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Summary

This thesis mainly studies the method for constructing error intervals for prop-

erties of the quantum state.

As a complement to point estimators for the quantum state estimation, region

(interval for one dimension) estimators are proposed to supplement the error re-

gions to the point estimator. These proposals, however, are ad hoc because they

usually rely on having a lot of data, or consider all the possible data that haven’t

been observed. In [1], a method is provided for systematically constructing opti-

mal error regions for quantum state estimation from the data actually observed.

After identifying the prior probability as the size of a region, two types of opti-

mal error regions– maximum-likelihood regions and smallest credible regions–are

reported which are the bounded-likelihood regions that comprise all states with

likelihood exceeding a threshold value.

As a generalization of the above scenario for reporting optimal error regions

for quantum state estimation, we propose a systematic method for constructing

error intervals for a property of state directly from the experimental data. Usu-

ally, we are not interested in the full details of the quantum state, but rather care

about some parameters or a few properties of the state. Moreover, it is much

more difficult to estimate a high-dimensional quantum state. Therefore, a direct

estimate of the properties of interest is more practical than the estimate of the

whole quantum state. Analogous to error regions for quantum state estimation,

the optimal error intervals are characterized by finding the constant likelihood

values conditional on the property of state. For illustration, we identify the op-

timal error intervals for fidelity (with respect to certain target states) and purity

of single-qubit states, as well as the CHSH quantity for two-qubit states.
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Chapter 1

Introduction

Quantum estimation theory (QET), as the name suggests, is a combination of

statistical estimation methods and quantum theory. In classical estimation theo-

ry, methods are developed to estimate the parameters of the probability density

function from a set of data [2]. In analogy to that, QET seeks strategies for esti-

mating parameters in a reliable, optimal and efficient way. The main departure

of QET from its classical counterpart is that the underlying theory of QET is

quantum mechanics, which includes complementarity principle and uncertainty

relation that results in many challenges during the process of QET.

As an important application of quantum estimation theory, quantum tomog-

raphy [3], like its classical counterpart which produces a three-dimensional image

by a series of two-dimensional projections along different directions, is a proce-

dure of inferring the quantum state (density operator), the process matrix, or

the quantum measurement, corresponding to quantum state tomography [4–11],

quantum process tomography [12–18] and quantum detector tomography [19–22],

respectively1. These three types of tomography technique are interrelated: given

the input and output, we are able to reconstruct the object to be estimated by

using various estimation approaches. Quantum tomography is central to many

quantum information tasks, such as quantum computation, quantum commu-

nication and quantum cryptography, because quantum information processing

1In many literatures, quantum measurement tomography, which is a synonym for quan-
tum detector tomography, is adopted as the procedure of referring the measurement that is
performed on the quantum system.

1



Chapter 1. Introduction

includes three components: preparation of quantum state, transiting quantum s-

tates through some channel and performing the measurements on quantum states

by detectors. All these tasks require reliable quantum tomography at various

stages of quantum information processing.

Take quantum state tomography (also called quantum state estimation

(QSE)) for example. Given the data from the generalized measurements, known

as probability operator measurements (POMs), quantum state estimation can

infer the quantum state that provides complete information of the system. In

classical physics, the state is described by the set of canonical coordinates. It

is always possible, at least in principle, to fully reconstructed the state by per-

forming measurement on it. In quantum mechanics, however, it is not possible,

even in principle to perfectly determine the quantum state.

Previous works on quantum tomography have yielded a single estimated

quantum state, process matrix or quantum measurement. Mathematically, this

single object is a point estimator which serves as a ‘best guess’ for the unknown

(actual) one. In contrast, the region estimator is a set of possible values of the

unknown objects to be estimated. Such regions are typically confidence region

in the paradigm of frequentist inference or credible region in the case of Bayesian

inference. In this thesis, we focus on the credible regions for quantum estimation.

In another aspect, we are interested in a few properties of the state, rather

then the full details of the quantum systems. In addition, it is difficult to do

quantum state estimation for high-dimensional quantum system. Then, a direct

estimate of the few properties of interest is more desirable than the estimate

of the whole quantum state. As linear and nonlinear functions of the quantum

state, these properties of the quantum state include its fidelity with a target

state, purity, and measure of entanglement. Note, however, that even if we were

2
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able to obtain a best guess for the quantum state, the values of the properties

in that state may not be the best guess for them. Therefore, state-property

estimation (SPE) is needed to be supplemented with quantum state estimation.

Chapter 2 provides an overview of quantum tomography from the theoretical

view. We start with a historical survey of developments of the classical estima-

tion theory. Then we provide a brief introduction and historical background of

quantum estimation theory. Several ingredients, which is basic block in quantum

tomography, are introduced, such as quantum states, measurements, point esti-

mators for quantum state estimation. Prominent methods are listed as examples

for quantum tomography techniques. We first present linear inversion which is

the simplest method, as well as the well-known maximum-likelihood estimation,

followed by hedged maximum-likelihood estimation.

In Chapter 3, we introduce several notions, which are needed for Chapter 4,

of optimal error regions for quantum state estimation. Among them, the most

important notion is that the size of a region is its prior probability. Also impor-

tant are the concept of maximum-likelihood region and smallest credible region

which are both bounded-likelihood regions.

Chapter 4 presents the theoretical analysis of the state-property estimation.

Analogous to Chapter 3, the size and credibility of a range of state-property are

identified. Again we find that the optimal error intervals for property of the

state are the bounded-likelihood intervals, where the likelihood is F -likelihood,

the likelihood conditional on the property F , in the context of SPE. To narrow

the choices of approximation function for F -likelihood, two important properties

of the F -likelihood are described.

In Chapter 5 we investigate the numerical procedures to determine the F -

likelihood. We first employ the Monte Carlo integration to calculate the size and

credibility. Since the finite size of the sample, these numerical integrals with the
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fluctuations require smoothing approximation fitting. We list 5 candidates for

the fitting function, and choose the incomplete beta functions to perform this

job. In addition, an iteration algorithm is introduced to verify the quality of

the approximation. As illustrations, fidelity (with respect to target state) and

purity of single-qubit state, as well as the CHSH quantity of two-qubit state, are

studied.

We close with a short conclusion and outlook in Chapter 6.
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Chapter 2

Quantum Estimation Theory

2.1 Classical estimation theory

A good quantum estimation strategy involves two important elements: the mea-

surement scheme and the data processing protocols. Given the measurement

data, the optimization of data processing is basically a subject of classical esti-

mation theory1. Put differently, classical estimation theory always sheds light on

the study of quantum estimation theory.

Classical estimation theory is the scientific discipline which deals with the

problems caused by discrepancies in different measurements of the same object.

These discrepancies, or errors, are generally regarded as random in independent

observations of the same quantity. To reduce the effect of errors in determining

the values of the quantity of interest, scientist need to investigate the problem of

defining a suitable estimator. A good estimator should be a well-defined function

of the observations whose values serve as a suitable approximation of the quantity

of interest. The random nature of the errors implies that the definition of an

estimator involves considerations of a relatively arbitrary nature. That means

there is generally much freedom in choosing the estimators. Many desirable

estimator characteristics need to be considered, such as bias, consistency and

efficiency. In the following, we will briefly review the historical development of

1Notice that additional constraints imposed by quantum mechanics should be taken into
account, such as the positivity of the density matrix.
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the classical estimation theory.

The problem of estimating parameters from observation data can be traced

from antiquity. It is well known that astronomical studies have stimulated the

development of estimation theory even to the present day. From about 300 B.C.,

Babylonian astronomers dealt with this problem. Since the age of telescope, the

motion of the planetary and cometary bodies is observed by using telescopic mea-

surements. These motions can be characterized by six parameters. The problem

of estimation is inferring the values of these parameters from the measurement

data. The earliest and simplest approach to this problem is the arithmetic mean.

That is, the estimator of a parameter from independent measurement is taken to

be their arithmetic average [23]. It was not until the 18th century the field of es-

timation theory began to be broadend by other considerations. This broadening

coincided with the development of probability theory. In 1722 Roger Cotes con-

sidered a planar estimation problem in which he considered the combination of

four measurements of a point and assigned weights to each measurement. Then

he asserted that the center of gravity of the points is the most probable value

of the point. In 1777 D. Bernoulli proposed that the uniform distribution may

not describe the measurement errors and that other descriptions may be more

appropriate. In addition, Bernoulli developed an estimation procedure known as

the method of maximum likelihood in present-day literature. Bernoulli claimed

that the estimate should be chosen to correspond to the point which maximizes

the likelihood function.

Another result of fundamental importance to estimation theory is due to

Thomas Bayes. In 1763 ‘An essay towards solving a problem in the doctrine

of chances’ was published. In this essay, Bayes introduced the notion of priori

density, posteriori density and Bayes’ rule [24]. However, the dispute arises

from the existence of a priori distribution, although the mathematical validity is

6
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unquestionable.

Astronomical studies provided the stimulus for invention and development of

the method of least-squares. It is believed that Legendre and Gauss developed

this method independently. The principle of least-squares is that, given the mea-

surement data, the estimate of the parameters should be chosen to minimize the

sum of the squares of the errors. Following Gauss, Laplace and Markov obtained

similar statement of least-square principle [25, 26]. A fundamental break from

the least-squares method came in a series of papers by Fisher. As an under-

graduate at Cambridge, he reinvented the method of maximum likelihood [27].

Then, Fisher introduced the concepts of sufficient statistics, efficient and consis-

tent estimates, which further stimulate the development of classical estimation

theory [28,29].

The methods we mentioned above have their applications in the context of

quantum estimation theory (See Sec. 2.5). There are many methods and algo-

rithms, which can be utilized in quantum estimation theory, to be explored in

the classical estimation theory.

2.2 Quantum state estimation

Quantum state estimation is of fundamental importance for the quantum infor-

mation theory. It is also the basic ingredient for quantum process estimation and

quantum detector estimation. In the following, we provide a historical survey

of the development of quantum estimation theory in general and quantum state

estimation in particular; see [3] for a review.

It was Pauli who first asked whether the wave function of a quantum state

can be determined by the distribution of position and momentum [30]. This

problem was first addressed in 1957 by Fano [31] who introduced the concept

of the quorum, the set of observables sufficient for completely estimating the

7
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quantum system. The early works [32–36] considered the state reconstruction for

one-dimensional spin and spinless particles as examples. However, it is difficult

to devise measurable observables other than position, momentum and energy.

Vogel and Risken [4] show that by using homodyne measurement, the collection of

probability distributions obtained is the Radon transform of the Wigner function.

Then the density matrix of that quantum system can be determined based on

their correspondence with Wigner functions. The first experiment of quantum

tomography was realized using balanced homodyne detector by Smithey et al. [5].

This pioneering experiment marked the birth of optical homodyne tomography.

Since that time, many new techniques have been proposed, see [37] for a overview.

The development of quantum tomography theory was further stimulated by

the advance of experimental techniques and the emergence of quantum infor-

mation science. Analogous to its classical counterpart–arithmetic mean, linear

inversion is the first and easiest estimation method. However, it suffers from two

defects: non-positivity and choice ambiguity. By using means of Jaynes principle

of maximum entropy (ME) [38,39], Bužek et al. [40,41] proposed a method which

selects the most objective estimator among all possible candidates, to address the

problem of reconstructing quantum states from informationally incomplete mea-

surements. Meanwhile, Hradil developed an efficient algorithm for computing the

maximum-likelihood estimation (MLE), which provides one semi-definite posi-

tive estimator from the data of detection. Many other reconstruction methods

are provided, including hedged maximum-likelihood estimator (HMLE) [42], the

Bayesian mean (BM) estimator [2,43–48], and minimax mean estimator [49–53].

As a generalization of quantum state tomography, quantum process tomog-

raphy and quantum detector tomography are proposed for characterizing un-
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known quantum processes and quantum measurements, respectively. Analogous

to quantum state tomography, quantum process tomography and quantum de-

tector tomography are central to many tasks of quantum information process.

As the first proposal of quantum process tomography, standard quantum pro-

cess tomography (SQPT) was introduced by Chuang and Nielsen [13] , as well

as by Poyatos et al. [14]. In order to characterize a quantum process, a set of

reference states is prepared and then subjected to a given (unknown) quantum

process. Using the quantum state estimation to identify the resulting quantum

states, the quantum processes can be reconstructed. Another technique, as an al-

ternative to SQPT, ancilla-assisted quantum process tomography (AAQPT) was

proposed by Leung [54, 55], as well as by D’Ariano and Presti [56], and realized

in experiment [57, 58]. AAQPT requires a single preparation and tomography

of a two-qubit state by introducing an extra ancilla qubit. Entanglement as-

sisted quantum process tomography (EAQPT), as a special case, describes the

situation when the ancilla is maximally entangled with the system to be charac-

terized. Both of these two methods are known as indirect methods, since they

use quantum state estimation to reconstruct the unknown process. In contrast

with the above methods, direct characterization of quantum dynamics (DCQD)

was devised by Mohseni and Lidar [59, 60] and followed by experiment in which

the dynamics of a photon qubit is determined [61] and that of nuclear spins in

the solid state [62]. DCQD has many advantages since it does not need quantum

state tomography. Therefore, it requires much fewer experiment settings. See

Ref. [63] for overview of these three techniques of quantum process tomography.

On the other hand, quantum detector tomography is a procedure to charac-

terize experimental apparatus. To ensure the positivity of probabilities of out-

come, POMs are used to represent the detector measurements. Given the input
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(known) states and the outcomes of the detectors, the POMs can be estimated

by techniques of quantum tomography [19, 21]. For instance, like its quantum

state estimation counterpart, we can invert the Born rule to find the correspond-

ing POMs. Since linear inversion sometimes cannot provide physical POMs, the

MLE method, which guarantees the positivity of the POMs, are preferred for

quantum detector tomography [20]. Lundeen et al. realize the experiments of

quantum detector tomography which reconstructs two types of detectors: Com-

mercial avalanche photodiode and home-made single photon detector [22].

2.3 Quantum states

The state of a quantum system encodes all the information about the system.

Mathematically, the state space of the quantum system is a complex vector space,

i.e., Hilbert space. The pure state is described by a normalized complex vector

|ϕ⟩, known as ket by Dirac’s definition:

|ϕ⟩ = (c1, c2, · · · , cn)T,
n∑

k=1

|ck|2 = 1, (2.1)

where T is transpose of the vector, and n is the dimension of the state space.

The generic states are mixed, which are represented by a positive semidefinite

matrix with unit trace:

ρ ≥ 0, tr{ρ} = 1. (2.2)

As a special case, the density matrix of a pure state can be expressed as

ρpure = |ϕ⟩⟨ϕ|. (2.3)

Accordingly, pure states are density operators of rank one, i.e., a projector onto

the subspace spaned by state vector. The purity of a quantum state is the trace
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of the square of the density matrix: P ≡ tr{ρ2}. Therefore, the purity of pure

states is 1, and that of mixed states is less than 1:

tr{ρ2pure} = 1, tr{ρ2mix} < 1. (2.4)

Composite systems, composed from simple systems, reveal much more inter-

esting phenomena than simple systems. The most famous one is the quantum

correlation, known as quantum entanglement (see Ref. [64] for a review), which

was emphasized by Einstein [65] and Schrödinger [66]. Quantum entanglement

plays an important role in quantum computation [67], as well as many tasks

in quantum information processing [64], such as quantum key distribution [68],

quantum teleportation [69] and superdense coding [70]. The state space of the

composite systems is the tensor product of the Hilbert space of the simple sys-

tems. Take a bipartite composite system for instance. Suppose the Hilbert spaces

of Alice and Bob are H1 and H2, respectively, then the Hilbert space H of the

composite system is H = H1 ⊗ H2. Tracing the composite systems over the

Hilbert space of subsystem B, we get the reduced state of the subsystem A:

ρA = trB{ρAB}, (2.5)

and vice versa.

2.4 Measurements

2.4.1 Projective measurements

Projective measurements (PM) (also called von Neumann measurements (vNM))

are hermitian projectors with eigenvalue 1. They form a complete orthogonal
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basis: ∑
k

Pk = I, PkPj = δkjPk, (2.6)

where I is the identity matrix. Given the quantum state ρ before measurement,

the probability pk of the outcome k is given by Born rule

pk = tr{PkρP
†
k} = tr{Pkρ}. (2.7)

If the outcome k obtained, then the quantum state after the measurement is

represented by state operator

ρ′ =
PkρP

†
k

tr{PkρP
†
k}

. (2.8)

Since repeated projective measurements always yield the same outcome as the

first one, no additional information about the original quantum system is avail-

able.

2.4.2 Non-projective measurements

Non-projective measurements generalize the projective ones. Such set of mea-

surement operators only require the completeness condition

∑
k

M †
kMk = I. (2.9)

The probability pk of the outcome k and the quantum state after the measure-

ment is

pk = tr{MkρM
†
k}, ρ

′ =
MkρM

†
k

tr{MkρM
†
k}

, (2.10)

respectively.

If we are only interested in the outcome statistics, we effectively describe the
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measurement by a set of positive operators Πk = MkM
†
k which sum to identi-

ty. Literally, such measurement are called as probability operator measurement

(POM), or positive operator valued measurement (POVM) which is a synonym

for POM. It is known that the element of POM is positive semidefinite matrix,

without necessarily being orthogonal

Πk > 0,
∑
k

Πk = 1, ΠkΠj ̸= δkjΠk. (2.11)

The POMs Πk may be identified with the measurement outcomes. According to

Neumark’s dilation theorem [71], any set of POMs can be realized by applying

a projective measurement on a larger system. Without the need for worrying

about the detailed realization of the measurement, POM allow us to focus on

the system under study. Compared with projective measurements, POMs are

generally easier to handle because of their nicer mathematical structure. For

instance, POM reserve the convexity, i.e., any convex combination of POMs is

still a POM. This property is important for constructing sophisticated POMs

from simple ones.

A measurement is informationally complete (IC) if any quantum state is

completely determined by the outcome of measurements [72]. In a d-dimensional

Hilbert space, an IC measurement consists of at least d2 outcomes. While for a

minimal IC measurement, it consists of d2 outcomes exactly. For example, for

a two-dimensional system, i.e., qubit state, one possible IC measurement is the

set of projective measurements

Πk± =
1

6
(I ± σk), for k = x, y, z, (2.12)

where I is the two-dimensional identity matrix, and the σks are the Pauli ma-

trixes. For this IC measurement, there are six outcomes. However, a minimal IC
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measurement requires only 4 outcomes for qubit state. Such minimal IC mea-

surement can be constructed by linearly combining the identity matrix and Pauli

matrixes (see Ref. [11]).

2.5 Point estimators for quantum state estima-

tion

After the data D are collected from the measurement apparatus, the remaining

task is to provide a best guess, i.e., point estimator, for the quantum state based

on the data. In classical statistics, many methods are proposed for constructing

point estimators. In the context of quantum state estimation, those classical

methods indeed shed light on inferring the quantum state. However, additional

requirements from quantum mechanics, such as the positivity of the density

matrix, should be taken into account. In the following, we list several common

methods of point estimators for quantum state estimation, and discuss the pros

and cons of each method. See Refs. [3, 37] for a more detailed review.

2.5.1 Linear inversion

Analogous to its classical counterpart–arithmetic mean, linear inversion is one of

the simplest point estimators. It was first studied by Fano [31], followed by many

other researchers [32,34–36]. Recently, linear inversion is re-used for constructing

error bars which are confidence intervals [73].

Given measurements specified by the POM with unit sum
∑

k Πk = 1, N

copies of identical and independently prepared quantum systems are measured

with the detector clicks
∑

k nk = N . Then the relative frequency of the kth

outcome is fk = nk/N . In linear inversion, the point estimator is the state which
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matches the observed frequencies:

tr{ρΠk} = fk for k = 1, 2, · · · , K . (2.13)

For IC measurement, at most one ρ̂ exists as the solution. Moreover, for the

minimal IC measurement, only one unique solution exists. In such case, a unique

dual basis Λk exists with the property tr{ΠkΛk} = δkl. Then it is easy to derive

the estimator for the state ρ̂ =
∑

k fkΛk. However, since the number of copies is

finite, the statistical noise associated with the relative frequencies is inevitable.

Therefore, for a generic IC measurement, the system of equations in Eq. (2.13)

might be incompatible. In other words, such estimators which are compatible

with the frequencies do not exist.

The main benefit we have from linear inversion is its simplicity. Its drawbacks

are also obvious. First, the estimator given by linear inversion is sometimes

not positive semidefinite. That means the state is not a legitimate one. This

phenomena is common when the actual states are of high purity or the sample

size is small. Second, if the measurement is informationally overcomplete, then

the solution is not unique and thus some arbitrariness is introduced during the

choice of the reconstruction operators. To solve these problems, MLE is proposed

as as alternative method which is discussed in the next section.

2.5.2 Maximum-likelihood estimation

As we mentioned in Sec. 2.1, the principle of MLE was reinvented by Fisher and

becomes a basic ingredient in classical statistics [28]. Moreover, the principle of

MLE is extensively applied in the context of quantum state estimation [3, 37,

74]. Another application of MLE is the detection [42] and characterization of

entanglement [75]. Instead of searching for the quantum state which matches

frequencies obtained from the data of outcomes, MLE seeks the quantum state
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which maximizes the likelihood function (see Sec. 3.2.2) defined as

L(D|p) = pn1
1 pn2

2 · · · p
nK
K , (2.14)

where D = {n1, n2, · · · , nK} is the clicks of detectors and pk = tr{ρΠk} is the

probability of obtaining the outcome k given the true state ρ. In practice, it is

more convenient to work with the log-likelihood function which is concave

lnL(D|p) =
K∑
k=1

nk ln pk = N

K∑
k=1

fk ln pk, (2.15)

If state exists that matches the observed frequencies, i.e., satisfying Eq.( 2.13),

then this state is also a MLE.

Generally, however, it is difficult to analytically find a closed formula for

MLE. Hradil [74] proposed an algorithm that can compute efficiently MLE. Be-

cause of the concavity of log-likelihood function and convexity of the state space,

the search for the MLE turns to be a convex optimization problem, which can

be solved based on the principle of steepest ascent. See Ref. [74] for more in-

formation. The MLE can also suffer from the problem of arbitrariness, if the

measurement is not IC. To solve this problem, Teo et al provide a solution [76]

based on the ML principle [28] and the ME principle [38,39]. It is proposed that

an efficient algorithm for computing the most objective estimator, which is the

state having the highest von Neumann entropy among all the states with the

maximum value of the likelihood function.

The MLE is widely used because the estimator is always positive semidefi-

nite. However, there is a drawback of the ML estimation, i.e., the zero eigenvalue

problem. When the true state ρ has a high purity, the estimator ρ̂ is not often

full rank. The zero eigenvalues imply unrealistic confidence over the outcomes

of some potential measurements, which is undesirable for some quantum infor-
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mation processing tasks, such as data compression and cryptography [48]. To

solve this zero-eigenvalue problem, the hedged maximum-likelihood estimation

is proposed which is the topic of next section.

2.5.3 Hedged maximum-likelihood estimation

Analogous to its classical counterpart which is known as “add β” rule [77], the

hedged maximum-likelihood estimation (HMLE) is proposed by Blume-Kohout

to solve the zero-eigenvalue problem [42]. In HMLE, the likelihood function

L(D|p) is multiplied by a hedging function

h(ρ) = det(ρ)β, (2.16)

where the value of the hedging parameter β is between 0 and 1. Thus the

functional to be maximized is L(D|p)h(ρ), rather than L(D|p). The estimator

of HMLE is guaranteed to be full rank. Because of the concavity of the function

ln[L(D|p)h(ρ)], a similar algorithm can be applied for computing efficiently the

HLME estimator. Although HMLE can solve the problem of zero-eigenvalue, the

lack of universal criterion for choosing the hedging function makes it difficult to

determine the value of β. Even if we may rely on the prior knowledge, such kind

of choice is made on an ad hoc basis.
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Chapter 3

Error Regions for Quantum State

Estimation

3.1 Introduction

Quantum state estimation is important to many tasks of quantum information

processing which makes use of quantum sources, such as characterizing the source

of quantum-information carriers, verifying the properties of a quantum channel

and monitoring the transmission line used for quantum key distribution. In

general, a collection of independently and identically (i.i.d) prepared copies of

quantum systems (photons, electrons, ions, etc.) are measured one-by-one, i.e.,

adapting individual measurements, by an apparatus which can be mathematical-

ly described by a probability-operator measurement (POM)1. The POM consists

of a number of outcomes which register individual information carriers, and the

data are the observed sequence of detector clicks. Mathematically, the quan-

tum state to be estimated, the actual state, is described by a statistical operator.

And the measurement data are used to infer an estimator—another state which

approximates the actual state well. Many strategies are studied for finding such

an estimator (see Sec. 2.5). Because of its efficient algorithm, maximum likeli-

hood estimators (MLEs) developed by Hradil, Řeháček, and their collaborators

1Here we do not consider collective measurements which may be more efficient for extracting
information than individual ones.
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are employed in real experiments for analysing the data (reviewed in [3],; see

also [78] and Sec. 2.5.2). Given the data, the MLE is the state for which the

data are more likely than for any other state. Meanwhile, we can choose other

methods to reconstruct a point estimator. (see Sec. 2.5)

However, no matter which method we choose, the data have statistical noise.

Therefore, point estimators cannot identify the actual state exactly. Put differ-

ently, we need to supplement the point estimator with error bars (error regions

for higher-dimensional problems). Several methods are proposed for attaching a

vicinity of states to a point estimator. However, these methods are often ad hoc

in nature. They usually rely on obtaining a lot of data [79, 80], involve data re-

sampling [81] or consider all possible data that might have been observed [82,83].

In contrast to them, we propose a method which systematically constructs error

regions from the data actually observed, and the data are not necessarily many.

In this chapter, 2 we propose maximum-likelihood regions (MLRs) and small-

est credible regions (SCRs), which are optimal error region for quantum state

estimations. In Sec. 3.2, we introduce the concepts of the reconstruction space

and constraints on the permissable probabilities, as well as the notion of the size

of a region, which is of importance to MLR and SCR. Then we solve the opti-

mization problems that identify the MLRs and SCRs and find their solutions in

Sec. 3.3.

2This chapter is based on Refs. [1] and [84], I sincerely acknowledge Dr. Shang and other
authors of Ref. [1].
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3.2 Ingredients of optimal error regions

3.2.1 Reconstruction space, likelihood and constraints

In a real experiment, the data we collect from the detectors are detection events,

or clicks. The Born rule links these clicks to the theoretical predictions which

quantum mechanics could tell us. Suppose the POM has K outcomes Π1, Π2, . . . ,

ΠK , which are positive Hilbert space operators with unit sum. The probability

pk for the kth outcome is

pk = tr{Πkρ} = ⟨Πk⟩ . (3.1)

The positivity of ρ and its unit trace ensure that the pks satisfy the basic con-

straints

pk ≥ 0 ,
K∑
k=1

pk = 1 . (3.2)

For the chosen POM, however, the Born rule implies further constraints on pks.

For instance, consider a single-qubit state measured by four-outcome tetrahedron

POM with probabilities [11]

p1 =
1

4
(1− z) , p2 =

1

4

(
1 +

√
8

9
y +

1

3
z

)
,

p3

p4

}
=

1

4

(
1±

√
2

3
x−

√
2

9
y +

1

3
z

)
. (3.3)

where r = (x, y, z) is the Bloch vector with x = ⟨σx⟩, y = ⟨σy⟩, and z = ⟨σz⟩.

These tetrahedron probabilities are further constrained by

0 ≤ pk ≤
1

2
,

1

4
≤

4∑
k=1

p2k ≤
1

3
, (3.4)
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which results from the fact that the length of the Bloch vector does not exceed

one: |r| ≤ 1. Generically, for high-dimensional systems (e.g., two-qubit states)

measured by many-outcome POMs, the constraints imposed by the Born rule

are not easy to state explicitly as conditions on the probability pk.

A probability p = (p1, p2, . . . , pk) is called physical or permissible if it sat-

isfies all the constraints, i.e., Eq. (3.1) holds. All the permissible probabilities

constitute the probability space. Given ρ, the probability p is uniquely deter-

mined by Eq. (3.1). The converse, however, may not be true if the POM is not

informationally complete (IC). Therefore, if there are several ρs for the same

p, we pick up one representative, and thus have a one-to-one mapping ρ ↔ p.

These representative ρs constitute the reconstruction space R0. This one-to-one

mapping identifies ρ with p, and regions in the reconstruction space with the

corresponding regions in the probability space. We should notice that, however,

it is not always possible to find a convex reconstruction space, though the prob-

ability space is convex. Thus, it is convenient to work in the probability space.

The point likelihood L(D|p) is the probability of obtaining D if p is the true

state (see Eq. (2.14)).3 Note that point likelihood L(D|p) has one important

property: log(L(D|p)) is concave. That means L(D|p) has a unique (local)

maximum value: L(D|p) takes one its largest value for the maximum-likelihood

estimator (MLE)

L(D|p)max ≡ max
p∈R0

L(D|p) ≡ L(D|p̂ml) . (3.5)

The constraints on permissible probabilities wcstr(p) is the product of ba-

3Since there is an one-to-one mapping between (permissible) probability space and recon-
struction space, i.e.,ρ ↔ p, we call p the state, and other way round. Readers should not be
confused and can distinguish them according to context.
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3.2. Ingredients of optimal error regions

sic constraints wbasic(p) and quantum constraints wqu(p) imposed by quantum

mechanics

wcstr(p) = wbasic(p)wqu(p), (3.6)

where wbacis(p), which is always contained in wcstr(p), is the product of Heaviside’s

unit step function η(·) and Dirac’s delta function δ(·)

wbasic(p) ≡ η(p1)η(p2) · · · η(pK)δ

(
K∑
k=1

pk − 1

)
, (3.7)

while the quantum constraints wqu contains the product of step functions which

are imposed by quantum mechanics. For the tetrahedron POM (see Eqs. (3.3)

and (3.4)), the quantum constraint is

wqu(p) = η

(
1

2
− p1

)
η

(
1

2
− p2

)
· · · η

(
1

2
− p4

)
η

(
1

3
−

4∑
k=1

p2k

)
. (3.8)

3.2.2 Prior probability as the size of a region

To construct a region for quantum state estimation, a important concept has to

be clarified: what is the size of a region? Consistent with the argument in [85],

we measure the size of a region by its prior probability. In other words, the size

of a region expresses the relative importance of that regions of states. We denote

by (dρ) the volume element of the infinitesimal vicinity of the state ρ in R0

(dρ) = (dp)w0(p) , (3.9)

where (dp) is the volume element of the probability space incorporating the

constraints

(dp) = dp1dp1 . . . dpK wcstr(p) , (3.10)
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Chapter 3. Error Regions for Quantum State Estimation

and w0(p) is the (unnormalized) prior density. Note that we exclude the cases of

improper priors where the prior density (dρ) cannot be normarlized. Two specific

priors are used that are non-informative . The first one is the primitive prior,

wprimitive(p) = 1, (3.11)

such that the density is uniform in p over the probability space. The second one

is the Jeffreys prior

wJeffreys(p) =
1

√
p1p2 · · · pK

, (3.12)

which is a popular choice of unprejudiced prior. Both primitive prior and Jeffreys

prior are non-informative prior in which no external prior information is available.

For a discussion of various aspects of prior selection, see Appendix A in [1].

Given the prior density w0(p), the size SR of a region R is

SR =

∫
R(dρ)∫
R0
(dρ)

=

∫
R(dp)w0(p)∫
R0
(dp)w0(p)

≡ 1

S0

∫
R
(dp)w0(p) , (3.13)

where the normalization factor S0 ≡
∫
R0
(dp)w0(p) is the size of reconstruc-

tion space R0
4. From Eq. (3.13), it is clear that SR does not depend on

the parametrization used for numerical representation of (dρ). The primary

parametrization is in terms of the probabilities p.

As an example, consider a harmonic oscillator with its infinite-dimensional

state space. Suppose the POM has two outcomes with p1 to be the probability

that oscillator is in its ground state, and p2 = 1− p1. Its probability space is the

same as that of a tossed coin. The prior density w0(p) selects the line segment

with 0 ≤ p1 = 1− p2 ≤ 1 in the p1p2 plane. First, we choose the primitive prior

(dρ) = (dp), such that the subsegment with a ≤ p1 ≤ b has size b− a. Then, for

4S0 = 1 is implied by Eq. (3.13)
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3.2. Ingredients of optimal error regions

the Jeffreys prior,

(dρ) =
1

π
(dp)wJeffreys(p) = (dp)

1

π
√
p1p2

, (3.14)

we have the size 2
π
[sin−1(

√
b)− sin−1(

√
a)] for the same subsegment.

3.2.3 Region likelihood and credibility

The joint probability of finding the state ρ in the region R and obtaining the

data D is

prob(D ∧R) = 1

S0

∫
R

(dρ)L(D|p) . (3.15)

For R = R0, the prior likelihood L(D) is

L(D) ≡ prob(D ∧R0) =
1

S0

∫
R0

(dρ)L(D|p) . (3.16)

For all the possible data D that can be observed, we have

∑
D

L(D|p) =
∑

n1,...,nK

N ! δN,n1+n2+···+nK

n1!n2! · · · nK !
pn1
1 pn2

2 · · · p
nK
K

= (p1 + p2 + · · ·+ pK)
N = 1 ,∑

D

L(D) =
1

S0

∫
R0

(dρ) = 1 , (3.17)

where the summation is over all values of the nks and the multinomial factor is

the number of sequences with the same counts of detector clicks.

Analogous to Bayes’ theorem which is

P (A ∧B) = P (A|B)P (B) = P (B|A)P (A) ,
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Chapter 3. Error Regions for Quantum State Estimation

The joint probability prob(D ∧R) can be factorized into two different ways

prob(D ∧R) = L(D|R)SR = CR(D)L(D) , (3.18)

and identify the region likelihood L(D|R)

L(D|R) = prob(D ∧R)
SR

=

∫
R(dρ)L(D|p)∫

R(dρ)
, (3.19)

and the credibility CR(D)

CR(D) =
prob(D ∧R)

L(D)
=

∫
R(dρ)L(D|p)∫
R0
(dρ)L(D|p)

. (3.20)

The region likelihood L(D|R), analogous to point likelihood L(D|p), is the prob-

ability of obtaining the data D if the state is in the region R. The credibility

CR(D) , which is the posterior probability of the region, is the probability that

the actual state is in the region R if the data D have been obtained.

3.3 Optimal error regions

3.3.1 Maximum-likelihood regions and smallest credible

regions

Equation (3.19) implies two possible candidates for the optimal error regions.

The first one is the maximum-likelihood regions (MLRs), i.e, the regions which

have the largest likelihood. Specifically, for the given size s of the region, we

maximize the region likelihood L(D|R)

max
R⊆R0

L(D|R) = L(D|R̂ml) with SR = s . (3.21)
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3.3. Optimal error regions

An unconstrained maximization of L(D|R) is not meaningful, because it gives

the limiting region that consists of nothing but the point ρ̂ml, which maximizes

the point likelihood L(D|p) (see Eq. (3.5)). Or we get the whole reconstruction

space R̂ml = R0 without any constraints. The MLR R̂ml desired is a function of

the data D and the size s. Fixing the size s, we can equivalently maximize the

joint probability prob(D ∧R) under the size constraint (see Eq. (3.18))

max
R

prob(D ∧R) = prob(D ∧ R̂ml) with SR = s . (3.22)

Based on the second way of factorizing L(D|R), we have another optimal

error regions R̂sc: smallest credible regions (SCRs). SCR is a region which

contains the actual state with high probability. Analogous to MLR, we fix the

credibility of the region, and desire that the size of the region to be smallest. For

the given data D, the optimization problem for SCR is

min
R⊆R0

SR = SR̂sc
with CR(D) = c. (3.23)

Since the credibility c is fixed and L(D) is constant (once the data D is given),

the joint probability prob(D ∧ R) is also fixed. That means the minimization

problem for SCR can be equivalently stated as

min
R⊆R0

SR = SR̂sc
with fixed prob(D ∧R). (3.24)

Therefore, MLRs and SCRs are dual to each other. For MLRs, we maximize the

joint probability for given size; for SCRs, we minimize the size for given joint

probability.
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·
·

(a)

−→
dA(ρ)

ρ
−→
δǫ(ρ)

R

R+ δR

(b)

R̂ml ∂R0

∂R̂ml

Figure 3.1: (a) Infinitesimal variation of region R. The boundary ∂R of region
R (solid line) is deformed to the boundary of region R + δR (dashed line).
−→
dA(ρ) is the vectorial surface element of ∂R at ρ, and

−→
δϵ(ρ) is the infinitesimal

displacement of ρ. (b) Dotted lines indicate ILSs. The boundary ∂R̂ml of R̂ml

can contain part of the surface ∂R0 of the reconstruction space.

3.3.2 Bounded-likelihood regions

In this section, we prove that both MLR and SCR are bounded-likelihood re-

gions (BLRs). Take the maximization problem of MLR for instance5. Consider

infinitesimal variations of a regionR by deforming its boundary. From Eq. (3.22)

we know that the fixed size of region and the maximum property of prob(D∧R)

require the the following relations,

δSR =

∫
∂R

−→
dA(ρ) ·

−→
δϵ(ρ) = 0 ,

δprob(D ∧R) =

∫
∂R

−→
dA(ρ) ·

−→
δϵ(ρ)L(D|p) = 0 ,

which are true for all possible variations about R = R̂ml (see Fig. 3.1(a)). To

satisfy the above relations at the same time, we require that L(D|p) is constant

on the boundary ∂R̂ml of R̂ml, where ∂R̂ml is an iso-likelihood surface (ILS).

Concavity of the (log-)likelihood further requires R̂ml to be the interior of this

ILS. In another case, ∂R̂ml can also contain part of the boundary of R0 (see

5Note that this conclusion is also true for the minimization problem of SCR, because of the
duality between MLR and SCR.
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3.3. Optimal error regions

- ρ

6

λ

1

λ0

R0

L(D|ρ)
/
L(D|ρ̂ml)

Rλ

Figure 3.2: Illustration of a BLR: R0 is the reconstruction space; the region Rλ

is a BLR, delineated by the threshold value λL(D|ρ̂ml); λ0 marks the minimum
ratio L(D|ρ)/L(D|ρ̂ml) over R0.

Fig. 3.1(b)). Put differently, only the part of ∂R̂ml inside R0 is an ILS. In either

case, R̂ml is a bounded-likelihood region (BLR). For the states inside BLR, their

point likelihood exceeds a certain threshold. BLRs have appeared previously in

standard statistical analysis (see [86] and references therein). It follows that the

BLRs are not only the MLRs, they are also the SCRs: each MLR is a SCR, each

SCR is a MLR.

The threshold value can be specified as a fraction λ of the maximum value

L(D|p̂ml) of the point likelihood; see Fig. 3.2. The characteristic function of a

BLR Rλ has the form

χλ(p) = η

(
L(D|p)− λL(D|p̂ml)

)
, (3.25)

and the size of Rλ is

sλ =
1

S0

∫
R0

(dρ)χλ(p). (3.26)

The size of the whole reconstruction space is sλ = s0 = 1 for λ ≤ λ0 with λ0 ≥ 0

given by minp L(D|p) = λ0 L(D|p̂ml). Increasing λ from λ0 to 1, the correspond-

ing sλ decreases monotonically from 1 to 0. As a consequence of the result

that MLRs are BLRs, the MLRs always contain the MLE. As the size de-
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Chapter 3. Error Regions for Quantum State Estimation

crease to zero s→ 0, the MLR becomes an infinitesimal vicinity of the MLE,

and L(D|R̂ml)→ L(D|p̂ml).

Analogous to sλ, the credibility of the BLR can be characterized by

cλ =
1

L(D)S0

∫
R0

(dρ)χλ(p)L(D|p), (3.27)

The credibility c specified in (3.23) is obtained for an intermediate value, and

the corresponding BLR is the looked-for SCR. It is easy to check that sλ and cλ

are linked by (see Eqs. (3.26) and (3.27))

L(D)
∂

∂λ
cλ = L(D|p̂ml)λ

∂

∂λ
sλ . (3.28)

As a result, cλ can be expressed in terms of λ and sλ
6

cλ =
λsλ +

∫ 1

λ
dλ′ sλ′∫ 1

0
dλ′ sλ′

. (3.29)

Relation (3.29) is important for computing the credibility cλ. From Eq. (3.27)

we know that the integral of cλ requires a well-tailored Monte Carlo integration

to handle the point likelihood which is usually sharply peaked. Now we only

need to evaluate sλ according to relation (3.29), such that the numerical effort is

substantially reduced. In Fig. 3.3 we demonstrate a simple geometrical meaning

of relation (3.29) in terms of areas under the graph of sλ. Therefore, the BLRs are

fully determined by the value of λ, thus can be easily reported. In addition, if one

wishes check whether a state is inside the specified error region or not, he/she

only need to compute the point likelihood L(D|p) of that state, and compare

L(D|p) with λL(D|p̂ml). See [1] for examples of the BLR of single qubit and two

qubits.

6For the derivation of Eqs. (3.28) and (3.29), see Appendix A
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Figure 3.3: Geometrical meaning of the relation (3.29) between the size sλ and
the credibility cλ. For the chosen value of λ, say λ̄, the horizontal line from (0, sλ̄)
to (λ̄, sλ̄) divides the area under the graph of sλ into the two pieces A and B
indicated in the plot. The credibility is the fractional size of the area B, that is:
cλ̄ = B/(A+B).

3.4 Summary

In this chapter, we describe the reason for why we need error regions for quantum

state estimation. As a complement, or improvement, to point estimators, region

estimators are proposed in the context of quantum estimation. In contrast to

previous work of region estimators, our method only require the data actually

observed, and there is no restrictions on the shape of the error regions.

Several notions, such as the reconstruction space and the size of a region,

are introduced which are necessary for defining the optimal error regions. Two

optimal error regions—MLRs and SCRs—are identified. We prove that both of

them are BLRs which can be easily reported as a function of intermediate value

λ and point likelihood L(D|p).

Most of the notions and conclusions mentioned in this chapter are reused

and re-expressed in the context of state-property estimation which is studied in

Chapters 4 and 5. However, the meaning of them here are quite different with the

meaning of those notions in Chapters 4, where specific difficulties and challenges

are not easy to come by, and thus it is required that a smarter algorithm for
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Chapter 3. Error Regions for Quantum State Estimation

solving the problems.
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Chapter 4

Error Regions for State-Property

Estimation: Theory

4.1 Introduction

In Chapter 3, we investigate the optimal error regions for QSE. In certain situa-

tions, however, we care much about the values of several functions of the state,

rather than the full details of the quantum state. For instance, we are interested

in the fidelity between the actual state and the target state that are supposed to

be emitted from the source. Moreover, it is generally difficult to perform high-

dimensional QSE. Therefore, a direct estimate of the few properties of interest

is more practical and more desirable than the estimate of the whole quantum

state.

We should notice that, even if we can obtain a best guess for the quantum

state, i.e., a point estimator for the quantum system, the corresponding values

of the properties of interest in that state may not be, and often are not, the

best guess for these properties. Then, we need to supplement QSE with SPE

— state-property estimation, that is: methods, procedures, and algorithms by

which one arrives at an educated guess for the properties of interest directly.

We can regard thess properties, which are the functions of the state, as param-

eters of the quantum state. Traditionally, however, the term “quantum parameter

estimation” is referred to estimation of parameters of the experimental appara-
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Chapter 4. Error Regions for State-Property Estimation: Theory

tus, such as the phase of an interferometer loop [87] and the efficiencies of the

detectors [88]. See [88] for a review of various aspects of the combined optimal

error regions for the parameters of both kinds. Another branch which is related

to the quantum parameter estimation is quantum metrology [89, 90]. Quantum

metrology is a study of providing higher resolution and sensitive measurement of

the physical parameters, such as distance, acceleration, and frequency, by using

quantum mechanics.

Several methods have been proposed for the task of direct estimation of prop-

erties of the quantum state [91–98]. A simple quantum network to directly es-

timate functions of the quantum state, such as purity and spectrum of density

operator is presented in [91]. Methods of direct detection and characterization

of quantum entanglement are proposed in [92, 93], based on positive maps sep-

arability criterion and Renyi entropy, respectively. In [96], the likelihood ratio

test is used to draw direct conclusions about entanglement. These methods,

however, are restricted to specific functions of the quantum state, or particular

settings which are hardly applicable to real tomography experiment. In a dif-

ferent viewpoint, direct and fast methods to estimate the fidelity between the

high-dimensional pure state and the actual state are studied in [94, 95, 97]. In

these works, protocols using fidelity as a measure are proposed to verify that the

state of system is the desired many-body entangled quantum state. However,

these methods usually rely on the additional symmetry of the states of interest

(e.g. Greenberger-Horne-Zeilinger (GHZ) and W states, etc.) [94,95], or assume

the state is pure [97]. By contrast, our method systematically constructs error

intervals for any properties of the quantum state without any restrictions. We

notice that Faist and Renner [98] proposes a method, which is analogous to our

proposal, for constructing error bars for quantum estimation of a figure of merit,

e.g., fidelity, on the notion of confidence region. It is, however, in contrast to our
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proposal which adopts Bayesion methodology.

As an extension of the optimal error regions for QSE (see Chapte 3), we

proposed in this chapter a systematic method for constructing optimal error in-

tervals for SPE1. These optimal error intervals, analogous to those for QSE, are

bounded-likelihood intervals (BLIs). For illustration, we only study the situation

in which a single function of the state, i.e., a single property. The results can be

generalized to the cases in which several properties exists. However, we empha-

size that these properties should be estimated jointly, because the constraints

should be taken into account .

4.2 Size and credibility of a property range

In Chapter 3, we introduced the ingredients of QSE, such as reconstruction space

R0, the prior density w0(p), the constraints wcstr, the size of a region SR, and so

on. In this chapter, we continue to employ those notions2.

The property to be estimated can be specified as a function f(p) of the

probabilities, with values between 0 and 1,

0 ≤ f(p) ≤ 1 . (4.1)

Of course, the restriction to this convenient range can be easily lifted by rescaling

the range. In fact, the property is at first a function f̃(ρ) of the quantum state

ρ. In the context of quantum estimation, ρ is parameterized by probabilities p,

such that f(p) = f̃
(
ρ(p)

)
is the implied function of p.

The iso-F hypersurfaces in probability space and the reconstruction space

1This chapter and Chapter 5 are based on Ref. [99], I sincerely acknowledge the contributions
from the other authors of Ref. [99]

2Note that SR0 =
∫
R0

(dρ) = 1 is implied in this chapter.
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Figure 4.1: Schematic sketch of a sector in the probability space or the recon-
struction space. The wave-like lines indicate iso-F hypersurfaces; any two lines
mark the boundaries of an F interval, a region specified by a range of F val-
ues. The thicker red lines mark the borders of a smallest credible interval (SCI).
The dashed red line inside the SCI indicates the hypersurface of the maximum-
likelihood estimator F̂ml. The purple cross marks the maximum-likelihood es-
timator ρ̂ml of the quantum state, with the closed purple curve marking the
boundary of the smallest credible region (SCR) with the same credibility as the
SCI. Eq. (4.34) states that the purple cross is usually not on the dashed red line,
as the plot shows. Note that the SCR contains F values from a larger range than
the SCI; see also Fig. 5.4 .

are identified by a given value F = f(p). Therefore, an interval F1 ≤ f(p) ≤ F2

corresponds to a region; see Fig. 4.1 for illustration. Such a region has size

∫
R0

(dρ)
[
η
(
F2 − f̃(ρ)

)
− η
(
F1 − f̃(ρ)

)]
=

∫
(dp)w0(p)

[
η
(
F2 − f(p)

)
− η
(
F1 − f(p)

)]
=

∫
(dp)w0(p)

∫ F2

F1

dF δ
(
F − f(p)

)
(4.2)
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4.2. Size and credibility of a property range

and credibility

1

L(D)

∫
R0

(dρ)L(D|p)
[
η
(
F2 − f̃(ρ)

)
− η
(
F1 − f̃(ρ)

)]
=

1

L(D)

∫
(dp)w0(p)L(D|p)

∫ F2

F1

dF δ
(
F − f(p)

)
, (4.3)

The size of prior element dF W0(F ) in F for an infinitesimal slice,

F ≤ f(p) ≤ F + dF , is

dF W0(F ) =

∫
(dp)w0(p) dF δ

(
F − f(p)

)
, (4.4)

which implies the prior density of F 3

W0(F ) =

∫
(dp)w0(p) δ

(
F − f(p)

)
. (4.5)

In addition, the credibility Eq. (4.3) tells us the likelihood L(D|F ) of the data

for given property value F and data D,

1

L(D)
dF W0(F )L(D|F ) =

1

L(D)

∫
(dp)w0(p)L(D|p) dF δ

(
F − f(p)

)
, (4.6)

where the likelihood L(D|F ) is

L(D|F ) =

∫
(dp)w0(p)L(D|p) δ

(
F − f(p)

)
W0(F )

=
WD(F )

W0(F )
, (4.7)

here we denote the posterior density by WD(F ), such that we have

WD(F ) = W0(F )L(D|F ). (4.8)

3Notice the difference between that and the prior density in the probability space w(p).
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Chapter 4. Error Regions for State-Property Estimation: Theory

To avoid any potential confusion with the likelihood L(D|p), we shall call L(D|F )

the F -likelihood.

The size of a finite interval of F values, or the union of such intervals, denoted

by the symbol I, is specified in terms of W0(F ) and L(D|F )

SI =

∫
I
dF W0(F ) (4.9)

Analogously, the credibility is

CI =
1

L(D)

∫
I
dF W0(F )L(D|F ) =

1

L(D)

∫
I
dF WD(F ) , (4.10)

where

L(D) =

∫
I0
dF W0(F )L(D|F ) =

∫
I0
dF WD(F ) (4.11)

has the same value as the integral of Eq. (3.16). Denote by I0 the whole property

space of 0 ≤ F ≤ 1, such that SI0 = CI0 = 1 holds.

From another point of view, the F -likelihood L(D|F ) can be derived as the

derivative of the interval likelihood, the conditional probability

L(D|I) =
Pr
(
D ∧ {F ∈ I}

)
Pr(F ∈ I)

=
1

SI

∫
(dp)w0(p)L(D|p)

∫
I
dF δ(F − f(p))

=
1

SI

∫
(dp)w0(p)

W0(F )

W0(F )
L(D|p)

∫
I
dF δ(F − f(p))

=
1

SI

∫
I
dF W0(F )

1

W0(F )

∫
(dp)w0(p)L(D|p)δ(F − f(p)) .(4.12)

If we now define the F -likelihood by the requirement

L(D|I) = 1

SI

∫
I
dF W0(F )L(D|F ) , (4.13)
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4.3. F -likelihood and its properties

then the expression for L(D|F ) in Eq. (4.7) is recovered.

4.3 F -likelihood and its properties

In Chapter 3, the prior density w0(p) and point likelihood L(D|F ) are central

for the constructing the optimal error regions for QSE. Given the data D, the

BLRs can be easily reported by the characteristic function in which the threshold

value is specified by a fraction λ of the maximum values L(D|p̂ml) of the point

likelihood L(D|F ) (see Eq. (3.25)). This conclusion still holds for constructing

the BLIs for SPE. In this section, we study the F -likelihood and its properties.

4.3.1 Free choice of prior

We know that the point likelihood L(D|p) does not depend on the prior density

w0(p). Therefore, the following question arises: Does the F -likelihood L(D|F )

depends on the prior density W0(F )? The answer is no.4

Assume we have the prior density w0(p) on the hypersurface where f(p) = F ,

w0(p)
∣∣∣
f(p)=F

= W0(F )uF (p) , (4.14)

where the implied prior density uF (p) assigns relative weights of ps on the iso-F

hypersurface. The uF (p) is normalized

∫
(dp)uF (p) δ(F − f(p)) = 1 , (4.15)

4Note, however, that the F -likelihood depends on the reference prior wr(p) , see below for
further information.
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Chapter 4. Error Regions for State-Property Estimation: Theory

which results from the fact that w0(p) and W0(F ) are also normalized

∫
(dp)w0(p) = 1 ,

∫ 1

0

dF W0(F ) = 1 , (4.16)

From a different point of view, let us start from the prior density of the property

W0(F ). That means we can choose W0(F ) as we like. Now we introduce the prior

density uf(p), which can be independently chosen, on the iso-F hypersurfaces.

Since F is the coordinate in p-space that is normal to the iso-F hypersurfaces

(see Fig. 4.1), the prior density w0(p) on the whole probability space can be

re-defined by these two prior densities

w0(p) = W0

(
f(p)

)
uf(p)(p) . (4.17)

The restriction to a particular value of f(p) takes us back to Eq. (4.14), as it

should.

Given the definition of the the F -likelihood (see Eq. (4.7)) and a prior density

of the form Eq. (4.17), the F -likelihood can be specified in the following

L(D|F ) =
1

W0(F )

∫
(dp)w0(p)L(D|p)δ

(
F − f(p)

)
=

∫
(dp)uF (p)L(D|p)δ

(
F − f(p)

)
(4.18)

which tells us that L(D|F ) does not depend on W0(F ), but is solely determined

by uF (p). In practice, we begin with some reference prior density wr(p), then

the iso-F prior density are chosen to be

uF (p) =
wr(p)

∣∣∣
f(p)=F∫

(dp′)wr(p
′) δ
(
F − f(p′)

) (4.19)
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4.3. F -likelihood and its properties

that we shall use throughout, such that

w0(p) =
wr(p)W0(f(p))∫

(dp′)wr(p
′) δ
(
f(p)− f(p′)

) (4.20)

is the corresponding prior density for the W0(F ) of our liking. As we mentioned

in Chapter 3, the normalization of wr(p) is not important; more generally yet,

the replacement wr(p)→ wr(p)g
(
f(p)

)
with an arbitrary function g(F ) > 0 has

no effect on the right-hand sides of Eq. (4.19), Eq. (4.20), as well as Eq. (4.21)

below.

4.3.2 Two ways to define the F -likelihood

From Eqs. (4.18) and (4.19), the F -likelihood L(D|F ) can be expressed in terms

of the reference prior wr(p)

L(D|F ) =

∫
(dp)wr(p) δ

(
F − f(p)

)
L(D|p)∫

(dp)wr(p) δ
(
F − f(p)

)
=

Wr,D(F )

Wr,0(F )
, (4.21)

here we denote by Wr,D(F ) and Wr,0(F ) numerator and denominator in Eq. (4.21)

Wr,0(F ) =

∫
(dp)wr(p) δ

(
F − f(p)

)
, (4.22)

and

Wr,D(F ) =

∫
(dp)wr(p)L(D|p) δ

(
F − f(p)

)
, (4.23)
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Chapter 4. Error Regions for State-Property Estimation: Theory

respectively5. Generally, the difference between w0(p) and wr(p) determines the

fact that

W0(F ) ̸= Wr,0(F ) and WD(F ) ̸= Wr,D(F ). (4.24)

Note, the F -likelihood L(D|F ) is defined in two different ways — Eqs. (4.7)

and (4.21). For Eq. (4.7), the prior density in the integral is w0(p), while for

Eq. (4.21), wr(p) is employed in the integration. It is easy to verify that these

two definition are equivalent to each other: From Eqs. (4.7) and (4.20), we have

the F -likelihood.

L(D|F ) =
WD(F )

W0(F )

=

∫
(dp)w0(p) δ

(
F − f(p)

)
L(D|p)∫

(dp)w0(p) δ
(
F − f(p)

)
=

∫
(dp)wr(p)W0(f(p)) δ

(
F − f(p)

)
L(D|p)∫

(dp)wr(p)W0(f(p)) δ
(
F − f(p)

)
=

∫
(dp)wr(p)W0(F ) δ

(
F − f(p)

)
L(D|p)∫

(dp)wr(p)W0(F ) δ
(
F − f(p)

)
=

W0(F )

W0(F )

∫
(dp)wr(p) δ

(
F − f(p)

)
L(D|p)∫

(dp)wr(p) δ
(
F − f(p)

)
=

Wr,D(F )

Wr,0(F )
, (4.25)

which is exactly Eq. (4.21).

5See Sec. 5.2 for further information.
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4.3. F -likelihood and its properties

In practice, it is more convenient to start from the reference priors wr(p). In

the examples in Chapter 5, we employ two different reference priors wr(p): the

primitive prior and the Jeffreys prior (see Eqs. (3.11) and (3.12)).

While the F -likelihood is the same for all W0(F ), it is usually different for

different uF (p)s and thus for different wr(p)s. However, analogous to the state-

ments in Chapter 3, the data dominate rather than the priors unless the data

are too few. It is because, for sufficiently many data, the point likelihood L(D|p)

is narrowly peaked in probability space such that it will be essentially vanishing

outside a small region within the iso-F hypersurface. Then it does not matter

which reference prior is used.

4.3.3 The properties of the F -likelihood

From the definition of the F -likelihood (see Eq. (4.7)), we know that L(D|F )

depends on the reference prior wr(p) (and w0(p)), the function of state f(p) and

point likelihood L(D|p). Obviously, the F -likelihood L(D|F ) is different from the

point likelihood L(D|p), and it is difficult to determine the properties of L(D|F ).

However, there are two important properties which should be paid attention to.

Property 1: The F -likelihood L(D|F ) is positive.

Since w0(p) (wr(p)) and L(D|p) are positive, the denominator and numerator

in Eq. (4.7) (Eq. (4.21)) are positive, thus it holds for F -likelihood L(D|F ).

Property 2: The F -likelihood L(D|F ) may not be concave.

It is well known that lnL(D|p) is concave, while it may not be true for

L(D|F ). For illustration, we take squared fidelity of one-qubit state as example.

Example: incomplete single-qubit tomography for squared fidelity

The three-outcome trine measurement is chosen to be the tomographic measure-
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Chapter 4. Error Regions for State-Property Estimation: Theory

ment [100], with the POM

M1 =
1

3
(1+ σz) ,

M2

M3

}
=

1

3

(
1±
√
3

2
σx −

1

2
σz

)
. (4.26)

According to the Born rule, the probabilities for the trine outcomes are

p1 =
1

3
(1 + z) ,

p2

p3

}
=

1

3

(
1±
√
3

2
x− 1

2
z

)
, (4.27)

where r = (x, z) is the two-dimensional Bloch vector with x = ⟨σx⟩ and z = ⟨σz⟩.

The squared fidelity

Fsq = tr{|√ρ√ρtar|}2 (4.28)

is the measure of overlap between the true state ρ and the target state ρtar. Here

we choose the target state ρtar = |0⟩⟨0|, such that Fsq = 1
2
(1 + z). To derive

L(D|Fsq), we employ the primitive prior wprimtive. During the integration, we

transfer from p-coordinate system to xz coordinate system. Then, the denomi-

nator Wr,0(Fsq) in Eq. (4.21) is

Wr,0(Fsq) =

∫
(dp) δ

(
Fsq −

1

2
(1 + z)

)
=

1

π

∫
x2+y2≤1

dx dy δ
(
Fsq −

1

2
(1 + z)

)
=

2

π

∫ 2
√

Fsq(1−Fsq)

−2
√

Fsq(1−Fsq)

dx =
8

π

√
Fsq(1− Fsq). (4.29)

Suppose the clicks of trine outcome is (n1, n2, n3) = (1, 1, 1), then the numer-

ator Wr,D(Fsq) is
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0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

Squared Fideltiy Fsq

Figure 4.2: The graph of Fsq-likelihood L(D|Fsq) (Eq. (4.31)). It is obvious that
this cubic polynomial function is neither concave nor convex.

Wr,D(Fsq) =

∫
(dp) p1p2p3 δ

(
Fsq −

1

2
(1 + z)

)
=

32

5π

√
Fsq(1− Fsq)Fsq

(
8(1− Fsq)

2 + 1
)
. (4.30)

Therefore, the F -likelihood, which is the ratio of Wr,D(Fsq) and Wr,0(Fsq), is

L(D|Fsq) =
Wr,D(Fsq)

Wr,0(Fsq)

=
4

5
Fsq

(
8(1− Fsq)

2 + 1
)
. (4.31)

Figure 4.2 shows the F -likelihood of the squared fidelity Fsq (with respect to |0⟩)

for the primitive prior with the data D = (1, 1, 1). As a particular example, this

cubic polynomial function of Fsq (Eq. (4.31)) is neither concave nor convex. In

the examples in Chapter 5, however, the F -likelihoods L(D|F ) of the properties

are unimodal concave functions.
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Chapter 4. Error Regions for State-Property Estimation: Theory

4.4 Optimal error intervals

Even if the F -likelihood L(D|F ) may not be concave, the maximum-likelihood

estimator F̂ml exists

max
F
{L(D|F )} = L(D|F̂ml) . (4.32)

As we mentioned in Sec. 4.1, the value of f̃(ρ) for point estimators of the quan-

tum state is different from the corresponding estimators for state-property. For

example, the maximum-likelihood estimator ρ̂ml for the quantum state is

ρ̂ml = ρ(p̂ml) with max
p
{L(D|p)} = L(D|p̂ml) . (4.33)

In general, however, the function f̃(ρ) for MLE of the state is not equal to SPE

for the property estimated

f̃(ρ̂ml) ̸= F̂ml . (4.34)

In full analogy to the OERs for QSE in Chapter 3, the optimal error inter-

vals (OEIs) for property of states F = f̃(ρ) = f(p) are the bounded-likelihood

intervals (BLIs) specified by

Iλ =
{
F
∣∣ L(D|F ) ≥ λL(D|F̂ml)

}
with 0 ≤ λ ≤ 1 . (4.35)

However, we should notice the difference between the OERs for QSE and the

OEIs for SPE. Since the point likelihood L(D|p) is concave, the OER for QSE is

always connected. However, for the OEIs for SPE, it may not be true, because

the F -likelihood may not be concave; see Fig. 4.2. In other words, the OEIs

can be a union of finite intervals.

Analogous to the BLR and SCR, the maximum-likelihood interval (MLI)

ÎML is the BLI with the given size s = SIλ ≡ sλ, while the smallest credible

interval (SCI) ÎSC is the BLI with the given credibility c = CIλ ≡ cλ. We
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4.4. Optimal error intervals

have Iλ ⊆ I0, sλ ≤ s0 = 1, and cλ ≤ c0 = 1 for λ ≤ λ0, with λ0 ≥ 0 given by

minF L(D|F ) = λ0L(D|F̂ml). As λ increases from λ0 to 1, sλ and cλ decreases

monotonically from 1 to 0. Again, we have the link between sλ and cλ, which is

exactly same as that for BLRs for QSE (see Eq. (3.29)) 6,

cλ =

λsλ +

∫ 1

λ

dλ′ sλ′∫ 1

0

dλ′ sλ′

. (4.36)

Note, however, that the link between cλ and sλ here is not as important as the

one in Chapter 3. In Chapter 3, given λ and point likelihood L(D|p), cλ can be

computed without much numerical effort. In the context of SPE, F -likelihood

L(D|F ) is required to compute cλ. However, to compute L(D|F ), we need to

evaluate the numerator Wr,D(F ) in Eq. (4.21), in which a sophisticated MC

integration is required to handle the sharply peaked point likelihood L(D|p).

Once the F -likelihood L(D|F ) is given, it is easy to find the MLIs and the

SCIs. Compared with MLI, we are more interested in the SCI for the desired

credibility c: The actual value of F is contained in this SCI with probability c.

Each BLI, with given credibility or size, reports an error bar on F̂ml in which is

the maximum-likelihood estimator for SPE.

6See Appendix A as a reference.
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Chapter 5

Error Regions for State-Property

Estimation: Numerical

5.1 Introduction

In chapter 4 we introduced several notions: the size element Eq. (4.4), the credi-

bility element Eq. (4.6), and the F -likelihood Eq. (4.7) (or Eq. (4.21)) which are

of importance for the construction of error intervals for F . However, we should

notice that, in general, these integrals cannot be integrated analytically. Put

differently, the integrals involved are usually high-dimensional, such that they

can only be computed numerically by Monte Carlo (MC) methods. Moreover, to

compute L(D|F ), we need to obtain Wr,0(F ) and Wr,D(F ) at the first step. The

problem is that the numerical values for Wr,0(F ) and Wr,D(F ) are zeros for a

finite interval, while the analytical values should be positive (but close to zero).

Then, as the ratio of Wr,D(F ) and Wr,0(F ), the F -likelihood will be infinite, or

undefined at that interval. Such a situation should be avoided.

In this chapter, we provide an efficient numerical algorithm that solves the

high-dimensional integrals for the size, credibility and F -likelihood. In Sec. 5.2,

we describe a iteration algorithm which provides us a proper approximation

for Wr,0(F ) and Wr,D(F ). We illustrate the matter by a simulated single-qubit

experiment in Sec. 5.3, where the fidelity (with respect to target state) and purity

are studied as examples. In Sec.5.4 the CHSH quantity of a two-qubit state are
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investigated, and the SCIs for fix-vectors and optimized CHSH quantity are

reported.

5.2 Numerical procedures

5.2.1 Numerical integrals for the size and credibility

Obviously, the integrands in Eqs. (4.22) and (4.23), in which the delta-function

factors exist, are not suitable for a MC integration. Rather, we consider the

antiderivatives which contain the step function

Pr,0(F ) =

∫
(dp)wr(p) η

(
F − f(p)

)
(5.1)

and

Pr,D(F ) =
1

L(D)

∫
(dp)wr(p)L(D|p) η

(
F − f(p)

)
. (5.2)

These are the prior and posterior contents of the interval 0 ≤ f(p) ≤ F for the

reference prior with density wr(p).

At first, we focus on the denominator Wr,0(F ) (see Eq. (4.22)). Using the

Hamiltonian Monte Carlo sampling described in [101] and [102], we sample the

probability space in accordance with the prior wr(p) and due attention to wcstr(p)

of Eq. (3.6). Since the size of the random sample is finite, the resulting numerical

values contain fluctuations. Moreover, certain regions in the probability space

cannot be reached, because that the size is finite. Then, the integration values

are zero, while the analytical values should not be. Therefore, as we mentioned

earlier, we cannot differentiate this numerical approximation of Pr,0(F ). The

solution is: Fit a several-parameter smoothing function to the values produced

by the MC integration, and then differentiate this function and so arrive at an

approximation W̃r,0(F ) for Wr,0(F ).
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5.2.2 Candidates for the approximation function

Before we choose the approximation function, we should (roughly) know what

properties Pr,0(F ) and Pr,D(F ) posses. That sheds light on which kind of func-

tion should be adopted as the candidate of fitting function. From Eq. (5.1)

(Eq. (5.2)), we know that Pr,0(F ) (Pr,D(F )) is monotonically increasing. Put

differently, Wr,0(F ) (Wr,D(F )), as the derivative of the Pr,0(F ) (Pr,D(F )), is non-

negative function. In addition, Pr,0(F ) (Pr,D(F )) should be a smooth function,

i.e., at least the third order derivative of Pr,0(F ) (Pr,D(F )) should be continuous.

Therefore, we should choose the approximation function which satisfy the prop-

erties mentioned above. What is more, the approximation function should posses

great flexibility to fit any monotonically increasing function. In the following,

we list several candidates which are commonly used as the fitting model, and

discuss the pros and cons of each candidate function.

Candidate 1: Polynomial function

A polynomial of degree n is a function of the form

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x

1 + a0 , (5.3)

where the a’s are real numbers. A polynomial function is called quadratic for

n = 2, cubic for n = 3, and so on. It is often used for approximating other

functions. The main advantage is that the approximation using this class of

functions can be performed easily. However, a polynomial function is not a

reliable approximation for Pr,0(F ), because the polynomial extrapolation usually

yields unusable values, i.e., negative values which are not allowed.

Candidate 2: Fourier series

Fourier series is a way to represent a (wave-like) function as the sum of simple

sine waves. The study of Fourier series is a branch of Fourier analysis, which is
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widely used in digital analysis. The main benefit of Fourier series is that it is

easy to perform computationally. However, analogous to polynomial function,

extrapolation using the Fourier series also yields negative values.

Candidate 3: Rational polynomial function

Rational polynomial function, also called rational function, has the form

y(x) =
anx

n + an−1x
n−1 + · · ·+ a2x

2 + a1x
1 + a0

bmxm + bm−1xm−1 + · · ·+ b2x2 + b1x1 + b0
, (5.4)

where n and m are non-negative integers and define the degree of the numer-

ator and denominator, respectively. This class of function is commonly used

in the curve fitting, because it can take extremely wide range of shapes and

has better interpolation properties than the polynomial functions. However, the

unconstrained rational function may not be monotonically increasing, thus the

Wr,0(F ) is negative. In addition, it is usually difficult to find adequate starting

values for the fitting.

Candidate 4: Cubic spline interpolation

A spline is numeric function which is piecewise-defined by polynomial func-

tions. A common choice is cubic spline. The flexility of spline interpolation

makes sure that the fitting function pass through each point in the list of MC

integration values. However, since the size of the sample is finite, the MC in-

tegration is not precise enough to distinguish Pr,0(F ) & 0 from Pr,0(F ) = 0 or

Pr,0(F ) . 1 from Pr,0(F ) = 1 for some finite ranges. In such case, it is possible

that the cubic spline extrapolation yield negative values. See Fig. 5.1 for illus-

tration. Even if we can avoid this negative-value extrapolation by using cubic

Hermite interpolating polynomial instead, the derivative of Pr,0(F ), i.e., Wr,0(F )

is zero value in a finite range. That should be avoided: Since Wr,0(F ) is the

denominator of L(D|F ), the zero values of Wr,0(F ) result in infinite values of

L(D|F ). Such a case is not allowed.
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Candidate 5: Cumulative distribution function

Since Pr,0(F ) is monotonically increasing, cumulative distribution function

(CDF) is implied as one possible class of fitting functions for approximating

Pr,0(F ). The probability density function, which is the derivative of CDF, is a

reasonable choice for approximating Wr,0(F ) which is positive. Among the CDFs,

the regularized incomplete beta function (RIBF) has the great flexibility1

Ia,b(x) =
Ba,b(x)

B(a, b)

=

∫ x

0
ta−1 (1− t)b−1dt∫ 1

0
ta−1 (1− t)b−1dt

, (5.5)

where Ba,b(x) is the incomplete beta function, and B(a, b) is the beta function

B(a, b) =
(a− 1)!(b− 1)!

(a+ b− 1)!
. (5.6)

To increase the flexibility, the approximation function P̃r,0(F ) consists of several

RIBFs

P̃r,0(F ) = w1 Ia1,b1(F ) + w2 Ia2,b2(F ) + · · ·+ wn Ian,bn(F ) , (5.7)

with the unit-sum weights
∑n

i=1wi = 1. The number of RIBFs depends on the

MC integration values. In principle, the more fitting parameters {wi, ai, bi} we

have, the better is the goodness of the fitting. In practice, however, we use up

to six RIBFs for the approximation function P̃r,0(F ). See Secs. 5.3 and 5.4 for

illustration.

1Notice that the notation here is analogous to, but different with, those in Eqs. (5.44) and
(5.61).
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Figure 5.1: The cubic spline extrapolation for an array of values of MC inte-
grations. The blue dots are the array of eight values in which seven values are
zero. The red line is the fitting curve of a cubic spline, which yields negative
interpolation values.

5.2.3 Iterative algorithm for judging the quality of approx-

imation

After we decide the fitting function for the approximation, here comes one im-

portant question: How can we judge the quality of this approximation? Here,

we exploit the flexibility offered by Eq. (4.20) for the purpose. Assume we have

chosen a certain prior density W0(F ), 2 such that the corresponding prior density

of the probability is

w0(p) =
wr(p)W0(f(p))∫

(dp′)wr(p′) δ
(
f(p)− f(p′)

) . (5.8)

2The prior density W0(F ) should be nonzero everywhere, except perhaps at few isolated
points.
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Therefore, the antiderivative of the integral in Eq. (4.4) yields

P0(F ) =

∫
(dp)w0(p) η

(
F − f(p)

)
=

∫
(dp)

wr(p)W0

(
f(p)

)
Wr,0

(
f(p)

) ∫ F

0

dF ′ δ
(
F ′ − f(p)

)
=

∫ F

0

dF ′ W0(F
′)

Wr,0(F ′)

∫
(dp)wr(p) δ

(
F ′ − f(p)

)
=

∫ F

0

dF ′ W0(F
′)(5.9)

upon recalling Eq. (4.22).

Now we start from the approximation w̃0(p) = wr(p)W0

(
f(p)

)/
W̃r,0

(
f(p)

)
,

such that the approximation P̃0(F ) for P0(F ) is

P̃0(F ) =

∫
(dp) w̃0(p) η

(
F − f(p)

)
=

∫ F

0

dF ′ Wr,0(F
′)

W̃r,0(F ′)
W0(F

′) . (5.10)

If P̃0(F ) ≃
∫ F

0
dF ′ W0(F

′) is sufficiently accurate, it means that W̃r,0(F ) approx-

imates Wr,0(F ) well. If it is not, an approximation W̃0(F ) for
∂

∂F
P̃0(F ) pro-

vides W̃r,0(F )
∣∣∣
new

= W̃r,0(F )W̃0(F )/W0(F ), which improves on the approxima-

tion W̃r,0(F ). However, we should notice that W̃r,0(F ) cannot be exactly equal to

Wr,0(F ), because the integral in Eq. (5.10) also requires a MC integration with

its intrinsic fluctuations.

In the following, we describe the essence of an iteration algorithm for succes-

sive approximations of Wr,0(F ). Since the F -likelihood L(D|F ) does not depend

on the prior W0(F ), we can choose W0(F ) = 1 so that P0(F ) = F in Eq. (5.9),

and the nth iteration of the algorithm consists of these steps:

S1 For given W
(n)
r,0 (F ), sample the probability space in accordance with the prior

w
(n)
0 (p) = wr(p)/W

(n)
r,0

(
f(p)

)
.

S2 Use this sample for a MC integration of

P
(n)
0 (F ) =

∫
(dp)w

(n)
0 (p) η

(
F − f(p)

)
.

55



Chapter 5. Error Regions for State-Property Estimation: Numeric

S3 Escape the loop if P (n)
0 (F ) ≃ F with the desired accuracy.

S4 Fit a suitable several-parameter function to the MC values of P (n)
0 (F ).

S5 Differentiate this function to obtain W
(n)
0 (F ) ≃ ∂

∂F
P

(n)
0 (F ); update

n→ n+ 1 and W
(n)
r,0 (F )→ W

(n+1)
r,0 (F ) = W

(n)
r,0 (F )W

(n)
0 (F ); return to step S1.

The sampling in step S1 consumes most of the CPU time in each round of

iteration. In each round, the step S2 is important, because it updates W (n)
0 (F )→

W
(n+1)
r,0 (F ) for the next round of iteration. Therefore, for each round, we require

the size of the sample to be sufficiently large. Once the accuracy of approximation

is close to the one we desire, we can increase the sample size in the last iteration

to get a better approximation.

Analogous to the above iterations algorithm for Wr,0(F ), we compute the nu-

merator Wr,D(F ) in Eq. (4.21). The same iteration algorithm for works Wr,D(F )

by simply replacing W
(n)
r,0 (F )→W

(n)
r,D(F ) and wr(p)→ wr(p)L(D|p). Eventually,

we get the F -likelihood,

L(D|F ) =
Wr,D(F )

Wr,0(F )
, (5.11)

and can then proceed to determine the BLIs of Sec. 4.4.

In practice, it is not really necessary to iterate until P (n)
0 (F ) equals F to a

very high accuracy. As long as W
(n)
r,0 (F ) is reliable over the whole range from

F = 0 to F = 1, we escape the loop and record the corresponding w
(n)
0 (p). Then

we sample in accordance with the posterior density ∝ w
(n)
0 (p)L(D|p), and fit

W
(n)
r,D(F ) to provide a reliable posterior density W

(n)
r,D(F ), and so we obtain the

F -likelihood of (5.11). Regarding the fitting of a several-parameter function in

step S4, we note that, usually, a truncated Fourier series of the form

P
(n)
0 (F ) ≃ F + a1 sin(πF ) + a2 sin(2πF ) + a3 sin(3πF ) + · · · , (5.12)
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with the amplitudes a1, a2, a3, . . . as the fitting parameters, is a good choice,

possibly modified such that the known properties of P (n)
0 (F ) are properly taken

into account. These matters are illustrated by the examples in Sec. 5.4; see, in

particular, Fig. 5.6.

5.3 Example: One qubit

We consider the single-qubit situation as a first illustration. The state of a qubit

can be specified as

ρ(r) =
1

2
(1+ r · σ), (5.13)

where σ = (σx, σy, σz) is the vector of Pauli operators, and r = (x, y, z) is the

Bloch vector with x = ⟨σx⟩, y = ⟨σy⟩, and z = ⟨σz⟩. Tetrahedron POM is em-

ployed (see Eq. (3.3))

Πk =
1

4
(1+ ak · σ) with k = 1, 2, 3, 4 . (5.14)

As an example of IC POM, the tetrahedron measurement can uniquely determine

the qubit. In other words, there is a unique mapping between probability p and

density matrix ρ, namely

r = 3
4∑

k=1

pkak . (5.15)

This tomographic completeness is useful for our discussion, since it permits both

the estimation of a parameter of interest directly from the pks, as well as esti-

mating that parameter by first estimating the density operator ρ; see Sec. 5.3.2.

5.3.1 SCIs for fidelity and purity

Here we take two properties of the state for example: the fidelity with respect

to some target state, and the normalized purity. Both have values between 0
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and 1, so that the concepts and tools of the preceding sections are immediately

applicable.

The fidelity3

ϕ = tr{|√ρ√ρtar|} (5.16)

is a measure of overlap between the actual state ρ and the target state ρtar.

Assume the vector r is the Bloch vector for ρ and t = tr{σρtar} is that for

ρtar, such that the fidelity can be expressed in the following form

ϕ =

[
1

2
(1 + r · t) + 1

2

√
1− r2

√
1− t2

] 1
2

≥
√

1− t

2
, (5.17)

where r = |r | and t = |t |, and the lower bound is reached for r = −t/t. If we

choose the target state to be |tar⟩ = |0⟩, then the fidelity is a function of only

the z-component of r , namely ϕ =
[
1
2
(1 + z)

] 1
2 .

The purity tr{ρ}2 is a measure of the mixedness of a state, with values be-

tween 1
2

(for the completely mixed state) and 1 (for pure states). To linear-

ly rescale the range from [1
2
, 1] to [0, 1], we define the normalized purity by

γ = 2 tr{ρ2} − 1, so that γ = r2 is simply the squared length of the Bloch vector.

By using the relation in Eq. (5.15), we express the fidelity (with respect to |0⟩)

and normalized purity in terms of the probabilities p

ϕ(p) =
√

1− 2p1 and γ(p) = 12
4∑

k=1

p2k − 3, (5.18)

respectively.

The state ρ = 1
2
(1+ 0.9 σz) is used to generate the data in the simulation.

This state has fidelity Φ =
√
0.95 = 0.9747 (for target state |0⟩) and normalized

purity Γ = 0.81 — the “true” values for the two parameters to be estimated from

3Also called square root fidelity in some literatures.
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(a) Fidelity & Jeffreys prior (b) Normalized purity & primitive prior
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Figure 5.2: Single-qubit fidelity (with respect to |0⟩) and normalized purity for
a simulated tetrahedron measurement of 36 copies. Top plots: The Φ-likelihood
L(D|Φ) and the Γ-likelihood L(D|Γ) for, respectively, the Jeffreys prior and
the primitive prior on the probability space. Bottom plots: The size sλ (cyan
curves) and the credibility cλ (green curves) for BLIs as functions of λ, for (a)
fidelity and the Jeffreys prior; (b) normalized purity and the primitive prior. The
black dots mark values obtained from the Hamiltonian Monte Carlo algorithm
for evaluating the size and credibility integrals. The cyan lines are fitted to the
sλ values using a Padé approximant, while the green lines for cλ are obtained
from the cyan lines with the aid of Eq. (4.36).

the data4. 36 copies of this state are measured by the tetrahedron measurement,

and gave data D = (n1, n2, n3, n4) = (2, 10, 11, 13), where nk is the number of

clicks registered by the detector for measurement outcome Πk.

4Recall that lower-case letters (here ϕ, γ) stand for functions on the probability space, and
upper-case letters (here Φ,Γ) are for the function values that label the hypersurfaces.
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Figure 5.3: Optimal error intervals for (a) fidelity Φ (with respect to |0⟩), and (b)
normalized purity Γ, for a qubit state probed with the tetrahedron measurement.
The red curves are for the primitive prior; the blue curves are for the Jeffreys
prior. These curves delineate the boundaries of the SCIs for different credibility
values; the cusps are located at the maximum-likelihood estimates Φ̂ml and Γ̂ml,
respectively. For illustration, the SCIs for credibility 0.8 are the intervals indi-
cated by the black bars. The true values of Φ = 0.9747 and Γ = 0.81, marked
by the down-pointing arrows (↓), happen to be inside these SCIs; this will be
so for 80% of all cases when the simulation is repeated very often for many dif-
ferent true states. Although, only N = 36 qubits are measured in the simulated
experiment, the SCIs are almost the same for the two priors.

Since the quantum constraint for the single-qubit case is simple, the induced

priors W0(Φ) and W0(Γ), both for the primitive prior Eq. (3.11) and the Jeffreys

prior Eq. (3.12), can be obtained by an analytical evaluation of Eq. (4.22). The

top plots in Fig. 5.2 report the F -likelihoods L(D|Φ) and L(D|Γ) thus obtained

for the Jeffreys prior and the primitive prior, respectively.

The size sλ and the credibility cλ for the resulting BLIs, computed from

these F -likelihoods together with the respective induced priors, are shown in

the bottom plots in Fig. 5.2. The dots mark values obtained by numerical

integration that employs the Hamiltonian Monte Carlo algorithm [102]. The

green curves through the credibility points, which is obtained by integrating over

the cyan curve fitted to the size points, demonstrate the relation in Eq. (4.36)

between sλ and cλ.
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In Fig. 5.3, we report the SCIs for fidelity Φ and normalized purity Γ, both

for the primitive prior (red lines) and for the Jeffreys prior (blue lines). The

horizontal interval between the two branches of the curves is the SCI with a

specific credibility; see the examples for c = 0.8 marked on the plots. In Fig. 5.3,

we observe that even for N = 36 copies of the state measured, the choice of prior

has little effect on the SCIs. Put differently, our conclusions are dominated by

the data (not necessarily many), not by the choice of prior.

5.3.2 Direct and indirect estimation of state properties

In Sec. 4.1, we mentioned that the best guess for the propertiies of interest

may not, and often does not, come from the best guess for the quantum state

(see [73]). In the context of error intervals, we compare the two approaches

for our qubit example. On the one hand, we construct the error intervals by

directly estimating the value of the property from the data, as we have done

in the previous section. On the other hand, we first construct the error regions

(SCRs specifically; see [1]) for the quantum state, then the error interval for the

desired property is given by the range of property values for the states contained

in the error region of states (see Fig. 4.1 for illustration). We refer to the two

respective approaches as direct and indirect state-property estimation, with the

abbreviations of DSPE and ISPE.

In Fig. 5.4, the ORIs for fidelity Φ and normalized purity Γ for the single-

qubit data of Figs. 5.2 and 5.3 are demonstrated. Red curves are obtained via

DSPE, while purple curves are via ISPE. Here, we employ the primitive prior

Eq. (3.11) as the prior density w0(p) on the probability space, together with

the induced prior densities W0(Φ) and W0(Γ) for the fidelity and the normalized

purity. Obviously, the error intervals obtained by these two approaches are quite

different in this situation. In particular, as we observe from Fig. 5.4, DSPE
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Figure 5.4: Direct and indirect state-property estimation: Error intervals for (a)
fidelity Φ and (b) normalized purity Γ by DSPE (red curves) and ISPE (purple
curves), for the same simulated data as in Figs. 5.2 and 5.3. As in Fig. 5.3, the
horizontal bars indicate the intervals for credibility 0.8. Consistent with what
the sketch in Fig. 4.1 suggests, the intervals obtained from ISPE are larger than
the actual SCIs that result from proper DSPE. In plot (a), one can also clearly
see that the maximum-likelihood fidelity Φ̂ml is not the fidelity of the maximum-
likelihood state ρ̂ml: The cusps of the red and purple curves are at different Φ
values.

reports smaller intervals than ISPE does. Note that, however, the meaning of

two intervals obtained via ISPE and DSPE are quite different. For DSPE, the

credibility value of the corresponding ORI is the posterior content of that interval

for the property itself. For ISPE, however, the credibility is the posterior content

for the state error region. In general, there is no simple relation to the probability

of containing the true property value. Figure 4.1 illustrates the above conclusion,

where the range of F values across the SCR is larger than the range of the SCI.
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5.4 Example: Two qubits

5.4.1 CHSH quantity, TAT scheme, and simulated exper-

iment

In the two-qubit states case, we are usually interested in the entangled states.

As an important quantity to judge whether a quantum state is entangled or

not, Clauser-Horne-Shimony-Holt (CHSH) quantity [103,104] is chosen to be the

property to be estimated in this section. Mathematically, the CHSH quantity is

specified in the following

θ = tr{(A1 ⊗B1 + A2 ⊗B1 + A1 ⊗B2 − A2 ⊗B2)ρ} , (5.19)

where Aj = aj · σ and Bj′ = bj′ · σ with unit vectors a1, a2, b1, and b2 are

components of the Pauli vector operators for the two qubits. The maximum

value of |θ| is
√
8. If |θ| > 2, the two-qubit state is surely entangled. Therefore,

it is important to distinguish reliably between |Θ| < 2 and |Θ| > 2. 5

A common choice for the single-qubit observables is

A1 = σx , A2 = σz ,
B1

B2

 = − 1√
2
(σx ± σz) , (5.20)

such that

θ = −
√
2⟨σx ⊗ σx + σz ⊗ σz⟩ . (5.21)

The limiting values θ = ±
√
8 are obtained by choosing two of the “Bell states”,

viz. the maximally entangled states ρ = 1
4
(1∓ σx ⊗ σx)(1∓ σz ⊗ σz), the com-

mon eigenstates of σx ⊗ σx and σz ⊗ σz with same eigenvalue −1 or +1.

5Recall footnote 4: The distinction between θ (lower case) and Θ (upper case) is analogous
to that between ϕ, γ and Φ,Γ.
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Since the CHSH quantity Θ only involves the xz planes of the two Bloch

balls, but no y components, we employ the trine-antitrine (TAT) POM (see [100]

and Sec. 6 in [1]) to determine the CHSH quantity. Qubit 1 is measured by the

trine-outcome POM with outcome operators

Π
(1)
1 =

1

3
(1 + σz) ,

Π
(1)
2

Π
(1)
3

 =
1

3

(
1±
√
3

2
σx −

1

2
σz

)
, (5.22)

and the Π
(2)
j′ s for qubit 2 have the signs of σx and σz reversed. The nine proba-

bility operators of the product POM are

Πk = Π
(1)
j ⊗ Π

(2)
j′ with k = 3(j − 1) + j′ ≡ [jj′] , (5.23)

that is 1 = [11], 2 = [12], . . . , 5 = [22], . . . , 8 = [32], 9 = [33], and Eq. (5.21) is

expressed in terms of the TAT probabilities p

θ(p) =
√
8
[
3(p1 + p5 + p9)− 1

]
, (5.24)

where the TAT probabilities are given by the Born rule pi = tr{Πiρ}.

For the CHSH quantity in Eq. (5.24) which is a linear function of ps, we

choose the vectors a1, a2, b1, b2 to be fixed such that the Pauli vector operators

A1, A2, B1, B2 has the form in Eq. (5.24). In fact, we can orient the vectors such

that θ is largest for the given ρ

θopt = 2
[
⟨σx ⊗ σx⟩2 + ⟨σx ⊗ σz⟩2 + ⟨σz ⊗ σx⟩2 + ⟨σz ⊗ σz⟩2

] 1
2
, (5.25)

here, we denote by θopt the optimized CHSH quantity. In terms of the TAT
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probabilities, it is given by

(
θopt(p)

4

)2

= 9
9∑

k=1

p2k − 3
[
(p1 + p2 + p3)

2 + (p4 + p5 + p6)
2 + (p7 + p8 + p9)

2

+(p1 + p4 + p7)
2 + (p2 + p5 + p8)

2 + (p3 + p6 + p9)
2
]
+ 1 .(5.26)

The optimal-vectors CHSH quantity is a quadratic function of TAT probabilities,

though the fixed-vectors CHSH quantity in Eq. (5.24) is a linear function of ps.

Clearly, the inequality |θ| ≤ θopt holds for any two-qubit state ρ. As an

extreme example, the Bell states of the form ρ = 1
4
(1± σx ⊗ σx)(1∓ σz ⊗ σz),

which are the common eigenstates of σx⊗σx and σz⊗σz with opposite eigenvalues,

give us θ = 0 and θopt =
√
8. The same values are also found for other states,

among them all four common eigenstates of σx ⊗ σz and σz ⊗ σx.

In the simulation, we use the following true state

ρtrue =
1

4
(1− xσx ⊗ σx − yσy ⊗ σy − zσz ⊗ σz) (5.27)

with (x, y, z) = 1
20
(18,−15,−14), for which the TAT probabilities are


p1 p2 p3

p4 p5 p6

p7 p8 p9

 =
1

60


2 9 9

9 10 1

9 1 10

 (5.28)

and the true values of Θ and Θopt are

Θ =
√
2(x+ z) =

1

5

√
2 = 0.2828 ,

Θopt = 2
√
x2 + z2 =

√
26

5
= 2.2804 . (5.29)

N = 180 copies of the state are measured, with the detector clicks D =
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Figure 5.5: Left: Histogram of CHSH values in a random sample of 500 000 s-
tates in accordance with the primitive prior of Eq. (3.11). For Θ of Eq. (5.24)
we have the full range of −

√
8 ≤ Θ ≤

√
8, whereas Θopt of Eq. (5.26) is posi-

tive by construction. — Right: Corresponding histogram for a random sample
drawn from the posterior distribution for the simulated data in Eq. (5.30). —
On the left, the black-line envelopes show the few-parameter approximations of
Eq. (5.31) with Eq. (5.32) for Θ and Eq. (5.62)–Eq. (5.63) for Θopt. On the right,
the envelopes are the derivatives of the fits to Pr,D(Θ) and Pr,D(Θopt).

(n1, n2, · · · , n9) = (9, 28, 30, 28, 27, 3, 29, 1, 25). Then the relative frequencies are

1

180


9 28 30

28 27 3

29 1 25

 =


p1 p2 p3

p4 p5 p6

p7 p8 p9

+
1

180


3 1 3

1 −3 0

2 −2 −5

 , (5.30)

Substituting the TAT probabilities by the relative frequencies in Eq. (5.24) and

Eq. (5.26), we obtain the estimates for Θ and Θopt are
√
2/30 = 0.0471 and

16
√
39/45 = 2.2204, respectively.

The linear inversion is advocated in [73] as one method to supplement the

estimates with error bars that refer to confidence intervals, but the approach has

well-known problems [105]. Instead, SCIs for Θ and Θopt are reported in this the-

sis, and for those we need the Θ-likelihoods L(D|Θ) and L(D|Θopt). For the sake

of convenience, we use Θ and Θopt themselves, rather than F = 1
2

(
Θ/
√
8 + 1

)
or

F = Θopt/
√
8 which have values in the range 0 ≤ F ≤ 1, as the properties to
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Figure 5.6: Consecutive functions P
(n)
0 (Θ) for n = 0, 1, 2, 3 as obtained by MC

integration. The green dots (n = 0) represent values for P0(Θ), computed with
the primitive prior. The flat regions near the end points at Θ = ±

√
8 are a

consequence of the 11
2

power in Eq. (5.44). The black curve through the green
dots is the graph of the four-parameter approximation P

(0)
0 (Θ) of Eq. (5.31).

The blue, cyan, and red dots are the MC values for n = 1, 2, and 3, respectively,
all close to the straight line Θ 7→ 1

2

(
Θ/
√
8 + 1

)
. The cyan dots are difficult to

see between the blue and red dots in plot (a). They are well visible in plot (b),
where the straight-line values are subtracted. The curves through the dots in
plot (b) show the few-term Fourier approximations analogous to Eq. (5.12).

be estimated. For the MC integration of P0(Θ), say, we sample the probability

space with the Hamiltonian MC algorithm described in Sec. 4.3 in [102]6.

Sampling the probability space in accordance with the primitive prior of

Eq. (3.11), the the distribution of Θ and Θopt values are shown by the histograms

on the left in Fig. 5.5. On the right, the histograms are depicted for a corre-

sponding sample drawn from the posterior distribution with data of Eq. (5.30).

It is obvious that the prior distributions contain few values with Θopt > 2 and

much fewer with |Θ| > 2. For the posterior distributions, values exceeding 2 are

prominent for Θopt, but virtually non-existent for Θ.

Different from the examples of the properties of the single-qubit states, in

6The sample probabilities carry a weight proportional to the range of permissible values for
⟨(σx ⊗ σx)(σz ⊗ σz)⟩ = −⟨σy ⊗ σy⟩, i.e., parameter q in Eq. (5.48). It is expedient to generate
an unweighted sample by resampling (“bootstrapping”) the weighted sample. The unweighted
sample is then used for the MC integration.
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which the Wr,0(F ) and Wr,D(F ) can be integrated analytically, the integrals of

Wr,0(Θ) (Wr,0(Θopt)) and Wr,D(Θ) (Wr,D(Θopt)) can only be computed numeri-

cally. More importantly, to report a proper Θ-likelihood, the power laws near the

boundaries is required. In the next two subsections, we will discuss the power

laws of the intervals near boundaries for Θ and Θopt, respectively.

5.4.2 Prior-content function P0(Θ) near Θ = ±
√
8

In this subsection, we consider the sizes of the regions with θ(p) & −
√
8 and

θ(p) .
√
8. Take into account the symmetry property W0(Θ) = W0(−Θ) or

P0(Θ) + P0(−Θ) = 1, we use the four-parameter approximation, which is analo-

gous to the approximation for the properties of range 0 ≤ F ≤ 1 (see Eq. (5.7)),

as the fitting function for Θ

P0(Θ) ≃ P
(0)
0 (Θ) = w1Bα1

(Θ) + w2Bα2
(Θ) + w3Bα3

(Θ) , (5.31)

where

Bα(Θ) =

(
1

32

)α+ 1
2
(2α + 1)!

(α!)2

Θ∫
−
√
8

dx
(
8− x2

)α (5.32)

is a normalized incomplete beta function integral with Bα(−
√
8) = 0 and

Bα(
√
8) = 1, and α1 is the dominating power near the boundaries. The fit-

ting parameters α2 and α3 are larger than α1, while w1, w2, w3 are weights with

unit sum .

Now we identify the power α1 in the following. We denote the kets of the

maximally entangled states with θ = ±
√
8 by |±⟩, that is

|+⟩ = |01⟩ − |10⟩√
2

and |−⟩ = |00⟩+ |11⟩√
2

, (5.33)

where |01⟩ = |0⟩ ⊗ |1⟩, for example, has σz = 1 for the first qubit and σz = −1
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for the second. Since

σx ⊗ 1|±⟩ = ∓1⊗ σx|±⟩ and σz ⊗ 1|±⟩ = ∓1⊗ σz|±⟩ , (5.34)

we have [recall Eq. (5.23)]

Πk|±⟩ = Π[jj′]|±⟩ = Π
(1)
j ⊗ Π

(2)
j′ |±⟩

=
1

9
(1 + tj · σ)⊗ (1− tj′ · σ)|±⟩

=
1

9
(1 + tj · σ)(1± tj′ · σ)⊗ 1|±⟩

=
1

9

[
(1± tj · tj′)1+ (tj ± tj′ ± itj × tj′) · σ

]
⊗ 1|±⟩ , (5.35)

where

t1 = ez , t2 =

√
3

2
ex −

1

2
ez , t3 = −

√
3

2
ex −

1

2
ez (5.36)

are the three unit vectors of the trine.

Now let Θ deviate from ±
√
8, the corresponding changes for the state has

the form

ρϵ =

(
|±⟩⟨±|+ ϵA†)(|±⟩⟨±|+ ϵA

)
1 + ϵ⟨±|(A† + A)|±⟩+ ϵ2tr{A†A}

= |±⟩⟨±|+ ϵ (A†
± + A±) +O(ϵ2) , (5.37)

where ϵ is infinitesimal and A an arbitrary two-qubit operator. A particular

traceless rank-1 operator

A± = |±⟩⟨±|A
(
1− |±⟩⟨±|

)
(5.38)

is central to the following derivation because of its properties A±|±⟩ = 0 and
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|±⟩⟨±|A± = A±. Then, the TAT probabilities for ρϵ are

pk = tr{ρϵΠk} = ⟨±|Πk|±⟩+ ϵ tr
{
(A†

± + A±)Πk

}
+O(ϵ2)

=
1

9

(
1± tj · tj′

)
+ ϵ
[
(tj ± tj′) ·α± ∓ (tj × tj′) · β±

]
+O(ϵ2) (5.39)

with the real vectors α± and β± given by

2

9
tr
{
σ ⊗ 1A±

}
= α± + iβ± . (5.40)

Due to the trine geometry, the x and z components of α± and the y component of

β± matter, while the other three components do not. In the eight-dimensional

probability space, then, we have increments ∝ ϵ in three directions only, and

increments ∝ ϵ2 in the other five directions. For the primitive prior, therefore,

the size of the ϵ-vicinity is ∝ ϵ3×1+5×2 = ϵ13.

The sum of probabilities in Eq. (5.24) is

p1 + p5 + p9 = p[11] + p[22] + p[33] =
1

3
(1± 1) +O(ϵ2) , (5.41)

so that Θ = ±
√
8 [1−O(ϵ2)] or

√
8− |Θ| ∝ ϵ2. Therefore, the prior content

P0(Θ) near the boundaries

P0(Θ) ∝
(√

8 + Θ
) 13

2 near Θ = −
√
8 (5.42)

and

1− P0(Θ) ∝
(√

8−Θ
) 13

2 near Θ =
√
8 . (5.43)

As the derivative of P0(Θ), W0(Θ) has the denominating power α1 = 11
2

near

±
√
8

d

dΘ
P0(Θ) = W0(Θ) ∝

(√
8− |Θ|

) 11
2 for |Θ| .

√
8. (5.44)
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Figure 5.7: Fourier coefficients of Eq. (5.12) for P (1)
0 (Θ) (≡ blue dots in Fig. 5.6).

The amplitudes with values below the threshold value of 0.007 (red line) are set
to zero by the “low-pass filter” in order to remove the high-frequency noise in
P

(1)
0 (Θ). All amplitudes with odd index vanish, a1 = a3 = a5 = · · · = 0, and only

the four amplitudes a4, a6, a8, and a10 remain nonzero.

The green dots in Fig. 5.6(a) represent the P0(Θ) values obtained with the

sample of 500 000 sets of permissible probabilities which generated the his-

tograms in Fig. 5.5(left). The black curve through the green dots in 5.6(a)

is P
(0)
0 (Θ) with the fitting parameters α2 = α1 + 1.6700, α3 = α1 + 5.4886, and

(w1, w2, w3) = (0.4691, 0.2190, 0.3119). The black envelope for the green Θ his-

togram in 5.5(left) is the corresponding approximation for W0(Θ).

5.4.3 Iterated MC integrations for P0(Θ)

Employing the iteration algorithm in Sec. 5.2.3, and taking into account into

account the power law near the boundaries, we obtain the subsequent approxi-

mations P
(1)
0 (Θ), P (2)

0 (Θ), and P
(3)
0 (Θ), which are shown as the blue, cyan, and

red dots in Fig. 5.6(a), and after subtracting 1
2

(
Θ/
√
8 + 1

)
, also in 5.6(b). The

truncated Fourier series of Eq. (5.12) with F = 1
2
(Θ/
√
8 + 1) are used for fitting

a smooth curve to the noisy MC values for P
(1)
0 (Θ), P (2)

0 (Θ), and P
(3)
0 (Θ). As a

consequence of the symmetry of P0(Θ) + P0(−Θ) = 1, all Fourier amplitudes ak

with odd k vanish.

71



Chapter 5. Error Regions for State-Property Estimation: Numeric

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Θopt

P
(n
)

0
(Θ

o
p
t)

n=0

1

2

3

0 0.5 1 1.5 2 2.5
−0.01

0

0.01

0.02

0.03

0.04

0.05

Θopt

P
(n
)

0
(Θ

o
p
t)
−
Θ

o
p
t/
√

8

n=1

2

3

Figure 5.8: Consecutive functions P
(n)
0 (Θopt) for n = 0, 1, 2, 3 as obtained by

MC integration. Analogous to Fig. 5.6, the green dots (n = 0) represent values
for P0(Θopt), computed with the primitive prior, while the blue, cyan, and red
dots are the MC values for n = 1, 2, and 3, respectively. which are all close
to the straight line Θopt 7→ Θopt/

√
8. The flat regions near the end points at

Θopt = 0 and Θopt =
√
8 are a consequence of the 4 and 6 power in Eq. (5.53)

and Eq. (5.60), respectively. The black curve through the green dots is the graph
of the five-term approximation P

(0)
0 (Θopt) of Eq. (5.62). After the subtraction,

blue, cyan and red dots are well visible in the right plot. The curves through
the dots in the right plot show the few-term Fourier approximations analogous
to Eq. (5.12).

For an illustration of the method, we report in Fig. 5.7 the amplitudes ak

of a full Fourier interpolation between the blue dots (n = 1) in Fig. 5.6(b). A

low-pass filter removes all components with amplitudes below the threshold value

set at 0.007 and retains only four nonzero amplitudes. The resulting truncated

Fourier series gives the smooth blue curve through the blue dots. Its derivative

contributes a factor W (1)
0 (F ) to the reference prior density Wr,0(F ), in accordance

with step S5 of the iteration algorithm in Sec. 5.2. In the next round we treat

P
(2)
0 (Θ) in the same way, followed by P

(3)
0 (Θ) in the third round.

5.4.4 Prior-content function P0(Θopt) near Θopt = 0,
√
8

In this subsection, we consider the sizes of the intervals with Θopt & 0 and

Θopt .
√
8. We wish to establish the Θopt analogs of Eq. (5.44) and Eq. (5.31).

However, since there is no symmetry property for Θopt, i.e., W (Θopt) ̸= W (
√
8−
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Θopt), the powers near boundaries Θopt .
√
8 and Θopt .

√
8 are no longer equal

to each other.

From Eqs. (5.22) and (5.22) we know that the TAT probabilities p1, p2, . . . , p9

are linear combinations of the expectation values of the single-qubit and two-

qubit observables τi ⊗ τj, where τ = (1, σx, σz). Switching from p1, p2, . . . , p9 to

these expectation values of the eight single-qubit and two-qubit observables, we

have
p1 p2 p3

p4 p5 p6

p7 p8 p9

 linear
←− −→

relation


⟨1⊗ σx⟩ ⟨1⊗ σz⟩

⟨σx ⊗ 1⟩ ⟨σx ⊗ σx⟩ ⟨σx ⊗ σz⟩

⟨σz ⊗ 1⟩ ⟨σz ⊗ σx⟩ ⟨σz ⊗ σz⟩

 ≡


x3 x4

x1 y1 y2

x2 y3 y4

.
(5.45)

The corresponding Jacobian matrix is a constant number, such that the integrals

in the probability spaces can be transferred to that in the xy space, so is the

constraint

(dρ) = (dp) = (dx) (dy)wcstr(x, y) . (5.46)

For the primitive prior, we have

(dx) = dx1 dx2 dx3 dx4 and (dy) = dy1 dy2 dy3 dy4 , (5.47)

and wcstr(x, y) equals a normalization factor for permissible values of

x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4), whereas wcstr(x, y) = 0 for unphysical

values. The quantum constraint results from the positivity of the density matrix

ρ ≥ 0. Rewritten the density matrix in terms of x, y and q, of which the range

is −1 ≤ q ≤ 1. Then the constraint is satisfied with the permissible values of x
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and y determined by 7


1 + x1 + x3 + y1 x2 + y3 x4 + y2 y4 − q

x2 + y3 1− x1 + x3 − y1 y4 + q x4 − y2

x4 + y2 y4 + q 1 + x1 − x3 − y1 x2 − y3

y4 − q x4 − y2 x2 − y3 1− x1 − x3 + y1

 ≥ 0 .

(5.48)

Of course, it is difficult to express Eq. (5.48) in an explicit way. However, in the

following, we can determine the constraint for special cases.

5.4.4.1 The vicinity of Θopt = 0

Equation (5.25) implies that θopt can be specified in terms of the ys

θopt = 2
(
y21 + y22 + y23 + y24

) 1
2 . (5.49)

Therefore, we have y = 0 for θopt = 0. Then the constraints are quite transparent

wcstr(x, 0) = 0 unless
(
x2
1 + x2

2

) 1
2 +

(
x2
3 + x2

4

) 1
2 ≤ 1 (5.50)

The above special form reminds us the of following coordinate transformation:

x1

x2

 =

cosφ1 − sinφ1

sinφ1 cosφ1

r1

0

 =

r1 cosφ1

r1 sinφ1

 ,

(
x3 x4

)
=
(
r2 0

) cosφ2 sinφ2

− sinφ2 cosφ2

 =
(
r2 cosφ2 r2 sinφ2

)
,

(dx) = dr1 r1 dφ1 dr2 r2 dφ2 (5.51)

7See [106] for a detailed account of the properties of two-qubit states and their classification.
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with 0 ≤ r1 ≤ 1− r2 ≤ 1 and 0 ≤ φ1, φ2 ≤ 2π. These x values make up a four-

dimensional volume

∫
(dx) = (2π)2

1∫
0

dr1 r1

1−r1∫
0

dr2 r2 =
π2

6
(5.52)

but, since there is no volume in the four-dimensional y space, the set of proba-

bilities with θopt = 0 has no eight-dimensional volume — it has no size.

The generic state in this set has r1 + r2 < 1 and full rank. A finite, if small,

four-dimensional ball is then available for the y values. All y values on the three-

dimensional surface of the ball have the same value of θopt, equal to the diameter

of the ball. The volume of the ball is proportional to θ4opt and, therefore, we have

P0(Θopt) ∝ Θ4
opt for 0 . Θopt ≪ 1 . (5.53)

5.4.4.2 The vicinity of Θopt =
√
8

Different from the fact that we reach Θ =
√
8 for only one state, we are able

to obtain Θopt =
√
8 for all maximally entangled states with ⟨σy ⊗ σy⟩2 = 1. It

means that x = 0, and the constraints are

wcstr(0, y) = 0 unless the two characteristic values of

y1 y2

y3 y4

 are ≤ 1.

(5.54)

For convenience, we speicify the y matrix by the product of the rotation matrix

and diagnal matrix

y1 y2

y3 y4

 =

cosϕ1 − sinϕ1

sinϕ1 cosϕ1

ϑ1 0

0 ϑ2

 cosϕ2 sinϕ2

− sinϕ2 cosϕ2

 (5.55)

=

ϑ1 cosϕ1 cosϕ2 + ϑ2 sinϕ1 sinϕ2 ϑ1 cosϕ1 sinϕ2 − ϑ2 sinϕ1 cosϕ2

ϑ1 sinϕ1 cosϕ2 − ϑ2 cosϕ1 sinϕ2 ϑ1 sinϕ1 sinϕ2 + ϑ2 cosϕ1 cosϕ2
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with 0 ≤ ϑ1 ≤ 1, −1 ≤ ϑ2 ≤ 1, 0 ≤ ϕ1, ϕ2 ≤ 2π, where ϑ1 and |ϑ2| are the char-

acteristic values. The determinant ϑ1ϑ2 can be positive or negative; we avoid

double coverage by restricting ϑ1 to positive values while letting ϕ1 and ϕ2 range

over a full 2π period.

After the switching from y-coordinate to ϕ-coordinate, the corresponding

Jacobian factor in

(dy) = dϑ1 dϑ2 dϕ1 dϕ2 |ϑ2
1 − ϑ2

2| (5.56)

vanishes when ϑ1 = |ϑ2| = 1 and Θopt = 2(ϑ2
1 + ϑ2

2)
1
2 =
√
8. Therefore, there is

no nonzero four-dimensional volume in the y space for Θopt =
√
8. More specifi-

cally, the y-space volume for ϑ2
1 + ϑ2

2 >
1
4
Θ2

opt is

(2π)2
1∫

0

dϑ1

1∫
−1

dϑ2 |ϑ2
1 − ϑ2

2| η
(
4
(
ϑ2
1 + ϑ2

2

)
−Θ2

opt

)
= (2π)2

[
2

3
− 1

32
Θ4

opt +
1

6

(
Θ2

opt − 4
) 3

2 η
(
Θ2

opt − 4
)]

=

√
8 π3

3

(√
8−Θopt

)3
+O

((√
8−Θopt

)4)
for Θopt .

√
8 . (5.57)

With respect to the corresponding x-space volume, we note that the maxi-

mally entangled states with

y1 y2

y3 y4

 =

 cos(ϕ1 − ϕ2) sin(ϕ1 − ϕ2)

− sin(ϕ1 − ϕ2) cos(ϕ1 − ϕ2)


or

y1 y2

y3 y4

 =

cos(ϕ1 + ϕ2) sin(ϕ1 + ϕ2)

sin(ϕ1 + ϕ2) − cos(ϕ1 + ϕ2)

 (5.58)

are equivalent because local unitary transformations turn them into each other.

It is, therefore, sufficient to consider an ϵ-vicinity of one such state, for which we

take that with y1 = y4 = −1 and y2 = y3 = 0. This is |+⟩⟨+| of Eq. (5.33), with

ρϵ in Eq. (5.37).
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As a consequence of Eq. (5.34), we have

x1 + x3 ∝ ϵ2 , x1 − x3 ∝ ϵ and x2 + x4 ∝ ϵ2 , x2 − x4 ∝ ϵ , (5.59)

so that the x-space volume is proportional to ϵ6. Since we know from Eq.

(5.43) that
√
8−Θopt ∝ ϵ2, it follows that the x-space volume is proportional

to
(√

8−Θopt

)3
. Together with the y-space volume in Eq. (5.57), we so find

that

1− P0(Θopt) ∝
(√

8−Θopt

)6
for 0 .

√
8−Θopt ≪ 1 . (5.60)

5.4.4.3 Analog of Eq. (5.31) and Eq. (5.32) for P0(Θopt)

Since the absence of the symmetry for P0(Θopt), i.e., W (Θopt) ̸= W (
√
8−Θopt),

we use Bα,β(Θopt) instead

Bα,β(Θopt) =

(
1

8

) 1
2
(α+β+1)

(α + β + 1)!

α! β!

Θopt∫
0

dx xα(
√
8− x)β . (5.61)

as the ingredient of the approximation function

P0(Θopt) ≃ P
(0)
0 (Θopt) =

∑
l

wlBαl,βl
(Θopt) (5.62)

with
∑
l

wl = 1.

For the corresponding approximation for W0(Θopt), which is the derivative

of prior content W0(Θopt) =
d

dΘopt

P0(Θopt), the fitting parameters are: One of

the powers αl is equal to 3 (see Eq. (5.53)) and one of the βls is equal to 5 (see

Eq. (5.53)), and the other ones are larger. For the sample of 500 000 sets of

probabilities that generated the red Θopt histograms in Fig. 5.5(left), a fit with a

mean squared error of 4.2× 10−4 is achieved by a five-term approximation with
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these parameter values:

l wl αl βl

1 0.2187 3 5.2467

2 0.2469 5.2238 5

3 0.3153 14.1703 11.7922

4 0.2478 7.9878 11.8061

5 −0.0287 37.5270 15.7518

(5.63)

There are 12 fitting parameters here. The black curve to that histogram shows

the corresponding approximation for W0(Θopt) =
d

dΘopt

P0(Θopt). See Figs. 5.5

and 5.8 for illustrations.

5.4.5 Iterated MC integrations for P0(Θopt)

Analogous to Sec. 5.4.3, we show the subsequent approximations P
(1)
0 (Θopt),

P
(2)
0 (Θopt), and P

(3)
0 (Θopt) in Fig. 5.8(left) indicated by the blue, cyan and red

dots, respectively, so does the points after subtracting Θopt/
√
8 in Fig. 5.8(right).

Similarly, the low-pass filter is used to removes the noise, such that the resulting

truncated Fourier series gives a more smoothing curve.

5.4.6 Likelihood and optimal error regions

In each iteration round, we obtain an updated approximation W̃
(n)
r,0 (F ). We sam-

ple the probability space in accordance with w
(n)
0 (p)L(D|p) for a MC integration

of the posterior density. Here, the updated prior density is

w
(n)
0 (p) =

wr(p)

W̃
(n)
r,0 (f(p))

. (5.64)
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Figure 5.9: Likelihood function for Θ and Θopt. The plot of L(D|Θ) shows the
Θ-likelihood obtained for the three subsequent iterations in Fig. 5.6(b), with
a blow-up of the region near the maximum. The colors blue, cyan, and red
correspond to those in Fig. 5.6. — The plot of L(D|Θopt) is analogous; it
shows the likelihoods for iterations n = 0, 1, and 2 in green, blue, and cyan,
respectively.
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Figure 5.10: Size and credibility of bounded-likelihood intervals for the CHSH
quantities, computed from the likelihood functions in Fig. 5.9. (a) Fixed mea-
surement of Eq. (5.24) with the primitive prior of Eq. (3.11); (b) optimized
measurement of Eq. (5.26) with the Jeffreys prior of Eq. (3.12).
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Figure 5.11: Optimal error intervals for (a) Θ and (b) Θopt. The blue and red
curves delineate the boundaries of the SCIs in the same manner as in Figs. 5.3
and 5.4. Both true values are inside the indicated SCRs with credibility 0.8.

Then the corresponding P
(n)
D (Θ) and W

(n)
D (Θ) are obtained. With W

(n)
0 (Θ) and

W
(n)
D (Θ) at hand, we can determine the Θ-likelihood L(D|Θ) immediately; and

likewise for L(D|Θopt). Figure 5.9 shows the sequence of approximations.

Note that the approximations for the Θ-likelihood hardly change from one

iteration to the next, so that just a few rounds are enough and we quit the iter-

ations. With the L(D|Θ) and L(D|Θopt) at hand, we proceed to the calculation

of the size sλ and the credibility cλ of the BLIs, which are shown in Fig. 5.10 for

Θ and the primitive prior as well as Θopt and the Jeffreys prior. The plots for

the respective other prior are very similar.

Analogous to the situations in Sec. 5.3, there is not much difference in the SCIs

obtained for the two priors, although the number of measured copies (N = 180)

is not large; see Fig. 5.11. Another observation, as we mentioned in the preceding

section, is that the advantage of Θopt over Θ is obvious: Whereas virtually all

Θ-SCIs with non-unit credibility are inside the range −2 < Θ < 2, the indicated

Θopt-SCI with credibility 0.8 is entirely in the range Θopt > 2.
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5.5 Sampling error analysis

To evaluate the high-dimensional integrals (see Eqs. (5.1) and (5.2)), Monte Carlo

methods are adapted. Since the size of sample is finite, the statistics, say Pr,0(F ),

on the sample is generally different from the true value. These discrepancies

between the sample and the true value are considered as the sampling error.

More broadly, sampling error refers to the phenomenon of random sampling

variation. Sampling error is a measure for judging the quality of the random

sampling. In this section, we take the error analysis of Pr,0(F ) as example (see

Eq. (5.1)). The primitive prior is employed for the integral of Pr,0(F ). We explore

how the sampling error of Pr,0(F ) changes as the sample size N varies.

We consider the relative error

δx =
∆x

x
=

x0 − x

x
, (5.65)

as a measure of sampling error, where x is the true value and x0 is the estimated

value. In practice, however, the true value of parameter x is usually unknown.

Therefore, we substitute the standard deviation σ for absolute error ∆x, and the

mean x̄ for x. After the substitution, the relative error is

δx =
σ

x̄
. (5.66)

Roughly speaking, as the number of sampling points N increases, the sampling

error will decrease. For a certain value of CHSH Θ, it is easy to prove that the

relationship between relative error δPr,0(Θ) and the sample size N is

log δPr,0(Θ) = log

√
1− Pr,0(Θ)

Pr,0(Θ)
− 1

2
logN. (5.67)

Therefore, the logarithm of relative error log δPr,0(Θ) is a linear function of logN
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with the slope being −1
2
, and the intercept is a function of Pr,0(Θ).

We choose three CHSH values Θ = {−2, 0, 2} as examples. For the MC

integration, the sample size is varied from N = 400 to N = 400 000. For each

N , we sampling the probability space 100 times with the unweighted sample (see

footnote 6). For each time, certain value of Pr,0(Θ) is evaluated by a numerical

integral. With 100 values of Pr,0(Θ), the standard error σ and mean Pr,0(Θ) are

obtained.

In Fig. 5.12, we show that the logarithm of the relative error log δPr,0(Θ) is

a linear function of logN for three values of CHSH. The solid lines specify the

theoretical predictions in Eq. (5.67). As a particular case, Pr,0(Θ = 0) = 1
2

is

known because of the symmetry Pr,0(Θ)+Pr,0(−Θ) = 1. For the other two values

Θ = {2,−2}, we use the MC integration values P̃r,0(Θ) instead. The points are

obtained using the unweighted samples obtained by bootstrapping the weighted

sample. Statistical noise aside, the MC integration values are consistent with

the theoretical prediction. Therefore, the sample used for the MC integration is

reliable.

5.6 Summary

Analogous to the optimal error regions for quantum state estimation, we first

introduce the notions of the size and credibility of a range of the property of

interest in the context of state-property estimation. Then we propose maximum-

likelihood intervals and smallest credible intervals as the optimal error intervals

for state-property estimation. We prove that both of them are the bounded-

likelihood intervals, where the likelihood here is the F -likelihood L(D|F )— the

likelihood conditional on the property F .

The F -likelihood L(D|F ) is central for the construction of optimal error in-

tervals for state-property estimation. However, it is usually difficult to compute
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Figure 5.12: The logarithm of the relative error log δPr,0(F ) as a linear func-
tion of logN for three values of CHSH. Solid lines represent the linear function
Eq. (5.67), while the points are obtained using the MC integration. Statisti-
cal noise aside, the MC integration values are consistent with the theoretical
prediction.

L(D|F ) analytically, except for the case of single-qubit state property. There-

fore, we integrate the high-dimensional integrals with MC techniques. Since the

size of sample is finite, the MC integration is not precise enough to distinguish

the values in finite intervals near the boundaries. This problem can be solved by

the iteration algorithm we provide and the known power law near the boundary.

Then, the corresponding F -likelihood is reliable for all values of F .

To illustrate of the algorithm, we estimate the properties of single-qubit state,

e.g., the fidelity with respect to target state and purity as examples, as well as

the CHSH quantity for two-qubit states.
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Conclusion and Outlook

Quantum state estimation is central to many tasks of quantum information pro-

cessing, such as quantum communication, quantum computation and quantum

cryptography. Two branches of quantum state estimation get much attention:

the schemes of designing measurements that can increase the efficiency of the

estimation, and the data processing methods which provide a reliable and opti-

mal estimator for the quantum state. As for the data processing methods, point

estimators and regions estimators are complement to each other. For point esti-

mators, many methods have been proposed, such as linear inversion, maximum

likelihood estimation, maximum entropy estimation and so on. Each method

has its pros and cons. While for region estimators, several proposals are devised

based on frequentist methodology and Bayesian strategy.

Our method for constructing the optimal error regions for quantum state

estimation is described in Chapter 3. We measure the size of a region by its

prior content, and propose maximum-likelihood regions and smallest credible

regions as the optimal error regions. Then, we prove that these optimal error

regions are bounded-likelihood regions, and illustrate the method by simulated

single-qubit and two-qubit experiments.

In this thesis, we mainly discuss the direct estimation for properties of the

quantum state in Chapters 4 and 5. Usually, we are more interested a few

functions of the quantum state than the full details of the quantum system.

Therefore, a direct estimate of the properties of the state is more efficient and
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more meaningful than the indirect estimation method in which one first esti-

mates the quantum state then take the value of function of the corresponding

state to be the guess for that property. We study a single function of the s-

tate and construct the optimal error intervals as the optimal error intervals for

state-property estimation. Analogous to optimal error regions for quantum state

estimation, we propose maximum-likelihood intervals and smallest credible in-

tervals for the state-property estimation. For illustration, we study the fidelity

(with respect to target state) and purity of single-qubit states and the CHSH

quantity for two-qubit states. The extension of this method for estimating the

new property and to estimate multiple properties simultaneously requires further

study. In addition, this method might be used to estimate the parameters which

parameterize the quantum process and quantum measurements. It should be

noticed that, to construct error regions for high-dimensional quantum system, a

smarter numerical integration algorithm is required for the multiple dimension

integral.

A major problem left open is how to infer the quantum state and properties of

the state as efficiently as possible. The dimension of the Hilbert space increases

exponentially with the size of the n-qubit system. To perform a full quantum

state estimation for such a system, the number of measurements required are

extremely large. In addition, a direct estimate of the degree of entanglemen-

t of high-dimensional quantum system is usually difficult. Therefore, efficient

schemes of measurement designing and smarter data processing protocols require

further study for solving these problems .
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Appendix A

Derivation of Eqs. (3.28) and (3.29)

From Eqs. (3.26) and (3.27), the derivative of cλ with respect to λ is

∂cλ
∂λ

=
1

L(D)S0

∫
R0

(dρ)L(D|p) ∂
χλ(p)

∂λ

=
1

L(D)S0

∫
R0

(dρ)L(D|p) ∂

∂λ
η

(
L(D|p)− λL(D|p̂ml)

)
=

1

L(D)S0

∫
R0

(dρ)L(D|p)δ
(
L(D|p)− λL(D|p̂ml)

)
=

λL(D|p̂ml)

L(D)S0

∫
R0

(dρ)
∂χλ(p)

∂λ

=
λL(D|p̂ml)

L(D)

∂sλ
∂λ

(A.1)

Therefore, we have the Eq. (3.28):

L(D)
∂

∂λ
cλ = L(D|p̂ml)λ

∂

∂λ
sλ . (A.2)

From Eq. (A.1), we integrate both side of the equation from 1 to λ′ and obtain

∫ λ′

1

dλ
∂

∂λ
cλ =

L(D|p̂ml)

L(D)

∫ λ′

1

dλ

(
λ
∂

∂λ
sλ

)
. (A.3)

The left hand side is cλ′ − c1 = cλ′ , because of the fact that c1 = 0. Using the
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integration by parts, the right hand side is

L(D|p̂ml)

L(D)

∫ λ′

1

dλ

[
∂

∂λ
(λsλ)− sλ

]
=

L(D|p̂ml)

L(D)

(
λ′s′λ +

∫ 1

λ′
dλ sλ

)
(A.4)

Compare Eqs. (A.4) and (3.29), the only work left is to prove that

L(D)/L(D|p̂ml) =
∫ 1

0
dλ sλ. The proof is in the following:

L(D) =
1

S0

∫
R0

(dρ)L(D|p) = L(D|p̂ml)

∫
R0

(dρ)
L(D|p)
L(D|p̂ml)

. (A.5)

By using the property of the step function, we translate L(D|p)/L(D|p̂ml) into

the integral of the step function (note that 0 ≤ L(D|p)/L(D|p̂ml) ≤ 1):

L(D|p)
L(D|p̂ml)

=

∫ 1

0

dλ η

(
L(D|p)
L(D|p̂ml)

− λ

)
(A.6)

Substituting Eq. (A.6) into Eq. (A.5), we obtain

L(D) = L(D|p̂ml)

∫
R0

(dρ)

∫ 1

0

dλ η

(
L(D|p)
L(D|p̂ml)

− λ

)

= L(D|p̂ml)

∫ 1

0

dλ

∫
R0

(dρ)η (L(D|p)− λL(D|p̂ml))

= L(D|p̂ml)

∫ 1

0

dλsλ (A.7)

Accordingly, combining Eqs. (A.3), (A.4) and (A.7), and interchanging λ and λ′,

we obtain Eq. (3.29).
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