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Indeed, in the creation of the heavens and the earth and the alternation of

the night and the day are signs for those endowed with intellect.
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Abstract

Indoor scene recognition is the problem of assigning a semantic category

to a given image depicting some indoor scene. A fundamental problem in

computer vision, it has the potential to facilitate a holistic understanding

of the scene, and thus favorably influence other tasks such as contextual

reasoning and path planning in intelligent machines.

This thesis advances a novel paradigm involving the use of planar homoge-

neous texture for an improved scene representation and subsequent classifi-

cation. Such texture manifests in the form of regularly repeating structural

or architectural elements, or as uniform printed or engraved patterns on

material, and is abundantly present in indoor scenes.

In order to mitigate in-class variation arising out of viewpoint differences

and perspective projection in images, the problem of planar rectification

of homogeneous texture is first addressed. A texture frequency projection

model is developed in order to recover plane projective parameters, allowing

an affine-ambiguous rectification. An existing scheme to recover dominant

instantaneous frequency is examined in depth, identifying and successfully

addressing its short-comings — frequency drift and quadrant ambiguity —

via energy minimization methods. Robust parameter recovery is demon-

strated, and a non-isotropic multi-scale representation proposed for im-

proved estimates. Comprehensive qualitative and quantitative evaluations

are presented, and the proposed scheme is shown to outperform existing

representative work on texture rectification in real-world images marred

with outliers, clutter and photometric severities.

Current approaches to detecting mid-level features use learning to auto-

matically discover discriminative scene parts. This is essentially a chicken-

and-egg problem, where neither part appearance models nor part instances

in images are known. This thesis instead advocates and demonstrates the



Abstract xi

detection of homogeneous texture in multi-planar, cluttered scenes via the

texture projection model developed earlier, making for a hand-crafted ap-

proach to detect semantically meaningful mid-level features. At the same

time, the detection is inherently projective-invariant (therefore, subsuming

affine invariance), as opposed to existing low-level scale and rotation, or

affine invariant blob and edge detectors. The proposed detection framework

is qualitatively and quantitatively evaluated and shown to significantly out-

perform existing representative work.

Homogeneous texture as detected by the proposed method is shown to

perform favorably in providing a crude geometric indoor layout in multi-

planar textured scenes. In doing so, the approach sidesteps the error-prone,

ill-posed computation of vanishing points in order to establish room orien-

tation, and does not need to rely upon the simplistic Manhattan or box

layout assumption, or to employ machine learning to localize room faces in

space and scale, as does existing work.

Affine rectification of detected homogeneous texture is found to yield low-

level features that are not only class-discriminative, but also complementary

to regular, non-rectified features, thereby facilitating indoor scene recogni-

tion. The results are consistent across a number of hand-crafted descriptors,

both thresholding (CENTRIST, LBP) and gradient based (SIFT, HOG),

as well as pre-learned deep ConvNet features. Classification performance

based on a combined feature representation is seen to favorably compare

with contemporary approaches on the 67-category MIT Indoor benchmark

spanning 6700 images, while one of the presented configurations outper-

forms most current state-of-the-art work. The proposed approach is addi-

tionally evaluated on a set of 31 categories spanning 6200 images (mostly

outdoor, man-made environments exhibiting regular, repeating structure),

being a subset of the Places2 large scale scene dataset.
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Chapter 1

Introduction

1.1 The Problem of Indoor Scene Recogni-

tion

Andrew Fitzgibbon, announcing the conferral of the 2008 British Machine

Vision Association (BMVA) Distinguished Fellowship upon Andrew Zis-

serman — who had contributed significantly to multiple view geometry in

computer vision — writes [37]:

“Geometry was successful in showing that computer vision could solve

problems which humans could not: recovering 3D structure from multi-

ple images required highly trained photogrammetrists and took a consid-

erable amount of time. However, Andrew’s interests turned to a problem

where a six-year old child could easily beat the algorithms of the day:

object recognition.”

1
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Indeed, attaining human-level performance in visual recognition is a holy

grail for computer vision. Where humans have an uncanny knack of recog-

nizing objects – albeit any changes in size and appearance, or environmental

conditions such as lighting – we are far from mimicking the same level of

performance in machines.

As with objects, recognizing scenes comes to us humans naturally. The

problem consists in assigning a semantic category to a given scene — e.g.,

a grassy flatland, open sky and sunlight are characteristic of a field, while

the presence of furnishings such as sofas, chairs and rugs suggests the scene

depicts a living room. Such a semantic categorization can potentially fa-

cilitate a holistic understanding of the scene, and favorably influence other

research problems in computer vision such as contextual reasoning. It holds

the key to building intelligent machines that can perform high-level tasks

such as path planning and sensing obstacles, or to equip them with the

ability to move and manipulate objects. This problem of recognizing se-

mantically similar scenes is not to be confused with scene retrieval, also

called place recognition, wherein the physically same scene or environment

may be recognized from any of its given viewpoints. Retrieval is not the

focus of our discussion.

Understandably the problem of semantic scene recognition is far more chal-

lenging than that of object recognition. An appropriate scene representa-

tion must be devised that can effectively capture the typicality of a certain

scene category. Moreover if, for instance, one were to describe a scene in

terms of the contained objects or regions (in order to compare it with the

typical or exemplar representation one has ‘learnt’ from experiencing this

category previously), a bottom-up appearance based ‘segmentation’ of a

given scene into such parts is yet another, under-constrained, problem in
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computer vision, though solved effortlessly by humans! Alternatively, char-

acteristic parts of a sene may be ‘detected’ in a top-down fashion, and this

comes with its own set of challenges — what parts should one detect that

would consequently help in distinguishing a scene, and how does one es-

tablish the typical appearance characteristics of such parts? Additionally,

any two photos of a given scene category, though semantically similar, can

differ considerably in terms of contained objects (and, in turn, their ap-

pearances), viewpoints and lighting conditions, thereby making the task

rather difficult to mimic in machines.

1.1.1 Problem Statement

The focus of this thesis is to identify and address some of the problems

faced in performing indoor semantic scene recognition from the technical

standpoint. We seek to obtain an improved scene representation, that can

more efficiently encode the similarities among images of the same scene

category. In this regard, the abundant presence of characteristic repeat-

ing patterns — called ‘homogeneous texture’ — in indoor scenes will be

highlighted, and a robust pipeline that can effectively make use of such

patterns devised. The role of such texture, which manifests either as print-

ed/material or structural patterns, in providing a crude geometric layout

in real-world indoor scenes, as well as recognition will be explored.
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1.2 Summary of Contributions

This thesis makes the following important contributions:

• A novel paradigm advocating the use of characteristic repeating pat-

terns, called homogeneous texture, for indoor scene recognition is

motivated, as opposed to traditional learning based low-level or mid-

level features.

• Prior work on planar projective rectification, particularly texture rec-

tification is reviewed at length, its short-comings on real-world images

exhibiting clutter, outliers and photometric severities are highlighted,

and a frequency based approach is advocated to address these chal-

lenges. A novel texture frequency projection model is developed.

An existing scheme to recover dominant instantaneous texture fre-

quency is examined in depth, identifying and successfully addressing

two short-comings — frequency drift and quadrant ambiguity — in

real world images. Comprehensive qualitative and quantitative eval-

uations are presented, and the proposed scheme is shown to have a

superior performance compared to existing representative work on

texture rectification.

• The proposed projective rectification model is put to use for local-

izing potentially large homogeneous texture in real-world, cluttered

indoor scenes, providing a projective-invariant (therefore, subsuming

affine invariance) approach to detect semantically meaningful mid-

level features. The proposed scheme does not require learning of part

models, as do existing ones to detect mid-level features. It also goes a

step further compared to existing hand-crafted approaches to detect-

ing low-level features, which only afford local affine invariance. The
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method is qualitatively and quantitatively evaluated, and compared

with existing representative work.

• Homogeneous texture as detected by the proposed method is shown

to perform favorably in providing a crude geometric indoor layout

in textured multi-planar scenes. The pros and cons are contrasted

with an existing scheme that relies on computing vanishing points

(ill-posed and error-prone), a simplistic Manhattan assumption, and

machine learning to produce layouts.

• A pipeline is presented for indoor scene classification on the MIT In-

door67 benchmark via affine-rectified homogeneous texture detected

in images. Encouraging results are obtained, which compare favor-

ably with state-of-the-art methods, which are all learning based ap-

proaches to extracting image features. Involving deep ConvNet de-

scriptors, the proposed approach can achieve a performance that out-

performs most current state-of-the-art. The proposed approach is

additionally evaluated on a set of 6200 (mostly outdoor) images, be-

ing a subset of the Places2 large scale scene dataset.

1.3 Organization of this Thesis

The remainder of this thesis is outlined below:

Chapter 2 conducts a comprehensive review of the large body of existing

literature on scene recognition in general, and indoor scene recognition in

particular. It also compiles the current state of the art on indoor scene

recognition.
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Chapter 3 presents a discourse on two possible approaches to recogniz-

ing indoor scenes, highlighting their potentials while also discussing the

weaknesses and foreseeable challenges. In light of the discussion, the path

adopted by this thesis is briefed.

Chapter 4 motivates the abundant presence of homogeneous texture in

indoor scenes. It addresses the problem of planar affine rectification of

such texture, developing a mathematical model to achieve the goal, and

performing a robust estimation of instantaneous frequency and projective

parameters in projected texture. The superior performance of the proposed

approach over existing art in real world images marred with outliers with

large spatial support, clutter and photometric severities is demonstrated

via qualitative and quantitative evaluations.

Chapter 5 performs a robust detection of homogeneous texture ‘in the wild’,

given clutter-ridden real-world indoor images. The detections are demon-

strated to provide good estimates of indoor geometric layout in textured

scenes, and the approach is contrasted with existing work. A quantitative

evaluation of the proposed detection framework is performed, and it is seen

to outperform existing representative work.

Chapter 6 presents a comprehensive set of experiments for scene classifica-

tion on the benchmark MIT Indoor67 dataset, where the proposed detection

framework is shown to improve performance of a number of hand-crafted

as well as pre-trained deep ConvNet descriptors. Additional experiments

on a subset of the Places2 large scale scene recognition dataset are also

performed, further corroborating the thesis.

Chapter 7 provides a conclusion, and highlights some future avenues to

exploit texture for indoor scene recognition.



Chapter 2

Indoor Scene Recognition: A

Comprehensive Review

A wealth of literature exists on scene recognition, advocating novel ap-

proaches to address the problem, or tapping into various stages of the

recognition pipeline to improve performance. This chapter aims to compile

an in-depth survey and commentary on the literature on scene recognition

in general, and indoor scene recognition in particular. Starting with a re-

view of global and local feature based image representations in Sec. 2.1

and Sec. 2.2 respectively, a typical image classification pipeline in the con-

text of object or scene recognition is reviewed in Sec. 2.3. Notable results

from human behavioral studies found in literature are visited along the way.

Sec. 2.4 surveys biologically inspired recognition, while Sec. 2.5 discusses

probabilistic models. A prominent approach to indoor scene recognition

— mid-level features — is reviewed in Sec. 2.6, followed by discussions on

scene texture, attributes and convolutional neural networks in Sec. 2.7, 2.8

and 2.9 respectively. The chapter concludes with an overview of standard

7
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benchmarks for scene recognition in Sec. 2.10, as well as a summary of

results from recent literature on the MIT Indoor67 dataset in Sec. 2.11.

2.1 Holistic or Global Representations

A very early computational approach to fast categorization of scenes ap-

pears in [94], and attempts at quantifying certain global perceptual charac-

teristics — naturalness, openness, roughness, expansion and ruggedness —

of a given scene to obtain a so-called holistic “spatial envelope” or “gist”

of the scene. These global aspects or attributes of a scene were identified

as a result of trials with human participants who were asked to identify

criteria they used to hierarchically divide up a set of scene images, but

which should not be based on scene objects or scene semantic class. A

spatial envelope property for an image is estimated by firing a correspond-

ing pre-learned Discriminant Spectral Template on PCA bases of the DFT

(quantifying the non-localized dominant structural properties, invariant of

object identities and locations), or the windowed DFT of the image (charac-

terizing localized yet holistic structural properties of the image), resulting

in a low-dimensional (typically 512 features) GIST descriptor. They show

that semantically similar scenes tend to exhibit similar spatial envelope

properties. Furthermore, since non-localized information peforms satisfac-

torily (86%) for classification compared to when localized information is

available (92%), they conjecture it is not necessary to first segment out re-

gions, or identify the scene content to guide recognition of scenes. However,

they only demonstrated their approach on a set of 8 outdoor scenes (albeit

some being urban).
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Oliva and her collaborators have since continued to argue in favour of the

predictive power of global scene properties for rapid categorization, expand-

ing upon the originally proposed handful of attributes (e.g., [44]) and sought

to demonstrate that an initial scene representation need not be based on

top of object recognition. However, these works have usually been limited

to exploring outdoor scenes and natural landscapes, and the spatial enve-

lope properties have been demonstrated to perform rather poorly on indoor

scenes [106]. In [27], it is concluded that global scene representation such as

GIST performs better in classifying the more “typical” examples of a given

category. These observations suggest that global scene properties are not

sufficient to quantify the “typicality” of indoor scenes. In other words, we

may conclude that indoor scenes exhibit a significantly larger within-class

variation as opposed to outdoor scenes.

2.2 Local Dense Features

In [31], human subjects are provided with visual stimuli involving indoor

and outdoor scenes to understand various aspects of scene perception. It

is revealed that at low presentation times of images (a few 10s to 100s of

miliseconds), humans tend to misclassify indoor images as outdoor, but the

classification is perfect at 500ms. Further, such a misclassification is not

observed between natural vs. man-made outdoor images. From further

experiments they conclude that this is not due to subjects possibly being

able to perceive low-level sensory information or identifying objects more

easily in outdoor vs. indoor images. They posit that the possible absence of

perception of local cues such as edge and color due to the low presentation

time might explain the bias toward labeling a stimulus as outdoor. In a
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similar study [83], the authors conclude that non-localized frequency infor-

mation can only help classification for a very limited number of categories,

and that presence of localized primitive features such as oriented edges is

necessary for recognizing most basic scene categories. They also conclude

that even distinguishing between man-made and natural scene categories

requires sufficient localization of primitive features. Similarly, [138] have

demonstrated that densely extracted local features, such as gradient orien-

tation histograms (i.e., SIFT [84] and HOG [19, 33]), perform better than

GIST at both scene classification as well as the binary indoor-vs-outdoor

classification task on their 397-category SUN database. A host of methods

have been proposed that make use of densely extracted, overlapping, local

features for scene classification, and are discussed in the following section.

We observe here that [95] proposed a simple ‘score fusion’ approach to

combine SVM classifier scores for multiple features or approaches (see Sec.

2.6), and reported that local and global features when so combined yield

an improved performance than either of them taken separately. Many au-

thors have since used this fusion method to demonstrate complementarity

of approaches. More principled approaches to combining GIST and local

features appear in [106, 29] who propose to learn weights to fuse the two

set of features.

2.3 The Classification Pipeline with Local

Features

A number of steps are involved in carrying out scene classification, as de-

picted in Fig. 2.1. In what follows, a subsection is dedicated to the dis-

cussion of each stage in light of the research proposed in literature at that
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Figure 2.1: The various stages in a scene classification pipeline: feature
extraction, dictionary learning, feature encoding and pooling, classifica-

tion.

stage.

2.3.1 Feature Extraction & Description

SIFT [84] is easily the most commonly used local feature in object or scene

classification approaches. Both a scale-invariant interest or key-point de-

tector, as well as a rotation invariant descriptor were proposed in [84] to

address object recognition. Key-points are obtained by searching for stable

local maxima in a multi-scale difference-of-Gaussian image pyramid. The

key-point is assigned an orientation(s) based on the dominant peak(s) in

a histogram of weighted gradient orientations of sample points in a region

around the key-point, thereby achieving invariance to rotation. The de-

scriptor is obtained by concatenating local orientation histograms in 4x4

sub-regions from a 16x16-pixel region around the key-point. Since 8-bin

histograms are employed, this yields a 128-dimensional descriptor. Local

histograms provide for a local position invariance in the descriptor. Further,
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suitable normalization of the descriptor is performed to achieve invariance

to affine illumination changes, and to reduce effect of non-linear illumina-

tion changes. Note the SIFT detector is not affine invariant, though it has

been shown to be resilient to affine distortions or 3d viewpoint changes [84].

A prominent affine invariant interest point detector in literature is the

MSER [88], proposed in the context of wide baseline stereo correspondence,

but which has also been successfully employed for image retrieval [120]. It

detects blob-like regions of high contrast w.r.t their surrounding. Another

affine-invariant detector to note is the scale-saliency detector of [64], which

extracts blob-like regions that are salient in the sense that they exhibit

unpredictability in their local attributes and over spatial scale. A notable

property of this detector is its intra-class invariance which led to its wide use

in object recognition [35, 30, 26]. Repeatability under intra-class variation

is also a highly desirable property for scene recognition, as corresponding

regions or parts in similar scenes often possess large amount of intra-class

variation. For example, two dining rooms can and do contain chairs of dif-

ferent shape and color. The early probabilistic scene model of [32] demon-

strated a slightly improved classification performance by the scale-saliency

detector over the SIFT detector. However, it also demonstrated that dense

sampling of local SIFT descriptors provides a substantial improvement over

local sparse interest-point based description of a scene, and this is corrob-

orated by the contemporary work of [6]. Interestingly, where local sparse

features perform very well on scene retrieval [120] (which is the problem of

retrieving all scene images from a database the same as the query, but pos-

sibly varying in photometric or geometric properties), they perform very

poorly on scene recognition (which may be regarded as the problem of

establishing correspondence between two images depicting a semantically

similar, but not necessarily the same scene). Consequently, sparse feature
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description is altogether non-existent in scene recognition. More recent

works of [139, 138] seeking to compare various description approaches have

also demonstrated the low performance of sparse SIFT, and it is commonly

understood that a sparse image description is less discriminative compared

to a dense description.

Another popular local image descriptor is the HOG. Originally proposed by

[19] for pedestrian detection, it has since become the standard descriptor for

generic object detection [33] due to the reason that it provides remarkable

detection performance with only a linear SVM classifier. The image at a

given scale is divided into 8x8-pixel non-overlapping cells. Each cell yields a

9-bin gradient orientation histogram aggregated over the cell region, which

is contrast-normalized 4-fold by the gradient energy in the four blocks cov-

ering that cell (blocks being overlapping 2x2-cell regions). Hence, each cell

yields a 36-dimensional feature vector. Vectors from spatially neighboring

HOG cells may be concatenated to describe a larger object at given image

scale. Analysis for pedestrian images in [19] reveals that a linear SVM de-

tector learned over HOG features is able to cue on discriminative gradients

while rejecting gradients that exhibit high intra-class variation. The au-

thors in [33], based on empirical analysis, concluded that the top 11 eigen

vectors of HOG not only capture all the information but also lie in a linear

subspace defined by 13 sparse vectors, each 36-dimensional. This analy-

sis led them to propose a 31-dimensional variant of HOG which preserves

performance of the original version. Recently, authors have also employed

concatenated vecotrs from 2x2 HOG cells for scene image representation

[139, 138, 55], demonstrating a moderate improvement compared to SIFT.

Local dense HOG has also been used for object recognition [133].

Since descriptors such as SIFT and HOG are not inherently scale-invariant

[48], spatially overlapping image patches on a regular grid are extracted
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at multiple scales before dictionary learning and feature encoding for a

more scale-invariant overall description of the image. At the same time,

local extraction of features provides spatial invariance and robustness to

occlusions compared to a global descriptor such as GIST [94] (see Sec.

2.1).

Finally, for the sake of completeness, we note that comprehensive surveys

and quantitative evaluations of local affine invariant detectors and descrip-

tors may be found in [90] and [89], respectively, and would be of interest to

readers working on problems of object recognition or scene retrieval. The

brief review performed in this section, however, was geared more toward

scene recognition, and based on the more recent literature on the problem.

2.3.2 Feature Encoding

Encoding is the process of representing local image features in terms of a

dictionary of codewords, textons or atoms. The earliest encoding scheme

is probably the bag of words (BOW). BOW has its origins in text docu-

ment retrieval, and was introduced into computer vision by the pioneering

work of [120] for scene retrieval. The simplest procedure involves clustering

descriptors extracted from a training set — either sparsely or densely —

via K-means into a dictionary or codebook of representative codewords.

This is called dictionary learning. Now features from any given image are

vector-quantized to one of the dictionary atoms, and a histogram of dictio-

nary atoms so obtained is called a bag of visual words, or simply a bag of

words representation of the image.

Note that any spatial ordering or local co-occurence relationship between

features in an image is lost in this approach. A seminal work attempting to

preserve some degree of spatial ordering into the bag of words scheme is that
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of [70], which put forth the now widely popular scheme of spatial pyramid

matching (SPM). The scheme borrows the idea from Pyramid Match Ker-

nel (PMK) [43] which was proposed for feature space. In SPM, the same

approach is applied to the 2D image space, while performing traditional

clustering and vector quantization (as in BOW) in the feature space. The

process involves partitioning the image into increasingly finer sub-regions,

and obtaining a separate histogram (BOW) for each region. The number

of regions depends on the number of pyramid levels. At the lowest level,

only one regon exists (the entire image). At the second level, the image is

divided into 2x2 sub-regions. At the third level, the image is divided into

4x4 sub-regions, and so on. For a 3-level pyramid, therefore, we obtain

21 cells. For a dictionary size of, say, 200, a concatenation of all region-

specific histograms yields a 4200-dimensional image representation. Clas-

sification is performed via SVM employing a histogram intersection kernel

(HIK). Conceptually simple and computationally efficient, [70] exceeded

state-of-the-art performance on the object recognition dataset Caltech101

[30], extended the prevalent 13-class scene dataset [94, 32] to 15 classes, and

defined the state-of-the-art on this testbed. Indeed, evidence from human

behavioral studies suggests that both local, region-based as well as global,

configural information is required for more effective classification [130]. The

SPM approach was also extended to 3D in [45] for categorizing video scenes.

[96] allowed image spatial sub-regions to be reconfigurable and take on any

of a set of region models, thereby generalizing the SPM framework which

works with fixed region models. The recent work in [140] trains a model to

predict planes and their 3D orientations in single image indoor scenes, and

uses these orientations to define pooling regions for features. Combined

with SPM, the work achieves a state of the art performance on the MIT

Indoor67.
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The BOW approach assigns an image feature to a single dictionary code-

word. This is known as hard quantization in literature. Soft quantization

generalizes it by allowing multiple codewords to linearly combine in order

to reconstruct the image feature and minimize reconstruction error [103].

One such approach is sparse representation (SR), which, previously having

found application in face recognition, image restoration and motion seg-

mentation, was introduced to object and scene classification by [141]. Here

sparsity is enforced on the coefficients of the linear combination, essentially

allowing only a very small subset of the dictionary atoms to reproduce a

given feature. It was also demonstrated by [141] that a linear SVM is suf-

ficient to classify sparse coded images compared to kernel SPM. However,

a substantially large (overcomplete bases) codebook size (1024) is needed

compared to the 200 by kernel SPM to preserve performance.

In [39], the authors point out that due to the overcomplete nature of the

codebook, and the independent encoding process of each feature, features

that are similar end up being represented as widely varying sparse codes.

They propose Laplacian sparse coding which adds another term to the

sparse coding objective to force similar features to possess similar sparse

codes. The approach is shown to substantially outperform both SPM and

SR. A related work is [133], though it deviates from sparse coding. They

linearly encode each feature in terms of its K-nearest neighbours in feature

space in the dictionary. Named Locality constrained Linear Coding (LLC),

the process in essence performs feature selection by selecting local bases

for each descriptor to form a local coordinate system. It is pointed out

that locality is more essential than sparsity, as locality necessarily leads

to sparsity but not vice versa. No experiments are reported for scene,

however. The approach in [144] starts at the raw pixel level, rather than

employing SIFT-described patches, and uses a 2-layer hierarchical scheme
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for sparse encoding raw pixel patches. The idea is that since a data-adapted

sparsifying dictionary is already learned in the process, one might as well

employ raw pixel patches. The approach — though not applied to scene —

outperformed prevalent object recognition methods on Caltech101. [146]

is another representative sparse coding approach demonstrating high per-

formance on the 15-category scene dataset. They observe that since a

max-pooling stage follows sparse coding, allowing the sparse coefficients

to take on negative values is detrimental. They force sparse codes to be

zero or positive, and also employ low-rank decomposition of resulting image

representation to reject non-representative scene features as sparse noise.

Another soft encoding method is the Gaussian Mixture Model (GMM)

[26, 100] (learned via Expectation Maximization) which models both the de-

viation of patches from cluster means as well as covariance. Other popular

methods are the Fisher encoding [101] which captures first and second order

differences between the image descriptor and the centers of a GMM, and

Super vector encoding [11] where only first order differences are computed,

besides considering the cluster mass, and normalizing each cluster by the

square root of the posterior probability rather than the prior (as is the case

in GMM). Comprehensive surveys and guidelines on best practices for vari-

ous feature encoding methods for classification appear in [11, 54]. Empirical

analysis by [11] on the object recognition benchmarks Caltech101 and PAS-

CAL VOC 2007 reveals Fisher encoding with Hellinger kernel (as well as

Super vector encoding) to perform better than other encoding schemes such

as hard / soft (e.g., LLC) quantization, even when these approaches employ

non-linear kernels such as the Chi-squared. Hence, encoding higher-order

differences between the descriptor and the codewords seems to compen-

sate for information otherwise lost due to quantization. The superiority of

Fisher encoding over other schemes holds for indoor scene recognition as
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well, as corroborated by [63].

2.3.3 Dictionary Learning — Unsupervised

K-means is used to generate a codebook for hard quantization (BOW),

while GMM for Fisher encoding. However, the sparse coding approach re-

quires a computationally expensive process of learning the sparsifying code-

book, one that best approximates each training sample under certain spar-

sity constraints. This is a non-convex problem, hence iterative approaches

are employed. A pioneering approach is the K-SVD [1], a generalization of

the K-means algorithm. The dictionary and sparse coefficients are updated

iteratively. What makes the approach different and faster from others is

that when updating a dictionary atom, its corresponding coefficients in the

sparse representations of all data vectors are updated as well. In this sense,

it is a more direct generalization of K-means, as each dictionary column is

updated separately (via SVD) as done in K-means.

Another dictionary learning algorithm is that of [75], which is also employed

by [141] as it is considerably more time-efficient than previous approaches.

Fixing the sparse coefficients of the training samples, they propose to solve

the problem of optimizing the objective over the dictionary bases via the

Lagrange dual formulation, and show this requires significantly fewer op-

timization variables. To optimize over the sparse coefficients, a ‘feature

sign search’ algorithm is used, wherein signs of the coefficients are guessed

rendering the quadratic programming as unconstrained and efficiently solv-

able. The algorithm is demonstrated to also replicate certain phenomena

observed in neuroscience i.e., end-stopping and surround suppression, pre-

viously unexplained by linear models. This is because sparse coding is a

non-linear process where bases compete to best represent the image and
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maximize the sparseness, hence it can effectively model inhibition between

bases (neurons). Another prominent work on codebook learning is [145],

which attempts to learn a block-sparsifying dictionary whenever a block-

sparse structure exists in the data under consideration. No prior knowledge

on the subspace membership of signals is required; the underlying block

structure is automatically recovered.

A notable work, particularly relevant to scene recognition, is [134], which

employs sparse representation of covariance matrices, achieving good per-

formance on scene recognition. A probabilistic generative model is used

to jointly learn — in a maximum likelihood (ML) setting — a dictionary

to linearly (no sparsity) encode patches, as well as a dictionary of posi-

tive definite covariance patterns to sparsely encode regions (consisting of a

number of patches). Given the dictionaries, inference for the representation

of patches and regions is performed in a MAP framework. The generative

model is approximated via a coordinate-wise convex optimization scheme.

The motivation is based on the observation from a work in computational

neuroscience [65] that a given scene region exhibits a characteristic pat-

tern of covariance among the features encoding individual patches in the

region. Hence, regions can be encoded via their region covariance, and

[134] proposes to infer sparse representations of region covariances in terms

of a ML dictionary of covariance patterns. One notes that region covari-

ance has also been independently proposed in computer vision as a feature

descriptor for image regions for detection and classification [127]. A few

strengths of the covariance SR approach may be identified. Considering

that the feature learning framework only starts with vectorized raw pixel

values in 5x5-pixel patches, a rather robust and discriminative image rep-

resentation is learned. It is shown that only linear kernel is required to

achieve good performance. This is in agreement with previous SR work
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[141] and strengthens the general observation that sparse representations

are linearly more discriminative. By contrast, non-SR works require non-

linear kernels, such as HIK [70] or Gaussian [139]. At the same time, a few

weaknesses of the covariance SR approach should be noted. Firstly, this

approach requires a dictionary 4 times as large (4096 atoms, 16x16x4096/2

= 524,288 values to be estimated) compared to the one employed by [141]

(1024 atoms, 1024x128 = 131,072 values to be estimated) to achieve a com-

parable performance. Since the number of regions that need to be sparse

coded is much lower than the number of patches to be encoded in [141],

it suggests that perhaps covariance matrices are not conducive to sparse

representation. No experiments are reported in [134] that consider the ef-

fects of varying dictionary size. Furthermore, since dictionaries learned on

one dataset (Scene15) are able to generalize well to another, very different

dataset (Indoor67), it may be argued that learning a dictionary may not be

relevant and that it would be better to use pre-defined non-learned bases.

2.3.4 Dictionary Learning — Supervised

Supervised sparsifying dictionary learning has been studied in the context

of applications such as face recognition, handwritten digit recognition and

texture classification [136, 86, 85, 143]. In face recognition, the dictio-

nary merely consists of the training face examples. An incoming test face

image tends to have non-zero coefficients only for the dictionary atoms cor-

responding to its class when sparse coded [136]. This is because aligned

face images are known to roughly reside in a low dimensional subspace.

For applications such as texture or digit recognition, one naive approach

is to train a separate dictionary for each class [86, 85]. At test time, the

dictionary that minimizes the reconstruction error for a given patch de-

fines its class. In [85], the authors point out that this naive approach is
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essentially reconstruction based. They propose to also employ the resid-

ual errors of a patch given each of the class-specific dictionaries to model

the fact that a class-specific dictionary should be good at reconstructing

that class but bad at reconstructing other classes, thereby introducing a

class-discriminative constraint. The work of [7] also attempts to add dis-

crimination criteria to the basic reconstructive technique. Termed Fisher

Discrimination Dictionary Learning (FDDL), the approach adds the Fisher

discrimination criterion (similar to Linear Discriminant Analysis) into the

dictionary learning formulation. Specifically, since the final classification

is based on the sparse codes of the patches, they propose to minimize the

within-class scatter of the sparse codes, and maximize the between-class

scatter.

One notes that these dictionary learning schemes are defined for applica-

tions which classify individual patches (say, 32x32 pixels) depicting faces,

texture or handwritten digits. Adapting dictionaries to training samples of

this kind of data, and enforcing discrimination criteria on the sparse codes

makes sense for these applications. In generic object or scene recognition,

however, one deals with a lot of densely sampled, overlapping patches from

the image (say, 700 – 900 patches at 16x16 pixels from a typical 480x640 im-

age). A global vector representation of the object or scene image is obtained

after encoding these patches (say, via SR), and then pooling the codes over

spatial bins. Hence, classification is based not on the patch representation,

but on the final global image representation. Therefore, these dictionary

learning schemes, which work at the patch level, cannot be expected to

perform well for object or scene classification. A work [110] questioning

the relevance of sparse representations for generic image classification con-

cluded that sparsity is not necessarily required for classification, but might

be important when learning the filters (bases). These results seem to be in
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line with our observations above.

At least three works may be identified that have addressed this gap, and

proposed solutions [7, 79, 142]. While differing slightly in their mathe-

matical details (the loss function employed, the method of differentiation

employed, etc), all these schemes unify the process of dictionary learning

and learning the classifier by jointly minimizing the classifier loss function

over these parameters (i.e., the dictionary and the classifier weights), thus

attempting to learn a more conducive dictionary that lends more class-

discriminative global image representations. From these works, however,

mixed findings for scene and object recognition can be observed, possibly

due to the fact that the overall problem formulation is non-convex and the

solution susceptible to initialization.

2.3.5 Feature Pooling

Unlike hard quantization (BOW), soft encoding does not directly result in

a single image descriptor, and feature pooling must be performed to obtain

an overall image representation. This is the processing of combining the

responses to a basis atom for all the patches in a given image region via a

sum, average, max or some other function independent of the spatial order

of the contributing bases. In this way, pooling attempts to achieve some

degree of local invariance over position (and scale, if provision is made, as

in the biologically inspired hierarchical HMAX models [116, 91]). Some

theoretical and empirical analysis of feature pooling appears in [7]. One

observation in [7] is that max pooling substantially improves linear clas-

sification performance irrespective of the coding module. Furthermore, it
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is revealed that the worst-performing coding scheme (hard vector quan-

tization) paired with max pooling outperforms sparse coding paired with

average pooling. A more detailed theoretical treatment is given in [7].

One approach to improve recognition performance via the pooling stage is

that of [60]. The key idea is to learn optimal image regions over which

pooling is performed. This is in contrast to the traditional SPM frame-

work [70, 141], where a set of pre-defined ‘receptive fields’ (regular grids

at multiple pyramid levels) are employed. The problem of learning these

optimal receptive fields for pooling is posed as one of performing feature

selection on a high-dimensional vector, which results from pooling over

each codebook atom over each of an over-complete set of receptive fields.

In this manner, the scheme ‘selects’ the most relevant combinations of

codebook features and over-complete receptive fields. Object recognition

performance is comparable to the state-of-the-art, however.

Another scheme aiming to improve recognition performance by tapping

at the pooling module is [34]. Targeting single-object image classification

(Caltech101), a pooling operator - different from average or max - is for-

malized i.e., a weighted Lp-norm. It enforces two constraints. Firstly, the

between-class variance of the k-th pooled feature (k-th visual word) is max-

imized, while the within-class variance is minimized. Secondly, smoothness

constraint is enforced on the weights, called geometric coefficients, which

encode the contribution of the m-th image location for the specific visual

word. For a given feature k, the geometric coefficients for adjacent spatial

locations are constrained to be similar. In single-object images, this con-

straint leads to having the coefficients for the feature on the object to have

similar values, while the coefficients not on the object to have lower values.

The approach defined the state-of-the-art on Caltech101, considerably out-

performing all prevalent approaches. Improvement is also demonstrated on
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the Scene15 dataset.

The study in [38] showed that image saliency may be used to define two

disjoint and equal pooling regions in a scene — a salient region and a non-

salient region — that are not spatially biased (unlike SPM [70]). While

good performance is reported on Indoor67, a direct comparison with SPM

with the same experimental setup is not provided. [9] proposed to learn

weights in the image grid for nearest neighbor distances based on the spatial

layouts of visual words in training images. Improvement was demonstrated

for Indoor67 over the baseline nearest neighbour method.

2.3.6 Classification

All best-performing and state of the art scene classification methods em-

ploy the Support Vector Machine (SVM) classifier. Since SVM is a two-

class classifier, one of two approaches is used for multi-class classification.

The more popular approach called one-versus-all, or one-versus-rest, trains

N SVMs, one for each class, treating examples from all other classes as

negatives. Another approach, called one-versus-one, rarely seen, learns

N(N −1)/2 pairwise SVMs, and chooses the class for a test example which

is selected by the most classifiers. Depending on the local descriptor or en-

coding scheme used, linear [141, 133] or non-linear kernels [70, 11, 138, 137]

are used. Probabilistic models [96, 32] employ Bayes classification. The

non-parametric KNN classifier — more popular in texture classification —

is rarely seen [6, 9], because, as revealed in [5], they lose their capability

when descriptor quantization and image-image distance metrics, common

in object or scene classification, are used. Experimental analysis in [139]

corroborates the low performance of nearest neighbor based scene classifi-

cation as compared to SVM.
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2.4 Biologically Inspired Recognition

A line of work on visual recognition somewhat different from the pipeline re-

viewed above (but having many similarities) is based on the HMAX model

[109, 115]. This is a hierarchical model, wherein multiple layers are em-

ployed with the aim to mimic the processes and invariance properties of

the simple and complex cells in the primary visual cortex (also called the

striate cortex or V1) in primates. A representative work [116] adopts the

model for large scale real-world object recognition, comparing favorably

with contemporary indigenous computer vision systems on testbeds such

as Caltech101. Essentially, feature computation is carried out over a num-

ber of layers, starting with image responses to oriented Gabor filters over

a multi-scale pyramid. Subsequent layers achieve local invariance via max

pooling, further filtering via prototype features (which may be likened to a

dictionary of features), and another global pooling stage for each prototype.

Classification is performed via SVM.

The work [91] further proposed some biologically inspired improvements

over the base model. Notably the employment of sparse prototype feature

vectors, mimicking the cortical phenomenon of lateral inhibition and the

limited receptive fields (pooling regions) of neurons in the higher visual ar-

eas V4 and IT. Lastly a feature selection method is also used in conjunction

with SVM for classification. The proposed modifications considerably im-

prove classification performance over the base model for Caltech101, albeit

still outperformed by the purely computationally approaches. [58] perform

empirical investigation in further detail for learning dictionaries based on

the models in [116, 91], while [62] learn an overcomplete dictionary with

non-negative sparse coding (see [146]) of features for the HMAX model,

demonstrating an improvement over [141] for scene classification.
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The model of [65] aims to learn statistical distributions (region covariance)

that characterize local image regions and identify them from individual

image patches. This allows the neural code to represent more abstract

aspects of the image and remain invariant across fixations within local

regions. Model parameters are learned by maximizing the likelihood of

the train images under the model, and the response of model neurons to

a given patch is obtained as the most probable neural representation by

maximizing the posterior probability. The region covariance is a function

of the neural activity. The proposed model is shown to exhibit cortical

neural properties such as phase invariance, orientation tuning and complex

suppressive effects, and inspired the work in [134].

2.5 Probabilistic Models

The semi-supervised (since only per-image class labels are available, theme

labels in an image are not given) probabilistic framework of [32] introduces

latent variables to learn a distribution of intermediate abstract scene prop-

erties called themes, which they liken to textural properties. However, a

poor performance on indoor as opposed to outdoor scenes is demonstrated.

A similar but unsupervised approach, appears in [6], where a generative

model — probabilistic Latent Semantic Analysis — is adopted to automat-

ically discover ‘topics’ in images (which may be objects or scene regions),

obtain a distribution of the discovered topics for a given image, and use this

description with non-parametric nearest neighbour classification. [77] is a

hierarchical generative model that jointly recognizes and segments scene

object components as well as classifies the overall scene.

An interesting generative approach appears in [96], which describes a scene

region by the region model that maximizes the posterior probability of
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such an assignment (MAP). The model parameters are learned via Maxi-

mum Likelihood Estimation (MLE) using Expectation Maximization (EM).

A discriminative counterpart of the approach is also presented which is

learned using a latent (since assignment of region models to scene regions

is not known in training images) structured SVM. They show that initial-

izing the discriminative model with parameters obtained by EM improve

performance of the discriminative version of their framework. A perfor-

mance on indoor scene recognition is reported that is comparable to the

then-state-of-the-art.

2.6 Regions-of-Interest, Parts or Mid-Level

Features

In the seminal work of [106], the authors demonstrated that contemporary

global [94] or local dense features [32, 70] popular in scene recognition at

the time did not perform as well on the indoor subset of categories in the

15-category dataset as on the outdoor subset. The underlying reason is

the inherent presence of much larger intra-class variability in indoor scenes

as opposed to outdoor scenes. (One notes the later work of [139], having

conducted a performance comparison of local dense feature descriptors on

an even larger indoor+outdoor dataset, also report higher outdoor classifi-

cation performance as opposed to for indoor, while performance for urban

scenes comes in third). In order to investigate and address the problem

further, [106] collected a new large-scale dataset consisting of 67 indoor

scene categories. They assume a set of ‘prototype’ unlabeled but human-

annotated or automatically segmented images is given, where segments are

regions of interest (ROIs) that depict objects or semantically meaningful

regions in a scene. They then learn per-class parameters to minimize the



Chapter 2. A Comprehensive Review 28

Figure 2.2: Prototypes for two Indoor67 categories (church_inside
and inside_bus), sorted by their weights. First 7 columns correspond
to highest ranked, while last 2 columns the least ranked prototypes for
shown category. Thickness of ROI’s bounding box is proportional to its

weight. Adopted from [106].

distance between the prototype ROIs, and segments in the train images of

the class, thereby also learning a prototype’s weight for a given class. In-

tuitively, the model aims to determine what ROIs can typically occur in a

given scene category. Fig. 2.2 shows prototypes and ROIs for two selected

categories from Indoor67: church_inside, the best performing category

with 63.2% via their model, and inside_bus at 39.1%.

The model outperforms GIST (21%) on this dataset, but the accuracy is

still very low (26.5%). The reason may likely be attributed to their use of

bag-of-words representation for image ROIs and segments based on sparse

(and not dense) SIFT. Nevertheless the work of [106] drew considerable

attention from the computer vision community toward ROI based indoor

scene recognition, and ensuing approaches employing object detection-style

HOG features over a grid of neighbouring cells demonstrated significant

performance gains. Specifically, [78] aimed to leverage the availability of a

number of annotated object datasets, such as LabelMe and ImageNet [21],

in order to train 200 full-blown object detectors. Detectors for structured
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objects such as tables are trained via the deformable part model (DPM) of

[33], while an existing texture classifier is employed to detect image regions

with textural and material properties. Multi-scale object detection is run

on an image to obtain detector responses, and pooling is performed over

all image scales within a spatial pyramid bin for a given detector, to obtain

an overall image descriptor for classification. An impressive performance

is reported (37.6%), though one should note that pre-trained object and

texture detectors have been employed.

Another work proposing to use part modeling for indoor scene recognition

is [95]. It essentially approaches the problem as that of scene detection via

a DPM [33] learned for each class. Specifically, a large, coarse-scaled HOG

‘root’ detector fires on the the entire scene. Eight smaller, fine-scaled part

detectors, that are deformable with respect to the root, fire on characteristic

regions or objects in the scene. In practice, a 2-component mixture model

per scene category is trained to cater to images having different viewpoints.

Learning is performed using the latent SVM formulation of [33]. Fig. 2.3

illustrates two part models and sample detections.

Figure 2.3: Scene DPMs and sample detections for two Indoor67 cat-
egories (corridor and church_inside). Adopted from [95].

The approach achieves an average accuracy of 30.4% on Indoor67. To

leverage the complementarity with DPM of other feature representations,
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such as GIST and spatial pyramid (SP), the authors proposed the following

‘score fusion’ scheme. Each representation (GIST/SP/DPM) yields n one-

vs-all classifier scores, one for each of the n scene classes. Let ai be the score

on a test image for the ith classifier from one of the representations. The

softmax transformed score is therefore eai∑n
k=1 e

ak
. The confidence for class

i is then given by a multiplication of the softmax scores of all represen-

tations. By score fusion of GIST, SP and DPM, [95] achieved an average

classification performance of 43.08% on Indoor67, the state-of-the-art at

the time.

A similar, more recent work is [81]. Instead of penalizing part scores based

on their deviation w.r.t the root, a different approach to model part loca-

tions is taken. Part scores are modulated via Gaussians modeling clusters of

part locations (named ‘spatial pooling region’) in normalized image space.

An Indoor67 performance of 50.1% is reported, and combined with Fisher

encoded dense SIFT, the approach achieves 68.5%.

A very interesting work is presented in [119, 24], where the goal is to au-

tomatically mine representative (frequently occurring), and discriminative

patches for a given scene class (or city in [24]) in an unsupervised manner.

Since there is no supervision, the patches can correspond to objects, parts

of objects, or larger representative image regions, but are not constrained

to be any one of them. They term such features as mid-level visual features

or primitives, and conjecture that they are better at generalizing to similar

instances exhibiting large intra-class variations than do low-level features.

The mining problem is posed as that of discriminative clustering — an

iterative approach that alternates between clustering (essentially, running

SVM detectors over a multi-scale image HOG pyramid), and training a dis-

criminative classifier (SVM) for each cluster. The key novelty of [119] lies

in employing careful cross-validation between iterations. Specifically, one
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training subset is used to train detectors that are fired on another subset to

obtain positives for refining or retraining the clusters. The idea is to avoid

SVM overfitting. Iterative hard negative mining is employed to handle the

large number of negative images, as in [33]. Fig. 2.4 shows representative

clusters for some Indoor67 categories obtained by applying this approach

in the course of experimental work for this thesis. The method can be

observed to produce clusters with surprisingly good visual consistency for

a fully unsupervised approach, and detectors appear to exhibit remarkable

intra-class invariance.

Figure 2.4: Representative mid-level feature clusters obtained for sam-
ple Indoor67 categories by applying the method of [119] (clockwise):
church_inside, cloister, corridor and inside_bus. Three clusters

are depicted for each scene category.

[119] applied the method to Indoor67, mining 210 clusters per category.

When training the scene classifier for a given category, the image descriptor

is a 1050 dimensional vector obtained by max pooling over the response
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map on a 2-level spatial pyramid using the detectors for that category.

Final classification is done by using softmax transformed scores (since the

feature set for each classifier is different) of the 67 one-vs-all classifiers. The

approach scores a 38.1% on Indoor67. Using the score fusion technique of

[95], a classification accuracy of 49.4% was reported, the then-state-of-

the-art. [24] employed the approach to discover visual elements that are

geographically informative for a given city locale.

The experimental work of [63] demonstrated a significant improvement over

[119] in both classification performance and speed. They employ a super-

pixel based part seeding procedure, incrementally evolve a part detector

starting with one positive training example to train an exemplar SVM,

and subsequently use the LDA classifier of [46] instead of SVM detectors.

Finally, 50 informative parts per scene category are short-listed via an en-

tropy based ranking method, that are distinctive for the given category

but may also manifest in a few of the other categories. The LDA approach

essentially computes a detector as the difference between the average pos-

itive and negative features in a ‘whitened’ HOG space. The whitening

transform and negative mean may be computed once for the entire dataset,

foregoing the need to perform a computationally expensive hard negative

mining [119, 33] process every iteration, thereby accelerating the process

multi-fold. [63] reported a 46.10% accuracy on Indoor67, and, combined

with Fisher encoded dense SIFT, achieved 63.10%. Another, principled,

approach to part mining is [23], who propose a discriminative variant of

the mean-shift algorithm, maximizing the density ratio, to obtain repre-

sentative and discriminative scene parts. Using 200 parts per category, an

Indoor67 classification performance of 64.03% is reported, and, combined

with Fisher encoded dense SIFT, 66.87% is achieved.
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2.7 Texture

A local texture descriptor proposed specifically for scene recognition ap-

pears in [137]. Named CENTRIST (CENsus TRansform hISTogram), the

method captures occurrence histograms of local structure in images. A

Census-transformed image is first constructed, wherein a 3x3 pixel neigh-

bourhood is thresholded by the value of the center pixel to obtain a binary

code. The approach is similar to the LBP (see Sec. 6.2.2, [93]), except

instead of weighting and summing up the resulting bits over the neigh-

bourhood, CENTRIST assigns the entire 8-bit binary code to the center

pixel. A 256-dimensional histogram of such 8-bit codes may be extracted

for a given image patch, serving as the descriptor. Like LBP in its ba-

sic form, CENTRIST is invariant to monotonic photometric changes, but

is sensitive to rotation. It is demonstrated in [137] that while SIFT can

assign image patches depicting similar visual structure to different code-

words, CENTRIST tends to assign them to a common codeword, indicat-

ing that CENTRIST can better generalize to similar instances. Reducing

CENTRIST to 40 dimensions via PCA, and employing a spatial pyramid

representation yields a so-called sPACT (spatial PCA of CENTRIST) rep-

resentation. The then-state-of-the-art performance of 36.88% was reported

on the MIT Indoor67.

Another approach to texture-based scene representation is that of [87]. Mo-

tivated by the fact that different features tend to exhibit different dominant

orientations, and that descriptors in scene recognition should not be rota-

tionally invariant, they propose to extract information from a given patch at

multiple orientations. A given N×N patch is divided into N strips oriented

in a given direction. Each point on the corresponding ‘oriented texture
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curve’ is essentially the mean of pixel values along a given strip. A discrim-

inative, illumination and geometric invariant curve descriptor is proposed

by making use of curve gradients and curvatures, followed by a normal-

ization step to overcome local contrast changes and suppress texture-less

patches. Descriptors sized 185 features are extracted from dense patches

sized 13x13 pixels. Considering only a simple bag-of-words encoding is used

on a 3-level spatial pyramid, a good performance of 47.33% is reported on

the MIT Indoor67.

2.8 Attributes

[98] presented a large scale scene attributes database built on top of the

SUN dataset [139, 138]. 14,000 images form 700 categories were anno-

tated with 102 attributes by crowd-sourcing on Amazon Mechanical Turk.

The attributes contain functional/affordance based (e.g., camping, sailing),

material (e.g., vegetaion, glass), surface (e.g., moist, rusty), and spatial

envelope ([94], Sec. 2.1) properties. However, the analysis presented in-

dicates that although recognizing attributes from a feature-rich represen-

tation (GIST, HOG2x2 and other features) is quite feasible, scene classifi-

cation even from human-annotated attributes has a very low performance.

This suggests that an attribute set consisting of 102 properties may not

afford sufficient discriminative power for classification.

2.9 Deep Convolutional Neural Networks

Introduction. Convolutional neural networks (CNNs or ConvNets) [71,

72] are artificial neural networks (ANNs), that have successfully been used
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in various machine learning applications including, but not limited to, com-

puter vision [74, 107, 15, 57]. As in conventional neural nets (multi-layer

perceptrons, MLPs) [92], CNNs also contain fully connected neuron layers,

but these appear at the end of the network. Preceding these fully con-

nected layers, CNNs additionally feature layers where the neurons (nodes)

are essentially convolution operations on overlapping, tiled regions in the

input, naturally lending themselves to processing images. Depending on

the particular network architecture, max-pooling layers appear after some

convolutional layers, serving to downsample the spatial resolution while

providing local positional invariance. All layers may typically be followed

by ones applying an element-wise non-linear activation function. In classi-

fication settings, an N -way soft-max layer serves as the output layer. Mod-

ern CNNs are “deep”, consisting of tens of hidden layers (i.e., non-input or

non-output layers), featuring hundreds of thousands of neurons with tens

or hundreds of millions of parameters so as to achieve a large-scale learning

capacity [68, 118, 125, 50].

Like the HMAX model (Sec. 2.4), CNNs are biologically inspired by the

visual cortex; the early layers attempt to mimic simple cells, which have a

limited receptive field, responding to local, edge-like patterns. Subsequent

layers model the behaviour of complex cells, capturing higher-level visual

structure and patterns by examining information over larger regions in the

input space, and progressively evolving a more and more abstract and in-

variant representation. Unlike the HMAX model, however, CNNs, being a

variant of ANNs (also inspired by the biological neural network), automat-

ically learn the network parameters (the neuron weights, i.e., filter banks

and those in the fully connected layers) from training images via stochastic

gradient descent. In doing so, an algorithm called backpropagation is used

for the fast computation of the cost function’s gradient, and requires the
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activation function be differentiable [72, 92].

Deep Learning. Deep learning [42], i.e., the training process of deep

(multi-layered) ConvNets requires massive amounts of labeled data, and

is understandably computationally very demanding. In recent times, how-

ever, the availability of huge repositories with millions of hand-labeled im-

ages [21], as well as that of massively parallel computing power such as

distributed clusters or general-purpose GPUs, have contributed toward the

practical realization of high-performance deep CNN systems. Consequently,

deep ConvNets have taken the computer vision community by storm, espe-

cially proving to be highly successful in solving, among other tasks, large

scale recognition problems where conventional approaches have struggled

[113]. The phenomenal success can be attributed to the highly discrimi-

native and relevant hierarchical features a deep network can automatically

discover due to the layered structure of the model.

Beginnings. ConvNets were first introduced in [71, 72] in order to exploit

the unified feature extraction and classification learning paradigm of con-

ventional multilayer neural nets, while additionally incorporating domain-

specific priors for the task of image classification. Specifically, the fully

connected layers are relegated to the final stages of the architecture, and

convolutional layers are introduced to ensure local receptive fields, shared

weights and sub-sampling. This not only drastically reduces the number

of connections (and, hence, parameters to learn) compared to a fully con-

nected architecture of the same size, but also provides shift or translational

invariance. Known as LeNet-5, this early model featured 3 convolutional

layers, 2 sub-sampling layers, a fully connected layer and an output RBF

layer, making for a 7-layered architecture with 60,000 free parameters to

learn (albeit having 340,908 connections) [72]. It was demonstrated to out-

perform methods using hand-crafted feature extraction in the context of
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handwritten characters and bank check recognitions. Studies have followed

that show the superior invariance provided by CNNs for generic object

recognition [73], and that empirically investigate and compare various con-

figurations of the CNN architecture [59].

Contemporary Architectures. More recently, a high-performance con-

volutional network was trained by [68] on a subset of the ImageNet dataset

containing 1.2 million hand-labeled images of 1000 object categories, as de-

fined by the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

[113]. Now widely known as AlexNet, this CNN architecture features 5

convolutional and 3 fully-connected layers, followed by a 1000-way softmax

layer for classification. Novel additions to the architecture include non-

saturating Rectified Liner Units (ReLUs) as the non-linear neuron activa-

tion function, which is shown to significantly speed up the training, Local

Response Normalization (LRN) to improve generalization, and Overlap-

ping Pooling to reduce overfitting. A pair of high-performance GPUs were

leveraged, allowing to train a larger network. Overall, the architecture con-

tains 60 million trainable parameters. The model is shown to provide record

breaking performance improvement over the best results on the challenging

ILSVRC-2010 and ILSVRC-2012 tasks.

[118] perform an empirical study wherein the depth of the network is in-

creased from 11 through to 19 layers. Known in the community as VGG-

VD, they demonstrate that such “very deep” architecture configurations

are possible to train since they employ the smallest possible filter kernels

(i.e, 3x3). Moreover, max-pooling is performed only after every 2 or 3

stacks of convolutional layers, resulting in effective receptive field sizes of

5x5 or 7x7, respectively. As opposed to other models, e.g., AlexNet, the

convolution stride is also reduced to 1 pixel, which is computationally fea-

sible owing to the small kernel size. The number of free parameters is 138
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and 144 million, respectively, for their 16 and 19-layered networks. The ar-

chitecture won the 1st and 2nd places in the localization and classification

tracks at ILSVRC-2014.

Other notable CNN architectures include Caffe [61], the 22-layered

GoogleNet [125] (which achieved the 1st place in ILSVRC-2014 classifica-

tion task) and OverFeat [114] (participant in the ILSVRC-2013 challenge).

Most recently, ResNet [50] attacked the degradataion problem in very

deep networks, wherein the training accuracy saturates and then falls dras-

tically, by learning residual functions with respect to layer inputs. Their

ultra-deep, 152-layered architecture won the ILSVRC-2015 classification,

detection, as well as Microsoft COCO-2015 detection and segmentation

challenges.

CNN Features as Off-the-Shelf Descriptors for Scene Recognition.

DeCAF [25] demonstrated that features learned on the large and diverse

ImageNet subset by [68] can successfully generalize as off-the-shelf features

to a number of tasks such as scene and fine-grained object recognition.

Such domains typically feature limited train data, on which huge architec-

tures such as that of [68] are likely to overfit. The empirical study of [25],

however, has demonstrated that generic deep features trained on a fixed

but huge dataset can not only generalize to other domains, but also sig-

nificantly outperform conventional state-of-the-art methods on these tasks.

On the SUN397 scene classification, a performance of 40.95% was reported

as opposed to the then-best 38% by [139], even though the deep features

were trained on images depicting object categories. In a similar study, [107]

demonstrated that deep features as learned by yet another existing, con-

temporary CNN architecture can be employed as off-the-shelf descriptors

for a variety of vision tasks including attribute detection and fine-grained
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recognition. A 69% classification performance on the MIT Indoor67 was re-

ported, easily outperforming the then-state-of-the art methods. In similar

vein, [153] then demonstrated state-of-the-art MIT Indoor67 recognition

performance by combining DeCAF with SIFT, or with features learned

based on their own DSFL learning framework (which produces discrimina-

tive features that are also shareable across classes).

Other recent works have sought to extract CNN descriptors on a multi-scale

image representation, followed by encoding into an image-level descriptor.

[41] employ of Bag-of-words like orderless encoding of deep features ex-

tracted at multiple spatial regions and scales, demonstrating state-of-the-

art rates on both the MIT Indoor67 as well as SUN397 scene classification

tasks. [15] also employ pre-trained features, but instead of using the output

of a fully connected layer, they perform Fisher Vector pooling on the out-

put of the last convolutional layer, reporting the best to-date performance

of 81% on the MIT Indoor67 (see Tables 2.1, 2.2).

2.10 Benchmark Datasets for Scene Recog-

nition

Scene category recognition is a relatively recent area of research in contrast

to face, object or texture classification. As such, large scale benchmark

datasets for scene classification have only been made available in the re-

cent past. An early benchmark dataset for 8 outdoor scene categories

was introduced by [94], and contained a mix of urban categories (e.g.,

highway, tall buildings, etc) and natural landscape (mountains, coast, for-

est, etc). An additional outdoor (suburb), along with 4 indoor categories

(bedroom, kitchen, livingroom and office), were added to this set by [32].



Chapter 2. A Comprehensive Review 40

Two more categories, including one indoor (store), were included by [70] to

make for a 15-category dataset that has since widely appeared in literature

[141, 62, 146, 134, 34].

The seminal work of [106] presented the then-largest testbench of 67 in-

door scene categories called the MIT Indoor67 dataset. It contains a total

of 100 images per category, with around 80 for training and the rest for

testing. This dataset posed a substantial increase in difficulty over the

earlier 15-category dataset, since an algorithm now not only needs to be

scalable to the large number of categories, but also deal with the significant

within-class variation manifested in indoor images. This dataset therefore

firmly established indoor scene recognition as an open research problem in

computer vision. All indoor scene images appearing in this thesis are taken

form this dataset.

An even larger SUN (Scene UNderstanding) database sporting 899 scene

categories and 130,519 images has since been made available [139, 138]. For

scene classification, the benchmark specifies a subset of 397 well-sampled

categories (those containing at least 100 unique images). However, this

dataset is a mix of indoor and outdoor categories.

Following the ImageNet object image repository, a large scale dataset of

8+ million images depicting 401 unique scene categories (both indoor and

outdoor) has appeared recently, called Places2 [150] (evolving from a former

Places dataset [151]). For each category, it contains between 4,020 to 30,000

training images, 50 validation images (with labels) and 950 test images

(whose labels are not available to the public). Consequently, this dataset

has facilitated a large scale scene classification track at the ILSVRC [113]

since 2015.



Chapter 2. A Comprehensive Review 41

2.11 State of the Art in Indoor Scene Recog-

nition

Most works appearing in literature over the years addressing the MIT In-

door67 dataset have been touched upon in the review conducted in this

chapter. In addition, Tables 2.1 and 2.2 compile the most recent results

on this dataset, that essentially define the state of the art in indoor scene

recognition. Chapter 6 presents the classification results arrived at by this

thesis on this challenging dataset. Moreover, qualitative results for rectifi-

cation and detection of homogeneous texture in this dataset are presented

at various points in Chapters 4 and 5.

Single Rep. % Accuracy

(OPM) (CVPR’14) [140] 51.45%
Mode Seeking (NIPS’13) [23] 64.03%
SIFT (CVPR’13) [63] 60.77%
BoP (CVPR’13) [63] 46.10%
DSFL (ECCV’14) [153] 52.24%
DeCAF (CNN: AlexNet) (ICML’14 [25]) [153] 58.52%
MOP-CNN (CNN: Caffe) (ECCV’14) [41] 68.88%
CNN-SVM(CNN: OverFeat) (CVPRW’14) [107] 58.4%
CNNaug-SVM(CNN: OverFeat) (CVPRW’14) [107] 69.0%
FC-CNN(CNN: VGG-M) (CVPR’15) [15] 67.6%
FV-CNN(CNN: VGG-M) (CVPR’15) [15] 81%

Table 2.1: MIT Indoor67 classification — state of the art (single rep-
resentation). All methods (except SIFT) employ learning based feature
extraction. For a fair comparison, note that methods in the bottom half
employ deep features pre-trained on the massive ILSVRC dataset [113]

as off-the-shelf descriptors

.
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Combined Rep. % Accuracy

BoP + SIFT (CVPR’13) [63] 63.10%
OPM + SPM (CVPR’14) [140] 63.48%
Mode Seeking + SIFT (NIPS’13) [23] 66.87%
ISPR + SIFT (CVPR’14) [81] 68.5%
SIFT + DeCAF (ECCV’14) [153] 70.51%
DSFL + DeCAF (ECCV’14) [153] 76.23%

Table 2.2: MIT Indoor67 classification — state of the art (combined
representation). All methods (except SIFT) employ learning based fea-
ture extraction. For a fair comparison, note that methods in the bottom
half employ deep features pre-trained on the massive ILSVRC dataset

[113] as off-the-shelf descriptors

.



Chapter 3

Indoor Scene Recognition:

Possibilities & Challenges

In this chapter, a discourse is presented, articulating possible approaches to

indoor scene recognition, and identifying the hurdles in practically realizing

them. Sec. 3.1 picks up from Sec. 2.6, which surveyed the promising line

of work on discovering mid-level features for indoor scene recognition. The

pros of such an approach are reiterated, but the challenges are also detailed.

Sec. 3.2 muses over the possibility of exploiting indoor scene geometry for

classification, identifies existing work that may be leveraged to do so, but

goes on to find it is not ready to be put to such use in current form. Sec.

3.3 provides a brief overview as to how the remainder of this thesis proposes

to address the challenges brought out in the current chapter.

43
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3.1 Top-Down Recognition via Mid-Level

Features

Low-level patch-based features (see Sec. 2.3.1), though allowing local posi-

tional invariance, lack the context and semantics needed to reliably general-

ize to perceptually similar, or discriminate between differing image regions

[65]. Recent sophisticated encoding schemes (Sec. 2.3.2, [11, 54]), however,

have demonstrated impressive classification performance with low-level fea-

tures employed in a bottom-up dictionary-based pipeline, especially when

coarse spatial information is also preserved ([95]).

On the other hand, exploiting semantically meaningful image regions or

parts has great potential, especially for indoor scenes (Sec. 2.6). These

“mid-level” visual features possess the spatial support necessary to gener-

alize well to similar instances in the face of intra-class variation (see Fig.

2.4). Additionally, such a top-down, object-detection style approach is

potentially amenable to a more principled spatial constraint and contex-

tual modeling [22, 12, 56], that can improve detections and minimize false

alarms. Unfortunately, a practical pipeline implementing a top-down, mid-

level feature based approach to scene recognition is not easy to realize. In

what follows, some of the challenges in this direction are identified.

3.1.1 Image Annotation: Cumbersome, Expensive and

Error-Prone

With the recent availability of large scale datasets sporting hundreds of

categories and tens of thousands of images [139, 21], human annotation

becomes increasingly challenging, costly [98, 97], and susceptible to error.
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Annotation may have been performed with one task in mind, while it may

later be desired to employ the dataset for some other task. Moreover,

it is sometimes desired to use an out-of-the-blue, custom dataset for a

specialized task [24], and this dataset might not be annotated. Finally,

generalization of a model learned on one dataset to another is not always

guaranteed (as evidenced by the low performance of a top-down indoor

scene recognition system using pre-trained object models [78], compared to

models learned automatically from the target dataset [63, 23]). Therefore,

it becomes increasingly necessary to invest in research to minimize the level

of supervision.1

3.1.2 Automatic Discovery of Mid-Level Features: A

Chicken-and-Egg Problem

Give the modern-day availability of powerful and parallel computing re-

sources, coupled with advanced machine learning algorithms (see [119]),

unsupervised learning ([24]) seems to be an exciting direction. However,

such an approach is not trivial, as discussed below.

Ill-posed: The approach is inherently ill-posed in that neither the appear-

ance models of the patches sought are known (hence, one cannot detect

them in a given image), nor are their occurrences in given images (hence,

one cannot train detectors for them). Even with supervision, the trained

HOG detectors are susceptible to raising false alarms [131], and, given

the large presence of clutter and intra-class variation of all nature in real

1This is not to say that this thesis advocates an un-supervised, or a supervised for that
matter, learning based approach — it does neither, nor does it altogether reject them.
It merely identifies the potential problems in these directions, and goes on to propose a
non-learning based method to detect meaningful, mid-level features in Chapter 5.
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indoor images, the task is rather difficult. To appease the ill-posed na-

ture of the problem, a common constraint employed by all (to best of the

author’s knowledge) proposed algorithms in this direction is that of dis-

criminativeness — part models are learned such that they fire strongly on

images of the concerned scene category versus those of all other categories

([95, 119, 63, 23], see Sec. 2.6). However, it is arguable whether enforcing

such scene discriminativeness at the outset necessarily leads to good part

models.

Viewpoint differences: Indoor scenes are photographed from differing

viewpoints, and gradient based HOG (Sec. 2.3.1), the de-facto standard

features in object detection, are not invariant to viewpoint differences. Con-

sequently, two semantically similar parts differing somewhat in viewpoint

would be treated as different parts, modeled by two different part models.

This would be fine, except for the fact that we may not have a sufficiently

huge dataset available, depicting all parts in all viewpoints to learn ap-

pearance models from.

Occlusions: Where mid-level features are better at the task of generaliza-

tion compared to low-level features, the opposite is true when it comes to

occlusion handling. Very often, an object or part will be partially or fully

occluded in a given scene. Already a bane in supervised object detection

[135, 99], occlusions, widely manifested, exacerbate the task of automatic

learning. A partial part detection, if admitted during an iterative learning

process, such as [119], can adversely affect the evolution of the part model.

In the course of experimentation for this thesis, unsupervised learning of

tree models for indoor scenes (see [152], a supervised method for face detec-

tion and pose estimation, and [13], which models hierarchical context for

objects), jointly with part models, was unsuccessfully attempted in order
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to impose contextual constraints on the part discovery process. Part occlu-

sions were found to be one major factor for failure, since a single occluded

node in the tree hierarchy can severely impact the dynamic programming

based inference process. Should a joint discovery of scene parts be pur-

sued in future (as a potential constraint to the part learning process in

addition to discriminative learning), it would perhaps be more pertinent

to instead model local ensembles of objects (see [76]) instead of a global,

occlusion-prone, tree modeling.

3.2 Exploiting Indoor Scene Geometry

The geometry of an indoor scene is highly constrained. Not only do indoor

scenes exhibit a predominantly planar structure, but most of the manifested

planes also tend to be aligned along a few principal directions. We humans

can effortlessly, yet accurately, discern not only the major room planar sur-

faces — ceiling, walls and floor — but also any ‘secondary’ surfaces, i.e.,

horizontal and vertical planes making up the contained furniture, such as

the top of a table or bed, or the frontal view of a bookcase. Additionally,

we can do so from any viewpoint of a given scene, or in the presence of

unwanted interference such as room clutter or photometric severities (in-

sufficient illumination, change in lighting conditions across a given scene).

If a machine could be equipped with such high-level vision capabilities, the

resulting, semantically meaningful, scene segmentations could potentially

be exploited to influence recognition. This is so since the various room

surfaces exhibit characteristic properties that are unique (in classification

jargon, “discriminative”) to the design and decor of a given scene category.

For instance, walls in a kitchen scene are typically lined with cabinets

above and counters below. The floor in a classroom is covered with rows of
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chairs and desks. The ceiling in a living room can often sport a chandelier.

Secondly, provided the vanishing points of a segmented scene plane can be

estimated, a planar rectification may be performed to restore the viewpoint

to a ‘canonical’ form. Features extracted upon such a rectification are likely

to better match with those from a similar scene region in another image of

the same scene, possibly depicting a somewhat differing viewpoint.

Unfortunately, as hard as it is to computationally perform a fine-grained

generic multi-object segmentation in images, the coarse-grained room seg-

mentation we seek is equally difficult! The following sub-section reviews

some existing work along this direction, and identifies their shortcomings.

Furthermore, this thesis focuses on recovering planar scene structure from

single images, and therefore does not explore approaches exploiting depth

sensors (e.g., [132]), or those based on multiple views of a given scene such

as stereo and motion (e.g., [126]).

3.2.1 Automatic Estimation of Spatial Layout: Issues

in Real-World Images

Hoiem et. al. [52] have previously demonstrated the use of a rich set

of color, texture, shape and geometric local features to learn appearance

based models for the geometric classes of scene regions. Three main classes

are defined: ground, vertical planes and sky. The vertical planes are fur-

ther divided into three planar (left-facing, frontal and right-facing), and

two non-planar (porous and solid) subclasses. A learned pairwise affinity

function is used to obtain multiple hypotheses of scene region segmenta-

tions by grouping image superpixels into scene regions. Boosted decision

tree classifiers are used to obtain the likelihood of whether all superpixels

in a given scene region have the same geometric class label, and that of
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Figure 3.1: Illustration of the scene geometric context estimation
method of [52], and sample results for the MIT Indoor67 dataset. Main
geometric classes are shown by colored overlay (vertical = red, ground
= green, ceiling/sky = blue). Subclasses are shown by markings (left,
up, right arrows indicate planar surfaces; “X” and “O” indicate solid

and porous surfaces, respectively). Best viewed in color.

the region label. Finally, a superpixel’s label confidence is computed as a

weighted average of region likelihoods.

Initially proposed for natural, suburban and urban scenes, [52] also re-

trained the classifiers on indoor images facilitating a significant improve-

ment in geometric class labeling for indoor scenes. However, they only

demonstrate the approach on simple corridor-like scenes with no or little

room clutter. In experiments for this thesis, the method was observed to
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not fare so well on samples from the MIT Indoor67. Fig. 3.1 illustrates

some successes and failures obtained using author implementation of the

approach. We observe that the left, right and frontal vertical surfaces are

quite often accurately labeled. Plants are correctly labeled as porous (2nd

row, 2nd column). However, more often than not, many surfaces are mis-

classified. While the sky/ceiling is fully (3rd row, 4th column) or partially

(1st row, 2nd column) recovered in a few cases, it is mostly misclassified as

a vertical surface. The ground is also often partially misclassified as vertical

surface, especially in the presence of clutter (2nd row, 2nd column and 4th

row, 4th column). Seemingly, the method also cannot, in general, be relied

upon to recover fine-grained horizontal surfaces such as table tops.

During the preliminary phase of this thesis, an MIT Indoor67 classification

experiment was performed based on the scene geometry recovered by this

approach. Essentially, we would like to see whether the estimated coarse

scene structure provides a better alternative to the fixed grid based scene

partitioning popularized by the spatial pyramid scheme (see Sec. 2.3.2,

[70]), which assumes the scenes are roughly aligned in space. Specifically,

SIFT features are pooled over five spatial bins: the entire image, ceiling,

floor, vertical surfaces (including all its five sub-classes), and a fifth bin con-

taining only the image regions classified as solid or porous (the conjecture

being that these characterize the room objects or clutter). To obtain scene

segmentations, pre-trained classifiers as provided by the authors and their

own software implementation was employed. This is compared to a usual

two-level spatial pyramid representation (also containing five bins). Fisher

Encoding is used with one-vs-all SVMs. The details of the parameters and

configuration may be looked up in Sec. 6.1. Table 3.1 presents the results.

While a reasonable classification performance of 57.21% is attained, it is

surprising to see a fixed spatial grid based representation outperforming a



Chapter 3. Possibilities and Challenges 51

Method % Accuracy

FE SIFT (spatial pyramid) 59.14%
FE SIFT (geometric context) 57.21%

Table 3.1: MIT Indoor67 classification performance with Fisher-
encoded SIFT — 2-level spatial pyramid representation vs. binning

based on scene regions recovered by Geometric Context [52].

representation based on a more principled scene segmentation. Indeed it is

unreasonable to expect the method of [52] to take on all the various kind

of scenes in this challenging dataset. It might pay to perhaps re-train the

classifiers on this dataset for improved generalizability. However, such an

approach entails a lengthy and cumbersome annotation process. Addition-

ally, this method in its original form does not model any plane projective

parameters that can be used to perform a planar rectification — a central

theme in this thesis — in order to push recognition performance.

Representative approaches that can deliver said planar scene structure from

single images include [51, 121], and rely upon estimating scene vanishing

points, modeling the room via a box layout as if it were empty. Let us

analyze Hedau et. al. [51] in some detail. Connected component analysis

is used to obtain long, straight lines, that are then clustered into three

mutually orthogonal directions by imposing certain orthogonality criteria

[112]. The point of intersection — essentially, the vanishing point — for

each cluster may be computed by a voting based scheme, as in [51], or via

linear least squares, optionally obtaining robust maximum-likelihood esti-

mates by minimizing errors in the estimation of lines [47]. This fixes the

room box orientation. The remaining problem now is that of obtaining the

exact translation and scale of a given room face (walls, ceiling, floor). [51]

propose to sample a set of rays emanating from each viewpoint, the inter-

section of which yields a set of candidate box layouts [Fig. 3.2 (left)]. They
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Figure 3.2: Illustration of the room spatial box-layout estimation
method of [51] (left; taken from [51]), and sample results for the MIT

Indoor67 dataset (right).

then learn structured SVMs (using a set of training images with annotated

layouts) to rank the candidate room layouts using edge-based features. The

method of [52] is modified to also make use of vanishing points and features

based on the box layouts to obtain scene segmentations with geometric la-

bels. These surface labels, and features computed over them, are then used

to re-rank the box layouts, finally proposing the best scene layout. The

conjecture is that a joint modeling of a coarse box layout and scene surface

labels can improve the estimation performance for both, especially reduc-

ing the effects of clutter (room content) in box layout estimation. Some

sample layouts are depicted in Fig. 3.2 (right). An impressive resilience to

clutter (bed, auditorium seats, dining tables and classroom chairs) can be

seen.

Indeed, the “Manhattan” structure [17] is well manifested in indoor scenes

where surfaces are planar and aligned along three mutually orthogonal di-

rections, and therefore such an approach seems attractive. However, in

experiments for this thesis, it was observed that these simplistic assump-

tions are often violated in real images, among other challenges. Fig. 3.3
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applies the method of [51] to some typical images in the MIT Indoor67,

using author implementation. One observes the following:

Incorrect room face localization: Even in scenes where vanishing points

may be reliably estimated [Figs. 3.3(a), 3.2(classroom)], localization of the

faces in space and scale (albeit the heavy use of machine learning) is not

always possible. As such, characteristic features in one room face can end

up being assigned to the wrong room face.

Inability to handle forked layouts: Fig. 3.3 (b) depicts a forked scene

layout that violates the box assumption — though arguably Manhattan —

and therefore cannot be properly handled.

More than three dominant planar directions: The scene in Fig. 3.3

(c) features two additional planar directions due to an angled ceiling, be-

sides the usual three. Imposing orthogonality [112] to recover vanishing

points in such a scenario understandably fails. In the course of experimen-

tation for this thesis, a greedy voting based strategy to compute vanishing

points was implemented. Such a presence of more than three principal di-

rections in indoor scenes — widely manifested in practice — was observed

to be a major failure cause for estimating vanishing points (which is already

an ill-posed problem), besides clutter.

Non-existent straight lines in a principal direction: Fig. 3.3 (d)

shows a row of columns, suggesting a vertical planar structure that is tilted

away from the camera. While the scene seemingly satisfies the box lay-

out, there are no straight lines in the direction along the camera principal

axis. Thus the corresponding vanishing point cannot be obtained, adversely

affecting the room layout estimate.

Non-Manhattan indoor structure: A broad category of scenes in fact

do not conform to a Manhattan structure wherein surfaces are strictly
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Figure 3.3: Failure cases of the spatial layout estimation method of
[51]. Each row depicts, in order, line clusters assigned to vanishing
points, box layout, scene geometric labels ([51]+[52]) (a) incorrect room
face localization; (b) inability to handle forked layout; (c, d) incorrect
vanishing point(s), and hence viewpoint, estimates due to lack of straight
lines in a principal direction, or due to manifestation of more than 3
dominant planar directions; (e, f) not applicable to a broad category of
scenes that don’t conform to a conventional box layout. Left wall = red,
mid wall = cyan, right wall = yellow, ceiling = blue, floor = green. See

also Fig. 5.5. Best viewed in color.
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planar, and aligned only in three directions. Figs. 3.3 (e, f) depict scenes

from a train station and an airport as common cases.

3.3 The Way Forward

The remainder of this thesis attempts to address some of the problems high-

lighted in this chapter in order to facilitate indoor scene recognition. In

this regard, instead of relying upon the obvious but restrictive (as demon-

strated in this chapter) Manhattan scene assumption, Chapter 4 will exploit

a more general assumption in indoor scenes — that they strongly exhibit

regularly repeating planar structure, or in other words, homogeneous tex-

ture — and propose robust methods to recover projective parameters from

such structure. In doing so, reliance upon straight lines is no longer re-

quired, and vanishing points need not be computed, though when available

can be leveraged upon (see Sec. 5.4). Chapter 5 will consequently show

that machine learning need not be invoked to localize planes in space and

scale in real world indoor scenes, provided they satisfy homogeneity. Any

homogeneous room content is not treated as “clutter”, but also localized,

providing a more fine-grained modeling of room layout, as opposed to [51].

At the same time, this provides for a non-learning based approach to de-

tecting meaningful mid-level features, useful for scene recognition, as shall

be demonstrated via a comprehensive set of experiments in Chapter 6.



Chapter 4

Affine Rectification of Planar

Homogeneous Texture

Sec. 4.1 draws attention to the abundance of homogeneous texture in in-

door scenes, motivates the planar rectification of such texture to improve

scene recognition performance, and underscores the challenges faced by ex-

isting schemes for rectification. Sec. 4.2 reviews related work, contrasting

it with the method proposed herein. Sec. 4.3 develops the texture fre-

quency projection model that can be used for planar affine rectification.

Sec. 4.4 analyses an existing approach to estimate dominant frequency in

given texture, identifies and addresses two of its short-comings. Sec. 4.5

employs robust estimation to recover projective parameters, while Sec. 4.6

demonstrates an anisotropic multi-scale representation to further improve

performance. Finally, Sec. 4.7 presents comprehensive qualitataive and

quantitative results, demonstrating superior performance of the proposed

scheme over existing work on some challenging texture from real-world in-

door scenes.

56
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4.1 Motivation

Indoor scenes tend to be abundant with planar structure. Besides the

main architectural surfaces — ceilings, walls and floors — the content of

an indoor scene, such as furniture, cabinets and countertops is all planar.

Furthermore, there is a strong presence of regularly repeating structure or

motifs, aligned along planes. Consider the examples in Fig. 4.1, appearing

in the MIT Indoor67 dataset. One observes aligned columns in cloisters

or corridors, rows of pews in churches, repeating steps on a staircase, etc.

Next, Fig. 4.2 depicts patterned tiling, brickwork, wooden flooring and

printed carpeting (also from the MIT Indoor67). Again, such kind of uni-

form patterns are all very characteristic of man-made indoor scenes, and,

additionally, occur as planes. The aim in this chapter is to perform projec-

tive rectification on such kind of planar structure found so abundantly in

indoor scenes. The next chapter demonstrates the detection of such patches

in indoor images, and uses them in turn for scene classification.

In the absence of motion or stereo, shape-from-texture may be employed for

said rectification. In this thesis, the term “texture” is used to refer to both

the former, architectural or structural patterns, as well as the latter, more

conventional patterns appearing, for e.g., on tiles or fabric. We invoke the

notion of homogeneity in shape-from-texture, which requires that density

and scale of texels be uniform across the plane. This assumption sits well

with the kind of patterns we have just observed. Any deviation in homo-

geneity may then be attributed to perspective projection, and exploited to

recover plane normal or transformation.

A recognition system can benefit from planar rectification as it mitigates

in-class variation due to differences in viewpoint. The top row in each set

of 2x3 patches in Fig. 4.1 depicts a triplet of patches from similar indoor
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Figure 4.1: Indoor scenes are abundant with planar homogeneous tex-
ture. Rectification of such texture can reduce intra-class variation due
to viewpoint differences. All depicted texture was detected (see Chapter

5) and rectified automatically via the proposed approach.
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Figure 4.2: Examples of the more conventional texture manifesting in
indoor scenes. All depicted texture was detected (see Chapter 5) and

rectified automatically via the proposed approach.

scenes, but with significant viewpoint differences within the triplet (among

other kinds of intra-class variation). Gradient based image descriptors typ-

ically employed in recognition, such as SIFT or HOG, are not invariant to

perspective transforms, hence this can limit the performance of a recog-

nition system. Upon planar rectification (bottom row in each set of 2x3

patches), it can be seen that patch gradients align along a canonical co-

ordinate frame. A limitation of the proposed approach is that only the

projective parameters of the homography are recovered, while any accom-

panying affine transform is not. This means that any rotation or anisotropic

scale on the plane is not recovered, and the rectification contains an affine

ambiguity. Nevertheless, it shall be observed in Chapter 5 that even affine-

ambiguous rectification goes on to yield class-discriminative features that

help improve recognition performance (it should be noted that the detection
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in Chapter 5 is invariant to projective transforms, including any accompa-

nying affine transforms).

Rectification of such real-world images is not straight-forward, however.

The challenges include the presence of outliers (openings in courtyard columns,

regular shelf pattern interspersed with irregular grocery items or books, see

Fig. 4.1), illumination changes and shading, severely marring otherwise

uniform patterns on the floor (Fig. 4.2), and clutter (indoor scene objects

and furniture irrelevant to the pattern of interest, e.g., tables in front of

laundry machines in Fig. 4.1, or chair legs on patterned flooring). In addi-

tion, the limited span or support of the texture in the patch (laundromat,

wine barrels, bookshelves in Fig. 4.1) poses problems. Existing approaches

to texture rectification have usually been demonstrated on cropped texture

and sparse noise (see Sec. 4.2), while our application-oriented setting is

significantly more challenging. This chapter, therefore, mainly aims to ad-

dress these problems in planar rectification, and Sec. 4.7 shall compare the

proposed approach with existing work in light of said challenges.

4.2 Related Work

Planar rectification is a well-studied problem. In an early work, [80] adopted

a stratified approach where an affine rectification is obtained by first recov-

ering the vanishing points, and hence the vanishing line. The rectification

is then upgraded to a similarity assuming known metric properties in the

world plane (they also show that direct rectification is possible from met-

ric information). However, the method is not applicable in our setting

as we do not have such prior knowledge available, and additionally we

deal with multi-planar scenes. Approaches exist in literature that attempt

to automatically detect dominant rectangular planar structure in simple,
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non-cluttered indoor or urban environments [117, 67], or that detect pri-

mary indoor faces (walls, ceiling, floor) by employing sophisticated machine

learning [51], or detect depth-ordered planes [121]. However, all these ap-

proaches assume the scene is aligned with a triplet of principal directions

defining the coordinate frame, and that these directions can be reliably

recovered in a scene. It has already been discussed in Sec. 3.2.1 that both

these assumptions are often not valid for practical real-world indoor scenes.

The work presented here taps into classical shape-from-texture (SFT) the-

ory — in particular the class of methods that work with planar homo-

geneous texture [111, 123]. However, unlike SFT, our goal here is not to

recover surface normal but to perform planar rectification. We therefore re-

parameterize the local change in dominant texture frequency [123, 122, 49]

as a function of the plane projective homography instead of the surface slant

and tilt. The resulting formulation circumvents the need to define and re-

late coordinate systems and, more importantly, does not require knowledge

of focal length, hence has wider applicability. One notes that [16] have pre-

viously presented a SFT system that does not require a calibrated camera,

and jointly recovers surface normal and focal length. However, the system

only works in the limited scenario where the fronto-parallel appearance of

the texture is known a priori. On the other hand, as motivated in Sec. 4.1,

we only make the weak assumption of texture homogeneity.

Criminsi and Zisserman [18] have also previously demonstrated recovering

vanishing lines from projected homogeneous texture by exploiting the ob-

servation that the direction of perspective gradient is orthogonal to the

vanishing line. However, the approach involves a computationally expen-

sive search for the direction of maximum variance of a similarity measure,

seems to be susceptible to such parameters as the size of image patch to

compute the measure over, and has only been demonstrated on cropped
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texture exhibiting a grid structure. On the other hand, [108] observed

lines of equal spectral power are perpendicular to the perspective gradient,

but they recover tilt and not a homography.

Similar to [80, 14], the approach presented in this chapter models and

recovers the projective part of the homography. However, whereas [14] ex-

ploit relative scale change in recurring instances of affine-covariant MSER

features (see Sec. 2.3.1), Sec. 4.3 exploits the local change in dominant

texture frequency to obtain an affine rectification. A frequency based ap-

proach [123], as opposed to one involving feature detection [14, 104, 3], is

capable of describing any generic homogeneous texture, and not necessarily

composed of texture elements (texels) that can be sensed by a given feature

detector (lines, blobs, edges, etc). Furthermore, as is demonstrated in Sec.

4.4, employing a frequency based texture representation allows us to make

use of energy minimization methods to robustly track a dominant texture

frequency component in the presence of outliers with large spatial support.

Combined with robust parameter estimation (see Sec. 4.5), we arrive at a

powerful approach that performs well in the face of aforementioned limited

support and clutter. While the TILT algorithm of [149] directly employs

raw pixel values, and does not involve low-level feature detection, it is ap-

plicable to a limited class of texture — that which upon rectification gives

a low-rank matrix. Therefore, the approach has been successfully demon-

strated only on a limited type of images — mainly faces, text and building

facades. Furthermore, a region of interest often needs to be specified for

the approach to work well. Moreover, the algorithm is explicitly designed

to cater to spatially sparse noise, and hence may not work well with the

outliers or clutter encountered in real-world scenes and mentioned in Sec.

4.1. Similarly, [3] demonstrate a resilience to sparse, salt-and-pepper like
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noise. This assumption of sparse noise is hardly valid for texture in real-

world indoor scenes, which, on the contrary, can often contain large blobs

and blotches of outliers! In Sec. 4.7.1, qualitative comparisons are pro-

vided between the proposed method and those in [149, 3] on challenging

real-world test cases that exhibit limited spatial support, large clutter and

illuminaion changes.

In [104], an upgrade to the affine rectification of [14] within a similarity

of the scene plane is demonstrated by making use of recurring rotated in-

stances of a motif, provided they can be detected and matched intra-image.

It shall be demonstrated later in Sec. 5.4 that if the scene vanishing points

are known, they can be used in conjunction with estimated instantaneous

frequency to automatically assign the correct pair of vanishing points to a

region of homogeneous texture, and simultaneously obtain a rectification

up to only a scale ambiguity for such regions.

4.3 Texture Frequency Projection Model

One class of shape-from-texture algorithms assumes an isotropic surface

texture, i.e., it has no dominant orientation or bias (see [111, 40]). The

deviation in isotropy upon (either orthographic or perspective) projection

is used as a cue to recovering shape (e.g., a circle projects to an ellipse).

Another class of algorithms makes a more general assumption involving

some form of texture homogeneity [111, 123, 124, 69, 18, 14, 104, 3]. When

projected to the image plane, texture gradients come into play that cause

the texture to deviate from homogeneity. The scale, area or perspective gra-

dient is the shrinking of a texel as it recedes from the camera, the density

gradient is the increased crowding of texels as they move farther, whereas
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the compression gradient or foreshortening compresses a given texel along

the direction of slant more than in the direction orthogonal to it. While

all three are manifested in perspective projection, only foreshortening is

present in orthographic (affine) projection. The approach in [14, 104], for

e.g., exploits the scale gradient, while the density gradient is not explicitly

modeled. Since an affine-ambiguous homography is recovered, the com-

pression gradient is also not recovered.

The model developed in this section assumes texture homogeneity to imply

that scale and density of texels (in the fronto-parallel view) is constant. A

texture that has undergone an anisotropic scaling (due to some unknown

affine transform) is still considered homogeneous. Hence, the compression

gradient is not modeled. (Note the difference with [123, 122], who, by

making use of an explicit perspective projection model given a calibrated

camera, are able to implicitly exploit the compression gradient as well). The

frequency domain equivalent of this assumption is that the texture should

exhibit a constant spatial frequency content across the plane in a given

direction. Sec. 4.4 demonstrates how to robustly track the instantaneous

(point to point in spatial domain) dominant spatial frequency component

in projected texture. In the current section, we shall attribute any local

variation in spatial frequency — essentially, the deviation in texture homo-

geneity — to perspective projection; we then seek to undo this deviation

in order to recover a rectifying homography up to an affine ambiguity.

Conventional shape-from-texture relates texture surface coordinates at a

point to corresponding camera coordinates in terms of the slant and tilt of

the tangent plane at that point [123, 124], or in terms of the plane gradients

or normal [122, 69, 16]. Surface coordinates (expressed in camera reference

frame) are then projected to the image plane via scaled orthographic or

perspective projection. The transpose of Jacobian of the inverse of this
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Figure 4.3: Texture surface projection — notations and geometry.

composite transformation (i.e., from image to surface coordinates) yields

the transformation from surface to image spatial frequency [123]. Recovery

of surface slant and tilt is not possible without knowledge of focal length,

and all SFT systems assume this camera parameter is known. Since we are

interested in planar rectification, we can relate the surface and image points

via a planar homography instead of an explicit camera projection model.

This does not require the focal length, but the downside, as we shall see

shortly, is that we cannot recover any accompanying affine transform (i.e.,

rotation and anisotropic scale).

Fig. 4.3 depicts the projection geometry and the notations involved, using

the example of an image from the MIT Indoor67 clothingstore category.

The “texture” in this case is the pattern formed by the vertical hat hook

bars. Observe that in the imaged plane (right image), the scale and density

gradients discussed above are manifested, while compression gradient is not

pronounced in this example. In the affine-rectified plane (top image), scale

and density of texels becomes constant. Notice the limited support of the
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pattern in the image, as well as the clutter (assorted hats at the bottom).

Yet, the affine-rectified image was obtained automatically by the proposed

approach. In the metric-rectified (fronto-parallel) plane (left image), any

rotation and anisotropic scaling have also been removed (manually, since

the proposed method does not support this).

Let us represent the projective transform from the image plane to the tex-

tured surface plane as a 3x3 homography H. This can be decomposed to

separate the contributions of the affine part and the projective part [47]:

H = HAHP (4.1)

=


a11 a12 a13

a21 a22 a23

0 0 1




1 0 0

0 1 0

h7 h8 1



In other words, the image coordinates are first transformed by the “purely”

projective (i.e. what is left in the projective group after removing the

affine group) homography to some intermediate plane, followed by the affine

transform HA to obtain the world (fronto-parallel) plane coordinates. We

consider the role of HA first. Let xs = (xs ys)
′ denote the planar coor-

dinates on said intermediate plane, which are transformed to world plane

coordinates x′s = (x′s y
′
s)
′ by HA as:

x′s = a11xs + a12ys + a13 (4.2a)

y′s = a21xs + a22ys + a23 (4.2b)

The transpose of the Jacobian of HA, given as:

J′A =


∂x′s
∂xs

∂y′s
∂xs

∂x′s
∂ys

∂y′s
∂ys

 =


a11 a21

a12 a22

 (4.3)
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transforms a given world plane spatial frequency u′s = (u′s v
′
s)
′ — which is

constant over the entire plane, since we have assumed homogeneity of tex-

ture on the surface — into the frequency us = (us vs)
′ on our intermediate

plane:

us = J′Au′s (4.4)

i.e.,

us = a11u
′
s + a21v

′
s (4.5a)

vs = a12u
′
s + a22v

′
s (4.5b)

Clearly, frequency us on the intermediate plane, albeit different from world

plane frequency u′s, is also constant, i.e., does not vary spatially. In other

words, homogeneous texture upon affine transform is still homogeneous,

under our definition of homogeneity.

In a similar fashion, HP transforms image points xi = (xi yi)
′, into points

xs = (xs ys)
′ on our intermediate plane:

xs =
xi

h7xi + h8yi + 1
(4.6a)

ys =
yi

h7xi + h8yi + 1
(4.6b)

The transposed Jacobian matrix of the above function is:

J′P =


∂xs

∂xi

∂ys
∂xi

∂xs

∂yi

∂ys
∂yi


=

1

(h7xi + h8yi + 1)2

h8yi + 1 −h7yi
−h8xi h7xi + 1

 (4.7)
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J′P transforms the constant frequency us = (us vs)
′ on the intermediate

plane to variable frequency u(xi) = (ui vi)
′ = [u(xi) v(xi)]

′ on the image

plane as:

u(xi) = J′Pus (4.8)

While the above analysis is applicable to any spatial frequency component,

in Sec. 4.4 we shall obtain a robust instantaneous estimate of the dominant

spatial frequency component in a given image patch depicting real-world

texture, which inevitably contains multiple frequency components. Denote

said estimate as ũ(xi) = (ũi ṽi)
′ = [ũ(xi) ṽ(xi)]

′. We then arrive at a

method to recover HP by minimizing the following re-projection error

over the projective parameters h7, h8 and the intermediate plane frequency

us, vs:

ERP (h7, h8, us, vs)

=
∑
xi

∑
yi

(
(h8yi + 1)us − h7yivs

(h7xi + h8yi + 1)2
− ũi)2

+
∑
xi

∑
yi

(
(h7xi + 1)vs − h8xius

(h7xi + h8yi + 1)2
− ṽi)2 (4.9)

Eqn. 4.9 is an error measure in the image space. We may also define an error

measure on the intermediate plane (where constant world-plane frequency is

projected to another constant frequency via an affine transform) as follows.

Consider H−1P that projects the intermediate plane to the image. The
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corresponding transposed Jacobian:

J′
H−P1

=


∂xi

∂xs

∂yi
∂xs

∂xi

∂ys

∂yi
∂ys


=

1

(1− h7xs − h8ys)2

1− h8ys h7ys

h8xs 1− h7xs

 (4.10)

back-projects the variable image frequency ui, vi to constant intermediate

plane frequency us, vs. The back-projection error is then:

EBP (h7, h8, us, vs)

=
∑
xs

∑
ys

(
(1− h8ys)ũi + h7ysṽi

(1− h7xs − h8ys)2
− us)2

+
∑
xs

∑
ys

(
(1− h7xs)ṽi + h8xsũi

(1− h7xs − h8ys)2
− vs)2 (4.11)

In Eqn. 4.11, back-projected coordinates xs = xs(xi) and ys = ys(yi) are

obtained via Eqns. 4.6. Optimizing Eqn. 4.9 or Eqn. 4.11 is a nonlinear

least squares problem, and may be performed via the Levenberg-Marquardt

algorithm. The error measures indicate that parameters h7 and h8 reduce

to 0 if and only if ui = us and vi = vs, respectively.

In experiments, the sum of the re-projection and back-projection errors:

E(h7, h8, us, vs) = ERP + EBP (4.12)

is minimized to yield more robust estimates for parameters h7, h8, us and

vs, rather than minimizing either error. Our rationale for combining the

two error measures is as follows. One can view the operation performed

by Eqns. 4.6 to obtain Eqn. 4.11 as some kind of data normalization, and
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analogous to the case of estimating epipolar geometry [148], we empirically

evaluate which data normalization yields the best results and arrive at Eqn.

4.12.1

Observe that our method allows the recovery of HP and not HA. This

is because J′A maps the fronto-parallel plane frequency u′s = (u′s v
′
s)
′ to

a different but still constant frequency us = (us vs)
′. As such, a planar

rectification only to within an ambiguous affine transformH−1A of the fronto-

parallel plane may be obtained.

4.4 Robust Tracking of Dominant Frequency

in Projected Homogeneus Texture

The 2D DFT captures the global spatial frequency content of the given

image by specifying the magnitude and phase of each frequency (which

ranges from 0 to 0.5 cycles/pixel, i.e., the Nyquist frequency). However, we

are interested in estimating the spatially local (instantaneous) frequency

content. This may be achieved with the Short-Term Fourier Transform

(STFT), also called the windowed Fourier Transform. The STFT computes

the local spectral content by applying DFT to small windows or patches

in the given image. There is an associated trade-off between spatial and

frequency domain resolutions. A compact spatial-domain window yields

more local estimates in space, and vice versa. The special case where the

window has a Gaussian form is called the Gabor transform, and has an

optimal trade-off between time and frequency resolutions, i.e., maximum

possible resolution in both domains simultaneously (see, e.g., [20]).

1For computational stability, the pixel coordinates are also normalized such that the
top-left of the patch is given by (-1,-1) and the bottom right by (1,1).
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Putting it mathematically, a Gabor filter:

h(u; x) =
1

2πγ2
exp

{
−x.x2

2γ2

}
exp {2πju.x} (4.13)

with effective width, receptive field, or standard deviation γ and spatial

center frequency u = (u, v), can be convolved with an image f(x), followed

by evaluating the complex magnitude, to give its frequency content near u

at spatial point x = (x, y):

A(u; x) = |f(x) ∗ h(u; x)| (4.14)

The above form of the Gabor function is as in [122, 123, 124]. It can

be easily shown that it is equivalent to the parameterization proposed in

[102, 116, 91] if the spatial aspect ratio of the filter is set to 1 (i.e., the

filters have a circular rather than an elliptical shape).

Now, assuming texture homogeneity, we want to measure how a given fre-

quency component (which would be constant over space sans projection)

varies instantaneously (i.e., from pixel to pixel) in a certain direction so as

to be able to use the projection model developed in Sec. 4.3. Moreover,

since a given homogeneous texture may exhibit multiple frequencies, which

may also be oriented differently, we must discern the component we can

reliably track over space. In this regard, Super and Bovik [122, 123] have

previously demonstrated estimation of the dominant texture frequency —

a distinct peak at any given point, around which most of the energy is

concentrated in a narrow band.

A naive approach to estimating the dominant frequency at a point in the

image is to compute the responses at this point to Gabor filters with a

dense sampling of center frequencies in the spatial frequency plane. The

center frequency giving the maximum response is the required estimate.
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However, a sufficiently dense sampling of center frequencies to provide an

appreciably smooth instantaneous estimate is computationally infeasible.

Super and Bovik have proposed more practical approaches involving com-

bining estimates from multiple neighbouring filters in [122], or employing a

frequency demodulation model from [49] for improved frequency estimates

[123, 124]. In this section, the demodulation based approach (DEMOD) as

presented by Super and Bovik is reviewed, and then applied to significantly

more challenging texture compared to the original work in order to identify

and address its shortcomings.

Let us denote the horizontal and vertical partial derivatives of Gabor filter

h(u; x) by hx(u; x) and hy(u; x) respectively, and the corresponding am-

plitude response (Eqn. 4.14) by B(u; x) and C(u; x) respectively. Then,

an unsigned instantaneous estimate |ũ(x)|2 of a frequency component that

lies in the passband of filter h(u; x) is given by:

|ũ(x)| = B(u; x)

2πA(u; x)
(4.15a)

|ṽ(x)| = C(u; x)

2πA(u; x)
(4.15b)

Equivalently, the associativity property of convolution [f∗(g∗h) = (f∗g)∗h]

may be invoked, and B(u; x), C(u; x) defined as the responses of the partial

derivatives fx, fy of the texture image f(x) to the Gabor h(u; x). The

dominant component estimate at each point ũ(x) may be computed by

applying Eqns. 4.15 for the filter h that maximizes the response A(u; x)

at that point. Observe that only an unsigned estimate of the frequency is

recovered. In their original work [123], the authors sample Gabor filters

2The symbol tilde (˜) is used to denote an instantaneous quantity in [123, 124]. In
this thesis, however, it is used to denote an estimated quantity, while the instantaneous
nature is already clear by writing it as a function of x. As such, equality (=) is used in
Eqns. 4.15 instead of the approximate equality (≈) appearing in [123, 124].
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from quadrants I and IV of the frequency plane, and choose the quadrant

of the maximizing Gabor at each pixel to define the signs of the horizontal

and vertical frequency.

The Gabor filter bank used in all experiments for this thesis is described

in the following, and differs somewhat from [122, 123, 124] since it was

experimentally fine-tuned to our setting. Filters sized 45x45 pixels are

generated via Eqn. 4.13. 6 radial center frequencies Ω are sampled along

a geometric progression from 3 to 16.9706 cycles/image with a common

ratio
√

2. As suggested in [123, 124], the bandwidth is fixed so that the

effective width γ varies proportionally with the center frequency Ω. The

proportionality constant may be computed as [102]:

γ

λ
=

1

π

√
ln2

2
.
2b + 1

2b − 1
(4.16)

where b is the half-magnitude response spatial bandwidth of the Gabor fil-

ter, set to 1 in all experiments. 10 radial orientations θ spanning quadrants

IV and I are used, spaced uniformly by 18◦ i.e., −90◦ to 72◦. Finally, the

relationship between the polar form (Ω, θ) and the cartesian form u = (u, v)

of spatial frequency is defined as:

u = (u, v) = (Ω sin θ, Ω cos θ) (4.17)

The filter bank constructed above is illustrated in Fig. 4.4 by visualizing

the real part of the complex-valued functions. The imaginary parts simply

consist of a 90◦ offset relative to their real counterparts.

In its original form, the DEMOD approach reviewed above was found to

perform rather poorly in our application setting of homogeneous texture in

indoor scenes, which inherently exhibit clutter and outliers. The following
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Figure 4.4: Visualization of the Gabor filter bank used in all experi-
ments for this thesis. Only the real parts of the complex-valued functions
are shown. The radial frequencies increase along a geometric progres-
sion from 3 to 16.9706, while the orientations are uniformly spaced from

−90◦ to 72◦ (see text for details).

sub-sections identify two shortcomings of DEMOD, namely frequency drift

and quadrant ambiguity, and propose effective solutions.

4.4.1 Frequency Drift

Consider the 130x80 pixel patch in Fig. 4.5(a) depicting a glass ceiling

cut out from an MIT Indoor67 airport_inside image. The texture in

question is the lattice formed by the metal frame on the ceiling. As an

aside, observe it is unreasonable to expect an algorithm that uses lines in

the image to reliably compute the horizontal dominant vanishing point for

this patch (notwithstanding the patch must first be segmented out in the

image), since the horizontal bars are piecewise linear and not rectilinear.
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Figure 4.5: Affine rectification of given texture (a) via the model devel-
oped in Sec. 4.3 applied to dominant instantaneous frequency estimate.
Non-optimal estimate via demodulation (b) is prone to drift, optimal es-
timates via GCO (c) or QPBO (d) improve performance. Ground truth

is shown in (e).

The ground truth affine rectification, obtained by manual annotation of

vanishing points, is shown in Fig. 4.5(e).

Estimating the dominant frequency in this image using the demodulation

scheme just reviewed, and obtaining the projective parameters by minimiz-

ing Eqn. 4.12 results in a rather poor affine rectification (Fig. 4.5(b)).

The failure may be understood by inspecting the center frequency and ori-

entation of the dominant Gabor filter (i.e., the one yielding the maximum

response) at each pixel, as shown in Fig. 4.6(a) and (c) (brigher pixels

depict numerically larger values). Since the given texture does not extend

to the lower left and lower right regions in the image patch (Fig. 4.5(a)),

the dominant Gabor estimate drifts in both the center frequency as well

as the orientation in these regions. Fig. 4.6(b) and (d) plot the dominant

center frequency and orientation, respectively, along the dotted lines in Fig.

4.6(a) and (c). The center frequency is seen to momentarily drop before

continuing with its increasing pattern, and then dropping again. On the
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Figure 4.6: Closer look at drift in dominant instantaneous frequency
estimate via demodulation. Radial center frequency (a) and orientation
(c) of maximizing Gabor filter at each pixel. 1D plot (b) (respectively,
(d)) of dotted line in (a) (respectively, (c)). Resulting dominant hori-
zontal (e, f) and vertical (g, h) frequency estimates shown as 2D images

and 3D surface plots.

other hand, the orientation plot reveals that the Gabors pre-dominantly fire

strongly at the horizontal bars in the image (18◦, 0◦, −18◦ as one moves

from left to right). However, in the lower region of the image, the verti-

cal bars (−72◦, 90◦) are the ones that define the “dominant” Gabors. Fig.

4.6(e) and (g) show the resulting horizontal and vertical estimates obtained

via Eqns. 4.15, followed by choosing the sign according to the quadrant of

the maximizing Gabor. While the demodulation scheme recovers remark-

ably smooth estimates in the upper textured image region, which if free

from outliers, the result in the lower region is affected due to drift. This

results in severe discontinuities in the frequency estimates, as observed in

the corresponding surface plots in Fig. 4.6 (f) and (h).
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The manifestation of said discontinuity suggests that a possible resolution

to the problem of drift may be obtained by enforcing smoothness via the

following graph cut problem [8]:

E(f) =
∑
p∈P

Dp(fp) +
∑
{p,q}∈N

Vp,q(fp, fq) (4.18)

where P is the set of sites p to be labeled (pixels), and N is the set of all

possible pairs of pixels (the 8-N system is employed in all experiments for

this thesis). The set of labels L consists of the entire Gabor filter bank.

The unary term Dp is defined as:

Dp(fp) =
α

A(fp; p)
(4.19)

where A(u; x) is as dictated by Eqn. 4.14, with fp = (Ωp, θp) ∈ L giving

the filter with center frequency u = (Ωp sin θp, Ωp cos θp) at x = p.

There are two ways in which the pairwise smoothness term Vp,q may be

defined. One approach is to force the labels Ωp and θp to be smooth:

Vp,q(fp, fq) = V (fp, fq) = β(Ωp − Ωq).
2

+ γ(sin θp − sin θq)
2

+ γ(cos θp − cos θq)
2 (4.20)

In this scenario, demodulation (Eqns. 4.15) is performed after solving the

problem 4.18 to obtain the optimal labeling f. Let us call this first approach

Graph Cut Optimization (GCO). The affine rectification obtained using the

resulting optimal frequency estimate is shown in Fig. 4.5(c). A substantial

improvement over the non-optimal case (Fig. 4.5(b)) is seen. Fig. 4.7
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Figure 4.7: Resolution of frequency drift by enforcing smoothness over
maximizing Gabor radial frequency, as well as over cosines and sines of

radial orientation, via GCO. (a) – (h) same as Fig. 4.6

examines the optimal Gabor frequency and orientations obtained, as well

as the resulting horizontal and vertical frequency estimates. A smooth,

monotonically increasing frequency profile is observed in Fig. 4.7(b) along

the sample dotted line in Fig. 4.7(a). Similarly, the orientations transit

smoothly from 36◦ through to −18◦ along the dotted line in Fig. 4.7(c),

as observed from Fig. 4.7(d). This indicates that Eqn. 4.18 helps to

consistently track the varying frequency of the horizontally oriented bars

in Fig. 4.5(a), and is not swayed by the vertical bars, even in the lower

image regions.

Smoothing the sines and cosines in Eqn. 4.20 instead of the labels θp

implicitly helps to recover smoother estimates of the horizontal and vertical

frequency (Fig. 4.7(e – h)). Also, separating the radial frequency Ωp and

orientation θp terms in Eqn. 4.20 allows to fine-tune parameters β and
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γ separately. In experiments, these parameters are fixed to β = 1 and

γ = 100. For GCO, α = 1 in Eqn. 4.19.

The second approach is to explicitly enforce smoothness on signed estimates

ũ(x) and ṽ(x) obtained after having applied demodulation (Eqns. 4.15)

(with the sign defined by the candidate label Gabor’s quadrant). That

is, demodulation is performed for all labels (essentially, all Gabor filters)

first, and an optimal Gabor is then obtained at each point such that the

resulting labeling not only maximizes the response, but also yields smooth

horizontal and vertical signed frequency estimates. The smoothness cost in

this scenario, defined as:

Vp,q(fp, fq) = {ũfp(p)− ũfq(q)}2

+ {ṽfp(p)− ṽfq(q)}2 (4.21)

is dependent on both the labels fp as well as the sites p by virtue of the de-

modulation operation (Eqns. 4.15), which is site-dependent. Further, since

the frequency estimates ũfp(p) and ṽfp(p) can be arbitrary, the resulting

energy 4.18 is non-submodular. We therefore employ quadratic pseudo-

boolean optimization (QPBO) [66]. The α-expansion framework [8] is still

used to handle the multiple labels, with QPBO as the sub-solver. QPBO

can leave some nodes un-labeled in a given α-expansion iteration, and in

such situations one may simply choose to retain the original labels of the

affected nodes. The process is stopped if at any iteration there has been

no reduction in energy. In practice, convergence is observed in around 2 –

6 iterations. For the 130x80 pixel example in Fig. 4.5(a), convergence was

obtained in 3 iterations, with α set to 10−4 in Eqn. 4.19. The resulting
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Figure 4.8: Resolution of frequency drift by enforcing smoothness
via QPBO over dominant horizontal and vertical frequency components

yielded by demodulation. (a) – (h) same as Fig. 4.6

DEMOD GCO QPBO GT
h7 0.2940 -0.0736 -0.0694 0.0089
h8 -0.2650 -0.4923 -0.4565 -0.6035

Table 4.1: Estimated projective parameters for the example texture
in Fig. 4.5(a) using non-optimal frequency estimation (DEMOD), and

the optimization based schemes (GCO and QPBO).

affine rectification is shown in Fig. 4.5(d) and is very similar to GCO 3

(Fig. 4.5(c)).

Fig. 4.8 illustrates the optimal radial frequency (a) and orientation (c), as

well as the corresponding horizontal (e) and vertical (g) estimates obtained

3Both approaches to enforcing smoothness, i.e., 4.20 and 4.21, are essentially graph-
cut problems — the first solved via max-flow, min-cut, and the second via QPBO. To
differentiate between the two during discussion and for brevity, we use the term GCO
to refer to the former, and QPBO for the latter. Also, these acronyms are more to refer
to the method of smoothness in our context than the actual optimization algorithms.
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by QPBO. Interestingly, for the example texture in Fig. 4.5(a), enforcing

smoothness over the horizontal and vertical frequency after demodulation

has the effect that the frequency of the vertically oriented bars is tracked,

unlike DEMOD or GCO. This may be observed from Fig. 4.8(c – d),

that show that Gabors oriented at −72◦ and −90◦ are chosen as optimal.

Moreover, since it is the horizontal and vertical frequency obtained after

demodulation that are smoothened, the estimates (Fig. 4.8(e – h)) are

smoother than those obtained by GCO (Fig. 4.7(e – h)).

Nevertheless, the qualitative results in Fig. 4.5, and the recovered projec-

tive parameters (Table 4.1) indicate that both GCO and QPBO perform

equally well. On the other hand, while GCO is fast (0.37s for this example),

QPBO is considerably slower (2.53s). The main computational bottleneck

is computing the smoothness term. The cost for GCO 4.20 may be com-

puted once for each pair of labels. On the other hand, the cost for QPBO

4.21 depends on the labeling as well as the pair of pixels under consider-

ation. Computing it all at once for every pair of neighbouring pixels and

every possible label requires excessive memory. It must therefore be com-

puted for every pair of pixels in every iteration of the alpha expansion loop

using the current labeling.

4.4.2 Quadrant Ambiguity

Now consider the 80x160 pixel patch in Fig. 4.9(a) that is cropped from

an image in the MIT Indoor67 category subway. In this example, the

texture consists of the track rails that appear to converge as they recede

from the camera. Fig. 4.9(b) shows the ground truth affine rectification.

The DEMOD scheme in its original form again fails to work (Fig. 4.9(c)).

However, if one rotates the given image counter clock-wise by 90◦, uses
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Figure 4.9: Affine rectification of given texture (a) via the model devel-
oped in Sec. 4.3 applied to dominant instantaneous frequency estimate.
(b) Ground truth. Non-optimal estimate via demodulation (c) is prone
to quadrant ambiguity, if manifested in given texture. (d) Demodula-
tion applied to rotated texture does not face said ambiguity. Optimal

estimates via GCO (e) or QPBO (f) can resolve any ambiguity.

DEMOD, and swaps the projective parameters so obtained (to cancel the

effect of rotation), the resulting affine rectification is shown in Fig. 4.9(d).

The failure of DEMOD applied to the non-rotated patch may be under-

stood, again, by inspecting the orientations of the dominant Gabor filters

(Fig. 4.10, 2nd and 3rd rows). The orientation of the rails increases as one

moves from left to right (36◦, 54◦, 72◦), wraps around back to −90◦ (since

we only sample two quadrants), and then increases again (−72◦ through to

−36◦). This is indeed the expected behaviour, but the resulting horizontal

and vertical frequency estimates (Fig. 4.10, last two rows) suggest it is

incorrect! The reason is that since we only sample frequencies from quad-

rants IV and I, a change from 72◦ to −90◦ results in a sharp discontinuity

(a drop from +30 to -30 cycles/image) in the horizontal component (whose

sign is dictated by the sine of the orientation — see Eqn. 4.17).
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Figure 4.10: Closer look at quadrant ambiguity in dominant instan-
taneous frequency estimate via demodulation. Demodulation can only
make use of quadrants IV and I; consequently, a change from +72◦ to
−90◦ introduces a significant discontinuity in the horizontal frequency
estimate. GCO and QPBO make use of all quadrants, ensuring a smooth
transition from one quadrant to another with respect to both the hori-

zontal and vertical frequency estimates.

In other words, any texture where the dominant frequency passes over

from quadrant I to IV cannot be handled by DEMOD, unless the image is

rotated! In practice, such texture abundantly appears on ceilings or floors

in indoor scenes. We could swap our definition in Eqn. 4.17 such that the

sign of the horizontal component is dictated by the cos function instead.

However, any texture where the orientation passes over from quadrant IV

to I will then face the same problem — such texture can appear on walls
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DEMOD DEMOD+ROT GCO QPBO GT
h7 -0.0360 0.0292 -0.0207 -0.0198 -0.0064
h8 -0.0422 0.6332 0.8509 0.8368 0.7011

Table 4.2: Estimated projective parameters for the example texture
in Fig. 4.9(a) using non-optimal frequency estimation without (DE-
MOD) and with (DEMOD+ROT) rotation, and the optimization based

schemes (GCO and QPBO).

in indoor scenes (see, e.g., Fig. 4.15(h)). A more principled approach is

therefore needed to resolve the problem.

We again resort to enforcing smoothness via GCO and QPBO, as in the

previous sub-section, except we now extend our set of labels L to consist

of filters sampled at orientations from all the four quadrants. Note this

is not possible with the original DEMOD scheme, since the corresponding

frequency estimates from opposite quadrants have the same magnitude;

hence, DEMOD cannot differentiate between a filter oriented at, say, 72◦

(quadrant I) and its counterpart at −108◦ (quadrant III) — there is an

inherent ambiguity in assigning a quadrant to this filter. However, the

demodulated frequency estimates resulting from these two filters do differ

in signs, which may be exploted by GCO and QPBO. As illustrated in Fig.

4.10 (2nd and 3rd columns), the optimal orientations yielded by GCO and

QPBO are those sampled from quadrant III and not I, thereby ensuring a

smoother transition into quadrant IV with respect to both the demodulated

horizontal and vertical frequency estimates (last two rows). The qualitative

rectification results are given in Fig. 4.9(e) and (f) for GCO and QPBO

respectively. Table 4.2 summarizes the recovered projective parameters for

each approach.
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Figure 4.11: Improvement in affine rectification of texture with fre-
quency drift via RANSAC based robust parameter estimation.

4.5 Robust Parameter Estimation via

RANSAC

RANdom SAmple Consensus (RANSAC) [36] is a commonly employed ap-

proach to obtain robust estimates for model parameters when the measured

data is noisy. Briefly, a random subset of data is picked consisting of the

minimum number of points required to estimate the model parameters. A

model instance is computed using this subset, and a ‘consensus set’ is

then obtained from the data consisting of all inliers — points that are com-

patible with the estimated model within some pre-defined tolerance. A

pre-defined number of iterations are performed to generate candidate sets

of parameters. Then, the candidate that produces the largest consensus set

is retained. A final estimate of parameters is then obtained using this entire

consensus set. If, however, no iteration yields a sufficiently large consensus

set, the algorithm reports a failure. RANSAC is a common tool in com-

puter vision to robustly solve, e.g., for planar homographies in multi-view

images in panoramic stitching, or for the fundamental matrix in stereo, etc.
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Figure 4.12: Robust parameter estimation via RANSAC rejects fre-
quency drift as outliers.

In our setting of Eqns. 4.9, 4.11, a minimum of 2 points are sufficient to

estimate the 4 parameters h7, h8, us, vs. RANSAC is run for 50 iterations,

with an error tolerance of 0.001, applied to Eqn. 4.12. The rectifications

produced by the resulting robust estimates for the example image from

Fig. 4.5 are presented in Fig. 4.11 for each frequency estimation scheme.

Even the non-optimal DEMOD scheme produces a good affine rectification,

that is comparable to GCO and QPBO. However, while DEMOD with

RANSAC can seemingly handle frequency drift, as can be seen from Table

4.3, the percentage of outliers is significantly higher compared to GCO and

QPBO. In Chapter 5, when we employ percentage of outliers as a metric

to ‘detect’ homogeneous texture, that is where the optimization based

approaches plus RANSAC yield better detection rates than DEMOD plus

RANSAC, in the face of real world clutter.
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DEMOD GCO QPBO GT
h7 -0.0750 -0.0733 -0.0646 0.0089
h8 -0.5267 -0.4962 -0.4577 -0.6035

hline % outliers 28.91% 8.07% 0% N/A

Table 4.3: Robust estimated projective parameters for the example
texture in Fig. 4.11(a) using non-optimal frequency estimation (DE-
MOD), and the optimization based schemes (GCO and QPBO). The
percentage of RANSAC outliers is also reported. RANSAC error toler-

ance = 0.001.

Fig. 4.12 provides a visual illustration of how RANSAC can improve pa-

rameter estimation. The estimated constant frequency us, vs is re-projected

using the estimated parameters h7, h8, and the resulting mesh is drawn on

the same plot as the surface showing the demodulated frequency. Without

RANSAC, the parameters are bogged down by outliers, whereas a robust

estimation of parameters can reject outliers.

Fig. 4.13 shows affine rectifications via robust parameter estimation for the

example with quadrant ambiguity using the various frequency estimation

schemes. We observe that since the proportion of outliers in this example

is large — the inliers and outliers are roughly divided 50/50 (see, Fig. 4.10,

left-most column) — RANSAC is only able to produce a partial rectifica-

tion. Table 4.4 reports the estimated parameters along with percentage

of outliers in each case. A RANSAC error tolerance of 0.01 was used; a

stricter threshold of 0.001 resulted in failure (i.e. > 50% outliers in each

case).

4.6 Anisotropic Multiscale Representation

It must be noted that this frequency based rectification pipeline is highly

sensitive to parameters such as filter size and image patch size. Extensive
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Figure 4.13: RANSAC struggles to overcome quadrant ambiguity (c)
if proportion of outliers is large.

Figure 4.14: An anisotropic multi-scale approach, combined with care-
fully normalized error measure for choosing the best scale, improves
texture rectification. Rotation may be allowed for DEMOD to automat-

ically resolve quadrant ambiguity, if any.

experiments in the course of this thesis have helped to fine-tune parameters

that yield the overall best results. The filter bank parameters have been
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DEMOD DEMOD+ROT GCO QPBO GT
h7 0.0190 -0.0081 0.0059 -0.0160 -0.0064
h8 0.3674 0.8695 0.8616 0.8475 0.7011

% outliers 48.42% 3.48% 3.45% 0.45% N/A

Table 4.4: Robust estimated projective parameters for the example
texture in Fig. 4.13(a) using non-optimal frequency estimation without
(DEMOD) and with (DEMOD+ROT) rotation, and the optimization

based schemes (GCO and QPBO). RANSAC error tolerance = 0.01.

described in detail in Sec. 4.4, with the filter kernel size fixed to 45x45 pix-

els. Meanwhile, the image patch to be filtered should be resized such that

the smaller dimension is 80 pixels (using bicubic interpolation), and the

aspect ratio is retained. The partial derivatives needed for demodulation

(Eqns. 4.15) were obtained via a simple forward difference approximation

on the texture image. A Central difference approximation, or the use of

filter masks involving it — e.g., Sobel and Fri-Chen — can only success-

fully recover half of the otherwise maximum measurable frequency, due to

aliasing. This was observed in texture containing high frequency, where

measuring changes over each pixel counts (see, e.g., Fig. 4.15(g)). Follow-

ing [123], the filter responses are smoothened by a Gaussian low-pass filter,

also sized 45x45 pixels, and having a standard deviation 1/12th its size.

It was additionally observed that a anisotropic multi-scale approach im-

proves rectification. The given image is represented at three scales — one

where the smaller dimension is 80 pixels, second where the rows are dou-

bled while columns stay the same, and third where columns are doubled

and rows stay the same (bicubic interpolation is used for the required resiz-

ing). For e.g., the subway patch is originally 200x400 pixels. It is resized to

give three representations: 80x160 pixels (shown in Fig. 4.14(a)), 160x160

pixels (shown in Fig. 4.14(b)) and 80x320 pixels. Parameters are obtained

for each representation, and the one that results in the largest percentage of
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RANSAC inliers defines the winning parameters. The resulting affine rec-

tifications are shown in Fig. 4.14(c — e) for DEMOD, GCO and QPBO,

respectively. In each case, the winning representation was determined au-

tomatically, and happened to be case# 2 — i.e., doubling of rows (Fig.

4.14(b)). Moreover, for DEMOD, rotated patches were also included to

handle quadrant ambiguity, giving six representations in total (the winning

representation happened to be a rotated version with double the rows, i.e.,

Fig. 4.14(b)). The anisotropic scaling essentially makes the scale of the

relevant image features (track rails in our example) more pertinent with

respect to the size of the Gabor filters used (45x45 pixels).

Finally, it should be noted that our error measures in Eqns. 4.9 and 4.11

are not defined in the euclidean space, but in a non-linear and an affine-

transformed space, respectively. As such, it is not meaningful to compare

them across patches or across scaled representations of a given patch, in

either deciding what threshold to set beyond which a patch is deemed non-

homogeneous for the former, or in choosing a winner among different scaled

representations of a patch for the latter. Formally, the error is not affine

invariant.4 In this regard, the following heuristic normalization approach

was observed to produce the best results. RANSAC is first performed using

a fixed error threshold of 0.001 on Eqn. 4.12 to obtain a robust estimate

of parameters as well as the best set of inliers. The dynamic range of the

radial frequency estimate is computed using these inliers as:

DR = max
i∈inliers

(ũi)− min
i∈inliers

(ũi) (4.22)

4The Fourier spectrum (magnitude of the Fourier transform) of a given texture is
known to be invariant to an affine transform upon normalization by its l1-norm [147].
Our scenario, however, concerns the frequency plane coordinates (i.e., the frequency
itself), having undergone said unknown transform.
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DEMOD+ROT GCO QPBO GT
h7 0.0437 0.0431 0.0025 -0.0064
h8 0.6563 0.6087 0.6597 0.7011

% outliers 46.24% 32.52% 16.18% N/A

Table 4.5: Robust estimated projective parameters for the example
texture in Fig. 4.14(a) using an anisotropic multi-scale approach for
DEMOD+ROT, GCO and QPBO. RANSAC error tolerance = 0.001.

where, ũi = ũ(xi) =
√
ũi

2 + ṽi
2 is the radial frequency estimate. A nor-

malized residual re-projection error is then computed for all points xi, i.e.

inliers as well as outliers:

E(xi) =
ũ(xi)− J′P(xi)us

DR
(4.23)

where J′P(xi) re-projects the robust estimate of intermediate plane fre-

quency us to the image plane (see Eqn. 4.8). The normalized root mean

squared error (RMSE) is then:

RMSE =

√∑
i

E(xi) (4.24)

For a multi-scale representation giving > 50% outliers, the normalized error

is set to infinity. In Fig. 4.14, the winning multiscale representation for

each frequency estimation scheme was obtained based on the normalized

RMSE 4.24. The qualitative as well as the quantitative results (summarized

in Table 4.5) indicate a marked improvement over a uni-scale approach.

4.7 Results and Comparisons

This section evaluates the affine rectification scheme proposed in this chap-

ter, and compares it with two representative methods in literature —
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Transform-Invariant Low-rank Texture (TILT) [149], and Repetition Max-

imization (REM) [3]. The evaluation is based on N = 30 patches, cropped

from various images in MIT Indoor67, depicting some homogeneous texture

under perspective projection. Qualitative results (Sec. 4.7.1) are included

for about half the test cases to save space, while the quantitative results

(Sec. 4.7.2) take all 30 test cases into account. A brief description for each

scheme appears below.

TILT [149]: The code made available online by the authors is employed

with default settings. It implements a multi-scale approach, and automati-

cally localizes a region of interest that it senses to depict a low-rank texture

in order to recover the projective parameters.

REM [3]: A demo command-line program made available online by the

authors is used — allowing a multi-scale search — to generate the quali-

tative results. The estimated parameters are not returned, however, so a

quantitative comparison with REM is not performed.

DEMOD: The dominant frequency estimation method in its original form

is employed, as given in [123] and reviewed in Sec. 4.4, while the tex-

ture projection model developed in Sec. 4.3 is used to obtain projective

parameters. RANSAC is not applied.

RANSAC: Same as DEMOD with RANSAC (Sec. 4.5) applied. Addi-

tionally, an anisotropic multi-scale approach is used, and rotation is allowed

(Sec. 4.6).

GCO: Graph-cut optimization with smoothness enforced on filter radial

frequencies as well as the sine and cosine of filter radial orientations, solved

by alpha-expansion, followed by demodulation (Sec. 4.4). RANSAC is used

for robust parameter estimation, and an anisotropic multi-scale represen-

tation is used.
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QPBO: Graph-cut optimization with smoothness enforced on horizontal

and vertical frequency estimates obtained upon demodulation, optimized

via QPBO (Sec. 4.4). RANSAC is used for robust parameter estimation,

and an anisotropic multi-scale representation is used.

4.7.1 Qualitative Performance

Figs. 4.15 present the results for affine rectification. The various examples

also help to appreciate the ubiquitous presence of homogeneous texture in

indoor scenes.

It can be observed that TILT in general performs well only in a limited

number of cases, where the underlying texture is low-rank, with few outliers,

e.g., (a) and (b). In situations where the texture departs from the low-rank

assumption — e.g., port-holes (d), or barrels (e), where the gradients are

isotropic in all directions — TILT cannot be expected to perform. For

case (e), TILT returns a vanishing line (essentially, [h7 h8 1]) that passes

through the image patch, and thus a distorted rectification results. On the

other hand, the frequency based schemes are seen to handle such texture

very well, corroborating our intuition that homogeneity is a more general

assumption than low-rankness.

TILT also breaks when the noise is not sparse, and this is very common in

real-world indoor scenes. For e.g., the airport_inside ceiling (c), where

the texture has a limited spatial support. Or the brick wall in (g) where it

likely fails due to outliers with large spatial support, significantly corrupting

the texture. Another failure case for TILT is the ceiling in (g), which, albeit

low-rank, also manifests significant outliers.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.15: Qualitative results for affine texture rectification — 1/3.
Author implementations for TILT [149] and Repetition Maximization
(REM) [3] have been used. Estimation error (Eqn. 4.25) is also reported

(except REM), and %outliers for RANSAC, GCO and QPBO.
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(m)

Figure 4.15: Qualitative results for affine texture rectification — 2/3.
Author implementations for TILT [149] and Repetition Maximization
(REM) [3] have been used. Estimation error (Eqn. 4.25) is also reported

(except REM), and %outliers for RANSAC, GCO and QPBO.
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(n)

(o)

(p)

(q)

Figure 4.15: Qualitative results for affine texture rectification — 3/3.
Author implementations for TILT [149] and Repetition Maximization
(REM) [3] have been used. Estimation error (Eqn. 4.25) is also reported

(except REM), and %outliers for RANSAC, GCO and QPBO.
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METHOD /
METRIC TILT DEMOD RANSAC GCO QPBO

MEAN
EST. ERROR 0.496 0.386 0.190 0.186 0.187

% OF
OUTLIERS N/A N/A 25% 20.76% 18.39%

Table 4.6: Affine rectification — quantitative evaluation. RANSAC
error tolerance = 0.001.

Both TILT and REM can be seen to perform poorly in cases with illumi-

nation changes (l, n, q). On the other hand, use of Gabor filters allows

the frequency based schemes to perform remarkably well in these challeng-

ing cases. Provided the scale of texture is small (i.e., texture contains

higher frequencies) relative to the scale of the surface it covers, a frequency

based representation is resilient to slow-varying (low-frequency) photomet-

ric changes (see [123]). TILT and REM also seem to fail on cases exhibiting

large perspective distortion, e.g., the textured ceilings in cases (o, p). The

ground truth for (p) shows the patch may not be uni-planar, hence it is not

strictly low-rank or even homogeneous. Nevertheless, the robust frequency

based schemes perform favorably.

REM — which has only been demonstrated for properly cropped, printed

patterns — seems to rarely perform well on our challenging cases that

exhibit limited spatial support, significant clutter and illumination changes.

4.7.2 Quantitative Performance

For a quantitative evaluation, the following metric is used:

Mean Estimation Error =
N∑
i=1

√
(h̃7i − h7i)2 + (h̃8i − h8i)2 (4.25)
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where h̃7i, h̃8i are the parameters returned by an algorithm, and h7, h8 are

the ground truth parameters obtained by manual annotation of vanishing

points. N = 30 is the number of test cases used.

The results are summarized in Table 4.6. Interestingly, TILT performs

worse than DEMOD — which is what this chapter has proposed improve-

ments for. GCO and QPBO perform equally in terms of Mean Estima-

tion Error, with RANSAC performing slightly worse off. GCO and QPBO

resolve frequency drift and any quadrant ambiguity by imposing smooth-

ness priors and proposing robust frequency estimates. On the other hand,

RANSAC overcomes drift by rejecting outliers, and employs both the orig-

inal and rotated images to decide the best parameters, thereby resolving

quadrant ambiguity, if any.

However, as was also observed previously in Sec. 4.5, the percentage of

outliers can serve as a suitable metric to detect homogenous texture under

perspective projection. While for a known homogeneous texture one may

altogether forego robust optimization based frequency estimation, GCO or

QPBO are indispensable for a detection pipeline. Also note that while the

percentage of outliers can in principle be computed from TILT by looking at

the support of the sparse outlier matrix, we do not do so as it is tangential

to our interest.



Chapter 5

Detection of Homogeneous

Texture in Indoor Scenes & its

Geometric Class Assignment

Sec. 5.1 motivates the detection of homogeneous texture in indoor scenes

as useful mid-level features for recognition that are additionally invariant

to viewpoint changes, and highlights the merits of such an approach over

others in literature. Sec. 5.2 performs said detection on the MIT Indoor67

dataset, and qualitatively analyzes and compares the detections for some

example images with an existing work (TILT [149]). Sec. 5.3 shows that it

is possible to estimate a spatial layout in scenes with a sufficiently abun-

dant presence of regular texture. A comprehensive evaluation is presented

based on qualitative results, contrasting the pros and cons with an existing

approach (see Sec. 3.2.1) that exploits scene vanishing points and machine

learning. The discussion lends useful insights into the workings of the pro-

posed approach. Sec. 5.4 suggests that if scene vanishing points are known,

99
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it is possible to upgrade the affine rectification to metric rectification. Fi-

nally, Sec. 5.5 presents a quantitative evaluation of the proposed detection,

demonstrating its superior performance over TILT.

5.1 Background

Since indoor scenes can be well described by the objects and components

they contain, indoor scene recognition has typically been approached through

the detection of class-discriminative, mid-level visual features or parts that

preserve semantics and spatial information (Sec. 2.6). Automatic learning

of such representative and discriminative parts from images, labeled only

with the scene category, has received wide attention [95, 119, 63, 23]. As

discussed in Sec. 3.1.2, however, the problem is ill-posed, since neither part

instances nor part models are known beforehand.

The alternative approach is to employ hand-crafted detectors that do not

require learning from weakly labelled and limited training data. Existing

work on feature detection (Sec. 2.3.1), however, caters only to detecting

prominent or salient local, low-level interest regions such as edges, curves

or blobs. It was reviewed in Sec. 2.3 that sparse scene representations

resulting from these low-level detections perform poorly compared to dense

representations when it comes to recognition. This is because local interest

region detection is prone to pre-maturely discarding discriminative scene

information. On the other hand, the survey in Sec. 2.6 suggested that

sparse representations based on mid-level features can perform very well,

and in fact are complementary to local dense features. The reason is that

mid-level features not only capture scene semantics, but also afford better

intra-class invariance as opposed to low-level features.
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Our goal in this chapter is therefore also to detect mid-level, semantically

meaningful regions. However, instead of learning a host of individual part

models for representative scene regions, we would like to exploit the ubiq-

uity of a generic mid-level visual attribute in indoor scenes — homoge-

neous texture. Numerous examples of such texture have been presented

in Chapter 4. Fig. 5.1 depicts some additional and very interesting cases

that commonly manifest in indoor scenes (again, from the MIT Indoor67).

Ceilings in indoor pools, greenhouses or courtyards very often exhibit uni-

form woodwork (a), or engraved and printed patterns (b). Ceiling lights

in grand venues such as concert halls or theaters, or in large hallways oc-

cur in patterns (c). Repeating columns and pillars are characteristic of

enclosed walkways, underground cellars or expansive indoor spaces such as

a train station (d). Even uniformly laden tableware and buffet items (e),

row-planting and well-arranged floristry satisfy homogeneity (f). The fur-

niture itself can often exhibit uniform patterns — casino kiosks, a cluster

of computers, and aligned chairs in dining rooms and classrooms are a few

examples (g). Grillworks and railings (h) are a common indoor feature.

Surprisingly, even shadows can give rise to homogeneous texture (i), pro-

vided the causing obstructions such as columns and walls are uniform in

arrangement, and the surface is planar! Awe-inspiring interiors character-

istic of airports and subways often happen to be patterned (j), and so are

most window arrangements in any indoor environment (k).

While man-made indoor scenes are full of such regular patterns, they appear

at unknown spatial locations, scales and viewpoints. In addition, real-world

indoor scenes are fraught with unwanted interference such as noise, room

clutter, and varying lighting or illumination effects over a given texture (see

Figs. 4.1, 4.2). Furthermore, the wide variety of such homogeneous texture

necessarily entails large variation across instances — the repeating “texels”
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Figure 5.1: Abundantly present and variedly manifested, homogeneous
texture in indoor scenes can serve as useful mid-level features for recog-
nition; both architectural structure as well as scene contents exhibit
homogeneity. All depicted texture was detected and rectified automati-

cally via the proposed approach.
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or “motifs” can virtually take on any, unknown form (from shadows to

dinner plates)! The daunting task of localizing meaningful patterns in

indoor scenes in the presence of such out-of-control factors is, therefore,

that of “detection in the wild”.

A previous attempt by TILT [149] has been made to localize low-rank

texture in a given single-object image, or to detect instances in a highly

textured urban scene with no clutter. However, the evaluation for affine

rectification presented in Sec. 4.7 suggests that TILT is not sufficiently

robust to take on the above challenges. The frequency based texture rec-

tification model developed in Chapter 4, however, equipped with robust

dominant frequency estimation (Sec. 4.4) and robust parameter estimation

(Sec. 4.5), was observed to perform remarkably well in the face of outliers,

clutter and photometric changes (see Sec. 4.7.1). The use of a generic

Gabor filter bank (as opposed to using low-level feature detectors) lends

itself well to describing any form of homogeneous texture. Sec. 5.2, there-

fore, puts this model to use for the aforementioned problem of detection.

In doing so, no iterative learning of region-specific models is needed, and

the approach is therefore not affected by the limited availability of training

data. Sec. 5.2.3 and 5.5 present, respectively, qualitative and quantita-

tive evaluations of the proposed approach, and TILT will again be seen to

perform poorly in comparison.

Part based representations are not invariant to affine geometric (though

invariance to uniform scale is incorporated via multi-scale detection), let

alone the more general projective transforms. A part based representation

for a given scene region, therefore, must learn separate models for different

viewpoints anew, while invariance to appearance variation depends on how

well a particular part discovery algorithm and the descriptor employed can

generalize to similar regions (which is not trivial, given the ill-posed nature
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of the problem). On the other hand, region detectors such as [88, 64] afford

local affine invariance, but they only yield low-level edge and blob-like fea-

tures. So while the concept of rotation invariance [84], and the more general

affine adaptation [88, 64] exists in literature for low-level features, projec-

tive rectification has never been employed. This is probably because the

need was never felt — for an image region with small dimensions compared

to its depth from the camera, perspective effects may be approximated by

an affine model. The texture projection model developed in Chapter 4,

however, explicitly caters to projective transforms in meaningful mid-level

image regions, and was consequently observed to overcome significant per-

spective distortions (see Figs. 4.1, 4.15). Note that although the resulting

rectification is within an affinity of the world plane (i.e., affine geomet-

ric change is not recovered), the detection per se (Sec. 5.2) is invariant

to projective transforms (which subsume affine transforms). Furthermore,

the model is capable of detecting any, generic, homogeneous texture, and

is therefore highly invariant to appearance changes within this rather rich

class of meaningful scene regions. Chapter 6 makes use of the resulting

detections and rectifications to push scene recognition performance.

5.2 Detection in the Wild

In Sec. 4.6, a method was devised to choose the best rectification parame-

ters from among different scaled representations for a given, known texture

patch. Briefly, RANSAC is used to fit robust model parameters to dominant

instantaneous frequency estimates for each representation. The dynamic

range of frequency of the resulting inliers is used to normalize the residual

re-projection error (based on the recovered model parameters). The scaled
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representation yielding the lowest normalized RMSE (Eqn. 4.24) defines

the winning parameters.

We may adopt a similar criterion to decide whether a given image patch

depicts homogeneous texture. Specifically, if the resulting RMSE is be-

low a certain threshold, it is admitted as containing homogeneous texture.

Equivalently, a percentage of outliers may be computed, such that points

xi having a normalized squared error E2(xi) (Eqn. 4.23) larger than a cer-

tain threshold (fixed at 0.01 for all experiments in this chapter) are deemed

as outliers. Then, an image patch is accepted as depicting homogeneous

texture if it contains fewer than a given percentage of outliers (set to 50%

for all experiments in this section), thereby making for a more intuitive

detection metric.

5.2.1 Scale-Invariant Detection

An approach similar to multiscale object detection [33, 119] is taken, wherein

a given image is represented at multiple scales, and patches of fixed size

extracted and processed at each scale. This provides for a space and scale

invariant detection.

Specifically, a given image is first resized to a reference scale, such that the

smaller dimension is 400 pixels, and the aspect ratio preserved. Patches,

sized 80x80 pixels, are extracted on a regular grid with a spatial stride

of 16 pixels. This gives the number of octaves, such that at least one

such patch may be extracted at the coarsest scale, as log2(400/80) = 2.3.

Fixing the number of scales per octave to 3.5, the total number of levels

in our multiscale pyramid is then N = floor(2.3 × 3.5) + 1 = 9. The

corresponding scales to resize the image to (via bicubic interpolation) are

given by a geometric progression with common ratio r = 2−1/3.5, i.e., rl,
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where l = 0, 1, ..., N − 1. Following [119, 63], a patch containing very

little image variation, i.e., gradient energy (average gradient norm over

all pixels) smaller than a certain threshold (fixed to 50% of the average

gradient energy over all image patches) are discarded at the outset. This

results in a total of around 1500 patches per image on average. A smaller

grid spacing may be used at higher computational expense (e.g., a spacing

of 8 pixels can result in four times the number of patches). Also, a non-

unit aspect ratio for patches (e.g., sizes of 80x160 or 160x80, etc) can often

be more representative of the homogeneous texture occurring in scenes,

and sampling such additional patches to improve detection and recognition

performance may be done at higher computational expense.

5.2.2 Other Implementation Details

For the qualitative results presented in this chapter, an intra-scale non-

max suppression (NMS) is performed as follows. Candidate patches

(those with < 50% outliers) are sorted and processed in ascending order

of percentage of outliers. Then, a patch is admitted as a detection only

if some previously admitted patch (detected at the same scale) does not

overlap 50% of its area. NMS across scales tends to discourage detections

at coarse scales, hence suppression only within a given scale is carried out.

The Gabor filter bank as constructed in Sec. 4.4, consisting of 6 radial

frequencies and 10 radial orientations, with the filter kernel sized 45x45

pixels is used. As discussed in Sec. 4.6, partial derivatives are computed via

forward difference approximation, and the filter responses smoothened by

a Gaussian. Rather than convolving Gabors with each patch individually,

the entire image is convolved, followed by extracting filter responses at the

corresponding patch locations. This considerably speeds up the process,
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since redundant filtering is avoided (patches are overlapping in space; this

does not lead to a difference in performance). The GCO (with RANSAC)

configuration as described in Sec. 4.7 is used. As observed in Chapter

4, GCO performs similar to QPBO yet is considerably faster, while an

approach based solely on RANSAC would report high proportion of outliers

even for patches that do contain homogeneous texture.

While the experiments in Sec. 4.7 ran 50 iterations of RANSAC, the ones

in this chapter use an adaptive scheme where the maximum number of it-

erations to run is updated continuously based on the current proportion

of outliers in a given iteration [36]. RANSAC can then terminate in much

fewer iterations. While this speeds up the process, using more RANSAC

iterations would likely improve performance. Since we process a large num-

ber of overlapping patches, however, we may choose to make this trade-off.

Given the experimental set-up as described above, processing one image

takes around 15 – 20 mins per CPU core running a MATLAB implemen-

tation at 3GHz.

5.2.3 Discussion

Fig. 5.2 presents a qualitative comparison of the proposed homogeneous

texture detection vs. that performed by TILT [149] on a number of MIT

Indoor67 scene categories. The decision score for TILT used is a rank ratio

of 0.5 (i.e., ratio of final to initial rank), along with the intra-scale NMS

described in Sec. 5.2.2. Top detections are shown for a representative

image from a number of MIT Indoor67 scene categories, along with the

corresponding affine rectifications to the right of each detection.
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(a)

(b)

(c)

Figure 5.2: Detection of homogeneous texture: comparing PRO-
POSED method (CENTER) with TILT [149] (RIGHT). Images
(LEFT) sampled from (a) airport inside, (b) art studio, (c)

auditorium — 1/3
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(d)

(e)

(f)

Figure 5.2: Detection of homogeneous texture: comparing PRO-
POSED method (CENTER) with TILT [149] (RIGHT). Images
(LEFT) sampled from (d) casino, (e) classroom, (f) cloister —

2/3
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(g)

(h)

(i)

Figure 5.2: Detection of homogeneous texture: comparing PRO-
POSED method (CENTER) with TILT [149] (RIGHT). Images
(LEFT) sampled from (g) cloister, (h) laundromat, (i) winecellar

— 3/3
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(a)

(b)

(c)

Figure 5.3: Detection of Homogeneous Texture by the proposed
method. Images sampled from (a) airport inside, (b) church inside,

(c) concert hall — 1/5
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(d)

(e)

(f)

Figure 5.3: Detection of Homogeneous Texture by the proposed
method. Images sampled from (d) garage, (e) library, (f) mall —

2/5



Chapter 5. Detection and Geometric Class Assignment 113

(g)

(h)

(i)

Figure 5.3: Detection of Homogeneous Texture by the proposed
method. Images sampled from (g) meeting room, (h) movie theater,

(i) pool inside — 3/5
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(j)

(k)

(l)

Figure 5.3: Detection of Homogeneous Texture by the proposed
method. Images sampled from (j) staircase, (k) trainstation, (l)

video store — 4/5
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(m)

(n)

(o)

Figure 5.3: Detection of Homogeneous Texture by the proposed
method. Images sampled from (m) warehouse, (n) winecellar, (o)

winecellar — 5/5
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In general, it can be seen that TILT is able to localize meaningful texture

only in a few cases (e.g., b), when the low-rank assumption is satisfied.

Correct rectifications are usually obtained when a patch is free from outliers

(e.g., some patches in f). By contrast, the proposed approach is seen to

perform impressively in localizing and rectifying interesting homogeneous

texture that can serve as meaningful mid-level scene features in all cases.

Fig. 5.3 presents additional qualitative results for the proposed scheme in

representative images from various MIT Indoor67 scene categories. Pho-

tometric severities, such as significant illumination changes over a given

texture [(i) pool_inside, (e) library], or poor lighting conditions [(o)

wine_cellar] are unable to deter the algorithm. In cases with large clut-

ter [(e) mall, (k) trainstation], the top-scoring patches tend to depict

meaningful homogeneous texture. A remarkable resilience to outliers is

seen — the frequency of repeating columns in (k) train_station, marred

by sunlight beams, is appreciably recovered, while that of under-water pool

lanes in (i) pool_inside is also accurately differentiated from the yellow

tape above water.

Pertinent scales are localized in every case — e.g., coarse-scaled detections

in (i) pool_inside and (i) video_store, as opposed to the fine-scaled

detections on the textured flooring in (e) library. Patches at coarse scales

tend to exhibit limited spatial support for the texture in question (see, e.g.,

(g) meeting_room, (n) winecellar), yet they can be reliably detected and

correctly rectified. Also, the method can cover a wide range of frequencies

— e.g., low-frequency texture in (i) pool_inside vs. high-frequency in (j)

staircase.

The absence of long straight lines in the horizontal direction in (e) library

and (j) wine_cellar, needed to obtain vanishing points for a scene layout

estimation approach ([121, 51]), should be noted. Consequently, neither
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can such a scheme localize the room surfaces, nor can it be relied upon to

produce planar rectifications. As an aside, more examples of such texture

lacking in straight lines appear in Figs. 4.2, 5.1. Further observe the

presence of more than the usually-assumed three principal directions in (j)

staircase, and (k) train_station, or the fact that room content is not

always aligned with the principal directions ((g) mall). Finally, even in

scenarios containing three principal directions, it may not be possible to

reliably compute them. An example is Fig. 5.2(b) cloister, where the

shadows can (and do) cause the estimation of vanishing points to fail. On

the other hand, a local texture based approach to detection and rectification

can be seen to successfully handle all the aforementioned problems.

A failure case of the proposed approach is when a patch upon rectification

results in homogeneous texture, though it may not have a semantic meaning

(at least, to humans). E.g., the top patch (undulating water) in Fig. 5.3(i)

pool_inside. Another factor for failure was discussed in Sec. 4.6, i.e.,

the error measure upon which the number of outliers is determined is not

affine invariant. While the heuristic normalization proposed therein has

since been observed to perform favorably, occasional failures do occur.

5.3 Estimating Scene Spatial Layout

This section demonstrates an estimation of indoor scene layout (see Sec.

3.2) by assigning a geometric class (left/right wall or ceiling/floor)

to a homogeneous texture detection in a scene (Sec. 5.2), and its

recovered projective parameters. The vanishing line l of a plane Π passes

through the two corresponding vanishing points, and is given by their cross

product: l = vp1 × vp2, where vp1, vp2 are 3-vectors specified in homoge-

neous coordinates. Fig. 5.4 depicts two planes Π1, Π2 that make up the
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Figure 5.4: A scene plane may be classified as vertical or horizontal
based on the slope of its vanishing line, if known, and as a left/right wall
or ceiling/floor based on the position of this line w.r.t the plane. The
vertical lines of plane Π1 meet at infinity, but are shown to intersect at

a finite point vp1 for illustrating the vanishing line l1.

left wall of a scene and its floor, respectively (vp2 is the common vanishing

point between the two planes). The wall, a vertical surface, tends to have

a vanishing line l1 that has a larger slope compared to that of the floor

l2, which is a horizontal surface. Now, the projective parameters [h7 h8 1]

recovered for a given detection in fact happen to specify the vanishing line

of the plane (see Sec. 2.7.2 in [47]) in the standard form [a b c]. The slope

of the line:

θ = arctan

(
−h7
h8

)
(5.1)

may be used to determine whether a detected homogeneous patch depicts

a vertical surface or a horizontal surface (a fixed partition of 45◦ is used

in experiments to separate horizontal and vertical planes). In addition,

depending on the position of the line with respect to the patch center, the

patch may be classified as left/right wall (if a vertically oriented vanishing

line lies to the right/left of patch), or as ceiling/floor (if a horizontally ori-

ented vanishing line lies below/above the patch). The horizontal position
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Figure 5.5: Scene layout estimation by homogeneous texture detec-
tions, and associated vanishing lines. Given scene (left), raw detections
(center), post-NMS (right). Left wall = red, right wall = yellow, ceiling
= blue, floor = green. For comparison with box layouts [51], c.f. Fig.

3.3. Best viewed in color.
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of the line (needed to classify a patch as left/right vertical surface) is eas-

ily determined by computing the x -coordinate corresponding to the patch

center’s y-coordinate on the line, and vice versa if the vertical position of

the line is required (needed to classify a patch as ceiling/floor).1

In principle, it is also possible to classify a given detection as frontal; if

the vanishing line lies ‘far’ from the patch (based on some pre-defined

threshold), it may be classified as a frontal surface exhibiting no or minute

perspective distortion. Note the slope in this case is useless. In prac-

tice, however, it was observed that allowing for frontal planes caused mis-

classifications of planes as frontal that would otherwise be assigned to the

vertical (walls) or horizontal (ceiling/floor) classes. This is since the re-

covery of projective parameters is not perfect — some times, only partial

rectification is obtained. In other words, the algorithm thinks the perspec-

tive distortion in such cases is not pronounced, and consequently incorrectly

labels these planes as frontal. This adversely increases false positives and

decreases true positives.

Fig. 5.5 shows qualitative results obtained by the proposed approach on the

same set of images as in Fig. 3.3. The first image in each row is the given

indoor scene. The center image depicts the top 150 (based on proportion of

RANSAC outliers) homogeneous detections in this scene. The box outlines

are color-coded according to their geometric class as follows: left wall =

red, right wall = yellow, ceiling = blue, floor = green. The figures in the

third column are obtained by non-max suppression (NMS) performed across

geometric classes, i.e., a geometric class-aware NMS. Specifically, the

detections are ranked according to outlier score. Any incoming detection is

not admitted if atleast 50% of its area is already occupied by any previously

1For a line in the general form ax+ by + c = 0, the slope and y-intercept are given as
−a/b and −c/b, respectively. Thus, we have the slope of the vanishing line as −h7/h8

and the intercept as −1/h8.
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admitted patch, that is not from the same geometric class. Two detections

of the same class do not suppress each other.

5.3.1 Comparison and Discussion

The planar structure in the scenes appearing in Fig. 5.5 satisfy the ho-

mogeneity assumption. Consequently, the proposed approach is easily able

to overcome the challenges identified in Sec. 3.2.1, in particular, Fig. 3.3.

Since multiple detections are used, a few incorrect detections are masked

out by the correct ones (a). Forked layouts (b), angled ceilings (c), non-

Manhattan structure (e,f), and textured multi-planar scenes, in general,

can be naturally handled. Since the algorithm exploits any generic ho-

mogeneous texture, and not merely lines, their absence in any principal

direction no longer poses a problem (d).

Fig. 5.6 presents some additional qualitative results from the proposed ap-

proach, as well as the box layout estimation method of Hedau. et. al. [51]

for comparison. In what follows, interesting observations are made regard-

ing the proposed scheme, and strengths and weaknesses of both methods

are highlighted along the way.

In Figs. (a, b), the scenes largely lack homogeneous texture, except for that

on the rug and bed, respectively. While spurious detections are obtained

in the other regions, they are few. In Fig. (c) only the ceiling and one

wall depict texture. On the other hand, [51] performs well on (a) and (c),

but fails in (b) due to the angled ceiling. In (d, f), [51] fairs quite well,

even successfully overcoming clutter (seating) in the auditorium scene, as

it is trained to do. Misclassification of ceiling is observed in (e), however.

The proposed method produces some mis-classifications, particularly in (d,

e), but largely fairs well since homogeneous texture is abundantly present.
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Figure 5.6: Qualitative comparison of box layout estimate [51] (center;
using author implementation) with proposed method using homogeneous
texture detections (right) — 1/2. Left wall = red, right wall = yellow,

ceiling = blue, floor = green. Best viewed in color.
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Figure 5.6: Qualitative comparison of box layout estimate [51] (center;
using author implementation) with proposed method using homogeneous
texture detections (right) — 2/2. Left wall = red, right wall = yellow,

ceiling = blue, floor = green. Best viewed in color.
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It successfully identifies the ceiling in (e), and, different from [51], assigns

the floor category to seats in (f). This is because the oriented plane along

which the seats recede has a vanishing line that is closer to the horizontal

direction as opposed to the vertical direction.

Figs. (g – l) present cases where the proposed method performs better than

[51], though (g, h, l) satisfy their box requirements. The multi-scale nature

of detections from Sec. 5.2 is pronounced in (l), making it an interesting

case.

Observe the proposed scheme uses neither vanishing points nor sophisti-

cated machine learning with rich features sets to obtain a layout, yet can

often do a better job than [51, 52] — provided the homogeneity assumption

is satisfied in a given scene. However, our objective here is not to downplay

the importance of previous work in this direction, but to draw attention of

the community toward the potentials of shape from texture in such practi-

cal applications. Indeed, in a high-performance system aiming at obtaining

scene surface layouts in any generic scene, machine learning would play an

indispensable role.

One does observe some mis-classifications by the proposed scheme. This

arises due to incorrect projective parameter estimation (either due to in-

correct texture frequency estimate, or due to the non affine-invariance of

our error measure), and hence incorrect estimate of the slope of a vanish-

ing line. Currently, no spatial priors are enforced — a ‘left wall’ is just

as likely to be detected on the right of a given image as on the left. It is

possible to improve layout estimation by making use of a principled MRF

formulation, however, that enforces priors such as ordering constraints [82].

However, not enforcing spatial priors allows flexibility, such as in the case of

forked layouts [Fig. 5.5(b)]. Hence, an alternative possible post-processing

mechanism to improve detections can be the modeling of semantic clusters
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as Gaussians in space, and penalizing deviant detections. Moreover, the

detections, and hence the layout estimations are likely to considerably im-

prove should rectangular (as opposed to the squares currently used) patches

be employed to capture texture elongated more in one direction than the

other.

5.3.2 Non-Max Supression: A Tradeoff

So far we have observed and appreciated the pros of NMS. Let us now

examine Fig. 5.7, which highlights the cons as well. Detections on the

walls at coarse scales in (a, b) have suppressed those on the ceiling and/or

floor — which are otherwise meaningful, valid true positives. In (c), detec-

tions firing on lateral views of barrels (red) have suppressed valid, top-view

detections (green). (d) shows the case where detections on the floor tend

to suppress those on the left and right vertical surfaces (grocery shelves).

In (e), the red and yellow detections on the lateral views of church pews

are valid. However, they are suppressed by the green detections, which

are also valid and model a ‘virtual’ plane slanting away from the cam-

era, parallel to the floor. In (f), blue, yellow and red detections correctly

fire on the ceiling, right wall and left wall, but the red detections largely

suppress the others. Due to this potential rejection of otherwise discrim-

inative scene content, the classification experiments in Chapter 6 perform

a different NMS, wherein patches only with the same geometric class, at

the same image scale, and being sampled from the same anisotropic image

representation are allowed to suppress each other (see Sec. 6.1).
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Figure 5.7: Inherent trade-off in enforcing non-max suppression when
detecting homogeneous texture. Given scene (left), raw detections clas-
sified into geometric class (center), post-NMS (right). Coarse wall de-
tections can suppress those on ceilings and floor (a - c), or vice versa
(d - e). Conflict may arise between low walls and the backdrop (f). No
NMS, however, can result in spurious detections (e). Left wall = red,
right wall = yellow, ceiling = blue, floor = green. Best viewed in

color.
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5.4 Known Scene Vanishing Points Allow

Metric Rectification

Scene vanishing points constrain the possible vanishing lines, and hence

planes, manifested in the image. If the scene vanishing points in the image

are known, or may be reliably computed, the corresponding vanishing lines

(essentially, parameters h7, h8) may be obtained for each pair of vanishing

points. For a given candidate pair of parameters h7, h8, Eqns. 4.9 and

4.11 reduce to linear least squares problems, where only us, vs are to be

computed. The pair of parameters minimizing the error 4.12 may be cho-

sen as the winning candidate. Alternatively, having already estimated h7,

h8 via non-linear least squares (Eqns. 4.9 and 4.11), the pair of vanishing

points (among the candidates returned by some vanishing point detetion

algorithm) that best satisfy the resulting estimated vanishing line may be

chosen as the winning pair of vanishing points for the image patch in ques-

tion. In other words, the process entails the use of robustly computed

local texture cues to assign the correct pair of globally computed vanishing

points to a textured surface in multi-planar scenes.

Known vanishing points can potentially correct any minor errors in recti-

fication, and improve the detection of textured regions. Most importantly,

it is possible to attain a rectification within only a scale ambiguity for a

given patch if vanishing points are known. Here, we make the assump-

tion that vanishig points as obtained for a patch are orthogonal.2 Fig. 5.8

(left) shows a cloister scene, for which five line clusters were obtained (via

a greedy clustering approach based on line-point voting), and two sample

regions of homogeneous texture (green bounding box). For each of the 10

2A plane may exhibit vanishing points not in orthogonal directions; see Fig. 5.3(e) -
library (the textured flooring) for an example
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Figure 5.8: Using scene vanishing points in conjunction with homoge-
neous texture for metric rectification. Left: grayscale scene with over-
layed line clusters assigned to vanishing points, and two sample regions
of homogeneous texture (Best viewed in color). Right: sample regions

cut out and rectified.

possible vanishing lines, Eqn. 4.11 was solved for the two patches, and the

vanishing line [h7 h8 1] minimizing it was assigned to the patch. This may

be used to obtain an affine rectification, which only restores parallelism.

To also recover angles and any in-plane rotation, we proceed as follows.

Now that the two vanishing points belonging to a patch are known, a cir-

cumscribed quadrilateral may be obtained (shown in red in Fig. 5.8) (left),

such that the opposite edges intersect at the respective vanishing point.

The vertices are ordered ABCD such that edge AB and CD form smaller

angles with the horizontal compared to AD and BC, and AB is above CD.

This definition of a canonical orientation of the quadrilateral is necessary

to remove any in-plane rotation before feature extraction for recognition.

A rectifying homography is now computed to warp the quadrilateral to a

rectangle, restoring the orthogonality of the line directions (recall we have

assumed the obtained vanishing points are from orthogonal directions).

The results of this metric rectification are also shown in Fig. 5.8 (right).

In experiments for this thesis, however, estimating scene vanishing points
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in the challenging MIT Indoor67 was not observed to be feasible. The

problem of clustering lines based on membership to a dominant principal

direction is essentially ill-posed. Moreover, severities such as room clutter,

missing or few lines in a principal direction, non-conformance to the Man-

hattan assumption, and the frequent presence of more than three principal

directions renders the task infeasible for current technology (see also Sec.

3.2.1). As such, the classification experiments in Chapter 6 make do with

an affine-ambiguous rectification facilitated by the approach presented in

Chapter 4.

5.5 Detection & Geometric Class

Assignment: Quantitative Evaluation

In this section, a quantitative evaluation of the proposed detection (Sec.

5.2) and geometric class assignment (Sec. 5.3) is performed. It is based

on a subset of 300 images sampled from the MIT Indoor67, with at least

3 from each scene category. This subset has been manually annotated

with quadrilaterals indicating homogeneous textured regions, their plane

projective parameters, and their geometric class IDs (left/right wall, ceiling,

floor). Fig. 5.9(left) illustrates a sample annotated image.

Let us define true positives (TP), false positives (FP) and false nega-

tives (FN) as follows.3 For precision [TP/(TP+FP)], TP is the number

of candidate patches whose estimated geometric class (Sec. 5.3) matches

with an annotated region, with 50% intersection-over-detection (IOD, i.e.,

3Since our detector is not “trained” to produce an exact bounding box, we slightly
differ in our definitions of these parameters from object detection [28]. Object detection
methodology considers any more than one detection for a given ground truth as FPs,
but all such detections are considered TPs in our scenario.
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Figure 5.9: Annotation of indoor scene images to specify ground truth
geometric class to a textured surface vs. the proposed method. Left:
Images are annotated with quadrilaterals specifying left (red) / right
(yellow) walls, ceiling (blue) and floor (green), using a custom GUI
written for the purpose. Right: A geometric class ID is assigned to
a detection based on its estimated vanishing line (Sec. 5.3), and a quan-
titative evaluation is performed based on precision and recall computed

against the annotated ground truth. Best viewed in color.

at least 50% of the candidate’s area should cover the annotation), while

FP is a candidate that fails in this manner. For recall [TP/(TP+FN)],

TP is the number of annotated regions that are “fired on” by one or more

candidates (with the correct geometric class), such that its area beyond a

certain threshold is covered (we evaluated at both coverage >= 50% and

>= 80%), while FN is the number of annotated regions that fail in this

manner. Note that for recall, TP + FN = 1367, which is the total number

of annotated regions, similar to object detection[28].

Fig. 5.10 presents the precision-recall curves, and the recall vs. # propos-

als curves for our method, as well as for TILT [149] (for which the ratio of

final to initial rank is used to obtain a decision score). One can observe a

considerably more superior performance by our method, with an average

precision = 0.53, compared to 0.15 by TILT. Both methods improve in

recall with increasing #proposals, but the proposed approach is seen to

maintain a larger recall for the same #proposals from the outset. This

further corroborates the claim of this thesis in that existing tools to handle
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Figure 5.10: (a) Precision-recall and (b) recall vs. # proposals curves
for proposed detector and TILT [149].

METRIC / proposed TILT proposed TILT
REP. (coverage (coverage (coverage (coverage

>= 0.5) >= 0.5) >= 0.8) >= 0.8)

AP 0.53 0.15 0.53 0.15
AR 0.34 0.35 0.22 0.23
Precision 0.44 0.15 0.44 0.15
50th decision pt.
Recall 0.38 0.33 0.22 0.14
50th decision pt.
Precision 0.27 0.16 0.24 0.16
100th decision pt.
Recall 0.67 0.71 0.42 0.58
100th decision pt.

Table 5.1: Quantitative performance of proposed homogeneous texture
detection vs. that by TILT [149].

texture in the wild are not up to par. Table 5.1 summarizes the average

precision (AP) over the PR curve, and the average recall (AR) over the re-

call vs. # proposals curve, as well as details the precision and recall values

at the 50th and 100th (i.e., using all proposals) decision points. Proposals

with homogeneous image regions (low gradient energy) or those with a sin-

gle recovered optimal dominant Gabor frequency but non-trivial projective

parameters are discarded. Consequently, recall does not fully reach 1 in
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Figure 5.11: (a) Precision-recall and (b) recall vs. # proposals curves
for proposed detector. Stricter decision scoring (requiring a certain % of
inliers in all patch quadrants) improves AP. Additional anisotropic mul-
tiscale image representations introduce additional proposals, improving

Recall.)

METRIC / patch wise quad wise quad wise quad wise
REP. aniso2 aniso4

AP 0.53 0.68 0.63 0.63
AR 0.34 0.25 0.41 0.43
Precision 0.44 0.75 0.68 0.68
50th decision pt.
Recall 0.38 0.17 0.33 0.34
50th decision pt.
Precision 0.27 0.27 0.24 0.24
100th decision pt.
Recall 0.67 0.67 0.87 0.87
100th decision pt.

Table 5.2: Quantitative performance of various configurations of the
proposed homogeneous texture detector. Stricter decision scoring (re-
quiring a certain % inliers in all patch quadrants) improves AP. Ad-
ditional anisotropic multi-scale image representations improve recall by

introducing additional meaningful proposals. See text for details.

this evaluation.

An improved decision metric was also attempted, wherein the proportion of

RANSAC inliers in all four patch quadrants (quad wise) is used, instead of
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over the entire patch (patch wise). Intuitively, this implies that the inliers

should be well-distributed over the patch, and not simply be concentrated in

a limited region of it. Fig. 5.11 quantitatively demonstrates that this brings

up the AP to 0.68, but the average recall (AR) falls considerably from 0.34

to 0.25. In a bid to increase this recall, additional anisotropic multi-scale

image representations are employed, significantly improving recall rates

for the proposed detector (summarized in Table 5.2). Specifically, aniso2

introduces more proposals by using two additional image representations

where either the # rows or columns are doubled. Similarly, aniso4 further

adds two more representations where either the # rows or columns are

halved. This is similar in motivation to the anisotropic multi-scale image

representations employed in Sec. 4.6 in wanting to make the scales of

relevant image features more pertinent with respect to the size of the Gabor

filters. This also effectively makes the patch size rectangular instead of

square, which is often more representative of the homogeneous texture in

real world scenes. This can be quantitatively observed from the recall rates

which considerably improve when using aniso2 or aniso4.

Finally, color histogram consistency between neighbouring quadrants is en-

forced as a constraint to further improve precision. Specifically, 10-bin color

histograms for each of the RGB channels are computed and concatenated

in all quadrants. Neighbouring quadrants should exhibit similar histograms

within a certain l2 distance (we tried 0.5 and 0.75) for the patch to be con-

sidered as a proposal. Similarly, another constraint is used wherein at least

three quadrants not possessing a certain proportion (12.5%) of the patch’s

total # edgels (edge pixels) are rejected. Fig. 5.12 and Table 5.3 show

these constraints can considerably improve precision, though at the cost of

some drop in recall. It should be noted that the quantitative evaluation

presented here can be considered as that for both the tasks of detection as
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Figure 5.12: (a) Precision-recall and (b) recall vs. # proposals curves
for proposed detector. Pushing AP further at the cost of recall by im-

posing pre-filtering heuristics / constraints.

METRIC / quad wise edgels edgels
REP. aniso4 colorHist 0.5 colorHist 0.75

AP 0.63 0.78 0.70
AR 0.43 0.30 0.38
Precision 0.68 0.84 0.76
50th decision pt.
Recall 0.34 0.25 0.31
50th decision pt.
Precision 0.38 0.66 0.5080
75th decision pt.
Recall 0.70 0.43 0.6147
75th decision pt.
Precision 0.24 0.53 0.37
100th decision pt.
Recall 0.87 0.55 0.75
100th decision pt.

Table 5.3: Quantitative performance of various configurations of the
proposed homogeneous texture detector. AP may be pushed further, at
the cost of recall, by imposing pre-filtering heuristics requiring consis-

tency of color histograms and edgels in all patch quadrants.

well as geometric class assignment. This is since it is really the assignment

(via proposed approach) of a geometric class to a given proposal that goes

on to determine the detector’s precision and recall.



Chapter 6

Indoor Scene Classification via

Affine-Rectified Homogeneous

Texture

Having robustly detected characteristic homogeneous texture in indoor

scenes, can they be exploited for the purpose of scene semantic classifica-

tion? This chapter aims to answer this question by performing a compre-

hensive set of classification experiments on the benchmark MIT Indoor 67-

category dataset, spanning 6700 images ([106], Sec. 2.10). Sec. 6.1 discloses

the approach and implementation details of the classification pipeline. Both

regular (i.e., without any homogeneous texture detection or rectification)

and rectified (i.e., based on detection and affine rectification) features are

extracted. Four types of hand-crafted local texture descriptors have been

employed: the thresholding based CENTRIST and LBP, as well as the

gradient based SIFT and HOG. As a fifth descriptor, deep CNN features

are also experimented with. Sec. 6.2 discusses the results in detail. To

more rigorously evaluate the thesis, Sec. 6.3 applies the approach to an

135
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additional 6200 images spanning 31 scene categories, being a subset of the

ILSVRC 2015’s Places2 dataset ([150], Sec. 2.10), consisting of 1 natural, 5

indoor and the remaining 25 being man-made outdoor environments, all of

which tend to exhibit regular, repeating structure. The results demonstrate

that rectification based on texture cues yields class-discriminative features

that are also complementary to regular features.

6.1 Implementation Details

In what follows, a configuration is described for extracting descriptors and

performing classification, and is common across all experiments. All images

are resized to a reference scale, such that the smaller dimension is 400 pixels,

and the aspect ratio preserved.

Feature Extraction — Regular Rep. For regular features (no recti-

fication), patches sized 16x16 pixels are extracted on a regular grid with

a spatial stride of 8 pixels (4 pixels for SIFT), with the reference image

represented at the same set of 9 scales as determined in Sec. 5.2.1.

Feature Extraction — Rectified Rep. For a rectified representation,

an 80x80 pixel detection is warped (using bilinear interpolation for speed)

to a fixed size of 80x80 pixels. Then, patches sized 16x16 pixels are ex-

tracted from this warped region on a regular grid with a spatial stride of

8 pixels (4 pixels for SIFT). A patch in the warped region not fully vis-

ible in the original non-rectified region is rejected. A single scale is used

(i.e., scale = 1), thereby retaining the scale at which a homogeneous tex-

tured region is detected. For learning the dictionary, the detector at the

“edgels colorHist 0.75” at the 75th decision point is used (Table 5.3). This

provides a good tradeoff between precision (50.8%) and recall (61.47%).
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However, for training the kernels for classification, we rectify all avail-

able 80x80 pixel patches (after NMS), but discard those with homoge-

neous image regions (low gradient energy) or those with a single recovered

optimal dominant Gabor frequency but non-trivial projective parameters

(i.e., configuration “quad wise aniso4, 100th decision point” in Table 5.2).

This configuration, though not so precise (0.24), affords a very high recall

(0.87). For both cases (dictionary learning or kernel training), an intra-

geometric class, intra-scale and intra-aspect non-max suppression

is performed. Specifically, the detections are ranked according to outlier

score. Any incoming detection is not admitted if at least 50% of its area

is already occupied by any previously admitted patch, that is also 1) from

the same geometric class, 2) at the same image scale, and 3) sampled from

the same anisotropic image representation. Note this NMS for classification

differs from that employed for layout estimation as described in Sec. 5.3,

for reasons discussed in Sec. 5.3.2. Though it lends to a somewhat sparser

image representation, potentially causing some loss in discriminative power,

NMS is necessary to keep the computational requirements feasible.

Feature Encoding. Best practices for dense local feature based classifi-

cation, as suggested in [11, 63] are followed. Specifically, the descriptor di-

mensionality is reduced to 80 features via PCA (except LBP8,1, which is al-

ready 59-dimensional to begin with), followed by learning a 256-component

GMM. Separate dictionaries for regular and rectified features are learned,

using a sample of 106 features, obtained equally over the entire training

set. A 2-level spatial pyramid (see [70], Sec. 2.3.2) is constructed, wherein

a Fisher Encoding with sum pooling [128] is performed over each of the 5

spatial bins, obtaining a 40,960-dimensional descriptor per bin. Different

from [11] (who normalize each bin separately), descriptors at each level of

the spatial pyramid are l2-normalized separately (i.e., 1 at the first level



Chapter 6. Indoor Scene Classification 138

and the concatenated 4 at the second level), since this was observed to

give a better performance. Hellinger kernel mapping is then performed on

the descriptors, followed by an l2-normalization (as before) again, thereby

obtaining a so-called Improved Fisher Vector (IFV). The 5 descriptors are

then concatenated to obtain a 204,800-dimensional image representation.

Classification is performed by linear (having already incorporated a non-

linear Hellinger mapping) one-vs-all SVMs, using the code made available

by [10].

Classification. Classification performance is reported as an average of 3

runs using the standard train-test split for the MIT Indoor 67 [106] (Sec.

6.2) (with the difference in each run being sampling of a subset of descrip-

tors for dictionary learning, which is randomly performed). As is standard

practice on this dataset, classification accuracy is defined as the average of

the diagonal of the confusion matrix (i.e., average of per-class rates rather

than average over all dataset). The same approach is taken for the subset

of the Places2 dataset (Sec. 6.3). For obtaining the classification perfor-

mance of a combined representation, soft-max transformed SVM scores of

individual representations are multiplied, as proposed in [95] (and reviewed

in Sec. 2.6).

6.2 Experiments on the MIT Indoor67 [106]

6.2.1 CENTRIST Descriptors

Table 6.1 presents the performance when using CENTRIST descriptors (see

[137], Sec. 2.7). Reducing descriptor dimensionality (originally at 256, l1

normalized to 1) to 80 via PCA was observed to give better classification

performance with Fisher encoding, as opposed to 40 dimensions (done by
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the original work on CENTRIST [137], though with a bag-of-words encod-

ing). As an aside, an inhouse, multiscale implementation of sPACT (regular

features; no detection or rectification) — CEN SBOW — achieved 42.64%

(HIK) compared to the 36.88% (RBF) reported in [137]. However, Fisher

encoding (CEN) gives an even higher performance.

The slight loss in performance with a rectified representation (CEN Rect)

as compared to a regular representation (CEN) is likely because in the case

of the former, the dictionary learned is essentially representative of only rec-

tified homogeneous texture, which, although abundant, is still manifested

at sparse locations. Nevertheless a rectified representation is still highly

discriminative. More interestingly, both the regular and rectified features

are highly complementary to each other, significantly boosting performance

when used together (CEN + CEN Rect).

Single Rep. % Accuracy
CEN SBOW [137] 36.88%
CEN SBOW 42.64%
CEN 46.44± 0.62%
CEN Rect 45.36± 0.36%

Combined Rep. % Accuracy
CEN + CEN Rect 49.68± 0.11%

Table 6.1: MIT Indoor67 classification performance improvement with
dense feature description of affine-rectified texture — CENTRIST.

6.2.2 LBP Descriptors

Local Binary Patterns (LBP) [93] is a discriminative texture operator, in-

variant to monotonic gray scale transformations, and widely employed in

applications such as material and face classification. It thresholds the lo-

cal neighbourhood at the gray value of the center pixel, and sums the
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resulting bits over the neighbourhood, weighted by powers of 2. A his-

togram descriptor may then be computed over the resulting binary code

image. A modification, LBP ri, achieves invariance to rotation of local

pixel neighbourhood by circularly rotating a binary code into its minimum

value. Another enhancement is LBP u2, where the histogram assigns all

‘non-uniform’ patterns to a single bin but maintains a separate bin for

each ‘uniform’ pattern. A pattern is called uniform if it contains at most

two bitwise transitions from 0 to 1, or vice versa. This variant reduces the

descriptor size yet gives it more discriminative power. Yet another modi-

fication, invariant to global rotations, is proposed in [2]. Named LBP-HF

(histogram of Fourier Features), it exploits a property of DFT whereby a

cyclic shift in the input sequence (a histogram based on LBP u2) causes a

phase shift in the DFT coefficients. The LBP-HF outperforms the rotation-

sensitive LBP u2, as well as the locally rotation invariant LBP ri on texture

classification tasks [2]. Depending on the configuration used, and the cir-

cular neighbourhood parameters (P,R) (P = # pixels, R = radius), the

length of the resulting histogram — essentially the image descriptor —

varies.

Xiao et. al. [139, 138] have previously employed LBP features for scene

classification on their 397-category SUN dataset, reporting a rather low

performance of 14.7% by LBP u2 and 10.9% by LBP-HF, suggesting that

incorporating rotation invariance is detrimental for scene recognition. One

notes, however, that they have followed an approach similar to texture

classification, computing one LBP descriptor per scene image, with the

Histogram Intersection Kernel for classification. It is very likely, therefore,

that the discriminative power of LBP features may have been downplayed

(as opposed to, e.g., Dense SIFT at 23.5% or Dense HOG2x2 at 26.3%) in

their evaluation.
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Rep. % Accuracy % Accuracy % Accuracy
(8,1) (16,2) (24,3)

LBP u2 43.63± 0.50% 42.51± 0.38% 36.72± 0.39%
LBP u2 Rect 42.34± 0.42% 44.30± 0.34% 40.39± 0.40%

LBP u2 +
LBP u2 Rect 46.47± 0.45% 45.72± 0.28% 41.65± 0.62%

Table 6.2: MIT Indoor67 classification performance improvement with
dense feature description of affine-rectified texture — Local Binary Pat-

terns LBP u2.

On the other hand, the experiments reported in this section extract LBP u2

and LBP-HF descriptors for densely sampled, overlapping patches. Three

neighbourhood configurations (P,R) are used — (8,1), (16,2) and (24,3),

yielding 59-, 243-, and 555-dimensional descriptors, which are then l1 nor-

malized to 1. The dimensionality for the last two cases was reduced to

80 features, before learning a GMM and performing Fisher encoding. The

patch extraction, encoding and classification parameters are as described

in Sec. 6.1.

Tables 6.2 and 6.3 present the MIT Indoor67 classification results. Inter-

estingly, both the non-rotation invariant LBP u2 and the globally rotation

invariant LBP-HF perform almost the same. The powerful Fisher encod-

ing scheme seems to make up for the sensitivity of LBP u2 to rotation,

Rep. % Accuracy % Accuracy % Accuracy
(8,1) (16,2) (24,3)

LBP HF 44.02± 0.51% 42.88± 0.05% 36.85± 0.84%
LBP HF Rect 42.65± 0.32% 43.76± 0.23% 40.47± 0.58%

LBP HF +
LBP HF Rect 46.59± 0.43% 46.26± 0.40% 41.61± 0.51%

Table 6.3: MIT Indoor67 classification performance improvement with
dense feature description of affine-rectified texture — Local Binary Pat-

terns LBP-HF.
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while contrary to [139, 138] incorporating rotation invariance (LBP-HF )

is not detrimental to scene recognition. What is even more interesting,

LBP descriptors extracted upon affine-rectification perform substantially

better than regular descriptors for (P,R) = (16, 2), (24, 3). Furthermore,

as with CENTRIST descriptors, the rectified representations are not only

class-discriminative, but also complementary to regular representations.

The drop in performance for the configuration (24,3) is likely because al-

though the LBP coded image was constructed based on a 3-pixel radius

neighbourhood containing 24 points around the center pixel, the final his-

togram descriptor for each patch was still obtained over a 16x16 pixel patch

(to be consistent with the settings for the remaining descriptors (CEN-

TRIST, SIFT and HOG2x2) in our evaluation). Moreover, the general

trend in performance drop as the radius increases is because the LBP im-

age construction causes an image border equal in size to the radius being

discarded, thereby reducing features.

6.2.3 SIFT Descriptors

[63] have previously reported a performance of 60.77% on the MIT Indoor67

using RootSIFT descriptors (though, they use somewhat different patch

and scale parameters than used here, a different SVM solver, and careful

parameter cross-validation). Indeed, experiments with original SIFT (Sec.

2.3.1) yielded a lower performance of 59.14%. Therefore, following [63], this

section reports results obtained with RootSIFT descriptors. RootSIFT is

simply an element-wise square root of the l1 normalized SIFT descriptors,
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Rep. % Accuracy
SIFT 60.93± 0.60%
SIFT Rect 60.88± 0.32%

SIFT + SIFT Rect 63.01± 0.19%

Table 6.4: MIT Indoor67 classification performance improvement with
dense feature description of affine-rectified texture — SIFT.

and evaluating Euclidean distances between RootSIFT vectors is essentially

equivalent to using Hellinger kernel on original SIFT [4].1

As seen in Table 6.4, a dense representation based on rectified homogeneous

texture (SIFT Rect) performs almost the same as the regular representa-

tion. In other words, a rectified representation is just as highly discrimina-

tive. As with CENTRIST and LBP, it is also strongly complementary to a

regular representation.

6.2.4 HOG2x2 Descriptors

The fourth set of experiments uses the HOG2x2 descriptor (see Sec. 2.3.1).

Table 6.5 presents the results. The regular and rectified HOG perform lower

compared to SIFT (Table 6.4). This finding is the opposite of that reported

1Incidentally, it is to be compatible with [63] that a denser grid spacing of 4 pixels is
used in our experiments for SIFT feature extraction (though computationally expensive
for rectified representation), while the other three descriptors use 8 pixels.

Rep. % Accuracy
HOG 57.69± 0.30%
HOG Rect 59.70± 0.39%

HOG + HOG Rect 62.05± 0.10%

Table 6.5: MIT Indoor67 classification performance improvement with
dense feature description of affine-rectified texture — HOG.
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Combined Rep. % Accuracy
SIFT + HOG 62.30± 0.52%
SIFT Rect + HOG Rect 62.66± 0.21%

SIFT + HOG +
SIFT Rect + HOG Rect 64.56± 0.02%

Table 6.6: MIT Indoor67 classification performance improvement with
dense feature description of affine-rectified texture — SIFT and HOG.

in [139, 138] for the SUN397 dataset, since their experiments employ a very

different set of parameters.

Interestingly, not only is rectified HOG significantly more discriminative

compared to regular HOG, but the two are strongly complementary, as

with the previous three features. The high performance of rectified SIFT

and HOG, as opposed to the thresholding based CENTRIST and LBP, is

likely because these descriptors are essentially histograms of oriented gra-

dients. As motivated in Sec. 4.1, rectification aligns features to a canonical

coordinate frame, mitigating intra-class variations due to perspective effects

or viewpoint differences, thereby facilitating recognition.

Table 6.6 reports classification results based on combining SIFT and HOG

scores. By virtue of rectification via homogeneous texture cues, this the-

sis is able to achieve a performance of 64.54% on the benchmark MIT

Indoor67. This compares favorably with state-of-the-art approaches based

on combined representations [Tables 2.1(top half) and 2.2(top half)], es-

pecially considering that all of them (except SIFT) employ learning based

approaches to extract features. Additionally, ISPR is particularly trained

to minimize classification error, while OPM makes use of an additional

dataset to learn to determine planar orientations. In contrast the approach

taken in this thesis does not involve any learning during feature extraction.
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6.2.5 Deep ConvNet Descriptors

As reviewed in Sec. 2.9, pre-trained deep features learned via multi-layered

ConvNets on huge datasets for the task of large scale object recognition

have been successfully applied to other domains as off-the-shelf descriptors,

including scene recognition. Where training a deep CNN requires special

hardware and days or weeks to train, obtaining descriptors based on a pre-

trained model for classification can be done in a matter of a few hours.

The experiments here make use of the MatConvNet toolbox [129] and the

pre-trained 16-layered VGG-VD CNN model [118] to extract deep CNN

descriptors.

Regular Rep. The VGG-VD CNN requires the image be resized to a fixed

size of 224x224 pixels, and a pre-learned “average image” be subtracted

from it. In the process, aspect ratio is not preserved. A single, 4096-

dimensional descriptor for the image is then obtained by using the output

of the first fully-connected layer (specifically, layer# 14), and l2 normalized

to 1.

Rectified Rep. The detections obtained at the configuration

“edgels colorHist 0.75” at the 75th decision point are used (Table 5.3), with

precision 50.8% and recall 61.47%. NMS as described in Sec. 6.1 is per-

formed. Each 80x80 pixel detection is warped (also to a size of 80x80 pixels)

based on its recovered projective parameters, and a single 4096-dimensional

descriptor is obtained from it as described above. All resulting descriptors

are then subjected to an element-wise max or sum operation to obtain a

single descriptor for the given image, which is then l2 normalized to 1.

Having obtained image descriptors for both the regular and rectified rep-

resentations, a linear SVM is used for classification. Table 6.7 presents the
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Rep. % Accuracy
CNN 68.57%
CNN Rect(sum) 58.81%
CNN Rect(max) 60.95%

CNN + CNN Rect(sum) 70.30%
CNN + CNN Rect(max) 73.52%

Table 6.7: MIT Indoor67 classification performance improvement with
off-the-shelf deep CNN feature description of affine-rectified texture.

results. We observe that an accuracy of 68.57%2 obtained by CNN image

description is very impressive, especially since the dimensionality is merely

4096 and a linear kernel SVM is used. By contrast, a Fisher encoding de-

scriptor, as used in Sec. 6.2.1, 6.2.2, 6.2.3, 6.2.4 is 204,800-dimensional, and

also needs a non-linear kernel (Hellinger mapping) to achieve an accuracy

that is still significantly lower than CNN. Clearly, CNNs are able to pro-

duce a very low-dimensional, highly discriminative, invariant and powerful

representation for a given image.

Next, CNN descriptors obtained from rectified representations are also very

powerful, and just as discriminative as SIFT (Table 6.4) or HOG (Table

6.4). The performance is understandably lower than a regular CNN repre-

sentation since we have used a precise configuration of the detector, result-

ing in low recall as well as a sparser image representation. Moreover, an

element-wise max operation on descriptors extracted from rectified patches

performs better than a sum operation. This is also easily understood since

a rectification always contains feature-less regions not originally present in

a detection, consequently resulting in spurious features along the edges of

the featured and featureless regions. Moreover, a max operation may also

be thought of as selecting the largest responses to CNN features from any

2Comparing with previous works using CNN features for off-the-shelf description,
note that the performance obtained here is slightly higher than that reported previously
by [15] (FC-CNN in Table 2.1, 67.6% using the VGG-M pre-trained model), and slightly
lower than by [107] (CNNaug-SVM in Table 2.1, 69% using the OverFeat model, but
additional augmented training images).
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Combined Rep. % Accuracy
CNN + CNN Rect(max) + SIFT 75.96± 0.18%
CNN + CNN Rect(max) + SIFT Rect 75.54± 0.17%

CNN + CNN Rect(max) + SIFT + SIFT Rect 76.31± 0.21%

Table 6.8: MIT Indoor67 classification performance improvement with
dense SIFT and off-the-shelf deep CNN feature description of affine-

rectified texture.

overlapping, rectified patches, thereby retaining the more representative

features.

It is seen that a combined regular and rectified representation can provide

an improvement of up to almost 5%. This is a significant and impressive

improvement, given that regular CNN would be expected to have already

encoded a highly invariant representation (and given it has been trained on

1.2 million hand-labeled images of objects)! But the results here suggest an

explicit planar rectification can still help push performance further. This

also shows that the approach advocated in this thesis is not limited to

hand-crafted features, but also extends to features extracted based on a

powerful learning paradigm such as deep ConvNets.

Finally, Tables 6.8 and 6.9 present classification results based on various

combinations of regular and rectified CNN, SIFT and HOG descriptors.

The best MIT Indoor67 classification accuracy achieved by this

thesis is 76.90%, which surpasses most current state-of-art approaches

[Tables 2.1 and 2.2].

Combined Rep. % Accuracy
CNN + CNN Rect(max) + HOG 76.19± 0.23%
CNN + CNN Rect(max) + HOG Rect 76.02± 0.16%

CNN + CNN Rect(max) + HOG + HOG Rect 76.90± 0.47%

Table 6.9: MIT Indoor67 classification performance improvement with
dense HOG and off-the-shelf deep CNN feature description of affine-

rectified texture.
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6.2.6 Discussion

Table 6.10 presents per-class classification performance using regular and

rectified SIFT and HOG features. Bold values indicate an increase in per-

formance over the regular features, while a red value indicates a decrease. In

general, categories that tend to exhibit homogeneous texture perform bet-

ter upon rectification (SIFT Rect + HOG Rect) compared to before (SIFT

+ HOG), and the combination indicates complementary performance. The

likely texture facilitating rectification, and consequently contributing to-

ward performance improvement, stems from elaborate interiors and ceilings

in “airport inside”, rows of seating in “auditorium” and “movietheater”,

patterned tiling in “bathroom”, shelves and bookcases in “bookstore” and

“library”, lanes in “bowling” and “pool inside”, cribs in “nursery”, etc.

The proposed approach does suffer from occasional failures. In this re-

gard, examining some of the mis-classified images in Fig. 6.1 provides

some insight into the confusions, which are more often than not quite plau-

sible. The “auditorium” image indeed depicts non-conventional seating,

more similar to lanes in “bowling alley”. Similarly, confusing a not-so-

expansive “concert hall” as “auditorium” is plausible, while the second

confusion is likely due to the woodwork ceiling, more characteristic of out-

door structures such as a “greenhouse”. Other confusions committed also

seem plausible — the mis-classified “laundromat” images indeed lack the

characteristic repeating patterns composed of laundry machines, while the

first image is indeed more “kitchen”-like. Similarly, while the more typ-

ical “prison cell” images with railings and bars were correctly classified,

the ones depicting bunks and upholstery are mis-classified as, e.g., “liv-

ing room”. Such features, not belonging to uniform patterns, are also not

efficiently captured during dictionary learning, which is primarily based on

features from homogeneous textured regions.
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# REP./ SIFT+HOG SIFT Rect+ SIFT+HOG+
CATEGORY HOG Rect SIFT Rect+

HOG Rect+

01 airport inside 0.40 0.50 0.50
02 art studio 0.20 0.35 0.30
03 auditorium inside 0.72 0.78 0.72
04 bakery 0.26 0.37 0.37
05 bar 0.39 0.33 0.39
06 bathroom 0.56 0.78 0.78
07 bedroom 0.62 0.43 0.52
08 bookstore 0.50 0.55 0.50
09 bowling 0.95 1.00 0.95
10 buffet 0.75 0.75 0.75
11 casino 0.84 0.84 0.89
12 children room 0.39 0.28 0.39
13 church inside 0.74 0.79 0.68
14 classroom 0.67 0.72 0.78
15 cloister 0.95 1 0.95
16 closet 0.83 0.83 0.83
17 clothing store 0.61 0.50 0.56
18 computer room 0.72 0.83 0.78
19 concert hall 0.80 0.75 0.70
20 corridor 0.57 0.67 0.67
21 deli 0.05 0.11 0.05
22 dental office 0.67 0.62 0.62
23 dining room 0.50 0.39 0.50
24 elevator 0.95 0.90 0.95
25 fastfood restaurant 0.59 0.71 0.59
26 florist 0.95 0.79 0.89
27 gameroom 0.50 0.65 0.65
28 garage 0.72 0.67 0.78
29 greenhouse 0.85 0.85 0.85
30 grocery store 0.57 0.62 0.62
31 gym 0.67 0.89 0.83
32 hair salon 0.48 0.62 0.57
33 hospital room 0.85 0.70 0.85
34 inside bus 0.96 0.83 0.87

Table 6.10: Per-class classification performance for MIT Indoor67 with
regular, rectified and combined gradient descriptors — 1/2.
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# REP./ SIFT+HOG SIFT Rect+ SIFT+HOG+
CATEGORY HOG Rect SIFT Rect+

HOG Rect+

35 inside subway 0.95 0.95 1.00
36 jewellery shop 0.36 0.50 0.55
37 kindergarten 0.85 0.75 0.75
38 kitchen 0.62 0.71 0.67
39 laboratory wet 0.55 0.36 0.50
40 laundromat 0.82 0.73 0.82
41 library 0.50 0.50 0.60
42 living room 0.30 0.40 0.30
43 lobby 0.25 0.40 0.35
44 locker room 0.57 0.38 0.48
45 mall 0.65 0.65 0.65
46 meeting room 0.68 0.68 0.73
47 movie theater 0.70 0.80 0.70
48 museum 0.43 0.43 0.43
49 nursery 0.75 0.75 0.80
50 office 0.05 0.10 0.19
51 operating room 0.37 0.47 0.53
52 pantry 0.80 0.85 0.85
53 pool inside 0.65 0.70 0.70
54 prison cell 0.70 0.65 0.75
55 restaurant 0.55 0.40 0.50
56 restaurant kitchen 0.61 0.57 0.61
57 shoeshop 0.58 0.58 0.58
58 staircase 0.80 0.75 0.80
59 studio music 0.84 0.89 0.89
60 subway 0.57 0.52 0.62
61 toystore 0.27 0.27 0.32
62 train station 0.75 0.80 0.80
63 tv studio 0.78 0.72 0.72
64 video store 0.59 0.50 0.50
65 waiting room 0.38 0.43 0.52
66 warehouse 0.57 0.57 0.62
67 wine cellar 0.81 0.81 0.81

MEAN 0.62 0.63 0.65

Table 6.10: Per-class classification performance for MIT Indoor67 with
regular, rectified and combined gradient descriptors — 2/2.
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Figure 6.1: Sample MIT Indoor67 test images that were mis-classified
when using a representation based on affine-rectified homogeneous tex-
ture, but correctly classified when using a regular representation, in

format [true category(assigned category)].

Fig. 6.2 on the other hand presents example images that were originally

mis-classified using a regular representation, but a texture-rectified repre-

sentation helped facilitate a correct classification. Typical “airport inside”

images with textured walls and ceilings, and lacking explicit rail-tracks are

correctly classified. A homogeneous texture based representation focuses

more on the rows of desks in a “classroom”. On the other hand, a reg-

ular representation would also consider the blackboard as important, and
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Figure 6.2: Sample MIT Indoor67 test images that were mis-classified
when using a regular representation, but correctly classified when using a
representation based on affine-rectified homogeneous texture, in format

[true category(assigned category)].
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in the absence of it, assigns this image to “waiting room” (which also con-

tains seating, but not rows of desks, hence the texture based representation

seems undeterred). Similar observations can be made for the rest of these

examples. A notable property among most of them is large perspective

distortion, as well as uniform texture.

6.3 Experiments on Places2 [150] Subset

While the primary aim of this thesis was to facilitate and investigate the

role of texture in indoor scene recognition, this section is dedicated to eval-

uating the proposed approach on a broader range of scenes. Specifically,

a subset of the Places2 scene dataset ([150], Sec. 2.10) is considered, con-

sisting of 31 scene categories — 1 natural, 5 indoor and the remaining 25

being man-made outdoor environments, all of which tend to exhibit regu-

lar, repeating structure (see Table 6.15). Moreover, for each category, the

first 150 training images are used, while testing is done on the 50 validation

images. This makes for a subset of 6200 images (similar in size to the MIT

Indoor67, which contains 6700 images).

Fig. 6.3 shows qualitative results of detection on some sample images from

various Places2 categories. Tables 6.11, 6.12, 6.13, 6.14 and 6.15 present

classification performance with CENTRIST, LBP, SIFT, HOG and CNN

features, respectively. As with the MIT Indoor67 dataset, we find that

rectified representations are not only discriminative but also complement

regular representations.
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Figure 6.3: Homogeneous texture detection and its geometric class
assignment on images from various Places2 [150] scene dataset categories
— 1/2: (a1) abbey, (a2) alley, (b1) airplane cabin, (b2) amphitheater,
(c1) alley, (c2) aqueduct, (d1) aqueduct, (d2) balcony, (e1) arch, (e2)
basilica, (f1) atrium, (f2) boardwalk, (g1) campus, (g2) construction

site.
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Figure 6.3: Homogeneous texture detection and its geometric class
assignment on images from various Places2 [150] scene dataset cate-
gories — 2/2: (h1) catacomb, (h2) crosswalk, (i1) cathedral indoor, (i2)
dam, (j1) downtown, (j2) pagoda, (k1) field cultivated, (k2) plaza, (l1)
fire escape, (l2) railroad track, (m1) skyscraper, (m2) supermarket, (n1)

skyscraper, (n2) supermarket site, (o1) viaduct, (o2) zen garden.



Chapter 6. Indoor Scene Classification 156

Rep. % Accuracy
CEN 46.69± 0.62%
CEN Rect 47.38± 0.20%

CEN + CEN Rect 48.77± 0.07%

Table 6.11: Places2 subset classification performance improvement
with dense feature description of affine-rectified texture — CENTRIST.

Rep. % Accuracy
LBP(16,2) u2 41.55± 0.34%
LBP(16,2) u2 Rect 45.38± 0.62%

LBP(16,2) u2 + LBP(16,2) u2 Rect 46.01± 0.23%

Table 6.12: Places2 subset classification performance improvement
with dense feature description of affine-rectified texture — Local Binary

Patterns LBP u2.

Rep. % Accuracy
SIFT 54.93± 0.33%
SIFT Rect 54.84± 0.42%

SIFT + SIFT Rect 56.13± 0.42%

Table 6.13: Places2 subset classification performance improvement
with dense feature description of affine-rectified texture — SIFT.

Rep. % Accuracy
HOG 53.91± 0.53%
HOG Rect 55.27± 0.65%

HOG + HOG Rect 56.17± 0.61%

Table 6.14: Places2 subset classification performance improvement
with dense feature description of affine-rectified texture — HOG.
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Rep. % Accuracy
CNN 63.03%
CNN Rect(sum) 51.48%
CNN Rect(max) 51.68%

CNN + CNN Rect(sum) 63.94%
CNN + CNN Rect(max) 64.58%

Table 6.15: Places2 subset classification performance improvement
with off-the-shelf deep CNN feature description of affine-rectified tex-

ture.

6.3.1 Discussion

The performance improvement for CNN descriptors with a combined rep-

resentation is not as pronounced as for the MIT Indoor67, even though

all these categories exhibit homogeneous texture. This section attempts to

explain this behaviour. Table 6.15 shows the class-wise performance for the

regular, rectified and combined representation. It is seen that most of the

categories benefit when the two representations are used in conjunction,

and the few drops in performance are also minor. However, the rectified

representation on its own mostly fails to perform good classifications, and

is essentially the reason why the overall performance improvement is not

very impressive. To understand why, Fig. 6.4 analyzes sample images from

five categories with the most drastic decrease in performance by a rectified

representation over the regular one (namely: “alley”, “atrium”, “dam”,

“field cultivated” and “railroad track”).

Perhaps unsurprisingly, nearly all the confusions committed are highly plau-

sible. Some categories in this dataset have only subtle differences and it

is easy to mistake one for the other, especially in the absence of some sort

of high-level contextual reasoning. Examples include “dam”, “aqueduct”

and “viaduct”, as well as “field cultivated”, “formal garden” and “bam-

boo forest”. Some of the confusions arise out of the representation’s focus
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on characteristic homogeneous texture and this can explain, for example,

the “alley” images mistaken as “arcade” or “railroad˙track”, the “atrium”

images mistaken as “balcony exterior” or “cathedaral indoor”, or the wood-

constructed “dam” mistaken as a “boardwalk”. For some examples, it is ar-

guably difficult for even humans to assign a unique category — for example,

the 3rd “alley” image, the 5th “dam” image, or the 3rd “field cultivated”

image. Nevertheless, the fact that a combined regular and rectified rep-

resentation provides some overall performance improvement suggests that

multiple scene cues can indeed help improve classification, and there is a

need to research such cues as well as more principled approaches to com-

bining and exploiting them.

Fig. 6.5 presents additional insightful examples depicting a mix of success

and failure cases for both a regular and rectified CNN representation. We

again observe that some of these cases can indeed be assigned multiple

scene categories (e.g., “downtown” and “skyscraper”), while for some a

correct categorisation is difficult to achieve without some high-level visual

reasoning. Indeed, considering the large scale nature of this dataset [150]

it has been suggested that an algorithm be allowed to produced up to 5

possible category labels for any given test image at the ILSVRC challenge

[113],
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# REP./ CNN CNN Rect(max) CNN+
CATEGORY CNN Rect(max)

01 abbey 0.60 0.26 0.60
02 airplane cabin 1 0.94 1
03 alley 0.74 0.46 0.78
04 amphitheater 0.7 0.62 0.76
05 aqueduct 0.58 0.58 0.58
06 arcade 0.44 0.38 0.50
07 arch 0.20 0.06 0.24
08 atrium 0.72 0.34 0.70
09 balcony exterior 0.44 0.34 0.42
10 bamboo forest 0.84 0.90 0.92
11 basilica 0.32 0.32 0.38
12 boardwalk 0.58 0.32 0.60
13 campus 0.38 0.24 0.38
14 catacomb 0.82 0.80 0.82
15 cathedral indoor 1 0.90 1
16 construction site 0.6 0.46 0.58
17 courthouse 0.58 0.44 0.62
18 crosswalk 0.88 0.72 0.84
19 dam 0.72 0.52 0.74
20 downtown 0.30 0.24 0.30
21 field cultivated 0.90 0.66 0.90
22 fire escape 0.70 0.70 0.74
23 formal garden 0.76 0.84 0.78
24 pagoda 0.70 0.52 0.70
25 plaza 0.14 0.08 0.16
26 railroad track 0.78 0.50 0.76
27 shopfront 0.96 0.88 0.98
28 skyscraper 0.30 0.34 0.38
29 supermarket 1 0.98 1
30 viaduct 0.24 0.14 0.22
31 zen garden 0.62 0.54 0.64

MEAN 0.63 0.52 0.65

Table 6.15: Per-class classification performance for Places2 subset with
regular, rectified and combined ConvNet descriptors.
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Figure 6.4: Sample Places2 validation images that were mis-classified
when using a ConvNet representation based on affine-rectified homo-
geneous texture, but correctly classified when using a regular ConvNet

representation, in format [true category(assigned category)].
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Figure 6.5: Sample Places2 validation images with assigned
category using a regular ConvNet representation, or that based
on affine-rectified homogeneous texture indicated in format
[true category(assigned category <regular>)(assigned category

<rectified>)].
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Conclusions & Future Work

7.1 Conclusions

This thesis has advanced a novel paradigm involving the use of homoge-

neous texture — widely manifested in indoor scenes — for an improved

scene understanding and classification (see Sec. 4.1, 5.1). It thus deviates

from the established practice of employing machine learning in order to

estimate scene layouts (Sec. 3.2) or to extract features for recognition (Sec.

3.1).

A mathematical model has been developed in Chapter 4 that allows the

recovery of plane projective parameters from imaged texture, facilitating

an affine rectification. Robust methods to measure the dominant instan-

taneous frequency in imaged texture are developed (Sec. 4.4), and robust

recovery of projective parameters demonstrated (Sec. 4.5). The resulting

frequency based approach is shown to outperform existing representative

methods on the task of rectification of real-world texture (Sec. 4.7).

162
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The texture projection model is then applied to detecting homogeneous

textured regions in real-world, cluttered indoor scenes in Sec. 5.2. This

facilitates the estimation of the geometric layout in multi-planar textured

indoor scenes (Sec. 5.3). In doing so, the approach sidesteps the error-

prone, ill-posed computation of vanishing points in order to establish room

orientation, and does not need to rely upon the simplistic Manhattan or

box layout assumption, or to employ machine learning to localize room

faces in space and scale.

Affine rectification of detected homogeneous texture is found to yield low-

level features that are not only class-discriminative, but also complemen-

tary to regular, non-rectified features, thereby facilitating indoor scene

recognition (Chapter 6). The results are consistent across a number of

hand-crafted descriptors, both thresholding (CENTRIST, LBP) and gra-

dient based (SIFT, HOG), as well as pre-learned deep ConvNet features.

Classification performance based on a combined feature representation is

seen to favorably compare with contemporary approaches on the MIT In-

door67 benchmark, while one of the presented configurations outperforms

most current state-of-the-art work. The proposed approach is additionally

evaluated on a set of 6200 (mostly outdoor) images, being a subset of the

Places2 large scale scene dataset.

In summary, the thesis attempts to draw attention of the community toward

the role of a particular, abundantly occurring class of texture — that which

satisfies the homogeneity assumption — in describing indoor scenes, and

consequently facilitating their semantic recognition. It is an effort toward

ironing out some of the technical challenges that would otherwise prevent

a successful use of such texture in performing scene classification in real-

world images, thereby paving the way for further research in this promising

direction.
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7.2 Future Work

A limitation of the proposed texture projection model is that the error

measures defined in Eqns. 4.9 and 4.11 are not affine invariant. A heuristic

normalization strategy has, however, been presented in Sec. 4.6, and is seen

to perform very well for texture rectification (where it serves to select the

best multi-scale representation), texture detection, and consequently scene

layout estimation and classification. However, the current occasional fail-

ures can be significantly mitigated, and classification performance pushed

further, should an invariant error measure be discovered.

Like generic low-level (blobs and edges) or mid-level features (distinctive

scene parts), homogeneous texture is sparsely manifested in scenes. As

such, the experiments presented in this thesis have made use of an existing

classifier score fusion scheme to complement features from homogeneous

texture with regular densely extracted features. Higher performance may

be achieved, however, and more insight attained as to what scene categories

can be well described by homogeneous texture, by devising schemes that can

more effectively leverage the complementarity of regular and texture based

features. The thesis has also attempted to bring to light the complementary

nature of various gradient and threshold based hand-crafted descriptors, as

well as pre-trained deep ConvNet features and more work to further explore

this synergy might prove fruitful.

The warping process in rectification gives rise to artifacts in regions which

are magnified (resulting in oversampling) or minified (leading to under-

sampling, and hence aliasing) with respect to the original image [53] (see,

e.g., Fig. 4.15(a,n)). Such artifacts in the process of rectification likely

lead to lower performance than can potentially be attained, hence must be

addressed.
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Since the obtained rectifications still manifest an unknown affine transform,

rotating the descriptors such as by SIFT [84], or affine adaptation such as by

[88, 64] may be explored to further improve performance. Alternatively, it

might also be worthwhile to investigate the use of affine-invariant texture

signatures (e.g. [147]), computed directly from imaged texture. Other

potential avenues to explore the role of texture in recognition include fractal

and lacunarity (see e.g., [105]) analysis on detected texture, or to employ

deep ConvNet learning for texture detection or recognition [15].



Bibliography

[1] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for

designing overcomplete dictionaries for sparse representation. IEEE

Trans. on Signal Processing, 54(11):4311 – 4322, 2006. 18

[2] T. Ahonen, J. Matas, C. He, and M. Pietikinen. Rotation invari-

ant image description with Local Binary Pattern Histogram Fourier

Features. In Proc. 16th Scandinavian Conference on Image Analysis,

2009. 140

[3] D. Aiger, D. Cohen-Or, and N. J. Mitra. Repetition maximiza-

tion based texture rectification. Computer Graphics Forum (EURO-

GRAPHICS), 31(2pt2):439–448, 2012. 62, 63, 92, 94, 95, 96

[4] R. Arandjelovi and A. Zisserman. Three things everyone should know

to improve object retrieval. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, pages 2911 – 2918, 2012. 143

[5] O. Boiman, E. Shechtman, and M. Irani. In defense of Nearest-

Neighbor based image classification. In Proc. IEEE Conf. on Com-

puter Vision and Pattern Recognition, pages 1 – 8, 2008. 24

[6] A. Bosch, A. Zisserman, and X. Munoz. Scene classification via pLSA.

In Proc. European Conf. on Computer Vision, pages 517–530, 2006.

12, 24, 26

166



Bibliography 167

[7] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level

features for recognition. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, pages 2559 – 2566, 2010. 21, 22, 23

[8] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy min-

imization via graph cuts. IEEE Trans. on Pattern Analysis and Ma-

chine Intelligence, 23(11):1222–1239, 2001. 77, 79

[9] F. Cakir, U. Gudukbay, and O. Ulusoy. Nearest-neighbor based met-

ric functions for indoor scene recognition. Computer Vision and Im-

age Understanding, 115(11):1483–1492, 2011. 24

[10] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technol-

ogy, 2:27:1–27:27, 2011. Software available at http://www.csie.

ntu.edu.tw/~cjlin/libsvm. 138

[11] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil

is in the details: an evaluation of recent feature encoding methods.

In Proc. British Machine Vision Conference, pages 76.1–76.12, 2011.

17, 24, 44, 137

[12] M. J. Choi, J. Lim, A. Torralba, and A. Willsky. Exploiting hierar-

chical context on a large database of object categories. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, pages 129 – 136,

2010. 44

[13] M. J. Choi, J. Lim, A. Torralba, and A. Willsky. Exploiting hierar-

chical context on a large database of object categories. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, pages 129 – 136,

2010. 46

[14] O. Chum and J. Matas. Planar affine rectification from change of

scale. In Proc. Asian Conf. on Computer Vision, pages 347–360,

2010. 62, 63, 64

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Bibliography 168

[15] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for texture

recongition and segmentation. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, pages 3828–3836, 2015. 35, 39, 41,

146, 165

[16] T. Collins, J. Durou, P. Gurdjos, and A. Bartoli. Single-view per-

spective shape-from-texture with focal length estimation: A piece-

wise affine approach. In Proc. 3D Data Processing, Visualization and

Transmission (3DPVT), 2010. 61, 64

[17] J. M. Coughlan and A. L. Yuille. Manhattan world: compass di-

rection from a single image by Bayesian inference. In Proc. IEEE

International Conf. on Computer Vision, pages 941 – 947, 1999. 52

[18] A. Criminsi and A. Zisserman. Shape from texture: homogeneity

revisited. In Proc. British Machine Vision Conference, page 8291,

2000. 61, 63

[19] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In Proc. IEEE International Conf. on Computer Vision,

pages 886 – 893, 2005. 10, 13

[20] J. G. Daugman. Uncertainty relation for resolution in space, spatial

frequency, and orientation optimized by two-dimensional visual cor-

tical filters. Journal of the Optical Society of America A, 2(7):1160–

1169, 1985. 70

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Im-

ageNet: A large-scale hierarchical image database. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, pages 248 – 255,

2009. http://www.image-net.org/. 28, 36, 44

[22] C. Desai, D. Ramanan, and C. C. Fowlkes. Discriminative models

for multi-class object layout. In Proc. IEEE International Conf. on

Computer Vision, pages 229 – 236, 2009. 44

http://www.image-net.org/


Bibliography 169

[23] C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element dis-

covery as discriminative mode seeking. In Proc. Neural Information

Processing Systems, pages 494–502, 2013. 32, 41, 42, 45, 46, 100

[24] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What

makes Paris look like Paris? ACM Trans. on Graphics (SIGGRAPH

2012), 31(4):101:1–101:9, 2012. 30, 32, 45

[25] J. Donahue*, Y. Jia*, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng,

and T. Darrell. DeCAF: A deep convolutional activation feature for

generic visual recognition. In Proc. International Conf. on Machine

Learning, 2014. (* = equal contribution). 38, 41

[26] G. Dorko and C. Schmid. Object class recognition using discrimina-

tive local features. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 2005. 12, 17

[27] K. A. Ehinger, J. Xiao, A. Torralba, and A. Oliva. Estimating scene

typicality from human ratings and image features. In Proc. 33rd

Annual Meeting of the Cognitive Science Society, 2011. 9

[28] M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams,

J. Winn, and A. Zisserman. The PASCAL visual object classes chal-

lenge: A retrospective. IJCV, 111(1):98–136, 2014. 129, 130

[29] E. Farahzadeh, T.-J. Cham, and W. Li. Incorporating local and global

information using a novel distance function for scene recognition. In

IEEE Workshop on Robot Vision (WORV), pages 132 – 137, 2013.

10

[30] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual mod-

els from few training examples: An incremental bayesian approach

tested on 101 object categories. In IEEE Conf. on Computer Vision

and Pattern Recognition Workshop, page 178, 2004. 12, 15



Bibliography 170

[31] L. Fei-Fei, A. Iyer, C. Koch, and P. Perona. What do we perceive in

a glance of a real-world scene? Journal of Vision, 7(1):1–29, 2007. 9

[32] L. Fei-Fei and P. Perona. A Bayesian hierarchical model for learning

natural scene categories. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, pages 524–531, 2005. 12, 15, 24, 26, 27, 39

[33] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-based

models. IEEE Trans. on Pattern Analysis and Machine Intelligence,

32(9):1627–1645, 2010. 10, 13, 29, 31, 32, 105

[34] J. Feng, B. Ni, Q. Tian, and S. Yan. Geometric Lp-norm feature

pooling for image classification. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, pages 2609 – 2704, 2011. 23, 40

[35] R. Fergus, P. Perona, and A. Zisserman. Object class recognition

by unsupervised scale-invariant learning. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, pages 264–271, 2003. 12

[36] M. A. Fischler and R. C. Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and

automated cartography. Communications of the ACM, 24(6):381–

395, 1981. 85, 107

[37] A. Fitzgibbon. ”Andrew Zisserman, BMVA Distinguished Fellow

2008”. http://www.bmva.org/2008_zisserman, 2008. 1

[38] M. Fornoni and B. Caputo. Indoor scene recognition using task and

saliency-driven feature pooling. In Proc. British Machine Vision Con-

ference, pages 98.1–98.12, 2012. 24

[39] S. Gao, I. Tsang, L.-T. Chia, and P. Zhao. Local features are not

lonely Laplacian sparse coding for image classification. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition, pages

3555–3561, 2010. 16

http://www.bmva.org/2008_zisserman


Bibliography 171

[40] J. Garding. Shape from texture and contour by weak isotropy. Arti-

ficial Intelligence, 64(2):243–297, 1993. 63

[41] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless

pooling of deep convolutional activation features. In Proc. European

Conf. on Computer Vision, pages 392–407, 2014. 39, 41

[42] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.

url=http://www.deeplearningbook.org, 2016. Book in preparation

for MIT Press. 36

[43] K. Grauman and T. Darrell. The Pyramid Match Kernel: Discrim-

inative classification with sets of image features. In Proc. IEEE In-

ternational Conf. on Computer Vision, pages 1458–1465, 2005. 15

[44] M. R. Greene and A. Oliva. Recognition of natural scenes from global

properties: seeing the forest without representing the trees. Interna-

tional Journal of Computer Vision, 58(2):137–176, 2009. 9

[45] P. Gupta, S. Arrabolu, M. Brown, and S. Savarese. Video scene

categorization by 3d hierarchical histogram matching. In Proc. IEEE

International Conf. on Computer Vision, pages 1655–1662, 2009. 15

[46] B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorre-

lation for clustering and classification. In Proc. European Conf. on

Computer Vision, pages 459–472, 2012. 32

[47] R. I. Hartley and A. Zisserman. Multiple View Geometry in Com-

puter Vision. Cambridge University Press, ISBN: 0521540518, second

edition, 2004. 51, 66, 118

[48] T. Hassner, V. Mayzels, and L. Zelnik-Manor. On SIFTs and their

scales. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-

nition, pages 1522 – 1528, 2012. 13

[49] J. P. Havlicek, A. C. Bovik, and P. Maragos. Modulation models for

image processing and wavelet-based image demodulation. In Proc.



Bibliography 172

Asilomar Conf. on Signals, Systems and Computers, pages 805 – 810,

1992. 61, 72

[50] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. arXiv preprint arXiv:1512.03385, 2015. 35, 38

[51] V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout

of cluttered rooms. In Proc. IEEE International Conf. on Computer

Vision, pages 1849 – 1856, 2009. xii, xiv, 51, 52, 53, 54, 55, 61, 116,

119, 121, 122, 123, 124

[52] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from

an image. International Journal of Computer Vision, 75(1):151–172,

2007. xii, xvii, 48, 49, 51, 52, 54, 124

[53] D. H. House. Avoiding artifacts in warped images.

http://people.cs.clemson.edu/~dhouse/courses/405/notes/

antialiasing.pdf, Retrieved Jan 2016. 164

[54] Y. Huang, Z. Wu, L. Wang, and T. Tan. Feature coding in image clas-

sification: A comprehensive study. IEEE Trans. on Pattern Analysis

and Machine Intelligence, 36(3):493 – 506, 2014. 17, 44

[55] P. Isola, J. Xiao, A. Torralba, and A. Oliva. What makes an image

memorable? In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, pages 145–152, 2011. 13

[56] H. Izadinia, F. Sadeghi, and A. Farhadi. Incorporating scene context

and object layout into appearance modeling. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, pages 232 – 239, 2014. 44

[57] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Reading

text in the wild with convolutional neural networks. International

Journal of Computer Vision, 116(1):1–20, 2015. 35

[58] S. Jalali, J. Lim, S. Ong, and J. Tham. Realistic modeling of simple

and complex cell tuning in the HMAX Model, and implications for

http://people.cs.clemson.edu/~dhouse/courses/405/notes/antialiasing.pdf
http://people.cs.clemson.edu/~dhouse/courses/405/notes/antialiasing.pdf


Bibliography 173

invariant object recognition in cortex. Neural Information Processing.

Models and Applications (LNCS), 6444:541–548, 2010. 25

[59] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the

best multi-stage architecture for object recognition? In Proc. IEEE

International Conf. on Computer Vision, pages 2146–2153, 2009. 37

[60] Y. Jia, C. Huang, and T. Darrell. Beyond spatial pyramids: Receptive

field learning for pooled image features. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, pages 3370 – 3377, 2012.

23

[61] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture

for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

http://caffe.berkeleyvision.org/. 38

[62] A. Jiang, C. Wang, B. Xiao, and R. Dai. A new biologically inspired

feature for scene image classification. In Proc. International Conf. on

Pattern Recognition, pages 758 – 761, 2010. 25, 40

[63] M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that

shout: Distinctive parts for scene classification. In Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, pages 923 – 930, 2013.

18, 32, 41, 42, 45, 46, 100, 106, 137, 142, 143

[64] T. Kadir, A. Zisserman, and M. Brady. An affine invariant salient

region detector. In Proc. European Conf. on Computer Vision, pages

228–241, 2004. 12, 104, 165

[65] Y. Karklin and M. S. Lewicki. Emergence of complex cell properties

by learning to generalize in natural scenes. Nature, 457:83–86, 2008.

19, 26, 44

http://caffe.berkeleyvision.org/


Bibliography 174

[66] V. Kolmogorov and C. Rother. Minimizing non-submodular functions

with graph cuts - a review. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 29(7):1274–1279, 2007. 79

[67] J. Kosecka and W. Zhang. Extraction, matching and pose recov-

ery based on dominant rectangular structures. In First IEEE Inter-

national Workshop on Higher-Level Knowledge in 3D Modeling and

Motion Analysis, 2003, pages 83 – 91, 2003. 61

[68] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. In Proc. Neural Information

Processing Systems, pages 1097–1105, 2012. 35, 37, 38

[69] J. Krumm and S. Shafer. Shape from periodic texture using the

spectrogram. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, pages 284 – 289, 1992. 63, 64

[70] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,

pages 2169–2178, 2006. 15, 20, 23, 24, 27, 40, 50, 137

[71] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. Hubbard, and L. D. Jackel. Backpropagation applied to handwrit-

ten zip code recognition. Neural Computation, 1(4):541–551, 1989.

34, 36

[72] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE,

86(11):2278 – 2324, 1998. 34, 36

[73] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic

object recognition with invariance to pose and lighting. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, pages 97 – 104,

2004. 37



Bibliography 175

[74] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional networks

and applications in vision. In Proc. IEEE International Symposium

on Circuits and Systems, pages 253–256, 2010. 35

[75] H. Lee, A. Battle, R. Raina, , and A. Y. Ng. Efficient sparse coding

algorithms. In Proc. Neural Information Processing Systems, pages

801 – 808, 2006. 18

[76] C. Li, D. Parikh, and T. Chen. Automatic discovery of groups of

objects for scene understanding. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, pages 2735 – 2742, 2012. 47

[77] L.-J. Li, , R. Socher, and L. Fei-Fei. Towards total scene under-

standing: Classification, annotation and segmentation in an auto-

matic framework. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, pages 2036 – 2043, 2009. 26

[78] L.-J. Li*, H. Su*, E. P. Xing, and L. Fei-Fei. Object bank: A high-

level image representation for scene classification and semantic fea-

ture sparsification. In Proc. Neural Information Processing Systems,

pages 1378–1386, 2010. 28, 45

[79] X.-C. Lian, Z. Li, B.-L. Lu, and L. Zhang. Max-margin dictionary

learning for multiclass image categorization. In Proc. European Conf.

on Computer Vision, pages 157–170, 2010. 22

[80] D. Liebowitz and A. Zisserman. Metric rectification for perspective

images of planes. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, pages 482 – 488, 1998. 60, 62

[81] D. Lin, C. Lu, R. Liao, and J. Jia. Learning important spatial pooling

regions for scene classification. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, pages 3726 – 3733, 2014. 30, 42



Bibliography 176

[82] X. Liu, O. Veksler, and J. Samarabandu. Order-preserving moves for

graph-cut-based optimization. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 32(7):1182–1196, 2010. 124

[83] L. C. Loschky and A. M. Larson. Localized information is necessary

for scene categorization, including the natural/man-made distinction.

Journal of Vision, 8(1):1–9, 2008. 10

[84] D. G. Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004. 10,

11, 12, 104, 165

[85] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discrim-

inative learned dictionaries for local image analysis. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, pages 1 – 8,

2008. 20

[86] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised

dictionary learning. In Proc. Neural Information Processing Systems,

pages 1033–1040, 2008. 20

[87] R. Margolin, L. Zelnik-Manor, and A. Tal. Otc: A novel local de-

scriptor for scene classification. In Proc. European Conf. on Computer

Vision, pages 377–391, 2014. 33

[88] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline

stereo from Maximally Stable Extremal Regions. In Proc. British

Machine Vision Conference, pages 36.1–36.10, 2002. 12, 104, 165

[89] K. Mikolajczyk and C. Schmid. A performance evaluation of local

descriptors. IEEE Trans. on Pattern Analysis and Machine Intelli-

gence, 27(10):1615–1630, 2005. 14

[90] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,

F. Schaffalitzky, T. Kadir, and L. V. Gool. A comparison of affine



Bibliography 177

region detectors. International Journal of Computer Vision, 65(1-

2):43–72, 2005. 14

[91] J. Mutch and D. G. Lowe. Object class recognition and localiza-

tion using sparse features with limited receptive fields. International

Journal of Computer Vision, 80(1):45–57, 2008. 22, 25, 71

[92] M. A. Nielsen. Neural networks and deep learning. http://

neuralnetworksanddeeplearning.com, 2015. 35, 36

[93] T. Ojala, M. Pietikinen, and T. Menp. Multiresolution gray-scale

and rotation invariant texture classification with Local Binary Pat-

terns. IEEE Trans. on Pattern Analysis and Machine Intelligence,

24(7):971–987, 2002. 33, 139

[94] A. Oliva and A. Torralba. Modeling the shape of the scene: A holis-

tic representation of the spatial envelope. International Journal of

Computer Vision, 42(3):145–175, 2001. 8, 14, 15, 27, 34, 39

[95] M. Pandey and S. Lazebnik. Scene recognition and weakly supervised

object localization with deformable part-based models. In Proc. IEEE

International Conf. on Computer Vision, pages 1307 – 1314, 2011.

10, 29, 30, 32, 44, 46, 100, 138

[96] S. Parizi, J. Oberlin, and P. Felzenszwalb. Reconfigurable models

for scene recognition. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, pages 2775–2782, 2012. 15, 24, 26

[97] G. Patterson, T.-Y. Lin, and J. Hays. Using humans to build mid-

level features. In IEEE Conf. on Computer Vision and Pattern Recog-

nition Workshop, 2013. 44

[98] G. Patterson, C. Xu, H. Su, and J. Hays. The SUN attribute

database: Beyond categories for deeper scene understanding. In-

ternational Journal of Computer Vision, 108(1):59–81, 2014. 34, 44

http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com


Bibliography 178

[99] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Occlusion patterns for

object class detection. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, pages 3286 – 3293, 2013. 46

[100] F. Perronnin. Universal and adapted vocabularies for generic visual

categorization. IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, 30(7):1243–1256, 2008. 17

[101] F. Perronnin, J. Sanchez, and T. Mensink. Improving the Fisher

kernel for large-scale image classification. In Proc. European Conf.

on Computer Vision, pages 143–156, 2010. 17

[102] N. Petkov and P. Kruizinga. Computational models of visual neurons

specialised in the detection of periodic and aperiodic oriented visual

stimuli: bar and grating cells. Biological Cybernetics, 76(2):83–96,

1997. 71, 73

[103] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in

quantization: Improving particular object retrieval in large scale im-

age databases. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, pages 1–8, 2008. 16

[104] J. Pritts, O. Chum, and J. Matas. Detection, rectification and seg-

mentation of coplanar repeated patterns. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, pages 2973 – 2980, 2014.

62, 63, 64

[105] Y. Quan, Y. Xu, Y. Sun, and Y. Luo. Lacunarity analysis on image

patterns for texture classification. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, pages 160 – 167, 2014. 165

[106] A. Quattoni and A. Torralba. Recognizing indoor scenes. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition, pages 413

– 420, 2009. ix, 9, 10, 27, 28, 40, 135, 138



Bibliography 179

[107] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN fea-

tures off-the-shelf: An astounding baseline for recognition. In IEEE

Conf. on Computer Vision and Pattern Recognition Workshop, pages

512–519, 2014. 35, 38, 41, 146

[108] E. Ribeiro and E. R. Hancock. Estimating the 3d orientation of

texture planes using local spectral analysis. Image and Vision Com-

puting, 18(8):619–631, 2000. 62

[109] M. Riesenhuber and T. Poggio. Hierarchical models of object recog-

nition in cortex. Nature Neuroscience, 2:1019–1025, 1999. 25

[110] R. Rigamonti, M. Brown, and V. Lepetit. Are sparse representations

really relevant for image classification? In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, pages 1545 – 1552, 2011.

21

[111] R. Rosenholtz and J. Malik. Surface orientation from texture:

isotropy or homogeneity (or both)? Vision Resarch, 37(16):2283–

2293, 1997. 61, 63

[112] C. Rother. A new approach for vanishing point detection in archi-

tectural environments. In Proc. British Machine Vision Conference,

pages 382–391, 2000. 51, 53

[113] O. Russakovsky*, J. Deng*, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and

L. Fei-Fei. Imagenet large scale visual recognition challenge. Interna-

tional Journal of Computer Vision, 115(3):211–252, 2015. (* = equal

contribution). xvii, 36, 37, 40, 41, 42, 158

[114] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-

Cun. Overfeat: Integrated recognition, localization and detection

using convolutional networks. In Proc. International Conference on



Bibliography 180

Learning Representations, 2014. http://cilvr.nyu.edu/doku.php?

id=software:overfeat:start. 38

[115] T. Serre and M. Riesenhuber. Realistic modeling of simple and com-

plex cell tuning in the HMAX Model, and implications for invariant

object recognition in cortex. MIT CSAIL Tech. Report, 2004. 25

[116] T. Serre, L. Wolf, and T. Poggio. Object recognition with features

inspired by visual cortex. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, pages 994 – 1000, 2005. 22, 25, 71

[117] D. Shaw and N. Barnes. Perspective rectangle detection. In Euro-

pean Conference on Computer Vision Workshop on Applications of

Computer Vision, 2006. 61

[118] K. Simonyan and A. Zisserman. Very deep convolutional networks

for large-scale image recognition. In Proc. International Conference

on Learning Representations, 2015. 35, 37, 145

[119] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery of mid-

level discriminative patches. In Proc. European Conf. on Computer

Vision, pages 73–86, 2012. 30, 31, 32, 45, 46, 100, 105, 106

[120] J. Sivic and A. Zisserman. Video Google: A text retrieval approach

to object matching in videos. In Proc. IEEE International Conf. on

Computer Vision, pages 1470 – 1477, 2003. 12, 14

[121] X. Y. Stella, H. Zhang, and J. Malik. Inferring spatial layout from a

single image via depth-ordered grouping. In IEEE Conf. on Computer

Vision and Pattern Recognition Workshop, pages 1 – 7, 2008. 51, 61,

116

[122] B. J. Super and A. C. Bovik. Three-dimensional orientation from

texture using gabor wavelets. In Proc. SPIE Visual Communications

and Image Processing ’91: Image Processing, 1991. 61, 64, 71, 72, 73

http://cilvr.nyu.edu/doku.php?id=software:overfeat:start
http://cilvr.nyu.edu/doku.php?id=software:overfeat:start


Bibliography 181

[123] B. J. Super and A. C. Bovik. Planar surface orientation from texture

spatial frequencies. Pattern Recognition, 28(5):729–743, 1995. 61, 62,

63, 64, 65, 71, 72, 73, 89, 92, 97

[124] B. J. Super and A. C. Bovik. Shape from texture using local spectral

moments. IEEE Trans. on Pattern Analysis and Machine Intelli-

gence, 17(4):333–343, 1995. 63, 64, 71, 72, 73

[125] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with

convolutions. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, pages 1 – 9, 2015. 35, 38

[126] G. Tsai, C. Xu, J. Liu, and B. Kuipers. Real-time indoor scene

understanding using Bayesian filtering with motion cues. In Proc.

IEEE International Conf. on Computer Vision, pages 121 – 128, 2011.

48

[127] O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast de-

scriptor for detection and classification. In Proc. European Conf. on

Computer Vision, pages 589–600, 2006. 19

[128] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library

of computer vision algorithms. http://www.vlfeat.org/, 2008. 137

[129] A. Vedaldi and K. Lenc. Matconvnet — convolutional neural net-

works for matlab. In Proc. ACM Int. Conf. on Multimedia, 2015.

http://www.vlfeat.org/matconvnet/. 145

[130] J. Vogel, A. Schwaninger, C. Wallraven, and H. H. Blthoff. Catego-

rization of natural scenes: Local versus global information and the

role of color. ACM Trans. on Applied Perception, 4(3), 2007. 15

[131] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. HOGgles:

Visualizing object detection features. In Proc. IEEE International

Conf. on Computer Vision, pages 1 – 8, 2013. 45

http://www.vlfeat.org/
http://www.vlfeat.org/matconvnet/


Bibliography 182

[132] A. Wang, J. Lu, G. Wang, J. Cai, and T.-J. Cham. Multi-modal

unsupervised feature learning for RGB-D scene labeling. In Euro-

pean Conference on Computer Vision Workshop on Applications of

Computer Vision, pages 453–467, 2014. 48

[133] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-

constrained linear coding for image classification. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, pages 3360–

3367, 2010. 13, 16, 24

[134] L. Wang, Y. Li, J. Jia, J. Sun, D. Wipf, and J. Rehg. Learning

sparse covariance patterns for natural scenes. In Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, pages 2767 – 2774,

2012. 19, 20, 26, 40

[135] X. Wang, T. Han, and S. Yan. An HOG-LBP human detector with

partial occlusion handling. In Proc. IEEE International Conf. on

Computer Vision, pages 32 – 39, 2009. 46

[136] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face

recognition via sparse representation. IEEE Trans. on Pattern Anal-

ysis and Machine Intelligence, 31(2):210 – 227, 2008. 20

[137] J. Wu and J. M. Rehg. CENTRIST: A visual descriptor for scene

categorization. IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, 33(8):1489–1501, 2011. 24, 33, 138, 139

[138] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. SUN

Database: Exploring a large collection of scene categories. Interna-

tional Journal of Computer Vision, pages 1–20, 2014. 10, 13, 24, 34,

40, 140, 142, 144

[139] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba. SUN

Database: Large-scale scene recognition from abbey to zoo. In Proc.



Bibliography 183

IEEE Conf. on Computer Vision and Pattern Recognition, pages 3485

– 3492, 2010. 13, 20, 24, 27, 34, 38, 40, 44, 140, 142, 144

[140] L. Xie, J. Wang, B. Guo, B. Zhang, and Q. Tian. Orientational

pyramid matching for recognizing indoor scenes. In Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, pages 3734 – 3741,

2014. 15, 41, 42

[141] J. Yang, , K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid

matching using sparse coding for image classification. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, pages 1794–

1801, 2009. 16, 18, 20, 23, 24, 25, 40

[142] J. Yang, K. Yu, and T. Huang. Supervised translation-invariant

sparse coding. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, pages 3517 – 3524, 2010. 22

[143] M. Yang, L. Zhang, X. Feng, and D. Zhang. Fisher discrimination

dictionary learning for sparse representation. In Proc. IEEE Interna-

tional Conf. on Computer Vision, pages 543 – 550, 2011. 20

[144] K. Yu, Y. Lin, and J. Lafferty. Learning image representations from

the pixel level via hierarchical sparse coding. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, pages 1713–1720, 2011.

16

[145] L. Zelnik-Manor, K. Rosenblum, and Y. Eldar. Dictionary optimiza-

tion for block-sparse representations. IEEE Trans. on Signal Process-

ing, 60(5):2386 – 2395, 2012. 19

[146] C. Zhang, J. Liu, Q. Tian, C. Xu, H. Lu, and S. Ma. Image classifi-

cation by non-negative sparse coding, low-rank and sparse decompo-

sition. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-

nition, pages 1673–1680, 2011. 17, 25, 40



Bibliography 184

[147] J. Zhang and T. Tan. Affine invariant classification and retrieval of

texture images. Pattern Recognition, 36(3):657–664, 2003. 90, 165

[148] Z. Zhang. Determining the epipolar geometry and its uncertainty:

A review. International Journal of Computer Vision, 27(2):161–195,

1998. 70

[149] Z. Zhang, X. Liang, A. Ganesh, and Y. Ma. TILT: Transform invari-

ant low-rank textures. In Proc. Asian Conf. on Computer Vision,

pages 314–328, 2010. xiii, xiv, xv, xviii, 62, 63, 92, 94, 95, 96, 99,

103, 107, 108, 109, 110, 130, 131

[150] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva. Places:

An image database for deep scene understanding. arXiv preprint,

2016. http://places2.csail.mit.edu/. ix, xv, xvi, 40, 136, 153,

154, 155, 158

[151] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning

deep features for scene recognition using Places Database. In Proc.

Neural Information Processing Systems, 2014. 40

[152] X. Zhu and D. Ramanan. Face detection, pose estimation, and land-

mark localization in the wild. In Proc. IEEE Conf. on Computer

Vision and Pattern Recognition, pages 2879 – 2886, 2012. 46

[153] Z. Zuo, G. Wang, B. Shuai, L. Zhao, Q. Yang, and X. Jiang. Learning

discriminative and shareable features for scene classification. In Proc.

European Conf. on Computer Vision, pages 552–568, 2014. 39, 41,

42

http://places2.csail.mit.edu/


And He taught Adam the names – all of them. Then He showed them to

the angels and said, “Inform Me of the names of these, if you are truthful.”

They said, “Exalted are You; we have no knowledge except what You have

taught us. Indeed, it is You who is the Knowing, the Wise.” He said, “O

Adam, inform them of their names.” And when he had informed them of

their names, He said, “Did I not tell you that I know the unseen (aspects) of

the heavens and the earth?”... And (remember) when We said to the angels,

“Prostrate before Adam”; so they prostrated, except for (the arrogant jinn)

Iblees (Satan)... And We said, “O Adam, dwell, you and your wife, in

Paradise and eat therefrom in abundance from wherever you will. But do

not approach this tree, lest you be among the wrongdoers.”...

Al Qur’an 2:31–35
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