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Abstract

We consider an expansion planning problem for Waste-to-Energy (WtE) sys-

tems facing uncertainty in future waste supplies. The WtE expansion plans are

regarded as strategic, long term decisions, while the waste distribution and treat-

ment are medium to short term operational decisions which can adapt to the

actual waste collected. We propose a prediction set uncertainty model which

integrates a set of waste generation forecasts and is constructed based on user-

specified levels of forecasting errors. Next, we use the prediction sets for WtE

expansion scenario analysis. More specifically, for a given WtE expansion plan,

the guaranteed net present value (NPV) is evaluated by computing an extreme

value forecast trajectory of future waste generation from the prediction set that

minimizes the maximum NPV of the WtE project. This problem is essentially

a multiple stage min-max dynamic optimization problem. By exploiting the

structure of the WtE problem, we show this is equivalent to a simpler min-max

optimization problem, which can be further transformed into a single instance

of mixed integer linear program. Furthermore, we extend the model to optimize

the guaranteed NPV by searching over the set of all feasible expansion scenar-

ios, and show that this can be solved by an exact cutting plane approach. We

also propose a heuristic based on a constant proportion distribution rule for the

WtE expansion optimization model, which reduces the problem into a moder-

ate size mixed integer program. Finally, our computational studies demonstrate

that our proposed expansion model solutions are very stable and competitive in

performance compared to scenario tree approaches.

Keywords: Waste-to-Energy (WtE) systems; expansion planning; guaranteed

NPV; extreme value forecast; adaptive min-max optimization; mixed integer

program
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Chapter 1

Introduction

The recent years have seen an increased interest in the area of sustain-

able waste management, especially in modern societies where the factors

of rapid population growth, increasing consumption and subsequent waste

generation, and diminishing landfill space continue to pose a large problem

to the government.

Trends show clearly today that we are headed into an era of unprece-

dented waste generation. In just one decade, the municipal solid waste

(MSW) collected in industrialised countries France and Luxembourg has

increased by 11% and 14% respectively [13], and China, a developing coun-

try, has similarly seen an 11% increase [11]. The world bank estimates that

by 2025, waste generation will be double of that in 2012, a 100% increase

in just thirteen years [39]. At the same time, we are rapidly using up our

available landfill space. In less than 25 years, the United States of America

has seen its disposal facilities drop by 75% [37]. Similarly, Singapore esti-

mates that the island will be running out of landfill space by around 2035

[28].
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Faced with this problem, most societies choose to use a two pronged

approach. On one hand, recognising that waste is being generated faster

than it can be treated, societies actively encourage the population to gen-

erate less waste. On the other hand, societies are also attempting to find

better ways to treat the waste that are being generated. To be truly suc-

cessful at tackling this problem, this approach requires participation from

all levels of society, from the citizens being more environmentally aware to

the industries being more willing to invest in more technologically advance

systems and methods used to treat waste.

From the side of societal awareness, programs have been implemented

in many countries for a good number of decades, and we see that results

are encouraging. Most countries adopt the 3Rs slogan: Reduce, Reuse and

Recycle. This encourages people to generate less waste by reducing their

consumption habits to cut off what is not needed (buying less clothes), to

reuse what can be reused instead of throwing them away (using reusable

bags when shopping) and to recycle and support recycled products. In Sin-

gapore alone, the commitment to this program has seen a steady increase

in recycling points around residential homes as well as frequent collection

drives where residents are able to donate their unwanted items. As a result

of this effort, Singapore has seen our recycling rate jump from 40% in 2000

to 60% in 2014, a 50% increase in fourteen years.

However, even with the stark increase of recycling efforts, there is still a

significant increase in the waste disposed to landfills [49]. Such trends are

common for most countries, both developed and developing, and highlights

the need for waste treatment technologies to play a bigger part in our waste

management strategy.
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Technology has been advancing at a rapid pace in the past decade and

this has allowed industries to come up with increasing green technology

used to treat waste. (consuming less energy, producing less carbon, etc...)

Among them, Waste-to-Energy (WtE) technologies are of particular in-

terest and have been seen as a key waste management solution that has

shown significant advances and merits since their introduction. WtE is de-

fined by the United States Environmental Protection Agency (U.S. EPA,

see [47]) as the energy recovery from waste, or equivalently the conver-

sion of non-recyclable waste materials into usable heat, electricity, or fuel.

The state of the art of WtE now encompasses a broad range of alterna-

tives with environmentally friendly processes, including anaerobic diges-

tion, gasification, pyrolysis, and highly enhanced incineration. These are

widely acknowledged to be significantly cleaner and more energy efficient

than conventional combustion. Thermal technologies such as gasification

have the ability to produce combustible gas, including hydrogens and syn-

thetic fuels, while non-thermal technologies such as anaerobic digestion is

able to produce biogas that are rich in methane.

Landfilling is on the other hand becoming a less viable and less accept-

able option. With these advances of green technology (see [22, 40]), more

states and countries have turned to WtE for sustainable environmental

and energy solutions. From 2003 to 2012, the 27 members of the European

Union (EU-27) reported a 35% increase in the amount of WtE treated

waste (see [13, 46]), and the U.S. has similarly witnessed an increase of

22.4% in WtE implementation from the years 2000 to 2010 (see [47]). Mo-

tivated by the heightened interests and investments in the WtE industry,

it is the objective of this paper to identify and address one of the key chal-
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lenges arising from the strategic implementation and expansion planning

for WtE systems.

In our paper, we would like to consider a medium-to-long term expan-

sion planning problem of WtE units (systems). The WtE units are deployed

in different locations and treat waste collected from different populated re-

gions. For example, we can consider the case of Singapore, in which the

country is divided into different 29 different constituencies, each managed

by a town council who takes care of the population within its constituency.

These 29 points can be regarded as the different residential zones from

which waste originates. At the same time, the waste treatment facilities

are situated at other places and treat the waste delivered by these residen-

tial zones. We consider the planning problem of WtE units as a primary

motivation and interest in this problem arise from the increasing commer-

cial available of compact (small scale), clean, modular WtE units, which

makes them easier to install and socially more acceptable in even highly

populated locations (see [27]).

On the other hand, we recognise that waste generation, which is the

input feedstock to the WtE, can be highly uncertain in reality, and can

have a significant impact on the economic sustainability of the WtE sys-

tem. Since WtE systems make money by selling the energy converted from

waste, it is clear that lower-than-projected waste supply directly impacts

revenue margins of the WtE operations as insufficient waste would lead to

a low amount of energy produced for sale. At the same time, excessive

waste can create capacity strains and inflate the disposal costs. Since WtE

companies are usually charged with taking care of the waste management

of the entire residential zone, a high amount of waste would mean that the

4



company has to pay out of its own pockets for the waste to be landfilled if

this waste cannot be accommodated by the waste treatment facilities due

to capacity constraints.

In practice, despite the best of the intentions, WtE operators can incur

major financial deficits and even be forced to shut down due to the unre-

alistic estimations of the capacity utilization. This observation has been

made based on cases of actual WtE operators, for instance, IUT Global

Ltd [20, 38], one of the largest food waste recyclers in Singapore, ceased

operations after incurring three successive years of losses since its inception.

The company had estimated that it would be able to collect and process

800 tonnes of food waste daily, but only ended up collecting an average of

about 120 – 130 tonnes daily. This was because the company only realised

after operations had started that most of the food waste was contaminated

by other inorganic materials (for example, food disposed of still in a plastic

bag) and hence had to be incinerated and landfilled, causing a huge raise

in operating costs.

In this paper, we propose a WtE expansion planning model under un-

certain future waste supply. WtE expansion plans are usually regarded as

strategic, long term decisions, while the waste distribution and treatment

are medium to short term operational decisions which can adapt to the

actual waste collected. Sound strategic decisions hence clearly depend on

the quality of the waste generation forecasts available. In reality however,

these forecasts can be highly inaccurate and unreliable due to two main

reasons. The first is that while waste generation shows a clear increasing

trend in the extremely long run, it is hard to predict the period-on-period

fluctuations which can often have a cascading effect as small errors in the
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waste generation forecast add up. Waste generation itself is dependent on

a lot of other factors, some of which are measurable such as the population

size and household income, and others which are hard to quantify such

as the level of environmental awareness. These factors are by themselves

unpredictable and add another level of complexity to the waste genera-

tion forecast. The second is that data in previous years is difficult and

extremely time-consuming to obtain. Without sufficient and reliable waste

generation data for each region, it is impossible to come up with a forecast

model that can provide sufficient and reliable forecast data. In addition,

different countries, states, local governments and industries can also differ

widely in data availability and data collection efforts (see [10, 18]), and

hence consolidating all the data to come up with a single consistent model

can be an arduous task.

While it is impossible to reduce these forecast errors to zero, it is possi-

ble to account for them in mathematical models. It is hence imperative for

practitioners to recognize the fact that such nominal point-value forecasts

are no longer sufficient, and it is important to account for the impact of

forecast errors during the WtE expansion planning and analysis. The level

of forecasting error allowed should be appropriate given the amount of data

currently available. If only a small amount of forecasting error is allowed,

the model would not be useful as it would be unable to reflect the reality

of the situation, while if too high an amount is taken into account, then

the solution obtained would be largely sub-optimal.

In view of this, we propose a prediction set uncertainty model which

consists of a set of waste generation forecasts, instead of only a single fore-

cast value. The prediction sets are constructed based on a specified level of
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forecasting errors, termed as forecast error budgets, that the user would like

to consider based on their preference and available data. These forecast

error budgets also capture the period-to-period, multi-location character-

istics of the system.

Next, we use the prediction sets for WtE expansion scenario evalua-

tion and analysis. More specifically, for a given WtE expansion plan and

waste generation forecast error budget level, we assume that the short-

term decisions of waste distribution and treatment are chosen to optimize

the net present value of the WtE project. A min-max adaptive optimiza-

tion model is then solved to find an extreme value forecast of the future

waste generation within the prediction set that minimizes the maximum

net present value of the WtE project, or what is termed as the guaranteed

net present value. Evaluating the guaranteed net present value makes sense

when the WtE project owners are uncertainty-averse and is more concerned

with avoiding economic losses due to bad forecasts. This also provides the

decision-maker a simple-to-use performance criteria when making compar-

isons of different WtE expansion scenarios.

Finally, we extend the model to optimize the guaranteed net present

value by searching over the set of all feasible expansion scenarios.

By using this approach, we are able to get a solution that would be

robust to the uncertainty set, that is, our solution is able to guarantee a

certain level of performance as long as the actual waste generation in the

future does not stray too far from our waste generation forecast. Robust

models have long been used for decision making under uncertain circum-

stances [5], and the key to obtaining solutions close to the actual optimal
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is to use robust optimization models which are adaptable to the informa-

tion set. A model is said to be adaptable if each decision the model makes

is conditioned upon the full set of information available at that time in

actuality. Unfortunately, this is difficult to implement both theoretically

and computationally. There is hence a tradeoff between the computational

efficiency and the solution performance when employing different types of

robust approaches. In this paper, we provide two different models with dif-

ferent computational efficiencies, an exact solution approach using a cutting

plane algorithm as well as a heuristic using a constant proportion waste dis-

tribution rule.

The key technical contributions of our work are as follows. First, in

this work, we make novel connections between well-known time series fore-

casting models with robust optimization constructs. This allows users who

are familiar with standard forecasting techniques to assimilate and inte-

grate the two methodologies in a more seamless manner. Next, based on

the problem structure, and the constructed prediction sets, we show that

the resulting problem of evaluating guaranteed net present values of the

WtE project can be reduced from a multiple stage min-max dynamic op-

timization problem into a format of min-max adaptive optimization. We

then show that this can be re-formulated into a single instance of a mixed

integer linear problem of moderate dimensions. Finally, to optimize the

guaranteed net present value, we propose a heuristic based on a constant

proportion distribution rule, which also reduces the optimization model to

a moderate size mixed integer program. Our computational studies demon-

strate that the proposed heuristic performs very competitively compared to

exact methods using cutting plane algorithm and scenario tree stochastic

models in terms of solution quality, and requires much lower computational
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effort.

The rest of the paper is outlined as follows. In the next chapter, a

review of relevant literature is provided. Chapter 3 introduces the basic

setting, notation and the deterministic version of the WtE planning prob-

lem. This is also the problem typically solved by using a single point-value

forecast of the future waste uncertainty. A short analysis is then done

to show why this is insufficient in the face of uncertain waste generation.

In Chapter 4, we first develop the prediction sets motivated by forecast-

ing errors of the future waste growth. Next, we present the guaranteed

net present value evaluation model for performing WtE expansion scenario

analysis. We show the technical results to achieve a tractable formulation

for the evaluation problem. In Chapter 5, we extend the model to consider

the optimization over the set of feasible expansion scenarios to maximize

the guaranteed net present value. We describe an exact solution approach

to the problem using a cutting plane algorithm. To reduce the computa-

tional requirements, the constant proportions distribution heuristic is then

developed, and we show its reformulation as a linear mixed integer pro-

gram. Chapters 4 and 5 are largely contributed by Shuming Wang et al.

[43]. However, while Shuming Wang et al. chooses to place a larger em-

phasis on the method presented and the analysis of results, we are more

concerned with the applications in real life and how the work presented can

go towards solving the problems highlighted in the WtE industry. Results

of computational studies are reported in Chapter 6, where extreme value

forecasts analysis and robust designs analysis are performed with different

forecast error budgets. Our proposed model solutions are also compared to

those generated by using a single point forecast model and a scenario tree

stochastic approach. Finally, Chapter 7 provides some concluding remarks

9



and future research directions of our work.
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Chapter 2

Literature Review

In this chapter, we aim to give a complete overview of the current research

being done in the Sustainable Waste Management Planning industry. We

will show that the subset of facility location planning to be an important

one in this area, and review the different methods currently studied in this

domain. This is further split into two parts, deterministic waste treatment

facility location models as well as waste management planning under un-

certainty. In addition, we will also consider what has been done in the area

of adaptive robust optimization models, which we will be using to aid us

in the resolution of our problem.

2.1 General Methods used in Sustainable Waste

Management Planning

Primarily, sustainable waste management planning is based on a series of

decisions. Decision making tools were hence popular from the start. Due

to the complexity of this matter, multi-criteria decision making methods

were largely applied, and case studies showed that they had good potential.
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In one study, Vego et al. [41] adopted two multi-criteria decision-making

methods, GAIA and PROMETHEE, to assist the analysis and evaluation

for the waste management system in the coastal part of Croatia, the anal-

ysis consists of two levels: the first level is to study the potential number

of waste management centers and the second level was to investigate the

relative preference of siting of the waste management centers. Aragonés-

Beltrán et al. [2] analyzed the problem of selecting the best location for

the construction of a waste management facility in Valencia, Spain. They

approached the problem using the Analytic Network Process by consider-

ing 21 varied criteria in areas such as economical, environmental, legal and

social. They concluded that their approach was useful in helping decision

makers make traceable and reliable decisions, and also help them to reflect

more comprehensively on the problem by getting them to consider the var-

ious factors involved.

While such methods were able to provide much insight into the decision

making process, they lacked the rigour of mathematical models and were

easily swayed by expert opinion. As such, there was a need to consider

models which were more mathematically sound. These models would be

able to provide solutions closer to the true optimal, and in our case, would

even be able to guarantee a certain amount of profit that would be made

under a fix set of scenarios. However, they might be unable to take into

account the large number of factors multi-criteria decision making models

typically consider. An important fact to take into account when consid-

ering which method to use is hence the trade off between mathematical

rigour and the complexity of the setting.

12



2.2 Waste treatment facility location: de-

terministic and stochastic models

The application of mixed integer programming models to site resource re-

covery facilities for solid waste management in a deterministic setting was

proposed in an early work by Jenkins [23]. The author studied and pro-

posed various heuristic rules and computational procedures for the para-

metric analysis and solution of the model. Antunes et al. [1], working on

a plan to help deal with Portugal’s rising waste generation in the 1980s,

proposed a two-level discrete facility location model to site waste treat-

ment plants. They then conducted a case study in central Portugal which

showed that their model was a credible and efficient one. Erkuta et al. [12]

presented a multi-criteria mixed-integer linear programming model to solve

the location-allocation problem for municipal solid waste management sys-

tems at the regional level where the lexicographic mini-max approach was

used to obtain a “fair” non-dominated solution. This ”fair” non-dominated

solution is such that all normalized objective values are as equal to each

other as possible. The authors considered five objectives in their case study,

including minimizing the green house effect and operational costs, as well as

maximizing the total energy and material recovery. Fabbricino [14] consid-

ered an integrated planning problem for municipal solid waste management

which involves facility location selection, waste collection approaches, as

well as waste treatment choices, and the developed model aimed to evaluate

the economic advantages pertaining to different municipal solid waste col-

lection and treatment options. The advantage of their network model based

on the waste management cycle is that is it easy to apply and provides re-

sults that can help to facilitate management decisions. Khadivi and Fatemi

Ghomi [24] proposed a location-planning tool that uses analytical network
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process and data envelopment analysis as a leverage and can effectively

take managerial preferences and subjective data in waste management into

consideration, along with quantitative factors.

All the above cited works assume that the problem environment is de-

terministic, which is never the case in reality. We hence see in the past ten

years a surge of works dealing with the same waste management problems

but which also allow for uncertainty to occur. The uncertainty modelling

in such cases is especially important. Somplaka et al. [31] considered an

incineration facility planning problem under uncertainty. The problem is

to determine the optimal waste treatment capacity and the steam turbine

units, when parameters such as heat demand and energy prices are uncer-

tain. The problem is formulated as a stochastic programming model and

the uncertainties are assumed to be discrete random variables with known

probability mass functions. Wang et al. [42] developed a waste manage-

ment system planning model using interval-valued triangular fuzzy sets to

describe the cost coefficients, and discrete random variables to characterize

the waste generation quantities. The solution of the model relies on a dis-

cretization method that generates a number of intervals from the interval-

valued triangular membership function, so as to transfer the fuzzy con-

straints of the problem to deterministic forms. Yeomans [45] employed an

evolutionary simulation-optimization approach to assist in the solid waste

management planning. The objective of the proposed model is to mini-

mize the impact of negative outcomes due to uncertainty, and the concept

of outcome minimization through the use of penalty functions is combined

with grey programming into an evolutionary simulation-optimization pro-

cedure to solve solid waste management problems containing significant

sources of uncertainty. More related studies can be found in Sun et al. [34],
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Tan et al. [35], and Xu et al. [44].

2.3 General methodologies for facility loca-

tion under uncertainty

Most applications of facility location under uncertainty are based on gen-

eral approaches such as two-stage stochastic models, probabilistic models

(max-probability, chance-constrained models), mean-variance models, ro-

bust models and regret models. Readers may refer to Baron and Milner [3],

Gulpilar et al. [19], Lian et al. [25], and Tian and Yue [36] for the details,

and Snyder [33] for an excellent review. Most of these works assume that

the probability distributions for the uncertainty are known, and very few

studies consider multiple period cases. To the best of our knowledge, the

most relevant studies to our work are Baron and Milner [3], and Gulpi-

lar et al. [19]. In Baron and Milner [3], the authors developed robust ro-

bust facility location models with multiple periods using a box-uncertainty

set and an ellipsoid-uncertainty set, respectively. However, their models

assume the following restrictions: (i) the multiple period uncertainty set

is formed in a time-independent setting; (ii) the operations decisions are

forced to be made before the uncertainty being realized, which are not

adaptable to the uncertainty realizations. This can limit the flexibility and

performance of the solution. In Gulpilar et al. [19], the authors considered a

robust stochastic facility location problem assuming a normal distribution

with uncertainty parameter (mean, variance) or ambiguous distributions

for the uncertain demand. However, their model also does not allow the

operations decision to be adaptable to the uncertainty.
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In this work, our proposed WtE expansion models (both the guaran-

teed NPV evaluation and optimization models) can be regarded as special

applications of adaptive robust optimization problem (see [4]), in which the

operations decisions are adaptable in the fashion of a dynamic min-max

game. Unfortunately, adaptive robust problems are in general computa-

tionally intractable (see [4, 15]) due to the large problem size as well as the

sheer number of possibilities that will have to be considered. Considering

multiple decisions also increases the problem size exponentially. Popular

solution approaches include approximations using affine decision-rule mod-

els (see [6, 7, 32]), and the exact solution approach (see [8, 26, 48]) for

two-stage adaptive problems which uses cutting plane techniques. Affine

decision-rule models for two-stage and multi-stage adaptive problems which

solve a more restrictive version of the problem, and while the model might

be simpler to solve, the solution obtained is only optimal under a very

strict set of conditions. Finding the exact solution using a cutting plane

approach yields the optimal solution, but the model itself is harder and

more time-consuming to resolve.

In our work, given a WtE ‘expansion scenario’, we solve a multi-stage

adaptive robust (min-max) problem to compute the extreme value forecast

of the waste generation, and the corresponding optimal adaptive opera-

tional decisions. This model is useful for evaluating a guaranteed per-

formance level for the given expansion scenario. As we will subsequently

show, this multi-stage min-max dynamic evaluation problem is equivalent

to a much simpler formulation of a min-max optimization problem, which

can be further transformed into a single mixed integer linear program. As a

consequence, our proposed WtE expansion optimization problem to max-

imize the guaranteed NPV can also be cast directly in the format of a
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two-stage adaptive max-min-max optimization problem, and can therefore

be handled exactly by cutting plane approaches.

Based on the literature review, the important research gaps identified

and contributions of our work can be summarized as follows:

• The facility location planning models in the above literature of waste

management either studied deterministic problems which cannot han-

dle the uncertainty, or stochastic problems that heavily rely on the

known distribution assumptions for the uncertain parameters. Our

proposed WtE models on the other hand, account for uncertainty

using waste forecast prediction sets that can be built directly using

data observations, without necessarily imposing probability distribu-

tion assumptions. While our proposed prediction sets are based on

general constructs in robust optimization, we are able to make novel

connections with the area of time-series forecasting models. This

will improve the acceptability of our approach in practice and makes

integration more seamless.

• In contrast to the robust location planning models in Baron and Mil-

ner [3] and Gulpilar et al. [19], our proposed prediction set models

allow users to control the period-to-period waste generation uncer-

tainty propagation and dependence, through the use of forecast error

budgets. We also allow the operations decisions (waste distribution

and treatment in our case) to adapt to the uncertainty revealed at

each stage. This is more realistic in practice, and can also improve

the solution performance.

• Although it is not the aim of our work to contribute to the solution

methodology in adaptive robust optimization, we identify some in-
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teresting properties for our models in the WtE planning context that

can simplify the problem complexity. More specifically, we show that

the WtE expansion scenario evaluation problem can be reduced from

a multi-period, dynamic min-max problem into a simpler min-max

optimization (Proposition 1), and this can be further reduced to a

single instance of linear mixed integer model (Proposition 2), which

can be solved conveniently by off-the-shelf software. An interesting

consequence of this is: it also allows the convenient articulation of

a specific extreme value forecast for the given WtE expansion sce-

nario (Proposition 3). Furthermore, this directly results in a two-

stage adaptive max-min-max problem format for the WtE expansion

optimization problem, hence permitting the application of existing

solution algorithms such as cutting plane methods. Finally, for the

cutting plane implementation, we show that the cuts in our problem

can be described efficiently in a closed form. This can help improve

cut enumeration procedures if required. Such results are novel and

not available in the reviewed literature to the best of our knowledge.
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Chapter 3

WtE expansion planning using

point-value forecasts

3.1 Problem Setting and Notation

We start with the WtE expansion problem given a point value forecast of

the future waste generation. Some basic assumptions are: (i) the capacity

of the WtE facilities is assumed to be expanded in fixed modular units.

This simplifies the presentation to focus on the key features of the problem.

(ii) The residues after the WtE treatment, and any untreated waste, incur

additional disposal costs, e.g. for landfilling.

Let i, j and t be the indices for residential zones, potential WtE sites,

and time periods of planning, with i ∈ I := {1, 2, · · · , |I|}, j ∈ J :=

{1, 2, · · · , |J |} and t ∈ T := {1, 2, · · · , |T |}, respectively. For WtE ex-

pansion problems, each planning bucket t is typically in the range of one

to three years (see [21]). Denote by ξit the waste collected from residential

zone i at period t, dij the distance between the zone i and WtE facility

site j, and h the transportation cost per unit distance travelled for per unit

amount of waste. Let cj be the annualized fixed cost to open potential
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site j, v be the unit variable operating cost of the WtE facility, cD be the

unit disposal cost, that is, the cost to landfill one unit of waste, and qE

the unit energy price for selling the recovered energy. We also let µ be the

conversion ratio from waste to energy, that is, how much energy can be

obtained per unit of waste processed.

Furthermore, recognising that not all waste can be processed (for exam-

ple, metal and non-biodegradable plastics cannot be used in most waste-

to-energy processes), a ’purity ratio’ θi is introduced, representing the per-

centage of waste collected from zone i which can be processed.

We set ρj to be the residue ratio of the WtE facility j, and sj is the mod-

ular capacity of WtE facility j. Define xj,t as a binary decision variable, so

that xjt = 1 if WtE facility j is installed and opened at the beginning of the

period t ∈ T , xjt = 0 otherwise. Finally, yijt and zit are the waste distribu-

tion flow decisions, where yijt is the amount of waste from zone i distributed

to WtE site j in period t, and zit the amount of excess waste generated

from zone i at period t that is disposed without treatment at any WtE site.

In practice, the decision variables xjt are usually made at time zero,

without any knowledge of what the future waste generation will be. This

is because the planning is done and fixed in advance, bound by a contract

before the process can start. Once these xjt are fixed, negotiation will start

for the sale of the land and the construction of the facilities. For waste

management planning carried out over a longer term, there may be a re-

view of the decisions taken when required, though this might prove costly.

On the other hand, it is clear that the operational decision variables yijt

and zit are made of a period-on-period basis, and we can assume that this
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decisions are made with full knowledge of the waste generated at the cur-

rent time t.

3.2 Problem Description and Formulation

Suppose the waste supply forecast are the actual values ξ = [ξit]|I |×|T |,

the expansion plan x =
[
x1,x2, · · · ,x|T |

]
and distribution flows y =

[yijt]|I |×|J |×|T | and z = [zit]|I |×|T | are determined jointly to maximize the

net present value (NPV) of the project over the entire planning horizon. In

the following, we first describe the items accounted for in the NPV function.

In each t = 1, 2, · · · , |T |, the amount of waste processed at facility j from

waste sent by residential zone i is given by the decision variable yijt. Out

of this only yijtθi can be processed, and this amount produces a total of

yijtθiµ units of energy. Sold at a price of qE per unit of energy, the revenue

accrued from sales of recovered energy for each facility j from processing

the waste sent from residential zone i is given by yijtθiµqE. Summing this

up for all residential zones and all facilities, the total revenue made per

time period t is given by:

∑
j∈J

∑
i∈I

yijtθiµ

 qE.
In a similar manner, we obtain that the total transportation cost of shipping

collected waste from resident zones to the WtE sites at time t is:

∑
j∈J

∑
i∈I

yijtdijh.
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The total variable cost of operating the WtE is given by:

∑
j∈J

∑
i∈I

yijtv,

and the final disposal cost in each t ∈ T is:

∑
i∈I

cD

zit +
∑
j∈J

(1− θi)yijt + yijtρj

 ,
where the components in the above formula refer respectively to the dis-

posal costs for collected but untreated waste, the untreatable portions of

the waste, and finally the treatment residues. To simplify the presentation

of the model, we denote by

rij := θiµqE − dijh− v − cD(1− θi + ρj) (3.1)

the WtE revenue coefficient for the waste collected from zone i and pro-

cessed at facility j. The net WtE revenue in period t ∈ T before capacity

repayments is then revenue from sales of energy recovered, less transporta-

tion cost, operational cost and disposal cost, i.e.,

∑
i∈I

∑
j∈J

rijyijt − cDzit

 .
In addition, the WtE installation xt, t ∈ T incurs a fixed cost c′xt =∑

j∈J cjxjt. Consolidating the above items, the NPV contribution in pe-

riod t, with β ∈ (0, 1) being the stage-wise discount ratio used when con-

sidering the time value of money, is given by:

φt (xt−1,yt, zt) := βt
∑
i∈I

∑
j∈J

rijyijt − cDzit

− βt−1c>xt, (3.2)
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Denote also φ(x,y, z) =
∑

t∈T φt (xt,yt, zt) as the total NPV function.

Hence, given the waste generation forecast ξ, the WtE expansion problem

can be formulated as the following mixed integer linear program, which

solves for the expansion plan x and waste distribution (y, z) to maximize

the total NPV:

max
x,y,z

φ(x,y, z) :=
∑
t∈T

φt (xt,yt, zt) (3.3)

s.t.
∑
j∈J

yijt + zit = ξ̂it, i ∈ I, t ∈ T (3.4)

∑
i∈I

yijt ≤
t∑

τ=1

xjτsj, j ∈ J , t ∈ T (3.5)

xjt ∈ {0, 1} , yijt, zit ∈ <+, i ∈ I, j ∈ J , t ∈ T (3.6)

x ∈ X0. (3.7)

In the above model, constraint (3.4) ensures that the waste treatment

requirement from each zone must be satisfied by either the WtE process-

ing or disposal. Constraint (3.5) guarantees that the waste supply at time

period t can be distributed to all the WtE facilities opened up to period

t, and the maximum quantity treated is limited by the available capac-

ity. Constraint (3.6) covers the binary requirements for location decisions

x and the non-negative requirement for the waste allocation decision (y, z).

Finally, Xo in (3.7) is used to capture additional requirements on the

expansion variables x. We assume such requirements can be modelled

so that Xo is polyhedral. For instance, if the decision maker allows each

potential location j to be sited at most once for WtE system installation,
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then Xo can be defined as:

Xo :=

x :
∑
t∈T

xjt ≤ 1, j ∈ J

 .

3.3 Uncertainty Impact Illustration

As an initial analysis, let us illustrate the impact of the variation in waste

supply ξ to the location designs x as well as its NPVs for the WtE system.

Here we employ 15 different scenarios for ξ = [ξit]I×T , and ξk is the k-th

scenario of the waste supply. Also, we set I = 10, J = 20 and a planning

horizon of 2 stages (T = 2). More specifically, each ξki1 is the k-th waste

supply at stage-1 which can only been observed after the initial location

planning x0 (at stage-0), and the possible values of ξki1 can be regarded as

a variation or perturbation based on the current waste supply at zone i;

while each ξki2 is the k-th waste supply at stage-2, which is a perturbation

based on the realized waste supply ξki1 realized at stage-1. For a concise

presentation, here we set a feedstock quantity benchmark of 10, 000 tons,

and generate 15 scenarios of ξk, k = 1, 2, · · · , 15 for each feedstock supply

ξkit at zone i at stage-t by increasing this benchmark value by from 0% to

15%. All other basic parameter setting are similar to that in the computa-

tional study (Chapter 6).

Table 3.1 shows that under two different feedstock supply scenarios

(Scenarios-I and II are selected from the 15 generated ones), the location

decisions for WtE systems are influenced significantly. Furthermore, we

plot the values of NPV for all the different scenarios in Figure 3.1, from

which I see the NPV value is also largely impacted by the feedstock supply

uncertainty.
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Figure 3.1: The NPV plots of WtE location design cross
all the generated scenarios, where the maximal NPV deviation
ratio:=((NPVmax −NPVmin)/NPVmax)× 100%.

Table 3.1: Different WtE systems location decisions under different scenarios
of feedstock supply, where the total feedstock quantity increases (compared with
the benchmark quantity of 10, 000 tons) by 2% at Stage-1 and by 15% at Stage-
2 in Scenario-I, while increases by 10% at Stage-1 and by 5% at Stage-2 in
Scenario-II.

Planning period Sites of WtE systems opened in
scenario I

Sites of WtE systems opened in
scenario II

Stage 0 No.2-8, No.15, No.17-18 No.1-8, No.10, No.13, No.15,
No.17-18

Stage 1 No.1, No.9-11, No.13, No.9, No.11

25



Chapter 4

WtE Scenario Analysis using

Forecast Prediction Sets

In reality, location-expansion plan x generated by (3.3)–(3.7) using point-

valued forecasts can be arbitrarily bad, unless we have perfect information

of the future waste generation ξ. The practical issue of interest is then

on achieving expansion plans that are relatively stable despite the uncer-

tainty over the planning horizon. This is the major focus of our work in

the rest of the paper. In this chapter, we first propose a general model of

prediction sets for the uncertain future waste supply. We then show how

these prediction sets can be used to compute a guaranteed NPV forecast

(denoted ZNPV(x)) for a given expansion scenario x, where the WtE ex-

pansion scenario here refers to a specified instance of expansion decisions

x.

4.1 Modeling waste generation prediction sets

We consider the following growth model for the waste supply:

ξit = ξit−1 + ηit, i ∈ I, t ∈ T , (4.1)
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where ξit is the waste generated in zone i and period t, which is the sum

of the generation in the previous period, and ηit the growth (which could

possibly be negative) in the waste in zone i over the t-th period. ξi0 = ξ̂i0

is defined as the observed initial waste supply in zone i at the beginning

of the planning horizon, which we denote as period t = 0. Also we denote

by η̂ = [η̂i,−k]|I |×K the observed historical waste growth (K years back) of

each zone i ∈ I with k ∈ [0 :K].

Let Fit be the t-period ahead forecast of the average waste growth level

ηit in zone i and period t, made at the period t = 0. Fit can be based on

any forecasting model of choice by the user. Popular time series models

(see Gilchrist [17]) include for example Exponentially Weighted Moving

Average (EWMA) model:

(EWMA) : Fit :=
K∑
k=0

[
αk∑K
k=0 α

k

]
η̂i,−k, ∀t ∈ T ,

where η̂i,−k denotes the observed waste growth in zone i and period −k =

0, · · · ,−K0(K0 < K), that is, before the beginning of the planning horizon

at t = 0, and α ∈ (0, 1] is the discounting factor to be estimated. Another

example is the Autoregressive Moving Average of order (p, q) (ARMA(p, q))

model (see Gilchrist [17]):

(ARMA(p, q)) : Fit :=χ{t≥2}

[
t−1∑
`=1

α`Fi`

]
+

p∑
r=t

αrη̂i,−(r−t)

+

q∑
ς=t

βς

[
η̂i,−(ς−t) − F−ςi,−(ς−t)

]
, ∀t ∈ T

where α`, ` ∈ [1 : p] and βς , ς ∈ [1 : q] are the constant coefficients to be

estimated, F−ςi,−(ς−t) is the t-period ahead forecast of η̂i,−(ς−t), and χ{t≥2}

is an indicator function taking on the value of one when t ≥ 2 and zero
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otherwise.

We assume that the data for the t-period ahead forecast errors, ηit−Fit,

can be correspondingly collected. Based on historical observations of these

forecast errors, various statistics Sit such as mean absolute error, sample

variations, can be computed. In the following, a basic construct of interest

is to replace the waste growth point-value forecast Fit with the prediction

interval [Fit − Sit, Fit + Sit]. The motivation of the prediction intervals is

to take into account the presence of forecast errors, through the use of the

statistics Sit. For example, the t-step ahead mean absolute error MAEit

for zone i can be estimated as:

MAEit :=
1

K0 + 1

K0∑
k=0

∣∣∣F (−k−t)
i,−k − η̂i,−k

∣∣∣ (4.2)

where F
(−k−t)
i,−k denotes the t-step ahead forecast of ηi,−k, made in period

−t − k. The above prediction interval with Sit := MAEit can then be de-

fined as [Fit −MAEit, Fit + MAEit].

Another example is as follows. Assume that the forecasting error follows

a zero-mean normal distribution. We then have (Bowerman et al. [9] and

Geisser [16]):

ηit − Fit
v̂Kit

∼ tK−1,

where v̂Kit is the sample variance of the t-period ahead forecast error ηit−Fit

computed using a sample of size K, and tK−1 is the standard t-distribution

withK−1 degrees of freedom. We can then construct the 100×(1−α)% pre-

diction interval on the future waste growth ηit, by defining Sit := v̂Kit tK−1,α
2
,

where tK−1,α
2

is the 100×(1− α
2
)-percentile of the t-distribution with K−1

degrees of freedom.
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We next define the following reformulation of the prediction interval of

ηit:

ηit ∈ [Fit − Sit, Fit + Sit]⇐⇒ ηit = Fit + %itSit, %it ∈ [−1, 1],

where the variables %it ∈ [−1, 1] are used to indicate the direction and level

of forecast errors accounted for in the prediction intervals. For instance,

%it with a magnitude of one indicates that a forecast error of value Sit is

accounted for in the prediction of the growth ηit. A positive (negative)

value of %it indicates that the adjustment from the point-value forecast Fit

is in the upward (downward) direction. When %it takes a value of zero, no

forecast errors are considered in the prediction of ηit.

Based on the above, we propose the prediction set of the future waste

generation ξ as follows:

UΓ :=


ξ ∈ <|I |×|T | :

ξit = ξ̂i0 +
t∑

τ=1

Fiτ +

[
t∑

τ=1

%iτSiτ

]
, i ∈ I, t ∈ T

∑
i∈I
|%it| ≤ ΓZ

t , t ∈ T

∑
t∈T
|%it| ≤ ΓT

i , i ∈ I

%it ∈ [−1, 1], i ∈ I, t ∈ T


.

(4.3)

We now explain the components in (4.3). First, note that for each i ∈ I,

t ∈ T , the item

ξit = ξ̂i0 +
t∑

τ=1

Fiτ +

[
t∑

τ=1

%iτSiτ

]
computes a forecast of the waste generation ξit by applying the growth

model (4.1) and the above mentioned prediction intervals [Fiτ − Siτ ,

Fiτ + Siτ ], repeatedly, for τ ∈ [1 : t]. Note that by the above con-
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struction, each ξit has up to one additional unit of forecast error Sit,

than in ξit−1. This reflects the uncertainty propagation effect in future

waste supply over time, which is also consistent with practical observations.

Next, the items:

∑
t∈T
|%it| ≤ ΓT

i , ∀ i ∈ I,
∑
i∈I
|%it| ≤ ΓZ

t , ∀ t ∈ T

constrain the number of forecast errors that are included in the predic-

tion set, where Γ :=
[
ΓZ
t ,Γ

T
i

]
|T |+|I | are regarded as forecast error budgets,

which can be chosen based on user attitudes towards the uncertainty. In

particular, ΓT
i controls the total forecast errors in waste growth of each zone

i over the entire planning horizon |T |, and ΓZ
t controls the total forecast

errors in waste growth at each period t, across all zones. Typically, users

will choose some value of ΓT
i ∈ [0, |T |], and ΓZ

t ∈ [0, |I|]. When the upper

bounds (full budgets) are chosen, the user adopts an extremely conservative

position, and believes that a full forecast error will occur in every waste

growth prediction Fit. When the budgets are 0, the user adopts the other

extreme, and is very optimistic about his point-value forecasts Fit. Here,

it is assumed that the budget choices are integer-valued. This represents

little to no loss in the problem consideration as the budget choice, a mea-

sure of conservatism, only requires a finite scale to be well represented. In

addition, we will later show that this will help in simplifying the definition

of the prediction set in (4.5).
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4.2 Forecasting guaranteed NPV levels

A typical decision process in the WtE expansion project is as follows. An

expansion scenario x :=
(
x1,x2, · · · ,x|T |

)
is proposed, and the project owners

would like to evaluate its feasibility by obtaining a forecast of the resulting

net present value (NPV) of the project. To account for the future waste

generation uncertainty, we assume that an appropriate prediction set UΓ in

(4.3) for some forecast error budget setting Γ has been articulated. Because

WtE projects are extremely expensive and involve huge, long-term and ir-

reversible investments in capital infrastructure, stakeholders are likely to

adopt a rather cautious stance in the presence of uncertainty. For this

reason, what is often required is a guarantee on the NPV level, i.e. some

lower bound on the achievable NPV upon actual implementation. If the

stakeholders deem the guaranteed level acceptable, then the proposed ex-

pansion plan x is also acceptable.

In reality, the uncertain waste generations ξ :=

(
ξ

1
,ξ

2
, · · · ,ξ|T |

)
are re-

vealed in stages, they are assumed to take on values in the prediction set

UΓ. Similarly, the operational decisions y1, · · · ,y|T | depend on the actual

waste generated in stages. Intuitively, we can regard the process of de-

termining the guaranteed NPV as a leader-follower game over |T | stages.

In this context the ‘leader’ is nature itself, who selects waste generation

ξt at the beginning of each period t. The ‘follower’ is the WtE owner,

who chooses waste distribution action yt in response, so as to maximize

the NPV contribution. Hence, the objective of the ‘leader’ is to choose

a forecast ξ ∈ UΓ that strategically minimizes the realized NPV, subject

to its forecast error budget Γ. The outcome of this process is the desired

guaranteed NPV level.
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To formalize the above descriptions mathematically, we first denote

x[t] := (x1,x2, · · · ,xt) as the expansion up to t. Correspondingly, x[0]

refers to the initial state before any decision has been made. In each time

period t ∈ T , given the revealed waste generation ξt, define:

Yt
(
x[t], ξt

)
:=
{

(yt, zt) ∈ <
|I |×|J |
+ ×<|I |+ | (3.4)− (3.5)

}

as the set of feasible waste distribution decisions (yt, zt) at time period t

given x[t] and ξt. The decisions yt, zt are selected to maximize the NPV

at the period t, which, by the problem structure in (3.3)-(3.7), are only

influenced by x[t] and the waste supply ξt at that period. This is stated as:

max
(yt,zt)∈Yt(x[t],ξt)

φt (xt,yt, zt)

where φt (xt,yt, zt) is the NPV contribution in the period t as defined in

(3.2). For convenience, we also denote by

Υt(x[t], ξt) := max
(yt,zt)∈Yt(x[t],ξt)

φt (xt,yt, zt) (4.4)

the optimal NPV in period t given x[t] and ξt.

Next, denote ξ[t−1] = (ξ̂0, ξ1, ξ2, · · · , ξt−1) as the revealed waste gener-

ation up to t − 1, with ξ[0] := (ξ̂0). Recall that ξ[t−1] is assumed to take

on values from the prediction set UΓ. In the context of the leader-follower

game, this corresponds to that up to period t− 1, the leader has expended

some portion of his forecast error budget Γ through his selection of the fore-

cast error allocation variables %iτ , ∀i ∈ I, τ ∈ [1 : t − 1], that determined

ξiτ , i ∈ I, τ ∈ [1 : t − 1]. The set of realizable values for ξt then depends
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on the ‘budget-to-go’ at the beginning of period t. More specifically, we

define this prediction set for ξt, conditional on ξ[t−1] as:

UΓ
t (ξ[t−1]) :=


ξt ∈ <|I | :

ξit = ξit−1 + Fit + %itSit, i ∈ I∑
i∈I
|%it| ≤ ΓZ

t

|%it| ≤ ΓT
i − χ{t≥2}

[
t−1∑
τ=1

|%iτ |
]
, i ∈ I

%it ∈ [−1, 1], i ∈ I


, (4.5)

where χ{t≥2} is an indicator function, such that χ{t≥2} = 1 if t ≥ 2, and

χ{t≥2} = 0 otherwise. Note that the constraints:

|%it| ≤ ΓT
i − χ{t≥2}

[
t−1∑
τ=1

|%iτ |

]
, %it ∈ [−1, 1], i ∈ I

in (4.5) jointly ensure that for each i ∈ I, if the ‘expended’ forecast error

budget
t−1∑
τ=1

|%iτ | has already reached the total budget level ΓT
i , then |%it| =

0⇔ %it = 0; otherwise |%it| ≤ 1 (noting that ΓT
i is integer-valued).

At the beginning of the final period T = |T | in the planning horizon,

nature (the ‘leader’) solves the following problem to minimize the NPV

contribution achieved when the waste generation is revealed:

min
ξT∈UΓ

T (ξ[T−1])

ΥT (x[T−1], ξT−1) =

min
ξT∈UΓ

T (ξ[T−1])

max
(yT ,zT )∈YT (x[T−1],ξT−1)

φT
(
x[T−1],yT , zT

)
.

(4.6)

Given that the total NPV obtained is the sum of the NPV each year,

and that the decisions made at time t only depend on what has happened in

the past in time s, s < t, we apply (4.6) recursively backwards in time t ∈ T

to formulate the evaluation of the guaranteed NPV, denoted ZNPV(x), as
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the following optimization problem:

ZNPV(x) = min
ξ1∈U

Γ
1 (ξ[0])

[
Υ1(x[0], ξ1)+

min
ξ2∈U

Γ
2 (ξ[1])

[
Υ2(x[1], ξ2) + · · ·+ min

ξT∈UΓ
T (ξ[T−1])

[
ΥT (x[T−1], ξT )

]
· · ·

]]
,

(4.7)

where UΓ
t (ξ[t−1]), t ∈ [1 : |T |] are the state-dependent prediction sets given

by (4.5).

Note that (4.7) is in the format of a dynamic optimization problem

under uncertainty, which is generally difficult to solve. Fortunately, due to

structure of the WtE problem, we can show that the (4.7) can be reduced

to a much simpler format of a two-stage optimization problem. This can

be further shown to be transformable into a mixed integer linear program-

ming formulation that can be solved directly using commercial applications.

To simplify the notation, in the following we denote the feasible set of

the waste distribution decisions (y, z), given x and ξ, as:

Y (x, ξ) :=
{

(y, z) ∈ <|T |×|I |×|J |+ ×<|T |×|I |+ | (3.4)− (3.5)
}
. (4.8)

We then have the following result.

Proposition 1. Given WtE expansion scenario x, we have

ZNPV(x) = min
ξ∈UΓ

max
(y,z)∈Y(x,ξ)

φ(x,y, z), (4.9)

where φ(x,y, z) is the total NPV objective defined in (3.3).
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Proof. The technical proof details are provided in Appendix A.1.

The implication of Proposition 1 is the following. Given expansion

scenario x, there exist a corresponding waste generation forecast ξ† =

[ξ†it]|I |×|T | in UΓ, which if realized, will result in the guaranteed NPV level

ZNPV(x). We refer to ξ† as the extreme value forecast of the waste sup-

ply. The guaranteed NPV can be evaluated by determining the NPV of

the waste distribution (y, z) ∈ Y (x, ξ) that is optimal under the extreme

value forecast.

Essentially, the result in (4.9) is a consequence of the fact that the op-

timal total NPV function in the WtE operations problem is decomposable

in each period t:

max
(y,z)∈Y(x,ξ)

φ(x,y, z) =
∑
t∈T

Υt(x[t], ξt).

The above is possible because of the assumption that all collected waste

has to be either treated or disposed in each period, and no storage of waste

across periods is allowed. This is due to the characteristics of the WtE

problem, since the planning bucket is in the unit of years, and untreated

municipal waste cannot be stockpiled at this scale due to public health

restrictions.

Although the resulting min-max optimization problem in (4.9) is sim-

pler than the dynamic optimization formulation (4.7), the former problem

in general is still intractable (see [4]). Fortunately, it can be shown that

under our problem setting with the structure of the budget prediction set

UΓ, it can be solved as a single instance of mixed integer linear program

of moderate size which is more computationally tractive. This result is
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formally presented in the following proposition.

Proposition 2. Given the expansion scenario x and uncertainty budget

parameters Γ, the guaranteed NPV evaluation problem (4.9) is equivalent

to the following mixed integer programming model:

ZNPV(x) = min
q,g,π,h,γ

γ1 + γ2 − γ3 (4.10)

s.t. γ1 ≥
∑
j∈J

∑
t∈T

t−1∑
τ=0

xjτsjgjt − βt−1c>xt

 (4.11)

γ2 ≥
∑
i∈I

∑
t∈T

qit

[
ξ̂i0 +

t∑
τ=1

Fτ (η̂i)

]

+

[
t∑

τ=1

(
h+
itτ − h−itτ

)
Siτ

]
(4.12)

γ3 ≤
∑
i∈I

∑
t∈T

{
ξ̂i0 +

t∑
τ=1

Fτ (η̂i) +

[
t∑

τ=1

(
π+
iτ − π−iτ

)
Siτ

]}
βtcD (4.13)

qit + gjt ≥ βtrij + βtcD, i ∈ I, j ∈ J , t ∈ T (4.14)∑
i∈I

(π+
it + π−it ) ≤ ΓZ

t , t ∈ T (4.15)

∑
t∈T

(π+
it + π−it ) ≤ ΓT

i , i ∈ I (4.16)

h+
itτ ≤ qit, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t] (4.17)

h+
itτ ≥ qit + (π+

iτ − 1)M, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t] (4.18)

h+
itτ ≤ π+

iτM, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t] (4.19)

h−itτ ≤ qit, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t] (4.20)

h−itτ ≥ qit + (π−iτ − 1)M, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t] (4.21)

h−itτ ≤ π−iτM, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t] (4.22)

q ∈ <|I |×|T |+ , g ∈ <|J |×|T |+ ,
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π+,π− ∈ {0, 1}|I |×|T | ,h+,h− ∈ <|I |×|T |
2

+ , (4.23)

where M is a positive finite number which can be determined explicitly by

model inputs, and Fτ (η̂i) is the τ -period ahead forecast as defined in Section

4.1.

Proof. The technical proof details are provided in Appendix A.1.

Along with the guaranteed NPV ZNPV(x), the extreme value forecast of

the waste generation, ξ† = [ξ†it]|I |×|T |, can also be recovered by using the

auxiliary variables in (4.10)–(4.23). Specifically, we can use the following

formula to extract the ξ†.

Proposition 3. Given an expansion scenario x, the corresponding extreme

value forecast ξ†it of waste supply for zone i ∈ I and time period t ∈ T under

forecast error budget Γ can be obtained by the following formula:

ξ†it = ξ̂i0 +
t∑

τ=1

Fiτ +

[
t∑

τ=1

(
π̄+
iτ − π̄−iτ

)
Siτ

]
, (4.24)

where π̄+
iτ , π̄

−
iτ , i ∈ I, τ ∈ [1 : t] are auxiliary binary decision variables solved

from (4.10)-(4.23).

Proof. The result can be obtained directly from the proof of Proposition 2,

we therefore omit the proof details.

The extreme value forecast ξ†it, i ∈ I, t ∈ T is useful when the prac-

titioners would like to study the characteristics of the most adverse fu-

ture waste generations trajectory corresponding to expansion scenario x

under the given forecast error budget level. We note that the obtained

ξ†1, ξ
†
2, . . . , ξ

†
T are precisely the extreme value forecasts for the multi-stage

guaranteed NPV evaluation problem in (4.7) rather than an approximation.
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It is hence of practical value, since users and decision-makers can often as-

similate and interpret the solution values better than if presented with a

dynamic policy. By adjusting the budget parameters Γ =
[
ΓZ
t ,Γ

T
i

]
|T |+|I |,

a series of extreme value forecasts can also be generated efficiently. We

show examples of using the extreme value forecast information in the com-

putational studies in Section 6.1.
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Chapter 5

Expansion Optimization with

Guaranteed NPV

In this chapter, we focus on the optimization of the WtE expansion problem

using the waste generation prediction set model and maximizing the guar-

anteed NPV level developed in the previous chapter. To simplify notation,

we denote by X the following expansion decision constraints:

X :=
{
x ∈ <|T |×|J | : x ∈ Xo, xtj ∈ {0, 1}, t ∈ T , j ∈ J

}
. (5.1)

By Proposition 1, the WtE expansion optimization problem of interest:

max
x∈X
ZNPV(x)

can be stated compactly as a two-stage max-min-max optimization prob-

lem. That is

max
x∈X
ZNPV(x) = max

x

{
min
ξ∈UΓ

max
(y,z)∈Y(x,ξ)

φ(x,y, z) | x ∈ X

}
, (5.2)

where φ(x,y, z) and Y (x, ξ) are as defined in (3.3) and (4.8) respectively.
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In summary, for a given x, the problem allows the waste distribution (y, z)

to adapt to the waste generation outcomes ξ as well as possible. The guar-

anteed NPV is evaluated by minimizing over all possible outcomes ξ in

the prediction set UΓ. Finally, the maximum guaranteed NPV is achieved

by optimizing over x ∈ X . Structurally, (5.2) belongs to the class of

two-stage adaptive robust optimization problems which are known to be

computationally intractable in general (see [4, 15]). Nevertheless, by ex-

ploiting the structure in the WtE problem (Proposition 2), we propose

an iterative cutting plane algorithm with a closed-form of cuts that solves

(5.2) via a sequence of linear mixed integer programs. The advantage of

such algorithms is that it can be implemented easily using available integer

optimization solvers. This is presented in Section 5.1. Next, in Section

5.2, we also propose a heuristic approach to obtain reasonably good (lower

bound) solutions to (5.2) by considering a class of restrictions on the waste

distribution actions y. In particular, this class of restrictions require the

distribution actions to follow a constant proportions rule, which is subse-

quently optimized. We show that under such assumptions, the problem

can be formulated as a single instance of a mixed integer linear program of

moderate dimensions. In addition, we also identify that if the waste supply

constraints can be relaxed, then a tractable model can be developed for the

WtE expansion optimization problem. To keep the content consistent, we

leave such results in Appendix A.2.
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5.1 Exact solution approach using cutting

plane algorithm

In this section we develop a cutting plane approach for solving (5.2). Essen-

tially, by extending the results in Proposition 2, we are able to construct

a closed-form for the cuts. To describe the algorithm, we first formally

present the following equivalent waste generation prediction set V (Γ) as

the following:

V (Γ) :=



ξ ∈ <|I |×|T | :

ξit =ξ̂i0 +
t∑

τ=1

Fiτ

+

[
t∑

τ=1

(
π+
iτ − π−iτ

)
Siτ

]
, i ∈ I, t ∈ T

∑
i∈I

(π+
it + π−it ) ≤ ΓZ

t , t ∈ T

∑
t∈T

(π+
it + π−it ) ≤ ΓT

i , i ∈ I

π+
it , π

−
it ∈ {0, 1}, i ∈ I, t ∈ T



.

(5.3)

Note that V (Γ) is a finite set, and has been used in Proposition 2 to replace

UΓ (in dual form of problem (4.9)), so as to achieve the equivalent mixed

integer linear formulation (4.10)-(4.23). Here V (Γ) plays a central role in

establishing the cutting plane formulation for solving (5.2).

Furthermore, to represent the cuts in a compact manner in the formu-
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lation, we define in the following the set K(x, ξ), given x and ξ, as:

K(x, ξ) :=


γ | ∃(y, z) s.t.

γ ≤
∑
t∈T

[
βt
∑
i∈I

∑
j∈J

rijyijt −
∑
i∈I

cDzit

]
∑
j∈J

yijt + zit = ξit, i ∈ I, t ∈ T

∑
i∈I

yijt ≤
t∑

τ=1

xjτsj, j ∈ J , t ∈ T

yijt, zit ∈ <+, i ∈ I, j ∈ J , t ∈ T


.(5.4)

With the above constructs, we can reformulate (5.2) as a large scale

mixed integer linear program, by noting the finiteness of the set V (Γ).

This is formally presented in the following result.

Proposition 4. The WtE expansion optimization problem (5.2) is equiv-

alent to the following mixed integer program:

max
x

∑
t∈T

[
−βt−1c>xt

]
+ γ (5.5)

s.t. γ ∈ K(x, ξ), ξ ∈ V (Γ) (5.6)

x ∈ X (5.7)

where K(x, ξ) is the set defined by (5.4).

Proof. The technical proof details can be found in Appendix A.1.

The proposed reformulation (5.5)-(5.7) is termed as the complete master

problem, which is generally of high dimensions, since it is based on the enu-

meration of V (Γ). On the other hand, because the elements of V (Γ) can be

efficiently described in our problem, the explicit formulation in (5.5)-(5.7)

can be easily obtained. This is useful if computational resources permit

the direct solution of (5.5)-(5.7). Note that in general, this may not be

possible when there is no efficient description of V (Γ).
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Denote ω as the index for the elements of V (Γ), that is ω =

1, 2, · · · , |V (Γ) |. By relaxing the set of constraint γ ∈ K(x, ξ), ξ ∈ V (Γ)

into the case with ω = 1, · · · , k, k ≤ |V (Γ) |, we arrive at the following

relaxed master problem formulation:

UB(k) := max
x

∑
t∈T

[
−βt−1c>xt

]
+ γ (5.8)

s.t. γ ∈ K(x, ξω), ω = 1, · · · , k (5.9)

x ∈ X (5.10)

where k ≤ |V (Γ) |. Clearly, the relaxation (5.8)-(5.10) can be significantly

smaller in size compared to (5.5)-(5.7), and provides an upper bound of

the problem (5.2). Also, the upper bound improves as more cuts K(x, ξω)

are added into the model. On the other hand, using the solution x̂ from

(5.8)-(5.10), we can solve the following problem to obtain a lower-bound to

(5.2):

LB(x̂) := ZNPV(x̂) = max
(y,z)∈Y(x̂,ξ)

φNPV(x̂,y, z) (5.11)

where ξ ∈ V (Γ). By Proposition 2 this can be solved as the mixed inte-

ger linear program (4.10)-(4.23). The optimal solution is achieved when

LB(x̂) = UB(k). Note that because V (Γ) is finite, the algorithm is guar-

anteed to converge in a finite number of iterations.

In practice, the choice of the cut K(x, ξω) added can play an important

role in improving the computational efficiency. An observation is that when

we input the x obtained from (5.8)-(5.10) in (5.11), by Proposition 3, we
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can also recover an instance of ξ† ∈ V (Γ) by using the solution (π̄+, π̄−):

ξ†it(π̄
+, π̄−) := ξ̂i0 +

t∑
τ=1

Fiτ +

[
t∑

τ=1

(
π̄+
iτ − π̄−iτ

)
Siτ

]
, i ∈ I, t ∈ T . (5.12)

Since the obtained ξ†(π̄+, π̄−) is the extreme value forecast yielding the

guaranteed NPV corresponding to the most recent expansion solution x in

the cutting plane iterations, it is at least heuristically better (more effective)

than a randomly selected ξω ∈ V (Γ). Hence, ξ†(π̄+, π̄−) can be used to

construct the new cut K(x, ξ†(π̄+, π̄−)). The following algorithm outlines

the cutting plane procedure:

Algorithm 1 Cutting plane algorithm for solving WtE expansion optimization prob-
lem (5.2)

Set ε as the error tolerance, Take some ξω ∈ V (Γ) ,UB←∞,LB← −∞

while UB−LB
LB × 100% ≥ ε do

Solve (5.8)-(5.10) and obtain optimal objective value UBN and solution

xN , where N is the iteration number.

UB← UBN

Set xLB = xN , solve (4.10)-(4.23), and obtain optimal objective value

LBN and solution (π̄+, π̄−). Recover ξ†(π̄+, π̄−) via (5.12), and form a new

cut K(x, ξ†(π̄+, π̄−)).

LB← max {LB,LBN}
end while

return xLB

5.2 A heuristic using constant proportion

waste distribution rule

Although the cutting plane approach in the previous section can solve ex-

pansion problem (5.2) to optimality, in practice the computational effort
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required may still be formidable for large problem sizes. In this section we

propose a heuristic procedure to obtain reasonably good (though not neces-

sarily optimal) solutions that can be more computationally attractive. The

concept of the approach is simply to restrict the set of feasible operational

actions y and z in (5.2) to a smaller and more manageable subset.

In the following, we define pijt as the proportion of waste generated

from zone i, period t distributed to WtE site j, and qit is the proportion

of excess waste from zone i in period t. Denote also (p, q) as the vector of

all these proportion parameters. Clearly we have
∑

j∈J pijt + qit = 1, i ∈

I, t ∈ T . For a given (p, q), and a given waste generation level ξ, the

waste distribution variables y and z are then evaluated as:

Λ(p, q, ξ) :=
{

(y, z) | yijt = pijtξit, zit = qitξit, t ∈ T , i ∈ I, j ∈ J
}
.

(5.13)

In the proposed heuristic, (p, q) are treated as control parameters,

whose values are optimized together with the expansion solution x, and

waste distribution is always restricted to Λ(p, q, ξ). Under the above as-

sumption, problem (5.2) can be formulated as the following:

max
x,p,q

min
ξ∈UΓ

max
(y,z)∈Y(x,ξ)∩Λ(p,q,ξ)

φ(x,y, z) (5.14)

s.t.
∑
j∈J

pijt + qit = 1, i ∈ I, t ∈ T (5.15)

pijt, qit ≥ 0, i ∈ I, j ∈ J , t ∈ T (5.16)

x ∈ X , (5.17)

where Y (x, ξ) given in (4.8) is the feasible set of (y, z) given ξ.

Although restricting (y, z) using the constant proportion distribution
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rule may not produce the optimal solution to (5.2) in general, a key advan-

tage is that the model can be solved efficiently. In particular we will show

that the problem can be re-formulated as a linear mixed integer program of

moderate dimensions, which can be handled directly by off-the-shelf solvers.

This result is stated in the following proposition.

Proposition 5. The expansion optimization model with proportional waste

distribution rules (5.14)-(5.17) is equivalent to the following mixed integer

linear program:

max
x,p,q

∑
i∈I

∑
t∈T

[
ξ̂i0 +

t∑
τ=1

Fiτ

]
doit +

∑
t∈T

[
ΓZ
t b
o
t − βt−1c>xt

]
+
∑
i∈I

ΓT
i ϕ

o
i +

∑
i∈I

∑
t∈T

[
ψoit − νoit

]
(5.18)

s.t. βt

∑
j∈J

rijpijt − cDqit

− doit = 0, i ∈ I, t ∈ T (5.19)

bot + ϕoi + γoit +$o
it = 0, i ∈ I, t ∈ T (5.20)

ψoit + νoit +$o
it − γoit −

|T |∑
τ=t

doiτSiτ = 0, i ∈ I, t ∈ T (5.21)

∑
i∈I

[
ξ̂i0 +

t∑
τ=1

Fiτ

]
ptij +

∑
ς∈T

ΓZ
ς b
tj
ς +

∑
i∈I

ΓT
i ϕ

tj
i

+
∑
ς∈T

∑
i∈I

[
ψtjiς − ν

tj
iς

]
≤

t−1∑
τ=0

xjτsj, j ∈ J , t ∈ T (5.22)

btjς + ϕtji + γtjiς +$tj
iς = 0, i ∈ I, ς ∈ T , j ∈ J , t ∈ T (5.23)

ψtjiς + νtjiς +$tj
iς − γ

tj
iς = 0,

i ∈ I, j ∈ J , t ∈ T , ς ∈ [t+ 1 : |T |] (5.24)

ψtjiς + νtjiς +$tj
iς − γ

tj
iς − ptijSt(η̂i) = 0,

i ∈ I, j ∈ J , t ∈ T , ς ∈ [1 : t] (5.25)

(x,p, q) ∈ {(x,p, q) | (5.15)− (5.17)} (5.26)

do ∈ <|I |×|T |, bo ∈ <|T |− ,ϕo ∈ <|I |− ,
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γo,$o,νo ∈ <|I |×|T |+ ,ψo ∈ <|I |×|T |− (5.27)

btj ∈ <|T |+ ,ϕtj ∈ <|I |+ ,

γtj,$tj,νtj ∈ <|I |×|T |− ,ψtj ∈ <|I |×|T |+ , j ∈ J , t ∈ T , (5.28)

where variables in (5.27) and (5.28) are auxiliary decision variables and

St(η̂i) is the forecast error as defined in Section 4.1.

Proof. The technical proof details can be found in Appendix A.1.

We remark that the optimal objective function value (5.18) always pro-

vides a safe lower bound for that in problem (5.2). Hence, the solution

in (5.14)-(5.17) can be used as a good starting point for the cutting plane

algorithm described in the previous section. Also, because it is not neces-

sary to actually implement the constant proportion rule (p, q) in practice,

the lower bound can be further improved by using the expansion solution

x achieved in (5.14)-(5.17) to evaluate the guaranteed NPV by solving the

derived mixed integer model (4.10)-(4.23).
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Chapter 6

Computational Study

In this chapter, we perform computational studies of the WtE expansion

evaluation and optimization models. We assume a planning horizon of 8

time periods, where each period consists of a time bucket of two years.

These assumptions are consistent with guidelines from the International

Solid Waste Association [21] for the long term waste management plan-

ning, allowing for a reasonable time frame for planning changes. In our

case study, we consider 10 residential zones and 20 potential WtE system

sites, and the waste generation forecasting models are based on the 10

years’ local waste of the city state Singapore.

We apply an exponential weighted moving average forecast model with

mean absolute errors calibrated from the available data to construct the

prediction set model UΓ (see Chapter 4.1). The computational study con-

sists of three parts: (i) An analysis of the extreme value forecasts for the

given WtE expansion scenario (Section 6.1). (ii) Analysis of expansion

solutions based on optimizing guaranteed NPVs (Section 6.2). (iii) An

out-of-sample performance analysis of expansion solutions and compari-

son with stochastic programming approaches (Section 6.3). All the models
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presented below are coded in MATLAB 2015a and solved by the MOSEK

solver.

6.1 Expansion scenario analysis with extreme

value forecasts

We assume a WtE expansion scenario x given in Table 6.1, and use the

guaranteed NPV evaluation model (4.10)-(4.23) to identify a series of ex-

treme value forecasts over periods for the future waste generation for dif-

ferent residential zones under different forecast error budget assumptions.

These forecasts are useful in providing the following information: (i) the

conditions of future waste growth that aversely impact WtE expansion sce-

nario x, and (ii) the effect of forecast error budget on these conditions.

Table 6.1: WtE expansion scenario assumed for waste forecast analysis

Period Expansion scenario x

t=1 (Years 1-2) Sites 3, 5, 11, 14, 17–18

t=2 (Years 3-4) Site 2

t=3 (Years 5-6) –

t=4 (Years 7-8) Site 10

t=5 (Years 9-10) Site 1

t=6 (Years 11-12) Site 4

t=7 (Years 13-14) Site 20

t=8 (Years 15-16) –

In the following, the forecast error budget parameters are set as ΓT
i ≡

49



ΓT,∀ i ∈ I and ΓZ
t ≡ ΓZ, ∀ t ∈ T , with ΓZ ≤ 10,ΓT ≤ 8. This simpli-

fies our discussion, and yet captures the major features of our prediction

set models. We also change the budget parameters (ΓZ,ΓT) from (5, 4) to

(10, 8) to analyze the obtained extreme value forecasts. First, the guaran-

teed NPV evaluation model (4.10)-(4.23) is solved for the binary indicator

variables π+
it and π−it . Recall that these indicators imply adjustments of

the nominal waste growth forecast ηit in the positive and negative direc-

tions respectively, by the designated forecast error level. The extreme value

forecasts ξ†it are then recovered by applying (4.24) in Proposition 3. For

the purpose of illustration, we consider two residential zones, Zone 4 and

Zone 8, that have low and high annual waste generations respectively. We

present the guaranteed NPVs and the associated extreme value forecasts

qualitatively using (π+,π−) of two residential zones (Zone 4 and Zone 8)

in Table 6.2.

An observation of the results is the following. First, when the forecast

error budget is relatively low, the extreme value forecasts indicate that a

lower-than-nominal forecast of the waste generation will impact the ex-

pansion scenario most negatively. This can be seen from the results in

Table 6.2, for the cases when budget parameter varies from (5, 4) to (7, 5).

That is, all the components of the π+ are zero, while selected components of

π− take on the value of one. Interestingly, when the error budget changes,

the periods in which these lower-than-nominal forecasts occurs does not

necessarily always remain the same. Generally, these extreme value fore-

casts are a consequence of the interaction between the expansion scenario

and waste generation uncertainty, and typically cannot be obtained by sim-

ple inspection. When the forecast error budget increases above (8, 6), the

extreme value forecasts switch directions, and higher-than-nominal waste
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Table 6.2: Guaranteed NPVs and directions π+
i and π−i of the extreme value fore-

casts ξ†i for Zones 4 and 8 under budget parameters (ΓZ,ΓT). Note that π+
i =

(π+
i1, π

+
i2, π

+
i3, π

+
i4, π

+
i5, π

+
i6, π

+
i7, π

+
i8) and π−i = (π−i1, π

−
i2, π

−
i3, π

−
i4, π

−
i5, π

−
i6, π

−
i7, π

−
i8) indicates

the positive and negative forecast error adjustments in the growth components ηi =
(ηi1, ηi2, ηi3, ηi4, ηi5, ηi6, ηi7, ηi8), respectively. The Guaranteed NPVs are given for the
all the residential zones together.

(ΓZ,ΓT)
Guaranteed NPV Forecast ξ†4 (Zone 4)

(Overall) Indicator π+
4 Indicator π−4

(10, 8) 1.6562× 108 (1, 1, 1, 1, 1, 1, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0)

(9, 7) 1.6899× 108 (1, 1, 1, 1, 1, 1, 1, 0) (0, 0, 0, 0, 0, 0, 0, 0)

(8, 6) 1.7012× 108 (1, 1, 1, 1, 1, 1, 0, 0) (0, 0, 0, 0, 0, 0, 0, 0)

(7, 5) 1.7118× 108 (0, 0, 0, 0, 0, 0, 0, 0) (1, 1, 1, 1, 0, 1, 0, 0)

(6, 4) 1.7346× 108 (0, 0, 0, 0, 0, 0, 0, 0) (1, 1, 1, 0, 1, 0, 0, 0)

(5, 4) 1.7444× 108 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1, 1, 1)

(ΓZ,ΓT)
Guaranteed NPV Forecast ξ†8 (Zone 8)

(Overall) Indicator π+
8 Indicator π−8

(10, 8) 1.6562× 108 (1, 1, 1, 1, 1, 1, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0)

(9, 7) 1.6899× 108 (0, 0, 0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0)

(8, 6) 1.7012× 108 (0, 0, 0, 0, 0, 0, 1, 1) (0, 0, 0, 0, 0, 0, 0, 0)

(7, 5) 1.7118× 108 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1, 1, 1)

(6, 4) 1.7346× 108 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1, 1, 1)

(5, 4) 1.7444× 108 (0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 0, 0, 1, 1, 1)

generation will now be most critical. Under this condition, the components

of the π+ take on values of one, while the components of π− take on zero

values. Operationally, this means that the disposal costs associated with

the excess waste will most negatively impact the NPV of the project.

The extreme value forecasts of these two zones are also plotted in Fig-
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ure 6.1-(a) and Figure 6.1-(b), respectively. The average of the extreme

value forecasts across all different residential zones are plotted in Figure 6.1-

(c). These plots essentially provide the users a simple visualization of a

‘band’ of extreme forecast levels that most negatively impact the expan-

sion scenario under the various forecast error budget settings. When the

budget is between (5, 4) to (7, 5), the lower-than-nominal forecast regime

dominates, and the extreme value waste forecasts of waste generation de-

creases as the forecast error budget increases. Further increases in the

forecast error budget bring the extreme value forecast to the higher-than-

nominal regime. When the error budget continues to increase above (8, 6),

the extreme value waste forecast increases. These observations are consis-

tent across all zones. Intuitively, over the range of forecast error budgets,

waste generation trajectories that are within the band of extreme forecasts

are desirable and can improve the actual NPV levels. This can provide

useful information in the situation when the decision-maker can exert in-

fluence on the future waste generation, e.g. through waste management

and disposal policies.

6.2 Analysis of WtE expansion solutions

In this section we study the WtE expansion plans obtained from the opti-

mal solution of (5.2) using the cutting plane algorithm in Section 5.1, and

an approximate solution derived from the constant proportions waste distri-

bution heuristic, based on (5.14)-(5.17) in Section 5.2. For convenience, in

the rest of the computational studies we refer to this as the (p, q)-heuristic,

where (p, q) refer the waste distribution proportion control parameters in-

troduced in (5.14)-(5.17). Table 6.3 reports the siting and corresponding
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Figure 6.1: Extreme value forecasts of waste generation under different error budget
settings: (a) Extreme value forecast for Zone 4 (low annual waste generation). (b)
Extreme value forecast for Zone 8 (high annual waste generation). (c) The average of
the extreme value forecasts across different residential zones.

capacity levels by the two planning solutions under different budget set-

tings (ΓZ,ΓT). The accumulated capacity expansions are also plotted in

Figure 6.2.

Some discussions are as follows. Generally, it can be observed from

Table 6.3 and Figure 6.2, that as the forecast error budget decreases from

(10,8) to (5,4), both WtE planning solutions decrease in the total capacity

expansion and possibly also the number of sites opened. This reduction in
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Table 6.3: WtE expansion solutions using exact method (Cut. plane) and constant
proportions heuristic ((p, q)-heuristic) under different forecast error budgets (ΓZ,ΓT).
Underlined values refer to capacity expansion levels in the respective periods.

WtE expansion solution (opened sites) with associated capacity volume

Solution Approach 1: Cutting Plane Algorithm

(ΓZ,ΓT) (10,8) (8,6) (5,4)

t = 1
Sites 2, 3, 6, 11, 14, 17–18 Sites 2, 3, 6, 11, 14, 17–18 Sites 2, 3, 6, 11, 14, 17–18

5408830 5408830 5408830

t = 2 – – –

t = 3
Site 5 Site 5 Site 5

669650 669650 669650

t = 4 – – –

t = 5
Site 20 Site 20 Site 20

1511400 1511400 1511400

t = 6 – – –

t = 7
Site 8 Site 1

–
928870 720260

t = 8 – –
Site 1

720260

Solution Approach 2: (p, q)-heuristic

(ΓZ,ΓT) (10,8) (8,6) (5,4)

t = 1
Sites 2, 3, 5, 11, 14, 17–18 Sites 2, 3, 5, 11, 14, 17–18 Sites 2, 3, 5, 11, 14, 17–18

5658200 5658200 5658200

t = 2 – – –

t = 3
Site 8 Site 6 Site 8

928870 420280 928870

t = 4 –
Site 1

–
720260

t = 5
Site 1 Site 8 Site 1

720260 928870 720260

t = 6
Site 20 Site 20 Site 20

1511400 1511400 1511400

t = 7 – – –

t = 8
Site 13

– –
933860
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capacity investments translates into direct quantifiable cost-savings. Such

information is useful for decision-makers who may be able to exert influ-

ence on controlling the future waste generation variability. Next, it can be

observed that the solution from the cutting plane method installs slightly

less capacity in the initial period, compared to the heuristic solution, and

may choose to execute larger expansions in subsequent periods. The total

installed capacity is also lower than that achieved in the (p, q) heuristic.

In most instances, the cutting plane solutions either utilize less periods

for WtE expansion than the heuristic solution (e.g., four periods v.s. five

periods under budget settings of (8,6) and (10,8)), or expand the capacity

in latter stages (e.g., periods 1-3-5-7 v.s. periods 1-3-4-5-6 under budget

(8,6) and periods 1-3-5-8 v.s. 1-3-5-6 under budget (5,4)). All these obser-

vations demonstrate the effectiveness of the exact solutions in reducing the

capacity investment and fixed costs while adapting to the waste generation

uncertainties.

0 1 2 3 4 5 6 7 8 9 10

x 10
6

(p,q)−heuristic (10,8)

(p,q)−heuristic (8,6)

(p,q)−heuristic (5,4)

Cut. plane (10,8)

Cut. plane (8,6)

Cut. plane (5,4)

Capacity expansion levels (stacked)

 

 

t=1 t=3 t=4 t=5 t=6 t=7 t=8

Figure 6.2: Capacity expansion profiles of the exact cutting plane solutions (top three
plots) and (p, q)-heuristic (bottom three plots) under different forecast error budget
settings.
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Finally, by using the (p, q)-heuristic solutions as expansion scenarios

in the NPV evaluation model (4.10)-(4.23), the guaranteed NPV levels of

these solutions can be computed. These are tabulated together with the

guaranteed NPV levels of the exact solutions in Table 6.4. It can be seen

that the achieved NPV from the heuristic solutions are actually very close

to the optimal guaranteed NPV levels, despite the fact that the heuris-

tic solutions appear more conservative from the earlier observations. This

gives reasonable justification and confidence for using the heuristic as an

alternative to solving for the exact optimal expansions.

Table 6.4: Guaranteed NPVs of exact (Cut. plane) and constant proportions waste
distribution heuristic solutions ((p, q)-heuristic) under different error budget settings,
where the ‘Ratio of increased guaranteed NPV’ is defined as the percentage of increased
guaranteed NPV of exact solution to the heuristic solution out of the guaranteed NPV
of former.

(ΓZ,ΓT) Cut. plane (p,q)-heuristic Ratio of increase in guaranteed NPV

(10,8) 16.89× 107 16.79× 107 0.59%

(8,6) 17.21× 107 16.97× 107 1.39%

(5,4) 17.57× 107 17.51× 107 0.34%

6.3 Out-of-sample performance analysis

We now study the out-of-sample performance of the WtE expansion so-

lutions of our proposed guaranteed NPV optimization model solved using

cutting plane algorithm and (p, q)-heuristic. We compare the performance

of our proposed model solutions to two other approaches: the expansion

solution based on single point-value forecast, and a multi-stage stochastic

programming model. The former is obtained by solving the deterministic

model (3.3)–(3.7) with the nominal waste growth forecasts. The stochastic
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programming solution is an optimal policy obtained by using a scenario-

tree approach (see Appendix A.3 for construction details) generated using

randomly sampled outcomes from the same forecast prediction set.

In order to solve the multi-stage stochastic programming model within

a reasonable timeframe, we assume all problem instances of dimensions

(|I| = 10, |J | = 20, |T | = 4). Under this setting, the stochastic pro-

gramming model instances are solved in approximately five hours on our

workstation (CPU i7-4510u 2GHZ, 8GB RAM). Beyond T = 4 unfortu-

nately the scenario tree model could not be solved even after twelve hours

of runtime. For our proposed guaranteed NPV maximization model (solved

using the cutting plane algorithm), the computations are completed within

five iterations in all cases. The CPU time varies from one and up to two

hours for all instances. Lastly, the CPU time for the (p, q)-heuristic varies

from ten to a maximum of forty minutes.

We designed a collection of waste generation test sets, each with ran-

dom waste growths η with different levels of variation. Specifically, the

out-of-sample random waste growth ηit for each zone i and time period t

is assumed to be normally distributed ηit ∼ N(Fit, σ
2), and we increase

the variation level across the out-of-sample scenario sets by setting from

σ = 0.1MAE to σ = 1.5MAE, where MAE is the mean absolute error

levels assumed in the forecast prediction sets. Each test set consists of

1000 randomly simulated waste generation sample paths. We remark that,

the settings with small σ correspond to the situations when the forecast-

ing model can accurately predict the future waste generation (only small

variations around the nominal forecasts Fit), and the fluctuation becomes

higher as σ increases. When σ = 1.5MAE, the generated waste growths
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fall into the ±MAE range with a probability around 50%, while about 50%

of the outcomes fall outside the assumed prediction set. In the following

results, we denote for convenience xI(ΓZ ,ΓT ) and xII(ΓZ ,ΓT ) as solutions

of our proposed guaranteed NPV optimization model solved using cutting

plane algorithm and (p, q)-heuristic respectively, under the forecast error

budgets (ΓZ ,ΓT ). Denote also xIII as the stochastic programming solution

(policy corresponding to the scenario tree), and xIV as the solution based

on nominal value forecast.

Figure 6.3 plots the sample average and 90%-quantile NPV achieved by

the different expansion solutions across increasing levels of out-of-sample

variance. In general, the performance of all the solutions degrade as the

out-of-sample variance increase. First consider the regime when the future

waste generation can be well predicted, e.g. in the case when σ = 0.1MAE

(here around 68% out-of-sample scenarios fall into ±0.1MAE region while

95% scenarios fall into ±0.2MAE region). Here it can be observed that the

WtE expansion solution based on single-point value forecast (xIV) performs

the best in both average and 90% quantile NPV. This is not surprising since

it turns out that the actual waste growths are very close to the nominal fore-

cast. When σ ≤ 0.3MAE (68% out-of-sample scenarios fall into ±0.3MAE

region while 95% scenarios fall into ±0.6MAE region), the expansion policy

from the stochastic programming model (xIII) achieves slightly better NPV

on average compared to our proposed model solutions based on extreme

value forecasts. However, as the waste generation continue to deviate from

the forecasts, the expansion plan based on the point-value forecast quickly

deteriorates in performance, and is the worst in both the average and 90%

quantile NPV (i.e. when σ ≥ 0.5MAE and σ ≥ 0.4MAE, respectively).

Similarly, as the variance increases, the stochastic programming solution
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Figure 6.3: Expansion solution performance across increasing out-of-sample variation
levels (σ) (a) Average NPV, (b) 90%-quantile NPV, which refers to the NPV level that
is achieved by at least 90% of 1000 sample paths in each test set.

deteriorates in performance compared to our proposed models. For the

regime with σ ≥ 0.8MAE, our proposed model solutions (xI and xII) dom-

inate in performance for the average NPV level, and when σ ≥ 0.9MAE,

they also dominate in terms of the 90% NPV quantile. Now as for our

proposed expansion model based on extreme value forecasts, the exact so-
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lutions xI outperform the solutions from the (p, q) heuristic xII (across all

the forecast error budget settings) in average NPV when σ ≤ 1.1MAE and

in 90% NPV quantile when σ ≤ 1.3MAE. Interestingly, beyond this level

of out-of-sample variation, i.e. when σ ≥ 1.4MAE, the (p, q)-heuristic ex-

pansion solution outperforms all the other solutions.

Some managerial insights in above NPV performance comparison are

as follows. First, the point value forecast model for expansion planning

can only work well when the future waste generation is very close to the

nominal forecast made, while the stochastic programming model is good

when there are variations of waste generation accounted for in the assumed

prediction set. However, when the actual variations fall outside the forecast

prediction set, the stochastic programming solutions are highly unstable,

and it is here where our proposed models based on extreme value fore-

casts dominate in performance. It can be observed from Figure 6.3 that

this trade-off is indeed attractive in both the average and 90%-NPV quan-

tile, since the loss in performance in the low variance regime is extremely

small compared to the improvements achieved in the high variance regime.

Finally, the performance of the proposed guaranteed NPV optimization

models indicate that users need not be overly-conservative when calibrat-

ing the forecast prediction sets. It can be seen from the results that even

when the assumed MAE is much lower than the out-of-sample variance,

the NPV performance is remarkably stable, compared to the rest of the

solutions. This implies that in reality, even accounting for a small part of

the forecast errors in the expansion planning can lead to significant im-

provements.

Next, Figure 6.4 depicts the performance of the expansion solutions in
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Figure 6.4: Comparison of stability in NPV performance: (a) Standard devia-
tion of NPV, (b) Sensitivity of Average NPV (ANPV) per unit change (0.2 MAE)
in the out-of-sample variation level, i.e. vertical ordinate plots values Sensitivity :=
ANPV(σ+0.2MAE)−ANPV(σ)

ANPV(σ) × 100% across increasing out-of-sample variance.

terms of the out-of-sample NPV standard deviation, and percentage change

in average NPV to the increases of the waste growth variation level. Both

performance measures describe the stability and sensitivity of the expan-

sion solutions to the future waste growth uncertainties. The general con-
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clusions are similar to that in the previous analysis. That is, when the

out-of-sample variance is low, there is no significant difference across the

various expansion solutions. When the out-of-sample variance increases,

we see that both the point forecast model solution xIV and the stochastic

programming model solution xIII deteriorate significantly, and have both

high NPV variances and sensitivities to changes in the variance assump-

tions. On the other hand, it can be seen that these performance measures

remain very stable for our proposed models, even when the forecast error

budget changes. Noting that statistics such as standard deviation are often

related to measurements of economic risks, these results provide indication

that our proposed models are suitable and consistent with the preference

of risk-averse decision-makers.

Finally, in Figure 6.5, we look at the ‘non-guaranteed NPV premiums’

characteristic of the various expansion solutions across increasing out-of-

sample variance. As a surrogate for this characteristic, we consider the

value of
(µsample−OBJ∗)

OBJ∗ × 100%, where µsample refers to mean of the out-

of-sample NPV and OBJ∗ is the optimal objective function value obtained

from the corresponding model. That is, the non-guaranteed NPV premium

evaluates the extent that the out-of-sample objective value actually turns

out better (if non-negative) or worse (if negative) than the model’s optimal

objective function value. Intuitively, large values on either side are not

desirable, since it reflects over-pessimism or over-optimism of the model

objective function value with respect to the true performance.

From the results plotted in Figure 6.5, all our proposed model solutions

xI and xII score positive values on the non-guaranteed NPV premiums.

On the other hand, the point value forecast solution xIV and stochastic
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Figure 6.5: Comparison of non-guaranteed NPV premiums with increasing out-of-
sample variation levels.

programming model solution xIII report non-positive values of the non-

guaranteed premiums, implying that these models generally produce over

optimistic performance projections. The key point to note, however, is

that this ‘optimism’ tends to grow rapidly as the out-of-sample variance

increases, which is undesirable since this implies that the optimal NPV pro-

jections made by these models could be very unreliable in practice. On the

other hand, it can be seen that non-guaranteed NPV premiums accrued by

our proposed model solutions are extremely stable across changing waste

generation variances.
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Chapter 7

Conclusion

This study investigates a WtE expansion planning problem with uncer-

tain future waste generations. A prediction set model is proposed to deal

with the waste generation uncertainty, which incorporates a set of time se-

ries forecasts with waste generation data information and forecasting error

budget settings. Based on the prediction set, a WtE expansion scenario

evaluation model is developed which computes a guaranteed NPV level and

an extreme value forecast trajectory for the given WtE expansion scenario

under a user-specified forecast error budget level. The evaluation model

can be transformed and solved as a single instance of mixed integer linear

program. Based on the evaluation model, a WtE expansion optimization

model is developed which maximizes the guaranteed NPV by searching over

the set of all feasible expansion scenarios, and can be handled exactly by

solving a finite number of linear mixed integer programs with cutting plane

iterations. Also, a constant proportion distribution rule heuristic model is

proposed which can generate a safe approximation (lower bound) for the

optimal guaranteed NPV and is more computationally attractive (a mod-

erate size mixed integer program).
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Our computational study demonstrates: (i) the extreme value forecasts

recovered by the evaluation model can provide useful information which

helps the decision maker better understand the adverse conditions of the

future waste generation to the given WtE expansion plan under different

predetermined forecast error levels. In particular, the waste generation

‘band’ constructed by extreme value forecast trajectories with different er-

ror levels can help the decision maker to utilize more effectively the waste

management tools (e.g., waste collection contracts) or polices so as to im-

prove the achievable NPV level of the WtE project. (ii) Our proposed WtE

expansion plans obtained under different forecast error levels provide more

options (hence higher flexibility) for the decision maker to make the trade-

offs between the NPV performance and the uncertainty aversion, which

could be more acceptable by practitioners with different preferences. (iii)

The WtE expansion solutions produced by our developed models exhibit

good stability compared to other approaches such as stochastic program-

ming, and the NPV performances are very attractive, especially when the

variation level of future waste generation is high.

It is clear that in the area of robust optimisation, there is still much

to be done. In our paper, we have done a case-study of a specific scenario

and have shown that our proposed method is able to obtain good results.

It is expected that in a real life scenario, the results might not be as opti-

mal, but should still show a marked improvement over the current methods

used. An advantage of our paper is that the prediction set defined is gen-

eralised in nature and can thus be representative of a large portion of the

constraints in reality. We are hence confident that the results captured by

our case study will remain valid in reality.
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However, we do acknowledge that our approach would be more suited

for high-level planning and does not include all the uncertainty that comes

from the operation of the WtE plant. In particular, we have taken both

the operating cost and the profit to be constants in our model, which is not

representative of the reality, as both of these will fluctuate with a number

of other factors, including manpower cost and the cost of electricity. In

addition, several other factors such as the environmental awareness of the

society and the green policies put forth by the government are also capable

of largely impacting the profitability of a WtE business. Unfortunately,

incorporating such variables would over-complicate the model and reduce

its utility. For that reason, we see our model being used more in the initial

stages of planning where there is a need to evaluate of the business sus-

tainability of carrying out a WtE business.

More interestingly, we foresee that one is able to easily extend our model

to systems outside of the WtE industry. For example, many industries rely

on the same supply and demand mechanism, whereby both supply and

demand could be uncertain and decisions must be made based on their

predictions. While the equations may differ depending on the scenario,

using the same approach proposed by this paper, we should be able to ar-

rive at a problem that is capable of providing the optimal solution to the

problem at hand. However, the complexity of this would depend on the

constraints considered in the system. Where appropriate, assumptions can

be put into place to simplify the problem so as to get an approximately

optimal solution.

For future work, more research and development can be devoted to

improve the solution efficiency of the guaranteed NPV optimization prob-
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lem. In the current work, a basic cutting plane algorithm is implemented,

primarily for the purpose of using its solutions as benchmarks. More sophis-

ticated extensions of the constant proportions waste distribution heuristic

can also be explored. Another future research challenge is to incorporate

uncertainty in energy prices, which can impact the cash inflows of the

WtE project significantly through the sales of its recovered energy prod-

ucts. Given the historical observations of these energy prices, our proposed

forecast prediction set models can be applied and calibrated.
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Appendix A

Appendix

A.1 Technical Proofs

Proof of Proposition 1.

Proof. First of all, given expansion x and waste supply forecast ξ ∈ UΓ, by

the structure of our WtE operations problem in (3.3)-(3.5), we can have

max
(y,z)∈Y(x,ξ)

φ(x,y, z) =
∑
t∈T

Υt(x[t], ξt).

We now claim that

ZNPV(x) = min
ξ1∈U

Γ
1 (ξ̂0)

min
ξ2∈U

Γ
2 (ξ[1])

· · · min
ξT∈UΓ

T (ξ[T−1])

[
Υ1(x[1], ξ1)+

Υ2(x[2], ξ2) + · · ·+ ΥT (x[T ], ξT )
]
.

(A.1)

Note that given x and any ξ = (ξ1, ξ2, · · · , ξ|T |),

∑
t∈T

Υt(x[t], ξt)
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solves |T | independent sub-problems. Therefore, for the given path ξ[T−1],

min
ξT∈UΓ

T (ξ[T−1])

[
Υ1(x[1], ξ1) + Υ2(x[2], ξ2) + · · ·+ ΥT (x[T ], ξT )

]
= Υ1(x[1], ξ1) + Υ2(x[2], ξ2) + · · ·+ min

ξT∈UΓ
T (ξ[T−1])

ΥT (x[T ], ξT ).

Furthermore, given path ξ[T−2], we can have

min
ξT−1∈U

Γ
T−1(ξ[T−2])

min
ξT∈UΓ

T (ξ[T−1])

[
Υ1(x[1], ξ1) +

Υ2(x[2], ξ2) + · · ·+ ΥT (x[T ], ξT )
]

= min
ξT−1∈U

Γ
T−1(ξ[T−2])

[
Υ1(x[0], ξ1) + Υ2(x[1], ξ2) + · · ·

+ min
ξT∈UΓ

T (ξ[T−1])

ΥT (x[T−1], ξT )

]

= Υ1(x[1], ξ1) + · · ·+ min
ξT−1∈U

Γ
T−1(ξ[T−2])

[
ΥT−1(x[T−1], ξT−1) +[

min
ξT∈UΓ

T (ξ[T−1])

ΥT (x[T ], ξT )

]]
.

If we repeat the above process recursively, the equivalence of (A.1) can be

achieved.

The remaining of the proof is to show the equivalence between UΓ and

joint the path-dependent nested prediction set

{
ξ =

(
ξ1, ξ2, · · · , ξ|T |

)
: ξ1 ∈ UΓ

1 (ξ̂0), ξ2 ∈ UΓ
2 (ξ[1]), · · · , ξT ∈ UΓ

T (ξ[T−1])
}
.

On the one hand, for each ξ = (ξ1, ξ2, · · · , ξ|T |) with ξt ∈ UΓ
t (ξ[t−1]), t ∈

T , we have

ξi1 = ξ̂i0 + Fi1 + %i1Si1, (A.2)
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ξit = ξit−1 + Fit + %itSit = ξ̂i0 +
t∑

τ=1

Fiτ +[
t∑

τ=1

%iτSiτ

]
, i ∈ I, t ∈ [2 : |T |], (A.3)

with some

% ∈


% ∈ <|I |×|T | :

∑
i∈I
|%it| ≤ ΓZ

t , t ∈ T

|%it| ≤ ΓT
i − χ{t≥2}

[
t−1∑
τ=1

|%iτ |
]
, i ∈ I, t ∈ T

%it ∈ [−1, 1], i ∈ I, t ∈ T


.

(A.4)

Note that,

|%it| ≤ ΓT
i − χ{t≥2}

[
t−1∑
τ=1

|%iτ |

]
, t ∈ T ⇒

|T |∑
τ=1

|%iτ | ≤ ΓT
i

for each i ∈ I. Therefore, ξ ∈ UΓ.

Conversely, for each ξ = (ξ1, ξ2, · · · , ξ|T |) ∈ U
Γ, we must have

|T |∑
t=1

|%it| ≤ ΓT
i , i ∈ I,

which by the fact that each |%it| ≥ 0 implies

|%it| ≤ ΓT
i − χ{t≥2}

[
t−1∑
τ=1

|%iτ |

]
, t ∈ T , i ∈ I.

Hence, the condition in (A.2)-(A.4) holds, which implies that ξt ∈ UΓ
t (ξt−1), t ∈

T . The equivalence (4.9) has been verified.
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Proof of Proposition 2.

Proof. By Proposition 1, the formulation for ZNPV(x) spells out as follows:

min
ξ∈UΓ

max
y,z

∑
t∈T

βt∑
i∈I

∑
j∈J

rijyijt − cDzit

− βt−1c>xt

 (A.5)

s.t.
∑
j∈J

yijt + zit = ξit, i ∈ I, t ∈ T (A.6)

∑
i∈I

yijt ≤
t∑

τ=1

xjτsj, j ∈ J , t ∈ T (A.7)

yt ∈ <
|I |×|J |
+ , zt ∈ <×|I |+ , t ∈ T . (A.8)

Applying the strong duality of linear program theory to the inner maxi-

mization problem, we can arrive at the following dual form for problem

(A.5)–(A.8):

min
ξ∈UΓ

min
f ,g

∑
t∈T

∑
i∈I

ξitfit +
∑
j∈J

t∑
τ=1

xjτsjgjt − βt−1c>xt

 (A.9)

s.t. fit + gjt ≥ βtrij, i ∈ I, j ∈ J , t ∈ T (A.10)

fit ≥ −βtcD, i ∈ I, t ∈ T (A.11)

f ∈ <|I |×|T |, g ∈ <|J |×|T |+ (A.12)

with f , g being dual variables.

In order to derive the mixed integer program formulation for the ZNPV(x),

we have the following 3 steps to go:

STEP1. We first claim that the dual variables fit, i ∈ I, t ∈ T are

bounded by a finite number M , that is

fit ≤M1, ∀ i ∈ I, t ∈ T . (A.13)

To ease the presentation, let us denote by OBJ the optimal objective value
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of (A.9)–(A.12). Furthermore, we denote

M0 :=
∑
t∈T

−∑
i∈I

ξ+
itβ

tcD +
∑
j∈J

t∑
τ=1

xjτsjβ
t(rij + cD)

− βt−1c>xt + ∆

 > 0,

where ∆ can be any suitable positive constant and ξ+
it is a finite upper

bound of ξit.

It is then easy to see that

OBJ < M0.

On the other hand, we let

M1 :=

M0 +
∑
t∈T

βt−1c>xt +
∑
i∈I

∑
t∈T

ξ+
itβ

tcD

min
i∈I ,t∈T

ξ−it
, (A.14)

where ξ−it > 0 is a finite lower bound of ξit. It is easy to see that, given

an f ∈ <|I |×|T |, if there is any (i∗, t∗) ∈ I × T such that fi∗t∗ > M1, we

must have for any ξ ∈ UΓ, the objective value

∑
t∈T

∑
i∈I

ξitfit +
∑
j∈J

t−1∑
τ=0

xjτsjgjt − βt−1c>xt


≥

∑
t∈T

∑
i∈I

ξitfit −
∑
t∈T

βt−1c>xt

≥ M0 +
∑
i∈I

∑
t∈T

ξ+
itβ

tcD +
∑

t∈T \{t∗}

∑
i∈I\{i∗}

ξitfit

≥ M0 +
∑

i∈I\{i∗}

∑
t∈T \{t∗}

ξit
(
βtcD + fit

)
≥ M0,

by noting that ξit > 0, gjt ≥ 0, fit ≥ −βtcD, i ∈ I, t ∈ T . Therefore, such

f cannot be an optimal solution. In other words, we can add the redun-
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dant constraints (A.13) into the problem (A.9)–(A.12) without affecting

the optimality.

STEP2. Furthermore, we claim that the prediction set UΓ of (4.3) is

equivalent to the following form:

UΓ =



ξ ∈ <|I |×|T | :

ξit =ξ̂i0 +
t∑

τ=1

Fiτ +

[
t∑

τ=1

(
%+
iτ − %−iτ

)
Siτ

]
,

i ∈ I, t ∈ T∑
i∈I

(%+
it + %−it) ≤ ΓZ

t , t ∈ T

∑
t∈T

(%+
it + %−it) ≤ ΓT

i , i ∈ I

%+
it , %

−
it ∈ [0, 1], i ∈ I, t ∈ T



.

To achieve this, we just need to show the equivalence between the following

two sets:

P1 :=


% ∈ <|I |×|T | :

∑
i∈I
|%it| ≤ ΓZ

t , t ∈ T

∑
t∈T
|%it| ≤ ΓT

i , i ∈ I

%it ∈ [−1, 1], i ∈ I, t ∈ T


,

and

P2 :=


(%+ − %−) ∈ <|I |×|T | :

∑
i∈I

(%+
it + %−it) ≤ ΓZ

t , t ∈ T

∑
t∈T

(%+
it + %−it) ≤ ΓT

i , i ∈ I

%+
it , %

−
it ∈ [0, 1], i ∈ I, t ∈ T


.

On the one hand, for any % ∈ P1, we can always find %+
it , %

−
it ∈ [0, 1], i ∈

I, t ∈ T such that %it = %+
it−%−it , i ∈ I, t ∈ T . Furthermore, if |%it| = 0, we

then must have %it = 0 = %+
it = %−it , which implies %+

it + %−it = 0. Otherwise,

for any |%it| > 0, we have %it = %+
it − %−it 6= 0, and if both %+

it > 0, %−it > 0,
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we then can always scale down %+
it and %−it by the same amount until one of

the them is zero, while keeping %+
it−%−it unchanged. This essentially results

in %+
it and %−it being the positive and negative parts of %it, respectively, and

%+
it + %−it = |%it|. Therefore,

∑
i∈I

(%+
it + %−it) =

∑
i∈I
|%it| ≤ ΓZ

t , t ∈ T ,

and ∑
t∈T

(%+
it + %−it) =

∑
t∈T
|%it| ≤ ΓT

i , i ∈ I.

In sum of above, we can always find % = %+ − %− ∈ P2.

On the other hand, for any %+ − %− ∈ P2, we have %it := %+
it − %−it ∈

[−1, 1], and then |%it| ≤ %+
it + %−it , for any i ∈ I, t ∈ T , which implies

∑
i∈I
|%it| ≤

∑
i∈I

(%+
it + %−it) ≤ ΓZ

t , t ∈ T ,

and ∑
t∈T
|%it| ≤

∑
t∈T

(%+
it + %−it) ≤ ΓT

i , i ∈ I.

Therefore, %+ − %− = % ∈ P1.

STEP3. We derive the mixed integer program formulation for problem

(A.9)–(A.12). Given any feasible f , we look at the following sub-problem

of (A.9)-(A.12):

min
ξ∈UΓ

∑
t∈T

∑
i∈I

ξitfit

which by the discussion in STEP2 is equivalent to the following formulation:

min
%+,%−

∑
t∈T

∑
i∈I

fit

[
ξ̂i0 +

t∑
τ=1

Fiτ

]
+

[
t∑

τ=1

(
%+
iτfit − %−iτfit

)
Siτ

]
(A.15)

s.t.
∑
i∈I

(%+
it + %−it) ≤ ΓZ

t , t ∈ T (A.16)

74



∑
t∈T

(%+
it + %−it) ≤ ΓT

i , i ∈ I (A.17)

%+
it , %

−
it ∈ [0, 1], i ∈ I, t ∈ T . (A.18)

It is not difficult to see that the constraint system (A.16)-(A.18) can be

abstracted into the following matrix form:


 %+

%−

 ∈ <2×|I |×|T | :

 A

I

 %+

%−

 ≤


ΩT

ΩZ

1

 ,

 %+

%−

 ≥ 0

 .

Note that A satisfies the following property: (i) each column of A contains

two non-zero elements with the same sign; (ii) the rows of A can be par-

titioned into two subsets, and the two non-zero elements in each column

are in different subsets of rows. Therefore, A is Total Unimodular (TU,

see Schrijver [30]), then [A′, I]′ is also TU. This together with the fact

that ΓTt ,Γ
Z
i , i ∈ I, t ∈ T are integers implies that the extreme points of

the linear system (A.16)-(A.18) are also integers. Hence, the sub-problem

(A.15)-(A.18) is further equivalent to the following mixed integer program

form:

min
π+,π−

∑
t∈T

∑
i∈I

fit

[
ξ̂i0 +

t∑
τ=1

Fiτ

]
+

[
t∑

τ=1

(
π+
iτfit − π−iτfit

)
Siτ

]
(A.19)

s.t.
∑
i∈I

(π+
it + π−it ) ≤ ΓZ

t , t ∈ T (A.20)

∑
t∈T

(π+
it + π−it ) ≤ ΓT

i , i ∈ I (A.21)

π+
it , π

−
it ∈ {0, 1}, i ∈ I, t ∈ T . (A.22)

Finally, recall in STEP1 that we have established the truth fit ≤M1, ∀ i ∈

I, t ∈ T , change the variables by applying qit = fit + βtcD, we can have
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π+
iτfit = π+

iτqit − π+
iτβ

tcD, and π−iτfit = π−iτqit − π−iτβtcD, and

0 ≤ qit ≤M := M1 + βtcD, ∀ i ∈ I, t ∈ T .

By the standard linearization techniques, we have

h+
itτ = π+

iτqit, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t]

is equivalent to the following linear system



h+
itτ ≥ 0, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t]

h+
itτ ≤ qit, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t]

h+
itτ ≥ qit + (π+

iτ − 1)M, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t]

h+
itτ ≤ π+

iτM, ∀ i ∈ I, t ∈ T , τ ∈ [1 : t]


.

By a similar linearization treatment, we can replace π−iτqit with h−itτ , for

i ∈ I, t ∈ T , τ ∈ [1 : t].

Packaging all the above transformations, we can arrive at the linear

mixed integer program formulation (4.10)–(4.23).

Proof of Proposition 4.

Proof. We first deal with the inner min-max sub-problem of (5.2):

min
ξ∈UΓ

max
(y,z)∈Y(x,ξ)

φ(x,y, z). (A.23)

As we have done in Proposition 2, we take the dual form of the inner

maximization problem in (A.23), we can arrive at the dual equivalent form
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of (A.23) as follows:

min
ξ∈UΓ

min
f ,g

∑
t∈T

∑
i∈I

ξitfit +
∑
j∈J

t∑
τ=1

xjτsjgjt − βt−1c>xt

 (A.24)

s.t. fit + gjt ≥ βtrij, i ∈ I, j ∈ J , t ∈ T (A.25)

fit ≥ −βtcD, i ∈ I, t ∈ T (A.26)

f ∈ <|I |×|T |, g ∈ <|J |×|T |+ . (A.27)

where f ∈ <|T |×|I | and g ∈ <|T |×|J |+ are the dual variables.

From the proof of Proposition 2, the optimal objective of above problem

stays unchanged when prediction set UΓ is replaced with the discrete set

V (Γ). That is

min
ξ∈V(Γ)

min
f ,g

∑
t∈T

∑
i∈I

ξitfit +
∑
j∈J

t∑
τ=1

xjτsjgjt − βt−1c>xt

 : (A.25)− (A.27)

 .

Furthermore, we dualize back the inner minimization problem for each

ξ ∈ V (Γ) and then obtain the following equivalent form of problem (A.24)-

(A.27) (or the primal min-max sub-problem (A.23)):

min
ξ∈V(Γ)

max
(y,z)∈Y(x,ξ)

φ(x,y, z). (A.28)

We express the above (A.28) in an epigraph form:

max γ

s.t. γ ≤ max
(y,z)∈Y(x,ξ)

φ(x,y, z), ξ ∈ V (Γ) ,

which can be rewritten as following LP formulation (by noting that V (Γ)
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is a discrete set):

max γ

s.t.

 γ ≤ φ(x,y, z)

(y, z) ∈ Y (x, ξ)

 , ξ ∈ V (Γ) ,

or, by the definition of set K(x, ξ) given by (5.4), equivalently,

max γ (A.29)

s.t. γ ∈ K(x, ξ), ξ ∈ V (Γ) . (A.30)

Now putting back the fixed cost term into (A.29)-(A.30), we can arrive

at the following equivalent linear mixed integer program formulation for

the overall max-min-max problem (5.2):

max
x

∑
t∈T

[
−βt−1c>xt

]
+ γ

s.t. γ ∈ K(x, ξ), ξ ∈ V (Γ)

x ∈ X

as claimed. We are done.

Proof of Proposition 5.

Proof. Given any (x,p, q) ∈ {(x,p, q) | (5.15) − (5.17)} and ξ ∈ UΓ, the

inner maximization item

max
(y,z)∈Y(x,ξ)∩Λ(p,q,ξ)

φ(x,y, z)

=

 φ
(
x,
[
p>j ξ

]
|J | , q

>ξ
)
, if Y (x, ξ) ∩Λ(p, q, ξ) 6= ∅

−∞, otherwise.
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Therefore, for each (x,p, q) ∈ {(x,p, q) | (5.15) − (5.17)}, we can further

rewrite the inner min-max sub-problem in the overall problem (5.14)-(5.17)

in the following form:

min
ξ∈UΓ

[
max

(y,z)∈Y(x,ξ)∩Λ(p,q,ξ)

φ(x,y, z)

]

=


−∞, if ∃ ξ ∈UΓ, s.t. Y (x, ξ) ∩Λ(p, q, ξ) = ∅

min
ξ∈UΓ

φ
(
x,
[
p>j ξ

]
|J | , q

>ξ
)
, otherwise.

By the fact that

⋂
ξ∈UΓ

Y (x, ξ) ∩Λ(p, q, ξ) 6= ∅

is equivalent to

p>tjξt ≤
t∑

τ=1

xjτsj, ∀ ξ ∈UΓ, t ∈ T , j ∈ J

for each (x,p, q) ∈ {(x,p, q) | (5.15)− (5.17)}, the overall problem (5.14)-

(5.17) can then be rewritten in the following form:

max
x,p,q

min
ξ∈UΓ

∑
t∈T

βt∑
i∈I

∑
j∈J

rijpijt − cDqit

 ξit − βt−1c>xt

(A.31)

s.t.
∑
i∈I

pijtξit ≤
t∑

τ=1

xjτsj, ∀ ξ ∈ UΓ, j ∈ J , t ∈ T (A.32)

(x,p, q) ∈ {(x,p, q) | (5.15)− (5.17)}. (A.33)

The inner minimization problem in the objective (A.31):

min
ξ∈UΓ

∑
t∈T

∑
i∈I

βt

∑
j∈J

rijpijt − cDqit

 ξit,
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can be expressed as the following linear programming problem:

min
ξ,λ,%

∑
t∈T

∑
i∈I

βt

∑
j∈J

rijpijt − cDqit

 ξit (A.34)

s.t. ξit −
t∑

τ=1

%iτSiτ = ξ̂i0 +
t∑

τ=1

Fiτ , i ∈ I, t ∈ T (A.35)

∑
i∈I

λit ≤ ΓZ
t , t ∈ T (A.36)

∑
t∈T

λit ≤ ΓT
i , i ∈ I (A.37)

λit − %it ≥ 0, i ∈ I, t ∈ T (A.38)

λit + %it ≥ 0, i ∈ I, t ∈ T (A.39)

%it ≥ −1, i ∈ I, t ∈ T (A.40)

%it ≤ 1, i ∈ I, t ∈ T (A.41)

ξ,λ,% ∈ <|I |×|T |. (A.42)

Applying the strong duality of linear programming, we have its equivalent

dual form:

max
∑
t∈T

∑
i∈I

[
ξ̂i0 +

t∑
τ=1

Fiτ

]
doit +

∑
t∈T

ΓZ
t bt +

∑
i∈I

ΓT
i ϕi +

∑
t∈T

∑
i∈I

[
ψit − νit

]

s.t. βt

∑
j∈J

rijpijt − cDqit

− doit = 0, i ∈ I, t ∈ T

bt + ϕoi + γoit +$o
it = 0, i ∈ I, t ∈ T

ψoit + νoit +$o
it − γoit −

|T |∑
τ=t

doiτSiτ = 0, i ∈ I, t ∈ T

do ∈ <|I |×|T |, bo ∈ <|T |− ,ϕo ∈ <|I |− ,

γo,$o,νo ∈ <|I |×|T |+ ,ψo ∈ <|I |×|T |− .

By an analogous treatment to the robust constraint (A.32) for each
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j ∈ J , t ∈ T , and package all the transformations, we can arrive the

claimed formulation (5.18)-(5.28).

A.2 A Tractable Design Model with Waste

Supply Constraint Relaxation

Suppose we simplify the problem setting by allowing the waste treatment

requirement not to be fully satisfied, which refers to the situation when

the WtE operator is not obligated (e.g. by contract with the local town-

ship council) to fully collect the waste from the residential zones. In such

condition, the equality constraint (3.4) is relaxed into an inequality:

∑
j∈J

yijt + zit = ξit, i ∈ I, t ∈ T

⇒
∑
j∈J

yijt ≤ ξit, i ∈ I, t ∈ T

 ,

(A.43)

by noting that the excessive waste quantity z is now redundant in the for-

mulation. We then denote by YS (x, ξ) the new feasible set for y with the

constraint replacement (A.43).

On the other hand, we utilize a new error budget parameter Ω :=

[Ωit]|T |×|I | and each Ωit ∈ [0, 1], i ∈ I, t ∈ T to mitigate the conservative-

ness of the prediction set. Specifically, we set %it ∈ [−Ωit,Ωit], i ∈ I, t ∈ T .

In other words, instead of controlling the variation in ξ collectively over pe-

riods and across zones as the original budget parameter Γ =
[
ΓZ
t ,Γ

T
i

]
|T |+|I |

functions, the parameter Ω controls the forecast error level of waste supply

ξit for each i ∈ I, t ∈ T in a separate manner. As the following Proposi-

tion 6 shows, the new error budget parameters defined in this way ensure

the tractability of the relaxed problem. The resulting new prediction set,

81



denoted by UΩ, can be formed as follows:

UΩ :=

ξ ∈ <|I |×|T | :
ξit = ξ̂i0 +

t∑
τ=1

Fiτ +

[
t∑

τ=1

%iτSiτ

]
, i ∈ I, t ∈ T

%it ∈ [−Ωit,Ωit], i ∈ I, t ∈ T

 .

(A.44)

With the new feasible set YS (x, ξ) and prediction set UΩ, the expansion

optimization problem (5.2) can then be formulated in the following form:

max
x

min
ξ∈UΩ

max
y∈YS(x,ξ)

φ(x,y) (A.45)

s.t. x ∈ X , (A.46)

where φ(x,y) is the new overall NPV function (without variable z). We

now show that the relaxed WtE expansion optimization problem solves

exactly a single mixed integer program.

Proposition 6. The expansion optimization problem (A.45)-(A.46) under

forecast error budget setting Ω is equivalent to the following mixed integer

program:

max
x,y

∑
t∈T

βt∑
i∈I

∑
j∈J

rijyijt − βt−1c>xt

 (A.47)

s.t.
∑
j∈J

yijt − ξ̂i0 −
t∑

τ=1

Fiτ +

[
t∑

τ=1

ΩiτSiτ

]
≤ 0, i ∈ I, t ∈ T (A.48)

∑
i∈I

yijt ≤
t∑

τ=1

xjτsj, j ∈ J , t ∈ T (A.49)

x ∈ X ,y ∈ <|T |×|I |×|J |+ . (A.50)

Proof. Under the new prediction set UΩ, it follows from the setting %it ∈
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[−Ωit,Ωit], i ∈ I, t ∈ T that for any ξ ∈ UΩ we have

ξit = ξ̂i0 +
t∑

τ=1

Fiτ +

[
t∑

τ=1

%iτSiτ

]

≤ ξ̂i0 +
t∑

τ=1

Fiτ −

[
t∑

τ=1,Siτ≥0

ΩiτSiτ

]
+

[
t∑

τ=1,Siτ<0

ΩiτSiτ

]
=: ξ

it
, i ∈ I, t ∈ T .

Therefore, if we denote by ξ :=
[
ξ
it

]
|I |×|T |

, it is clearly that given any

x ∈ X ,

YS(x, ξ) ⊆ YS (x, ξ) , ∀ ξ∈UΩ,

which implies

max
y∈YS(x,ξ)

φ(x,y) ≤ max
y∈YS(x,ξ)

φ(x,y), ∀ ξ∈UΩ.

Since ξ∈UΩ, we then have

min
ξ∈UΩ

max
y∈YS(x,ξ)

φ(x,y) = max
y∈YS(x,ξ)

φ(x,y).

This leads to the equivalent formulation (A.47)–(A.50) of the expansion

optimization problem (A.45)–(A.46).

An intuitive insight of Proposition 6 is that with the new forecast error

budget parameters, when the full waste treatment requirement is relaxed,

the extreme value forecast of waste generation is always its lower-bound,

i.e., ξ† = ξ. Therefore, any change in the upper bound of future waste

supply (forecasts) will have no effect onto the guaranteed NPV, and it is

the variation in waste supply lower bounds that concerns the (uncertainty-

averse) decision-makers.
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A.3 Multi-Stage Stochastic Programming

Model with Scenario Tree

A common way to present the multi-stage stochastic program is the sce-

nario formulation in which the scenarios of the uncertainty (waste supply

in our problem) as data are inputs to the model. However, one of the

key difficulties in multi-stage stochastic program is modelling the “non-

anticipativity” constraints, which requires the rationality that the decisions

made at any stage of the process do not depend on future realizations of

random parameters or on future decisions (see [29]). In the scenario form of

a multi-stage stochastic program model, this means that if two uncertainty

scenario paths before stage t are identical, then the corresponding decisions

that depend on these two scenario paths must be the same. We employ

the commonly used scenario tree approach to model the waste supply un-

certainty in our multi-stage WtE expansion optimization problem, which

groups automatically the identical scenarios along the paths based on the

tree structure and therefore can guarantee the non-anticipativity.

To present the scenario tree model in a concise manner, we assume

w.l.o.g. for each stage t an identical scenario number for the future waste

supply ξit for different zones i ∈ I, and denote N (t) as the node (scenario)

set for the waste supply scenarios at stage t with the maximum node num-

ber Nt = |N (t)|, for t ∈ {0} ∪ T , where N (0) := {1} which is used

exclusively for x0 to keep a consistent presentation. Also, we denote P(n)

as the set of all the parent nodes of non-root node n. With the defined sce-

nario index set, we can move the index t from ξit into N (t) and represent

the waste supply scenarios of zone i in a cleaner way as ξni , n ∈N (t), t ∈ T ,

which can be recovered without any loss as ξktti standing for some ktth node

(scenario) of waste supply at stage t of zone i. Similarly, we can rep-
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resent the expansion and waste allocation decisions as ynij, z
n
i and xnj for

n ∈N (t), t ∈ T .

Applying the waste supply scenario tree structure, the multi-stage stochas-

tic WtE expansion optimization model can be formulated as follows:

min
∑
t∈T

 βt−1

Nt−1

∑
n∈N (t−1)

∑
j∈J

cjx
n
j −

βt

Nt

∑
n∈N (t)

∑
j∈J

∑
i∈I

(
rijy

n
ij − cDznij

)
s.t.

∑
j∈J

ynij + zni = ξni , n ∈N (t), t ∈ T , i ∈ I

∑
i∈I

ynij ≤
∑

m∈P (n)

xmj sj, n ∈N (t), t ∈ T , j ∈ J

∑
m∈P (n)

xmj ≤ 1, n ∈N (|T |), j ∈ J

xnj ∈ {0, 1}, n ∈N (t− 1), t ∈ T , j ∈ J

ynij, z
n
i ∈ <+, n ∈N (t), t ∈ T , i ∈ I, j ∈ J

t ∈ T .

It can be seen that, although the above model is a mixed integer linear

programming, the total number of scenarios and the number of decision

variables grow exponentially with increase of the number of stages. There-

fore, it is in general time-consuming to solve this multi-stage stochastic

problem.
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