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SUMMARY 

	
As logistics service providers, freight forwarders (FFs) are intermediary parties 

who connect shippers (SPs) to carriers (Cs) in the logistics chain. The focus of 

this research is on non-vessel operating common carriers (NVOCCs) - FFs who 

do not own any vessel but make use of the capacity and shipping network of 

carriers to move cargo on behalf of shippers. Their profits come from the price 

difference between the contract price received from shippers and that paid to 

carriers.  

The purpose of this research is to assist a FF with its pricing decision. In 

the first phase of the research, a game theoretic (GT) approach is proposed to 

investigate how a FF could formulate its optimal pricing decision in face of 

competition when it has complete information of the entire system. The 

potential reactions from other parties (shippers and carriers) and the competition 

from other FFs are taken into account. Pricing decisions by the FF are 

investigated in a situation involving shippers, FFs, and carriers. The approach 

takes into account: 1) shippers’ selection behavior; 2) the potential reactions 

from competing FFs; and 3) the best combination of available capacity from 

carriers.  

In the second phase of the research, learning mechanisms are proposed 

to assist a FF to adapt its pricing decisions over time when it has limited 

information of the entire system. A Multi-Agent System (MAS) is built to 
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investigate the interaction between the three parties so that the performance of 

each learning approach can be examined. Multi-agent simulations are conducted 

to investigate the interactions under various combinations of FFs that learn. The 

purpose of conducting the simulation is to investigate whether learning from 

previous transactions can lead to better freight pricing decisions for the FF. 

Which is the best learning mechanism, and how learning and pricing 

performance can be optimized are also questions this research would like to 

answer. The critical parameters that determine learning performance as well as 

the best setting for parameters are investigated as well.  

The third phase of the research aims to help a FF formulate its best 

pricing decisions based on the information that is accessible to it in the real 

world operations. All the information the FF uses to can be obtain in the reality. 

The FF uses its internal information (goals, profit gain or loss, market share gain 

or loss, or quotations are accepted or not) and external information to update its 

pricing decisions over time. Multi-agent simulations are conducted to 

investigate the pricing performance of various learning models under various 

pricing situations. The critical parameters that determine learning performance 

as well as the best settings for these parameters are investigated as well. The 

scenario when there is a short period of under supply is also examined.  
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CHAPTER 1  INTRODUCTION 

	

1.1 Introduction 

Freight forwarders (FFs) face various decisions related to operations 

management in their daily work when facing shippers (SPs) and carriers (Cs). 

Among them, pricing is the process of determining what must be provided by a 

customer in return for a product or service (Schindler, 2012). A FF’s pricing 

decision determines the price for its logistics service. In this regard, a pricing 

decision pertains to the unit cargo movement fees the FF charges a shipper (Fig. 

1.1). Each pricing decision can be represented on a pricing curve, with the 

horizontal axis indicating the volume of cargo and the vertical axis 

corresponding to the unit cargo charge. The shape of the curve distinguishes one 

pricing decision from another. In this research, helping FFs make pricing 

decisions is the same as helping them determine their pricing curve. As shippers 

can go to FFs or directly to carriers for this shipping service, a smart FF needs 

to determine and adjust this pricing curve so as to compete with other FFs and 

carriers. FFs may do so for the reason of pursuing profitability or market share 

in a highly competitive logistics market. They need to be clear about the basis 

of their pricing decisions, their objectives, and the potential reactions and 

decision-making behavior of the other parties involved.  
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When contacted by shippers for logistics services, FFs quote charges based on 

pricing decisions regarding their services. A superior pricing decision aims to 

price as profitably as possible by capturing more value; however the potential 

reactions of other parties and competitors limit the level of price (or markup) 

attainable. 

 

 

Fig. 1.1 Pricing decision of FFs 

 

Although a shipper can go directly to a carrier, there are good reasons 

why a shipper might want to outsource to a FF the design of a cargo movement 

plan, as well as the subsequent monitoring and execution of the plan by carriers. 
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First, a FF can guarantee demand, space, and level of service (speed, economy, 

and safety) (Burkovskis, 2008). Shippers are mainly concerned about whether 

cargo can be moved from an origin to a destination in a timely manner, at an 

acceptable cost and with a required level of service. Shippers can also acquire 

door-to-door delivery (Y. Li et al., 2009), get rid of unnecessary services and 

additional functions (e.g. transportation, physical distribution of goods, and 

storage) that are not considered core business for a company. Second, shippers 

are able to make use of a mixture of different transportation modes with lower 

transportation cost through FFs (Y. Li et al., 2009). In most cases, carriers 

(airlines or shipping lines) own large capacities for a limited number of 

destinations, while FFs are able to offer more flexible origin-destination pairs 

with access to greater aggregated capacities. Thus specialized third party 

logistics companies can offer competent, reliable, and effective industrial 

logistics services. Because of this, shippers are able to take advantage of 

economies of scale obtained by FFs from carriers and insurance companies even 

though they may only have relatively small amounts of cargo to ship 

(Burkovskis, 2008). Furthermore, shippers eliminate the cost of organizing 

cargo transport themselves. 

There are two main concerns when FFs make pricing decisions: 1) how 

to balance price and volume in order to maximize profit given the cost of cargo 

movement; 2) how to transport received cargo in the most cost-effective manner 

so that a given level of service can be expected given the contracts signed with 
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shippers. This research focuses on these two concerns when formulating the 

pricing decisions by FFs so that profitability can be assured. The total profit (TP) 

of FFs comes from the price difference between the contract price received from 

shippers and that paid to carriers, and can be defined as: 

 

;2 = ( 2 − Q − ! (1.1) 

 

Where ( denotes the volume of cargo offered by shippers; 2 denotes 

the unit cargo movement charge – pricing decision; Q denotes the cost to move 

one unit of cargo; ! denotes the fixed cost. The focus of this research is on non 

vessel operating common carriers (NVOCCs). For a NVOCC, Q  can be 

estimated based on tariff schemes of carriers. The fixed cost ! is due to the 

overhead of daily operations and management, labor cost, and other costs 

related to infrastructure (rental for offices, equipment, etc.). As articulated by 

Yin and Kim (2012), FFs offer shippers logistics services which can be 

considered as news-vendor type products. FFs, like “newsvendors”, buy slots 

from carriers and sell them to shippers, which makes the services provided by 

FFs look like “newspaper delivering service”: once a particular voyage is 

undertaken, all unutilized slots on board are wasted and cannot be stored. 

Good pricing decisions allow FFs to offer shippers more attractive 

logistics services, as well as remain competitive over other third party logistics 

companies. In a highly competitive market, FFs need to make good pricing 
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decisions on their charges to shippers. As a party in the middle of the chain of 

transactions, FFs take into account the pricing decisions by other FFs and 

carriers, and the likely decision making behavior of shippers. In order to attract 

cargo from shippers, FFs compete on price and level of service. FFs should 

propose charges and cargo movement plans by: 1) referring to upstream 

information from shippers (amount of cargo and shippers’ requirements); 2)  

downstream information from carriers (tariff scheme, capacity, and schedule of 

available carriers); and 3) the information about other competing FFs. Learning 

from previous transactions should be incorporated as well so that the 

performance of previous decisions can be evaluated and future decisions can be 

improved. Pricing decisions are then not one-time static decisions but iterated 

over multiple transactions. A good pricing decision should also be made in a 

strategic manner, meaning that a FF should price its service more profitably by 

capturing more value, not necessarily by making more sales but undermining 

profitability.  

 

1.2 Interaction between SPs, FFs, and Cs 

FFs are the middle men who facilitate the interaction between shippers and 

carriers. Shippers have two alternatives when they want to move cargo from an 

origin to a destination: 1) contract the work to one FF (outsourcing shipper); or 

2) design their own cargo movement plan, and contract with carriers to 

implement it (self-fulfillment shipper). Cost, level of service, and timing are the 
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key concerns of shippers. When shippers have cargo to be transported, they 

announce the volume of cargo and requirements to FFs. Each FF then quotes 

proposed charges and submits a cargo movement plan based on its pricing 

decision. Shippers decide on which is the better alternative after receiving the 

responses from FFs. If a FF is used, the FF needs to further split the cargo 

received among carriers based on the shippers’ requirements and the carriers’ 

schedule and freight rate. Similarly, self-fulfillment shippers also have to 

consider a cargo split among the carriers. Carriers decide on which FFs to serve 

and whether to adjust their pricing scheme and capacity. 

The relationship between different entities will also affect how the 

interaction between these entities takes place. Carriers are the parties which 

move cargo physically within a transportation network using trucks, vessels, 

and shuttle trains. They want to maximize their own goals, taking into account 

competition from other carriers as well as cargo business from FFs and shippers 

directly. As a man-in-the-middle, a FF can be either a collaborator or a 

competitor for the business of a carrier. FFs work as intermediaries that benefit 

by sharing part of the revenue that should have belonged wholly to carriers. 

Carriers still have an incentive to work with FFs, as the latter can assure carriers 

of a large amount of cargo. By working with FFs, a carrier may also be able to 

receive more cargo volume compared to working on its own. 
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A general conceptual framework representing the real world interaction 

and information exchange between the three parties is proposed in Fig. 1.2. The 

framework shows the flow of actions starting from the generation of shippers’ 

demand till the cargo movement by carriers. The purpose of proposing the 

framework is to ensure that the key elements of the three-tier interaction are 

captured, including critical features whilst omitting unnecessary details. The 

interaction between shippers, FFs, and carriers can therefore be modeled 

properly in the following chapters.   

 

 

Fig. 1.2 Real world interaction between shippers, FFs and carriers 
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1.3 Research Motivation 

Past research on FFs relevant to this study can be categorized into four main 

streams: (a) shipment decision problems: shipment integration and 

consolidation (Huang & Chi, 2007), routing (Cheung & Hang, 2003), 

infrastructure choice (Tongzon, 2009), logistics service network design 

(Creazza et al., 2010), and loading (Y. Li et al., 2009); (b) capacity management 

problems: either long term (Amaruchkul & Lorchirachoonkul, 2011) or short 

term (Jaržemskis, 2005) allotment booking and planning; (c) interaction with 

other parties - carrier (Yin & Kim, 2012), shipper (Rau et al., 2006)), or 

collaboration (Krajewska & Kopfer, 2006) and coordination (Reinheimer & 

Bodendorf, 1999) with other actors; and (d) behavior research: factors that 

affect a customer’s choice of preferred third party logistics service provider 

(Wen et al., 2011), FFs’ choice between different transportation modes (Feo et 

al., 2011), or other decision making issues that affect FFs (C. S. Lu & Marlow, 

1999). Although there has been an increasing amount of literature on FF 

decision making and operations management, very little has addressed the issue 

of pricing with an objective of assuring profitability. 

Many of the models defined in the research literature are conceived from 

a single perspective, or from the perspective of a unified system where the 

potential reactions of stakeholders and component entities are considered as 

constraints or simply omitted (characterized by system optimality and 

centralized decision making). However, in reality shippers, FFs, and carriers 
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can pursue their own goals (characterized by user equilibrium and decentralized 

decision making). They can consider tradeoffs but do not need to sacrifice 

benefits for the achievement of system optimality. Conflict or congruence 

between the goals of different participants brings about competition or 

cooperation, and the decisions made by the different parties will change 

accordingly. What will pricing decisions be if each stakeholder is free to pursue 

its own goals and individual goals need not be subordinated to an overall global 

objective? 

Most of the previous research focuses on optimizing the decision of FF 

only with respect to current information. Learning and feedback from previous 

transactions are not taken into account. However, in a highly competitive market, 

FFs can improve their pricing performance by adapting their decisions vis-à-vis 

their competitors. These decisions should be sensitive to the changes in the 

market as well as the decisions made by other actors. Will pricing performance 

be improved through learning and feedback? 

Much of the literature assumes homogeneity in the profile of 

stakeholders – it is difficult to formulate analytical models that account for 

different objectives, competition and learning strategies among actors in a 

system. How will individual and system performance be affected if profiles of 

stakeholders are allowed to be different? Will the outcome and behavior of the 

system that emerge out of the interaction between components of a competitive 
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system be different from one where all parts of the system are subordinated to 

a global objective? 

 

1.4 Research Scope 

The aim of this research is to develop pricing decisions for FFs in an oversupply 

market by incorporating: 1) the potential reactions from other parties (shippers 

and carriers) and competing FFs; 2) the learning through feedback information 

from past transactions; 3) the interaction between competing FFs with different 

pricing decision making mechanisms. 

In the first phase of the research (Chapter 3 ), a game theoretic (GT) 

approach is proposed to investigate how a FF could formulate its pricing 

decision in face of competition when it has complete information of the entire 

system. The market is assumed oversupplied, and the above GT approach takes 

into account the price preference of shippers and the competition from other 

FFs. The GT approach formulates a FF’s interaction with shipper and carrier as 

a three-level extensive form game; this new formulation extends the previous 

two-level formulation of logistics problems using game theory. This adds more 

complexity but potentially yields new insights as more interdependent decisions 

are included. The problem is formulated in a decentralized manner, with each 

party pursuing its own objective unilaterally but taking into account the 

competitive actions of other parties. Individual objectives are not subordinated 

to an overall objective by using weighted criteria. The decisions that emerge out 
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of the individual interactions are more realistic. Under equilibrium conditions, 

each player reaches its optimal decision and no one has the incentive to deviate 

unilaterally in order to improve its outcome. The model formulation emphasizes 

profit maximization rather than just cost reduction or revenue maximization. As 

a FF’s profit is the difference between costs (paid to carriers) and revenue 

(earned from shippers), FFs have to balance costs and revenue objectives in the 

face of volume preference from carriers and price sensitivity from shippers. This 

approach also provides FFs pricing decision support in the determination of a 

reference price to attract business from shippers and compete with other FFs. 

This reference price can be used as a benchmark to examine the pricing 

performance of other pricing decision models. 

In the second phase of the research (Chapter 4 ), learning mechanisms 

are proposed to assist a FF to adapt its pricing decisions over time when it has 

only limited information of the entire system. Including the effect of learning 

allows the study of the system as it evolves and adapts, instead of only the results 

in the final state at equilibrium. In this way, the feedback from previous 

transactions can be incorporated. The work reported in this thesis investigates 

the question of whether learning from previous transactions can lead to better 

freight pricing decisions for FFs. By adapting pricing decisions over time, FFs 

can improve their future decisions by examining the responses from other 

participants and how these responses affect them. A FF capable of learning 

responds to stimuli from its environment and adjusts the way it performs tasks 
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through trial and error - similar to the way humans learn. The RL mechanisms 

proposed in this research are suitable for complex tasks that resist attempts to 

encode them as programs, and can be used even when no training data is 

available (Ertel, 2011). In RL, the preference for actions that bring rewards is 

reinforced, whilst that for actions that lead to loss is weakened. It does not 

require complex formulation and a lot of historical data - it works with only 

current (online) information. RL also does not require complete information of 

the entire system. This is suitable for the situation where FFs need to make 

pricing decisions even though they may have only very limited information. 

They can only refer to their own internal information (gain/loss of profit and 

increase/decrease of market share) and some external information (cargo 

volume and requirements announced by shippers, the acceptance/rejection of 

cargo movement plans and quoted charges, and whether more shippers need 

freight forwarding services). 

In the third phase of the research (Chapter 5 ), the aim is to help a FF 

formulate its best pricing decisions only given the information that is accessible 

to the FF in real world operations. The FF uses its internal information (goals, 

profit gain or loss, or market share gain or loss) and external information to 

update its pricing decisions over time. The following scenarios are also 

examined: 1) there is a short period of under supply; 2) demand and supply are 

allowed to vary; 3) activities can occur at any time.  

A Multi-Agent System (MAS) is also built to investigate the interaction 
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between shippers, FFs and carriers so that the performance of each learning 

approach can be examined under various scenarios (Chapter 4 and Chapter 5 ). 

The MAS implementation allows experimentation with a system of interacting 

agents representing shippers, FFs, and carriers. Multi-agent simulations enable 

the study of the effect of competition between FFs with different learning 

strategies. The activities in the logistics market are conducted via interactions 

between different actors. The manner in which these interactions take place will 

affect the decisions made by each participant and the outcomes obtained. By 

building a MAS, the behavior of a complex system is reproduced by the 

interaction of simple rules that govern the response of the actors in the complex 

system. Slight changes in interaction rules and behaviors of a single entity, when 

instantiated in many local contexts, may lead to changes of system behavior. A 

MAS does not require complex formulation; instead, it works with simple rules 

that are easily customized. The MAS system can be easily adapted to include 

more problem variables and interactions between problem variables - this 

allows differentiation in the details of pricing and learning mechanisms between 

actors in the research. A MAS can investigate the interaction when each actor 

has its own behavior through having different decision model structure and 

parameters. The interaction between different combinations of actors can also 

be experimented with, and the system behavior that emerges out of simulations 

will be more realistic and meaningful. Furthermore, different decision making 

approaches and the setting of parameters can be examined over time by 
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conducting multi-agent simulations. Simulations of the real world situation 

enable this research to support FFs in their pricing decision. The pricing 

decisions are no longer one time decisions but are decisions that are adapted 

over iterated transactions. Multi-agent simulations are also conducted to 

investigate the interactions between various combinations of FFs that learn.  

 

1.5 Thesis Outline 

Chapter 1 presents background, motivation, research scope and objective. 

Chapter 2 reviews past research that is related to this study. Chapter 3 describes 

a game theoretic (GT) approach for pricing decisions by a FF when the FF has 

complete information of the entire system. Chapter 4 proposes to  incorporate 

the effect of learning from past transactions in a FF’s pricing decisions when 

the FF only has limited information of the entire system. A multi-agent system 

is built involving shippers, FFs, and carriers. The results of multi-agent 

simulations under various scenarios is presented as well. Chapter 5 examines 

the pricing decision of a FF based on the information that is accessible to him 

in the real world operations. Multi-agent simulations are conducted by 

extending the multi-agent system built in Chapter 4 . Chapter 6 concludes and 

summarizes the whole research.  
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CHAPTER 2  LITERATURE REVIEW 

	

2.1 Decision Making Models for FFs  

Existing research on FF decision making and operations management problems 

can be categorized into four main streams. 

The first stream of research focuses on various operations and 

management related issues: shipment integration and consolidation (Huang & 

Chi, 2007), routing and scheduling (Cheung & Hang, 2003), infrastructure 

choice (Gardiner et al., 2005; Tongzon, 2009) (Tongzon, 2009), logistics 

service network design (Creazza et al., 2010), or loading (Y. Li et al., 2009). 

Shipment scheduling and routing problems focus on the determination of an 

optimal route to transport cargo from an origin to a destination using links in a 

logistics service network. FFs need to determine the time to collect cargo from 

shippers, the route on which cargo is transported, and intermediate stops for the 

cargo. Several authors combined the standard shipment scheduling and routing 

problem with backhaul and time window constraints (Cheung & Hang, 2003), 

or with cargo integration and consolidation (Krajewska & Kopfer, 2009; 

Moccia et al., 2011; Uster & Agrahari, 2010). Azadian et al. (2012) investigated 

the movement of time sensitive air-cargo with respect to real-time and historical 

information (flight availability, departure delays, and arrival times). In order to 

make use of economy of scale and acquire quantity discounts from carriers, FFs 

consolidate individual consignments to make up a full container load at the 
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origin. This arrangement allows small volumes of cargo from different shippers 

but with the same origin and destination to be transported together so as to offer 

greater security at lower shipping cost. At the destination, the consolidated 

cargo is deconsolidated back into original individual consignments and 

delivered to respective consignees. A lot of research has been conducted on 

shipment consolidation and integration. Huang and Chi (2007) considered air 

FFs’ consolidation problem. Wong et al. (2009) investigated shipment 

integration and consolidation together with FF’s in-house capacity as well as 

the available capacity of its partners and sub-contractors. Leung et al. (2009) 

examined the optimal integrations and consolidations of air cargo shipments 

given a number of jobs and processing units. Z. Li et al. (2012) worked on an 

unsplittable shipment consolidation problem of an air FF. Bock (2010) used a 

new real-time-oriented control approach to expand load consolidation, reduce 

empty vehicle trips, and handle dynamic disturbances by considering vehicle 

breakdowns or deceleration of vehicles, traffic congestion, street blockages as 

well as dynamic incoming transportation requests.  

The second stream of research focuses on the planning and management 

of freight capacity. As NVOCCs do not own any vessels, they need to send all 

the cargo received from shippers onwards to carriers. The demand from shippers 

may vary, and FFs have to decide whether they should book capacity from 

carriers in advance so as to get a discounted freight rate and secure space from 

carriers in anticipation of getting the business from shippers. Booking too much 
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space beyond the actual demand will incur extra cost, whilst a lack of space may 

lead to the loss of business opportunities from shippers. Liu et al. (2009) state 

that FFs and carriers should establish a cooperative relationship and form virtual 

enterprise alliances (VEA) directed by contracts. On the other hand, carriers sell 

(or presell) their services to intermediaries (FFs) instead of directly to the real 

shippers (Yin & Kim, 2012). This builds their relationship with the FFs. As the 

service provided by carriers is also newsvendor-like and cannot be stored, FFs 

may consider two kinds of purchases from carriers: long-term contracts and free 

sale (short term purchase) (Jaržemskis, 2005). This will affect the choice of 

preferred carriers and the cargo split among carriers by a FF. It will also 

influence the behavior of carriers when they adjust their tariff scheme and 

decide on the amount of guaranteed capacity for a particular FF. For sustainable 

development in a competitive business market, a carrier cannot design its freight 

tariff merely considering its own profit. A reasonable profit sharing mechanism 

should be considered. Some researchers view the relationship between FFs and 

carriers as a kind of game, in which carriers are rule makers whilst FFs serve as 

newsvendor-type followers (Yin & Kim, 2012). This gives rise to a ‘partner 

selection problem’, which brings new perspectives on how FFs evaluate and 

select partner carriers to work together (Brookes & Altinay, 2011; Ip et al., 2003; 

Pidduck, 2006; Solesvik & Encheva, 2010). 

The third type of research examines the interactions between FFs and 

other parties. Yin and Kim (2012) examined the FF-carrier interaction by 
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considering how container lines should set their freight tariff so as to maximize 

expected profit. The authors also discussed how the behavior of FFs (in terms 

of changes in order quantities) would influence the decisions of carriers (in 

terms of the tariff scheme). Liu et al. (2009) examined FF-carrier interaction to 

help FFs select carriers based on decision theory and game theory. Rau et al. 

(2006) considered the negotiations between shipper and FF on unit shipping 

price, delay penalty, due date, and shipping quantity using a learning-based 

approach. Shipper and carrier interaction was also examined in the same article. 

In order to survive in a highly competitive market, some FFs seek opportunities 

for cooperation or collaboration with other independent FFs (Krajewska & 

Kopfer, 2006). Coordination between shippers, FFs and carriers (coordination 

in the vertical dimension) may also bring about win-win scenarios for each of 

these parties. Reinheimer and Bodendorf (1999) considered market orientation 

coordination in the air freight forwarding industry by applying easily accessible 

communication infrastructures as well as investigating qualitative aspects in 

price-finding mechanisms. 

Research on the behavior of FFs comprises the fourth main stream. This 

kind of research examines the behavior of FFs when they do business and make 

decisions. The reasons behind these behaviors and behavioral patterns are also 

included. C. S. Lu and Marlow (1999) explored the strategic differences 

between shipping companies, shipping agencies, and ocean FFs by classifying 

them into four strategic groups based on the key strategic factors obtained from 
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factor analysis. As FFs are usually considered to be utility maximizers, Z. Li 

and Hensher (2012) reviewed all past freight behavior studies using Random 

Utility Maximization (RUM) and proposed an alternative behavioral paradigm 

– Rank-Dependent Utility Theory (RDUT) model to incorporate the risk-taking 

attitudes of transporters and shippers rather than the previous risk-neutral 

assumption. To study the effectiveness of freight transport policy, Feo et al. 

(2011) modeled the modal choice between door-to-door road transport and short 

sea shipping available to FFs. Their work identified the critical areas that should 

be addressed by future policy action. Some researchers also investigated the 

decision-making behavior of FFs with respect to: 1) the location selection by 

third party logistics service providers (Shiau et al., 2011); 2) the comparison 

and selection among various alternatives taking into account economic, 

environmental and social sustainability (Simongáti, 2010); 3) logistics service 

network design (Creazza et al., 2010; Lin & Liang, 2011). Burkovskis (2008) 

discussed ways in which a FF effectively participate in the transportation 

process and proposed rules to examine investments in developing freight 

forwarding services. Yang (2012) examined the relationship between the ability 

to innovate by ocean FFs and firm performance. Four critical logistics service 

qualities/capabilities were identified: logistics service reliability, logistics 

value-added service, flexibility, and logistics information services. Cheng and 

Yeh (2007) examined internal and external factors that affect the sustainable 

competitive advantage (SCA) of an air-cargo FF. G. S. Liang et al. (2006) 
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identified the link between service management requirements and customer 

needs for an ocean FF by characterizing customer needs by their importance, 

levels of satisfaction, and  the service management. Ducruet and van der Horst 

(2009) verified the role of intermediaries in the transport integration by 

considering the relationship between transport integration and port performance. 

Markides and Holweg (2006) discussed the diversification of services and 

activities by FFs in the UK. Suggestions that would help FF gain more business 

from shippers was offered in the research conducted by Wen et al. (2011). 

 

2.2 Pricing Decisions 

Pricing decisions are the decisions made by sellers or service providers on the 

price for a product or service after examining a multitude of factors such as 

competition, cost, advertising, and sales promotion (AllBusiness, 2015). A 

reasonable price for a product or service is not a single number but rather a range 

of feasible price points. 

Various research has been done on carriers pricing decisions. Chi and 

Koo (2009) examines the pricing behaviors of United States air carriers in 

domestic markets. Mozafari and Karimi (2011) studies pricing and fleet 

management decisions for full-truckload freight carriers, which compete on a 

road network. Mutlu and Çetinkaya (2013) studies a carrier–retailer channel and 

examine the profitability of the centralized and decentralized channels under 

price-sensitive demand. Toptal and Bingöl (2011) studies the transportation 
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pricing problem of a truckload carrier in a setting that consists of a retailer, a 

truckload carrier and a less than truckload carrier. Yin and Kim (2012) 

characterize freight rate tafiff freight tariff by price-break points, discounted 

freight rates, and penalties for unsold space. Xu et al. (2010) examines how the 

loss averse effect of downstream customer can affect the decision of carrier to 

maximize its profit through contract price one carrier , one forwarder and a 

downstream customer market. However, not much existing research has been 

done to address the pricing decision of FFs.   

Section 2.2.1 discusses how a FF can identify a range of price points 

using the exchange value method.  FFs aim to capture more profit through price 

but price and demand are interrelated. This issue is discussed in Section 2.2.2. 

 

2.2.1 Price Boundaries 

According to Smith (2012) and Nagle et al. (2011), price is the value that a firm 

captures in a mutually beneficial exchange with its customers. The right price 

is often not a single number but rather a range of potential points (Zone of 

Potential Agreements, ZOPA) that benefits both customers and the firm. Based 

on the exchange value method, FFs could identify a reasonable price interval 

within which they could choose a value as the price of their services, and narrow 

pricing discussions to a reasonable range of price points. 

As shown in Fig. 2.1, two types of boundaries can be identified for a 

product or service - extreme boundaries and narrower boundaries. The extreme 
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boundaries define a range of acceptable prices outside which no rational buyer 

or seller would ever transact. The upper and lower bounds of extreme 

boundaries are determined by the full consumer utility and the marginal cost to 

produce. The narrower boundaries, which lie within these extremes, define a 

range of prices that are most likely to encourage customer transactions and leave 

the firm in the most favorable position. The upper and lower bounds of the 

narrower boundaries are determined by the exchange value and inferior 

alternatives. The full consumer utility is the value a costumer gains from having 

the product. The marginal cost to produce is the cost to produce one more unit 

of output. The exchange value of a product is the price of the nearest comparable 

alternative adjusted for the differential value of the product. The comparable 

alternatives are the solutions with which customers can accomplish the same or 

a similar set of goals. The differential value is defined as the change in customer 

utility that a product delivers in comparison to the alternative (exchange value 

= price of comparable alternative + differential value). The inferior alternatives 

are competing alternatives that deliver similar benefits to the one under 

consideration with less overall customer utility. People usually have heightened 

sensitivity in relation to their point of reference (Smith, 2012) - the reference 

price. The last price they paid for a product, the price they currently see or last 

saw on a product form consumers’ reference price for a given product. All the 

definitions and price points mentioned above determine the feasible price range 

of a product or service. 
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Fig. 2.1 Price boundaries for a product or service 

 

2.2.2 Price Elasticity of Demand  

In order to make pricing decisions in a strategic manner by capturing more profit, 

FFs should know how price changes will affect the demand they are facing. This 

issue can be investigated by using the concept of price elasticity of demand. 

Price elasticity of demand is a measure of how much the quantity demanded of 
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a good responds to a change in the price of that good. It is computed as the 

percentage change in quantity demanded divided by the percentage change in 

price (Mankiw, 2012).  Price elasticity of demand reflects how willing 

consumers are to buy less of the good as its price rises. According to Smith 

(2012), a market is considered to be elastic when a small change in price has a 

large effect on the quantity sold; whilst a market is considered to be inelastic 

when a large change in price has only a small effect on the quantity sold. In the 

short run, an elastic market tends to favor price cuts to improve profitability, 

whilst an inelastic market tends to favor price increases to improve profitability. 

The firm-level elasticity of demand is usually greater than or equal to that at the 

industry level.  

The demand for freight transport is determined by demand for physical 

commodities in a given location, which is a derived demand arising from 

customers demand for certain products (Lun et al., 2010). At the industry level, 

FFs face an inelastic market, in which the demand of cargo movement depends 

on the production of manufacturers, the need of end market consumers, and the 

global economic condition rather than the market freight rate. It is because the 

total volume of cargo movement is not highly correlated with the freight rate, 

but depends on the externalities beyond the shipping or freight industry. 

Shippers always have cargo at hand to be transported from an origin to a 

destination. As long as they can find cost-effective ways to do so, they will 

transport the cargo anyway. However, changes of freight rate will have indirect 
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effects on the demand of cargo movement. It is because freight rate will affect 

the magnitude of a product’s sale price and its manufacturer’s cost. Finally, the 

need of the product in the market is affected, and the total demand for the 

movement of this product is affected.  

At the firm level, FFs face a relatively more elastic market. Major 

customers with regular and large demand of cargo movement only consider 

price as one of the key issues before signing a contract with a logistics company. 

For example, an automobile manufacturer may also be concerned about the 

level of service, reliability, and timing; therefore they will have a higher 

willingness to pay for more reliable and higher level of service. For the military 

cargo, shippers may highlight timing and reliability over other issues related to 

price or cost. These shippers may also consider previous interactions, and thus 

are willing to pay more as long as they are satisfied with previous experiences. 

On the other hand, for medium or small customers, they are more sensitive 

towards cost, and thus have less willingness to pay. If switching to another 

company could reduce their expenditure, they usually have no incentive to stick 

to the previous company. Many logistics company have noticed their major 

customers to be more stable and loyal, whilst their medium and small customers 

switch service providers very quickly.  

This diversity of the behavior pattern between major customers and 

medium/small customers present FFs the incentive to price segment their 

services in a profit-driven manner. Profit-driven pricing means that a company 
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evaluates its success at price management by the profit it generates, rather than 

by customer-driven, share-driven, or even cost-driven pricing. When interacting 

with major clients or someone who is not sensitive to the price, FFs should make 

pricing decisions on a case-by-case basis: trying to balance price, level of 

service and other personalized requirements while guaranteeing the profit. On 

the other hand, when interacting with smaller clients or customers who are 

sensitive to price, FFs should try to attract them with better prices and an 

acceptable level of service to compete with other service providers.  

 

2.3 Game Theory (GT) 

Game theory (GT) offers a valuable economic and mathematical tool to solve 

the decision-making problem in an environment where each decision-maker’s 

actions interact with those of others (Geckil & Anderson, 2010). It is a theory 

which accounts for both independent and interdependent decision making 

(Kelly, 2003) and thus fits the needs of this research. Game theory offers FFs 

the potential to take into account the possible reactions and decision-making 

behaviors of other parties including competing FFs. It aims to find optimal 

solutions to situations involving conflict or cooperation, under the assumption 

that players are instrumentally rational and act in their own best interests (Kelly, 

2003).  

We would like to examine FFs’ decision-making in a “game theoretic 

environment” because the outcome for each individual is affected not only by 
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its or her own actions but also by the actions of others (Hargreaves-Heap & 

Varoufakis, 2004). In this way, the interaction between the players can be 

modeled in a mathematical way with the purpose of helping the decision maker 

make its decisions by reasoning about the potential decisions made by other 

players. In the logistics market, each party is comprised of selfish actors aiming 

at optimizing their own goals – they make decisions by reasoning about the 

potential reactions of other interacting actors and predict the potential responses 

from these actors. FFs compete for the limited resources and capacity from 

carriers with the best price. Carriers also compete for business from FFs. On the 

one hand, each actor is free to act independently. A shipper can choose any FF. 

A FF proposes charges to shippers by making its own pricing decision and then 

assigning cargo received to available carriers. Carriers design their freight tariff 

schemes to achieve their own goals.  

This research is inspired by a game theoretic view of supply chain 

management (SCM), which examines the interactions between different players 

to find the equilibrium decision for each decision maker (Groznik & Heese, 

2010; Leng & Parlar, 2005; J. Li & Wang, 2010; J. C. Lu et al., 2012; Ni & Li, 

2012; Wu, 2012). A brief review of game theoretic applications in supply chain 

management can be found in Leng and Parlar (2005). In this type of research, 

game theory is applied to find the equilibrium decision of each player when a 

stable set of circumstances is reached. In this equilibrium state, each player has 

no incentive to unilaterally change and deviate from its current decision. As a 
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result, each player has found its optimal decision by considering the reactions 

of the others.  

However, current research focuses more on the interaction between two 

tiers of actors/actions, for instance, between two manufacturers and one retailer 

(Wu, 2012); two horizontally competitive suppliers and their vertical common 

retailer (J. C. Lu et al., 2012); an upstream supplier and a downstream firm (Ni 

& Li, 2012); a single manufacturer and two competing retailers (Groznik & 

Heese, 2010); or competing suppliers and one assembler (J. Li & Wang, 2010). 

In this research, FFs are intermediaries who connect upstream shippers and 

downstream carriers; thus we have to investigate a three-tier interaction between 

shippers, FFs and carriers. The multi-level interaction adds new complexity to 

the problem formulation using game theory. 

In addition, most of the previous research assumes demand to be a 

function of either market size, price and level of service (J. C. Lu et al., 2012; 

Wu, 2012); price related parameters (J. Li & Wang, 2010); or the utility and 

preference of various parties (Groznik & Heese, 2010; Ni & Li, 2012). Typically, 

a demand function is given to describe how these factors will influence the 

demand of a particular player. However, in this research, demand from shippers 

may or may not be elastic due to factors internal to shippers and external market 

conditions. Rather than defining a demand function for FFs, we only take into 

account how the decisions made by FFs will affect those made by shippers. The 

price and level of service by FFs are the only factors deciding a shipper’s 
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preference (utility) in selecting a FF. The capacity in the logistics market is taken 

to be inelastic in the short term due to the long lead time required to build vessels, 

the bulky nature of the supply, and the high costs of taking a ship temporarily 

out of service. The emphasis of this research is on how FFs can use available 

information to make pricing decisions when demand and supply are fixed 

Game theory has been applied to examine non-pricing issues related to 

FFs. Saeed (2012) compared vertical and horizontal cooperation among FFs 

using game theory by defining the total demand for a particular FF through its 

customers’ utility (preference) when the FF is selected. This utility is assumed 

to be a function of the charge and level of service (waiting time of customers 

and frequency of trucks) of the FF. Krajewska and Kopfer (2006) proposed 

models for collaboration among independent FFs through a preprocessing phase 

followed by coalition profit optimization and profit sharing phases. Xiao and 

Yang (2007) examined the interaction between shippers, carriers and 

infrastructure companies. In Xiao and Yang (2007)’s work, they focus on the 

equilibrium flows of the system rather than the decision making problems of a 

specific tier by considering the potential behaviors and reactions of other tiers. 

Game theoretic concepts such as sub-game perfect Nash equilibrium (J. 

C. Lu et al., 2012; Xiao & Yang, 2007) and backward induction (J. Li & Wang, 

2010; Ni & Li, 2012; Xiao & Yang, 2007) have been applied in supply chain 

management and FF decision making. However, the interaction between all the 

three parties together in the logistics chain has not yet been considered.  
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2.4 Reinforcement Learning (RL) 

The objective in reinforcement learning is to improve the performance of an 

entity by building an update policy for various decisions made by the entity. 

This is mainly performed by trial and error without the model of the 

environment, but resulting actions are used to improve the process. Each action 

results in a feedback that may be a reward or a punishment. These data are then 

applied to update the learning models into the future.   

Reinforcement learning mechanisms can be categorized into two types: 

non-associative and associative learning mechanisms. For the non-associative 

reinforcement learning, the actions to be taken by a given player are not 

associated with its current state and vice-versa for the associative learning. 

Action-value and softmax methods for non-associative learning, and state-

action-reward-state-action (SARSA) and Q-Learning methods for associative 

learning are considered in this research. According to Sutton and Barto (1998), 

both the SARSA and the Q-Learning methods are also called Temporal-

Difference (TD) learning methods because the learning is based on a difference 

between the estimates of the value of functions at two different times. The 

advantage of TD-learning methods is to make it possible to learn directly from 

the raw data without a model of the environment.  

With Reinforcement learning, FFs are able to learn from their 

performance in previous interactions, and then use this knowledge to improve 



PRICING DECISIONS BY FREIGHT FORWARDERS 31 
 

31 
 

their future decisions. According to Ertel (2011), at a specific time H , and 

repeatedly over the total time period P, the world can be described by a state 

)' ∈ T , where the set T  is an abstraction of the actual possible states of the 

world. When a particular agent takes an action +' ∈ R at time H, the state of 

the world changes and results in the state )'[\ at time H + 1. A state transition 

function is used to determine the new state )'[\ = V )', +' . This function is 

defined by the environment but cannot be influenced by any actor. After 

executing an action +' at time H, the agent obtains an immediate reward I' =

I )', +' , which is always dependent on the current state and the action taken. 

During learning, I' > 0  and I' < 0  result in positive and negative 

reinforcements respectively, and I' = 0  means that the agent receives no 

immediate feedback for the action +'. A decision ?: T → R is a mapping from 

states to actions, which helps the agent learn an optimal decision based on its 

experiences. This is also the goal in RL - a decision is optimal if it maximizes 

reward in the long run. In order to measure the performance of a decision ?, a 

discounted reward is defined to quantify the performance of the decision starting 

at state )': 

 

<= )' = I' + UI'[\ + UdI'[d + ⋯ = U0I'[0

f

0gh

 (2.1) 

 

An alternative average reward function can be used: 
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<= )' = 5%i
j→f

I'[0

j

0gh

 (2.2) 

 

A decision ? is optimal if all states ) satisfy the following condition: 

 

<∗ = <=
∗
) ≥ <= )  (2.3) 

 

Based on the concept of dynamic programing (Hillier, 2010), given the 

current state, an optimal decision for the remaining stages is independent of the 

decisions adopted in previous stages. The optimal immediate decision depends 

only on the current state and not on how you got there. As a result, the future 

decisions for the remaining stages will constitute an optimal decision regardless 

of the decision made in previous stages (Taha, 2007). Using the discounted 

reward, we have: 

 

<∗ )' = i+7
Gm,Gmno,Gmnp,…

I' + UI'[\ + UdI'[d + ⋯

= i+7
Gm

I' + U i+7
Gmno,Gmnp,…

I'[\ + UI'[d + ⋯

= i+7
Gm

I' + U<∗ )'[\  

(2.4) 
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Then, the optimal decision can be obtained: 

 

?∗ )' = +I@i+7
Gm

I' + U<∗ V )', +'  (2.5) 

 

In previous research, reinforcement learning has been used to examine 

freight and passenger transportation related issues: for example, the design of 

train marshaling plans considering the group layout of freight cars (Hiroshima, 

2012); the transfer distance of locomotives (Hirashima, 2011); the generation 

of plans for vehicle routing (Mostafa & Talaat, 2010); and the examination of 

uncertainty, bounded rationality, and strategic choice behavior of travelers (Han 

& Timmermans, 2006). However, there has not been work on incorporating 

reinforcement learning in FF’s pricing decision making. 

 

2.5 Multi-Agent System (MAS) 

Multi-agent systems are systems composed of multiple interacting computing 

agents (Wooldridge, 2002). An agent is anything that can be viewed as 

perceiving its environment through sensors and acting upon that environment 

through actuators (Russel & Norvig, 2010). This paradigm has been used to 

represent organizations, functions, resources, and even human beings. MASs 

are considered suitable for the simulation of any phenomenon, scientific or 

behavioral, in order to understand the underlying dynamics of complex systems 
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effectively (Govindu & Chinnam, 2007). It is considered to be one of the 

powerful technologies for the development of large-scale distributed systems to 

deal with the uncertainty in a dynamic environment (Chen & Cheng, 2010). This 

technology is motivated by the desire to get deeper insight into the system that 

is not captured by traditional modeling approaches (Borshchev, 2013).  

According to Russel and Norvig (2010), an agent is able to interact with 

its environment through sensors and actuators (shown in Fig. 2.2). In general, 

an agent’s choice of action at any given instant can depend on the entire percept 

sequence observed to date. The percept refers to the agent’s perceptual inputs 

at any given instant, and the percept sequence refers to the complete history of 

everything the agent has ever perceived. As a result, the behavior of an agent 

can be described by the action that is performed after any given sequence of 

percepts. The agent function represents an agent’s external characterization and 

internal rules or principles that guide the agent’s decision-making. It maps any 

given percept sequence to an action. An agent function is implemented by an 

agent program which describes what percepts an agent will take as input and 

what actions will be returned. These percepts may include current information, 

information learnt via past experience as well as the anticipation of the future. 

Agents are categorized into four main types: simple reflex agent, model-based 

reflex agents, goal-based agents, and learning agents. Details of each type of 

these agents are presented in Table 2.1.  
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Fig. 2.2 Agent and its interaction with the environment (Russel & Norvig, 

2010) 
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Table 2.1 Different types of agents (Russel & Norvig, 2010) 

Agent type Descriptions 

Simple reflex agents 

They select actions on the basis of the current percept 

in a condition-action manner, ignoring the rest of the 

percept history. 

Model-based reflex 

agents 

They maintain some sort of internal state and keep this 

state updated as time goes by. They also have some 

sort of knowledge regarding how the world evolves 

independently of the agent and how the agent’s own 

action influences the world in a given internal stage. 

After examining all the above aspects, they make 

decisions based on condition-action rules. 

Goal-based agents 

They maintain a current state description (similar to 

model-based reflect agent) together with a sort of goal 

information that describes situations that are 

desirable. 

Utility-based agents 

Compared with goal-based agent, utility-based agents 

provide a more general performance measure by 

utility rather than just provide a binary distinction 

between “happy” and “unhappy”. 

Learning agents 
They are capable of learning from past actions to 

improve the performance of future decisions.  
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This research is also inspired by the multi-agent approach applied in 

supply chain management, in which MAS technology is used to facilitate the 

modeling and simulation of a supply chain and its dynamics (Fox et al., 2000; 

J. Li & Chan, 2013; Swaminathan et al., 1998). A review related to multi-agent 

systems application in supply chain management can be found in Lee and Kim 

(2008). Zhang et al. (2006) considered integrating manufacturers’ production 

activities with suppliers, customers and partners within wide and open supply 

chain networks to help manufacturers remain competitive in complex global 

political and economic scenarios. Pan and Choi (2013) used a multi-agent 

approach to consider the negotiation on price and delivery date between 

manufacturer and supplier in fashion supply chain. W. Y. Liang and Huang 

(2006) used agent-based technology to forecast demand in a multi-echelon 

supply chain.  

MAS technology has also been used to examine non-pricing issues 

related to FFs. Chan et al. (2012) proposed a multi-agent-based framework to 

enhance the automation of cargo consolidation and equalization in the air 

industry, and to facilitate cargo processing and generation of flight plans. Air 

cargo received by a FF can be processed more efficiently and flight plans can 

be generated automatically for FFs. Shum and Ng (2010) proposed an agent-

based framework to streamline cargo handling for air freight forwarding 

industry. However, there has not been any work done to model the interaction 
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between FFs and other parties using a MAS approach; neither has there been 

work on using the MAS framework to support the pricing decision by FFs. 

 

2.6 Gaps and Future Research Needed 
First of all, there has not been much work addressing the issue of pricing 

decisions by FFs in a situation involving shippers, FFs, and carriers. Operations 

research and mathematical programming are the most commonly used problem 

solving approaches. Problems are typically described from a single perspective 

or from the perspective of the whole system (system optimality and centralized 

decision making). The potential reactions of other entities are considered as 

constraints or simply omitted. However, in reality shippers, FFs, and carriers 

can pursue their own goals (user equilibrium and decentralized decision 

making). They can consider tradeoffs but do not need to sacrifice benefits for 

the achievement of system optimality. Conflict or congruence between the goals 

of different participants brings about competition or cooperation, and the 

decisions made by the different parties will change accordingly. However, it is 

difficult to say which goal, user equilibrium or system optimality, is better: 

system optimality improves the gains from the perspective of the whole system, 

whilst sub-system optimality, or user equilibrium, is more realistic in the real 

world implementation. In the real world most rational entities aim at 

maximizing their own goals, and will only consider achieving system optimality 

when their payoffs can be improved. Under the system optimality condition, the 
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sum of all individuals’ gains is maximized and the sum of individuals’ payoffs 

under the system optimality condition will be no worse than that in sub-system 

optimality condition, which brings the incentives for different entities to 

cooperate and coordinate to achieve system optimality. In addition, these 

decisions should also be sensitive to the market, as well as to the decisions made 

by other participants. Game theory appears to be the best means of considering 

all the above issues when examining the pricing decisions of FFs. A game 

theoretic approach for a FF’s pricing decision is presented in Chapter 3 .  

In addition, most of the literature presented in Section  2.1focuses on 

optimizing the decision of FFs only with respect to current information, and 

learning from previous transactions has not been incorporated. However, in a 

highly competitive market, FFs can improve their pricing performance by 

adapting their decisions vis-à-vis their competitors. These decisions should be 

sensitive to the changes in the market as well as the decisions made by other 

actors. In this research, reinforcement learning is proposed to assist FFs in their 

pricing decisions. How learning approaches can be incorporated in a FF’s 

pricing decision is proposed in Chapter 4 and Chapter 5 .  

Further more, in operations research models, even though it is claimed 

that optimal decisions (for FFs) can be derived via these models, these optimal 

solutions do not take account of iterated decision making among FFs, shippers 

and carriers. In the real world, goals and objectives are likely to change 

depending on information received as a result of interaction between the parties 
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and through negotiation. The nature of the interaction also depends on the 

decisions made by the different parties. In other words, the negotiation between 

FFs and shippers or carriers can play a significant part in the decisions of all 

participants but this interaction has rarely been taken into consideration in 

previous research. The current “optimal” decision may not be optimal across 

the whole planning horizon, because the environment and the behavior of 

different participants may change and evolve over time. Multi-agent system 

(MAS) is a suitable technique to evaluate the various pricing decisions 

approaches that can be adopted by FFs. In a multi-agent simulation, each 

participant is represented by a software agent, which functions as an 

autonomous entity able to sense the environment and react accordingly. 

Through MAS, it is possible to examine the effect various decision making 

approaches adopted by FF. Multi-agent systems are built and multi-agent 

simulations are conducted in Chapter 4 and Chapter 5 .   
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CHAPTER 3  PRICING DECISIONS WITH 

COMPLETE INFORMATION 

	

3.1 Introduction 

This chapter presents a game theoretic (GT) approach to assist FFs with their 

pricing decisions. The aim of this chapter is to investigate how a given FF can 

formulate its optimal pricing decision in face of competition when it has 

complete information of the entire system. The potential reactions from other 

parties (shippers and carriers) and the competition from other FFs are taken into 

account by applying game theory. The information that is available to the FF is 

shown in Fig. 3.1. About the internal information, the FF knows its own 

objective as well as its preference when selecting preferred carriers. About the 

external information on shippers, the FF knows: 1) number of shippers; 2) each 

shipper’s demand of cargo movement; 3) each shipper’s selection behavior for 

the preferred FF; and 4) each shipper’s objective. About the external 

information on competing FFs’, the FF knows: 1) number of competing FFs; 2) 

each competing FF’s objectives; and 3) selection behavior of preferred carriers. 

About the external information on carriers, the FF knows: 1) number of carriers; 

2) each carrier’s selection behavior of preferred FFs; 3) full freight rate scheme; 

and 4) capacity.         

In this chapter, the real world interaction between shippers, FFs, and 
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carriers (discussed in Section 1.2 ) is represented as an extensive form game. A 

Multinomial Logit (MNL) model is used to represent the selection behavior of 

shippers. The concepts of Nash equilibrium in an extensive form game and 

backward induction are used to solve the equilibrium pricing decision under 

different scenarios. The results of the study give an insight into: 1) how a FF’s 

equilibrium prices are determined in face of competition under various 

scenarios; 2) how a FF could achieve optimal pricing performance in face of 

competition; and 3) how various key factors (demand, shipper’s price sensitivity 

etc.) affect a FF’s pricing performance in the game. Several practical 

suggestions for FFs in pricing decisions are proposed. 

 



PRICING DECISIONS BY FREIGHT FORWARDERS 43 
 

43 
 

 

Fig. 3.1 A FF is able to access full information of the entire system 
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3.2 Representing the Interaction between SPs, FFs and Cs as a 

Game 

This research proposes to model the three-party interaction between shippers 

(829), FFs (!!0), and carriers (,.) as an extensive form game. The focus is on 

the pricing decision by FFs. Fig. 3.2 describes the game from the perspective of 

a particular 829 . The total analysis horizon is divided into P  analysis time 

periods, and within each analysis period H this game has the following moves: 

• Move 1: 829 decides either to use a FF (rs\) or design its own cargo 

movement plan (6s\). All shippers make their decision simultaneously 

based on the information made available to them – FFs’ proposed 

charges (or carriers’ tariff scheme), schedule and level of service. 

o rs\: 829 selects one FF, and this FF receives all the cargo from 

829 (outsourcing shipper). 

o 6s\ : 829  implements its own cargo movement plan (self-

fulfillment shipper, 8!9). 

• Move 2: Self-fulfillment shippers (6sd ) and FFs (rsd ) assign cargo 

among available carriers simultaneously. 

• Move 3: carriers move cargo to the destination and adjust their tariffs 

(6st, rst). The game advances to the next analysis period (H + 1) and 

starts again from move 1. 
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Fig. 3.2 Extensive form game between shipper, FF and carrier. 

 

3.3 Non-Cooperative Game between SPs, FFs and Cs 

3.3.1 Game Description and Assumptions 

As shown in Fig. 3.3, an example involving two shippers (829, : = 1,2), two 

FFs (!!u, % = 1,2) and two carriers (,., 1 = 1,2) is used to illustrate how a given 

FF can make pricing decisions using the proposed GT approach. 

It is assumed that 829 needs to transport <9 unit of cargo from an origin 

A to a destination B.  Both shippers want to transport cargo between the same 

origin and destination pair. There are two carriers serving the above OD pair, 
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and they are available to both FFs. ,. has an available capacity of ,-., and its 

charging scheme is denoted as 6. 7  -  the unit cargo movement charge with 

respect to a given cargo volume 7. 

The demand comes from shippers, which is supposed to be satisfied by 

supply offered by carriers. On the supply side, the market is assumed to be 

oversupplied: the total supply offered by carriers is greater than the demand for 

cargo movement – both carriers have more than enough capacity to meet the 

demand from both shippers. In order to take into account competition between 

FFs for the most cost-effective carrier, it is assumed that each carrier has the 

capacity to serve the demand of any shipper, but neither carrier can service the 

combined demand from both shippers. 

We also assume that the supply from carriers may fluctuate but not 

rapidly in the short term. Carriers may adjust their fleet size in response to 

demand but that is not the focus of this research. We adopt the above 

assumptions because the emphasis of the research is on the design of pricing 

decisions by FFs in a competitive oversupplied market. The problem is to 

formulate a pricing decision by taking into account the potential reactions of 

other actors, given the demand from shippers and the supply from carriers. A FF 

assures its own profitability if it can beat its competitors’ prices. However, 

pricing by FFs will influence a shipper’s selection of a preferred service provider.  

The vertical interaction between shippers and FFs as well as that 

between FFs and carriers are incorporated in this game. Under the assumption 
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of non-cooperative behavior, each player is assumed to be a selfish entity trying 

to maximize its own goals.   

 The first stage of the vertical interaction happens between shippers and 

FFs. The goal of the shippers is to minimize their total cargo movement cost. 

They are both outsourcing shippers, and independently choose one FF based on 

charges proposed by the FFs. They have no incentive to split the cargo between 

FFs because outsourcing by shippers is common in the real world operations. 

Most of the shippers do not want to design and execute their own cargo 

movement plans. Instead, they prefer to partner third party logistics companies 

and rid themselves of non-core services and additional functions that are not 

typical for a company. The FFs are assumed to be NVOCCs, and their goal is to 

maximize individual total profit. No FF has the incentive to cooperate with the 

other; instead, they compete for limited cargo from shippers and available 

capacity from carriers. Communication and information exchange are not 

possible between the FFs, and they do not form a coalition.  

The second stage of the vertical interaction happens between FFs and 

carriers. FFs’ objective is to minimize cost by splitting cargo among available 

carriers by making the best combination of carriers. In the end, carriers transport 

cargo physically from origin to destination. Carriers’ objectives are represented 

by their charging schemes. But how carriers adjust their pricing scheme is not 

the focus of this research. 

 Horizontal competitions within tiers are also incorporated in this game. 
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FFs compete for business from shippers by proposing prices, and compete for 

the most cost-effective carrier by splitting cargo between carriers. The 

competition between carriers is represented by carriers’ charging scheme. It is 

assumed that carriers always prefer FFs offering larger volume of cargo. The 

compotation between shippers is not considered for current research.  

 

 

Fig. 3.3 Research context for GT approach 

	

 

3.3.2 Game-Theoretic Approach for FF Pricing Decision 

In the six-player game, going from move 1 to move 2 can be treated as an 

extensive-form game, in which each player knows the sequence of its moves. In 
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order to obtain the equilibrium decision for each player, the game is divided into 

two sub-games - a sub-game is a small portion of a game starting at a specific 

node of the entire game (Geckil & Anderson, 2010). In this example, two sub-

games are identified: a) sub-game 1 - interaction between shipper and FF; b) 

sub-game 2- interaction between FF and carrier. The decision of each player is 

in a sub-game perfect Nash equilibrium (SPNE) in an extensive form game 

when these decisions constitute a Nash equilibrium in each of the sub-games 

(Hargreaves-Heap & Varoufakis, 2004). A specific player will make its own 

utility-maximizing decision, given the decision of ‘‘upper level’’ players and the 

information of ‘‘lower level’’ players (Xiao & Yang, 2007). “Upper level” 

players are the ones who have finished their moves, and ‘‘Lower level’’ players 

are the ones who will move afterwards by referring to the move of this player. 

In order to find the Nash equilibrium of this game, the concept of backward 

induction (Hargreaves-Heap & Varoufakis, 2004) is applied, where a player 

moving first will consider what the player moving next would do. Players work 

out their best decisions by reasoning backwards and inducing their beliefs about 

what constitutes the wisest choice by starting at the end and then moving to the 

beginning. By using backward induction, the analysis begins from the end of 

the game to its beginning, i.e. first sub-game 2 and then sub-game 1 is 

considered.  

In sub-game 2, the problem for FFs is how to assign cargo received from 

shippers among carriers. Here, it is assumed that shippers’ decision about the 
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choice of FF is already known, and FFs need only to consider how to devise a 

combination of carriers to minimize costs for the volume of cargo received.  

In sub-game 1, each shipper chooses a particular FF according to price 

sensitivity and allocates all the cargo to it. FFs need to set the price of their 

services by maximizing their own profits. From sub-game 2, FFs receive 

information on the payment to carriers. With this information, FFs are able to 

determine their own charges to quote to shippers so as to generate profits in this 

sub-game.  

 

3.3.2.1 Sub-game 2: Interaction between FFs and Cs 

Sub-game 2 represents the interaction between FFs and carriers. If ;<0 units of 

cargo are received from shippers in sub-game 1, !!0 proceeds to split the cargo 

between the carriers in this sub-game. Although there is an oversupply of 

capacity in the market, it is assumed that a single carrier cannot handle all the 

cargo from both shippers simultaneously. As a result, both FFs compete for 

capacity from the more cost-effective carrier, and the decision of one FF will 

affect that of the other. If both FFs propose to give their cargo to the same carrier 

simultaneously, one or both of them will lose economy of scale because of the 

need to split part of the cargo to the other carrier. As a result, both FFs are 

willing to contract with the carrier with the lower freight rate to avoid splitting 

cargo so as to enjoy the economy of scale and the quantity discount.    
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The aim of both FFs is to reduce the total costs that may occur. A given 

carrier’s remaining capacity to !!0 equals to its total capacity less the space that 

has already been given to the other !!0 (the competitor to !!0 is denoted as !!0). 

As a result, the cargo splitting plan of !!0	 % = 1,2  can be expressed as the 

following optimization model: 

 

O%H	?!0 = 6. 70. 70.
.

 (3.1) 

 

Subject to: 

 

70.
.

= ;<0 (3.2) 

  

70.
.

= ;<0 (3.3) 

	  

0 ≤ 70. ≤ ,-. − 70.	, 1 = 1,2 (3.4) 

 

Where,	?!0 is the total cargo movement cost to !!0; 70. is the volume of 

cargo !!0 intends to offer to ,.; 70. is the volume that ,. has already accepted 
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from the other !!0; and 6. 7  is ,.’s unit cargo charge with respect to cargo 

volume 7. The objective of !!0 is to minimize total payment (cost) to carriers 

(Equation (3.1)). Constraint (3.2) ensures that all the cargo received by !!0 is 

transported. Constraint (3.3) ensures that the potential reaction of the other !!0 

is taken into consideration. Constraint (3.4) ensures that the volume of cargo 

!!0  intends to give a carrier is within its current available capacity. In the 

formulation, !!0  takes into account the potential move of the other !!0  by 

involving the other FF’s decision variable 70. in its decision making problem 

(constraint(3.3)), because the moves of !!0 and !!0 are represented by 70. and 

70. respectively. However the value of 70. is treated as known in the decision 

making problem of !!0. 

!!0’s optimal response (70.∗ ) when !!0’s reaction (70.) is given can be 

expressed as: 

 

70.
∗ ∈ +IDO%H	?!0 70.

∗ 70	.  (3.5) 

 

It is obvious that 70.∗  is a function w0 ∙  of 70	., and thus the best reaction 

of !!0 when the reaction of the other !!0 is known would be (the two carriers 

are notated as ,. and ,. respectively): 
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70.
∗ = w0 70. 					

70.
∗ = ;<0 − 70.

∗  (3.6) 

 

Based on equation (3.6), the Nash equilibrium solution for both FFs is 

obtained by solving the following set of equations: 

 

70.
∗ = w0 70. 						

70.
∗ = ;<0 − 70.

∗ 	

70.
∗ = w0 70. 					

70.
∗ = ;<0 − 70.

∗

 (3.7) 

 

It is assumed that both carriers are using linear pricing schemes with 

quantity discount (equation (3.8)), in which +. represents the carrier’s marginal 

cost, and C.  is a parameter affecting the profit distribution between carriers 

(Xiao & Yang, 2007): 

 

6. 7 = +. − C.7	, 1 = 1,2	 (3.8) 

 

Upon substituting equation (3.8) into equation (3.1), the cost function of 

!!0 becomes: 

 



54 Pricing Decisions With Complete Information 
 

54 
 

?!0 = +. − C.70.
.

70. (3.9) 

 

It is assumed that both carriers prefer the FF with the larger cargo 

volume, and will serve that FF first before allocating the remaining capacity to 

the other FF. Without loss of generality, it is assumed that ;<\ > ;<d (when 

;<\ = ;<d, both carriers become indifferent to the choice between FFs). Then, 

this sub-game can be solved as a Stackelberg game: !!\ moves first to assign 

cargo between the carriers, followed by !!d  assigning cargo by using the 

remaining capacity. 

With % = 1, minimizing (3.9) with respect to constraints (3.2) to (3.4) 

results in the optimal move for !!\: 

 

7\\
∗ =

				0, %w	
;<\
2
≤ F\

;<\, %w	
;<\
2
> F\

	 (3.10) 

 

Where: 

 

F0 =
+\ − +d + 2Cd;<0

2C\ + 2Cd
 (3.11) 

 

Following this, !!d assigns its cargo by making use of the remaining 
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capacity of both carriers. With % = 2 and 7\\∗ , minimizing (3.9) with respect to 

constraints (3.2) to (3.4) results in the optimal response of !!d: 

 

7d\
∗ =

	
;<d − ,d + 7\d

∗ − ;<d − ,d + 7\d
∗

2
, %w	O ≤ Fd

;<d + ,\ − 7\\
∗ − ;<d − ,\ + 7\\

∗

2
, %w	O > Fd	

	 (3.12) 

 

Where: 

 

O =
2;<d + ,\ − ,d + 7\d

∗ − 7\\
∗

4
	

−
;<d − ,d + 7\d

∗ + ,\ − ;<d − 7\\
∗

4
	

(3.13) 

 

(7\\∗ , 7d\∗ ) is a Nash equilibrium because both FFs’ decisions are the best 

responses given the reactions of the other. This is the best outcome either can 

achieve by competing against each other. Both have no incentive to deviate from 

this equilibrium unilaterally because deviating will not make either of them 

better off. 

 

3.3.2.2 Sub-game 1: Interaction between SPs and FFs  

In this sub-game, each shipper needs to choose one FF based on its own price-

preference. According to discrete choice theory (Ben-Akiva & Lerman, 1985), 
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a decision maker’s choice from a set of mutually exclusive and collectively 

exhaustive alternatives can be modeled on the assumption of utility 

maximization. The alternative with the highest utility among the available 

alternatives should be selected. The utility function of a decision maker is 

formulated in terms of observable independent variables and unknown 

parameters. Because it is impossible to specify and estimate a discrete choice 

model that will always succeed in predicting the choice of an individual, the 

concept of randomness is invoked. The true utility of the alternatives is 

considered a random variable, and the probability that an alternative is chosen 

is defined as the probability that it has the greatest utility among the alternatives. 

Therefore, when 829 faces the choice between two alternative FFs, its utility 

when selecting !!0 can be defined as: 

 

/90 = E90 + M90	 (3.14) 

 

Where E90 is the systematic (representative or deterministic) component 

of /90, and M90 is the random part (disturbances or random components). In this 

research, the deterministic part of 829’s utility when choosing !!0 is defined as: 

 

E90 = K9 − L9230	 (3.15) 

 

Where 230  is the pricing decision of !!0 , and K9  and L9  are positive 
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constants associated with 829’s preference when selecting a FF. L9 reflects the 

829’s sensitivity towards price, and is associated with a negative sign because 

increasing price makes the choice of that FF less preferred. Based on the 

multinomial logit (MNL) model, the probability for 829 to choose !!0 can be 

quantified as: 

 

B90 = W 230, 230 =
z{|}

z{|} + z{|}
	 (3.16) 

 

Where B90 is a function of both 230 and 230. Each FF then needs to set 

the price of its services so as to maximize its own profit. Sub-game perfection 

assumes that at each stage of the game, players’ actions are the best replies to 

one another when players know the precise “node” they are at (Hargreaves-

Heap & Varoufakis, 2004). However, in this example, both FFs do not know 

this “node” because the amount of cargo they receive depends on their pricing 

decision 230, which affects shippers’ preference towards a FF. Furthermore, the 

price per unit cargo paid to carriers depends on the total amount of cargo the FF 

receives. If the proposed charges are too high, a FF may risk not getting any 

cargo from shippers. However, if the proposed charges are too low, the revenue 

obtained may not be sufficient to cover payment to the carriers even though the 

FF receives more cargo. In order to solve this sub-game, the concept of 

sequential equilibrium is used. Sequential equilibrium is aimed at composing 
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decisions which are the best replies to another player’s actions in stages of a 

game where players are uncertain regarding their precise location (or node) in 

the game. For a given FF, four possible scenarios can be identified with respect 

to its location in sub-game 1. Although each FF cannot tell which scenario will 

occur, the probability of each scenario can be estimated. 70.4  is defined as the 

amount of cargo !!0  offers to ,.  in scenario 5 , where 5 = 1,2,3,4 . Table 3.1 

shows the four possible scenarios, where 24 is the probability for scenario 5 to 

occur; DE40  is the amount of cargo !!0  obtains in scenario 5 ; and J40  is !!0 ’s 

average unit cost in scenario 5. 

 

Table 3.1 Possible scenarios 

Scenario 

5 

Probability 

24 

Cargo volume – DE40 
Average unit 

cost – J40 

!!\ !!d !!\ !!d 

1 2\ = B\\Bd\ cE\\ = V\ + Vd cE\d = 0 J\\ P-. 

2 2d = B\dBdd cEd\ = 0 cEdd = V\ + Vd P-. Jdd 

3 2t = B\\Bdd DEt\ = <\ DEtd = <d Jt\ Jtd 

4 2Å = B\dBd\ DEÅ\ = <d DEÅd = <\ JÅ\ JÅd 

 

The average unit cost (J40) for !!0 in scenario 5 can be estimated as: 
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J40 =
6. 70.

Ç 70.
Ç

.

70.
Ç

.
	 (3.17) 

 

Because 829  will chose one FF and has no incentive to split cargo 

among different FFs, B90	 : = 1,2  will always satisfy the following equations: 

 

B90 + B90 = 1	 (3.18) 

 

Using Table 3.1, the expected total profit of !!0	 % = 1,2   can be 

calculated as: 

 

N ;20 = 24DE40
4

230 − J40 	 (3.19) 

 

Based on Equation (3.19) and Table 3.1, the expected profit of !!0	 % = 1,2  

can be calculated as: 

 

N ;2\ = B\\Bd\ <\ + <d 23\ − J\\ + B\\Bdd<\ 23\ − Jt\

+ B\dBd\<d 23\ − JÅ\ 	
(3.20) 
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N ;2d = B\\Bdd <\ + <d 23d − Jdd + B\\Bdd<d 23d − Jtd

+ B\dBd\<\ 23d − JÅd  
(3.21) 

 

The first order derivative of the expected total profit of !!0	 % = 1,2  is: 

 

ÉN ;2\
É23\

= 23\<\ − <\Jt\ − Bd\<\J\\ − Bd\<dJ\\+Bd\<\Jt\+Bd\<dJÅ\
ÉB\\
É23\

+ 23\<d − <dJÅ\ − B\\<\J\\ − B\\<dJ\\+B\\<\Jt\+B\\<dJÅ\
ÉBd\
É23\

+ B\\<\ + Bd\<d 

(3.22) 

 

ÉN ;2d
É23d

= −23d<\ − <dJtd + Bdd<dJdd + Bdd<\Jdd+Bd\<dJtd+Bd\<\JÅd
ÉB\\
É23d

+ −23d<d − <\JÅd + B\d<\Jdd + B\d<dJdd+B\\<dJtd+B\\<\JÅd
ÉBd\
É23d

+ B\d<\

+ Bdd<d	

(3.23) 

 

According to Equation (3.16), we obtain: 

 

B90z
Ñ|} = zÑ|} 1 − B90 	 (3.24) 

 

Taking the logarithm of both sides of Equation (3.24) yields: 
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5H(B90) + /90 = /90 + 5H	(1 − B90)	 (3.25) 

 

Taking first order derivative of both sides of Equation (3.25) with 

respect to 23\ results in:  

 

1
B9\

ÉB9\
É23\

−
1

1 − B9\

É 1 − B9\
É23\

=
1
B9\

ÉB9\
É23\

+
1

1 − B9\

É B9\
É23\

= −L9	

(3.26) 

 

Then we will obtain: 

 

É B9\
É23\

= −L9B9\ 1 − B9\ = 39	 (3.27) 

 

Similarly, we can obtain: 

 

É B9\
É23d

= L9B9\ 1 − B9\ = −39 (3.28) 

 

Solving Equation (3.29) with respect to Equation (3.27) and Equation 

(3.22) results in the optimal pricing decision 23\∗ for !!\ given the reaction of 
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!!d (shown in Equation (3.30)). Similarly, Solving Equation (3.29) with respect 

to Equation (3.28) and Equation (3.23)results in the optimal pricing decision 

23d
∗  for !!d  given the reaction of !!\  (shown in Equation (3.33)). Then we 

calculate the first order derivative of total profit for !!0	 % = 1,2 , and set it 

equal to zero: 

 

ÉN ;20
É230

= 0	 (3.29) 

 

The optimal pricing decision for !!\ given the reaction of !!d can be 

calculated as: 

 

23\
∗
áàp

=
3\ <\Jt\ + Bd\(\ + 3d <dJÅ\ + B\\(\ − B\\<\ − Bd\<d

3\<\ + 3d<d
	

(3.30) 

 

Where: 

 

(\ = <\ + <d J\\ − <\Jt\ − <dJÅ\	 (3.31) 

  

39 = −L9B9\ 1 − B9\ 	 (3.32) 

 



PRICING DECISIONS BY FREIGHT FORWARDERS 63 
 

63 
 

Similarly, we obtain the optimal pricing decision for !!d  given the 

reaction of !!\: 

 

23d
∗
áào

=
3\ <\JÅd + Bdd(d + 3d <dJtd + B\d(d − B\d<\ − Bdd<d

3\<\ + 3d<d
	

(3.33) 

 

Where: 

 

(d = <\ + <d Jdd − <dJtd − <\JÅd	 (3.34) 

 

Equations (3.30) and (3.33) are the optimal pricing decision of !!0	 

when the decision of !!0 is known. These equations represent the response rules 

regarding how a given FF could react to the pricing decisions made by the other 

FF. We note that 230∗ is a function of B90, B90, B90, B90 , and B90 is a function of 

230, 230, L9, L9  – indicating how the decisions of the other FF and shippers 

are involved; however, neither 23\∗ nor 23d∗ can be given in closed form. The 

equilibrium pricing decisions for both FFs can be obtained by solving the 

system of equations constituting of (3.30) and (3.33): 
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23\
∗
áàp =

3\ <\Jt\ + Bd\(\ + 3d <dJÅ\ + B\\(\ − B\\<\ − Bd\<d
3\<\ + 3d<d

23d
∗
áào =

3\ <\JÅd + Bdd(d + 3d <dJtd + B\d(d − B\d<\ − Bdd<d
3\<\ + 3d<d

	(3.35) 

 

For optimality, the second order derivative of N ;20   at 230∗  should 

satisfy: 

 

ÉdN ;20
É(230)d áà}gáà}

∗
< 0	 (3.36) 

 

The second order derivative of N ;20  at 230∗ (shown in Equation (3.36)) can 

be expressed as: 

 

ÉdN ;2\
É(23\)d

= 2<\ − 3d(\ 3\ + 2<d − 3\(\ 3d

+ 23\<\ − <\Jt\ − Bd\(\
ÉdB\\
É(23\)d

+ 23\<d − <dJÅ\ − B\\(\
ÉdBd\
É(23\)d

	

(3.37) 
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ÉdN ;2d
É(23d)d

= 2<\ − 3d(d 3\ + 2<d − 3\(d 3d

+ −23d<\ + <\JÅd + 1 − Bd\ (d
ÉdB\\
É(23\)d

+ −23d<d + <dJtd + 1 − B\\ (d
ÉdBd\
É(23d)d

	

(3.38) 

 

Taking the second order derivative on both sides of Equation (3.25) with 

respect to 23\ and 23d results in: 

 

ÉdB9\
É(23\)d

=
É39
É23\

= 2L939B9\ − L939	 (3.39) 

  

ÉdB9\
É(23d)d

= 2L939B9\ − L939	 (3.40) 

 

Substituting Equation (3.39) into Equation (3.37), and Equation (3.40) 

into Equation (3.38) respectively results in: 

 

ÉdN ;2\
É(23\)d áàogáào

∗

= 3\ 2<\ + L\ − 2L\B\\ −23\<\ + <\Jt\ + (\Bd\ − (\3d

+ 3d 2<d − (\3\ + Ld − 2LdBd\ −23\<d + <dJÅ\ + (\B\\ 	

(3.41) 
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ÉdN ;2d
É(23d)d áàpgáàp

∗

= 3\ 2<\ + L\ − 2L\B\\ −23d<\ + <\JÅd + (dBdd − (d3d

+ 3d 2<d − (d3\ + Ld − 2LdBd\ −23d<d + <dJtd + (dB\d 	

(3.42) 

	  

3.4 Numerical Experiment 

In this section, the problem formulations of the preceding sections are used to 

solve numerical experiments. The results of these numerical simulations are 

useful in drawing insights into FF’s pricing decisions under competition. The 

effect of shippers’ price sensitivity and level of demand can also be studied. This 

has useful implications for FFs. 

Assume that two shippers want to move containers from city A to city 

B. Each shipper is going to outsource their vehicle movement tasks to a FF. 

There are two FFs in the market, and they are available to both shippers. Two 

vessels (carriers) serve the route from city A to city B, and both FFs are going 

to make use of these two carriers to design their cargo transportation plans. 

Other than mentioned above, all the other features of the three-tier interaction 

remain unchanged as shown in Fig. 3.3. The two shippers (82\ & 82d) need to 

transport <\ = 250  TEUs and <d = 200  TEUs respectively, and the two 

carriers (,\  & ,d ) can both provide slots for D+\ = D+d = 300  TEUs. The 

charging scheme (all-in price) of both carriers is shown in Fig. 3.4. 
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Table 3.2 The charging scheme of carriers 

Cã aã bã caã Description 

C\ a\ = 650 b\ = 0.6 ca\ = 300 Prefer the FF who 

offers larger 

volume of cargo Cd ad = 600 bd = 0.3 cad = 300 

 

 

Fig. 3.4 The charging scheme of both carriers 
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FF is determined by its utility function (Equations (3.14) and (3.15)). Equation 

(3.16) can be further simplified to: 

 

B90 = W 230, 230 =
z{|}

z{|} + z{|}
=

1
1 + z{|}è{|}

=
1

1 + zê| áà}èáà}
	 (3.43) 

 

From Equation (3.43), we see that the probability B90 for a given !!0 to 

be selected by 829 is determined by !!0’s price advantage 230 − 230  over its 

competitor !!0, as well as the shipper’s price sensitivity L9. Price sensitivity 

measures how the price quoted by a FF affects the utility of a given shipper: a 

larger L9  makes a shipper more sensitive to price differences between two 

competing FFs. K9  represents a given shipper’s intrinsic level of satisfaction 

when the price equals to zero. As it does not appear in Equation (3.43), it can be 

set to any arbitrary value. 

Section 3.4.1 presents solutions to the equilibrium pricing decision by 

FFs. Shippers are modeled as having either a high or low level of price 

sensitivity (P-S), and we name them as “high P-S shipper” or “low P-S shipper” 

respectively. The examples are examined with respect to three combinations of 

shippers: 1) both high P-S shippers; 2) a combination of a high P-S shipper and 

a low P-S shipper; 3) both low P-S shippers.  

The effect of price sensitivity L9 on FFs’ equilibrium pricing decisions 

is discussed in Section 3.4.2. How the level of demand of shippers will affect 
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FFs’ equilibrium pricing decisions is discussed in Section 3.4.3.  

 

3.4.1 Solution of Equilibrium Pricing Decision Model 

The aim of this section is to examine the equilibrium pricing decision by FFs 

when shippers have different level of price sensitivity. Shippers’ and carriers’ 

parameters are listed in Table 3.3.  

 

Table 3.3 Model parameters for Shipper and carrier 

Expt. 
Shipper 

829 P-S L9 K9 <9 

1 
82\ H 0.050 

K\ = 0.9 

Kd = 0.8 

<\ = 250 

<d = 200 

82d H 0.060 

2 
82\ H 0.050 

82d L 0.006 

3 
82\ L 0.005 

82d L 0.006 

 

	

3.4.1.1 Subgame 2 – Interaction between FFs and Cs 

In subgame 2, FFs need to split the cargo among the carriers by referring to the 

pricing scheme of carriers (Table 3.3). To do so, each FF needs to estimate the 

potential cost associated with the different scenarios listed in Table 3.1. As 

discussed in Section 3.3.2.1, the optimal cargo split can be obtained by solving 

the optimization problem given by Equations (3.1) to (3.4). Its solution yields 
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the potential costs that occur under different scenarios, as shown in Table 3.4. 

 

Table 3.4 Potential costs for different scenarios in subgame 2 

Scenario 

5 
Cargo volume !!\ 

Cargo volume 

!!d 

Average unit cost 

!!\ 

Average unit cost 

!!d 

1 <\ + <d = 450 0 ì\\ = 498.33 NA. 

2 0 <\ + <d = 450 NA. ìdd = 498.33 

3 <\ = 250 <d = 200 ìt\ = 500.00 ìtd = 540.00 

4 <d = 200 <\ = 250 ìÅ\ = 540.00 ìÅd = 500.00 

	

3.4.1.2 Sub-game 1 - Interaction between FFs and SPs  

After solving sub-game-2, FFs need to formulate their proposed charges to 

shippers. In sub-game-1, a shipper’s price sensitivity will directly influence the 

price a FF proposes. The pricing decision of both FFs are derived by Equations 

(3.30) and (3.33). We cannot obtain a closed-form solution for the equilibrium 

price by solving (3.35). However, we could use a non-linear programing 

algorithm to find a solution. The equilibrium prices obtained under the 

combinations of shippers are solved using the optimization toolbox in Matlab 

which uses a dogleg trust-region algorithm for solving a system of nonlinear 

equations (Matlab, 2015); the results are shown in Table 3.5. In the equilibrium 

condition, both FFs propose the same price, obtain the same unit cargo cost, unit 

cargo profit, and get the same expected volume. Table 3.5 also suggests that the 

higher the price sensitivity of the shipper, the lower will be the equilibrium price 
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and expected unit profit even though the expected unit cost and total cargo 

volume remain the same. 

 

Table 3.5 Equilibrium price for !!\&!!d 

Expt.. 
P-S combination of 

shippers 

Equilibrium 

Price 

Unit cargo 

cost 

Total cargo 

volume 

Unit cargo 

profit 

1 High, High 536.35 

508.05 225.00 

28.46 

2 High, Low 551.01 43.12 

3 Low, Low 866.96 359.07 

 

3.4.2 Effect of Price Sensitivity on Equilibrium Price  

The aim of this section to investigate the effect of shippers’ price sensitivity on 

the equilibrium price by FFs. An experiment was conducted in which the price 

sensitivity of the shipper, L9 was varied between [0.005, 0.05]. L9 was varied 

within the above range because we would like to see how the variation of price 

sensitivity will affected the equilibrium price and pricing performance of 

different FFs. Both shippers are assumed to have the same price sensitivity.  

The equilibrium price – price sensitivity curve plotted in Fig.4.1 shows 

that there is an inverse relationship between equilibrium price and price 

sensitivity. In addition, this relationship is non-linear. Fig.4.1 also shows that 

there are three distinct parts of the curve. Furthermore, both FFs achieve the 

same level of unit cost (SGD 508.05) and cargo volume (225 TEUs) at the 

equilibrium, and the total demand is split equally between FFs. 
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The practical significance of the above findings is that FFs should be 

sensitive to the price sensitivity of their clients. This brings an incentive for FFs 

to price segment their clients. Price segmentation, also known as price 

discrimination in economics, is charging different customers different prices for 

an otherwise identical or similar product (Nagle et al., 2011).  Lower prices 

prevent high price sensitive shippers from switching service providers, but a 

desired profit margin should still be maintained by FFs. It is vice versa when 

FFs interact with high price sensitive shippers - good value-added services and 

level of service should be provided. Through consultation with industry 

practitioners, we also found that the key clients, shippers with large and regular 

demand for cargo movement, seldom switch logistics service providers. They 

try to avoid switching costs and the need to get used to a new business partner. 

They examine price, level of service, and previous experiences to decide 

whether to sign a long term contract or not. On the other hand, small or 

individual clients, shippers with low and infrequent demand for cargo 

movement, switch logistics service providers quite often because they believe 

these service providers offer a similar level of service. They are more sensitive 

to the price they are going to pay, and are willing to switch to a new service 

provider as long as a better price can be obtained.  

However, it is not possible to determine the value of this willingness-to-

pay – L9  except from past transactions or on a trial and error basis. By 

evaluating their previous transactions, FFs can quantify each shipper’s price 
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sensitivity. Surveys can also be conducted but the results would have to be 

treated with a fair amount of scepticism because other shippers may not be 

willing to reveal confidential information – e.g. the basis of choosing preferred 

FFs.   

 

 

Fig. 3.5 Effect of price sensitivity on equilibrium price 

 

3.4.3 Effect of Demand on Equilibrium Price 

The aim of this section is to investigate how the level of demand from shippers 

affects the equilibrium price by FFs and other performance indicators. The total 
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demand was varied from 0 TEU to 600 TEUs, and the demand was split equally 

between both shippers. The demand is assumed to vary within the above range 

because the total capacity offered by carriers is 600TEUs in the market and the 

market is assumed to be oversupplied. As the purpose of conducting the 

experiment is to examine how the variation of demand will affect equilibrium 

price and other performance indicators, both shippers’ value of price sensitivity 

(set to 0.03). The parameters for the carriers remain unchanged as shown in 

Table 3.3.  

Fig. 3.6 plots equilibrium price (per unit cargo) and unit cargo cost 

against total demand. The figure shows that both the price curve and the cost 

curve consist of three segments and the transitions happen at two critical cargo 

volumes - 167 TEUs and 300 TEUs. When the volume is 167 TEUs, FFs’ 

preference for the preferred carrier shifts from ,d to ,\. This corresponds to the 

breakeven point between the carriers’ charging schemes shown in Fig. 3.7. 

When the demand goes beyond 300 TEUs, this is beyond the capacity of either 

carrier.  

Both the price curve and the cost curve decrease as the volume of 

demand increases from 0 to 300 TEUs. This is because both carriers offer 

volume discounts and FFs enjoy higher discounts as they offer more cargo to 

the carriers. Starting at a volume of 167 TEUs, the price curve and the cost curve 

drops more dramatically because of the differences in the carriers’ charging 

scheme – ,\ uses a low price for a large amount of cargo although the price for 
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a small amount of cargo is relatively higher (vice versa for the ,d ). This 

difference between carriers causes the difference in the slope of the cost curve 

and the price curve. When the volume of demand goes beyond 300 TEUs, the 

two curves rise in the beginning to reach a maximum before decreasing 

thereafter. This is because once the total demand exceeds the capacity of the 

most cost-effective carrier, FFs have to split their cargo and use the other less 

cost-effective carrier. The cost curve then goes down because the unit cost is 

calculated as the expected cost with respect to four possible scenarios shown in 

Table 3.1. The cost goes up in scenarios 1 and 2 but falls in scenarios 3 and 4. 

The probability-weighted effect on costs in these four scenarios drives the 

expected cost down as total demand increases. The slops of the cost curve in 

turn affect the price curve. However, the peaks of the two curves are not at the 

same volume of demand. 
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Fig. 3.6 Equilibrium unit price vs. unit cost 

 

Fig. 3.7 Carrier’s charging scheme 
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Fig. 3.8 plots equilibrium unit cargo profit against demand, whilst Fig. 

3.9 plots equilibrium markup against demand. They show that in order to 

maximize the expected total profit, FFs do not apply the same markup as the 

demand changes. The markup and the profit are determined by the objective of 

maximizing the total expected profit. FFs apply higher markups when the 

volume is very low or very high and decrease their markup as the demand 

become closer to the capacity of the individual carriers – 300 TEUs. 

The implication to the FFs is that the markup should not be identical for 

all market conditions and demand levels. They should determine the optimal 

markup with respect to their current demand level and expected cost.  
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Fig. 3.8 Equilibrium unit cargo profit 
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Fig. 3.9 Equilibrium markup 

 

Fig. 3.10 plots total revenue and total cost against demand, whilst Fig. 

3.11 plots total profit against demand. Total revenue and total cost keep 

increasing as demand increases; however, total profit first increases till demand 

reaches 200 TEUs and then drops a bit until demand reaches 300 TEUs. Beyond 

that, total profit keeps growing. This is because the objective of FFs is to 

maximize the expected profit given current demand level and carriers’ charging 

schemes. The growth or loss of total profit is the outcome of balancing price, 
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demand as the growth of marginal revenue is greater than that of marginal cost, 

and vice versa when total profit drops. Specifically, in this experiment, as 

demand increases from 0 TEU to 200 TEUs, FFs can attract more cargo by 

lowering the markup - the marginal profit gained by volume growth is greater 

than that lost due to price drop. Similarly, total profit drops as demand increases 

from 200 TEUs to 300 TEUs because of the outcome of balancing price, cost 

and volume so as to maximize profit. Despite a total profit drop, the price is still 

the optimal decision for FFs as deviating from this price leads to more severe 

decrease in total profit. When demand is beyond 300 TEUs, total profit increases 

again because higher markup is used to cover the potential cost boost due to the 

usage of both carriers and the competition for limited capacity from the 

preferred carrier. FFs may have to split cargo among carriers (lose economy of 

scale) or use the less cost-effective one (failure in competition).  

The implication to FFs is that an improvement of pricing performance 

can be achieved by balancing price, cost and volume of cargo for the purpose 

of maximizing total profit. An increase in price improves per unit cargo profit 

but hurts cargo volume growth. In addition, pricing decisions should be profit-

driven rather than cost-driven. However, most logistics companies and literature 

related to FF operation issues focus more on cost reduction only because they 

believe the market rates are already established and the only thing they could 

do is to reduce cost. The shortcomings of cost-driven pricing are obvious - it is 

impossible to determine a product’s unit cost before determining its volume. It 
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fails to account for the effect of price on volume of business secured and volume 

on cost, which directly leads to pricing decisions that undermine profits (Nagle 

et al., 2011). The results may be overpricing in weak markets and underpricing 

in strong ones - exactly opposite to a prudent decision. As a result, a FF quoting 

price should ask whether the change in price will result in a change in revenue 

that is more than sufficient to offset a change in total fixed and variable costs. 

 

 

Fig. 3.10 Total revenue and total cost at equilibrium  
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Fig. 3.11 Total profit at equilibrium 
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CHAPTER 4  PRICING DECISIONS WITH 

LIMITED INFORMATION 

	

4.1 Introduction 

Preliminary research on a game theoretic (GT) approach for pricing decisions 

by FFs has been reported in Chapter 3 . There has been very little existing 

research on pricing decisions, especially those by FFs who are the middlemen 

in a service chain involving shippers, FFs, and carriers. The work introduced a 

GT formulation to account for the willingness-to-pay of shippers and 

competition between FFs. It extended the 2-layer game formulation to a 3-layer 

game formulation, and used the concept of Nash equilibrium in an extensive 

form game and backward induction to determine optimal pricing decisions that 

maximize total profit in a decentralized manner. 

However, like other analytical or quantitative analysis approaches, the 

GT approach requires very complex formulation. It also requires complete 

information of the system – e.g. shipper’s willingness-to-pay, the rationality of 

each actor, or carriers’ charging scheme. Although FFs can obtain this 

information by evaluating previous transactions or by conducting surveys, the 

results would have to be treated with a fair amount of scepticism because firms 

may not be willing to reveal such confidential information. Furthermore, the GT 

approach can only examine the interaction between players with similar 
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decision making behavior rather than between actors with very different 

behaviors.  

The aim of this chapter is to help a FF formulate its best pricing 

decisions when it has only limited information of the entire system. The 

information that is available to the FF is shown in Fig. 4.1. The FF knows its 

own objective, and can refer to its internal information (profit gain or loss, 

market share gain or loss, and whether quotations are accepted or not) to 

evaluate the performance of its previous actions so that future decisions can be 

improved. About shippers, the FF knows number of shippers and the demand 

of cargo movement. On carriers, this FF knows number of carriers, their full 

freight rate scheme, and capacity. However, the FF has no information on its 

competing FFs, and knows no more information other than mentioned above.       

A Multi-Agent System (MAS) is built to investigate the interaction 

between the three parties so that the performance of each learning approach can 

be examined. Multi-agent simulations are conducted to investigate the 

interactions under various combinations of FFs that learn. This chapter would 

like to answer: 1) whether learning by trial and error can improve pricing 

performance; 2) which is the best learning mechanism; 3) how learning and 

pricing performance can be optimized. The critical parameters that determine 

learning performance as well as the best settings for these parameters are 

investigated as well.  
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Fig. 4.1 A FF has limited information of the entire system 

 

4.2 Formulation of FF’s Pricing Decision 

The formulation of a FF’s pricing decision is within a context comprised of 

shippers (829, : = 1, . . , î), FFs (!!0, % = 1,… , ï) and carriers (,., 1 = 1,… , ñ) 

interacting over repeated transactions. As shown in Fig. 4.2, the first set of 
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interactions occurs between shippers and FFs. Shippers first announce cargo 

volume and requirements to FFs. Then FFs quote charges and propose cargo 

transportation plans after making their pricing decisions. After comparing the 

quotations from all FFs, shippers offer their cargo to a preferred FF. The second 

set of interactions occurs between FFs and carriers. After receiving cargo from 

shippers, FFs consolidate and then split the cargo among carriers based on each 

individual carrier’s pricing scheme and capacity. As shown in Fig. 4.2, learning 

is incorporated into the internal process of a FF: a learning model is first applied 

to examine the performance of decisions made in previous transactions. New 

pricing decisions are made with respect to acquired knowledge and the current 

pricing situation. This process of the FF pricing decision is repeated over many 

transactions in the market.  
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Fig. 4.2 Structure of interaction between shippers, FFs, and carriers 

 

 In order to formulate the charge to quote a shipper, a !!0 can make its 
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pricing decisions as follows (as depicted in equation (4.1)): 

• Step 1: estimate the lowest possible unit cargo movement cost that may 

occur by consolidating the cargo from all shippers – consolidated unit 

cost (,/,0);  

• Step 2: respond with a desired unit cargo movement charge 230  to 

shippers by adding a desired markup BI0 to the estimate of the unit cost, 

which is the pricing decision made by !!0. 

 

230 = 1 + BI0 ∙ ,/,0	 (4.1) 

 

The first key issue is how to estimate the potential consolidated unit cost 

(,/,0). As FFs make use of existing available carriers in the spot market to earn 

the price difference, they can use the tariff schemes announced by different 

carriers to estimate a lower bound of this cost. The ,/,0  to !!0  can be 

formulated as: 

 

,/,0 =
?!0

∗

<99
	 (4.2) 

 

Where ?!0 is the total cargo movement cost to !!0 when consolidating 

cargo from all shippers; ?!0∗ is the optimal value of ?!0, which is calculated by 

solving the following optimization model: 
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O%H	?!0 = 6. 70. 70.
.

	 (4.3) 

 

Subject to: 

 

70.
.

= <9
9

	 (4.4) 

  

0 ≤ 70. ≤ ,-., 1 = 1,2, … , ñ	 (4.5)	

	 	

The objective function minimizes the total fees paid to carriers 

(Equation (4.3)). Constraint (4.4) ensures that all cargo from shippers is 

transported. Constraint (4.5) ensures that the volume of cargo assigned to a 

given carrier is not beyond the carrier’s capacity.  

The other issue is how to set up a reasonable markup to recover the cost 

and maximize total profit. This pricing mechanism is called cost-plus pricing: 

the potential cost (,/,0) is estimated first and then a	markup	(BI0)	is	added in. 

Cost-plus pricing has the disadvantage of not being able to determine the unit 

cost if the final price has not been determined in the first place. Cost-plus pricing 

usually fails to account for the effect of price on volume and volume on cost, 
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which leads to pricing decisions that undermine profits (Nagle et al., 2011). The 

result may be overpricing in weak markets and underpricing in strong ones - 

exactly the opposite of what is required of a prudent decision. Thus FFs should 

ask whether the change in price will result in a change in revenue that is more 

than sufficient to offset a change in total fixed and variable costs. In order to 

overcome the disadvantages of cost-plus pricing, FFs can make pricing 

decisions by incorporating learning so that a reasonable markup can be learned 

over time. They work on looking for the level of a reasonable markup to 

establish a prudent price. The price is determined in a strategic and profit-driven 

manner so that the profitability is guaranteed. The level of markup is learnt by 

evaluating the FFs’ performance in previous transactions when different pricing 

decisions are made. FFs’ own goals, the market condition, preferences of 

shippers, and the reactions of competitors can be considered when learning the 

markup level. FFs should learn to take actions that lead to the maximal net 

profits or the minimal net profits loss, rather than deal with the problem of 

pricing to cover costs. 

In this research, we will consider three types of FFs: non-learning FFs, 

reinforcement learning (RL) FFs, and FFs learning on “If-Then (IT)” basis. The 

non-learning FFs fix their markup for a given time period with only periodic 

reviews. The other two types of learning are discussed in Sections 4.3.1 and 

4.3.2. 
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4.3 Pricing decisions incorporating learning  

4.3.1 Reinforcement Learning (RL) 

In this chapter, RL approaches are implemented to help a FF adapt their pricing 

decisions over time. With RL, the FF is able to learn from its performance in 

previous interactions, and then use the knowledge to improve its future 

decisions. 

A FF does not always have a model of the world because it lacks of 

information on what the market state will be after a specific pricing decision is 

made. The market condition is complex, and it is difficult for an individual firm 

to predict the direction of its evolution. In addition, a FF receives only the 

information of cargo volume and requirements from shippers. Then the FF is 

informed on the acceptance or rejection based on quoted price. On the other 

hand, through interacting with other parties, it is possible for a FF to gather 

internal and external information to measure the performance of its previous 

pricing decisions. As a result, the lack of a model of the world can be overcome 

by involving an function ( )', +' , which is used as an evaluation of an action 

+>  carried in state )> . The choice of the optimal decision is based on the 

following rule: 

 

?∗ )' = +I@i+7
Gm

	( )', +'  (4.6) 
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Where, the function ( )', +'  can be defined as: 

 

( )', +' = i+7
Gmno,Gmnp,…

I' + UI'[\ + UdI'[d + ⋯  (4.7) 

 

Equation (4.7) maximizes the discounted reward starting from the next 

stage +'[\ rather than the current state +'. Although a FF doesn’t know exactly 

the function of V )', +'  and I', it has to carry out an action +' at the current 

stage )'  anyway. The agent will then know the successor state )'[\ and the 

reward I' that will be received. Through trial and error, the FF is able to learn 

from its experience although it doesn’t know the exactly the functions of 

V )', +' . The function ( )', +'  of a FF agent can be further expressed as: 

	

( )', +' = I' + U i+7
Gmno,Gmnp,…

I'[\ + UI'[d + ⋯

= I' + Ui+7
Gmno

[I'[\ + U i+7
Gmnp,Gmnü,…

I'[d + ⋯ ]

= I' + Ui+7
Gmno

	( )'[\, +'[\ 	

= I' + Ui+7
Gmno

	( V )', +' , +'[\  

(4.8) 

 

Based on Equation (4.8), we know that: 

 

(∗ )', +' 	= I' + U(∗ )'[\, +'[\  (4.9) 
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As a result, a FF can learn the value of ( ), +  for all possible states ) ∈

T and actions + ∈ Rby trial and error. As equation (4.9) can always be satisfied, 

the difference between the estimates of ( )', +'  at two different times can be 

calculated as 

 

∆'= I' + U( )'[\, +'[\ − ( )', +'  (4.10) 

 

Theoretically, if the difference is small enough, we could conclude that 

the estimation is accurate. This is also the key idea of Temporal-Difference (TD). 

TD-learning methods use partial of the difference to update the estimate of 

( )', +'  at time H: 

 

K I' + U( )'[\, +'[\ − ( )', +' 	 (4.11) 

 

The step-size parameter K ∈ 0,1  influences the rate of learning, and 

determines how much the value of function ( ), +  is updated at each iteration. 

In this research, four RL models are investigated: Action-Value Method, 

Softmax Method, SARSA Method (on-policy TD method), and Q-Learning 

Method (off-policy TD method). The first two methods are non-associative 

learning mechanisms because actions to be taken are not associated with the 

state. The latter two methods are associative learning mechanisms; they are also 
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Temporal-Difference (TD) learning methods. The details on the four RL models 

are presented from Section 4.3.1.1 to Section 4.3.1.4. These learning models are 

used by estimating the value of particular functions. By evaluating the functions 

of action, or state-action pairs, we are able to estimate how good it is for a FF 

to be in a given state, or how good it is to perform a given action in a given 

state: 

• Function of action ( + : the mean reward that has been received when 

action + is selected; 

• Function of state-action pairs ( ), + : the expected return starting from 

state ) by taking action +; 

 

4.3.1.1 Action-Value Method 

The performance of a given action +  is evaluated by the value of the action 

(' + . In this research, the action value is defined as the mean reward received 

when that action is selected (at the A>j play, action + has been chosen :G times 

prior to time H, yielding rewards I\, Id, …, I9°): 

 

 (' + =
I\ + Id + ⋯+ I9°

:G
 (4.12) 

 

Then, the action selection rule is to choose in a greedy manner by 

selecting the action with the highest estimated value with a probability of 
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1 − 	M , which is called M-greedy method. With a probability of M, a random 

action is selected.  

 

4.3.1.2 Softmax Method 

The action with the highest mean reward is given the highest selection 

probability, and all the other actions are ranked and weighted accordingly. Thus, 

an action a is chosen with a probability of: 

 

BG =
z
¢m °
£

z
¢m §
£•∈¶

 (4.13) 

 

Where W is called temperature - higher temperatures cause the actions to 

become more equally preferred. b is an arbitrary action within the action apace 

R. 

 

 

4.3.1.3 SARSA: an On-Policy TD Method 

SARSA is short for State-Action-Reward-State-Action. The purpose of SARSA 

is to learn the state-action functions Q s, a   for the current decision π  for all 

states s  and action a . FFs learn the Q s, a   based on the pseudo code shows 

below: 
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Initialize Q(s,a) and ) arbitrarily 

Repeat (for each analysis period n): 

Choose a based on ) and Q s,a  for all a�A and s=s (e.g., ε-greedy) 

Take action a, observe r and the resulting state s’ 

Choose action a’ in state s’ based on Q s,a  for all a�A and s=s’ (e.g. 

ε-greedy) 

Update Q s,a  using: Q s,a  ← Q s,a +α[r+γQ s’,a’ -Q s,a ]	

s ← s'; a ← a’ 

Until N is reached 

 

SARSA is an On-policy (decision) method as it attempts to evaluate or 

improve the policy (decision) that is used to generate actions. 

 

4.3.1.4 Q-Learning: an Off-Policy TD Method 

The state-action functions ( ), +   learned is independent of the action being 

followed, which simplifies the learning mechanism and guarantees early 

convergence. FFs learn the ( ), +  based on the pseudo code shows below: 

 

Initialize Q s,a  and s arbitrarily 

Repeat (for each analysis period n) 

Choose a based on ) and Q s,a  for all a�A and s=s (e.g., ε-greedy) 

Take action a, observe r, and the resulting state s’ 
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Update Q s,a  using: Q s,a ←Q s,a +α[r+γmax
a’

Q s’,a’ -Q(s,a)	

s←s'	

Until N is reached 

 

Q-learning is an off-policy method - the policy (decision) used to 

generate an action, called the behavior policy, may in fact be unrelated to the 

policy (decision) that is evaluated and improved, called the estimation policy.  

 

4.3.2 Learning on If-Then (IT) Basis 

If we use a six-player interaction with two actors in each tier (two shippers, two 

FFs and two carriers) as an example, a FF at time H can identify three possible 

states that it may currently be in (shown in Fig. 4.2). This FF can increase or 

decrease current markup by a certain amount, or stick to the current markup in 

the upcoming transactions. 

 

Table 4.1 Possible states for a FF 

Current state Description 

Unfavorable Lost cargo from both shippers in the H − 1 >j iteration 

Acceptable Gained cargo from only one shipper in the H − 1 >j 

iteration 

Favorable Gained cargo from both shippers in the H − 1 >j iteration 
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We further define parameter +@0 ∈ 0,1   as a FF’s aggressiveness 

associated with its pricing decision. FFs with a higher value for the 

aggressiveness parameter are more likely to lower markup when facing an 

unfavorable or acceptable state, and less likely to increase markup when facing 

a favorable state. +B0 is defined as the unit of markup adjustment by a FF. The 

rules for price adjustments with respect to a given +@0 are: 

• In the favorable state: the probability to increase current markup BI0 by 

+B0  units equals (1 − +@0 ); whilst the probability to stick to current 

markup BI0 is +@0;  

• In the acceptable state: the probability to stick to the previous markup is 

1 −
G©}
d

; whilst the probability to reduce BI0 by +B0	equals G©}
d

. 

• In the unfavorable state: the probability to stick to the current markup 

BI0 is (1 − +@0); whilst the probability to reduce current markup BI0 by 

+B0	units equals to +@0. 

 

4.4 Multi-Agent System 

A multi-Agent System (MAS) is built to investigate the interaction between 

shippers, FFs and carriers so that the performance of learning approaches 

proposed in Section 4.3 as well as their best settings for parameters can be 

examined. In the MAS, each player is represented as an intelligent agent. An 

agent is an entity which can perceive the environment and then reacts 
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accordingly. The MAS is built from the bottom up by defining the behavior of 

each agent. Different agents are then put in an environment and allowed to 

interact. The performance of each agent as well as the behavior of the whole 

system will emerge out of the individual interactions.  

The decision making procedure of an individual agent is represented by 

a statechart which is a visual construct that enables us to define event- and time-

driven behavior of various agents (Borshchev, 2013). The statechart usually 

consists of states and transitions: a state is the “concentrated history” of the 

agent and also as a set of reactions to external events that determine the agent’s 

future. A transition between states is triggered by a message, a condition, or a 

timeout, which also defines the reactions in a particular state or those when 

entering or existing a given state. When a transition is taken, the state may 

change and a new set of reactions may become active. State transitions are 

atomic and instantaneous. 

MAS offers another way of looking at the whole system comprised of 

shippers, FFs, and carriers: we may not know how the system behaves as, what 

the key variables are and the dependencies between them, but we may have 

some insight into how agents in the system behave individually. We start 

building the model from the bottom up by identifying agents and defining their 

behaviors. Agents are connected to each other in an environment which may 

have its own dynamics (e.g. fluctuating level of demand or supply) and allowed 

to interact. The global behavior of the system emerges out of many individual 
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behaviors that interact. An examination of the simulation results under different 

scenarios could help FFs improve their pricing decisions in future transactions. 

 

4.4.1 Shipper Agent 

The behavior of an individual shipper agent is defined by the statechart shown 

in Fig. 4.3. This shipper agent is first in the original state (“idle” state) if there 

is no cargo to be transported. Transition “A\” is triggered once a demand of 

cargo movement is generated (the volume of cargo at hand is no longer zero). 

When exiting the “idle” state, the shipper agent sends solicitations to all FFs, 

and each solicitation comprises the volume of cargo. After sending the service 

request to all available FFs, the shipper agent enters the “requestsSent” state and 

waits for the responses from all contacted FFs. The shipper agent leaves the 

“requestsSent” state on 1) receiving quotations from all contacted FFs 

(transition “At” is triggered); or 2) receiving responses from at least one FFs 

(but not all FFs) but is no longer willing to wait for any further quotations 

(transition “ Ad ” is triggered). Before entering the “FF_selected” state, the 

shipper agent selects one FF by comparing all the received quotations. Each 

shipper agent has its own selection procedure, and these procedures may vary 

among different shippers. A shipper agent may rank all the received quotations 

with respect to its goals and expectations, and then make a decision. It may also 

use optimization procedure to maximize its goals or utility. After selecting the 

preferred FF, the shipper agent enters the “FF_selected” state, and all the cargo 
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is delivered to the selected FF. Then the transition “AÅ” is triggered, and the 

shipper enters the “Idle” state again and waits for the next cycle of interaction 

with FFs. 

	

 

 

Fig. 4.3 Shipper agent’s statechart 

 

4.4.2 FF Agent 

The statechart of a FF agent is divided into two blocks: the first block (Fig. 4.4) 

represents the interaction with shipper agents; the second block (Fig. 4.5) 

represents the interaction with carrier agents.  

In Fig. 4.4, a FF agent starts in the “idle_SP” state if no shipper has 

contacted it for logistics services. Transition “A\” is triggered once the FF 

receives a solicitation from any shipper. After receiving the solicitation, the FF 
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leaves the “idle_SP” state and enters the “requestReceived” state. It will start 

estimating the potential cost for the current request. Different FF agents have 

their own way of cost estimate, and they may or may not consider the 

consolidation of the cargo from different shippers with the cargo from previous 

transactions that is still being processed. The FF agent performs it cost 

estimation within a specified time interval, and then the transition “Ad ” is 

triggered. The FF agent enters the “costEstimated” state and starts preparing a 

quotation to the shipper. Again, after a given time interval, the FF agent sends 

the quotation back to the shipper. Then transition “At” is triggered, and the 

statechart enters the “quotationSent” state. In the end, the statechart returns to 

the original “idle_SP” state. 

 

 

Fig. 4.4 FF agent’s statechart - interacting with shipper 
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A FF’s interaction with carriers is represented as the statechart shown in 

Fig. 4.5. A FF agent starts in the “idle_C” state when no cargo needs to be 

processed or assigned to carriers. Transition “A™” is triggered and the statechart 

enters the “cargoToBeSplit” state once new cargo is received from shippers. 

The FF agent waits in this state until there is one or more available carrier that 

can transport the cargo. If there is at least one available carrier, the transition 

“A´” will be triggered. The FF agent leaves the “cargoToBeSplit” state and starts 

designing a cargo split plan by making the best combination of available carriers. 

After finalizing the cargo split plan, the FF agent will send the request to each 

selected carrier individually. Different FF agents may have different 

considerations or goals when they design their cargo split plans. After all the 

requests are sent, the FF agent enters the “splitRequestsSent” state and will be 

waiting for confirmation from all carriers contacted. The transition “A¨” will be 

triggered if all the requests to carriers have been responded (either accepted or 

rejected). Otherwise, the transition “A≠” is triggered if the FF agent received 

response from at least one carrier (but not all contacted carriers). After leaving 

the “splitRequestsSent” state, the FF agent will assign cargo to carriers. The 

statechart then enters the “requestsConfirmed” state. If there is still remaining 

cargo or new cargo has been received from shippers, transition “AÆ” will be 

triggered, and the statechart goes to the “cargoToBeSplit” state; otherwise 

transition “A\h” will be triggered and the statechart will return to the originating 

state – “idle_C” state. 
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Fig. 4.5 FF agent’s statechart - interacting with carrier 

 

4.4.3 Carrier Agent 

The statechart of a carrier agent is depicted in Fig. 4.6. The originating state is 

the “available” state in which the carrier agent becomes available to transport 

cargo physically for one or more FFs. Transition “A\” is triggered if there is at 

least one request received from FFs. The statechart then enters the 

“requestGathering” state in which the carrier agent will waits to collect further 

requests before making a decision regarding which FF to serve. Transition “Ad” 

is triggered if all FFs canceled their requests, and the statechart will then go 

back the originating “available” state. Transition “At” is triggered if the carrier 

agent has been in the “requestGathering” state for enough time and is not willing 

to wait any further. After leaving the “requestGathering” state, the carrier agent 

will select one or more requests among all the active requests (requests that have 
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been received during the “requestGathering” state but have not been canceled 

by FFs yet). After determining the FFs to be served in the next trip, the carrier 

agent enters the “transporting” state in which the carrier agent transports the 

cargo from the origin to the destination. Transition “AÅ” is triggered if the carrier 

agent’s cargo movement task is completed and the carrier agent is again 

available for the next assignment. 

 

 

Fig. 4.6 Carrier agent’s statechart 

	
4.5 Experiments and Simulations 

The purpose of conducting multi-agent simulation is to investigate whether 

learning from previous transactions can lead to better freight pricing decisions 

for FFs. Which is the best learning mechanism, and how learning and pricing 

performance can be optimized are also questions we would like to answer. The 
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critical parameters that determine learning performance as well as the best 

settings for these parameters are investigated as well. By using the multi-agent 

system built in Section 4.4, pricing performance of the learning mechanisms 

proposed in Section 4.3 is examined. Multi-agent simulations are conducted to 

investigate the interactions between various combinations of FFs that learn. The 

pricing decisions that emerge out of multi-agent simulation are also compared 

with those solved by the GT approach presented in Chapter 3 . 

 

4.5.1 Experiment Settings and Assumptions 

The experiments in this chapter are conducted within a similar context as 

Section 3.4. Two shippers want to move containers from city A to city B. Each 

shipper is going to outsource its vehicle movement tasks to a FF. There are two 

FFs in the market, and they are available to both shippers. Two vessels (carriers) 

serve the route from city A to city B, and both FFs are going to make use of 

these two carriers to design their cargo transportation plans. All the other 

features of the three-tier interaction between shippers, FFs, and carriers remain 

unchanged as shown in Fig. 3.3.  

Further in this chapter, the total analysis horizon is divided into P 

analysis periods. Within each period H, FFs first obtain cargo from shippers and 

then split the cargo received among carriers. After the carriers move the cargo 

from the origin to the destination, the simulation time is advanced to time H +

1. The previous steps are repeated until the final analysis period P is reached. 
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We define all the interactions that happen during the period H  as the H>j 

iteration.  

For each iteration, the two shippers (SP\ & SPd) need to transport V\ =

250 TEUs and Vd = 200 TEUs respectively, and the two carriers (C\ & Cd) can 

both provide slots for ca\ = cad = 300  TEUs. 829 	: = 1,2   will 

independently choose one FF by comparing the proposed unit price from the 

two FFs, denoted as  230, (	% = 1,2).  

Within each iteration, the total capacity of both carriers is more than 

enough to meet the demand from both shippers simultaneously - there is 

oversupply in the market. The demand from shippers and the supply from 

carriers are fixed. All carriers are using downward linear pricing schemes, and 

they will prefer the FF with the higher volume of cargo offered. The value of 

parameters for carriers is shown in Table 4.2 (the same as applied in Chapter 3 , 

Fig. 3.4) 

 

 

 

 

 

 

 

 



108 Pricing Decisions With Limited Information 
 

108 
 

Table 4.2 Parameters for carrier agents 

 +.	 C.	
Capacity of 

,. 
Preferred FF 

Pricing 

scheme 

Carrier 

1 
800 0.5 300 

FFs with higher cargo 

volume ± = +. −

C.7; Carrier 

2 
600 0.3 300 

FFs with higher cargo 

volume 

 

The interaction between the two shippers ( 829, : = 1,2 ), two FFs 

(!!0, % = 1,2 ), and two carriers (,., 1 = 1,2 ) is investigated by conducting 

multi-agent simulations. The goal of each FF is to maximize total profit. The 

markup BI0  of either FF is allowed to vary in the range of 0,30%   in 

increments of 1%. As both FFs are NVOCCs, they will depend on carriers to 

design the cargo movement plans. They have no direct information on the 

pricing decisions made by their rival, or how their rival’s behaviors adapt over 

time other than whether their bids were successful or not. Each FF, at time H, 

can identify three possible states that it may be in before taking further action – 

favorable, acceptable and acceptable states (Table 3.1). The greedy value M is 

set to be 0.05. The +B0 in the if –then model is set to 1%. 

For each combination of FFs, the experiment is run 20 times with each 

run lasting 500 iterations. The performance at a given time H is evaluated using 

the following indicator:  
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;≥A+5	BI≥w%A' = 2I≥w%A'

'

\

	 (4.14) 

 

The reward I' is quantified as the profits earned within iteration H after 

taking action +': 

 

I' = 2I≥w%A'	 (4.15) 

 

There is no other interaction between any pair of players other than that 

described, and the influence of long term contracts is not considered for the 

moment. 

 

4.6 Experiment 4a: Effect of RL on Pricing Decision 

The aim of conducting Expt. 4a is to investigate the effect of reinforcement 

learning on FF’s pricing decision. An experiment was conducted where one FF 

agent learned to adjust its markup by executing one of the four RL models 

(“challenger”, designated as !!\), while the other FF used a fixed markup of 

15% (“defender”, designated as !!d). Both shippers prefer the FF who offers 

the lowest price. Settings for carriers remain unchanged as shown in Table 4.2. 

An extensive search was conducted to find the optimal setting for the 

parameters associated with each of the four learning models used by the 
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challenger (shown in Table 4.3). The performance (averaged over 20 runs of 

500 iterations each) of the challenger and the defender under the best settings 

of parameters is shown in Fig. 4.7. We conclude that any one of the 

reinforcement learning models helps improve a FF’s pricing performance vis-a-

vis a fixed markup competitor. 

 

Table 4.3 Optimal setting for model parameters (RL vs. non-learning) 

RL model Optimal setting 

Action-value M = 0.05	

Softmax A = 500	

SARSA M = 0.05, K = 0.5, U = 0.05 

Q-learning M = 0.05, K = 0.5, U = 0.05 
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Fig. 4.7 Pricing performance –RL challenger against ‘no learning’ defender  

 

By examining a particular experimented run (shown in Fig. 4.8), we 

observe that it takes fewer iterations to learn a near optimal action using the 

Softmax model, slightly more iterations via the SARSA or the Q-learning, and 

the most number of iterations by the Action-value model. In the beginning, the 

average profit per iteration is higher for the Softmax model but increases very 

slowly afterwards. On the other hand, although the average profit per iteration 

is lower at the beginning for both SARSA and Q-learning, the profit increases 

significantly after several more iterations. SARSA and Q-learning also help the 

challenger learn an optimal action in a timely manner. 
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Fig. 4.8 Learning performance –RL challenger against fixed markup defender 
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4.7 Experiment 4b: RL Pricing Decision vs. GT Equilibrium 

Pricing Decision 

The aim of conducting Expt. 4b is to compare the optimal pricing decisions 

obtained by using one of the four RL models through multi-agent simulations 

(RL pricing) with those obtained by solving an analytical mode – GT model 

(GT equilibrium pricing). For both MAS and GT approaches, we use the same 

six-player interaction of two shippers, two FFs and two carriers (as introduced 

in Section 4.5.1). Settings for the experiment remain unchanged (as introduced 

in Section 4.5.1) except for the following: 

1) Both shippers make decisions based on the multinomial logit (MNL) 

model, and the selection behavior of a shipper is determined by its utility 

function (described in Section 3.3.2.2).  

2) Both shippers’ price sensitivity varies within 0.005, 0.05 . 

3) The maximum markup of both FFs is allowed to vary in the range of 

[100%,600%]. 

The RL pricing decisions are obtained by running multi-agent 

simulations. Both FFs learn using the same RL model. The discussion in later 

sections will be based on the SARSA method because as shown in Fig. 4.7 there 

is little difference in the pricing performance of these four RL models. In order 

to quantify the performance of RL pricing, the following indicators are 

calculated for each FF at the final iteration P = 500: 
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6r		¥H%A	BI≥w%A	 =
;≥A+5	BI≥w%A	%H	%AzI+A%≥H	Hµ

'g\

<≥5¥iz	≥w	D+I@≥	@+%HzF		%H	%AzI+A%≥H	Hµ
'g\

	 (4.16) 

	  

6r	BI%Dz	 =
6zEzH¥z	%H	%AzI+A%≥H	Hµ

'g\

<≥5¥iz	≥w	D+I@≥	IzDz%EzF		%H	%AzI+A%≥H	Hµ
'g\

	 (4.17) 

	  

6r		¥H%A	D≥)A	 =
;≥A+5	D≥)A	%H	%AzI+A%≥H	Hµ

'g\

<≥5¥iz	≥w	D+I@≥	@+%HzF		%H	%AzI+A%≥H	Hµ
'g\

	 (4.18) 

	  

6r		i+I:¥B	 =
6r		¥H%A	BI≥w%A
6r		¥H%A	D≥)A

	 (4.19) 

	  

6r		E≥5¥iz =
<≥5¥iz	≥w	D+I@≥	IzDz%EzF		%H	%AzI+A%≥H	Hµ

'g\

P
	 (4.20) 

 

The analytical model refers to the GT approach described in Chapter 3 . 

829’s utility when selecting !!0 is defined by its utility function /90 = E90 +

M90, where E90 is the systematic  components of /90, and M90 is the random part. 

The deterministic part of /90 is defined as E90 = K9 − L9230, where 230 is the 

pricing decision of !!0, and K9  and L9  are positive constants associated with 

829’s tastes when selecting a preferred FF. L9 reflects 829’s sensitivity towards 

price. Both shippers are assumed to have the same price sensitivity (L9 = L9). 
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The GT equilibrium pricing decisions are the best options for both FFs given 

the information they possess. No one has the incentive to deviate from the 

current situation because deviation will not make them better off. 

 

4.7.1 Effect of Price Sensitivity and Action Space on Pricing Decision 

This section examines the effect of shippers’ price sensitivity and FFs’ action 

space on the pricing decisions by FFs. Fig. 4.9 plots the RL unit profit and the 

GT equilibrium unit profit against shippers’ price sensitivity, which confirms 

that there is an inverse relationship between unit profit and shippers’ price 

sensitivity. An inverse relationship can be found between: 1) markup and price 

sensitivity (Fig. 4.10) and 2) price and price sensitivity (Fig. 4.11). As a result, 

a FF can be better off by proposing charges with respect to the price sensitivity 

of clients.  

In addition, a FF’s action space will affect the RL unit profit learned 

through the interactions (Fig. 4.9). The larger the action space is the further the 

RL unit profit will be from the GT equilibrium unit profit because a larger action 

space requires more actions to be evaluated before a FF can find the optimal 

price. As RL is conducted on a trial and error basis, there are more actions to 

evaluate if the maximum markup is larger (600%) compared with the situation 

when the maximum markup is limited (100%). Similar conclusions can be 

obtained by examining the RL markup (Fig. 4.10) and RL price (Fig. 4.11). 
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Fig. 4.9 Unit cargo profit - RL (SARSA) & GT approach 
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Fig. 4.10 Markup - RL (SARSA) & GT approach 
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Fig. 4.11 Unit cargo price - RL (SARSA) & GT approach 
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the GT equilibrium price throughout all simulations. More specifically, the RL 

price curve is always between the expected random price curve (the expected 

price if a FF randomly chooses one price within its action space) and the GT 

equilibrium price curve. This is because the GT equilibrium price is optimal 

given that a FF has the complete information of the whole system (shippers’ 

utility function, carriers’ decision making procedure, and how each player 

interacts with the other). The expected random price is formulated when a FF 

knows nothing about the system – the FF randomly chooses one markup from 

its action space. For the RL price, a FF has limited information – whether 

quotations are accepted, profit and market share gain etc.. Furthermore, the 

more iterations it takes, the closer the RL price converges to the GT equilibrium 

price - the RL price achieved after 5000 iterations is closer to the GT equilibrium 

price than that obtained after 500 iterations.  

When the allowable markup is significantly decreased from 600% (Fig. 

4.12) to 100% (Fig. 4.13), the RL price still does not reach the GT equilibrium 

price no matter how many more iterations are run. These two figures also show 

that the difference between the RL price and the GT equilibrium price grows 

with respect to shippers’ price sensitivity.  

The results suggest that a FF should be aware of how the level of 

information and number of iterations will affect the pricing performance of 

competitors and itself so that an optimal decision can be obtained after as fewer 

interactions as possible. 
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Fig. 4.12 RL price (maximum markup 600%) vs. GT equilibrium price  
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Fig. 4.13 RL price (maximum markup 100%) vs. GT equilibrium price 
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closer the RL unit cost converges to the lowest possible per unit cost; while the 

less price sensitive the shippers are, the closer the RL unit cost is to the GT 

equilibrium unit cost. This is because when shippers are price sensitive, the FF 

who offers the lower price is more likely to obtain cargo from both shippers. 

This FF can make use of the economy of scale, and the cost converges to the 

lowest possible. When shippers are less price sensitive, the RL unit cost 

approaches the GT unit cost. The latter is higher than all RL units costs 

established, and much higher than the lowest consolidated cost. GT equilibrium 

unit cost are therefore not the lowest, and shippers can benefit from competition. 

The investigation of these different measures of cost is critical for FFs’ 

practical operations because these costs are the basis on which FFs formulate 

charges or learn an optimal markup. FFs can also know the effect of their action 

space, demand level, and shippers’ price sensitivity on the potential cost so that 

a better estimate of the operating cost can be made.  
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Fig. 4.14 Unit cargo cost - MAS (SARSA) & GT approach 
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equilibrium cargo volume without any definite trend with regards to the price 

sensitivity of shippers or the FF’s action space. 

 

 

Fig. 4.15 Average cargo volume - MAS (SARSA) & GT approach 
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intensity of competition, V-Force) and competitors’ high intelligence 

(horizontal force on the intensity of competition, H-Force).  

The V-force of a FF is caused by its vertical interactions with shippers: 

if shippers are more sensitive on price, the FF have to quote lower prices so as 

to beat competitors and secure cargo. Thus, the level of competition in the 

market will be more intensive if the V-force is higher. As the V-force makes 

shippers more sensitive regarding price, FFs have to quote a lower price so as 

to beat competitors and secure cargo.  

The H-force of a FF is caused by its horizontal competition with 

competing FFs. Competitors’ high intelligence makes competitors learn and 

adapt very quickly so that the FF will not prevail in competition all the time. 

Thus, the level of competition in the market will be more intensive is the H force 

is higher. The H-force makes competitors learn and adapt very quickly so that a 

particular FF will not prevail in competition all the time. 

Fig. 4.9 shows that the V-Force undermines RL unit profit earned by FFs 

– there is inverse relationship between shippers’ price sensitivity and unit profit. 

On the other hand, the H-Force in this research is determined by FFs’ action 

space – a smaller action space makes FFs learn faster and thus appear to be more 

intelligent. FFs using RL learn and respond faster when the maximum allowable 

markup is 100% compare with the situation when this markup is 600%. Fig. 4.9 

shows the H-F also drives down the RL unit profit earned by FFs – there is an 

inverse relationship between unit profit and maximum allowable markup. 
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Similar conclusions can be drawn when we examine RL markup (Fig. 4.10) and 

RL price (Fig. 4.11). The above discussion indicates that a high intensity of 

competition undermines pricing performance of FFs but benefits shippers. In 

Fig. 4.16, the poor pricing performance of if-then FF and Softmax FF is also 

because of the high intensity of competition: both FFs learn very efficiently. Fig. 

4.14 shows that the intensity of competition has two effects on FFs’ unit cost. 

The V-Force drives down unit cost to the consolidated price, while the H-Force 

increases unit cost to the GT equilibrium cost. The former makes a FF more 

likely to gain all the cargo from shippers, while the latter makes two equally 

competitors match each other more quickly and thus split cargo and profit 

evenly. The discussions show that the intensity of competition has two effects 

on FFs’ cost: 1) the V-Force benefits FFs but undermines carriers’ revenue; 2) 

the H-Force increases the cost of FFs but carriers can benefit from it.  

 

4.8 Experiment 4c: If-then Pricing Decision vs. RL Pricing 

Decision 

The aim of this experiment is to compare the learning performance of if then 

learning and RL learning. An experiment was conducted where the defender 

adapted its markup by executing one of the four RL models, while the challenger 

adjusted its pricing decision on an if-then basis. The optimal settings for the 

learning models are determined as follows. First, the defender executes one of 

the RL models using the optimal parameter settings determined in Section 4.6. 
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The challenger does an extensive search to determine the best aggressiveness 

ag∑   setting for if-then learning against the defender. Then, given this 

aggressiveness setting for the challenger, the defender does an extensive search 

of its parameter setting for the RL model it is using. This procedure is repeated 

until a Nash equilibrium is reached (shown in Table 4.4): the defender’s and 

challenger’s parameter settings are all the best responses to each other, and none 

of them can do better by unilaterally deviating from the optimal settings.  

The performance of the challenger and the defender under such 

condition is shown in Fig. 4.16. Learning on an if-then basis gives better 

performance than any of the four RL models. Thus, RL does not always perform 

well in competition with other FFs. 

A possible reason could be that we currently define state in terms of the 

number of shippers whose cargo was successfully acquired in the latest 

transaction. We have not yet incorporated other relevant information (for 

example, previous price level, demand and supply level) to determine the 

current state. In addition, the action space for RL (markup ∈ 0,30%  , 31 

possible actions) is larger compared with that of the ‘if-then’ learning (only 3 

possible actions). In other words, it takes fewer iterations for the ‘if-then’ 

learning to explore the entire action apace to identify a better action for the 

current state. As a result, the “if-then” learning is more responsive to the changes 

of its rivals and the environment. If more criteria are incorporated to amplify 

the number of states and simplify the action space, the performance of RL could 



128 Pricing Decisions With Limited Information 
 

128 
 

be improved significantly.  

 

Table 4.4 Optimal setting for model parameters (If-then vs. RL) 

challenger (if-then) Defender (RL) 

+@0 = 0.70	 Action-value, ε=0.05 

+@0 = 0.85	 softmax,	W = 500 

+@0 = 0.80	 SARSA, K = 1, U = 0.05 

+@0 = 0.80	 Q-learning, K = 0.30, U = 0.05 

 

 

Fig. 4.16  Pricing performance –IT against RL 
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4.9 Experiment 4d: How Aggressive Should a FF Be on Pricing? 

The aim of this experiment is to investigate how aggressive should a FF be in 

pricing. An experiment was conducted where both challenger and defender 

learned on an if-then basis. An extensive search was first conducted to find the 

optimal settings for the parameters associated with both FFs. As both FFs are 

symmetric in behavior, they are denoted as !!0 and !!0 respectively.  

Fig. 4.17 shows the total profit earned by !!0  and !!0  given the 

aggressiveness +@0 of the other !!0. For each setting of +@0 for !!0, !!0 has an 

optimal response ( +@0∗ G©} ). When competing with FFs with lower 

aggressiveness, a FF can be better off by being more aggressive. Moreover, the 

general level of a FF’s profitability is affected by its components’ 

aggressiveness, and this aggressiveness determines the intensity of the 

competition in the market. More intensive competition will drive down profit 

for both actors 

By plotting the optimal +@0∗ against +@0, we obtain the frontier depicted 

in Fig. 4.18. This frontier represents the reaction curve of !!0 given the action 

taken by !!0. In order to find the equilibrium aggressiveness of both FFs, we 

need to find the interaction of the reaction curve of !!0  and !!0 . Due to the 

symmetric behavior of both FFs, the reaction curve of !!0  given the action 

taken by !!0 should be the same as the frontier shown in Fig. 4.18. Thus this 
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curve also yields the equilibrium frontier for both FFs. Each point on the frontier 

is a Nash Equilibrium because the action of each FF is already the best response 

to that of the other. By referring to this curve, a FF can figure out its optimal 

aggressiveness when competing against competitors. 
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Fig. 4.17 Profits earned by !!0 given the aggressiveness of !!0  
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Fig. 4.18  The reaction curve of !!0 
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CHAPTER 5  PRICING DECISIONS WITH REAL 

WORLD ACCESSIBLE INFORMATION 

	

5.1 Introduction 

The aim of this chapter is to help a FF make pricing decisions based on the 

information that is accessible to the FF in the real world operations. This chapter 

extends the learning approaches discussed in Chapter 4 by applying them in a 

different pricing situation: FFs are able to learn but only with the information 

that is available to them in reality.  

The information that is available to a FF is shown in Fig. 5.1. The FF 

knows its own objectives, and can refer to its internal information (profit gain 

or loss, market share gain or loss, and whether quotations are accepted or not) 

and external information to update its pricing decisions over time. For the 

external information, the FF knows:1) number of shippers and each individual 

shipper’s demand of cargo movement; 2) number of carriers. However, the FF 

does not know carriers’ full freight rate scheme and available capacity. Instead, 

the FF each time announces cargo volume and requirements to carriers after 

formulating its own cargo split plan. The FF will seek for confirmations from 

carriers and redo cargo split until all cargo is assigned and transported. The FF 

has no information on its competing FFs, and knows no more information other 

than mentioned above.         
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Fig. 5.1 Information that is accessible to a FF in real world operations 

 

In this chapter, the three-tier interaction between shippers, FFs, and 

carriers is examined when there are multiple players in each tier. Multi-agent 

simulations are conducted to get deeper insights into a FF’s pricing decisions 

that are not well captured by the approaches proposed in Chapter 3 and Chapter 

4 : we examine the scenarios when the demand from shippers and the supply 
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offered by carriers are allowed to fluctuate. Although a FF cannot control the 

fluctuation of demand and supply, the FF is able to adjust its pricing decisions 

to react to the fluctuation. In addition, although the market is assumed to be over 

supply over the long horizon, for a short time there may be insufficient supply. 

The simulation conducted in this chapter also takes into account undersupply in 

the market.  

The synchronous time model adopted in Chapter 4  (everything happens 

within a time step n and then the time jumps to the next time step n+1) is also 

relaxed in this chapter: by assuming asynchronous time model, activity and 

events can happen at any time point. According to (Borshchev, 2013), 

asynchronous time assumes that there is no “grid” on time axis and events may 

occur at arbitrary moments, exactly when they are to occur. In this way, the 

simulation can be conducted in a more realistic manner.  

 

5.2 Research context 

In this chapter, we examine the interaction between shippers, FFs, and carriers 

with multiple actors in each tier. As shown in Fig. 5.2, how a FF is able to make 

optimal pricing decisions is investigated in a context comprised of î shippers 

(829, : = 1,2, … , î ), ï  freight forwarders (!!0, % = 1,2, … , ï ) and ñ  carriers 

(,., 1 = 1,2, … , ñ). All shippers need to transport cargo between the same origin 

and destination pair. An individual 829  needs to transport <9  unit of cargo. 

There are multiple carriers in the market, and they are available to all FFs. 
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Fig. 5.2 The Three-tier interaction with multiple players in each tier 

 

The demand comes from shippers, which is supposed to be satisfied by 

the supply offered by carriers. On the supply side, the market is assumed 

oversupplied: the total supply offered by carriers is greater than the demand for 

cargo movement. However, for a short period, there can be under supply in the 

market. We also assume that the demand of cargo movement and the supply 

offered by carriers may fluctuate. Carriers may adjust their fleet size in response 

to the changes in demand, but how to adjust fleet size is not the focus of this 

research. We adopt the above assumptions because the emphasis of the research 
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is on pricing decisions by FFs in a competitive oversupplied market. The aim of 

this research is to assist a FF to identify a pricing decision via the interaction 

with other actors, given the demand from shippers and the supply from carriers. 

The FF assures its own profitability as long as it can beat its competitors. 

We would like to assist a given FF (!!\  in Fig. 5.2) in its pricing 

decisions via the interaction with other actors. How shippers, FFs, and carriers 

interact with each other is already presented in Fig. 5.2. From the FF’s 

perspective, it does not know the full information of the entire system. The FF 

only knows: 1) demand of cargo movement from shippers; 2) whether 

quotations are accepted or not; 3) number of available carriers in the market; 4) 

price quoted by carriers and volume of cargo that can be accepted by each carrier 

after each solicitation; 5) internal information, for example, profit gain or loss, 

market share improvement or loss etc.  

The vertical interaction between shippers and FFs as well as that 

between FFs and carriers are considered. The first stage of the vertical 

interaction happens between shippers and FFs. Each shipper can have its own 

goal, and the goal of different shippers can very from each other. All shippers 

are outsourcing shippers, and they all independently choose one preferred FF 

based on proposed charges. The demand of each shipper is allowed to vary. 

Shippers have no incentive to split their cargo between FFs because outsourcing 

by shippers is common in the real world operations. Most of the shippers do not 

want to design and execute their own cargo movement plans. Instead, they 
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prefer to partner third party logistics companies and rid themselves of non-core 

services and additional functions that are not typical for a company. All FFs are 

assumed to be NVOCCs, and each FF can have its own goals which may very 

across different FFs. No FFs have the incentive to cooperate with others; instead, 

they compete for limited cargo from shippers and available capacity from 

carriers. Communication and information exchange are not possible between 

FFs, and they do not form a coalition.  

The second stage of the vertical interaction happens between FFs and 

carriers. Each FF aims at achieving its own goals by splitting cargo among 

available carriers. Each FF can have its own goals and the objective of different 

FFs may vary. Each carrier does not reveal its full freight rate scheme and 

available capacity to FFs. Each time a FF sends a solicitation (including cargo 

volume, requirements etc.) to a specific carrier, and the carrier only responses 

unit cargo movement charge and volume of cargo that can be accepted. This 

procedure repeats until all cargo from the FF is assigned. In the end, carriers 

transport cargo physically from the origin to the destination. Each carrier is 

allowed to vary its fleet size and can have its own objective and ways of 

adjusting freight rate scheme. However, how carriers adjust their pricing 

schemes and fleet size is not the focus of this research. 

 Horizontal competitions within tiers are also considered. FFs compete 

for business from shippers by proposing prices, and compete for the most cost-

effective carriers by splitting cargo among carriers. The competition between 
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carriers is taken into account by: 1) carriers’ freight rate scheme; 2) how carriers 

decide which FFs to serve once solicitations from FFs are beyond capacity. The 

competition between shippers is not considered for now.  

This chapter also extends the synchronous time model assumption 

adopted in Chapter 4 by assuming asynchronous time model. According to 

(Borshchev, 2013), asynchronous time model assumes that there is no “grid” on 

time axis and events may occur at arbitrary moments, exactly when they are to 

occur (Fig. 5.3). However, the study in Chapter 4 assumes synchronous time 

model during the interaction between shippers, FFs, and carriers (also during 

multi-agent simulations). Synchronous time assumes that things can only 

happen during discrete time steps (they are “snapped to the time grid”), and 

nothing happens in-between. With the synchronous time model assumption, 

each player performs all its actions or do nothing at time H and then the time 

jump to time H + 1 (Fig. 5.4): both shippers announce volume of cargo to FFs, 

and both FFs make pricing decisions simultaneously and then response 

quotation. All the activities mentioned above occur within one time step, and 

then the time jumps to the next time step.  
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Fig. 5.3 Asynchronous time model 

 

 

Fig. 5.4 Synchronous time model 

 

5.3 Decision Making Model for Each Party 

In reality, each actor can have its own objectives and decision making models. 

This section presents how the behavior and decision making models of one actor 

vary from those of another. How information is exchanged between different 

actors will be discussed from the perspective of a specific shipper (Section 

5.3.1), FF (Section 5.3.2), and carrier (Section  5.3.3).  
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5.3.1 Shippers 

From a specific shipper’s perspective (829), the information flow between the 

shipper and its integrating FFs is presented in Fig. 5.5. The shipper first 

announces cargo volume and requirements to each FF in the market. Each FF 

then responds its quotation back to the shipper. This shipper will compare all 

received quotations and then select a preferred FF. 

  

	

Fig. 5.5 The information flow between a specific shipper and its interacting 

FFs 

	

In order to take into account variations in shippers’ decision making 

procedure, a specific shipper’s selection behavior for the preferred FF is 

modeled in three ways (shown in Table 5.1):  
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A type A shipper does not choose the FF who quotes the highest or the 

lowest price. Instead, the shipper randomly chooses one FF among all the other 

FFs. In reality, when some shippers make decisions, their rationality is limited 

by the availability of information, the tractability of the decision problem, the 

cognitive limitations of their minds, and the time available to make the decision. 

They may just seek a satisfactory solution rather than an optimal one.  

 A type B shipper always chooses the FF who quotes the lowest price. In 

reality, some shippers are quite sensitive about shipping cost. They are willing 

to switch to a new service provider as long as a lower price can be achieved. For 

example, when shippers transport less time sensitive cargo, they are willing to 

pay less attention on level of service as long as cargo can be transported from 

the origin to the destination with the lowest shipping cost. 

The objective of a type C shipper is to maximize its utility. When the 

shipper wants to transport cargo from an origin to a destination, there are 

multiple factors affecting its decision. This shipper’s perception and preference 

on various FFs can be measured by its utility function. The alternative that 

brings the highest utility will be selected. For example, we used multi-nominal 

logit model to model the selection behavior of shippers in Section 3.3.2.2. 
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Table 5.1 Variations in shippers’ selection behavior 

Type Selection behavior of preferred FF 

A Bounded rationality 

B Always choose the FF who offers the lowest price 

C Modeled by the multi-nominal logit model (discussed in Section 

3.3.2.2) 

 

	

5.3.2  FFs 

FFs are an intermediary party who facilitates the transactions between shippers 

and carriers in the logistics chain. From a specific FF’s perspective (!!0), the 

information flow between the FF and its integrating shippers is presented Fig. 

5.6. Various shippers first announce volume of cargo and requirements to the 

FF. By consolidating the cargo from all shippers, the FF announces consolidated 

cargo volume and requirements to each available carrier in the market. Each 

carrier then responds unit cargo price and volume of cargo that can be accepted. 

The FF has no information on how each carrier decides quoted price and volume 

of cargo that can be accepted. Based on the above information, the FF makes its 

pricing decision and responds unit cargo price back to each shipper. In the end, 

each shipper decides whether to accept the quotation or not. If a quotation is 

accepted, the shipper will offer all its cargo to the FF.  
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Fig. 5.6 The information flow between a specific FF and its interacting 

shippers 

	

Similarly, from the FF’s perspective (!!0), the information flow between 

the FF and its integrating carriers is presented Fig. 5.7. After receiving cargo 

from various shippers, the FF needs to further split cargo among available 

carriers so that all the cargo received can be transported from the origin to the 

destination. Once there is remaining cargo to be transported, a FF first 

announces volume of cargo and requirements to all available carriers. Each 

carrier then responds quotation and volume of cargo that can be accepted. After 

comparing all quotations and accepted cargo volume from various carriers, the 

FF decides which carrier to choose. The above procedure repeats until all 

remaining cargo is transported.     
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Fig. 5.7 The information flow between a specific FF and its interacting carriers 

	

In order to take into account variations in FFs’ behavior and decision 

making models, three types of FFs are considered (shown in Table 5.2).  

A type A FF applies fixed markup and reviews the markup periodically. 

When contacted by a shipper for cargo movement service, the FF first estimates 

potential cost and then responds a quotation by adding in its desired markup. 

The desired markup can be formulated based on the FF’s experience, objectives, 

or other analytical analysis approaches (for example, the game theoretical 

approach proposed in Chapter 3 ). The markup is reviewed periodically by 

examining the FF’s pricing performance in previous transactions. If a high level 

of profit or market share was achieved, this FF will have incentives to increase 

its markup for future transactions. Otherwise, lower markup will be preferred. 
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In reality, most FFs behave in this way because they are the intermediary party 

who earns price difference between the revenue gained from shippers and the 

fees paid to carriers. The simplest way of making pricing decision is to add a 

markup to costs so that a certain level of profitability can be achieved.  

A type B FF learns by one of the four RL models proposed in Section 

4.3.1. The FF is able to learn by trial and error so that no training data is required. 

RL learning is easy to implement by only using the information that is available 

to FFs.  

A type C FF learns on if-then basis as presented in Section 4.3.2. This is 

also an intuitive way of learning by trial and error.   

 

Table 5.2 Variations in FFs’ pricing model 

Type Description 

A Apply a fixed markup and review the markup periodically 

B 

Learn the optimal pricing decision by applying one of the four 

RL models proposed in Section 4.3.1. 

• B1: Action value 

• B2: Softmax 

• B3: Sarsa 

• B4: Q-learning 

C Learn on if then basis as presented in Section 4.3.2. 
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In order to incorporate more criteria to amplify the number of states and 

simplify the action space so as to improve the learning efficiency of RL models, 

in this chapter the sate of a FF is defined in a two dimensional manner (as shown 

in Fig. 5.8): pricing performance (market share) and markup level. From a given 

FF’s perspective, a state is defined with respect to its latest markup level and 

latest market share. The markup of the FF can be at a high level, a medium level, 

or a low level (Fig. 5.9). Within each markup range (for example, high markup 

range), the number of possible markup points is assume to be iB0. It means the 

entire action space of the FF is divided evenly into (3iB0 - 1) segments and the 

boundary of each segment is a possible markup point for the FF. The market 

share associated with a FF can be estimated as the portion or percentage of cargo 

that obtained by the FF with respect to all the cargo requested by shippers (Fig. 

5.10). It can be calculated as the volume of cargo obtained by the FF divided by 

the total volume of cargo requested by all shippers.  

 



148 Pricing Decisions With Real World accessible Information 
 

148 
 

 

Fig. 5.8 States of a FF 

	

	

Fig. 5.9 Markup levels of a FF 
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Fig. 5.10 Define pricing performance of a FF 

	
In this chapter, as the demand and supply are allowed to vary, the best 

pricing decision for a FF may not be the one that brings the highest total profits. 

Higher total profit may be due to higher total demand in the market (for example, 

peak season for cargo movement, like Christmas). Thus, we define the reward 

of !!0 as shown in Equation (5.1): the reward of !!0 is measured by the amount 

of profits gained divided by the highest possible total profit the FF is able to 

earn in the market.  230  is the price decision made by !!0; D≥)A0Gπ>∫G4  is the 

actual cost of !!0  after taking action 230 . T<0Gπ>∫G4  is the actual volume of 

cargo obtained by !!0 . BI%Dz0ºGΩ  is the highest possible price for !!0  when 

quoting price to shippers. ,/,0 is the lowest unit cargo cost for !!0. <99  is 

the total demand for cargo movement from all shippers.   

 

I =
230 − D≥)A0

Gπ>∫G4 ;<0
Gπ>∫G4

(BI%Dz0
ºGΩ − ,/,0) <99

 (5.1) 
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5.3.3 Carriers 

From a specific carrier’s perspective (,. ), the information flow between the 

carrier and its integrating FFs is presented in Fig. 5.11. Each FF first announces 

cargo volume and requirements to the carrier. The carrier responds price and 

volume of cargo that can be accepted to each FF. Each FF compares the 

quotations from various carriers, and decides whether accept the carrier’s 

quotation or not. In the end, the carrier confirms the FFs to serve. 

	

	

Fig. 5.11 The information flow between a specific carrier and its interacting 

FFs 

	

In reality, each carrier has its own ways of formulating freight rate 

scheme as well as deciding which FFs to serve when the solicitations received 
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are beyond the carrier’s capacity. As the focus of this research is on the pricing 

decisions by FFs, we assume that carriers are able to adjust their freight rate 

scheme but what is the optimal way to do it is not the focus of this study. In 

order to take into account the variations in carriers’ behavior and decision 

making models, we assume that each carrier has its own way of freight rate 

scheme formulation and fleet size adjustment.  

Carriers offer quantity discount to a FF if the FF offers a cargo volume 

that exceeds a certain minimum level. Quantity discount is often used by 

marketers to stimulate higher purchase level. The rational for using quantity 

discount often rests in the cost of product shipment: shipping costs tend to 

decrease per item shipped. Fig. 5.12 presents an example of a carrier’s freight 

rate scheme when the carrier offers quantity discount (Type A carrier). A 

carrier’s freight rate scheme may comprise of multiple break points (Fig. 5.12): 

If cargo volume is less than <≥5¥iz\ , 2I%Dz\ will apply. Similarly, if cargo 

volume is greater than <≥5¥iz\, 2I%Dzd will apply. This carrier can serve up to 

the volume of its capacity. Alternatively, a carrier can offer quantity discount in 

another form (as shown in Fig. 5.13, Type B shipper).   
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Fig. 5.12 A carrier’s freight rate scheme with quantity discount (Type A) 

	

	

Fig. 5.13 A carrier’s freight rate scheme with quantity discount (Type B) 

	

Although there is oversupply in the market, it is possible for a specific 

carrier to receive multiple solicitations from different FFs. If the total requested 

demand is beyond the capacity of the carrier, the carrier may prefer the FF who 
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offers larger volume of cargo (Type C) or the one who offers higher prices (Type 

D). 

	

5.4 MAS Simulation and Experiments 

5.4.1 Experiment Setting and Assumption  

The simulations conducted in this chapter investigates scenarios when there are 

multiple shippers, multiple FFs, and multiple carriers in the market. Multi-agent 

simulations are conducted based on the following case: three shippers want to 

transport containers from city A to city B. Each shipper is going to outsource its 

vehicle movement tasks to a FF. There are multiple FFs in the market, and they 

are available to all shippers. Four vessels (carriers) serve the route from city A 

to city B, and all FFs are going to make use of these four carriers to design their 

cargo transportation plans. The information that is accessible to a specific FF 

has been discussed in Fig. 5.1. All the other features of the three-tier interaction 

has been discussed in Fig. 5.2. 

Four sets of experiments are conducted in this chapter: Experiment 5a, 

5b, 5c, and 5d. The first two sets of experiments (Section 5.4.2) are conducted 

under the synchronous time model assumption. Expt. 5a (Section 5.4.2.1) 

examines the three-tier interaction under the synchronous time model 

assumption with three shippers, two FFs, and four carriers in the market. The 

experiment extends the simulations conducted in Chapter 4 by including more 

actors in in the market. The demand and supply are assumed to be fixed 
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throughout the entire simulation horizon. Expt. 5b (Section 5.4.2.2) extends 

Expt. 5a by relaxing the fixed demand and supply assumption. Instead, the 

demand and supply are allowed to vary. The latter two sets of experiments 

(Section 5.4.3) are conducted under the asynchronous time model assumption. 

Expt. 5c (Section 5.4.3.1) extends  Expt. 5b by assuming asynchronous time 

model. Events and activities can occur at any time point. Expt. 5d (Section 

5.4.3.2) extends experiment 5c by including five FFs in the market (adding three 

more FFs into the market). 

	

5.4.2 Synchronous Time Model  

With the synchronous time model assumption, the whole analysis horizon is 

divided into P discrete iterations. Within a specific iteration H (also called time 

H), all shippers assign cargo among FFs, and all FFs assign cargo among carriers. 

In the end, all the cargo is transported to the destination and the time jumps to 

H + 1. The above process repeats until the final time P is reached. 

  

5.4.2.1 Experiment 5a: fixed demand and supply with two FFs 

In this experiment, the aim is to investigate the performance of RL models when 

there are multiple shippers and carriers in the market. Whether learning 

performance of RL models can be improved by redefining state and action space 

is also the research question this experiment would like to answer. We extend 

the experiment conducted in Section 4.8 (Expt. 4c) by adding one more shipper 
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and two more carriers into the market. The investigation then focuses on  the 

interaction between three shippers (829, : = 1,2,3), two FFs (!!0, % = 1,2), and 

four carriers (,., 1 = 1,2,3,4). How experiments are conducted in this section 

remains unchanged as we did in Expt. 4c (Section 4.8) other than the following 

changes:  

Settings for the three shippers are presented in Table 5.3. Each shipper 

has its own demand of cargo movement and selection behavior for the preferred 

FF. The demand from each shipper is assumed to be fixed throughout the entire 

simulation horizon.  

 

Table 5.3 Settings for shipper agents (Expt. 5a) 

Shipper Type Demand Specifications 

82\ B 255 TEUs  

82d C 200 TEUs Price sensitivity =0.06; 

82t B 225 TEUs  

1) Type A: do not choose the FF who offers the highest or the lowest price; 
instead, randomly choose one FF among all the other FFs;  

2) Type B: prefer the FF who offers the lowest price 
3) Type C: modeled by the multi-nominal logit model (discussed in Section 

3.3.2.2) 
 

Settings for the four carriers are presented in Table 5.4. Two of the 

carriers use liner freight rate scheme and the other two carriers use stepwise 

freight rate scheme. The supply offered by each carrier is assumed to be fixed 
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throughout the entire simulation horizon.  

 

Table 5.4 Settings for carrier agents (Expt. 5a) 

Carrier Type Parameters 

,\ A+C ± = 800 − 0.57; 	D+B+D%A± = 300	;N/) 

,d A+D ± = 600 − 0.37; 	D+B+D%A± = 290	;N/) 

,t B+C BI%Dz\ = 750; BI%Dzd = 600; <\ = 125; 

D+B+D%A± = 310	;N/) 

,Å B+D BI%Dz\ = 700; BI%Dzd = 650; <\ = 150; 

D+B+D%A± = 320	;N/)  

1) Type A: linear pricing scheme 
2) Type B: step-wise pricing scheme 
3) Type C: prefer FFs who offer larger volume of cargo 
4) Type D: prefer FFs who offer higher price   
 

Settings for the two FFs are presented in Table 5.5. Both FFs are able to 

learn: !!\ learns by Q-learning and !!d learns on if then basis. How the action 

space, possible markup points, and state (only for the FF who learns by 

reinforcement learning) are defined for both FFs is shown in Table 5.5.  
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Table 5.5 Settings for FF agents (Expt. 5a) 

FF	 Type	 Specifications	

!!\	 B4:	Q	learning	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

i+I:¥B\ = 100%;	i+I:¥Bd = 200%;	

O8\ = 33%;	O8d = 66%;	

iB = 3	(9	possible	markup	points	)	

!!d	 C:	If-then	basis	
i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

9	possible	markup	points	(same	as	FF\)	

B4:	Q	learning	
C: Learn on if then basis presented in Section 4.3.2. 
 

An extensive search was conducted to find the optimal setting for the 

parameters associated with each FF’s learning model. For each combination of 

setting for parameters, the experiment is run for 20 runs and each run lasts for 

500 simulation time. The best setting for the learning parameters associated with  

!!\ and !!d is presented in Table 5.6. The pricing performance (averaged over 

20 runs of 500 simulation time each) of !!\ and !!d under the best setting of 

learning parameters is presented in Fig. 5.14 (total profit) and Fig. 5.15 (total 

volume of cargo obtained). By conducting statistical analysis, 20 simulation 

runs are sufficient and we can conclude that: 

First of all, a FF who learns by reinforcement learning can improve its 

pricing performance by properly defining its states and action space. We 

proposed in Section 4.8 to incorporate more criteria to amplify the number of 
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states and to simplify the action space to improve the pricing performance of 

RL learning models. In this chapter, we simplify the action space by using less 

possible markups points and amplify the number of states by defining the state 

with respect to latest pricing performance and latest markup level. In this way, 

the learning performance of RL models improves significantly (!!\ beats  !!d 

in terms of total profits and volume of cargo obtained).   

In addition, although the total profit gained by a FF may vary due to 

variations in the total number of shippers/carriers and their specifications, 

whether a FF is able to achieve its optimal pricing performance is determined 

by its capability to beat competitors via learning. No matter how the market 

condition is, a FF can always assure its profitability as long as efficient learning 

is possible. Compared with Expt. 4c (Section 4.8), although the number and 

settings for shippers/carriers are changed in this experiment, the best setting for 

learning parameters associated with both FFs remains unchanged. As FFs are 

the middle men between shippers and carriers in the logistics market, it may not 

be easy for a FF to influence the general level of demand/supply in the market 

and the behavior of interacting shippers/carriers. However, a FF can adapt its 

decision and react to the changes of the market. In this way, better pricing 

performance can be achieved. 

Furthermore, the total profit earned by each FF is a result of balancing 

revenue, cost, and volume. We examine a specific simulation run under the best 

setting for learning model parameters. The total profit (Fig. 5.18) earned by a 
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FF is the difference between its total revenue (Fig. 5.16) and total cost (Fig. 

5.17). On the one hand, although the total profit earned by !!\ is higher than 

that earned by !!d  throughout the entire simulation horizon (Fig. 5.18), !!\ 

does not beat !!d in terms of average unit cargo revenue (Fig. 5.21) and average 

unit cargo profit (Fig. 5.22). On the other hand, although the average unit cargo 

cost for both FFs are around the same level (Fig. 5.17), !!\ beats !!d in terms 

of volume (Fig. 5.19)) and market share (Fig. 5.20). As a result, the combination 

effect of unit cargo revenue (price), volume and unit cargo cost makes !!\ earn 

more profit than !!d.  

	

Table 5.6 Test setting for FFs’ learning model parameters (Expt. 5a) 

FF Type Specifications 

!!\ B4: Q learning K = 0.30, U = 0.05	

!!d C: If-then basis +@0 = 0.80	

B4: Q learning 
C: Learn on if then basis presented in Section 4.3.2. 
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Fig. 5.14 Pricing performance of  !!\ and !!d –total profit earned 

 

	

Fig. 5.15 Pricing performance of  !!\ and !!d – volume of cargo obtained 
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Fig. 5.16 Total revenue earned by !!\ and !!d 

	

Fig. 5.17 Total cost of !!\ and !!d 
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Fig. 5.18 Total profit earned by !!\ and !!d 

	

Fig. 5.19 Total volume of cargo earned by !!\ and !!d 
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Fig. 5.20 Market share of !!\ 

	

Fig. 5.21 Average unit cargo revenue of !!\ and !!d 
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Fig. 5.22 Average unit cargo profit of !!\ and !!d 

	

Fig. 5.23 Average unit cargo cost of !!\ and !!d 
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5.4.2.2 Experiment 5b: flexible demand and supply with two FFs 

In this experiment, the aim is to investigate the performance of RL models when 

demand and supply in the market are allowed to vary. We extend Expt. 5a by 

relaxing the fixed demand and supply assumption. The investigation is still on 

the interaction between three shippers (829, : = 1,2,3), two FFs (!!0, % = 1,2), 

and four carriers (,., 1 = 1,2,3,4), but demand from shippers and supply offered 

by carriers are allowed to vary due to their internal factors. How the demand 

and supply vary with respect to time is not the focus of this research. Instead, 

the focus is on how a given FF is able to respond to changes of the environment 

and reactions from other interacting parties.   

Settings for the three shippers are presented in Table 5.7. Each shipper 

has its own demand for cargo movement and selection behavior for the preferred 

FF. Each shipper’s demand of cargo movement varies with respect to time and 

follows uniform distribution (only discrete values are valid for demand).  
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Table 5.7 Settings for shipper agents (Expt. 5b) 

Shipper Type Demand Demand Specifications 

82\ B 
¥H%w≥Ii 250

± 40 ;N/) 
255 TEUs 

Lowest price 

82d C 
¥H%w≥Ii 200

± 40 ;N/) 
200 TEUs 

Price sensitivity 

=0.06; 

82t B 
¥H%w≥Ii 225

± 40 ;N/) 
225 TEUs 

Lowest price 

1) Type A: Do not choose the FF who offers the highest or the lowest price; 
Randomly choose one FF among all the other FFs;  

2) Type B: Prefer the FF who offers the Lowest price 
3) Type C: Modeled by the multi-nominal logit model (discussed in Section 

3.3.2.2) 
 

Settings for the four carriers are presented in Table 5.8. The first two 

carriers use liner freight rate scheme and the latter two use stepwise freight rate 

scheme. It is assumed that the capacity of carriers varies with respect to time 

and follows uniform distribution (only discrete values are valid for available 

slots). 

 It is assumed that both FFs are able to learn: !!\ learns by Q-learning 

and !!d learns on if-then basis. Table 5.9 presents how action space, possible 

markup points, and states (only for the FF who learns by reinforcement learning) 

are defined in this experiment.  
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Table 5.8 Settings for carrier agents (Expt. 5b) 

Carrier Type Parameters 

,\ A+C ± = 800 − 0.57;	 

D+B+D%A± = ¥H%w≥Ii(300 ± 25)	;N/) 

,d A+D ± = 600 − 0.37;	 

D+B+D%A± = ¥H%w≥Ii(290 ± 25)	;N/) 

,t B+C BI%Dz\ = 750; BI%Dzd = 600; <\ = 125; 

D+B+D%A± = ¥H%w≥Ii(310 ± 25)	;N/) 

,Å B+D BI%Dz\ = 700; BI%Dzd = 650; <\ = 150; 

D+B+D%A± = ¥H%w≥Ii(320 ± 25)	;N/)  

*Type	A:	linear	pricing	scheme	
*Type	B:	step-wise	pricing	scheme	
*Type	C:	prefer	FFs	who	offer	larger	volume	of	cargo	
*Type	D:	prefer	FFs	who	offer	higher	price			

 

Table 5.9 Settings for FF agents (Expt. 5b) 

FF	 Type	 Specifications	

!!\	 B4:	Q	learning	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

i+I:¥B\ = 100%;	i+I:¥Bd = 200%;	

O8\ = 33%;	O8d = 66%;	

iB = 3	(9	possible	markup	points)	

!!d	 C:	If-then	basis	
i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

9	possible	markup	points	(same	as	FF\)	

B4:	Q	learning	
C: Learn on if then basis presented in Section 4.3.2. 
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An extensive search was conducted to find the optimal setting for the 

parameters associated with the learning model associated with each FF. For 

each combination of settings for parameters, the experiment is run for 20 runs 

and each run lasts for 500 iterations. The best setting for the parameters 

associated with each FF is presented in Table 5.10. The pricing performance 

(averaged over 20 runs of 500 iterations each) of !!\ and !!d under the best 

setting for learning parameters is presented in Fig. 5.24 (total profit) and Fig. 

5.25 (total volume of cargo obtained). By conducting statistical analysis, 20 

simulation runs are sufficient and we can conclude that: 

First of all, reinforcement learning helps improve a FF’s pricing 

performance vis-à-vis a FF who learns on if then basis even when demand and 

supply in the market vary with time. A FF is able to improve its pricing 

performance by properly defining its state and action space even though the 

demand and supply vary with respect to time.  

In addition, the simulation result further confirms the conclusion we 

drawn from Expt. 5a (Section 5.4.2.1): whether a FF can achieve its optimal 

pricing performance is determined by its capability to beat its competitors via 

learning. In this experiment, although demand and supply are allowed to vary, 

the best setting for the learning parameters associated with both FFs still 

remains unchanged (same as Expt. 5a). As a result, no matter how the market 

condition and the behavior of shippers/carriers changes, a FF is able to assure 

its profitability by efficient learning and competition with other competing FFs.  
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Another similar conclusion (as discussed in Section 5.4.2.1, Expt. 5a) 

can also be drawn in this experiment: the total profit earned by a FF is a result 

of balancing revenue, cost, and volume. For a specific simulation run under the 

best setting for the learning model parameters, the variation of demand and 

supply is presented in Fig. 5.26. Although the demand and supply are allowed 

to very, there is still over supply in the market. The total revenue gained by !!\ 

and !!d is presented in Fig. 5.27. The total cost of both FFs (Fig. 5.28) keeps 

increasing, but the FF who learns by Q-learning (!!\) performs better in terms 

total profit (Fig. 5.29).  Although !!\ bears higher total cost (Fig. 5.28), its total 

profit (Fig. 5.29) and total volume of cargo (Fig. 5.30) still outperform !!d . 

!!\  also obtain higher market share than !!d  (Fig. 5.31). on the other hand, 

although !!\ gains higher total profit (Fig. 5.29), it does not beat !!d in terms 

of average unit cargo revenue (Fig. 5.32) and average unit cargo profit (Fig. 

5.34). The average unit cargo cost for both FFs are around the same level (Fig. 

5.33).  

 

Table 5.10 Best setting for FFs’ learning model parameters (Expt. 5b) 

FF Type Specifications 

!!\ B4: Q learning K = 0.30, U = 0.05	

!!d C: If-then basis +@0 = 0.80	

B4: Q learning 
C: Learn on if then basis presented in Section 4.3.2. 
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Fig. 5.24 Pricing performance of  !!\ and !!d –total profit earned 

	

Fig. 5.25 Pricing performance of  !!\ and !!d – volume of cargo obtained 
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Fig. 5.26 Variation of demand and supply 

	

Fig. 5.27 Total revenue earned by !!\ and !!d 
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Fig. 5.28 Total cost of !!\ and !!d 

	

Fig. 5.29 Total profit obtained by !!\ and !!d 
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Fig. 5.30 Total volume of cargo earned by !!\ and !!d 

	

Fig. 5.31 Market share of !!\ 
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Fig. 5.32 Average unit cargo revenue of !!\ and !!d 

	

Fig. 5.33 Average unit cargo cost of !!\ and !!d 
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Fig. 5.34 Average unit cargo profit of !!\ and !!d 

	

5.4.3 Asynchronous Time Model  

With the asynchronous time model assumption, the whole analysis horizon is 

assumed to last for P simulation time. There is no “grid” on time axis and events 

may occur at arbitrary moments, exactly when they are to occur.  

	

5.4.3.1 Experiment 5c: flexible demand and supply with two FFs 

In this experiment, the aim is to investigate the performance of RL models when 

the synchronous time model assumption is relaxed. Instead, the simulation time 

is assumed to be continuous and each activity happens at exactly the moment 
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(Expt. 5b), the investigation still focuses on the interaction between three 

shippers (829, : = 1,2,3 ), two FFs (!!0, % = 1,2 ), and four carriers (,., 1 =

1,2,3,4). The demand and supply in the market are also allowed to vary.  

Settings for the three shippers remain unchanged as presented in Table 

5.7 (Expt. 5b, Section 5.4.2.2). Each shipper has its own demand for cargo 

movement and selection behavior for preferred FFs. Their respective demand 

for cargo movement varies with respect to time and follows the uniform 

distribution (only discrete values are valid for the demand at a given time point). 

Further in this experiment, the demand for cargo movement from a specific 

shipper is generated at a given time interval of 1 simulation time and repeats 

throughout the entire simulation horizon – 500 simulation time. In addition, 

after sending solicitations to all FFs, a shipper will wait for responses from all 

FFs until: 1) responses from all FFs are received (transition At shown in Fig. 

5.35); or 2) a maximum time period has been waiting for - whichever happens 

first. The above maximum time period can be interpreted as a shipper’s patience 

when choosing a FF, and the above “patience” is assumed to follow uniform 

distribution (B+A%zHDz ∈ ¥H%w≥Ii(0,1]). In the end, the shipper offers all its 

cargo to the selected FF. Setting for shipper agents is summarized in Table 5.11.        
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Fig. 5.35 The statechart of a FF agent – an asynchronous time model 

 

Table 5.11 Settings for shipper agents (Expt. 5c) 

Shipper Type Demand Patience 
Price 

sensitivity 

82\ B 
¥H%w≥Ii 250

± 40 ;N/) 
¥H%w≥Ii(0.5,1) NA 

82d C 
¥H%w≥Ii 200

± 40 ;N/) 
¥H%w≥Ii(0.5,1)  0.06; 

82t B 
¥H%w≥Ii 225

± 40 ;N/) 
¥H%w≥Ii(0.5,1) NA 

1) Type A: Do not choose the FF who offers the highest or the lowest price; 
Randomly choose one FF among all the other FFs;  

2) Type B: Prefer the FF who offers the Lowest price 
3) Type C: Modeled by the multi-nominal logit model (discussed in Section 

3.3.2.2) 
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Settings for the four carriers remain unchanged as presented in Table 5.8 

(Expt. 5b). Among them, two carriers use liner freight rate scheme and the other 

two use stepwise freight rate scheme. The capacity of each carrier varies with 

respect to time and follows the uniform distribution (only discrete values are 

valid for the available slot at a specific time point). Further in this experiment, 

it is assumed that after a specific carrier (vessel) calls the port of city A, the 

carrier will not sail until the expected sailing date (the waiting time of a carrier 

at port A is 0.2 simulation time). Then the carrier will transport received cargo 

from the origin port (city A) to the destination port (city B). The carrier will be 

available again at the original port (city A) after a given time period. The above 

“time period” includes the cargo transport time and the dispatching time, and 

follows the uniform distribution ∈ [0.5,1]. The carrier is then available again 

for the next voyage at the original port (port A). Settings for the carrier agents 

setting is summarized in Table 5.12. 

	

	

Fig. 5.36 The statechart of a carrier agent – an asynchronous time model 
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Table 5.12 Settings for carrier agents (Expt. 5c) 

Carrier Type Parameters 

,\ A+C 

± = 800 − 0.57; 	D+B+D%A± = ¥H%w≥Ii(300 ± 25)	;N/); 

waiting	time	at	port = 0.2; 

AI+H)B≥IA	A%iz	&	F%)B+ADℎ%H@	A%iz = ¥H%w≥Ii(0.5,1) 

,d A+D 

± = 600 − 0.37; 	D+B+D%A± = ¥H%w≥Ii(290 ± 25)	;N/); 

waiting	time	at	port = 0.2; 

AI+H)B≥IA	A%iz	&	F%)B+ADℎ%H@	A%iz = ¥H%w≥Ii(0.5,1) 

,t B+C 

BI%Dz\ = 750; BI%Dzd = 600; <\ = 125;	

D+B+D%A± = ¥H%w≥Ii(310 ± 25)	;N/);	Q+%A%H@	A%iz	+A	B≥IA =

0.2;	

AI+H)B≥IA	A%iz	&	F%)B+ADℎ%H@	A%iz = ¥H%w≥Ii(0.5,1)	

,Å B+D 

BI%Dz\ = 700; BI%Dzd = 650; <\ = 150; 

D+B+D%A± = ¥H%w≥Ii(320 ± 25)	;N/); waiting	time	at	port = 0.2; 

AI+H)B≥IA	A%iz	&	F%)B+ADℎ%H@	A%iz = ¥H%w≥Ii(0.5,1) 

*Type	A:	linear	pricing	scheme	
*Type	B:	step-wise	pricing	scheme	
*Type	C:	prefer	FFs	who	offer	larger	volume	of	cargo	
*Type	D:	prefer	FFs	who	offer	higher	price			
	

Settings for the two FFs remain unchanged as presented in Table 5.9 

(Expt 5b). Both FFs are able to learn: !!\ learns by Q-learning and !!d learns 

on if then basis. Further in this experiment, after receiving requests from 

shippers, it takes time for a FF to estimate the potential cost and then make 

pricing decisions (Fig. 5.37). The time it takes to process a request can be 
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interpreted as a FF’s “efficiency” in processing requests. The above “efficiency” 

is assumed to follow uniform distribution between [0.2,0.5] simulation time. In 

addition, after sending cargo split plans to preferred carriers, the FF waits until: 

1) all solicitations are responded or; 2) a given time period has been waiting for 

– whichever happens first (Fig. 5.38). The above time period can be interpreted 

as the FF’s “patience” when interacting with carriers. During simulations, the 

patience is assumed to be 0.2 simulation time. Table 5.13 summaries settings 

for the FF agents. 

	

	

Fig. 5.37 The statechart of a FF agent (interacting with SP) – under 

asynchronous time model 
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Fig. 5.38 The statechart of a FF agent (interacting with C)– under 

asynchronous time model 
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Table 5.13 Settings for FF agents (Expt. 5c) 

FF	 Type	 Specifications	

!!\	 B4:	Q	learning	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

i+I:¥B\ = 100%;	i+I:¥Bd = 200%;	

O8\ = 33%;	O8d = 66%;	

iB = 3	(9	possible	markup	points);	

zww%D%zHD± = ¥H%w≥Ii(0.2,0.50);	

B+A%zHDz = 0.2	

!!d	 C:	If-then	basis	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

9	possible	markup	points	(same	as	FF\);	

zww%D%zHD± = ¥H%w≥Ii(0.2,0.50;	

B+A%zHDz = 0.2	

B4:	Q	learning	
C: Learn on if then basis presented in Section 4.3.2. 
	

An extensive search was conducted to find the optimal setting for the 

parameters associated with each FF’s learning model. For each combination of 

settings for parameters, the experiment is run for 20 runs and each run lasts for 

500 simulation time. The best setting for the parameters associated with !!\ 

and !!d is presented in Table 5.14. The pricing performance (averaged over 20 

runs of 500 simulation time each) of !!\ and !!d under the best setting for the 

learning parameters is presented in Fig. 5.39 (total profit) and Fig. 5.40 (total 

volume of cargo obtained). By conducting statistical analysis, 20 simulation 
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runs are sufficient and we can conclude that: 

A FF who learns by reinforcement learning can outperform its 

competitor when simulations are run under the asynchronous time model 

assumption (Fig. 5.39 and Fig. 5.40). The FF not only gains more profit but also 

obtains higher market share and volume of cargo. The asynchronous time model 

assumption can represent the reality in a more realistic manner. The simulation 

results derived through the interaction between shippers, FFs, and carriers can 

bring more practical insights for FFs.  

 

Table 5.14 The best setting for FFs’ learning model parameters (Expt. 5c) 

FF Type Specifications 

!!\ B4: Q learning K = 0.30, U = 0.05	

!!d C: If-then basis +@0 = 0.80	

B4: Q learning 
C: Learn on if then basis presented in Section 4.3.2. 
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Fig. 5.39 Pricing performance of  !!\ and !!d –total profit earned 

 

	

Fig. 5.40 Pricing performance of  !!\ and !!d – volume of cargo obtained 
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learning model parameters, similar conclusions can be drawn as discussed in 

Section 5.4.2.1 (Expt. 5b): the total profit earned by a FF is a result of balancing 

revenue, cost, and volume. The total profit (Fig. 5.41) earned by a FF is the 

difference between its total revenue (Fig. 5.42) and total cost (Fig. 5.43). On the 

one hand, although the total profit earned by !!\ is higher than that earned by 

!!d throughout the entire simulation horizon (Fig. 5.41), !!\ does not beat !!d 

in terms of average unit cargo revenue (Fig. 5.44) and average unit cargo profit 

(Fig. 5.45). On the other hand, the average unit cargo cost for both FFs are 

around the same level (Fig. 5.46), but !!\ beats !!d in terms of volume (Fig. 

5.47) and market share (Fig. 5.47). As a result, the combination effect of average 

unit cargo revenue (price), volume and average unit cargo cost make !!\ earn 

more total profit than !!d.  

By examining the same simulation run discussed above, the result 

further confirms the conclusion we obtained by conducting Expt. 5a (Section  

5.4.2.1) and 5b (Section 5.4.2.2): no matter how market conditions and the 

behavior of shippers/carriers change, a FF is able to assure its profitability as 

long as the FF can beat its competitor via competition. For the above simulation 

run, the variation of total demand and total supply is plotted in Fig. 5.49. 

Although the total demand and supply are no longer fixed and for a very short 

time period undersupply may exist, the FF who learns by the Q-learning method 

still outperforms the other FF who learns on if them basis. As a man in the 

middle, a FF may not be able to influence the general level of demand and 
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supply, and the FF may not be able to control anyone by himself. However, the 

FF can learn its competitors’ behavior and then adjust its actions accordingly. In 

this way, better pricing performance can be achieved by learning.  

By examining how demand and supply vary over time (Fig. 5.49), we 

notice that there are short periods of undersupply in the market. This is because 

when a carrier is on its way transporting cargo from the origin to the destination, 

the available capacity in the market decreases. Once the available capacity in 

the market can not serve the demand from all shippers, undersupply occurs. As 

a result, this experiment also takes into account short periods of undersupply in 

the market although the market is oversupplied over the long analysis horizon.    
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Fig. 5.42 Total revenue earned by !!\ and !!d 

	

Fig. 5.43 Total cost of !!\ and !!d 
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Fig. 5.44 Average unit cargo revenue of !!\ and !!d 

	

Fig. 5.45 Average unit cargo profit of !!\ and !!d 
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Fig. 5.46 Average unit cargo cost of !!\ and !!d 

	

Fig. 5.47 Total volume of cargo earned by !!\ and !!d 

Av
er

ag
e 

un
it 

ca
rg

o 
co

st

0

150

300

450

600

Time

0 500

FF1 FF2

To
ta

l v
ol

um
e 

of
 c

ar
go

 o
bt

ai
ne

d

0

75,000

150,000

225,000

300,000

Time

0 500

FF1 FF2



190 Pricing Decisions With Real World accessible Information 
 

190 
 

	

Fig. 5.48 Market share of !!\ 

	

Fig. 5.49 Variation of demand and supply 
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5.4.3.2 Experiment 5d: flexible demand and multiple FFs 

In this experiment, the aim is to investigate the performance of RL models when 

there are more than two FFs in the market. We extend the experiment conducted 

in Section 5.4.3.1 (Expt. 5c) by adding three more FFs into the market: the 

interaction between three shippers ( 829, : = 1,2,3 ), five FFs ( !!0, % =

1,2,3,4,5), and four carriers (,., 1 = 1,2,3,4) is investigated. The experiment is 

conducted under the asynchronous time model assumption. The demand and 

supply in the market are allowed to vary. Settings for the three shippers and the 

four carriers remain unchanged as adopted in Section 5.4.3.1 (Expt. 5c, Table 

5.11 and Table 5.12).  

During multi-agent simulations, all five FFs are able to learn and settings 

for the learning parameters associated with each FF are presented in Table 5.15: 

!!\ learns on if then basis; !!d learns by action value method;  !!t learns by 

softmax method; !!Å  learns by Sarsa method; and !!™  learns by Q-learning 

method. For the two FFs who learn by associated reinforcement learning models 

(!!0, % = 4,5, Sarsa and Q-learning), their states and action space are defined in 

the same way as proposed in Section 5.4.3.1 (Expt. 5c). 
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Table 5.15 Settings for FF agents (Expt. 5d) 

FFs Type	 Specifications	

!!\	
B4:	Q-

learning	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

i+I:¥B\ = 100%;	i+I:¥Bd = 200%;	

O8\ = 33%;	O8d = 66%;	

iB = 3	(9	possible	markup	points);		

K = 0.3, U = 0.05	

zww%D%zHD± = ¥H%w≥Ii(0.2,0.50); B+A%zHDz = 0.2	

!!d	 C:	�f	then	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

9	B≥))%C5z	i+I:¥B	B≥%HA);	

zww%D%zHD± = ¥H%w≥Ii(0.2,0.50);	

B+A%zHDz = 0.2; +@ = 0.8;	

!!t	
B1:	Action	

value	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

9	B≥))%C5z	i+I:¥B	B≥%HA)	()+iz	+)	!!\);	

zww%D%zHD± = ¥H%w≥Ii(0.2,0.5);	

B+A%zHDz = 0.2; @IzzF± = 0.05	

!!Å	
B2:	

Softmax	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%;	

9	B≥))%C5z	i+I:¥B	B≥%HA)	()+iz	+)	!!\);	

zww%D%zHD± = ¥H%w≥Ii(0.2,0.50);	

B+A%zHDz = 0.2; W = 500	

!!™	 B3:	Sarsa	

i%Hi+I:¥B = 0%;	i+7i+I:¥B = 300%	

zww%D%zHD± = ¥H%w≥Ii(0.2,0.50;	

B+A%zHDz = 0.2; K = 1, U = 0.05	

	

Based on the settings presented in Table 5.15, multi agent simulations 

are conducted with each experiment running for 20 runs and each run lasting 

for 500 simulation time. The pricing performance (averaged over 20 runs of 500 
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simulation time each) of all FFs is presented in Fig. 5.50 (total profit) and Fig. 

5.51 (total volume of cargo obtained). By conducting statistical analysis, 20 

simulation runs are sufficient and we can conclude that: 

Associated RL models (Q-learning and Sarsa) perform better than the if 

then learning model, and they all outperform non-associated RL models 

(Softmax and Action value).  We rank all learning models in terms of pricing 

performance (total profit earned): Q-leanring > Sarsa > if then > softmax > 

action value. The simulation results obtained in this experiment also confirms 

the conclusion we drawn in previous experiments (Expt. 5a, 5b, and 5c): a FF 

who learns by reinforcement learning can improve their pricing performance by 

properly defining its states and action space; 2) whether a FF is able to achieve 

its optimal pricing performance is determined by its capability to beat 

competitors via learning; and 3) the total profit earned by a FF is a result of 

balancing revenue, cost and volume. By examining a specific simulation run 

under the setting for parameters presented in Table 5.15 , we can obtain total 

revenue (Fig. 5.52), total cost (Fig. 5.53), total profit (Fig. 5.54), market share 

(Fig. 5.56), unit cargo revenue  (Fig. 5.57), unit cargo cost (Fig. 5.58), and unit 

cargo profit (Fig. 5.59) associated with each FF.  
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Fig. 5.50 Pricing performance – total profit 

	

 

Fig. 5.51 Pricing performance - volume of cargo 
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Fig. 5.52 Total revenue obtained by FFs 

	

Fig. 5.53 Total cost of FFs 
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Fig. 5.54 Total profit obtained by FFs 

	

Fig. 5.55 Total volume of cargo obtained by FFs 
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Fig. 5.56 Market share  

	

Fig. 5.57 Average unit cargo revenue obtained by FFs 
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Fig. 5.58 Average unit cargo cost 

	

Fig. 5.59 Average unit cargo profit 
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For a given market, more FFs entering the market intensify the 

competition in the market: it drives down the total profit earned by each FF as 

well as the general level of profitability in the market. As a result, shippers can 

benefit from it but FFs suffer from losing more profits. By comparing the total 

profit earned by each FF in Expt. 5c and Expt. 5d (Table 5.16), we notice that 

the highest total profit earned by a single FF in Expt. 5c is higher than that 

earned in Expt. 5d. The total profit at the market level (sum of total profit earned 

by each FF) in Expt. 5c is also higher than that in Expt. 5d.  

However, although new FFs entering a market drives down the level of 

unit cargo revenue (Table 5.17), unit cargo cost for each FF (Table 5.18), the 

combination effect of unit cargo revenue and unit cargo cost drives down unit 

cargo profitability for each FF in the market (Table 5.19). 

 

Table 5.16 Total profit earned by FF agents (Expt. 5c vs. 5d) 

Expt. Total profit earned by each FF 

Total profit at 

market level  
!!\  

(Q-learning) 

!!d 

 (If then) 

!!t 

 (Action 

value) 

 !!Å 

(Softmax) 

!!™ 

 (Sarsa) 

5c 205175260.47	91416577.46	 NA	 NA	 NA	 296591837.93	

5d 34853131.01	 15720746.80	 11766195.84	 12660231.41	17349357.89	 92349662.95	
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Table 5.17 Average unit cargo revenue (Expt. 5c vs. 5d) 

Expt. Average unit cargo revenue Average unit 

cargo revenue 

in the market 
 

FF 

 (Q-learning) 

FF2  

(If then) 

FF3 

 (Action value) 

FF4 

(Softmax) 

FF5 

(Sarsa) 

5c 1548.94 1453.52 NA NA NA 1517.31 

5d 822.75 984.07 958.11 905.70 902.88 886.45 

	

Table 5.18 Average unit cargo cost (Expt. 5c vs. 5d) 

Expt. Average unit cargo cost 
Average unit 

cargo profit in 

the market 
 

FF1  

(Q-

learning) 

FF2  

(If then) 

FF3 

 (Action value) 

FF4 

(Softmax) 

FF5 

(Sarsa) 

5c 637.2 634.32 NA NA NA 636.25 

5d 579.92 625.08 672.35 630.5 626.32 612.60 

	

Table 5.19 Average unit cargo profit (Expt. 5c vs. 5d) 

Expt. Average unit cargo profit of each FF Average unit 

cargo profit in 

the market 
 

!!\  

(Q-learning) 

!!d 

 (If then) 

!!t 

 (Action value) 

 !!Å 

(Softmax) 

!!™ 

 (Sarsa) 

5c 911.74 819.20 NA NA NA 881.07 

5d 242.83 358.99 285.76 275.20 276.56 273.85 

	

Shipper and carrier all benefit from more FFs entering a market: more 

FFs improves the processing efficiency of the market. By examining the 
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variation of demand and supply in the market (Fig. 5.60), undersupply in the 

market is less likely to happen although the nature of demand and supply remain 

unchanged as Expt. 5c (Fig. 5.26). It means most of the time, there is enough 

capacity to serve the demand of cargo movement, and thus shorter 

waiting/processing time is expected for shippers and carriers. In terms of 

shippers, it takes less time for a shipper to confirm a FF and have all its cargo 

transported from the origin to the destination. The demand of cargo movement 

can thus be dealt with in an efficient and timely manner. In terms of carriers, it 

takes less time for a carrier to fill its slots. Meanwhile, the carrier is able to move 

more cargo for each voyage, and thus its space can be much more fully utilized. 

 

	

Fig. 5.60 Variation of demand and supply 
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CHAPTER 6  CONCLUSION 

	

Rather than merely reducing operation cost, maximizing revenue, or achieving 

some form of system optimality, this study offers a new perspective to assist 

FFs in their pricing decisions, which takes into account: 1) the potential 

competitive reaction of each party, including competing FFs; 2) the 

decentralized manner of decision making in the logistics market; 3) learning 

through feedback from previous transactions; and 4) the interactive nature of 

the logistics market. Pricing decisions are no longer one time decisions for FFs, 

but are decisions adapted over iterated transactions. 

In the first phase of this research, a GT approach is proposed to 

formulate pricing decisions for a FF when the FF has full information of the 

entire system. The GT approach takes into account the competition among FFs 

and the price sensitivity of shippers. The decision of each party is considered in 

a decentralized manner by incorporating the potential reaction of other 

interacting parties. Numerical experiments were conducted with a set of 

hypothetical values for key parameters – demand and price sensitivity of 

shippers, and the charging scheme and capacity of carriers. The results of these 

experiments are examined by analyzing various performance indicators (e.g. 

unit price, unit cost, markup etc.), and the conclusions drawn will be useful in 

providing insights for FF pricing decisions under competition. In order to 

achieve better profitability, it is suggested that FFs price segment their clients 



PRICING DECISIONS BY FREIGHT FORWARDERS 203 
 

203 
 

because a change in shippers’ price sensitivity leads to a different optimal 

pricing decision. The pricing decisions by FFs should be profit-driven rather 

than cost-driven - they should price their services to maximize total profit by 

balancing price, cost and volume rather than merely trying to increase 

revenue/market share or lower cost. They should also formulate charges with 

respect to level of demand and behavior patterns of shippers/carriers rather than 

using the same markup across all pricing situations.  

However, the pricing decisions derived using the GT approach is 

determined by shippers’ utility functions as well as carriers’ behavior patterns. 

Although a FF can quantify shippers’ price sensitivity and probe carriers’ 

behaviors by evaluating previous transactions or conducting surveys, the results 

would have to be treated with a fair amount of scepticism due to other parties’ 

unwillingness to reveal information. Real data has not been used to test the GT 

model. In the numerical experiments, only sceneries with two actors in each tier 

were examined. Experiments on a larger scale and with multiple players in each 

tier have not been conducted on yet.  

In the second phase of this research, learning approaches are proposed 

to help FFs with their pricing decisions when the FF only has limited 

information of the entire system. A multi-agent system is built to investigate 

whether learning from previous transactions can lead to better freight pricing 

decisions. By examining the effect of various key factors (e.g. number of 

iterations, shippers’ price sensitivity, the size of FFs’ action space, the setting of 
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learning parameters, and level of information) on the optimal pricing decisions 

for FFs, this research sheds light on how good pricing decisions can be made by 

learning from previous transactions. The simulation results show that learning 

can improve the pricing performance of FFs but we still need to pay attention 

to the key factors mentioned above. These factors have been shown to affect the 

performance of learning FFs under competition.   

In the third phase of the research, learning approaches proposed in 

Chapter 4  are modified to to help a FF formulate its best pricing decisions based 

on the information that is accessible to him in the real world operations. All the 

information the FF uses to update its pricing decision can be obtained by the FF 

in real world operations. We also examined the scenarios when: 1) the demand 

and supply are allowed to vary; 2) activities and events can occur at any time 

point; 3) more shippers, FFs, and carriers enter the market. The simulation 

results also give several practical insights into a FF’s real world operation. The 

multi-agent system built in this research can also be extended to examine the 

interaction of other combinations of shippers, FFs, and carriers as well as to test 

the performance of other learning models or pricing decision making models.     

However, each multi-agent simulation experiment was run with a fixed 

setting of learning parameters for FFs that learn, although an attempt was made 

to determine the best parameter settings using an extensive search. It may be 

better for learning FFs to explore more in the beginning by adjusting the 

learning model parameters, and then switch over to exploitation. The limitations 
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described above will call for further research and study. First, the proposed 

models should be applied in real world scenarios so that the effectiveness of 

each model can be improved. Second, larger scale experiments should be 

conducted so that more practical and meaningful insights into the pricing 

models developed in the research can be offered. 
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