals such as C10, C11 and E11.

We extend existing methods Banks and Bidirectional to handle tem-

poral keyword queries by ignoring the time intervals and temporal rela-

tionships in these queries and processing the keywords to obtain candidate

answers. Answers that do not satisfy the time constraints are �ltered by a

post-processing step.

At the same time, we implemented ATQ−, a variant of the ATQ algo-

rithm which does not utilize the augmented data graph (time boundaries

in the nodes) and the overlapping time interval in the inverted lists for the

keywords. Instead, ATQ− also has a post-processing step to �lter invalid

answers.

Fig. 5.2 shows the results for the 3 datasets. We observe that both

ATQ and ATQ− outperform Banks and Bidirectional for all the queries by

a large margin. Further, we see that time-aware pruning strategy enables

ATQ to be faster than ATQ−. In particular, for query C7, A7, we observe

that ATQ is very much faster than ATQ−. This is because the combination

of time interval constraints and temporal relationships leads to a narrow

valid range that allows more invalid partial answers can be pruned. For

E7, the pruning e�ect is not as signi�cant as C7 and A7 here, this is due

to nature of Employees dataset, as for each employee, the number of titles

are limited.
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44



5.3 Experiments on Scalability

In this section, we evaluate the scalability of the proposed approach from

two aspects: dataset size and query time interval length.

For each dataset, we generate di�erent sizes by taking tuples from dif-

ferent years. Table 5.4 shows the various dataset sizes generated.

Fig. 5.3 shows the average runtime of ATQ, ATQ−, Bidirectional and

Banks in returning the �rst 20 answers for the queries in Table 3.2, Ta-

ble 5.2 and Table 5.3. We observe that ATQ outperforms emphATQ−,

Bidirectional and Banks. Further, as the dataset sizes increases, the run-

time of Bidirectional and Banks increase at a much faster pace compared

to ATQ. This demonstrates clearly the scalability of ATQ in answering

temporal keyword queris.

Next, we evaluate the scalability with respect to di�erent query interval

lengths. We use the following query templates to generate queries of di�er-

ent interval lengths by replacing ts and te with the start and end periods

of the corresponding datasets in Table 5.4.

Clinic : {Patient: fever[ts, te] OVERLAP cough[ts, te]}

Employees : {Employee:Engineer[ts, te] MEET �Senior Engineer�[ts, te]}

ACMDL : {Author:Media[ts, te] BEFORE AI[ts, te]}

Fig. 5.4 shows the runtimes of queries with di�erent time interval lengths.

We see that with the increase of time interval lengths, the runtimes of

ATQ−, Bidirectional and Banks decrease. This is because these algorithms

apply the time constraints only after the candidate answers have been gen-

erated. When the query time interval becomes larger, more tuples will

satisfy the time constraints, hence the time taken to generate the �rst 20

answers is faster.
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Table 5.4
Datasets generated for scalability experiments

(a) Clinic

Start Period End Period Dataset Size
01/01/2015 31/12/2015 70K
01/01/2014 31/12/2015 140K
01/01/2013 31/12/2015 210K
01/01/2012 31/12/2015 280K
01/01/2011 31/12/2015 350K
01/01/2010 31/12/2015 420K
01/01/2009 31/12/2015 490K
01/01/2008 31/12/2015 560K
01/01/2007 31/12/2015 630K
01/01/2006 31/12/2015 700K

(b) Employees

Start Period End Period Dataset Size
01/04/1999 31/08/2002 100K
01/11/1997 31/08/2002 200K
01/06/1996 31/08/2002 300K
01/01/1995 31/08/2002 400K
01/08/1993 31/08/2002 500K
01/02/1992 31/08/2002 600K
01/06/1990 31/08/2002 700K
01/09/1988 31/08/2002 800K
01/12/1986 31/08/2002 900K
01/01/1986 31/08/2002 1000K

(c) Employees

Start Period End Period Dataset Size
01/04/2010 30/06/2011 100K
01/03/2009 30/06/2011 200K
01/10/2007 30/06/2011 300K
01/05/2006 30/06/2011 400K
01/06/2004 30/06/2011 500K
01/08/2001 30/06/2011 600K
01/11/1997 30/06/2011 700K
01/10/1992 30/06/2011 800K
01/07/1983 30/06/2011 900K
01/01/1969 30/06/2011 1000K
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Fig. 5.3. Runtime for queries with di�erent dataset sizes
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Fig. 5.4. Runtime for queries with di�erent time interval length
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5.4 Experiments on Search Quality

In this section, we want to evaluate the search quality by checking whether

the returned answers satisfy search intentions, i.e., all the keywords in the

query body must be closely related to search targets in the query head. We

use the mean average precision (MAP ) as the metric, where MAP@k for

a set of queries Q is the mean of the average precision scores of k results

for each query q ∈ Q, de�ned as follows:

MAP@k =
1

|Q|
∑
q∈Q

(1
k

k∑
i=1

P (i)
)

(5.1)

where P (i) is the precision at answer position i.

We evaluate the answers returned by ATQ and Bidirectional. We sep-

arate the queries into two sets: the �rst set consists of simple queries (C1

to C3, A1 to A3, E1 to E3), while the second set are complex queries with

more constraints or multiple search targets (C4 to C11, A4 to A11, E4 to

E11). Table 5.5 shows the MAP values for these two sets of queries.

We observe that ATQ can always return relevant answers for both sim-

ple and complex queries for all the datasets. This demonstrates the e�ec-

tiveness of the proposed target oriented search algorithm.

Bidirectional can return highly relevant answers for simple queries, with

MAP value 1 for Clinic and Employees. For ACMDL dataset, some ir-

relevant answers are returned for query A2 = {Author: Integration,

Cleaning} with structure Author-Write-Paper-Proceeding-Paper, which

means keywords Integration and Cleaning are connected because they

are from the same proceeding but not the same author. We expect answers

are returned with structure Paper-Write-Author-Write-Paper, i.e., two pa-

pers are written by the same author.

For complex queries, Bidirectional can return all relevant answers for

Employees dataset. However, the MAP drops for Clinic and ACMDL
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dataset. This is because the database schemas of Clinic and ACMDL

are more complex than Employees. On the other hand, with the increas-

ing number of answers returned, MAP decreases for Clinic and ACMDL

dataset. More meaningless answers are returned by connecting keyword

nodes from di�erent search target nodes. For example, meaningless an-

swers to query C4 with �fever� and �cough� from di�erent patients are re-

turned. For query A4, meaningless answers with �data� from paper of one

proceeding and �integration� from paper of another proceeding, and they

are connected because they are from the same publisher. This is di�erent

from the intended answer meaning with �data� and �integration� connecting

to the same proceeding and publisher pair.

Table 5.5
MAP with di�erent number of answers

(a) Clinic

Query Simple Complex
Algorithm ATQ Bidir ATQ Bidir
MAP-10 1.0 1.0 1.0 0.21
MAP-20 1.0 1.0 1.0 0.17
MAP-30 1.0 1.0 1.0 0.16
MAP-40 1.0 1.0 1.0 0.15
MAP-50 1.0 1.0 1.0 0.15

(b) Employees

Query Simple Complex
Algorithm ATQ Bidir ATQ Bidir
MAP-10 1.0 1.0 1.0 1.0
MAP-20 1.0 1.0 1.0 1.0
MAP-30 1.0 1.0 1.0 1.0
MAP-40 1.0 1.0 1.0 1.0
MAP-50 1.0 1.0 1.0 1.0

(c) ACMDL

Query Simple Complex
Algorithm ATQ Bidir ATQ Bidir
MAP-10 1.0 1.0 1.0 0.53
MAP-20 1.0 0.87 1.0 0.33
MAP-30 1.0 0.80 1.0 0.22
MAP-40 1.0 0.77 1.0 0.16
MAP-50 1.0 0.75 1.0 0.13
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5.5 Case Study

Finally, we present a few case studies to demonstrate the e�ectiveness of

ATQ in returning relevant answers to the queries.

Fig. 5.5 and Fig. 5.6 show the �rst 3 answers returned by ATQ and

Bidirectional for query C10 = {Patient: fever[1/1/2010, 1/1/2015]

OVERLAP headache}. We �nd all the answers returned by ATQ in Fig. 5.5

satisfy the query conditions, while the answer in Fig. 5.6(c) is not mean-

ingful as the symptom headache and fever are from two di�erent patients

with the same doctor d0.

Fig. 5.7 and Fig. 5.8 show the �rst 3 answers returned by ATQ and

Bidirectional for query C11 = {Patient: fever[1/1/2010,1/1/2015]

OVERLAP cough, headache BEFORE fever[1/1/2000, 1/1/2015]}. C11

is more complex than C10 since it contains more keywords and temporal

relationships. We �nd that ATQ is still able to return the correct an-

swers whereas Bidirectional returns more irrelevant answers. For example,

Fig. 5.8(b) shows an incorrect answer as the three symptoms do not be-

long to the same patient. Similarly, Fig. 5.8(c) shows an answer where the

three symptoms belonged to di�erent patients who are treated by the same

doctor.
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p510

s425726

v158576

s426731

glandular fever
[24/8/2014, 
7/9/2014]

headache
[20/8/2014,
31/8/2014]

Mona Ryan
2006-05-07
FEMALE
Boyanese

v158202

(a)

p576

s312230

v115536

s310877

rheumatic fever 
[23/4/2012, 
29/4/2012]

headache
[28/4/2012, 
8/5/2012]

Robin Lambert
1977-05-15
FEMALE
Indonesian

v116005

(b)

p216

s285166

v106330

s285784

rheumatic fever 
[17/10/2011, 
28/10/2011]

headache
[15/10/2011, 
24/10/2011]

v106104

Faye Maldonado
1995-12-09
FEMALE
Malayalee

(c)

Fig. 5.5. First three answers returned to query C10 by ATQ
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p114

s291171

v108640

s291877

rheumatic fever 
[2/12/2011, 
13/12/2011]

headache
[4/12/2011, 
8/12/2011]

Olive Vasquez
1964-12-06
FEMALE
Ceylonese

v108385

(a)

p216

s285166

v106330

s285784

rheumatic fever 
[17/10/2011, 
28/10/2011]

headache
[15/10/2011, 
24/10/2011]

Faye Maldonado
1995-12-09
FEMALE
Malayalee

v106104

(b)

p984

s324726

v120709

s291877

rheumatic fever 
[5/8/2012, 
11/8/2012]

headache
[1/8/2012, 
8/8/2012]

Ashley Love
1997-01-20
FEMALE
Indonesian

v120598

d0

v33272

(c)

Fig. 5.6. First three answers returned to query C10 by Bidirectional
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v163186

p456

s421344

v162966

s439068s438450

nocturnal cough
[29/11/2014,
8/12/2014]

glandular fever 
[1/12/2014,
4/12/2014]

headache 
[30/7/2014,
4/8/2014]

Feng Ceng
1963-06-18
FEMALE
Chinese

v156600

(a)

v126717

p942

s340404

v126886

s341118s341569

chronic cough
[3/12/2012,
9/12/2012]

rheumatic fever
[7/12/2012,
12/12/2012]

headache 
[4/12/2012,
5/12/2012]

Winifred Sullivan
1999-02-07
FEMALE
Filipino

v111322

(b)

v124307

p866

s329490

v124221

s279787s275045

nocturnal cough
[11/10/2012,
22/10/2012]

glandular fever 
[14/10/2012, 
20/10/2012]

headache 
[15/9/2012,
20/9/2012]

Mary Fleming
1961-07-25
FEMALE
Ceylonese

v122450

(c)

Fig. 5.7. First three answers returned to query C11 by ATQ
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p180

v11978

s31975

v101793v101583

s272924 s273511

nocturnal cough
[18/7/2011, 
29/7/2011]

yellow fever 
[21/7/2011, 
25/7/2011]

headache 
[26/8/2006, 
28/8/2006]

Lisa Stevens
1994-05-25
FEMALE
Malayalee

(a)

d76p63

v102317

s274914

v104187v103973

s279787

chronic cough
[4/9/2011, 
15/9/2011]

s279222

yellow fever
[3/9/2011, 
11/9/2011]

headache 
[5/8/2011, 
9/8/2011]

Elbert Phelps
16/3/2007
MALE
Eurasian

(b)

v109278

p318

d145

s284536

v109381

s293576s293858

chronic cough
[12/12/2011, 
26/12/2011]

fever 
[14/12/2011, 
28/12/2011]

headache 
[8/10/2011, 
19/10/2011]

Robin Lambert
14/8/1950
FEMALE
Indian

v105873

(c)

Fig. 5.8. First three answers returned to query C11 by Bidirectional
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Chapter 6

Conclusion and Future Work

In this thesis, we have examined how keyword queries can be expressed and

supported over temporal relational databases. We introduced a new repre-

sentation for users to specify their search target, associate keywords with

time constraints and indicate temporal relationships between keywords.

This enables �exible querying of complex temporal relationships in the

databases. We incorporate overlapping interval partitioning into the key-

word inverted lists to �lter nodes that do not satisfy the time constraints.

We have designed an e�cient ATQ algorithm that incorporates a target-

oriented search process and time-aware pruning to retrieve answers to these

queries. Experimental results on 3 datasets showed that the proposed ap-

proach outperforms current state-of-the-art keyword search methods, and

the answers returned by ATQ algorithm are more meaningful.

For future work, we plan to extend temporal keyword queries to handle

uncertainty. Since many applications contain uncertain data, for example,

in Clinic database, the start time and the end time of the symptoms are

uncertain. Thus, we want to take this uncertainty into consideration when

answering the queries.

57



Bibliography

[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for

keyword-based search over relational databases. In IEEE ICDE, pages

5�16, 2002.

[2] J. F. Allen. Maintaining knowledge about temporal intervals. Com-

munications of the ACM, 26(11):832�843, 1983.

[3] Z. Bao, T. W. Ling, B. Chen, and J. Lu. E�ective xml keyword search

with relevance oriented ranking. In IEEE ICDE, pages 517�528, 2009.

[4] Z. Bao, Y. Zeng, H. Jagadish, and T. W. Ling. Exploratory keyword

search with interactive input. In ACM SIGMOD, pages 871�876, 2015.

[5] S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, and Y. Vele-

grakis. Keyword search over relational databases: a metadata ap-

proach. In ACM SIGMOD, pages 565�576, 2011.

[6] S. Bergamaschi, F. Guerra, M. Interlandi, R. Trillo-Lado, and Y. Vele-

grakis. Quest: A keyword search system for relational data based on se-

mantic and machine learning techniques. VLDB Journal, 6(12):1222�

1225, 2013.

[7] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using banks. In IEEE

ICDE, pages 431�440, 2002.

58



[8] R. Bin-Thalab, N. El-Tazi, and M. E. El-Sharkawi. Tmix: temporal

model for indexing xml documents. In Computer Systems and Ap-

plications, 2013 ACS International Conference on, pages 1�8. IEEE,

2013.

[9] A. Dignös, M. H. Böhlen, and J. Gamper. Overlap interval partition

join. In ACM SIGMOD, pages 1459�1470, 2014.

[10] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding

top-k min-cost connected trees in database. In IEEE ICDE, pages

689�700, 2007.

[11] K. Golenberg and Y. Sagiv. A practically e�cient algorithm for gen-

erating answers to keyword search over data graphs. In 19th Interna-

tional Conference on Database Theory, ICDT 2016, Bordeaux, France,

March 15-18, 2016, pages 23:1�23:17, 2016.

[12] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. Xrank:

Ranked keyword search over xml documents. In ACM SIGMOD, pages

16�27, 2003.

[13] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword

searches on graphs. In ACM SIGMOD, pages 305�316, 2007.

[14] V. Hristidis, L. Gravano, and Y. Papakonstantinou. E�cient ir-style

keyword search over relational databases. In VLDB, pages 850�861,

2003.

[15] V. Hristidis and Y. Papakonstantinou. Discover: Keyword search in

relational databases. In VLDB, 2002.

[16] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, and R. D.

Hrishikesh Karambelkar. Bidirectional expansion for keyword search

on graph databases. In VLDB, 2005.

59



[17] M. Kargar, A. An, N. Cercone, P. Godfrey, J. Szlichta, and X. Yu.

Meanks: Meaningful keyword search in relational databases with com-

plex schema. In ACM SIGMOD, pages 905�908, 2014.

[18] K. Kulkarni and J.-E. Michels. Temporal features in sql:2011. SIG-

MOD Record, 41(3):34�43, Oct. 2012.

[19] F. Li and H. Jagadish. Constructing an interactive natural language

interface for relational databases. Proceedings of the VLDB Endow-

ment, 8(1):73�84, 2014.

[20] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: E�cient

and adaptive keyword search on unstructured, semi-structured and

structured data. In ACM SIGMOD, 2008.

[21] X. Li and W. B. Croft. Time-based language models. In ACM CIKM,

pages 469�475, 2003.

[22] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query

in relational databases. In ACM SIGMOD, pages 115�126, 2007.

[23] E. Manica, C. F. Dorneles, and R. Galante. Supporting temporal

queries on xml keyword search engines. Journal of Information and

Data Management, 1(3):471, 2010.

[24] G. Özsoyo§lu and R. T. Snodgrass. Temporal and real-time databases:

A survey. Knowledge and Data Engineering, IEEE Transactions on,

7(4):513�532, 1995.

[25] R. T. Snodgrass, I. Ahn, G. Ariav, D. S. Batory, J. Cli�ord, C. E.

Dyreson, R. Elmasri, F. Grandi, C. S. Jensen, W. Käfer, N. Kline,

K. G. Kulkarni, T. Y. C. Leung, N. A. Lorentzos, J. F. Roddick,

A. Segev, M. D. Soo, and S. M. Sripada. TSQL2 language speci�cation.

23(1):65�86, 1994.

60



[26] S. Tata and G. M. Lohman. SQAK: doing more with keywords. In

ACM SIGMOD, pages 889�901, 2008.

[27] Y. Xu and Y. Papakonstantinou. E�cient keyword search for smallest

lcas in xml databases. In ACM SIGMOD, pages 527�538, 2005.

[28] J. X. Yu, L. Qin, and L. Chang. Keyword search in relational

databases: a survey. IEEE Data Eng. Bull., 33(1):67�78, 2010.

[29] Z. Zeng, Z. Bao, T. N. Le, M. L. Lee, and T. W. Ling. Expressq:

Identifying keyword context and search target in relational keyword

queries. In ACM CIKM, pages 31�40, 2014.

61



62


	Abstract
	List of Tables
	List of Figures
	Introduction
	Contribution
	Thesis Organization

	Related Work
	Keyword Search over Relational Database
	Schema based Keyword Search
	Data Graph based Keyword Search

	Keyword Search over XML Database
	Identify Query Search Target

	Preliminaries
	Temporal Keyword Query
	Answer to Temporal Keyword Query
	Temporal Ranking Model

	Proposed Solution 
	Temporal Index for Keywords Associated with Time
	Target-oriented Search
	Time-aware Pruning
	Algorithms

	Performance Study
	Experiments on Queries without Time Constraints
	Experiments on Queries with Time Constraints
	Experiments on Scalability
	Experiments on Search Quality
	Case Study

	Conclusion and Future Work
	Bibliography

