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Summary

This thesis is concerned with second order time integration schemes for linear elas-

todynamics equations. In addition to those existing algorithms, we proposed two

new schemes derived from the traditional DBF2 method. We analysed accuracy and

stability properties of both schemes, proved that they are both second-order accu-

rate. Moreover, we theoretically compared these two schemes with the Newmark

Algorithm which is one of the most popular methods among engineers. At last, with

the help of Finite Element Method, we did accuracy check to constructed elasto-

dynamics problems with known analytic solutions, and applied them to practical

problems.
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Chapter 1
Introduction

Linear elastodynamics is a simplification of the more general nonlinear theory of

elastodynamics which is a branch of continuum mechanics. It is widely used in

structural analysis and engineering design, often with the aid of Finite Element

Method (FEM).

The mathematical formulation of elastodynamics problem is based on the New-

ton’s second law, by which we can derive the equation of motion as

∇ · σ +G = ρü,

where σ is the Cauchy stress tensor, G is the body force per unit volume, ρ is the

mass density and u(z, t) = ϕ(z, t)− z is the displacement vector.

Then, this system of differential equations is completed by a set of constitutive

relations. For linear elastic material, we can choose

σ = µ(∇u+∇uT ) + λ(∇ · u)I,

where µ and λ are lame constants; for St. Venant-Kirchhoff material,

σ = 2µFE + λ(trE)F,

1



2 Chapter 1. Introduction

where F = ∇ϕ is the deformation gradient and E = 1
2
(F TF − I).

For nonlinear elastic material, σ can be linearized by various methods, for ex-

ample, by

〈σ(ϕn),∇φ〉 = 〈σ(ϕn−1),∇φ〉+ A(∇ϕn−1;∇(ϕn − ϕn−1),∇φ) +O((ϕn − ϕn−1)2),

where A(ϕ;∇ψ,∇φ) = d
dε
|ε=0 〈σ(ϕ + εψ),∇φ〉 and ϕn is the numerical solution of

motion ϕ at nth time stepping.

There are several ways that can lead us from elastodynamics equation∇·σ+G =

ρü to an ordinary differential equation in time, as

MÜ + CU̇ +KU = F, (1.1)

where M,C,K are, correspondingly, the mass, damping and stiffness matrices,

U is the displacement vector and F is the vector of nodal load.

Commonly used space discretization methods to get equation (1.1) are the fi-

nite element method [Hughes and Hulbert (1988)], the boundary element method

[Mack (1991), Dominguez (1993)], the spectral element method [Komatitsch and

Vilotte (1998)] and the Smoothed Particle Hydrodynamics (SPH) method [Liu and

Liu (2010)], etc.. Besides space discretization, for some specific equation like linear

elastic material, where we choose σ = µ(∇u + ∇uT ) + λ(∇ · u)I. The ordinary

differential equation (1.1)can also be obtained by using Fourier transformation, be-

cause of the property f(∇g)(k) = 2πikf(g)(k), where f(g) represents the Fourier

transformation of function g.

Due to the importance in solving practical engineering problem, and because

it is the foundation for a successful and effective method for nonlinear problem,

numerical methods for the time integration of linear elastodynamics is one of the

most developed field in computational mechanics. The algorithms for solving linear

elastodynamics equations can be classified into three main classes: (a) algorithms
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based on finite difference time discretizations of the equation of motion; (b) algo-

rithm derived applying the weighted residual method to the equation of motion; (c)

algorithms stemming from a weak variational formulation.

Since when using standard finite elements to discretize the spatial domain, the

spatial resolution of high-frequency modes typically is poor, thus, it would be de-

sirable for time integration algorithms to possess controllable numerical dissipation

in the higher frequency modes. Also, high-frequency numerical dissipation has been

found to improve the convergence of iterative equation solvers when it is applied to

solve highly nonlinear problems. Numerous second-order accurate dissipative algo-

rithms have been developed that obtain high-frequency dissipation. For example,

there are Newmark method [Chung and Hulbert (1993)], the Wilson-θ method [Wil-

son (1968)], the HHT-α method [Hilber, Hughes, and Taylor (1977)], the WBZ-α

method [Wood, Bossak, and Zienkiewicz (1980)], the ρ method [Bazzi and Ander-

heggen (1982)], the θ1-method [Hoff and Pahl (1988a,b)] and the Generalized-α

method [Chung and Hulbert (1993)]. Due to the space discretization, the exact

solution to equation (1.1) contains the numerical dispersion error, (see, for example,

[Dauksher and Emery (2000), Guddati and Yue (2004), Marfurt (1984), Idesman and

Pham (2014)]). To decrease the error, there are studies investigating the use of mesh

refinement as well as the development of other special techniques, (see, for exam-

ple [Babuska, Ihlenburg, Strouboulis, and Gangaraj (1997), Babuška, Strouboulis,

Gangaraj, and Upadhyay (1997)]).

We would like to take Newmark method and HHT-α method as examples and

give a general introduction.

The finite difference approximations for the Newmark method applied to equa-

tion (1.1) are 
un+1 = un + ∆tu̇n + 1

2
(1− 2β)∆t2ün + β∆t2ün+1

u̇n+1 = u̇n + (1− γ)∆tün + γ∆tün+1

Mün+1 + Cu̇n+1 +Kun+1 = F n+1
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where un is the numerical solution of displacement at nth time stepping.

For γ = 1
2

the Newmark method is at least second-order accurate; while it is first

order accurate for all other values of γ. Some particular values can be chosen for γ

and β. For example, if γ = 1
2
, β = 1

6
, this leads to the linear interpolation of ü in

time interval [tn, tn+1],

ü(τ) = ün + (τ − tn)(
ün+1 − ün

∆t
) ∀τ ∈ [tn, tn+1],

The concise form of Newmakr method to equation (1.1) is as the following:

(M+γ∆tC+β∆t2K)ün+1 = Fn−C(u̇n+(1−γ)ün)−K(un+∆tu̇n+(
1

2
−β)∆t2ün),

where Fn is the value of F at time tn.

The HHT-α method is a generalization of the Newmark method and reduces

to the Newmark if its parameter α = 0. The HHT-α adopts the finite difference

equations of the Newmark method, but modifies the equations of motion, using a

parameter α.

For the motion equation has the form like equation (1.1), then, in HHT-α the

formula is substituted as
un+1 = un + ∆tu̇n + 1

2
(1− 2β)∆t2ün + β∆t2ün+1

u̇n+1 = u̇n + (1− γ)∆tün + γ∆tün+1

Mün+1 + (1 + α)Cu̇n+1 − αCu̇n + (1 + α)Kun+1 − αKun = F n+1

The HHT-α method is at least second-order accurate and unconditionally stable.

It is widely applied to structural dynamics simulations incorporating many degrees

of freedom and in which it is desirable to numerically attenuate the response at

high frequencies. Which is a improvement compared with Newmark Algorithm.

To achieve unconditional stability, second order accuracy and favorable numerical

dissipation for linear elastic systems, the relationship between three parameters
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below has been suggested:

−1

3
≤ α ≤ 0, β =

(1− α)2

4
, γ =

1

2
− α.

While, as for computationally effective high-order accurate time integration

method for elastodynamics equation, it is still a challenging field in computational

mechanics which requires further extensive research.

In this paper, we discuss two second-order accurate finite element schemes for

linear elastodyanmcis equation, one of which was firstly proposed in [Liu (2015)] as

the numerical algorithm for the deformable structure in a fluid-structure interaction

(FSI) system. The objective of this paper is to present the accuracy as well as

stability study of these two methods and compare them with Newmark Algorithm

which is currently one of the most popular schemes for linear elastodynamics equa-

tion. Then, we run the accuracy check by firstly applying them to an ODE problem,

then, employ them to solve constructed linear elastodynamics problems with both

known and unknown exact analytic solutions. From their respective numerical per-

formance, we conclude that the first and the second schemes are both second-order

accurate, and have their certain advantages over Newmark method. For example, no

need to choose any parameters makes our schemes more convenient and appealing

during application.

The rest of this paper is organized as follow. We are going to discuss the spatial

discretization process as well as the scalar form of equation (1.1) in following two

sections of Chapter 1. We introduce the first method and analyse its accuracy and

stability properties in Chapter 2 and discuss the second scheme in Chapter 3. We

then compare them with Newmark Algorithm theoretically in Chapter 4. Further

numerical comparison and temporal accuracy check are presented in Chapter 5.
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1.1 Spatial discretization

In this section, we would like to briefly introduce the Finite Element Method and

how it can be applied to get equation (1.1).

The finite element method was first conceived in a paper by Courant [Courant

et al. (1943)], but the importance of this contribution was ignored at that time. Then

the engineers independently re-invented the method in the early fifties: The earliest

references generally quoted in the engineering literature are working of Argyris from

1954 to 1955 and was reprinted in 1960 [Argyris and Kelsey (1960)] and working of

Turner, Clough, Martin, and Topp (1956). The name of the method was proposed

by Clough (1960). Historical accounts on the development of the method, from the

engineering point of view, are given in Oden (1972) and Zienkiewicz (1973). Actually,

since 1967, many books have been published on the Finite Element Method, for

more details, one can refer to, for example, Zienkiewicz and Taylor (2000), Norrie

and De Vries (2014), Strang and Fix (1973), Alavala (2008), Brenner and Scott

(2007).

Now, we will show how finite element method can lead to the ordinary different

equation (1.1) below. Recall a general linear elastodynamics problem on a domain

Ω,

∇ · σ +G = ρü inΩ× I,

σ = µ(∇u+∇uT ) + λ(∇ · u)I,

u(x, 0) = u0(x) inΩ,

v(x, 0) = v0(x) inΩ,

u = g(x, t) onΓ1 × I,

(n · σ) = T (x, t) onΓ2 × I,

where n is the outward normal vector, (n·σ)i =
∑

j σijnj, I = (0, Tend) and Γ1∪Γ2 =
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∂Ω, Γ1 ∩ Γ2 = ∅. Without loss of generality, we can simply assume ρ = 1.

Let V = H1(Ω), we know u satisfies the following weak formulation of equation

(ü, v) = −(σ,∇v) + ((n · σ), v)Γ1 + (T, v)Γ2 + (G, v) ∀v ∈ V, t ∈ I,

where (u, v) =
∫

Ω
u(x)v(x)dx, (∇u,∇v) =

∫
Ω

∑
i

uxivxidx and (u, v)∂Ω =
∫
∂Ω
u(x)v(x)dx.

Consider the mesh Th = {K1, . . . , Km} which forms a partition of Ω. It is

required that no vertex of any Ki lies on the interior of edge of another Kj, where

i 6= j. Based on this partition, we can have a finite dimensional space,

Vh = {vh ∈ V : vh ∈ C0(Ω̄) , vh|Ki
∈ Pn(Ki),∀Ki ⊂ Th}

where Pn stands for order n polynomial spaces. Define, the subspace of Vh as:

Vh0 = {vh : vh ∈ Vh, vh|Γ1= 0},

Vhg = {vh : vh ∈ Vh, vh|Γ1= g},

We can restate the original problem as:

Find uh ∈ Vhg, such that the following equation holds,

(Th, vh)Γ2 − (σ(uh),∇vh) + (Gh, vh) = (üh, vh) ∀vh ∈ Vh0, t ∈ I,

where Th and Gh are the corresponding interpolation of T and G in the space Vh0.

Assume the basis function for Vh0 is {φi(x)} and for Vhg is {ϕi(x)}. For uh, we

can have the representation

uh =
∑

ξi(t)ϕi(x),

where ξi(t) is the time dependent coefficient.
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Then, let vh = φj, the equation becomes:

(Th, φj)Γ2 − (σ(uh),∇φj) + (Gh, φj) = (üh, φj) ∀vh ∈ Vh0, t ∈ I. (1.2)

Since

σ(uh) = µ(∇uh +∇uTh ) + λ(∇ · uh)I

= µ(
∑

ξi(∇ϕi +∇ϕTi )) + λ(
∑

ξi(∇ · ϕi))I,

by substituting above representation into equation (1.2), we get

∑
(ϕi(x), φj)ξ̈i(t) =−

∑
((µ(∇ϕi +∇ϕTi ) + λ(∇ · ϕiI)),∇φj)ξi

+ (Th, φj)Γ2 + (Gh, φj).
(1.3)

Assume T = 0 and g(x, t) = 0, thus Vh0 = Vhg. If we denote the basis function as

{ϕi}Ni=1. Hence, the matrix form of equation (1.3) can be simplified as:

Mξ̈(t) +Kξ(t) = F, (1.4)

where

ξ(t) = (ξ1, ξ2, · · · , ξN)T ,

Mi,j = (ϕi, ϕj),

Ki,j = (∇ϕi, µ(∇ϕj +∇ϕTj ) + λ(∇ · ϕj)I),

F = ((Gh, ϕ1), (Gh, ϕ2), · · · , (Gh, ϕN))T ,

We can tell that in this problem, the matrix C in equation (1.1) actually equals

zero.
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1.2 Single-degree-of-freedom problem

For the general form of elastodynamics problem as equation (1.1), it suffices to

consider F (t) = 0 for all t ≥ 0 in order to study the accuracy and stability properties

of an algorithm. Thus, we will discuss the corresponding single-degree-of-freedom

problem of elastodynamics equation

MÜ + CU̇ +KU = 0.

Theorem 1.1. If we assume the matrix form of a elastodynamics problem is MÜ +

CU̇+KU = 0. Coefficient matrices M,C and K can be diagonalizable by a common

invertible matrix, then the matrix form can be rewritten in scalar form.

Proof. Assume M,C and K can be diagonalizable by a common invertible matrix

P such that

M = PM̃P T , C = PC̃P T , K = PK̃P T ,

where M̃, C̃ and K̃ are the respective diagonal matrices.

Thus equation(2.1) can be written as

PM̃P T Ü + PC̃P T U̇ + PK̃P TU = 0,

Let P TU = Ũ , then, the above equation is given by

PM̃ ¨̃U + PC̃ ˙̃U + PK̃Ũ = 0,

which implies

M̃ ¨̃U + C̃ ˙̃U + K̃Ũ = 0,

Note that M̃, C̃ and K̃ are diagonal matrices. Hence, we have successfully reduced

the matrix equation (2.1)to a much simpler system of scalar equations.
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Admittedly, the assumption on coefficient matrices M , C and K are relatively

strong in theorem 1.1, however, we can deduce a more loose requirement. Assume

coefficient matrices M and K are both nonsingular symmetric in RN and one of

them is non-negative definite. The Rayleigh damping is assume, which is:

C = aM + bK,

where a and b are parameters. We can have the following theorem.

Theorem 1.2. If a elastodynamics problem has matrix form as MÜ+CU̇+KU = 0,

suppose it is Rayleigh damping, which means C = aM + bK, where a and b are

parameters. In addition, assume coefficient matrices M , K are both nonsingular

symmetric in RN , and one of them is non-negative definite. This matrix form can

be further reduced to a sing-degree-of-freedom problem.

To prove this theorem, firstly, we need the following result.

Theorem 1.3. Suppose A and B are n-by-n symmetric matrices, and define C(µ)

by

C(µ) = µA+ (1− µ)B µ ∈ R,

If there exists a µ ∈ [0, 1], such that C(µ) is non-negative definite and

null(C(µ)) = null(A) ∩ null(B),

then there exists a nonsingular X such that both XTAX and XTBX are diagonal.

For the proof of this theorem, one can refer to [Golub and Van Loan (2012)].

Based on our assumption, we can choose µ in theorem 1.3 as µ = 1, thus,

C(µ) = M which is non-negative definite. Since M and K are nonsingular in our

assumption, thus

null(C(µ)) = null(M) ∩ null(K) = 0,
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also holds. Hence, there exists a nonsingular X, such that both XTMX and XTKX

are diagonal. Then, we can prove the theorem 1.2.

Proof of Theorem 1.2. With the help of theorem 1.3, we know that XTMX and

XTKX are both diagonal. Denote

XTMX = Λ1,

XTKX = Λ2,

since X is nonsingular, we can have

MX = (XT )−1Λ1

= (XT )−1Λ2(Λ2)−1Λ1

= KX(Λ2)−1Λ1

= KXΛ,

If we denote X = (α1, α2, · · · , αN) and Λ = diag(λ1, λ2, · · · , λN), we can rewrite the

above equation as

Mαi = λiKαi.

Also, {αi}Ni constitute a basis function for R, hence we have

U =
N∑
i=1

ui(t)αi,

Substitute this representation into the matrix form, we have

0 =
N∑
i=1

üi(t)Mαi +
N∑
i=1

u̇i(t)Cαi +
N∑
i=1

ui(t)Kαi

=
N∑
i=1

(λiüi(t) + (aλi + b)u̇i(t) + ui(t))Kαi,
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Since {αi}Ni is linear independent, and K is invertible, thus, {Kαi}Ni is also linear

independent. From

N∑
i=1

(λiüi(t) + (aλi + b)u̇i(t) + ui(t))Kαi,

we can have, for every i = 1, 2, · · · , N ,

λiüi(t) + (aλi + b)u̇i(t) + ui(t) = 0,

which is the single-degree-of-freedom problem of problem MÜ +CU̇ +KU = 0.

Recall the matrix form we get from employing finite element method to discretize

the linear elastodynamics equation, which is equation (1.4). For equation (1.4), we

can have the conclusion that, it can be further reduced to a single-degree-of-freedom

problem.

This statement can by proved directly by using theorem (1.2). However, first

of all, we need to prove these two coefficient matrices are both symmetric positive

definite.

Theorem 1.4. Matrices M and K in equation 1.4 both are symmetric positive

definite.

Proof. For matrix M , since Mi,j = (ϕi, ϕj), it is easy to reach to this conclusion

that M is symmetric positive definite. For K, we can rewrite it as

Ki,j = (
1

2
(∇ϕi +∇ϕTi ) +

1

2
(∇ϕi −∇ϕTi ), µ(∇ϕj +∇ϕTj ) + λ(∇ · ϕj)I)

=
1

2
(∇ϕi +∇ϕTi , µ(∇ϕj +∇ϕTj )) +

1

2
(∇ϕi −∇ϕTi , µ(∇ϕj +∇ϕTj ))

+ (∇ϕi, λ(∇ · ϕj)I),

In this expression, (∇ϕi −∇ϕTi , µ(∇ϕj +∇ϕTj )) = 0, since ∇ϕi −∇ϕTi is an anti-

symmetric matrix and ∇ϕj +∇ϕTj is symmetric.
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As for (∇ϕi, λ(∇ · ϕj)I), since λ(∇ · ϕj)I is a diagonal matrix, we have

(∇ϕi, λ(∇ · ϕj)I) =

∫
Ω

∑
k

λ(∇ · ϕj)
∂ϕik
∂xk

dx

=

∫
Ω

λ(∇ · ϕj)
∑
k

∂ϕik
∂xk

dx

=

∫
Ω

λ(∇ · ϕi)(∇ · ϕj)dx.

Hence, it is also symmetric positive definite.

Thus, because both (∇ϕi+∇ϕTi ,∇ϕj+∇ϕTj ) and (∇ϕi, (∇·ϕj)I) are symmetric

positive definite, K is a symmetric positive definite matrix.

Recall theorem 1.2, matrix C is zero in this case, and both M and K are sym-

metric positive definite. Thus the statement the equation can be reduced to a scalar

form is automatically satisfied. In fact, if we restrict the requirement on coefficient

matrices M and K in theorem 1.2 to be both symmetric positive definite, we can

prove the theorem 1.2 in another way.

Proof of Theorem 1.2 without using theorem 1.3. Since both M and K are symmet-

ric positive definite, there exist matrices A and B, such that ATA = M , BTB = K,

thus

0 = ATAξ̈(t) + aATAξ̇(t) + bBTBξ̇(t) +BTBξ(t)

= A(ξ̈(t) + aξ̇(t)) + (AT )−1BTBA−1A(bξ̇(t) + ξ(t))

Let Aξ(t) = η(t), (AT )−1BTBA−1 = C, the equation then becomes,

(η̈(t) + aη̇(t)) + C(bη̇(t) + η(t)) = 0

where C = (AT )−1BTBA−1 = (BA−1)T (BA−1) is a symmetric positive definite
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matrix, which can be diagonalized as C = PC̃P T . Thus

PP T (η̈(t) + aη̇(t)) + PC̃P T (bη̇(t) + η(t)) = 0

which implies that

P T (η̈(t) + aη̇(t)) + C̃P T (bη̇(t) + η(t)) = 0

Since C̃ is a diagonal matrix, we can even further rewrite the above equation into a

scalar form.

In this thesis, we consider it is reasonable to assume the elastodynamics problem

we are solving can be reduced to a single-degree-of-freedom problem. Firstly, because

the analysis presented above; secondly, there is a certain number of papers with

thousands of citation also adopt this assumption (see, for example, [Chung and

Hulbert (1993), Hughes (2012)]) when analysing the performance of other numerical

algorithms.



Chapter 2
The first scheme

In this chapter, we shall present our first second-order time integration algorithm,

and study its four-step form as well as single-step four-stage form. Then we conduct

a discussion regarding to its accuracy as well as stability properties.

In order to study the accuracy and stability properties of an algorithm, it suffices

to consider F (t) = 0 for all t ≥ 0. Thus, we shall work with the problem

MÜ + CU̇ +KU = 0, (2.1)

from now onwards.

By the discussion in previous Chapter, we consider it is reasonable to assume the

elastodynamics problem we are going to work on can be reduced to a scalar problem,

thus, for simplicity, we now examine the following single-degree-of-freedom problem

instead:

ü− au̇− bu = 0.

By rewriting the above equation, we can have the following v̇ = au̇+ bu

v = u̇
(2.2)

15
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2.1 Understanding the method

The first scheme solves equation (2.2) by the following numerical method: 3vn+1−4vn+vn−1

2∆t
= avn+1 + bu

n+2+un

2

vn+1 = un+2−un
2∆t

(2.3)

where un and vn are the approximation to the displacement and velocity respec-

tively at time t = n∆t. This scheme is derived from DBF2, where we use un+2+un

2

to substitute un+1 and use un+2 = un + 2∆tvn+1 to update the numerical solution

of displacement for next time interval.

By substituting the second equation into the first one, we can directly get this

scheme’s four-step scheme as

(3− 2a∆t− 2b∆t2)un+2 − 4un+1 + (−2b∆t2 + 2a∆t− 2)un + 4un−1 − un−2 = 0,

which can be rewritten as

(3−2a∆t−2b∆t2)un+4−4un+3 +(−2b∆t2 +2a∆t−2)un+2 +4un+1−un = 0, (2.4)

Let Yn = (un+3, un+2, un+1, un)T and Ω = 3 − 2a∆t − 2b∆t2, we can rewrite

the above equation (2.4) in the following matrix equation form which is one-step

four-stage,

Yn+1 = AM1Yn, (2.5)

where
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AM1 =


4
Ω

2b∆t2−2a∆t+2
Ω

−4
Ω

1
Ω

1 0 0 0

0 1 0 0

0 0 1 0

 ,

is the amplification matrix which generate information of the next time interval.

2.2 Accuracy and stability properties

2.2.1 Accuracy

The local truncation error measures the accuracy of a method at a specific step,

assuming that the method was exact at the previous step. Recall the four-step form

was derived as

(3− 2a∆t− 2b∆t2)un+4 − 4un+3 + (−2b∆t2 + 2a∆t− 2)un+2 + 4un+1 − un = 0,

Thus, by expanding to Taylor series u((n + j)∆t) = u(n∆t) + j∆tu̇(n∆t) +

j2 ∆t2

2!
ü(n∆t) + · · ·, we have the local truncation error τ as

∆t2τ =(−4b∆t2)u(n∆t) + ∆t(−4a∆t− 12b∆t2)u̇(n∆t)

+ ∆t2(4− 12a∆t− 20b∆t2)ü(n∆t) + · · · ,

Recall that ü− au̇− bu = 0, thus,
...
u − aü− bu̇ = 0. Hence, the above equation can

be further simplified as

∆t2τ = ∆t4(−20bü(n∆t) + · · ·),

which implies τ = O(∆t2), and that is to say, this method is second-order accurate.
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2.2.2 Stability

Stability of an integration method means that numerical errors present in the solu-

tion for any initial conditions do not amplify during the integration.

Routh-Hurwitz Stability Condition

Firstly, we can employ the matrix form and use previously derived amplification

matrix to analyse. Recall the general formula (2.5) where Yn+1 = AM1Yn, we have

Yk = AkM1Y0, where Y0 = (u3, u2, u1, u0)T . The amplification matrix AM1 for the

four-stage form is given by:

A1 =


4
Ω

2b∆t2−2a∆t+2
Ω

−4
Ω

1
Ω

1 0 0 0

0 1 0 0

0 0 1 0

 ,

For the first scheme to be unconditionally stable, Ak1 has to be bounded and

the von Neumann necessary condition is ρM1 ≤ 1, where ρM1 is the spectral radius

of matrix AM1. To verify that AM1 satisfies von Neumann necessary condition, we

shall first try to make use of the Routh-Hurtwitz Stability Conditions.

Theorem 2.1. Given a equation is expressed as

a0z
n + a1z

n−1 + · · ·+ an−1z + an = 0, (2.6)

Let

H =


a1 a3 a5 · · ·

a0 a2 a4 · · ·

0 a1 a3 · · ·

0 a0 a2 · · ·

 ,

the Routh-Hurwitz conditions for the roots of the equation (2.6) to have non-positive
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real parts are: a0 > 0 and the other principal minors of H ≥ 0.

Firstly, by simple calculation, we can easily get the characteristic equation of

AM1 of this algorithm which is

ρM1(λ) = λ4 − 4

Ω
λ3 +

(−2b∆t2 + 2a∆t− 2)

Ω
λ2 +

4

Ω
λ− 1

Ω
,

Substituting λ with 1+z
1−z into the characteristic equation, we can then, transform

the unit circle |λ|≤ 1 onto the left half complex plane Real(z) ≤ 0.

The characteristic equation is thus, simplified to

0 = (−4b∆t2)z4 + (8− 8a∆t− 8b∆t2)z3 + (16− 16a∆t− 8b∆t2)z2

+ (−8a∆t− 8b∆t2)z + (−4b∆t2),

By our previous discussion in Introduction Chapter, a = 0 in this equation, hence

we can have

(−b∆t2)z4 + (2− 2b∆t2)z3 + (4− 2b∆t2)z2 + (−2b∆t2)z + (−b∆t2) = 0,

In Routh-Hurwitz Stability Conditions, all roots of this equation are on the left

complex plane if and only if coefficients satisfy: (a) all coefficients are positive, (b)

a1a2 ≥ a0a3 and (c) a1a2a3 ≥ a0a
2
3 + a2

1a4. This yields us three inequalities of

coefficients:
b∆t2 < 0

(2− 2b∆t2)(4− 2b∆t2) ≥ 2(b∆t2)2

(2− 2b∆t2)(4− 2b∆t2)(−2b∆t2) ≥ (−b∆t2)[(−2b∆t2)2 + (2− 2b∆t)2]

(2.7)

If we denote B = b∆t2, the two latter inequalities in equation (2.7) can be further
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Figure 2.1: Value of two equations derived from Routh-Hurtwitz Stability Conditions to check
the range of b where these two inequalities can be satisfied. x-axis is the value of B = b∆t2, y-axis
is the value of function f(B) and g(B). When b < 0, B < 0, both inequalities in equation (2.7)
are satisfied, while when b > 0 B > 0, g(B) < 0, hence the Routh-Hurtwitz condition is violated.

simplified into  f(B) = B2 − 6B + 4 ≥ 0

g(B) = −4B3 + 8B2 − 5B ≥ 0

Note that for the first quadratic equation, its two roots are given by x1,2 = 3±
√

5,

which are both positive. Thus, for all negative b, the second inequality is satisfied.

As for the other inequality, it is easy to see that it is satisfied when b < 0, since

−B3, B2 and −B are all positive. We can also employ MATLAB to explicitly draw

out the region where all three inequalities are satisfied in Figure 2.1.

Figure 2.1 clearly shows that when b < 0, both curves are above the x-axis.

Thus, all three inequalities in equations (2.7) are satisfied. We could conclude that,

the first scheme is unconditionally stable when b < 0. In fact, we could further

employ the energy equation to check this conclusion.



2.2 Accuracy and stability properties 21

Energy equation

Recall the algorithm,  3vn+1−4vn+vn−1

2∆t
= avn+1 + bu

n+2+un

2

vn+1 = un+2−un
2∆t

Thus, for any function v, we have

(
3vn+1 − 4vn + vn−1

2∆t
, v) = a(vn+1, v) + b(

un+2 + un

2
, v),

Especially, if we take v = vn+1 hence, we have

1

4∆t
(|vn+1|2+|2vn+1 − vn|2+|vn+1 − 2vn + vn−1|2−|vn|2−|2vn − vn−1|2)

= a|vn+1|2+b(
un+2 + un

2
, vn+1),

Since vn+1 = un+2−un
2∆t

, thus

(
un+2 + un

2
, vn+1) = (

un+2 + un

2
,
un+2 − un

2∆t
)

=
1

4∆t
(|un+2|2−|un|2),

If we let An = |vn|2+|2vn− vn−1|2 and Bn+1 = |vn+1− 2vn + vn−1|2, and further

assume a = 0, thus the above equation can be written as

An+1 − An +Bn+1 = b(|un+2|2−|un|2),

We further let Dn = An−b(|un+1|2+|un|2), thus, we can have the following equation

Dn+1 −Dn +Bn+1 = 0

Summing up both sides yields us

Dn+1 −D1 +
∑

Bi = 0,
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Since for any i, Bi ≥ 0, thus

Dn+1 −Dn ≤ 0,

Which implies

|vn+1|2+|2vn+1 − vn|2−b(|un+2|2+|un+1|2) ≤ |v1|2+|2v1 − v0|2−b(|u2|2+|u1|2),

Solving the characteristic equation

Since b is a real negative number, so we have unconditional stability for this method.

So far, we proved that for b as a real number, when b < 0, the first scheme is

unconditionally stable.

To extend our discussion from b as a real number into complex plane, we could

directly solve the characteristic equation by first converting it into a depressed quar-

tic equation through changing variables and then solve this equation by following

the Ferrari’s solution method.

Theorem 2.2. Let Ax4 +Bx3 +Cx2 +Dx+E = 0 be the general quartic equation

we want to solve.

Let x = λ+ 1
A

, the equation is converted into a depressed form

x4 + αx3 + βx2 + ν = 0,

where 
α = −3B2

8A2 + C
A

β = B3

8A3 − BC
2A2 + D

A

ν = − 3B4

256A4 + B2C
16A3 − BD

4A2 + E
A
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In addition, we can let

P = −α2

12
− ν

Q = − α3

108
+ αν

3
− β2

8

R = Q
2
±

√
Q2

4
+ P 3

27
(either + or−)

u =
3
√
R

and if we denote z =
√

(α + 2y) and

y = −5

6
− u+

 0 if u = 0

P
3u

if u 6= 0

the root x1,2,3,4 can be expressed as

x1,2,3,4 = − B

4A
+
±sz ±t

√
−(3α + 2y ±s 2β

z
)

2
,

where the two occurrences of ±s must denote the same sign, but ±t can be different.

For our characteristic equation, we solve this equation as

(3− 2a∆t− 2b∆t2)λ4 − 4λ3 + (−2b∆t2 + 2a∆t− 2)λ2 + 4λ− 1 = 0, (2.8)

thus, 

A = 3− 2a∆t− 2b∆t2

B = −4

C = −2b∆t2 + 2a∆t− 2

D = 4

E = −1

We still assume a = 0 and b is complex, thus the spectral radius ρM1 = max{|λ1|, · · · , |λ4|}

can be treated as the function of the variable b∆t2. We use MATLAB to draw out

the value of ρM1 as the function of b∆t2 in Figure 2.2 and Figure 2.3.
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Figure 2.2: Value of ρM1 = max{|λ1|, · · · , |λ4|} as the function of complex number b∆t2, where
Re(b∆t2) ∈ (−10, 10) and Im(b∆t2) ∈ (−10, 10). Since the equation (2.8) is the characteristic
equation of matrix AM1 in equation (2.5), ρM1 ≤ 1 is the necessary condition for this scheme to
be stable.

Figure 2.3: Value of ρM1 = max{|λ1|, · · · , |λ4|} as the function of complex number b∆t2, where
Re(b∆t2) ∈ (−10, 0) and Im(b∆t2) ∈ (−10, 10). On the left complex plane, compared with the
standard plane z = 1, there is a triangle area where ρM1 ≤ 1, which implies the necessary condition
for the first scheme to be stable is satisfied.
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Fig 2.2 displays the value of ρM1 for the complex b∆t2 where |Re(b∆t2)|≤ 10 and

|Im(b∆t2)|≤ 10. In the right plane, around zero point, the value of ρM1 becomes

relatively high. To have a closer look at other area on left plane, Fig 2.3 presents

ρM1’s value, with b∆t2 only having non-positive real part where Re(b∆t2) ∈ (−10, 0)

and imaginary part Im(b∆t2) ∈ (−10, 10).

With analysis above, we can conclude that when b < 0, the first scheme is

unconditionally stable. For b as a complex number, ρM1 ≤ 1 can also hold for b in

a certain area on left plane.

2.3 Numerical dissipation

For structural dynamics models using spatial discretization, the high-frequency com-

ponents do not represent the actual behavior of the original system. Hence, other

than convergence and stability, it is also important for a numerical approximation

method to have high-frequency damping features. In the high-frequency range, b

goes to infinity, if we assume ∆t is finite, thus b∆t2 will go to infinity. Recall the

characteristic equation as

ρM1(λ) = λ4 − 4

Ω
λ3 +

(−2b∆t2 + 2a∆t− 2)

Ω
λ2 +

4

Ω
λ− 1

Ω
,

where Ω = 3 − 2a∆t − 2b∆t2. Since b∆t2 goes to infinity, therefore, Ω will go to

infinity, and the characteristic equation becomes:

λ4 + λ2 = 0,

It is easy to have four roots of this equation as λ1 = λ2 = 0,λ3 = i and λ4 =

−i. Therefore, this method fails to provide effective damping in the high-frequency

range. This characteristic makes it less desirable in solving dynamic problems that

often require controlled high-frequency damping.





Chapter 3
The second scheme

Having examined accuracy and stability properties of the first scheme, in this section,

we present the second one as well as its accuracy and stability properties analysis

following the similar process as of the first one. However, the process we derive the

matrix form as well as the three-step form of this scheme has slight differences.

3.1 Understanding the method

The difference between this scheme and the previous one lies in the update of new

displacement un+2. This method solves equation (2.2) by: 3vn+1−4vn+vn−1

2∆t
= avn+1 + bu

n+2+un

2

un+2 = un+1 + 3∆t
2
vn+1 − ∆t

2
vn

(3.1)

where un and vn are the approximation to the displacement and velocity respec-

tively at time t = n∆t.

27
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The above algorithm can then be rewritten in a matrix form, as
−b∆t 0 3− 2a∆t) 0

0 1 0 0

1 0 −3∆t
2

0

0 0 0 1




un+2

un+1

vn+1

vn

 =


0 b∆t 4 −1

1 0 0 0

1 0 −∆t
2

0

0 0 1 0




un+1

un

vn

vn−1

 ,

Let Ỹn−1 denote (un+1, un, vn, vn−1)T . Then, the single-step four-stage method

can be expressed in the compact form as Ỹn = ÃỸn−1, where

Ã =


−b∆t 0 3− 2a∆t 0

0 1 0 0

1 0 −3∆t
2

0

0 0 0 1



−1 
0 b∆t 4 −1

1 0 0 0

1 0 −∆t
2

0

0 0 1 0

 ,

further calculation shows that

Ã =


4a∆t−6

Ω
−3b∆t2

Ω
−9∆t+2a∆t2

Ω
3∆t
Ω

1 0 0 0

−2b∆t
Ω

−2b∆t
Ω

b∆t2−8
Ω

2
Ω

0 0 1 0

 ,

However, when calculating the determinant of matrix Ã, we find that det(Ã) = 0,

which implies this scheme can be further reduced.

Recall this second scheme (3.1), if we substitute the second equation into the

first one, we can have

3vn+1 − 4vn + vn−1

2∆t
= avn+1 +

b

2
(un+1 + un +

3∆t

2
vn+1 − ∆t

2
vn),
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In addition, from the second equation in (3.1), we can have

un+1 = un +
3∆t

2
vn − ∆t

2
vn−1,

Thus, we can deduce the matrix form as
b∆t 3b∆t2

2
+ 2a∆t− 3 0

1 0 0

0 0 1



un+1

vn+1

vn

 =


−b∆t b∆t2

2
− 4 1

1 3∆t
2

−∆t
2

0 1 0




un

vn

vn−1

 ,

Follow the same previous calculation, we have the three stage matrix form of

this scheme as Yn+1 = AM2Yn, where Yn = (un, vn, vn−1)T and

AM2 =


1 3∆t

2
−∆t

2

−4b∆t
Ω

−2b∆t2−8
Ω

2+b∆t2

Ω

0 1 0

 , (3.2)

where Ω = 3b∆t2 + 4a∆t− 6.

To derive this scheme’s three-step form, we firstly calculate the characteristic

equation of AM2, and then employ the Cayley-Hamilton theorem.

Theorem 3.1. In linear algebra, the Cayley-Hamilton theorem states that every

square matrix over a commutative ring (such as the real or complex field) satisfies

its own characteristic equation. More precisely, if A is a given n × n matrix and

In is the n × n identity matrix, the characteristic polynomial of A is defined as

ρ(A) = det(λIn − A), where ”det” is the determinant operation. Then ρ(A) = 0.

The characteristic equation of AM2 can be easily calculated as:

λ3 +
(14− b∆t2 − 4a∆t)

Ω
λ2 +

(3b∆t2 − 10)

Ω
λ+

(2− b∆t2)

Ω
= 0, (3.3)
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By the Cayley-Hamilton Theorem we have

0 =(3b∆t2 + 4a∆t− 6)A3 + (14− b∆t2 − 4a∆t)A2

+ (3b∆t2 − 10)A+ (2− b∆t2)I,
(3.4)

Recall Yn+1 = AM2Yn where Yn = (un, vn, vn−1)T . We can have the general

formula as Yn+k = AkM2Yn. Thus, for equation (3.4), if we multiply both sides with

Yn, we can get

(3b∆t2 + 4a∆t− 6)Yn+3 + (14− b∆t2 − 4a∆t)Yn+2

+ (3b∆t2 − 10)Yn+1 + (2− b∆t2)Yn = 0,

In particular,

(3b∆t2 + 4a∆t− 6)un+3 + (14− b∆t2 − 4a∆t)un+2

+ (3b∆t2 − 10)un+1 + (2− b∆t2)un = 0,
(3.5)

Thus, equation (3.5) presents the three-step form of the second time-integration

scheme.

3.2 Accuracy and stability properties

3.2.1 Accuracy

To discuss the accuracy of this scheme, we still employ its three-step form (3.5) to

calculate the local truncation error τ , which is

∆t2τ =(4b∆t2)u(n∆t) + ∆t(4a∆t+ 10b∆t2)u̇(n∆t)

+ ∆t2(−4 + 10a∆t+ 13b∆t2)ü(n∆t) + · · · ,
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Recall that ü− au̇− bu = 0, thus,
...
u − aü− bu̇ = 0. Hence, the above equation

can be further simplified as

∆t2τ = ∆t4(13bü(n∆t) + · · ·),

which implies τ = O(∆t2), and this is to say, again, this method has second-order

accuracy.

3.2.2 Stability

To examine the stability of this second-order scheme, we follow the routine of the

first method.

Routh-Hurwitz Stability Condition

Recall, the characteristic equation (3.3) as

λ3 +
(14− b∆t2 − 4a∆t)

Ω
λ2 +

(3b∆t2 − 10)

Ω
λ+

(2− b∆t2)

Ω
= 0,

As the previous process, we let λ = 1+z
1−z and transform the unit circle onto the

left half complex plane. Thus, the characteristic equation becomes the following,

(32− 8b∆t2 − 8a∆t)z3 + (20− 4b∆t2 − 16a∆t)z2 + (−8b∆t2 − 8a∆t)z − 4b∆t2 = 0,

Let a = 0 and B = b∆t2, then, the equation is simplified as

(8− 2B)z3 + (5−B)z2 + (−2B)z −B = 0,

By Routh-Hurwitz Stability Condition, in order to have all roots with non-

positive real parts, coefficients need meets: (a) all positive and (b) a1a2 ≥ a0a3.



32 Chapter 3. The second scheme

Thus, we can have following two inequalities: b∆t2 < 0

(5−B)(−2B) ≥ (−B)(8− 2B)
(3.6)

After simplification, the second inequality in equation (3.6) actually yields the

same result as the first inequality, b∆t2 < 0. Thus, we can conclude, for all b < 0,

the second scheme is unconditionally stable.

Energy equation

If we use energy function to verify, let a = 0, recall the second scheme as 3vn+1−4vn+vn−1

2∆t
= bu

n+2+un

2

un+2 = un+1 + 3∆t
2
vn+1 − ∆t

2
vn

From the second equation, we can get the relationship un+2−un+1 = 3∆t
2
vn+1−∆t

2
vn.

The left-hand side of the first equation is exactly

3vn+1 − 4vn + vn−1

2∆t
=

1

∆t2
[(un+2 − un+1)− (un+1 − un)],

We choose v = [(un+2 − un+1) + (un+1 − un)] = un+1 − un to be our test function.

Thus, we can get the following equation

1

∆t2
(|un+2 − un+1|2−|un+1 − un|2) =

b

2
(|un+2|2−|un|2)

=
b

2
[(|un+2|2+|un+1|2)− (|un+1|2+|un|2)],

By letting An+1 = 1
∆t2
|un+1 − un|2− b

2
(|un+1|2+|un|2), the above equation can be

simplified as

An+1 − An = 0,
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Figure 3.1: Value of ρM2 = max{|λ1|, · · · , |λ3|} as the function of complex number b∆t2, where
Re(b∆t2) ∈ (−10, 10) and Im(b∆t2) ∈ (−10, 10). Since we are solving the equation (3.3) which is
the characteristic equation of matrix AM2 in equation (3.2), ρM2 ≤ 1 is the necessary condition
for this scheme to be stable.

Sum up both sides, we can get

1

∆t2
|un+1 − un|2− b

2
(|un+1|2+|un|2) =

1

∆t2
|u1 − u0|2− b

2
(|u1|2+|u0|2),

This implies when b < 0, we can have

|un+2|2+|un+1|2≤ |u1|2+|u0|2− 2

b∆t2
|u1 − u0|2,

With the above analysis we can safely conclude that the second scheme is uncondi-

tionally stable when b < 0.

Solving the characteristic equation

Furthermore, if we extend from real number to complex plane, we can still directly

solve the characteristic equation of AM2 and regard its spectral radius ρM2 as the

function of variable b∆t2, and we draw out Figure 3.1 and Figure 3.2. The Figure

3.2 displays more clearly the value of ρM2 around zero point.

These two figures of the second scheme share similarity with those of the first

scheme. From the Figure 3.2, we could see that for b∆t2 with non-positive real part,
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Figure 3.2: Value of ρM2 = max{|λ1|, · · · , |λ3|} as the function of complex number b∆t2, where
Re(b∆t2) ∈ (−2, 0.5) and Im(b∆t2) ∈ (−2, 2). On the left complex plane, the value of ρM2

intersects with the standard plane, which is z = 1, only on the x-axis. Hence, for b as a complex
number, only when b is real negative, the necessary condition for the second scheme to be stable
is satisfied.

ρM2 ≤ 1 only for b as real numbers. We directly plot the value of ρM2 in Figure

3.3. This figure confirms what we observe from the Figure 3.2, that for b which is

non-positive real number, ρM2 ≤ 1.

Compared with the first scheme, the region where ρM2 ≤ 1 is smaller for this

scheme. In general, if b is a pure complex number, only the first scheme can be stable.

For b as a non-positive real number, both schemes are unconditionally stable.

3.3 Numerical dissipation

Recall the characteristic equation as

ρM2(λ) = −λ3 − (14− b∆t2 − 4a∆t)

Ω
λ2 − (3b∆t2 − 10)

Ω
λ− (2− b∆t2)

Ω
= 0,

To examine the numerical dissipation of the method in the high-frequency range,

let Ω goes to ∞, thus, we have

ρM2(λ) = −λ3 +
1

3
λ2 − λ+

1

3
= 0,
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Figure 3.3: Value of ρM2 = max{|λ1|, · · · , |λ3|} as the function of complex number b∆t2, where
(b∆t2) ∈ (−10, 0.5). When b∆t2 ≤ 0, ρM2 ≤ 1 satisfies.

We can have roots of the above equation as x1 = 1/3, x2 = i and x3 = −i which

implies ρM2 = 1. Therefore, this method also fails to perform effectively in the

high-frequency range as the first one does.





Chapter 4
Comparison with Newmark Algorithm

Newmark Algorithm is developed in 1959 for use in structural dynamics. It is widely

used in numerical evaluation of the dynamic response of structures and solids such

as in finite element analysis to model dynamic system. It has become one of the

most popular methods among engineers in solving the second order elastodynamics

equation.

Having examined the accuracy and stability properties of newly proposed two

second-order accurate methods, we now compare them to the Newmark scheme.

The Newmark Algorithm solves equation(2.2) by the following numerical method:
un+1 = un + ∆tu̇n + 1

2
(1− 2β)∆t2ün + β∆t2ün+1

u̇n+1 = u̇n + (1− γ)∆tün + γ∆tün+1

ün+1 = au̇n+1 + bun+1

(4.1)

This method is modified from the Taylor series expansions of both displacements

u(n∆t) and velocities u̇(n∆t) from step n to step n+ 1. There are two parameters

β and γ introduced to indicate how much of the acceleration at the end of the

interval enters into the relations for velocity and displacement at the end of the

interval. From previous work we know the Newmark Algorithm achieves second-

order accuracy when γ = 1
2
, therefore we shall examine this algorithm using γ = 1

2

37
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from now onwards.

4.1 Stability region

By substituting ün+1 = au̇n+1 + bun+1 into the first two equations, we can rewrite

equation (4.1) in a matrix form, like what we did for the second scheme,

1−∆t2βb −∆t2βa

−1
2
∆tb 1− 1

2
∆ta

un+1

u̇n+1



=

1 + 1
2
∆t2(1− 2β)b ∆t+ 1

2
∆t2(1− 2β)a

1
2
∆tb 1 + 1

2
∆ta

un
u̇n

 ,

In order to compare the stability region of Newmark Algorithm with the previous

two methods, we directly let a = 0, thus the above equation is written as:1−∆t2βb 0

−1
2
∆tb 1

un+1

u̇n+1

 =

1 + 1
2
∆t2(1− 2β)b ∆t

1
2
∆tb 1

un
u̇n

 ,

By simple calculation, we can write the above equation in a more compact form

Yn+1 = ANewYn, where Yn = (un, u̇n)T and

ANew =

 1− ∆t2b
2Ω

−∆t
Ω

b∆t− b2∆t3

4Ω
1− b∆t2

2Ω

 , (4.2)

where Ω = βb∆t2 − 1.

The characteristic equation of matrix ANew is easy to calculated as

ρNew(λ) = λ2 − 2(1− b∆t2

2Ω
)λ+ [(1− b∆t2

2Ω
)2 +

∆t

Ω
(
b∆t

2
− b2∆t3

4Ω
)]

= λ2 + (
b∆t2

Ω
− 2)λ+ 1,

(4.3)

Next, we shall try to make use of the Routh-Hurwitz Stability Condition to



4.1 Stability region 39

obtain necessary condition on β.

In order to let |λ|≤ 1, where λ is the root of characteristic equation(4.3).We

substitute λ with 1+z
1−z in to the equation.

The characteristic equation (4.3) then can be simplified to

(4− B

βB − 1
)z2 +

B

βB − 1
= 0,

where B = b∆t2.

For the second-order polynomial, the matrix H in the Routh-Hurwitz condition

is

λ1 0

λ0 λ2

 . Thus, the Routh-Hurwitz condition for this quadratic polynomial

to have roots with non-positive real parts are 4 > B
βB−1

≥ 0. If we assume b is a

non-positive real number, then, this inequality can further yield the condition of β

is:

β ≥ 1

4
,

Thus, for the Newmark Algorithm to be second-order accurate and unconditionally

stable given b ≤ 0, we need β ≥ 1
4
.

There is another way could be employed to analyse this characteristic equation.

If we denote roots of this characteristic equation as λ1 and λ2, according to the

property of quadratic equations’ roots, we have λ1 + λ2 = 2− b∆t2

Ω

λ1λ2 = 1

If ρNew ≤ 1, which means | λ1 |≤ 1 and | λ2 |≤ 1. However, since λ1λ2 = 1,

thus, we can get | λ1 |= 1 and | λ2 |= 1. Therefore, we can assume λ1 = eiθ and

λ2 = e−iθ. By λ1 + λ2 = 2− b∆t2

Ω
, we can have

2 cos(θ) = 2− b∆t2

Ω
= 2− b∆t2

b∆t2β − 1
,
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Thus,

b∆t2 =
2 cos(θ)− 2

1 + (2 cos(θ)− 2)β
,

Which implies that Newmark method is stable only for b as a real number.

Compared with two newly proposed schemes discussed in this paper, the first

method is the only one which can have stability when b has non-zero imaginary part.

Both Newmark Algorithm and our second scheme can only be stable with b as a

real number. And all three schemes are unconditionally stable when b < 0. Another

advantage of these two schemes compared with Newmark is that, there is no need

to choose any parameters, which is more convenient to use in practice.

4.2 Numerical dissipation

As for the numerical dissipation of Newmark Algorithm, when Ω approaches to

infinity, the characteristic equation becomes λ2 + 1 = 0. hence, two roots are i

and −i, which also makes Newmark undesirable in solving dynamic problems that

require controlled high-frequency damping.

Thus, when it comes to numerical dissipation, all three schemes need further

study to investigate improvements.



Chapter 5
Analytic solution and temporal accuracy

checks

5.1 Accuracy check with ODE problems

Now, we would like to have an accuracy check to the first and the second schemes

discussed previously. Firstly, we directly test the numerical performance by analytic

solutions for the ODE equation (2.2) and compare their numerical performance to

Newmark Algorithm.

We choose the equation that governs a mass-spring system while in motion. A

mass m is suspended at the end of a spring, its weight stretches the spring by a

length L to reach a static state. Let u(t) denote the displacement, as a function

of time, of the mass relative to its equilibrium position and follow the convention

that downward is positive. Then, u > 0 means the spring is stretched beyond its

equilibrium length, while u < 0 means that the spring is compressed.

The problem has a general form as

mü+ γu̇+ ku = F (t),

where u is the displacement of the mass spring relative to its equilibrium position,

41
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Figure 5.1: A mass-spring system, mass M is suspended at the end of a spring, by a length L,
its weight stretches the spring to reach a equilibrium position. u(t) as a function of time, is the
displacement of mass relative to its equilibrium position.

m (m > 0) is the mass, γ (γ ≥ 0) is the damping constant and k (k > 0) is the

spring (Hooke’s) constant. When γ = 0, it is undamped free vibration, while γ > 0,

is damped.

The characteristic equation of this problem is mr2 +γr+k = 0. Its solution will

be either negative real numbers, or complex numbers with negative real parts. The

displacement u(t) behaves differently depending on the size of γ relative to m and k.

In this thesis, we choose one analytic solution from each of damped and undamped

vibration to analyse.

Firstly, considering an undamped free vibration, in which γ = 0, F (t) = 0. Thus,

the motion equation should be

mü+ ku = 0,

By solving the characteristic equation, we can have the roots r = ±i
√

k
m

. Denote



5.1 Accuracy check with ODE problems 43

ω0 =
√

k
m

, the general solution to this ODE can be represented as

u(t) = C1 cosω0t+ C2 sinω0t,

We let the exact solution to be

u(t) = 2 cos 5t+ 5 sin 5t,

Thus, the ODE problem we constructed becomes

ü+ 25u = 0, (5.1)

and the initial condition for the problem (5.1) is u0 = 2

v0 = 25

For the accuracy check, we simulated our numerical results until tend = 2.0 in Matlab

and listed errors for different time steps in the Table 5.1.

Table 5.1: Computational errors E using the first, the second and Newmark schemes for the
undamped vibration problem (5.1) (and local order α), calculated until time tend = 2.0 with

different time steps. ∆t = 1e− 2, α = log10(Ek−1/Ek)
log10(hk−1/hk) .Newmark1 stands for Newmark method with

β = 1/3, Newmark2 is Newmark method with β = 1.

Method ∆t
∆t ∆t

4
∆t
16

∆t
64

∆t
256

Method1 0.017 9.676e-04 (2.06) 5.934e-05(2.01) 3.692e-06(2.00) 2.168e-07(2.04)
Method2 0.005 3.057e-04(2.07) 1.865e-05(2.02) 1.159e-06(2.00) 7.233e-08(2.00)

Newmark1 0.010 6.247e-04(2.00) 3.904e-05(2.00) 2.440e-06(2.00) 1.525e-07(2.00)
Newmark2 0.038 0.0024(2.00) 1.490e-04(2.00) 9.315e-06(2.00) 5.822e-07(2.00)

Local errors α in Table 5.1 give us clean second-order accuracy for all three

schemes. In addition, we can also tell that, with different β, numerical performance

from Newmark method is different. Thus, we further draw out errors along with

time for Newmark method with various value of β in the Figure 5.2. Figure 5.2



44 Chapter 5. Analytic solution and temporal accuracy checks

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
x 10

−3

t

|e
rr

or
|

 

 

β=1/3

β=1

β=2

Figure 5.2: Errors for the Newmark Algorithm with different value of β along with the time
when solving ODE problem (5.1) with different time step.

shows that bigger β yields bigger error when solving ODE problem (5.1).

Errors along with time for the first, the second methods compared to Newmark

with β = 1 are displayed in the Figure 5.3.

For damped free vibration, where γ > 0 and F (t) = 0, we choose to solve the

vibration whose characteristic equation has two distinct real roots, which means

γ2 > 4mk. Assuming two distinctive roots for the characteristic equation are r1 and

r2, the displacement has the following form

u(t) = C1e
r1t + C2e

r2t,

where C1 and C2 are determined by initial conditions. A mass-spring with this type

of displacement function is called overdamped.

We choose the exact solution to be u(t) = e−t − e−2t. Thus, the constructed

ODE equation becomes

ü+ 3u̇+ 2u = 0, (5.2)
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Method 1 (∆ t=1e−3)

Method 2 (∆ t=1e−3)

Method 1 (∆ t=1e−3/2)

Method 2 (∆ t=1e−3/2)

Newmark (∆ t=1e−3)

Newmark (∆ t=1e−3/2)

Figure 5.3: Errors for the first, the second and Newmark schemes along with the time when solv-
ing ODE problem (5.1) with different time steps. Let β = 1 when employing Newmark Algorithm.

The initial displacement and velocity are u0 = 0

v0 = 1

To check the accuracy, we simulate our numerical results to tend = 1.0 and listed

errors for different time steps in Table 5.2. Local orders α give clear and clean

second-order accuracy in time for three methods.

Table 5.2: Computational errors E using the first, the second and Newmark schemes for the
undamped vibration problem (5.2) (and local order α), calculated until time tend = 1.0 with

different time steps. ∆t = 1e− 2, α = log10(Ek−1/Ek)
log10(hk−1/hk) . Newmark1 represents the Newmark method

with β = 1/3, and Newmark2 is the Newmark method with β = 1.

Method ∆t
∆t ∆t

4
∆t
16

∆t
64

∆t
256

Method1 2.1234e-04 1.314e-05(2.01) 8.195e-07(2.00) 5.134e-08(2.00) 1.279e-09(2.66)
Method2 1.4418e-04 8.954e-06(2.00) 5.587e-07(2.00) 3.491e-08(2.00) 2.181e-09(2.00)

Newmark1 2.3747e-05 1.484e-06(2.00) 9.276e-08(2.00) 5.798e-09(2.00) 3.628e-10(2.00)
Newmark2 1.6607e-04 1.038e-05(2.00) 6.487e-07(2.00) 4.054e-08(2.00) 2.534e-09(2.00)

Figure 5.4 shows errors along with different time for Newmark method with

three different choices of β and Figure 5.5 shows errors for the first, the second and

Newmark Algorithm along with time.



46 Chapter 5. Analytic solution and temporal accuracy checks

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−6

t

|e
rr

or
|

 

 

β=1/3

β=1

β=2

Figure 5.4: Errors for the Newmark schemes with different value of β along with the time when
solving ODE problem (5.2) with different time steps.
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Figure 5.5: Errors for the first, the second and Newmark schemes along with the time when
solving ODE problem (5.2) with different time steps. Choose β = 1 when applying Newmark
method.
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From Figure 5.3 and Figure 5.5, in general, the second scheme performed slightly

better than the first one did numerically in these two ODE problems. While from

Figure 5.2 and Figure 5.4 we can conclude that, the choice of β when employing

Newmark method will exert impact on the numerical result. When solving these

two constructed ODE problems, the bigger β yields bigger error.

5.2 Accuracy check with linear elastodynamics

After employing all three methods to solve the ODE problem, now, we will only

focus on employing the first and the second schemes and would like to construct a

elastodynamics problem whose exact analytic solution is known, and thus can be

used for code validation. Recall the general elastodynamics equation,

ρ
∂2u

∂t2
= ∇ · σ +G,

Without loss of generality, we let ρ = 1, and assume the displacement has the

expression u = (u1, u2) in a two-dimensional domain, where u1 = sin(2πx+ y) sin(t)

u2 = [1 + sin(x+ t)] sin(2πy)

Thus the velocity v should be v1 = sin(2πx+ y) cos(t)

v2 = sin(2πy) cos(x+ t)

Let lame constant µ = 10, λ = 10. By calculation, we can have the body force

G = (−40π cos(2πy) cos(t+ x) + 120π2 sin(2πx+ y) sin(t) + 9 sin(2πx+ y) sin(t))

9 sin(2πy) sin(t+ x) + 40π sin(2πx+ y) sin(t) + 120π2 sin(2πy)(1 + sin(t+ x))

 ,
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We choose the unit square as our domain, and give the right boundary, where

x = 1, Neumann condition which is T = n · σ, and others Dirichlet boundary

condition. Thus, the two-dimensional linear elastodynamics problem we constructed

can be stated as blow:

∂2u

∂t2
= ∇ · σ +G

σ = 10(∇u+∇uT ) + 10(∇ · u)I

u0 = (0, [1 + sin(x)] sin(2πy)) inΩ

v0 = (sin(2πx+ y), sin(2πy) cos(x)) inΩ

u = (sin(2πx+ y) sin(t), [1 + sin(x+ t)] sin(2πy)) onΓ1 × I

(n · σ) = T onΓ2 × I

(5.3)

where

G =

 (−40π cos(2πy) cos(t+ x) + 120π2 sin(2πx+ y) sin(t) + 9 sin(2πx+ y) sin(t))

9 sin(2πy) sin(t+ x) + 40π sin(2πx+ y) sin(t) + 120π2 sin(2πy)(1 + sin(t+ x))

 ,

T =

10(6π cos(y + 2π) + 2π cos(2πy)(1 + sin(1 + t)))

10(cos(y + 2π) sin(t) + sin(2πy) cos(t+ 1))

 ,

To solve this problem, we firstly apply Finite Element Method to semi-discretize

the equation. We denote the finite element space with dimension N to be Vh, and

basis function to be ψj, j = 1 · · ·N . Want to find ϕh ∈ Vh such that ϕh =
n∑
i=1

ξiψi(x)

and

(T,∇ψj)Γ2 − (σ,∇ψj) + (G,ψj) = (ϕ̈h, ψj) ∀ψj ∈ Vh, t ∈ I, (5.4)

The software we choose to use is called FEniCS. It is a software which enables

automated solution of differential equations by providing scientific computing, tools

for working with computational meshes, finite element variational formulations of

both ordinary and partial differential equations. The FEniCS Project was initiated

in 2003 as a research collaboration between the University of Chicago and Chalmers
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Figure 5.6: Computational mesh generated by FEniCS when applying Finite Element Method
to solve linear elastodyanmics problem (5.3)

University of Technology. For more information, one can refer to [Logg, Mardal,

and Wells (2012), Alnæs, Hake, Kirby, Langtangen, Logg, and Wells (2011)]. In

FEniCS, we let the function space to be Lagrange family elements of degree 2. And

the mesh generated during calculation is plotted in Figure 5.6.

Then, our first and second schemes were applied on equation (5.4). However,

before starting the iteration, we firstly need to use the initial condition to obtain

some necessary values, v1, u1 and u2 which are the numerical solutions of both

velocity and displacement at time dt and displacement at 2dt respectively. We

would like to use the following scheme to calculate,
v1−v0

∆t
= av1 + bu

2+u0

2

u1 = u0 + ∆tv0

u2 = u0 + 2∆tv0

During iteration, at each time stepping, we used the default linear solver package

within FEniCS distribution for Ubuntu, which is sparse LU decomposition, to solve

this linear problem. The final iteration ended until the time tend = 1.0. We listed

numerical results in Table 5.3, and draw out the log-log plot in Figure 5.7. Both
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Figure 5.7: The log-log figure of errors calculated by using the first and the second second-order
accurate schemes to solve the elastodynamics problem (5.3) in FEniCS.

local order in the table as well as slope of each line give us clear and clean second-

order accuracy for the first and the second scheme. In addition, when solving this

elastodynamics equation, the first scheme gives slightly better performance.

Table 5.3: Computational errors E using the first and the second second-order accurate finite
element schemes respectively to the elstodynamics problem (5.3) (and local order α), calculated
until the time tend = 1 with various time steps. u1

h and u2
h are numerical solutions calculated by

the first and the second schemes, ∆t = 0.04, α = log10(Ek−1/Ek)
log10(hk−1/hk) .

Error ∆t
∆t ∆t

2
∆t
4

∆t
8

||u− u1
h||L2 0.00229988 0.000365340(2.6542) 9.13318e-05(2.0001) 2.28328e-05(2.0000)

||u− u2
h||L2 0.00349157 0.000893172(1.9669) 0.000225815(1.9838) 5.67680e-05(1.9920)

||u− u1
h||L∞ 0.000655078 5.60533e-05(3.5468) 1.40128e-05(2.0001) 3.50318e-06(2.0000)

||u− u2
h||L∞ 0.000535704 0.000137038(1.9669) 3.46462e-05(1.9838) 8.70979e-06(1.9920)

5.3 Solving practical elastodynamics problems

Next, we would like to employ the second method to solve some practical problems

both linear and nonlinear. Consider a solid material in a force field with part of

its boundary fixed and the rest part free to move. One example is a beam with

one of its end sticked to the wall and the other is free. Suppose we know its shape
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before the deformation and we want to determine its shape once the body is lifted

up or stands up. The solid material can be either linear elastic or nonlinear elastic.

In this section, we would like to employ the second method to solve the linear and

nonlinear elastodynamics problem of such a solid beam which we do not know the

analytic formula for the exact solution.

The original configuration is called reference configuration and is denoted by Ω.

We use x to denote any point in Ω. When the force applied, the body deform, and

x eventually moves to ϕ(x). We assume that Ω = [0, 5] × [0, 1] × [0, 1]. The initial

displacement and velocity are both zero. There is no body force. The left facet is

fixed, while there is a traction force only on the right facet, which is depend on time

T = (0, 0, 200t). We assume the density ρ = 1, and lame constant µ = 2.3×104, λ =

1.05× 105.

Hence, for the linear elastic solid material, the elastodynamics problem can be

presented as

∂2u

∂t2
= ∇ · σ inΩ× I

σ = 2.3× 104(∇u+∇uT ) + 1.05× 105(∇ · u)I

u(x, 0) = 0 inΩ

v(x, 0) = 0 inΩ

u = 0 onΓ1 × I

(n · σ) = (0, 0, 200t) onΓ2 × I

(n · σ) = (0, 0, 0) onΓ3 × I

(5.5)

where Γ1 is the facet where x1 = 0, Γ2 is x1 = 5 and Γ is the rest.

Figure 5.8 displays the original configuration of our elastic beam at time zero as

well as the computational mesh used in calculation when employing finite element

method.

We solve this problem by the second method, and choose Lagrange elements of
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Figure 5.8: Original configuration of the elastic beam in the constructed elastodynamics problem
with unknown analytic solution whose left facet is fixed. The mesh plotted is the computational
mesh used in Finite Element Method.

degree 2 as function space when applying finite element method. Table 5.4 displays

the numerical results of the displacement along z-axis at point (5, 1, 1) with time

step ∆t = 0.01 and ∆t = 0.005.

Table 5.4: Displacement along z˙axis at point (5, 1, 1), calculated by time step ∆t = 0.01 and
∆t/2 = 0.005 respectively at time t = 0.25, t = 0.375, t = 0.5, t = 0.625 and t = 0.75

t = 0.25 t = 0.375 t = 0.5 t = 0.625 t = 0.75

linear (∆t) 0.31682 0.64980 0.79795 0.81837 0.93600 1.25316 1.52569
linear (∆t/2) 0.30512 0.62845 0.79458 0.81610 0.93006 1.22823 1.51643

We draw out the position of this elastic beam at time t = 0.25, t = 0.5, t = 0.75

and t = 1.0 respectively with time step ∆t = 0.01 and ∆t = 0.005 in Figure 5.9. The

elastic beam is gradually lifted along with time. Since the traction force increases

as time increases, the speed of the beam’s lifting is accelerated.

Besides linear elasticity, we can also assume the material to be nonlinear elastic

while other conditions remain the same. We let the material to be Venant-Kirchhoff

elastic, thus the strain energy is

I(ϕ(·, t)) =

∫
Ω

W (∇ϕ)dx,

where W = µtr(E2) + λ
2
(trE)2, F = ∇ϕ and E = 1

2
(F TF − I).
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Figure 5.9: Position of the elastic beam at time tend = 0.25, tend = 0.5, tend = 0.75 and
tend = 1.0. Left plot: Result calculated by using time step ∆t = 0.01. Right plot: Result
calculated by using time step ∆t = 0.005.
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σ satisfies
d

dε
|ε=0I(ϕ+ εφ) = (σ(ϕ),∇φ),

Thus, simple calculation shows that

σ(ϕ) = 2µFE + λ(trE)F,

Our elastodynamics problem can thus be presented as

∂2ϕ

∂t2
= ∇ · σ inΩ× I

σ(ϕ) = 4.6× 104FE + 1.05× 105(trE)F

u(x, 0) = 0 inΩ

v(x, 0) = 0 inΩ

u = 0 onΓ1 × I

(n · σ) = (0, 0, 200t) onΓ2 × I

(n · σ) = (0, 0, 0) onΓ3 × I

(5.6)

where Γ1 is the facet where x1 = 0, Γ2 is x1 = 5, Γ3 is the rest boundary, u = ϕ−x,

F = ∇ϕ and E = 1
2
(F TF − I).

When numerically solving a nonlinear problem, there is one more thing we need

to pay attention to which is linearization. In this nonlinear elastodynamics problem,

after the application of Finite Element Method, we can have the following equation,

(T,∇ψj)Γ2 − (σ,∇ψj) + (G,ψj) = (ϕ̈h, ψj) ∀ψj ∈ Vh, t ∈ I, (5.7)

Then, directly applying the second scheme to above equation (5.7), we can have

a collection at equations for every time stepping, for each row j,

(Tn+1,∇ψj)Γ2 − (σ(
ϕn+2
h + ϕnh

2
),∇ψj) + (Gn+1, ψj) = (

ϕn+2
h − 2ϕn+1

h + ϕnh
∆t2

, ψj),
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where ϕn+2
h =

n∑
i=1

ξn+2
i ψi(x).

This equation can be simplified as

Lj(ϕ
n+2
h ) = 0,

where

Lj(ϕ
n+2
h ) = (Tn+1,∇ψj)Γ2−(σ(

ϕn+2
h + ϕnh

2
),∇ψj)+(Gn+1, ψj)−(

ϕn+2
h − 2ϕn+1

h + ϕnh
∆t2

, ψj),

This equation can be solved by Newton method,

ϕn+2
h = ϕn+1

h − (∇L(ϕn+1
h ))−1L(ϕn+1

h ),

where L = (L1, L2, · · ·)T .

To generate the matrix ∇L(ϕn+1
h ), we can use variation instead of direct calcu-

lation. By simple calculation, it is easy to verify the following equation holds

d

dε
|ε=0Lj(ϕ

n+1
h + εψ) = (∇Lj(ϕn+1

h ))ψ,

By choosing ψ = ek = (0, · · · , 0, 1, 0, · · · , 0)T , we can easily recover the (j, k) com-

ponent of ∇L(ϕn+1
h ).

We still use FEniCS to solve this nonlinear problem (5.6) and the package used

for solving is coded to use Newton method as discussed above. To compare with

the linear elastic material, we also draw out the position of the elastic beam at time

t = 0.25, t = 0.5 and t = 0.75 in Figure 5.10.

Positions of both linear and nonlinear elastic beams are very similar, thus, to

have a clearer comparison, we listed the displacement along z axis at point (5, 1, 1)

for these two beams in Table 5.5. From the the differences’ value in Tale 5.5, we can

tell that, even though at the very beginning, displacements of linear and nonlinear

beams are alike, but as time increases, their difference is also increasing.
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Figure 5.10: Position of the nonlinear elastic beam at time tend = 0.25, tend = 0.5 and tend =
0.75. Left plot: Result calculated by using time step ∆t = 0.01. Right plot: Result calculated by
using time step ∆t = 0.005.
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Table 5.5: Displacement along z axis at point (5, 1, 1) for both linear and nonlinear elastic
beams which are computational results of problem (5.5) and problem (5.6), calculated by different
time step at time t = 0.25, t = 0.5 and t = 0.75. ∆t = 0.01.The difference is calculated as the
displacement of linear beam minus the one of nonlinear beam.

t = 0.25 t = 0.5 t = 0.75

linear (∆t) 0.31681757 0.79794951 0.93599893
linear (∆t/2) 0.30512216 0.79458233 0.93006166

nonlinear (∆t) 0.31408305 0.77090623 0.88662774
nonlinear (∆t/2) 0.3025707 0.76789883 0.88134227

difference(∆t) 0.0027 0.0270 0.0494
difference (∆t/2) 0.0026 0.0267 0.0487

In FEniCS, there are several packages designed to especially solve nonlinear

elastic problems like CBC.Twist which is a DOLFIN module written in UFL syntax.

With the help of these packages, things like defining constitutive relationships for

different materials, describing boundary conditions can be further simplified. More

packages can be found in [Logg, Mardal, and Wells (2012)].

At last, we would like to change the condition to be more practical. Still use

the beam in above two problems. Now consider the linear elastic beam in the

gravitational field with one of its end, the left facet, fixed to the wall and the rest

part free to move. Thus there is a body force G = (0, 0,−9.8). Assume the traction

force to be T = (0, 0,−5), density ρ = 10 and lame constant µ = 0.23 × 105,

λ = 0.105× 106. The statement of this problem is very similar to above two, thus,

we will not restate it again. Figure 5.11 displays the position of this linear elastic

beam at different time and Table 5.6 gives the displacement along z axis at point

(5, 1, 1). Figure 5.11 clearly displays the full cycle of the movement of the elastic

beam in the gravitational field. At time t = 2.25 the elastic beam almost bounces

back to its initial position.

Table 5.6: Displacement along z axis at point (5, 1, 1) for the linear elastic beams in gravitational
field, calculated by different time step at time t = 0.5, t = 1.0, t = 2.0 and t = 2.25. ∆t = 0.01.

t = 0.5 t = 1.0 t = 2.0 t = 2.25

dt = ∆t -0.69212734 -2.08849109 -2.92580695 -0.69574282
dt = ∆t/2 -0.63320064 -2.04031687 -3.00177963 -0.67443876
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Figure 5.11: Position of the linear elastic beam in the gravitational field at time tend = 0.5,
tend = 1.0, tend = 2.0 and tend = 2.25. Left plot: Result calculated by using time step ∆t = 0.01.
Right plot: Result calculated by using time step ∆t = 0.005.
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In conclusion, in this thesis, we numerically test the first and the second schemes

to be second-order accurate. And compare these two methods with one of the

most frequently used scheme, Newmark Algorithm by their numerical performance

of solving ODE problems. Since the numerical result of Newmark scheme depends

heavily on the choice of one of the parameter β, wise choice of β can make Newmark

performs as well as our two new schemes. However, in general, our first and second

schemes have their advantages and convenience in practical application.
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