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Summary

In this thesis, we conduct a thorough study on the theory and algorithms for

large scale multi-block convex composite problems with coupled objective functions.

These problems arise from a variety of application areas.

This thesis is mainly divided into two parts. The first part is focused on solv-

ing unconstrained multi-block large scale convex composite optimization problems

with coupled objective functions. A two-block inexact majorized accelerated block

coordinate descent method is proposed for problems without joint constraints, and

the O(1/k2) iteration complexity is proved. We illustrate the implementation of

this framework for solving the dual of an important class of composite least square

problems that involves the nonsmooth regularized terms, the equations, the inequal-

ities and the cone constraints. For solving subproblems, we adopt the inexact one

cycle symmetric Gauss-Seidel technique proposed recently in [60] and a hybrid of

the semismooth Newton-CG method and the accelerated proximal gradient method.

The incorporation of the second order information plays a pivotal role in making

our algorithms and the other existing ones more efficient. Numerical results demon-

strate that our proposed methods outperform, by a large margin, existing different

variants of the block coordinate descent methods.

xi



xii Summary

The second part of this thesis is devoted to the study of the constrained con-

vex composite optimization problems with joint linear constraints. A majorized

alternating direction method of multipliers, which was discussed for problems with

separable objective functions in the existing literature, is extended to deal with this

class of problems. The global convergence and the ergodic and non-ergodic iteration

complexities are presented. We also prove the linear convergence rate of the method

for solving quadratically coupled problems under an error bound condition. For the

purpose of deriving checkable conditions for the error bound, we present a character-

ization of the robust isolated calmness of the constrained problems penalized by the

nuclear norm function via the second order sufficient optimality condition and the

strict Robinson constraint qualification. The robust isolated clamness has its own

interest beyond the implication of the error bound condition. For the convex com-

posite nuclear norm problems, several equivalent conditions for the robust isolated

calmness are obtained.



Chapter 1
Introduction

1.1 Motivations and related methods

This thesis is focused on designing and analyzing efficient algorithms for solving

multi-block large scale convex optimization problems, with or without joint linear

constraints. The first model under consideration is the following unconstrained

optimization problem:

(P1) min θ(u, v) :=
s∑
i=1

pi(ui) +
t∑

j=1

qj(vj) + φ(u, v), (1.1)

where s and t are two given nonnegative integers, u ≡ (u1, u2, . . . , us) ∈ U and v ≡

(v1, v2, . . . , vt) ∈ V are two groups of variables, pi : Ui → (−∞,∞], i = 1, . . . , s and

qj : Vj → (−∞,∞], j = 1, . . . , t are simple closed proper convex functions (possibly

nonsmooth), φ : U × V → (−∞,∞) is a smooth convex function whose gradient

mapping is Lipschitz continuous, U = U1×U2× . . .×Us and V = V1×V2× . . .×Vt
are real finite dimensional Euclidean spaces each equipped with an inner product

〈·, ·〉 and its induced norm ‖ · ‖. Our aim is to solve large scale problems in the form

of (1.1) of medium to high accuracy.

A natural extension of the unconstrained problem (1.1) in the two-block case is

the following linearly constrained convex problems with coupled objective functions:

1



2 Chapter 1. Introduction

(P2) min p(u) + q(v) + φ(u, v),

s.t. A∗u+ B∗v = c,

(1.2)

where p : U → (−∞,+∞] and q : V → (−∞,+∞] are two nonsmooth closed

proper convex functions, φ : U ×V → R is a smooth convex function with Lipschitz

continuous gradient, A : X → U and B : X → V are two linear operators, c ∈ X

is the given data, and U , V and X are finite dimensional Euclidean spaces. In this

thesis, we also propose an algorithm to solve (1.2) and analyze the related properties.

Before going into details, we shall point out that throughout this thesis, we

name the problems in the form of (1.1) unconstrained optimization problems. This

terminology does not indicate that the problem (1.1) is free of any constraint. For

example, we still allow the decision variables to stay in some convex sets by adding

indicator functions over these sets in the objective functions. The expected way

to interpret the word “unconstrained” is that no joint constraints across different

blocks are allowed.

1.1.1 Unconstrained problems

Our first motivation to study the problems of the form (1.1) comes from the dual of

the nonlinearly constrained strongly convex problems:

min f(x) + θ(x)

s.t. Ax = b, g(x) ∈ C, x ∈ K,
(1.3)

where f : X → R is a smooth and strongly convex function, θ : X → (−∞,+∞]

is a closed proper convex function, A : X → YE is a linear operator, b ∈ YE is the

given data, g : X → Yg is a smooth map, C ⊆ Yg and K ⊆ X are two closed convex

cones, and X , YE, Yg are finite dimensional Euclidean spaces each equipped with an

inner product 〈·, ·〉 and its induced norm. In order to make (1.3) a convex problem,

we further require g is C-convexity [78, Example 4’]:

g(αx1 + (1− α)x2)− (αg(x1) + (1− α)g(x2)) ∈ C, ∀x1, x2 ∈ g−1(C), ∀α ∈ (0, 1).
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In order to write down the dual of the problem (1.3), we introduce a slack variable

u = x ∈ X and recast the problem (1.3) as

min f(x) + θ(u)

s.t. Ax = b, g(x) ∈ C, x ∈ K, x = u.
(1.4)

Given (x, u, y, λ, s, z) ∈ X ×X ×YE ×Yg ×X ×X , the Lagrangian function of the

problem (1.4) takes the form of

L(x, u; y, λ, s, z) := f(x) + θ(u)− 〈y,Ax− b〉 − 〈g(x), λ〉 − 〈x, s〉 − 〈z, x− u〉.

In this way, the dual of the problem (1.4) can be written as

max ψ(A∗y + s+ z, λ) + 〈b, y〉 − θ∗(−z)

s.t. λ ∈ C∗, s ∈ K∗,
(1.5)

where A∗ is the conjugate operator of A, θ∗ is the conjugate function of θ, C∗ and

K∗ are the dual cones of C and K, and the function ψ : X × Yg → R is defined as

ψ(w, λ) := inf
x∈X
{f(x)− 〈w, x〉 − 〈λ, g(x)〉}, ∀(w, λ) ∈ X × Yg. (1.6)

By the assumption that g is C-convexity, it is easy to see that −〈λ, g(x)〉 is convex

with respect to x for λ ∈ C∗. Since f is assumed to be strongly convex, the optimal

solution of the above problem is a singleton and thus ψ is continuously differen-

tiable [30, Theorem 10.2.1]. In this way, the problem (1.5) falls into the framework

of (1.1) with four blocks of variables (y, s, z, λ).

The model (1.3) includes many interesting applications. One particular example

is the following regularized best approximation problem:

min 1
2
‖X −G‖2 + θ(X)

s.t. AX = b, BX ≥ d, X ∈ K,
(1.7)

where A : X → YE and B : X → YI are two linear operators, G ∈ X , b ∈ YE,

d ∈ YI are given data, K ⊆ X is a closed convex cone, θ : X → (−∞,+∞] is a simple

proper closed convex function such as the indicator functions over the polyhedral
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or the norm functions. One can easily see that the problem (1.7) is a special case

of (1.3) by taking f(X) = 1
2
‖X −G‖2, g(X) = BX − d for any X ∈ X and letting

C = {yI ∈ YI : yI ≥ 0}. In this case, the function ψ defined in (1.6) can be computed

explicitly as

ψ(w, λ) = −1

2
‖G+ w + B∗λ‖2 +

1

2
‖G‖2 + 〈λ, d〉, ∀(w, λ) ∈ X × YI .

Hence, the dual of the problem (1.7) is given by

max −1
2
‖G+A∗y + B∗λ+ s+ z‖2 + 〈b, y〉+ 〈λ, d〉 − θ∗(−z),

s.t. λ ≥ 0, s ∈ K∗.
(1.8)

The study of the best approximation problems dates back to the 1980s, when

the inequality constraint BX ∈ C and the regularized term θ are not included. Peo-

ple are interested in its application to the interpolation with K = {L2[0, 1] | x ≥

0 a.e. on [0, 1]} at that time [48, 1, 23, 25, 26]. Around fifteen years ago, the posi-

tive semidefinite cone constraint is also under consideration with wide applications

in calibrating the covariance (correlation) matrix in Finance [43]. For the related

algorithms, see, for examples, [66, 75]. This model is further extended with the

inequality constraints in [7, 36] with a dual approach. Recently, people also focus

on the regularized least square problems with a nonsmooth regularized term θ in

the objective function in order to impose different structures on the solutions, which

are used in the under-sampling problems from the high dimensional data analysis.

Two frequently used regularized terms are θ(·) = ρ‖ ·‖1 for the sparsity of a solution

and ρ‖ · ‖∗ for the low-rankness with given penalty parameter ρ > 0 [37, 13].

Another important application of the problem (1.3) is the projection onto the

convex quadratically constrained positive semidefinite sets:

min 1
2
‖X −G‖2

s.t. 1
2
〈X,QiX〉+ 〈Ci, X〉+ ri ≤ 0, i = 1, . . . ,m,

X ∈ Sn+,

(1.9)

where Qi ∈ Sn+, i = 1, 2, . . . ,m are given self-adjoint positive semidefinite linear

operators, Ci ∈ Sn, i = 1, 2, . . . ,m are given matrices and ri ∈ R, i = 1, 2, . . . ,m
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are given scalars. This is a reduced form of the convex quadratically constrained

quadratic problems (CQCQP) considered in [92] by only considering the identity

operator in the objective function.

Besides the dual of the problems with the form (1.3), many applications them-

selves belong to the unconstrained model (1.1). For example, in order to find and

explore the structure in high dimensional data, people consider the following low

rank and sparsity decomposition approach:

min
L,S∈Rm×n

1

2
‖D − L− S‖2 + λ1‖L‖∗ + λ2‖S‖1,

where D ∈ Rm×n is an observed matrix, and λ1, λ2 are two positive parameters.

This model is named as the robust principle component analysis in [102]. A more

complicated one is the robust matrix completion problem considered in [52]:

min
L,S∈Rm×n

1

N

N∑
i=1

(Yi − 〈Xi, L+ S〉)2 + λ1‖L‖1 + λ2‖S‖2,1

s.t. ‖L‖∞ ≤ α, ‖S‖∞ ≤ α,

(1.10)

where ‖L‖∞ = max
1≤i≤m,1≤j≤n

|Lij|, ‖S‖2,1 =
∑n

i=1 ‖Si‖2, N is the number of samples,

(Xi, Yi) ∈ Rm×n ×R, i = 1, 2, . . . , N are observations, and α > 0 is a given upper

bound of ‖L‖∞ and ‖S‖∞. This model can be viewed as a two-block unconstrained

problem by taking p(L) = λ1‖L‖1 + δ‖L‖∞≤α(L) and q(S) = λ2‖S‖2,1 + δ‖S‖∞≤α(S).

It is well known that the problem (1.1) can be solved by the block coordinate

descent (BCD) method, where each block is updated sequentially based on the latest

information [84, 95, 96]:

uk+1
1 = arg minu1 θ(u1, u

k
2, . . . , u

k
s , v

k
1 , v

k
2 , . . . , v

k
t ),

...

uk+1
s = arg minus θ(u

k+1
1 , uk+1

2 , . . . , us, v
k
1 , v

k
2 , . . . , v

k
t ),

vk+1
1 = arg minv1 θ(u

k+1
1 , uk+1

2 , . . . , uk+1
s , v1, v

k
2 , . . . , v

k
t ),

...

vk+1
t = arg minvt θ(u

k+1
1 , uk+1

2 , . . . , uk+1
s , vk+1

1 , vk+1
2 . . . . , vt).
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To overcome the possible difficulty when solving the subproblems, people also study

a variant framework called the block coordinate gradient descent method (BCGD) [98,

3]. A proximal gradient step is taken for each block of this method. Both the BCD

and BCGD algorithms, or a hybrid of them, have the iteration complexity O(1/k)

for the generic model (1.1) [3, 47].

The Nesterov’s acceleration technique [70, 71] is a powerful tool to solve one

block convex optimization problems, with the attractive O(1/k2) convergence rate.

However, in order to apply the accelerated proximal gradient (APG) method to the

problem (1.1), a very large proximal term has to be added such that the whole

problem can be treated as one block. This would no doubt cause the algorithm

to be less efficient. People have already made several attempts to settle this issue.

If there are no nonsmooth terms in (1.1), Beck and Tetruashvili [3] prove that

the accelerated version of BCGD also enjoys the O(1/k2) complexity. Recently,

Chambolle and Pock [9] show that if the optimization problem only involves two

blocks and the coupled smooth term is quadratic, the O(1/k2) complexity can be

achieved by a majorized accelerated BCD algorithm.

Another line of research focus on the randomized updating rule in order to ac-

celerate the BCD-type method, which is initialized by Nesterov’s innoative work

in [73]. In his paper, Nesterov shows that without the nonsmooth terms, the ac-

celerated BCD method could converge at O(1/k2) if different blocks are updated

alternatively in a random order following the prescribed distribution. This idea is

further extended by Fercoq and Richtárik [31] to solve the general problems of the

form (1.1) with a large proximal term that proportional to the number of blocks.

This is important progress in theory, but its numerical performance is far from

satisfactory since a small proximal term is always preferred in practice.

The introduction of the inexactness is essential for efficiently solving the multi-

block problems. Researchers have already incorporated this idea into different vari-

ants of the BCD and APG algorithms, see, for examples, [85, 49, 100, 93, 33]. There

are several reasons to consider the inexactness. One is that many subproblems in



1.1 Motivations and related methods 7

the BCD-type algorithm do not have explicit solutions or their computational cost

is very demanding, such as the problems involving the total variation regularizer

(TV norm) in the image science, or the dual of the nonlinear constraint problems

given in (1.5). Another reason, perhaps a more critical one, is that the inexactness

allows us to tackle multi-block problems by combining several blocks together and

solve them simultaneously by the Newton-type method. This idea has already been

implemented in the inexact APG algorithm for solving a least square semidefinite

programming in [91].

1.1.2 Linearly constrained problems

As mentioned in the begining of this chapter, we also consider the linearly con-

strained optimization problems with the coupled objective functions in the form of

(1.2). Many interesting optimization problems belong to this class. One particular

example is the following problem whose objective is the sum of a quadratic function

and a squared distance function to a closed convex set:

min
1

2

〈 u

v

 , Q̃

 u

v

〉+
ρ

2

∥∥∥∥
 u

v

− ΠK1

 u

v

∥∥∥∥2

,

s.t. A∗u+ B∗v = c,

u ∈ K2, v ∈ K3,

(1.11)

where ρ > 0 is a penalty parameter, Q̃ : U × V → U × V is a self-ajoint positive

semidefinite linear operator, K1 ⊆ U×V , K2 ⊆ U and K3 ⊆ V are closed convex sets

and ΠK1(·, ·) denotes the metric projection onto K1. The reason behind this model

is to treat different constraints separately, some of them need to be strictly satisfied,

such as the equation constraints A∗u+B∗v = c and u ∈ K2, v ∈ K3, and others are

soft constraints like (u, v) ∈ K1, so that a penalized distance between (u, v) and K1

appears in the objective function.

One popular way to solve problem (1.2) is the augmented Lagrangian method

(ALM). Given the Lagrangian multiplier x ∈ X of the linear constraint in (1.2), the
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augmented Lagrangian function associated with the parameter σ > 0 is defined as

Lσ(u, v;x) = θ(u, v)+〈x,A∗u+B∗v−c〉+σ

2
‖A∗u+B∗v−c‖2, (u, v) ∈ U×V . (1.12)

The ALM minimizes Lσ(u, v;x) with respect to (u, v) simultaneously regardless of

whether the objective function is coupled or not before updating the Lagrangian

multiplier x along the gradient ascent direction. Numerically, however, to minimize

Lσ(u, v;x) with respect to (u, v) jointly may be a difficult task due to the non-

separable structure of θ(·, ·) combined with the nonsmoothness of p(·) and q(·).

When the objective function in (1.2) is separable for u and v, one can alleviate

the numerical difficulty in the ALM by directly applying the alternating direction

method of multipliers (ADMM). The iteration scheme of the ADMM works as fol-

lows: 
uk+1 = arg min

u
Lσ(u, vk;xk),

vk+1 = arg min
v
Lσ(uk+1, v;xk),

xk+1 = xk + τσ(A∗uk+1 + B∗vk+1 − c),

(1.13)

where τ > 0 is the step length. The global convergence of the ADMM with τ ∈

(0, 1+
√

5
2

) and a separable objective function has been extensively studied in the

literature, see, for examples, [34, 35, 38, 39, 28]. For a recent survey, see Eckstein

and Yao [29]. Although it is possible to apply the ADMM directly to problem

(1.2) even if φ(·, ·) is not separable, its convergence analysis is largely non-existent.

One way to deal with the non-separablity of φ(·, ·) is to introduce a new variable

w ≡ (u, v) ∈ U × V . By letting

Ã∗ =


A

I1

0

 , B̃∗ =


B

0

I2

 , C̃∗ =


0 0

−I1 0

0 −I2

 , c̃ =


c

0

0


with identity maps I1 : U → U and I2 : V → V , we can rewrite the optimization

problem (1.11) equivalently as

min
u,v,w

θ̃(u, v, w) := p(u) + q(v) + φ(w),

s.t. Ã∗u+ B̃∗v + C̃∗w = c̃.

(1.14)
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For given σ > 0, the corresponding augmented Lagrangian function for problem

(1.14) is

L̃σ(u, v, w;x) = θ̃(u, v, w) + 〈x, Ã∗u+ B̃∗v + C̃∗w − c̃〉+
σ

2
‖Ã∗u+ B̃∗v + C̃∗w − c̃‖2,

where (u, v, w) ∈ U×V×(U ×V) and x ∈ X . Directly applying the 3-Block ADMM

yields the following framework:

uk+1 = arg min
u
L̃σ(u, vk, wk;xk),

vk+1 = arg min
v
L̃σ(uk+1, v, wk;xk),

wk+1 = arg min
w
L̃σ(uk+1, vk+1, w;xk),

xk+1 = xk + τσ(Ã∗uk+1 + B̃∗vk+1 + C̃∗wk+1 − c̃),

where τ > 0 is the step length. Even though numerically the 3-block ADMM works

well for many applications, generally it is not a convergent algorithm even if τ is as

small as 10−8 as shown in the counterexamples given by Chen et al. [10].

Unlike the case with separable objective functions, there are very few papers

on the ADMM targeting the problem (1.2) except for the work of Hong et al. [45],

where the authors studied a majorized multi-block ADMM for linearly constrained

optimization problems with non-separable objectives. When specialized to the 2-

block case for problem (1.2), their algorithm works as follows:
uk+1 = arg min

u
{p(u) + 〈xk,A∗u〉+ ĥ1(u;uk, vk)},

vk+1 = arg min
v
{q(v) + 〈xk,B∗v〉+ ĥ2(v;uk+1, vk)},

xk+1 = xk + αkσ(A∗uk+1 + B∗vk+1 − c),

(1.15)

where ĥ1(u;uk, vk) and ĥ2(v;uk+1, vk) are majorization functions of φ(u, v)+σ
2
‖A∗u+

B∗v−c‖2 at (uk, vk) and (uk+1, vk), respectively and αk > 0 is the step length. Hong

et al. [45] provided a very general convergence analysis of their majorized ADMM

assuming that the step length αk is a sufficiently small fixed number or converging

to zero, among other conditions. Since a large step length is almost always desired

in practice, one needs to develop a new convergence theorem beyond the one in [45].
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The complexity of the ADMM has also been extensively studied in the literature

for the problems with separable objective functions. Monteiro and Svaiter [68] show

the ergodic complexity of the KKT system for the block-decomposition algorithms,

which includes the classical ADMM with τ = 1. When the proximal terms are

only required to be positive semidefinite in the subproblems, Shefi and Teboulle [87]

show the O(1/k) ergodic complexity for the primal objective value and the feasiblity.

Davis and Yin [16] further improve the above complexities to o(1/k).

There are also some work focused on the linear convergence rate of the ADMM.

When the problem under consideration only involves convex quadratic functions, the

classical ADMM and its variant are shown to converge linearly with τ = 1 [4, 41].

Deng and Yin [18] show that besides the convex quadratic programming, the linear

convergence rate also holds if either p or q is strongly convex and smooth, among

other conditions. Hong and Luo [46] further prove that if the step length τ allows to

take sufficiently small value, the ADMM for solving multi-block problems achieves

a linear convergence rate under an error bound condition. Also by assuming an

error bound condition, Han, Sun and Zhang [40] establish the linear rate of the

semi-proximal ADMM with τ ∈ (0,
√

5+1
2

).

In order to know the error bound and the linear convergence rate of ADMM can

be achieved by which kind of problems, we also concern the sensitivity and stability

to the composite constrained optimization problems:

min f(x) + θ(x),

s.t. h(x) ∈ P ,
(1.16)

where f : X → R is a twice continuously differentiable function, θ : X → Y is

a closed proper convex function (not necessarily smooth), h : X → Y is a twice

continuously differentiable mapping, P ⊆ Y is a convex polyhedral, and X and Y

are finite dimensional real Euclidean spaces.

The sensitivity and stability analysis, being the core of the theoretical study in

the optimization community, has been dramatically pushed during the past several

decades. There are several issues about the stability of optimization problems. For
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example, people care about whether the perturbed problems have non-empty solu-

tion sets under the assumption that the original problem has at least one KKT solu-

tion, and whether the distance between the two KKT solution sets can be bounded

by the norm of the perturbation parameters. We say an optimization problem is

stable if both of the above two questions have affirmative answers. A relative weaker

condition is the semi-stability of an optimization problem, for which we only care

about the Lipschitz continuity of those perturbed problems with non-empty KKT

solution sets. An important application of the stability for optimization problems is

the so-called Lipschitz error bound condition, which plays an important role in the

convergence rate study of a bunch of algorithms. Many algorithms could archieve

the linear convergence rate instead of the generic sublinear rate under the error

bound conditions. For the examples of such algorithms, see [65, 63, 64, 97].

When θ = 0, h = (h1, h2) with h1 : X → Rm and h2 : X → Rq, P = {0}m ×Rq
+

the problem (1.16) reduces to the conventional nonlinear programming, which has

quite complete theory about the stability subject to data perturbation. In particular,

Dontchev and Rockafellar [24] show that in this case, the KKT system is robust

isolated calm under canonical perturbations at a local optimal solution if and only

if the strict Mangasarian-Fromovitz constraint qualification and the second order

sufficient optimality condition hold. However, much less has been known if θ is a non-

polyhedral function, such as the indicator function over a non-polyhedral set. Among

them, we have some known results under a class of relatively “nice” set, which is

called C2-cone reducible in the sense of Bonnans and Shapiro [5, Definition 3.135]. It

contains the polyhedral sets, the second order cone, the positive semidefinite cone,

and their Cartesian product. In [106, 40], the authors characterize the isolated

calmness of the nonlinear positive semidefinite programming by the second order

sufficient condition and the strict Robinson constraint qualification. Similar type

of isolated calmness characterization for the Ky Fan k−norm conic programming is

provided by Liu and Pan [62]. A recent work of Zhou and So [108] shows that for a

special class of unconstrained nuclear norm minimization (where the strict Robinson
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constraint qualification holds automatically), its error bound can be implied by the

strict complementarity condition at a solution point.

1.2 Contributions

The main contributions of this thesis are two-folds. Firstly, we propose an inexact

majorized accelerated block coordinate descent method (iABCD) in order to solve

multi-block unconstrained convex problems. In the existing literature, problems

of this nature are usually solved by (random) block coordinate descent type algo-

rithms. However, it has been observed from extensive numerical experiments that

the Nesterov’s acceleration technique, which was originally designed for single-block

problems, could dramatically improve the performance of the multi-block problems

even when they are updated in an alternative fashion. We adopt a decomposition

procedure in order to incorporate the acceleration technique to the multi-block prob-

lems. That is, even though (P1) consists of multiple blocks, we would first view u

and v as two big blocks and focus on designing algorithms for the following problems:

(P1-1) min p(u) + q(v) + φ(u, v), (1.17)

where the functions p and q are given as p(u) ≡
∑s

i=1 pi(ui) and q(v) ≡
∑t

j=1 qj(vj).

We establish the O(1/k2) complexity for the iABCD to solve the problem (1.17).

However, each block, either u or v, may still be contributed by many separable non-

smooth functions and a coupled smooth function. It is highly possible that no ana-

lytical solutions exist for the subproblems. To settle this issue, different methods are

provided according to the structure of the subproblems, which includes the inexact

one cycle symmetric Gauss-Seidel technique, the matrix Cauchy-Schwarz inequality

and a hybrid of the APG and the semismooth Newton-CG method (APG-SNCG).

We test the numerical performance of the iABCD framework on solving the dual of

the projection onto the intersection of the equations, the inequalities, the positive

semidefinite cone and the nonnegative cone, where four block variables appear in
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the dual problem. In particular, we solve the inequality and the nonnegative cone

constraints together by the APG-SNCG method. It is very powerful for finding

a solution of medium to high accuracy without adding a large proximal term by

the incorporation of the second order information. The numerical results suggest

that (i) the APG-SNCG method could universally improve the performance in the

implementation among different frameworks; (ii) the iABCD is much more efficient

than the BCD-type methods and the randomized ABCD-type methods for solving

multi-block unconstrained problems.

Secondly, we consider the majorized alternating direction method of multipliers

(mADMM) for solving linearly constrained convex problems with coupled objective

functions, which is only discussed for problems with separable objective functions

before. By making use of nonsmooth analysis, especially the generalized Mean-

Value Theorem, we establish the global convergence, the ergodic and non-ergodic

complexities of the mADMM with the step length τ ∈ (0, 1+
√

5
2

). We also explore

the linear convergence rate for the quadratically coupled problems under an error

bound assumption. In order to understand more about the error bound conditions,

we also study the stability of the nonconvex constrained composite optimization

problems involving the nuclear norm, which is also of its own interest. We fully

characterize the robust isolated calmness property by the second order sufficient

condition and the strict Robinson constraint qualification. We also explore several

equivalent characterization by the dual information for convex constrained composite

nuclear norm problems. In particular, the above mentioned isolated calmness results

imply the error bound for the linearly constrained quadratic nuclear norm problems

and thus the mADMM converges linearly when solving problems of this class.

1.3 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2, we provide the pre-

liminaries that will be used in the subsequent discussions. In Chapter 3, we first
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discuss the O(1/k2) iteration complexity of a two block majorized accelerated block

coordinate descent algorithm. It follows by an extension to allow inexact solutions

for each block and the same order of complexity is obtained. We demonstrate the

implementation of this inexact framework to the dual of the regularized least square

problems with equation, inequality and cone constraints. In Chapter 4, we analyze

the convergence properties of a majorized alternating direction method of multi-

pliers for solving the two-block linearly constrained convex problems with coupled

objective functions. The linear convergence rate is also shown for the problems

with quadratically coupled objective functions. Chapter 5 is devoted to the sensi-

tivity and stability analysis for the constrained composite optimization problems.

We show that for the constrained nuclear norm minimization problems, the robust

isolated calmness holds for the KKT system if and only if both the second order

sufficient condition and the strict Robinson constraint qualification hold at the ref-

erence point. Numerical examples and results are provided in Chapter 6, where

we compare the performance of our algorithms to a class of least square problems

several variants of the block coordinate descent method and the randomized accel-

erated block coordinate descent method. Finally we conclude the thesis in Chapter

7.



Chapter 2
Preliminaries

2.1 Notation

• Let n be a given integer. We use Sn to denote the space of all n×n symmetric

matrices, Sn+ to denote the space of all n × n positive semidefinite matrices,

Sn++ to denote the space of all n × n positive definite matrices, and On be

the set of all n × n orthogonal matrices. For any given X, Y ∈ Sn, we write

X � Y if X − Y ∈ Sn+ and X � Y if X − Y ∈ Sn++. In particular, we use the

notation X � 0 to indicate X ∈ Sn+ and X � 0 to indicate X ∈ Sn++.

• Denote X as a finite dimensional Euclidean space endowed with an inner

product 〈·, ·〉 and its induced norm ‖ · ‖, and M : X → X as a self-adjoint

positive semidefinite linear operator. We write M 1
2 as a self-adjoint positive

semidefinite linear operator such thatM 1
2M 1

2 =M, which always exists. For

any x, y ∈ X , we define 〈x, y〉M := 〈x,My〉 and ‖x‖M :=
√
〈x,Mx〉.

• Given a set S ⊆ X , we denote conv{S} as the convex hull of S.

• Given a closed convex set C ⊆ X and a point x ∈ C, denote TC(x) as the

tangent cone of C at x and NC(x) as the normal cone of C at x. We define

dist(x, C) := infy∈C ‖x− y‖.

15
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• Given a closed convex cone K ⊆ X , denote K∗ as the dual cone of K and K◦

as the polar cone of K.

• Given a convex function f : X → (−∞,+∞], we use domf to denote the

effective domain of f , and epif to denote the epigraph of f . We also use

the notation f ∗ to denote the Fenchel’s conjugate function of f , and Proxf as

the proximal mapping of f . (The definition of the proximal mapping would

be given in (2.6).) We use the notation f ′(x; d) to denote the directional

derivative of f at x ∈ X along the direction d ∈ X if it exists, and it is given

by

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

Furthermore, we say f is a LC1 function if it is continuously differentiable and

its gradient is Lipschitz continuous, and we say f is C2 if it is twice continuously

differentiable.

• Given a matrix X ∈ Rm×n, we denote ‖X‖∗ as the nuclear norm of X, i.e.,

the sum of all the singular values of X, and ‖X‖2 as the spectral norm of X,

i.e., the largest singular value of X. We also use tr(X) to represent the trace

of X, i.e., the sum of all the diagonal entries of X.

• Given a set of matrices X := (X1, X2, . . . Xs) ∈ Rn1×m1 × Rn2×m2 × . . . ×

Rns×ms for some positive integers s, n1, n2, . . . , ns and m1,m2, . . . ,ms, we

denote Diag(X) as a block diagonal matrix whose ith main block diagonal is

given by Xi for i ∈ {1, 2, . . . , s}.

2.2 Nonsmooth analysis

In this section, we list the useful results related to the generalized Mean-Value The-

orem of smooth functions, the semismoothness, the Moreau-Yosida regularization

and the spectral operators.
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Assume that φ : W → (−∞,+∞) is a smooth convex function whose gradient

mapping is Lipschitz continuous, where W is a real finite dimensional Euclidean

space. Then ∇2φ(·) exists almost everywhere and the following Clarke’s generalized

Hessian at given w ∈ W is well defined [12]:

∂2φ(w) = conv{ lim
wk→w

∇2φ(wk),∇2φ(wk) exists}, (2.1)

where “conv{S}” denotes the convex hull of a given set S. Note that W is self-

adjoint and positive semidefinite, i.e., W � 0, for any W ∈ ∂2φ(w), w ∈ U × V .

In [44], Hiriart-Urruty and Nguyen provide a second order Mean-Value Theorem

for φ, which states that for any w′ and w in U × V , there exists z ∈ [w′, w] and

W ∈ ∂2φ(z) such that

φ(w) = φ(w′) + 〈∇φ(w′), w − w′〉+
1

2
〈w − w′,W(w − w′)〉,

where [w′, w] denotes the line segment connecting w′ and w.

Since ∇φ is globally Lipschitz continuous, there exist two self-adjoint positive

semidefinite linear operators Q and H :W →W such that for any w ∈ W ,

Q � W � Q+H, ∀W ∈ ∂2φ(w). (2.2)

Thus, for any w,w′ ∈ W , we have

φ(w) ≥ φ(w′) + 〈∇φ(w′), w − w′〉+
1

2
‖w′ − w‖2

Q (2.3)

and

φ(w) ≤ φ̂(w;w′) := φ(w′) + 〈∇φ(w′), w − w′〉+
1

2
‖w′ − w‖2

Q+H. (2.4)

In the following, we introduce the concept of the semismoothness. Denote F :

X → Y as a Lipschitz continuous function. Then F is Fréchet differentiable almost

everywhere (see, e.g., [82, Sesction 9.J]). Let DF be the set of points in X such that

F is differentiable and F ′(xk) be the Jacobian of F at xk ∈ DF . The Bouligand

subdifferential (B-subdifferential) of F at x ∈ X is defined as

∂BF (x) = { lim
xk→x

F ′(xk), x
k ∈ DF}.



18 Chapter 2. Preliminaries

The Clarke’s generalized Jacobian of F at x ∈ X is defined as

∂F (x) = conv{∂BF (x)}.

The concept of semismoothness was first introduced by Mifflin [67] for functionals

and later on extended by Qi and Sun [76] for vector-valued functions.

Definition 2.1. [G-Semismoothness and semismoothness] Let F : O ⊆ X →

Y be a locally Lipschitz continuous function on the open set O. F is said to be

G-semismooth at a point x ∈ O if for any ∆x ∈ X and V ∈ ∂F (x + ∆x) with

∆x→ 0,

F (x+ ∆x)− F (x)− V∆x = o(‖∆x‖).

F is said to be strongly G-semismooth at x ∈ X if F is semismooth at x and for

any ∆x ∈ X and V ∈ ∂F (x+ ∆x) with ∆x→ 0,

F (x+ ∆x)− F (x)− V∆x = O(‖∆x‖2).

If F is also directionally differentiable at x in the above definition, then F is said to

be semismooth and strongly semismooth, respectively.

The Moreau-Yosida regularization is a useful tool in the nonsmooth optimization.

Below we introduce this concept and list some frequently used properties related to

it.

Definition 2.2. [The Moreau-Yosida regularization] Let f : X :→ (−∞,+∞]

be a closed proper convex function. The Moreau-Yosida regularization ψf : X → R

associated with the function f is defined as

ψf (x) = min
z∈X

{
f(z) +

1

2
‖z − x‖2

}
. (2.5)

The following proposition comes from Moreau [69] and Yosida [104].

Proposition 2.1. For any given x ∈ X , the above problem admits a unique solution.



2.2 Nonsmooth analysis 19

Thus, given any x ∈ X , we call the unique solution of the problem (2.5) the

proximal point of x associated with f and denote it as Proxf (x), i.e.,

Proxf (x) := arg min
z∈X

{
f(z) +

1

2
‖z − x‖2

}
. (2.6)

Moreover, the single-valued mapping Proxf : X → X is called the proximal mapping

associated with the function f .

The following proposition shows the nice behaviours of the Moreau-Yosida reg-

ularization and the proximal mappings.

Proposition 2.2. [55, Theorem XV. 4.1.4 and Theorem XV.4.1.7] Let f :

X :→ (−∞,+∞] be a closed proper convex function. Then the following statements

hold:

(i) arg minx∈X f(x) = arg minx∈X ψf (x).

(ii) Both Proxf and Qf := I−Proxf are firmly non-expansive, i.e., for any x, y ∈ X ,

‖Proxf (x)− Proxf (y)‖2 ≤ 〈Proxf (x)− Proxf (y), x− y〉,

‖Qf (x)−Qf (y)‖2 ≤ 〈Qf (x)−Qf (y), x− y〉.

Therefore, Proxf and Qf are globally Lipschitz continuous with modulus 1.

Proposition 2.3. [Moreau decomposition] Let f : X → (−∞,+∞] be a closed

proper convex function and f ∗ be its conjugate. Then for any x ∈ X , it can be

decomposed as

x = Proxf (x) + Proxf∗(x).

In fact, if the nonsmooth function f equals to δC(·), the indicator function of a

given closed convex set C ⊆ X , the proximal mapping associated with f reduces to

ProxδC(x) = arg min
z∈X

{
δC(x) +

1

2
‖z − x‖2

}
= ΠC(x),

i.e., the projection operator of the set C. In this way, one can take the proximal

mapping of a nonsmooth function as a generalization of the projection operator.



20 Chapter 2. Preliminaries

The last concept in this section is the spectral operators. Given a matrix X ∈

Rm×n with m ≤ n, denote its singular value decomposition (SVD) as

X = U [Diag(σ(X)) 0]V T = U [Diag(σ(X)) 0][V1 V2]T = UDiag(σ(X))V T
1 , (2.7)

where U ∈ Om, V := [V1 V2] ∈ On with V1 ∈ Rn×m and V2 ∈ Rn×(n−m) are the

singular vectors of X, and Diag(σ(X)) := Diag(σ1(X), σ2(X), . . . , σm(X)) are the

singular values of X with σ1(X) ≥ σ2(X) ≥ . . . ≥ σm(X) being arranged in a

non-increasing order. Denote

Om,n := {(U, V ) ∈ Om ×On : X = U [Σ(X) 0]V T}.

Let Qk ∈ Rk×k denote the set of all permutation matrices that have exactly one

entry being 1 in each row and column and 0 elsewhere. Let Q±k ∈ Rk×k denote

the set of all signed permutation matrices that have exactly one entry being ±1 in

each row and column and 0 elsewhere. In the following we introduce the concepts

of symmetric vector-valued functions and the spectral operators associated with

symmetric vector-valued functions.

Definition 2.3. A function f : Rk → Rk is said to be symmetric if

f(x) = QTf(Qx), ∀Q ∈ Q±k , ∀x ∈ Rk.

Definition 2.4. [Spectral operator] Given the SVD of X ∈ Rm×n as in (2.7),

the spectral operator F : Rm×n → Rm×n associated with the function f : Rm → Rm

is defined as

F (X) := U [Diag(f(σ(X)) 0]V T ,

where (U, V ) ∈ Om×n(X).

Definition 2.5. [Hadamard directionally differentiable] A function f : O ⊆

X → Y is said to be Hadamard directionally differentiable at x ∈ O if the limit

lim
t↓0,h′→h

f(x+ th′)− f(x)

t
exists for any h ∈ X .
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In his Ph.D thesis, Ding shows that the above given spectral operator is well-

defined [19, Theorem 3.1]. Moreover, the Hadamard directional differentiability

of the spectral operator F , among other differential properties, depends on the

the Hadamard directional differentiability of f and the directional derivative at a

given point can be characterized explicitly. Before introducing the formula of the

directional derivatives, we first give several notations.

Denote the following two index sets regrading the singular values of X:

a := {1 ≤ i ≤ m : σi(X) > 0}, b := {1 ≤ i ≤ m : σi(X) = 0}.

We further denote the distinct nonzero singular values of X as µ1(X) > µ2(X) >

. . . > µr(X) for some nonnegative integer r and divide the set a into the following

r subsets:

a =
⋃

1≤l≤r

al, al := {i ∈ a : σi(X) = µl(X)}, l = 1, 2, . . . , r.

Assume that f : R → R is directional differentiable. Denote the directional

derivative of f at σ = σ(X) as φ(·) = f ′(σ; ·), which can be further decomposed

according to the partition of the singular values as

φ(h) = (φ1(h), . . . , φr(h), φr+1(h)), ∀h ∈ Rm,

where φl(h) ∈ R|al| for l = 1, 2, . . . , r and φr+1(h) ∈ R|b|.

Define a space W as W = S |a1| × S |a2| × . . . × S |al| ×R|b|×(n−|a|) and a spectral

operator Φ :W →W with respect to the symmetric mapping φ as

Φ(W ) := (Φ1(W ), . . . ,Φr(W ),Φr+1(W )),

where

Φl(W ) :=

 PlDiag(φl(κ(W ))P T
l , if 1 ≤ l ≤ r,

MDiag(φl(κ(W ))NT
1 , if l = r + 1,

with κ(W ) = (λ(W1), . . . , λ(Wr), σ(Wr+1)) ∈ Rm, Pl ∈ O|al|(Wl) and (M, [N1, N2]) ∈

O|b|,n−|a|(Wr+1) with N1 ∈ R(n−|a|)×|b| and N2 ∈ R(n−|a|)×(n−m).
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We also define two linear matrix operators S : Rk×k → Sk and T : Rk×k → Rk×k

as

S(X) =
1

2
(X +XT ), T (X) =

1

2
(X −XT ), ∀X ∈ Rk×k.

Denote

D(H) :=
(
S(UT

a1
HVa1), . . . , S(UT

arHVar), U
T
b H[Vb, V2]

)
∈ W ,

and for any W = (W1, . . . ,Wr,Wr+1) ∈ W , Φ̂(W ) ∈ Rm×n is defined by

Φ̂(W ) :=

 Diag(Φ1(W ), . . . ,Φr(W ))

Φr+1(W )

 .

Furthermore, denote three matrices E1(σ), E2(σ) ∈ Rm×m and F (σ) ∈ Rm×(n−m)

(depending on X) as:

(E1(σ))ij :=


fi(σ)− fj(σ)

σi − σj
if σi 6= σj

0 otherwise

, i, j ∈ {1, 2, . . . ,m},

(E2(σ))ij :=


fi(σ) + fj(σ)

σi + σj
if σi + σj 6= 0

0 otherwise

, i, j ∈ {1, 2, . . . ,m},

(F(σ))ij :=


fi(σ)

σi
if σi 6= 0

0 otherwise
, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n−m}.

Theorem 2.1. [19, Theorem 3.4] Given the SVD of X ∈ Rm×n as in (2.7), the

spectral operator F : Rm×n → Rm×n associated with the function f : Rm → Rm is

Hadamard directional differentiable if and only if f is Hadamard directional differ-

entiable at σ = σ(X). Moreover, F is directional differentiable and the directional

derivative at X ∈ Rm×n along any given direction H ∈ Rm×n can be computed as

F ′(X;H) = Uf [1](X;H)V T ,

where (U, V ) ∈ Om×n(X) and f [1](X;H) is given by

f [1](X;H) := [E1(σ) ◦ S(H̃1) + E2(σ) ◦ T (H̃1) F (σ) ◦ H̃2] + Φ̂(D(H)),

with H̃ := [H̃1 H̃2], H̃1 := UTHV1 and H̃2 := UTHV2.
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We shall use these results in Chapter 5 to characterize the proximal mapping of

the nuclear norm function and its directional derivative.

2.3 The one cycle symmetric Gauss-Seidel tech-

nique and the matrix Cauchy-Schwarz inequal-

ity

In this section, we review the one cycle symmetric Gauss-Seidel (sGS) technique

proposed recently by Li, Sun and Toh [59]. It is a powerful tool to decompose

quadratic coupled multi-block problems into separate ones by adding a particular

designed semi-proximal term to the original problem, which plays an important

role in our subsequent algorithm designs for solving large scale convex least square

problems.

Mathematically speaking, the sGS technique targets at solving the following

unconstrained nonsmooth convex optimization problem approximately:

min
x
f(x1) +

1

2
〈x, Hx〉 − 〈r, x〉, (2.8)

where x ≡ (x1, x2, . . . , xs) ∈ X := X1 × X2 × . . . × Xs with s ≥ 2 being a given

integer and all Xi being assumed to be real finite dimensional Euclidean spaces,

f : X1 → (−∞,+∞] is a given closed proper convex function (possibly nonsmooth),

H : X → X is a given self-adjoint positive semidefinite linear operator and r ≡

(r1, r2, . . . , rs) ∈ X is a given vector.

The difficulty of solving the problem (2.8) comes from the combination of the

nonsmooth part f and the joint smooth quadratic function 1
2
〈x, Hx〉 − 〈r, x〉. For

most of the applications with complicated operator H, it is impossible to obtain the

analytic expression of the optimal solution x∗.

For notational convenience, we denote the quadratic function in (2.8) as

h(x) =
1

2
〈x,Hx〉 − 〈r, x〉,
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and the block decomposition of the operator H as:

Hx ≡


H11 H12 · · · H1s

H∗12 H22 · · · H2s

...
...

. . .
...

H∗1s H∗2s · · · Hss




x1

x2

...

xs

 , (2.9)

where Hii : Xi → Xi, i = 1, . . . , s are self-adjoint positive semidefinite linear opera-

tors and Hij : Xj → Xi, i = 1, . . . , s− 1, j > i are linear operators whose conjugate

are given by H∗ij. We also write the upper triangular and diagonal parts of the

operator H as

M :=


0 H12 · · · H1s

. . . · · · ...

0 H(s−1)s

0

 and D := Diag(H11, . . . ,Hss).

Note that H = D +M+M∗. Here, we further assume that

D � 0. (2.10)

In order to allow solving the problems inexactly, we write the following two error

tolerance vectors:

δ′ ≡ (δ′1, . . . , δ
′
s), δ+ ≡ (δ+

1 , . . . , δ
+
s ),

where δ′i, δ
+
i ∈ Xi for i = 1, . . . ,m with δ′1 = 0.

The key ingredient of sGS decomposition technique is to construct an extra semi-

proximal term based on the original problem that can decouple the joint quadratic

function. It essentially relies on the following self-adjoint positive semidefinite linear

operator T : X → X and the error term ∆ : X × X → X :

T :=MD−1M∗,

∆(δ′, δ+) := δ′ + (D +M)D−1(δ+ − δ′).
(2.11)

Denote x≤i := (x1, x2, . . . , xi), x≥i := (xi, xi+1, . . . , xs) for i = 0, . . . , s + 1, with

the convention that x≤0 = x≥s+1 = ∅. The following sGS Decomposition Theorem



2.3 The one cycle symmetric Gauss-Seidel technique and the matrix
Cauchy-Schwarz inequality 25

shows that one cycle of inexact symmetric Gauss-Seidel type sequential updating of

the variables x1, . . . , xs is equivalent to solving a semi-proximal majorization of the

original problem (2.8) inexactly with respect to all the components simultaneously.

Theorem 2.2. [60, Theorem 2.1] Assume that the condition (2.10) holds, i.e.,

the self-adjoint linear operators Hii, i = 1, . . . , s are positive definite. Then, it holds

that

Ĥ := H + T = (D +M)D−1(D +M∗) � 0. (2.12)

Furthermore, given y ∈ X and for i = s, . . . , 2, define x′i ∈ Xi by

x′i := arg min
xi∈Xi

φ(y1) + h(y≤i−1, xi, x
′
≥i+1)− 〈δ′i, xi〉

= H−1
ii

(
ri + δ′i −

i−1∑
j=1

H∗jiyj −
s∑

j=i+1

Hijx
′
j

)
. (2.13)

Then the optimal solution x+ defined by

x+ := arg min
x

{
φ(x1) + h(x) +

1

2
‖x− y‖2

T − 〈x, ∆(δ′, δ+)〉
}

(2.14)

can be obtained exactly via
x+

1 = arg minx1 φ(x1) + h(x1, x
′
≥2)− 〈δ+

1 , x1〉,

x+
i = arg minxi φ(x+

1 ) + h(x+
≤i−1, xi, x

′
≥i+1)− 〈δ+

i , xi〉

= H−1
ii (ri + δ+

i −
∑i−1

j=1H∗jix
+
j −

∑s
j=i+1Hijx

′
j), i = 2, . . . , s.

(2.15)

It is easy to see that Ĥ � H, such that we automatically majorize the original

smooth function h by using the sGS technique.

Now we turn to discuss another majorization technique, the matrix type Cauchy-

Schwarz inequality, that would also be useful for solving the convex optimization

problems with quadratic coupled objective functions.

Recall the form of the self-adjoint positive semidefinite operator H given in (2.9).

Denote

H̃ := Diag
(
H̃11, H̃22, . . . , H̃ss

)
, (2.16)
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where for i = 1, . . . , s, H̃ii are self-adjoint positive semidefinite operators defined as

H̃ii := Hii +
∑
j 6=i

(HijH∗ij)1/2.

Then by [58, Proposition 2.9], the following inequality always hold:

H � H̃. (2.17)

We call (2.17) the matrix Cauchy-Schwarz inequality since it is in fact the matrix

analogue of the classic Cauchy-Schwarz inequality.

From the above inequalities one can see that similarly as Ĥ given in (2.12), the

operator H̃ is also a kind of upper bound of the original Hessian matrix H. It can be

easily observed that when the original operator H is nearly block-wise orthogonal,

i.e., ‖HijH∗ij‖ is very small for i 6= j, the operator H̃ would be quite tight estimation

of H. One can refer to Li’s Ph.D thesis [58, Section 3.2] for a detailed comparison

between the sGS-type majorization operator Ĥ defined in (2.12) and the matrix

Cauchy-Schwarz-type majorization operator H̃ defined in (2.16).

Note that all the subproblems need to be solved sequentially in a symmetric

Gauss-Seidel fashion using the sGS technique. However, by adopting the matrix

Cauchy-Schwarz inequality we can solve different blocks simultaneously since the

majorized problem is separable for all the s blocks.

2.4 A hybrid of the semismooth Newton-CG method

and the accelerated proximal gradient method

In this section, we present a method for solving the following convex optimization

problem:

min θ(x) := f(x) + g(x), (2.18)

where f : X → (−∞,∞) is a strongly convex smooth function whose gradient is

Lipschitz continuous, g : X → (−∞,+∞] is a simple convex function (possibly
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nonsmooth) in the sense that its proximal mapping is relatively easy to compute.

Denote Lf as the Lipschitz constant of ∇f .

Define a function F : X → X as

F (x) := x− Proxg(x− α∇f(x)), (2.19)

where α > 0 is a positive constant. It is well-known that x∗ ∈ X is an optimal

solution of the problem (2.18) if and only if F (x∗) = 0. Since f is assumed to be

strongly convex, by solving F (x) = 0 we could obtain the unique optimal solution

of the problem (2.18).

When the nonsmooth function g is vacant, the above problem reduces to solving

a nonsmooth Lipschitz continuous equation

∇f(x) = 0.

Kummer [53] and Qi and Sun [76] show that if ∇f is semismooth and all V ∈

∂∇f(x∗) are nonsingular at the optimal solution x∗, the iteration with an initial

guess x0 ∈ X generated by a direct generalization of classical Newton’s method

xk+1 = xk − V −1
k ∇f(xk), V k ∈ ∂∇f(xk), k = 0, 1, 2, . . . ,

would converge superlinearly. This method can also be globalized by using the line

search technique to the function f [75].

If a nonsmooth function g appears in the problem (2.18), it is not easy to directly

globalize the semismooth Newton’s method since the objective value may not de-

crease along the Newton’s direction. However, in practice Newton’s method usually

outperforms the first order methods in the neighborhood of the optimal solution,

as it incorporate the second order information into the searching direction. At the

same time, the Nesterov’s accelerated proximal gradient method (APG) [70] also

achieves both the global convergence and the linear convergence rate for solving

strongly convex problems [85]. Therefore, in order to get both the global conver-

gence theoretically and a fast convergence rate numerically, we adopt a hybrid of

the APG method and the semismooth Newton-CG method to solve (2.18).
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In order to get a superlinear (quadratic) convergence of the semismooth Newton-

CG method, we need F to be (strongly) semismooth and ∂BF to be nonsingular

at the optimal solution. The following proposition provides a convenient tool to

compute and check the nonsingularity of the B-subdifferential for the composite

function F . Its proof can be directly obtained by noting that the composite of

semismooth functions is still semismooth [32] and the results in [36, Proposition

3.2].

Proposition 2.4. Let F be defined by (2.19) and x ∈ X . Suppose that ∇f is

semismooth at x and Proxg(·) is semismooth at x − ∇f(x). Then the following

statements are true:

(i) F is semismooth at x;

(ii) For any h ∈ X , one has

∂BF (x)h ⊆ ∂̂BF (x)h := h− ∂BProxg(x−∇f(x))(h− ∂B∇f(x)(h)).

Moreover, if I − S(I − V) is nonsingular for any S ∈ ∂BProxg(x − ∇f(x)) and

V ∈ ∂B∇f(x), then any element in ∂BF (x) is nonsingular.

In fact, the proximal mapping Proxg(·) is (strongly) semismooth for many fre-

quently used functions g, like the indicator function over polyhedral sets and the

symmetric cones [89, 88], or the Ky Fan k-norm functions [19]. In the following, we

present the framework of our hybrid methods consisting of the APG algorithm and

the semismooth Newton-CG method.
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SNCG-APG: A hybrid of the semismooth Newton-CG method and the

accelerated proximal gradient to solve problem (2.18).

Choose an initial point x1 ∈ X , positive constants η, γ ∈ (0, 1), ρ ∈ (0, 1/2), and a

positive integer m0 > 0. Set k = 1.

Step 1: Select Vk ∈ ∂̂BF (xk) and apply the conjugate gradient (CG) method to

find an approximate solution dk to

Vkd+ F (xk) = 0, (2.20)

such that

Rk := Vkdk + F (xk), and ‖Rk‖ ≤ ηk‖F (xk)‖, (2.21)

where ηk = min{η, ‖F (xk)‖}. If (2.21) is achievable, go to Step 2. Otherwise, go to

Step 3.

Step 2: Let mk ≤ m0 be the smallest nonnegative integer m such that

‖F (xk + ρmdk)‖ ≤ γ‖F (xk)‖. (2.22)

If (2.22) is achievable, set tk := ρmk and xk+1 = xk + tkd
k. Replace k by k + 1 and

go to Step 1. Otherwise if mk > m0 and (2.22) still fails, go to step 3.

Step 3: Set xk1 = x̃k0 = xk, βk1 = 1 and i = 1, compute
x̃ki = Proxg/Lf (x

ki −∇f(xki)/Lf ),

βki+1
:= 1

2
(1 +

√
1 + 4β2

ki
)

xki+1 := x̃ki +
βki − 1

βki+1

(x̃ki − x̃ki−1).

If ‖F (xki+1)‖ ≤ γ‖F (xk)‖, set xk+1 = xki+1 . Replace k by k + 1 and go to Step 1.

Otherwise, set i = i+ 1 and continue the above iteration.

Remark 2.1. Since f is assumed to be strongly convex, the iteration sequence {xki}

generated by the APG algorithm always converges to the unique optimal solution x∗

of the problem (2.18), and this further indicates that F (xki)→ 0 by the continuity of
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the proximal mapping. Therefore, the APG algorithm can be viewed as a safeguard

of the global convergence in the above framework.

Remark 2.2. It is known from Rademacher’s Theorem that the Lipschitz continuous

function F is differentiable almost everywhere. Assume that (2.21) is achievable at

a differentiable point xk and ‖F (xk)‖ 6= 0, then ‖F (x)‖2 is differentiable at xk and

‖F (xk + tdk)‖2 = ‖F (xk) + t(Rk − F (xk)) + o(t)‖2

= ‖F (xk)‖2 + t〈F (xk), Rk − F (xk)〉+ o(t)

≤ ‖F (xk)‖2 + t(ηk − 1)‖F (xk)‖2 + o(t).

Since ηk ≤ η < 1, we have ‖F (xk + tdk)‖ < ‖F (xk)‖ for t sufficiently small such

that dk is a descent direction of ‖F (x)‖ at xk. Thus, the direction obtained by the

(2.21) is a descent direction with probability 1.

Remark 2.3. In her Ph.D thesis [27, Lemma 4.5], Du shows that for any sequence

{yk} ⊆ X converges to x∗, by letting ỹk = Proxg(y
k −∇f(yk)),

rk = yk − ỹk +∇f(ỹk)−∇f(yk),

we have rk ∈ ∂θ(ỹk) and limk→∞ ‖rk‖ = 0. Note that in order to embedded the

SNCG-APG method into the iABCD framework that will be discussed in the subse-

quent chapter, we shall terminate the whole algorithm if

xk+1 = arg min
x
{θ(x) + 〈x, δx〉}, (2.23)

where δx ∈ X is an error vector that satisfies ‖δx‖ ≤ ε, with ε > 0 being the required

tolerance. From the above discussions one can see that this stopping criterion is

always checkable as (2.23) is equivalent to −δx ∈ ∂θ(xk+1).

Remark 2.4. The Newton’s equation (2.20) may not be a symmetric linear system

in general, so that the conjugate gradient method cannot directly applied to it. One

can still use the BiCGStab iterative solver of van der Vorst [99] to fix this issue.
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2.5 The sensitivity analysis

2.5.1 The optimality conditions and constraint qualifications

In this section, we show the first and second order optimality conditions and con-

straint qualifications for the optimization problem with the form

min f(x) + θ(x)

s.t. h(x) ∈ P ,
(2.24)

where f : X → R and h : X → Y are twice continuously differentiable functions,

θ : X → (−∞,+∞] is a closed proper convex function (not necessarily smooth),

P ⊆ Y is a convex polyhedral set, and X and Y are finite dimensional real Euclidean

spaces.

It is easy to see that the problem (2.24) can be equivalently written in a conic

optimization form:

min f(x) + t

s.t. h(x) ∈ P , (x, t) ∈ K,
(2.25)

where K := epiθ is a closed convex set.

The constraint qualifications of the problems with the form (2.25) are extensively

studied by Bonnans and Shapiro in the book [6]. For convenience of the later work

to study the isolated calmness for a class of constrained nuclear norm regularized

problems, we transform the conditions about (2.25), which are imposed in a higher

dimensional space, to the ones directly on the original problem (2.24), without lifting

the dimension. This enables us to focus on the properties of the nonsmooth function

θ directly, instead of referring to its epigraph. Similar kinds of transformation have

also been done in [6, Section 3.4.1], where the form of the composite optimization

problems is a little bit different from ours.

First we provide some necessary knowledge about the first and second order

tangent sets and the directional (epi)derivatives. These concepts are adopted by

Bonnans and Shapiro in [6, Section 2.2, 3.2].
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Given a subset K ⊆ X and x ∈ K, define the contingent cone as

TK(x) = lim sup
ρ↓0

K − x
ρ

,

and the inner tangent cone as

T iK(x) = lim inf
ρ↓0

K − x
ρ

.

If K is convex, we have
K − x
ρ

is a monotone decreasing function of ρ such that

TK(x) = T iK(x) for any x ∈ K [6, Proposition 2.55]. And in this case we denote both

TK(x) and T iK(x) as TK(x) and call it the tangent cone of K at x.

We also need the second order tangent sets of K. Given x ∈ X and the direction

d ∈ X , define the inner second order tangent set as

T i,2K (x; d) := lim inf
ρ↓0

K − x− ρd
1
2
ρ2

,

and the outer second order tangent set as

T 2
K(x; d) := lim sup

ρ↓0

K − x− ρd
1
2
ρ2

.

However, different from the first order tangent cones, the inner and outer second

order tangent sets are not necessarily identical in general, even if the set K is closed

and convex.

One way to characterize the tangent cone of epiθ is via its generalized directional

derivatives, which are called the directional epiderivatives in [6]. Define the lower

and upper directional epiderivatives of θ : X → (−∞,+∞] at x ∈ X along the

direction h ∈ X as

θ↓−(x;h) := lim inf
ρ↓0
h′→h

θ(x+ ρh′)− θ(x)

ρ
,

and

θ↓+(x;h) := sup
{ρn}∈Σ

(
lim inf
n→∞
h′→h

θ(x+ ρnh
′)− θ(x)

ρn

)
,

where Σ denotes the set of positive real sequences {ρn} converging to 0.

If θ↓−(x; ·) = θ↓+(x; ·) for any x ∈ X , we say θ is directional epidifferentiable with

the directional epiderivative θ↓(x; ·). In particular, if θ is a closed convex function,
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we know from [6, Proposition 2.58] that θ is always directional epidifferentiable at

x ∈ domθ, and the following relationship holds:

Tepiθ

(
x, θ(x)

)
= epiθ↓(x; ·) = {(d1, d2) ∈ X ×R, θ↓(x; d1) ≤ d2}. (2.26)

Here we take a remark that the directional epiderivative of a function θ may be

different from the conventional directional derivative (denoted as θ′(x; ·)). Even for

a proper convex function θ such that both of them exist in domθ, we can only obtain

the following relationship [6, Theorem 2.58 and Theorem 2.60]:

θ↓(x; ·) = clθ′(x; ·), ∀x ∈ domθ.

Those functions that are both Lipschitz continuous and satisfying θ↓(x; ·) = θ′(x; ·),

∀x ∈ domθ are named as “regular functions”. In particular, a convex and Lipschitz

continuous function is always regular [6, Theorem 2.126].

If both θ↓−(x; d) and θ↓+(x; d) are finite for x ∈ domθ and d ∈ X , we can further

define the lower and upper second order directional epiderivative of the function θ

as

θ↓↓− (x; d, h) := lim inf
ρ↓0
h′→h

θ(x+ ρd+ 1
2
ρ2h)− θ(x)− ρθ↓−(x; d)

1
2
ρ2

,

and

θ↓↓+ (x; d, h) := sup
ρn∈Σ

(
lim inf
n→∞
h′→h

θ(x+ ρd+ 1
2
ρ2h)− θ(x)− ρθ↓+(x; d)

1
2
ρ2

)
.

Similarly with the first order variational analysis, the outer and inner second order

tangent sets of the epiθ are closely related to the lower and upper second order

directional epiderivative of θ. In particular, for any x ∈ domθ, if θ↓+(x; d) and

θ↓−(x; d) are finite, we have [6, proposition 3.41]

T i,2epiθ((x, θ(x)); (d, θ↓+(x; d)) = epiθ↓↓+ (x; d, ·), (2.27)

and

T 2
epiθ((x, θ(x)); (d, θ↓−(x; d)) = epiθ↓↓− (x; d, ·). (2.28)
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Since T 2
K(x; d) and T i,2K (x; d) may be different for a closed convex set K at x ∈ K

and d ∈ X , by the relationship (2.28) we see the lower and upper second order

directional epiderivatives could be unequal for a proper closed convex function.

After the above preparations, we now go back to the discussions about the opti-

mality conditions of the original optimization problem (2.24) and its variant (2.25).

For any (x, t, y, z, τ) ∈ X ×R× Y × X ×R, the Lagrangian function of (2.25) can

be written as

L(x, t; y, z, τ) := f(x) + t+ 〈y, h(x)〉+ 〈z, x〉+ tτ.

We call (x̄, t̄) ∈ X × R a stationary point of the problem (2.25) and (ȳ, z̄, τ̄) a

Lagrangian multiplier if (x̄, t̄, ȳ, z̄, τ̄) satisfies the following KKT system:

∇f(x̄) +∇h(x̄)ȳ + z̄ = 0,

τ̄ = −1,

ȳ ∈ NP(h(x̄)),

(z̄, τ̄) ∈ NK
(
(x̄, t̄)

)
,

(2.29)

where NC(s) denotes the normal cone of a given convex set C at the point s ∈ C.

By [12, Corollary 2.4.9], we have that

(z,−1) ∈ NK
(
x, θ(x)

)
⇐⇒ z ∈ ∂θ(x), ∀x, z ∈ X . (2.30)

Thus, we call x̄ a stationary point of the problem (2.24) and ȳ a Lagrangian multi-

plier of (2.24) if (x̄, ȳ) satisfy that:
0 ∈ ∇f(x̄) + ∂θ(x̄) +∇h(x̄)ȳ,

ȳ ∈ NP(h(x̄)),
(2.31)

which by [80, Theorem 23.2] is equivalent to
f ′(x̄)d+ 〈ȳ, h′(x̄)d〉+ θ↓(x̄; d) ≥ 0, ∀d ∈ X ,

ȳ ∈ NP(h(x̄)),
(2.32)
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We denoteM(x̄, t̄) as the set of all the Lagrangian multipliers at (x̄, t̄) with respect

to the problem (2.25), and M(x̄) as the set of all the Lagrangian multipliers at x̄

with respect to the original problem (2.24).

Robinson’s constraint qualification (RCQ) at a feasible solution (x̄, θ(x̄)) of the

problem (2.25) takes the form of

0 ∈ int


 (h(x̄), 0)

(x̄, θ(x̄))

+

 (h′(x̄), 0)

(I, 1)

 (X ×R)−

 P × {0}
epiθ

 . (2.33)

In order to transform the RCQ and others from the lifting problem (2.25) to the

original one (2.24), It is known that the RCQ (2.33) holds at (x̄, θ(x̄)) if and only

if M(x̄, θ(x̄)) associated with the problem (2.25) is nonempty, convex and com-

pact [109]. Then by combining [6, Proposition 2.97], we can immediately get the

following proposition, which shows the corresponding equivalence in a lower dimen-

sional space.

Proposition 2.5. Let x̄ be a local optimal solution of the problem (2.24). Then the

set of Lagrangian multipliers M(x̄) of (2.24) is nonempty, convex and compact if

and only if

0 ∈ int


 h(x̄)

x̄

+

 h′(x̄)

I

X −
 P

domθ

 . (2.34)

Furthermore, (2.34) holds if and only if h′(x̄)

I

X +

 TP(h(x̄))

Tdomθ(x̄)

 =

 Y
X

 . (2.35)

Remark 2.5. The relationships (2.34) or (2.35) would be called the RCQ of the

original problem (2.24) in the subsequent discussions.

The RCQ condition only guarantees the existence and boundedness of the mul-

tipliers. More restrictive conditions are needed if we require the multiplier set to
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be a singleton for the problem (2.25). A frequently used one, which is called strict

Robinson’s constraint qualification (SRCQ) in the literature, serves this purpose.

Specifically, it makes the following assumption at the stationary point (x̄, θ(x̄)) with

respect to (ȳ, z̄,−1) ∈M(x̄, θ(x̄)): (h′(x̄), 0)

(I, 1)

 (X ×R) +

 TP(h(x̄))

TK(x̄, θ(x̄))

 ∩ (ȳ, z̄,−1)⊥ =

 Y

X ×R

 . (2.36)

As before, we would also reduce the SRCQ imposed on the problem (2.25) to

a lower dimensional space with respect to the original problem (2.24). Define a

set-valued mapping T θ : domθ × X → X associated with a closed proper convex

function θ as

T θ(x, z) := {d ∈ X : θ↓(x; d) = 〈d, z〉}, ∀(x, z) ∈ domθ ×X . (2.37)

Proposition 2.6. Let x̄ be a local optimal solution of the problem (2.24). Assume

M(x̄) is nonempty. Suppose the following condition holds at x̄ with respect to ȳ ∈

M(x̄):  h′(x̄)

I

X +

 TP(h(x̄)) ∩ ȳ⊥

T θ(x̄,−∇xl(x̄, ȳ))

 =

 Y
X

 , (2.38)

where T θ(·, ·) is define as in (2.37). Then M(x̄) = {ȳ} is a singleton.

Let (x̄, t̄) ∈ X × R be a feasible point of the problem (2.25), then the critical

cone of C(x̄, t̄) of the problem (2.25) takes the form of

Cθ(x̄, t̄) := {(d1, d2) ∈ X ×R : h′(x̄)d1 ∈ TP(h(x̄)), (d1, d2) ∈ TK
(
x̄, t̄
)
,

f ′(x̄)d1 + d2 ≤ 0}.

Furthermore, if (x̄, θ(x̄)) is a local optimal solution of the problem (2.25) and
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M(x̄, θ(x̄)) is nonempty, then for any (ȳ, z̄, τ̄) ∈M(x̄, ȳ),

Cθ(x̄, θ(x̄)) = {(d1, d2) ∈ X ×R : h′(x̄)d1 ∈ TP(h(x̄)), (d1, d2) ∈ TK
(
x̄, θ(x̄)

)
,

f ′(x̄)d1 + d2 = 0}

= {(d1, d2) ∈ X ×R : h′(x̄)d1 ∈ TP(h(x̄)) ∩ ȳ⊥,

(d1, d2) ∈ TK
(
x̄, θ(x̄)

)
∩ (z̄, τ̄)⊥}.

(2.39)

The following proposition provides the connection of the critical cones between

the problems (2.24) and (2.25), for which the proof can be directly obtained by using

the formula (2.26).

Proposition 2.7. Let x̄ ∈ X be a feasible point of the problem (2.24). Then

(d1, d2) ∈ Cθ(x̄, θ(x̄)) if and only if

(d1, d2) ∈ C̃(x̄, θ(x̄)) := {(d1, d2) ∈ X ×R : d1 ∈ C(x̄), θ↓(x̄; d1) ≤ d2 ≤ −f ′(x̄)d1},

where C(x̄) is defined as

C(x̄) :=
{
d ∈ X : h′(x̄)d ∈ TP(h(x̄)), f ′(x̄)d+ θ↓(x̄; d) ≤ 0

}
. (2.40)

Furthermore, if x̄ is a a local optimal solution of the problem (2.24) and M(x̄)

is non-empty, then C(x̄) defined in (2.40) can be written as

C(x̄) =
{
d ∈ X : h′(x̄)d ∈ TP(h(x̄)), d ∈ T θ(x̄,−∇f(x̄))

}
, (2.41)

where T θ(·, ·) is as define in (2.37).

2.5.2 Calmness, metric subregularity and error bounds

Denote U and V be two finite dimensional real Euclidean spaces and F : U → V

a multi-valued mapping. The graph of the mapping F is defined as gph(F ) :=

{(u, v) ∈ U × V : v ∈ F (u)}. In the following, we introduce the concept of the

(isolated) calmness and the metric subregular of a multi-valued mapping from U to

V , which comes from, e.g., [82, 9(30)].
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Definition 2.6. [calmness and isolated calmness] Denote Bv := {v ∈ V : ‖v‖ ≤

1}. We say a multi-valued mapping F : U → V is calm at u0 ∈ U if (ū, v̄) ∈ gph(F )

and there exist a constant η1 > 0 and a neighborhood N (ū) of ū such that

F (u) ⊆ F (ū) + η1‖u− ū‖Bv, ∀u ∈ N (ū).

Furthermore, we say F is isolated calm1 at ū ∈ U for v̄ ∈ V if (ū, v̄) ∈ gph(F ) and

there exist a constant η2 > 0 and neighborhoods N (ū) of ū and N (v̄) of v̄ such that

F (u) ∩N (v̄) ⊆ {v̄}+ η2‖u− ū‖Bv, ∀u ∈ N (ū).

Definition 2.7. [Metric subregularity] We say a multi-valued mapping F : U →

V is metric subregularity at ū ∈ U for v̄ ∈ V if (ū, v̄) ∈ gph(F ) and there exist a

constant κ > 0 and a neighborhood N (ū) of ū such that

dist(u, F−1(v̄)) ≤ κdist(v̄, F (u)), ∀u ∈ N (ū).

One can see that the calmness of a multi-valued mapping F : U → V at ū ∈ U

for v̄ ∈ V is in fact equivalent to the metric sub-regularity of F−1 at v̄ for ū if

(ū, v̄) ∈ gph(F ). They are important tools in the study of perturbation analysis

and error bounds of the optimization problems. For a nice survey about this topic,

see [74].

It may be difficult to check the calmness or the metric subregular of a given

multi-valued mapping by definition directly, since infinity many points on the graph

of the reference points may be involved. Fortunately, the following criterion holds

for a special class of multi-valued mappings: the sub-differential of convex functions.

Theorem 2.3. [2, Theorem 3.3] Let H be a real Hilbert space endowed with the

inner product 〈·, ·〉 and f : H → (−∞,+∞] be a proper lower semicontinuous convex

function. Let v̄, x̄ ∈ H satisfy v̄ ∈ ∂f(x̄). Then ∂f is metric subregular at x̄ for v̄ if

and only if there exists a neighborhood U of x̄ and a positive constant c such that

f(x) ≥ f(x̄) + 〈v̄, x− x̄〉+ cdist2(x, (∂f)−1(v̄)), ∀x ∈ U . (2.42)

1The isolated calmness is also called the upper Lipschitz continuity in the literature, such as

in [22, 56].
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Based on the above description, we can easily show that the subgradient of the

indicator function over the positive semidefinite cone is metric subregular.

Theorem 2.4. Denote δSn+(·) as the indicator function over the positive semidefinite

cone in Sn. Then ∂δSn+ is metric subregular at any x̄ ∈ Sn+ for v̄ ∈ ∂δSn+(x̄).

Proof. In order to show the metric subregular of ∂δSn+ by using Theorem 2.3,

it suffices to verify that for any v̄ ∈ ∂δSn+(x̄), there exist a constant c > 0 and a

neighborhood N (x̄) of x̄ such that

0 ≥ 〈v̄, x− x̄〉+ cdist2(x, ∂δSn+(v̄)), ∀x ∈ N (x̄) ∩ Sn+. (2.43)

Note that v̄ ∈ ∂δSn+(x̄) is equivalent to x̄ = ΠSn+(x̄ + v̄). Suppose that λ̄1 ≥ λ̄2 ≥

. . . ≥ λ̄n are the eigenvalues of x̄+ v̄ arranged in the non-increasing order. Denote

α := {i : λ̄i > 0, 1 ≤ i ≤ n}, β := {i : λ̄i = 0, 1 ≤ i ≤ n}, γ := {i : λ̄i < 0, 1 ≤ i ≤ n}.

Then there exists an orthogonal matrix P ∈ On such that

x̄ = P


Λα

0

0γ

P
T
, v̄ = P


0α

0

Λγ

P
T
,

where Λα � 0 is a diagonal matrix whose diagonal entries are λ̄i > 0 for i ∈ α

and Λγ ≺ 0 is a diagonal matrix whose diagonal entries are λ̄j < 0 for j ∈ γ. The

subgradint of δSn+ at v̄ can be expressed explicitly as

∂δSn+(v̄) = {h ∈ Sn : [Pα P β]Th[Pα P β] � 0, P
T

γ hP = 0, P
T
hP γ = 0}.

Let δ = min{1/2, λ|α|/2} > 0 and denote Nδ(x̄) = {x ∈ Sn : ‖x− x̄‖ ≤ δ}. Consider

an arbitrary x ∈ Sn+ ∩ Nδ(x̄). We write x̃ = P
T
xP and decompose x̃ into the

following nine blocks:

x̃ ≡


x̃αα x̃αβ x̃αγ

x̃Tαβ x̃ββ x̃βγ

x̃Tαγ x̃Tβα x̃γγ

 .



40 Chapter 2. Preliminaries

Then it is easy to see Π∂δSn+
(v̄)(x) = P


x̃αα x̃αβ 0

x̃Tαβ x̃ββ 0

0 0 0

P
T
, so that

dist(x, ∂δSn+(v̄))2 = 2‖x̃αγ‖2 + 2‖x̃βγ‖2 + ‖x̃γγ‖2. (2.44)

Denote Λ(x̃αα) = Diag (λ1(x̃αα), . . . , λ|α|(x̃αα)) as a diagonal matrix whose di-

agonal entries are the eigenvalues of x̃αα arranged in the non-increasing order.

Since ‖Λ(x̃αα) − Λα‖ ≤ ‖x̃αα − Λα‖ ≤ δ, we see that λ1(x̃αα) ≤ λ̄1 + 1/2 and

λmin(x̃αα) ≥ δ > 0. Then from x̃γγ − x̃Tαγx̃−1
ααx̃αγ � 0 we get

‖x̃αγ‖2 = tr(x̃Tαγx̃αγ) ≤ λ1(x̃αα)tr(x̃γγ) ≤
λ̄1 + 1/2

−λ̄|α|+|β|+1

〈x̃γγ,−Λγ〉. (2.45)

Moreover, we obtain from

 x̃ββ x̃βγ

x̃Tβγ x̃γγ

 � 0 that

x̃2
ij ≤ x̃iix̃jj ≤

δ

−λ̄j
x̃jj(−λ̄j), ∀i ∈ β, j ∈ γ.

and therefore,

‖x̃βγ‖2 =
∑

i∈β,j∈γ

x̃2
ij ≤

|β|
−2λ̄|α|+|β|+1

〈x̃γγ,−Λγ〉. (2.46)

In view of (2.44), (2.45), (2.46) and

‖x̃γγ‖2 =
∑
i,j∈γ

x2
ij ≤

∑
i∈γ

x2
ii + 2

∑
i,j∈γ

xiixjj = (
∑
i∈γ

xii)
2 ≤ 1

−2λ̄|α|+|β|+1

〈x̃γγ,−Λγ〉,

we obtain that for any x ∈ Sn+ ∩Nδ(x̄),

〈v̄, x− x̄〉+
−λ̄|α|+|β|+1

2λ̄1 + 3/2 + |β|
dist2(x, ∂δSn+(v̄))

= 〈x̃γγ,Λγ〉+
−λ̄|α|+|β|+1

2λ̄1 + 3/2 + |β|
(2‖x̃αγ‖2 + 2‖x̃βγ‖2 + ‖x̃γγ‖2) ≤ 0.

Thus, the proof is completed by letting c :=
−λ̄|α|+|β|+1

2λ̄1+3/2+|β| > 0 in (2.43).

The following Lemma provides a convenient tool for checking the isolated calm-

ness via the directional derivative, which is modified from the classical results that

are based on the non-singularity of the graphical derivative at the origin [50, 56].
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Lemma 2.1. Let U and V be two finite dimensional real Euclidean spaces and F :

U → V be a continuous mapping. Let (u0, v0) ∈ U×V satisfying F (u0) = v0. Suppose

that F is locally Lipschitz continuous around u0 and directional differentiable at u0.

Then F−1 is isolated calm at v0 for u0 if and only if

F ′(u0; d) = 0 =⇒ d = 0, ∀d ∈ V .

The isolated calmness does not require the locally nonemptiness of the multi-

valued mapping near the reference point. A stronger property is the following robust

isolated calmness.

Definition 2.8. [Locally nonempty-valued] We say a multi-valued mapping F :

U → V is locally nonempty-valued at ū ∈ U for v̄ ∈ V if there exist neighborhoods

N (ū) of ū and N (v̄) of v̄ such that

F (u) ∩N (v̄) 6= ∅, ∀u ∈ N (ū).

Definition 2.9. [Robust isolated calmness] We say a multi-valued mapping

F : U → V is robust isolated calm at ū ∈ U for v̄ ∈ V if F is both isolated calm and

locally nonempty valued at ū ∈ U for v̄ ∈ V.

2.5.3 Equivalence of the isolated calmness in different forms

We show several different forms of the isolated calmness for the problem (2.24) are in

fact equivalent to each other, and they can further imply an error bound condition.

The KKT system of the problem (2.24) takes the form of
0 ∈ ∇xl(x̄, ȳ) + ∂θ(x̄),

ȳ ∈ NP(h(x̄)).
(2.47)

Denote the natural map G : X ×Y → X ×Y associated with the inclusion (2.47) as

G(x, y) :=

 x− Proxθ
(
x−∇xl(x, y)

)
h(x)− ΠP(h(x) + y)

 , ∀(x, y) ∈ X × Y , (2.48)
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and the normal map Gnor : X ×Y → X ×Y associated with the inclusion (2.47) as

Gnor(z, s) :=

 ∇xl
(
Proxθ(z),Proxδ∗P (s)

)
+ z − Proxθ(z)

h(Proxθ(z))− ΠP(s)

 , ∀(z, s) ∈ X × Y .

(2.49)

It is easy to see that (x̄, ȳ) satisfies the KKT condition of the problem (2.24) in

the sense of (2.47) if and only if G(x̄, ȳ) = 0, which is also equivalent to Gnor(z̄, s̄) = 0

with (z̄, s̄) = (x̄−∇xl(x̄, ȳ), h(x̄) + ȳ). In fact, there is a change of variable (x, y) =(
Proxθ(z),Proxδ∗P (s)

)
between the natural map and the normal map, and clearly

(x̄, ȳ) =
(
Proxθ(z̄),Proxδ∗P (s̄)

)
. One can refer to the monograph [30, Section 1.5.2]

of Facchinei and Pang for a detailed discussion about the relationships between the

two maps.

We also consider the perturbation of the problem (2.24) with the form

min f(x) + θ(x)− 〈δ1, x〉,

s.t. h(x)− δ2 ∈ P ,
(2.50)

where δ ≡ (δ1, δ2) ∈ X × Y is the perturbation parameter. Similarly as (2.48), for

a given δ ∈ X × Y , we could thus define a natural map Gnat
δ : X × Y → X × Y

associated with the perturbed problem (2.50) as

Gnat
δ (x, y) :=

 x− Proxθ
(
x−∇xl(x, y) + δ1

)
h(x)− δ2 − ΠP(h(x)− δ2 + y)

 , ∀(x, y) ∈ X × Y . (2.51)

For later discussions, we also write an extended natural map G̃ : X ×Y ×X ×Y →

X × Y × X × Y as

G̃(x, y, δ) :=

 Gnat
δ (x, y)

δ

 , ∀(x, y) ∈ X × Y , ∀δ ∈ X × Y . (2.52)

For a given δ ∈ X × Y , we denote SKKT(δ) as the set of all the KKT points of

the perturbed problem (2.50), i.e.,

SKKT(δ) :=
{

(x̄, ȳ) : Gnat
δ (x̄, ȳ) = 0

}
.
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One convenience of the normal map is its translational property that if the KKT

system (2.47) of the original problem (2.24) is translated by a constant δ ∈ X × Y ,

its associated normal map Gnor is also translated by the same constant δ, i.e.,

SKKT(δ) =
{(

Proxθ(z̄),Proxδ∗P (s̄)
)

: Gnor(z̄, s̄) = δ
}
. (2.53)

Note that when the perturbation parameter δ = 0, the problem (2.50) reduces to

the original problem and thus, (x̄, ȳ) ∈ Ω if and only if Gnat
δ̄

(x̄, ȳ) = 0 for δ̄ = 0, or

equivalently G̃(x̄, ȳ, δ̄) = 0. In real applications, the data is usually inaccurate, which

makes the study of the problem (2.50) necessary and important. In the following, we

shall show that at the KKT point (x̄, ȳ) of the problem (2.24), the isolated calmness

of G̃−1 at the origin point with respect to (x̄, ȳ, 0) is equivalent to the isolated

calmness of G−1 at the origin point with respect to (x̄, ȳ), and is also the same with

(Gnor)−1 at the origin point with respect to (z̄, s̄) = (x̄−∇xl(x̄, ȳ), h(x̄) + ȳ).

Theorem 2.5. Suppose that (x̄, ȳ) ∈ X × Y satisfies that G(x̄, ȳ) = 0. Let (z̄, s̄) =

(x̄−∇xl(x̄, ȳ), h(x̄) + ȳ). Then the following conditions are equivalent:

(i) G−1 is isolated calm at the origin for (x̄, ȳ).

(ii) G̃−1 is isolated calm at the origin for (x̄, ȳ, 0).

(iii) (Gnor)−1 is isolated calm at the origin for (z̄, s̄).

(iv) SKKT is isolated calm at the origin for (x̄, ȳ).

Proof. First we show (i)⇐⇒ (ii). Suppose that G−1 is isolated calm at the ori-

gin for (x̄, ȳ). Let (dx, dy, dδ) ∈ X ×Y×X ×Y satisfy that G̃′((x̄, ȳ, 0); (dx, dy, dδ)) =

0, where dδ := (dδ1 , dδ2) with dδ1 ∈ X , dδ2 ∈ Y . Then we have
dx − Prox′θ(x̄−∇xl(x̄, ȳ); dx −∇2

xxl(x̄, ȳ)dx −∇h(x̄)dy + dδ1) = 0,

h′(x̄)dx − dδ2 − Π′P(h(x̄) + ȳ;h′(x̄)dx − dδ2 + dy) = 0,

(dδ1 , dδ2) = 0,

(2.54)

which can be reduced to dδ = (dδ1 , dδ2) = 0 and
dx − Prox′θ(x̄−∇xl(x̄, ȳ); dx −∇2

xxl(x̄, ȳ)dx −∇h(x̄)dy) = 0,

h′(x̄)dx − Π′P(h(x̄) + ȳ;h′(x̄)dx + dy) = 0,
(2.55)
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or equivalently, G′((x̄, ȳ); (dx, dy)) = 0. Thus, we get (dx, dy) = 0 by Lemma 2.1

and the isolated calmness assumption of G−1 at the origin for (x̄, ȳ), which further

indicates that (dx, dy, dδ) = 0. By applying Lemma 2.1 again we know G̃−1 is isolated

calm at the origin for (x̄, ȳ, 0).

Conversely, suppose G̃−1 is isolated calm at the origin for (x̄, ȳ, 0). Let (d̃x, d̃y) ∈

X ×Y be a direction such that G′((x̄, ȳ); (d̃x, d̃y)) = 0, which is equivalent for (2.55)

holds at (x̄, ȳ) along the direction (d̃x, d̃y). Then by letting d̃δ = 0X×Y , we see (2.54)

holds for (d̃x, d̃y, d̃δ), and thus, G̃′((x̄, ȳ, 0); (d̃x, d̃y, d̃δ)) = 0. Hence, (d̃x, d̃y, d̃δ) = 0

by the isolated calmness of G̃−1 at the origin for (x̄, ȳ, 0). This non-singularity of

G′((x̄, ȳ); (·, ·)) indicates that G−1 is isolated calm at the origin for (x̄, ȳ).

Now we focus on the equivalence between (i) and (iii). Note that under the

condition G(x̄, ȳ) = 0 and (z̄, s̄) = (x̄ − ∇xl(x̄, ȳ), h(x̄) + ȳ), we have (x̄, ȳ) =(
Proxθ(z̄),Proxδ∗P (s̄)

)
and Gnor(z̄, s̄) = 0. Assume that G−1 is isolated calm at

the origin with respect to (x̄, ȳ). Again we let (dz, ds) ∈ X × Y satisfy that

(Gnor)′((z̄, s̄); (dz, ds)) = 0, i.e.,
∇2
xxl
(
Proxθ(z̄),Proxδ∗P (s̄)

)
Prox′θ(z̄; dz)

+∇h(Proxθ(z̄))Prox′δ∗P (s̄; ds) + dz − Prox′θ(z̄; dz) = 0,

h′(Proxθ(z̄))Prox′θ(z̄; dz)− Π′P(s̄; ds) = 0.

(2.56)

Let (dx, dy) = (Prox′θ(z̄; dz),Prox′δ∗P (s̄, ds)). Then the first equation of (2.56) indi-

cates that

dz = Prox′θ(z̄; dz)−∇2
xxl
(
Proxθ(z̄),Proxδ∗P (s̄)

)
Prox′θ(z̄; dz)−∇h(Proxθ(z̄))Prox′δ∗P (s̄; ds)

= dx −∇2
xxl(x̄, ȳ)dx −∇h(x̄)dy,

and the second equation of (2.56) implies that

ds = Π′P(s̄; ds) + Prox′δ∗P (s̄, ds) = h′(x̄)dx + dy.

Substituting the above equations back into (2.56), we see that the equation (2.55)

is true, so that G′((x̄, ȳ); (dx, dy)) = 0. Then (dx, dy) = 0 by the non-singularity of
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G′((x̄, ȳ); (·, ·)) from Lemma 2.1, which further shows that (dz, ds) = 0 and thus,

(Gnor)−1 is isolated calm at the origin for (z̄, s̄).

Conversely, assume that (Gnor)−1 is isolated calm at the origin for (z̄, s̄) = (x̄−

∇xl(x̄, ȳ), h(x̄) + ȳ). Let (d̃x, d̃y) ∈ X × Y satisfies that G′((x̄, ȳ); (d̃x, d̃y)) = 0 such

that (2.55) holds for (x̄, ȳ) along the direction (d̃x, d̃y). Now we construct a direction

in X × Y as

(d̃z, d̃s) = (d̃x −∇2
xxl(x̄, ȳ)d̃x −∇h(x̄)d̃y, h

′(x̄)d̃x + d̃y).

By the first equation of (2.55) we have d̃x = Prox′θ(z̄; d̃z), which, after substituted

into the second equation of (2.55), indicates that

h′(Proxθ(z̄))Prox′θ(z̄; d̃z)− Π′P(s̄; d̃s) = 0. (2.57)

This also shows that

d̃y = d̃s − h′(x̄)d̃x = d̃s − h′(Proxθ(z̄))Prox′θ(z̄; d̃z) = d̃s − Π′P(s̄; d̃s) = Prox′δ∗P (s̄, d̃s).

Therefore, we can further obtain that

d̃z = d̃x −∇2
xxl(x̄, ȳ)d̃x −∇h(x̄)d̃y

= Prox′θ(z̄; d̃z)−∇2
xxl(Proxθ(z̄),Proxδ∗P (s̄))Prox′θ(z̄; d̃z)−∇h(Proxθ(z̄))Prox′δ∗P (s̄, d̃s).

Together with (2.57), we know (Gnor)′((z̄, s̄); (d̃z, d̃s)) = 0 such that (d̃z, d̃s) = 0

by Lemma 2.1 and the isolated calmness of (Gnor)−1 at the origin for (z̄, s̄). Then

(d̃x, d̃y) = (Prox′θ(z̄; d̃z),Prox′δ∗P (s̄, d̃s)) = 0, which indicates the isolated calmness of

G−1 at the origin for (x̄, ȳ).

Till now we have show that (i)⇐⇒ (ii)⇐⇒ (iii). It is easy to obtain (ii)=⇒ (iv)

by the definition of the isolated calmness as follows. Since G̃−1 is isolated calm at

the origin for (x̄, ȳ, 0), there exists a neighborhood N (x̄, ȳ, 0) ⊆ X × Y × (X × Y)

of (x̄, ȳ, 0), a neighborhood N (0) ⊆ X × Y × (X × Y) of 0 and a positive constant

η such that

G̃−1(∆) ∩N (x̄, ȳ, 0) ⊆ {(x̄, ȳ, 0)}+ η‖∆‖BU , ∀∆ := (∆1,∆2,∆3,∆4) ∈ N (0),
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where BU := {(x, y, δ) ∈ X × Y × (X × Y) : ‖x‖2 + ‖y‖2 + ‖δ‖2 ≤ 1}. They by

letting (∆3,∆4) = 0 ∈ X × Y in the above inclusion, we immediately have the

isolated calmness of the SKKT at the origin for (x̄, ȳ).

To complete the statement of this Theorem, it suffices to show (iv) =⇒ (iii). By

the definition of the isolated calm of SKKT at the origin for (x̄, ȳ), we know that

there exist positive constants η > 0, ε > 0 and a neighborhood N (0) ⊆ X × Y

of 0, such that for any δ ∈ N (0) and any (x, y) ∈ SKKT(δ) ∩ {(x, y) ∈ X × Y :

‖x− x̄‖+ ‖y − ȳ‖ < ε}, it holds

‖x− x̄‖+ ‖y − ȳ‖ ≤ η‖δ‖. (2.58)

Note that for any δ := (δ1, δ2) ∈ N (0) and any (zδ, sδ) ∈ (Gnor)−1(δ) ∩ {(z, s) ∈

X × Y : ‖z − z̄‖ + ‖s − s̄‖ < ε}, we have (xδ, yδ) := (Proxθ(zδ),Proxδ∗P (sδ)) ∈

SKKT(δ) ∩ {(x, y) ∈ X × Y : ‖x − x̄‖ + ‖y − ȳ‖ < ε}. Therefore, we get ‖x −

x̄‖ + ‖y − ȳ‖ ≤ η‖δ‖ by the inequality (2.58). Since Gnor(zδ, sδ) = δ, we have

(zδ, sδ) = (xδ + δ1 − ∇xl(xδ, yδ), h(xδ) + yδ − δ2) by the relationship (2.53). This

further implies that

‖zδ − z̄‖+ ‖sδ − s̄‖

≤ ‖xδ − x̄‖+ ‖∇xl(xδ, yδ)−∇xl(x̄, ȳ)‖+ ‖h(xδ)− h(x̄)‖+ ‖yδ − ȳ‖+ ‖δ‖

≤ (1 + L)(‖xδ − x̄‖+ ‖yδ − ȳ‖) + ‖δ‖

≤ ((1 + L)η + 1)‖δ‖,

for some constant L > 0, where the second inequality comes from the assumption

that f and h are C2 functions and (xδ, yδ) is restricted in a bounded neighborhood

of (x̄, ȳ). Thus, (Gnor)−1 is isolated calm at the origin for (z̄, s̄) by definition.



Chapter 3
An inexact majorized accelerated block

coordinate descent method for multi-block

unconstrained problems

In this chapter, we focus on designing and analyzing efficient algorithms for solving

the unconstrained convex optimization problems with coupled objective functions.

Recall the compact two-block form of such kind of problems (1.17) given in the

Chapter 1:

min p(u) + q(v) + φ(u, v), (3.1)

where p : U → (−∞,+∞] and q : V → (−∞,+∞] are two convex functions

(possibly nonsmooth), φ : U × V → (−∞,+∞) is a smooth convex function with

Lipschitz continuous gradient mapping, and U and V are real finite dimensional

Euclidean spaces each equipped with an inner product 〈·, ·〉 and its induced norm

‖ · ‖. This would be the core model that we focus on throughout this chapter.

Note that here we do not require p and q to admit explicit expressions of

the proximal mappings, which is different from the conventional settings that are

frequently imposed in the existing literature. This change of settings allows us

to handle the corresponding multi-block unconstrained problems with the form

(1.1) given in the Chapter 1, by taking u = (u1, u2, . . . , us) as one block and

47
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v = (v1, v2, . . . , vt) as the other block. In this way, the nonsmooth functions p

and q are composite ones as p(u) ≡
∑s

i=1 pi(ui) and q(v) ≡
∑t

j=1 qj(vj) for any

u = (u1, u2, . . . , us) ∈ U1×U2× . . .×Us and v = (v1, v2, . . . , vt) ∈ V1×V2× . . .×Vt,

which certainly fail to have explicit proximal mappings for most cases.

The first part of this chapter is devoted to the study of the two-block majorized

accelerated block coordinate descent (ABCD) method. Following that, we extend

our ABCD algorithm to an inexact version in the second part. This extension is

critical and essential to our subsequent numerical implementation since our ultimate

goal is to solve multi-block unconstrained optimization problems, instead of merely

two blocks. By allowing inexact solutions of each block, we are able to adopt various

well-studied iterative algorithms to solve the subproblems that involve two or more

nonsmooth functions simultaneously.

Before presenting our proposed algorithms and their theoretical properties, we

first introduce several notations and the majorization technique for the smooth

function φ.

Throughout this chapter, we denote w ≡ (u, v) ∈ U ×V . Since ∇φ is assumed to

be globally Lipschitz continuous, we know from (2.2) that there exist two self-adjoint

positive semidefinite linear operators Q and Q̂ : U × V → U × V such that for any

w,w′ ∈ U × V , it holds

φ(w) ≥ φ(w′) + 〈∇φ(w′), w − w′〉+
1

2
‖w′ − w‖2

Q (3.2)

and

φ(w) ≤ φ̂(w;w′) := φ(w′) + 〈∇φ(w′), w − w′〉+
1

2
‖w′ − w‖2

Q̂. (3.3)

We further decompose the operators Q and Q̂ into the following block structures:

Qw ≡

Q11 Q12

Q∗12 Q22

 u

v

 , Q̂w ≡

Q̂11 Q̂12

Q̂∗12 Q̂22

 u

v

 , ∀w = (u, v) ∈ U×V ,

where Q11, Q̂11 : U → U and Q22, Q̂22 : V → V are self-adjoint positive semidefinite

linear operators, and Q12, Q̂12 : V → U are two linear mappings whose adjoints are

given by Q∗12 and Q̂∗12, respectively.
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There are infinitely many choices of Q and Q̂ that satisfy the inequality (3.2)

and (3.3), but the operator Q̂ is always expected to be as small as possible such

that the majorized function φ̂ could tightly approximate the original counterpart φ.

We need the following assumption on the selection of the operators Q and Q̂ for

ensuring the O(1/k2) complexity of our proposed algorithms.

Assumption 3.1. There exist two self-adjoint positive semidefinite linear operators

D1 : U → U and D2 : V → V such that

Q̂ = Q+ Diag (D1,D2).

Furthermore, Q̂ satisfies that Q̂11 � 0 and Q̂22 � 0.

In order to simplify the subsequent discussions, we denote a positive semidefinite

operator H : U × V → U × V as

H := Diag(D1,D2 +Q22). (3.4)

Furthermore, we denote Ω as the optimal solution set of (3.1), which is assumed to

be non-empty.

3.1 The O(1/k2) complexity for the exact method

In this section, we first state our ABCD method for solving the problem (3.1). Fol-

lowing that we provide the O(1/k2) complexity analysis of the proposed algorithm.

Generally speaking, our algorithms can be treated as an accelerated version

of the alternating minimization type algorithms for the two-block problems. It

is well-known that Nesterov’s classical accelerated proximal gradient (APG) algo-

rithm, which enjoys an impressive O(1/k2) complexity, only works for single-block

problems. When the problems involve more than one separable nonsmooth terms

and they are updated in an alternative fashion, people usually discard the accel-

eration technique and prefer the (proximal) block coordinate descent (BCD) type

algorithms. However, theoretically the complexity of the BCD-type algorithms is



50
Chapter 3. An inexact majorized accelerated block coordinate descent method

for multi-block unconstrained problems

O(1/k) in the best case [83, 3], and numerically, much experiment in the past shows

that the acceleration technique may substantially improve the efficiency of the al-

gorithms, see, for example, the numerical comparison in [91]. This makes the study

of the accelerated BCD-type algorithms critical, both in the theoretical sense and

for the numerical applications. Below is the framework of our ABCD algorithm:

ABCD: A majorized accelerated block coordinate descent algorithm

Choose an initial point (u1, v1) = (ũ0, ṽ0) ∈ dom(p)×dom(q). Set k := 1 and t1 = 1.

Iterate until convergence:

Step 1. Compute ũk = arg min
u∈U
{p(u) + φ̂(u, vk;wk)}.

Step 2. Compute ṽk = arg min
v∈V
{q(v) + φ̂(ũk, v;wk)}.

Step 3. Compute
tk+1 =

1+
√

1+4t2k
2

, uk+1

vk+1

 =

 ũk

ṽk

+
tk − 1

tk+1

 ũk − ũk−1

ṽk − ṽk−1

 .

The subsequent analysis is strongly motivated by a recent paper of Chambolle

and Pock [9], where the joint objective function φ is taken to be quadratic. They

show that the O(1/k2) complexity still holds for the above method, where the two

blocks u and v are updated alternatively. We extend their nice results to a more

general class of problems of the form (3.1), where the function φ is only required to

be smooth, and prove the corresponding O(1/k2) complexity of the objective values.

The next proposition shows an important property of the objective values at the

current iteration point, which is essential to prove the main global complexity result.

Proposition 3.1. Suppose that Assumption 3.1 holds. Let the sequences {w̃k} :=

{(ũk, ṽk)} and {wk} = {(uk, vk)} be generated by the ABCD algorithm. Then for
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any k ≥ 1, it holds

θ(w̃k)− θ(w) ≤ 1

2
‖w − wk‖2

H −
1

2
‖w − w̃k‖2

H, w ∈ U × V . (3.5)

Proof. In the ABCD iteration scheme, the optimality condition for (ũk, ṽk) is
0 ∈ ∂p(ũk) +∇uφ(wk) + Q̂11(ũk − uk),

0 ∈ ∂q(ṽk) +∇vφ(wk) +Q∗12(ũk − uk) + Q̂22(ṽk − vk).
(3.6)

Therefore, by the convexity of the functions p and q, we have
p(u) ≥ p(ũk) + 〈u− ũk,−∇uφ(wk)− Q̂11(ũk − uk)〉, ∀u ∈ U ,

q(v) ≥ q(ṽk) + 〈v − ṽk,−∇vφ(wk)−Q∗12(ũk − uk)− Q̂22(ṽk − vk)〉, ∀v ∈ V .
(3.7)

By the inequalities (3.2) and (3.3), we know that
φ(w̃k) ≤ φ(wk) + 〈∇φ(wk), w̃k − wk〉+ 1

2
‖w̃k − wk‖2

Q̂,

φ(w) ≥ φ(wk) + 〈∇φ(wk), w − wk〉+ 1
2
‖w − wk‖2

Q,

(3.8)

which, imply, that

φ(w)− φ(w̃k) ≥ 〈∇φ(wk), w − w̃k〉+
1

2
‖w − wk‖2

Q −
1

2
‖w̃k − wk‖2

Q̂. (3.9)

By the Cauchy-Schwarz inequality, we can also get that

〈ũk − u, Q12(ṽk − vk)〉 =

〈
Q(w̃k − w),

 0

ṽk − vk

〉− 〈Q22(ṽk − v), ṽk − vk〉

≤ 1

2
(‖w̃k − w‖2

Q + ‖ṽk − vk‖2
Q22

)− 1

2
(‖ṽk − v‖2

Q22

+‖ṽk − vk‖2
Q22
− ‖vk − v‖2

Q22
)

=
1

2
‖w̃k − w‖2

Q +
1

2
(‖vk − v‖2

Q22
− ‖ṽk − v‖2

Q22
).

(3.10)

Summing up the inequalities (3.7) and (3.9) and substituting them into (3.10), we
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can obtain that

θ(w)− θ(w̃k) ≥ 1
2
‖w − wk‖2

Q − 1
2
‖w̃k − wk‖2

Q̂ − 〈w − w̃
k, Q̂(w̃k − wk)〉

−〈ũk − u,Q12(ṽk − vk)〉

≥ 1
2
‖w − wk‖2

Q − 1
2
‖w̃k − wk‖2

Q̂ −
1
2
(‖w − wk‖2

Q̂ − ‖w − w̃
k‖2
Q̂

−‖w̃k − wk‖2
Q̂)− 1

2
(‖w̃k − w‖2

Q + ‖vk − v‖2
Q22
− ‖ṽk − v‖2

Q22
)

= 1
2
‖w − w̃k‖2

H − 1
2
‖w − wk‖2

H,

(3.11)

where the last equation is obtained from Assumption 3.1.

Based on the previous proposition, we can show the following O(1/k2) complexity

of the objective values for our proposed ABCD algorithm.

Theorem 3.1. Suppose that Assumption 3.1 holds and the solution set Ω of the

problem (3.1) is non-empty. Let w∗ = (u∗, v∗) ∈ Ω. Then the sequence {w̃k} :=

{(ũk, ṽk)} generated by the ABCD algorithm satisfies that

θ(w̃k)− θ(w∗) ≤ 2‖w̃0 − w∗‖2
H

(k + 1)2
, ∀k ≥ 1. (3.12)

Proof. Taking w =
(tk − 1)w̃k−1 + w∗

tk
in (3.11) of the Proposition 3.1, we can

see that for k ≥ 1,

θ

(
(tk − 1)w̃k−1 + w∗

tk

)
− θ(w̃k) ≥ 1

2

∥∥∥∥(tk − 1)w̃k−1 + w∗

tk
− w̃k

∥∥∥∥2

H

−1

2

∥∥∥∥(tk − 1)w̃k−1 + w∗

tk
− wk

∥∥∥∥2

H
.

(3.13)

From the convexity of the function θ and tk ≥ 0 we also know that

θ

(
(tk − 1)w̃k−1 + w∗

tk

)
≤ (1− 1

tk
)θ(w̃k−1) +

1

tk
θ(w∗). (3.14)

Therefore, from the inequalities (3.13) and (3.14) and the fact that t2k − tk = t2k−1

for k ≥ 2, we obtain that for k = 1,

θ(w̃1)− θ(w∗) ≤ 1
2
‖w1 − w∗‖2

H − 1
2
‖w̃1 − w∗‖2

H = 1
2
‖w̃0 − w∗‖2

H − 1
2
‖w̃1 − w∗‖2

H

(3.15)
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and for k ≥ 2,

t2k[θ(w̃
k)− θ(w∗)]− (t2k − tk)[θ(w̃k−1)− θ(w∗)]

= t2k[θ(w̃
k)− θ(w∗)]− t2k−1[θ(w̃k−1)− θ(w∗)]

≤ 1
2
‖tk−1w̃

k−1 − w∗ − (tk−1 − 1)w̃k−2‖2
H − 1

2
‖tkw̃k − w∗ − (tk − 1)w̃k−1‖2

H.

(3.16)

Thus, we have that for k ≥ 1,

t2k[θ(w̃
k)− θ(w∗)] + 1

2
‖tkw̃k − w∗ − (tk − 1)w̃k−1‖2

H

≤ t2k−1[θ(w̃k−1)− θ(w∗)] + 1
2
‖tk−1w̃

k−1 − w∗ − (tk−1 − 1)w̃k−2‖2
H

≤ · · ·

≤ t21[θ(w̃1)− θ(w∗)] + 1
2
‖t1w̃1 − w∗ − (t1 − 1)w̃0‖2

H

≤ 1
2
‖w̃0 − w∗‖2

H.

(3.17)

By noting that tk ≥ k+1
2

, we can further get that for any k ≥ 1,

θ(w̃k)− θ(w∗) ≤ 2‖w̃0 − w∗‖2
H

(k + 1)2
. (3.18)

This completes the proof.

Remark 3.1. Theorem 3.1 shows that the O(1/k2) complexity of the objective values

is still true for the two-block accelerated BCD-type algorithms for problems of the

form (3.1). However, the outline of the proof here cannot be easily extended to the

problems with three or more blocks. We would thus use a different idea - introducing

the inexactness, to settle this issue in the next section.

3.2 An inexact accelerated block coordinate de-

scent method

In this section, we extend the previously proposed ABCD algorithm to an inexact

version. There are three main reasons to introduce the inexactness for the subprob-

lems: one is that the proximal mapping of a nonsmooth function may not admit
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analytical solutions. Thus, only allowing the exact computation for the subproblem

is unsuitable in practice. The second reason is that sometimes it is unnecessary to

compute the solutions of each block exactly even though it is doable, especially at

the early stage of the whole procedure. For example, if a subproblem of the ABCD is

equivalent to solve a very large scale dense linear system, it is perhaps a good idea to

use the iterative methods instead of running the direct solvers. The last reason, and

in fact the most important one, is because our initial target is to solve multi-block

convex composite optimization problems. Our principle to deal with the multi-block

problems consists of two steps: the first step is to divide all the variables into two

groups, following that we solve each group by either the Newton-type methods or

others. Therefore, it is prominent to study the inexact ABCD algorithms (iABCD).

There is one point worthy of emphasizing here: to divide the original multi-block

problems into more than two blocks may not be efficient in practice for the convex

composite conic optimization problems. Intuitively speaking, the more alternative

updates in one cycle, the further we are from the original problems.

Below is the framework of our proposed iABCD algorithm:
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iABCD: An inexact majorized accelerated block coordinate descent al-

gorithm

Choose an initial point (u1, v1) = (ũ0, ṽ0) ∈ dom(p) × dom(q) and a nonnegative

non-increasing sequence {εk}. Set k := 1 and t1 = 1. Iterate until convergence:

Step 1. Compute
ũk = arg min

u∈U
{p(u) + φ̂(u, vk;wk) + 〈δku, u〉},

ṽk = arg min
v∈V
{q(v) + φ̂(ũk, v;wk) + 〈δkv , v〉},

such that δku ∈ U and δkv ∈ V satisfying max{‖Q̂−1/2
11 δku‖, ‖Q̂

−1/2
22 δkv‖} ≤ εk.

Step 2. Compute
tk+1 =

1+
√

1+4t2k
2

, uk+1

vk+1

 =

 ũk

ṽk

+
tk − 1

tk+1

 ũk − ũk−1

ṽk − ṽk−1

 .

Lemma 3.1. The sequence {tk}k≥1 generated by the iABCD satisfies the following

properties:

(a) 1− 1

tk+1

=
t2k
t2k+1

. (b)
k + 1

2
≤ tk ≤ k.

Proof. By noting that t2k+1−tk+1 = t2k, the property (a) can be obtained directly.

The property (b) holds via the following inequalities:

tk+1 =
1 +

√
1 + 4t2k
2

≤ 1 + 1 + 2tk
2

= 1 + tk ≤ k + t1 = k + 1

and

tk+1 =
1 +

√
1 + 4t2k
2

≥ 1 + 2tk
2

≥ k + 2t1
2

=
k + 2

2
.

Similarly as the exact case in the previous section, we shall also characterize

the decrease of the objective values at the current iteration point for the iABCD
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algorithm in the following proposition. The proof of it can be derived with no

difficulty based on the proof of Proposition 3.1 by slightly modifying the optimality

conditions at the iteration point (ũk, ṽk) for the iABCD algorithm. We omit the

proof here for brevity.

Proposition 3.2. Suppose that Assumption 3.1 holds. Let the sequences {w̃k} :=

{(ũk, ṽk)} and {wk} = {(uk, vk)} be generated by the iABCD algorithm. Then for

any k ≥ 1,

θ(w̃k)−θ(w) ≤ 1

2
‖w−wk‖2

H−
1

2
‖w− w̃k‖2

H+εk‖w− w̃k‖Diag(Q̂11,Q̂22), ∀w ∈ U ×V .

For k ≥ 1, we denote

ūk := arg min
u∈U
{p(u) + φ̂(u, vk;wk)}, v̄k := arg min

v∈V
{q(v) + φ̂(ūk, v;wk)},

which are the exact solutions at the (k+1)th iteration, and (ū0, v̄0) = (u1, v1). Since

Q̂11 and Q̂22 are assumed to be positive definite, the above two problems admit

unique solutions and thus, ūk and v̄k are well defined for k ≥ 0. The following

Lemma shows the gap between (ūk, v̄k) and (ũk, ṽk).

Lemma 3.2. For any k ≥ 1, we have the following inequalities:

‖ūk − u∗‖2
Q̂11
≤ ‖uk − u∗‖2

D11
+ ‖vk − v∗‖2

Q̂22
. (3.19)

‖Q̂1/2
11 (ũk − ūk)‖ ≤ εk, ‖Q̂1/2

22 (ṽk − v̄k)‖ ≤ (1 +
√

2)εk. (3.20)

Proof. By the optimality conditions at point (ūk, v̄k) and (u∗, v∗), we have that
0 ∈ ∂p(ūk) +∇uφ(wk) + Q̂11(ūk − uk),

0 ∈ ∂p(u∗) +∇uφ(w∗).

(3.21)

By the monotone property of the subgradient operator ∂p, we get

〈ūk − u∗,∇uφ(wk)−∇uφ(w∗) + Q̂11(ūk − uk)〉 ≤ 0. (3.22)
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Since ∇φ is globally Lipschitz continuous, it is known from Clarke’s Mean-Value

Theorem [12, Proposition 2.6.5] that there exists a self-adjoint and positive semidef-

inite operator Wk ∈ conv{∂2φ([wk−1, wk])} such that

∇φ(wk)−∇φ(wk−1) =Wk(wk − wk−1),

where the set conv{∂2φ[wk−1, wk]} denotes the convex hull of all pointsW ∈ ∂2φ(z)

for any z ∈ [wk−1, wk]. Denote Wk :=

 Wk
11 Wk

12

(Wk
12)∗ Wk

22

, where Wk
11 : U → U ,

Wk
22 : V → V are self-adjoint positive semidefinite operators and Wk

12 : U → V is a

linear operator. Then by Cauchy-Schwarz inequality, we have that

〈ūk − u∗,∇uφ(wk)−∇uφ(w∗)〉

= 〈ūk − u∗,Wk
11(uk − u∗) +Wk

12(vk − v∗)〉

≥ 1
2
(‖ūk − u∗‖2

Wk
11

+ ‖uk − u∗‖2
Wk

11
− ‖ūk − uk‖2

Wk
11

)− 1
2
(‖ūk − u∗‖2

Wk
11

+ ‖vk − v∗‖2
Wk

22
)

≥ 1
2
(‖uk − u∗‖2

Q11
− ‖ūk − uk‖2

Q̂11
)− 1

2
‖vk − v∗‖2

Q̂22

= 1
2
‖uk − u∗‖2

Q11
− 1

2
‖ūk − uk‖2

Q̂11
− 1

2
‖vk − v∗‖2

Q̂22
.

(3.23)

From (3.22) and (3.23) we can obtain that

1
2
‖uk − u∗‖2

Q11
− 1

2
‖ūk − uk‖2

Q̂11
− 1

2
‖vk − v∗‖2

Q̂22
+ 〈ūk − u∗, Q̂11(ūk − uk)〉

= 1
2
‖uk − u∗‖2

Q11
− 1

2
‖ūk − uk‖2

Q̂11
− 1

2
‖vk − v∗‖2

Q̂22
+ 1

2
(‖ūk − u∗‖2

Q̂11

+‖ūk − uk‖2
Q̂11
− ‖uk − u∗‖2

Q̂11
)

= 1
2
‖ūk − u∗‖2

Q̂11
− 1

2
‖uk − u∗‖2

D1
− 1

2
‖vk − v∗‖2

Q̂22

≤ 0,

(3.24)

which is equivalent to say ‖ūk−u∗‖2
Q̂11
≤ ‖uk−u∗‖2

D11
+‖vk−v∗‖2

Q̂22
. This completes

the proof of the first inequality.

In order to obtain bounds for ‖Q̂1/2
11 (ũk − ūk)‖ and ‖Q̂1/2

22 (ṽk − v̄k)‖, similarly by
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applying the optimality condition at point (ūk, v̄k) and (ũk, ṽk), we have that

〈Q̂11(ũk − ūk) + δku, ũ
k − ūk〉 ≤ 0,

〈Q∗12(ũk − ūk) + Q̂22(ṽk − v̄k) + δkv , ṽ
k − v̄k〉 ≤ 0.

From the first inequality we know that

‖Q̂1/2
11 (ũk − ūk)‖ ≤ ‖Q̂−1/2

11 δku‖ ≤ εk. (3.25)

From the second inequality we obtain that

‖ṽk − v̄k‖2
Q̂22

≤ ‖Q̂−1/2
22 δkv‖‖Q̂

1/2
22 (ṽk − v̄k)‖ − 〈Q∗12(ũk − ūk), ṽk − v̄k〉

≤ ‖Q̂−1/2
22 δkv‖‖Q̂

1/2
22 (ṽk − v̄k)‖+ 1

2
(‖ũk − ūk‖2

Q̂11
+ ‖ṽk − v̄k‖2

Q̂22
),

(3.26)

which further shows that

‖ṽk − v̄k‖2
Q̂22

≤ 2‖Q̂−1/2
22 δkv‖‖Q̂

1/2
22 (ṽk − v̄k)‖+ ‖ũk − ūk‖2

Q̂11

≤ 2εk‖Q̂1/2
22 (ṽk − v̄k)‖+ ε2

k.

(3.27)

By solving this inequality we obtain that

‖Q̂1/2
22 (ṽk − v̄k)‖ ≤ (1 +

√
2)εk. (3.28)

This completes the proof of this Lemma.

Based on the previous results, now we are ready to present the main theorem of

this section, which shows that the iABCD algorithm also enjoys the nice O(1/k2)

complexity.

Theorem 3.2. Suppose that Assumption 3.1 holds and the solution set Ω of the

problem (3.1) is non-empty. Let w∗ ∈ Ω. Assume that
∞∑
i=1

iεi < ∞. Then the

sequence {w̃k} := {(ũk, ṽk)} generated by the iABCD algorithm satisfies that

θ(w̃k)− θ(w∗) ≤ 2‖w̃0 − w∗‖2
H + c0

(k + 1)2
, ∀k ≥ 1, (3.29)

where c0 is a constant number.
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Proof. When w̃k = w̄k in Lemma 3.2, the corresponding εk = 0 since w̄k =

(ūk, v̄k) exactly solves the subproblems in (k + 1)th iteration, and thus we have

θ(w)− θ(w̄k) ≥ 1

2
‖w − w̄k‖2

H −
1

2
‖w − wk‖2

H. (3.30)

Taking w =
(tk − 1)w̄k−1 + w∗

tk
in (3.30), we can see that for k ≥ 1,

θ

(
(tk − 1)w̄k−1 + w∗

tk

)
− θ(w̄k) ≥ 1

2

∥∥∥∥(tk − 1)w̄k−1 + w∗

tk
− w̄k

∥∥∥∥2

H

−1

2

∥∥∥∥(tk − 1)w̄k−1 + w∗

tk
− wk

∥∥∥∥2

H
.

(3.31)

From the convexity of the function θ and tk ≥ 0, we know that

θ

(
(tk − 1)w̄k−1 + w∗

tk

)
≤ (1− 1

tk
)θ(w̄k−1) +

1

tk
θ(w∗). (3.32)

Therefore, from the inequalities (3.31), (3.32) and the fact that t2k − tk = t2k−1 for

k ≥ 2, we obtain that for k = 1,

θ(w̄1)− θ(w∗) ≤ 1
2
‖w1 − w∗‖2

H − 1
2
‖w̄1 − w∗‖2

H

= 1
2
‖w̃0 − w∗‖2

H − 1
2
‖w̄1 − w∗‖2

H

= 1
2
‖w̄0 − w∗‖2

H − 1
2
‖w̄1 − w∗‖2

H

(3.33)

and for k ≥ 2,

t2k[θ(w̄
k)− θ(w∗)]− (t2k − tk)[θ(w̄k−1)− θ(w∗)]

= t2k[θ(w̄
k)− θ(w∗)]− t2k−1[θ(w̄k−1)− θ(w∗)]

≤ 1
2
‖tk−1w̃

k−1 − w∗ − (tk−1 − 1)w̃k−2 + (tk − 1)(w̄k−1 − w̃k−1)‖2
H

−1
2
‖tkw̄k − w∗ − (tk − 1)w̄k−1‖2

H

= 1
2
‖λk−1‖2

H − 〈Hλk−1, (tk−1 + tk − 1)(w̄k−1 − w̃k−1) + (tk−1 − 1)(w̄k−2 − w̃k−2)〉

+1
2
‖(tk−1 + tk − 1)(w̄k−1 − w̃k−1) + (tk−1 − 1)(w̄k−2 − w̃k−2)‖2

H − 1
2
‖λk‖2

H,

(3.34)
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where λk := tkw̄
k − w∗ − (tk − 1)w̄k−1. By Lemma 3.1 (b), Lemma 3.2 and the

nonincreasing property of {εk}, we have that

‖H1/2(tk−1 + tk − 1)(w̄k−1 − w̃k−1) + (tk−1 − 1)(w̄k−2 − w̃k−2))‖

≤ (tk−1 + tk − 1)‖H1/2‖‖w̄k−1 − w̃k−1‖+ (tk−1 − 1)‖H1/2‖‖w̄k−2 − w̃k−2‖

≤ c1(k − 1)εk−1,

where c1 := 3‖H1/2‖(‖Q̂−1/2
11 ‖+ (1 +

√
2)‖Q̂−1/2

22 ‖). Thus, we obtain for k ≥ 1 that

t2k[θ(w̄
k)− θ(w∗)] + 1

2
‖λk‖2

H

≤ t2k−1[θ(w̄k−1)− θ(w∗)] + 1
2
‖λk−1‖2

H + c1(k − 1)εk−1‖H1/2λk−1‖+ 1
2
c2

1(k − 1)2ε2
k−1

≤ · · ·

≤ t21[θ(w̄1)− θ(w∗)] + 1
2
‖λ1‖2

H + c1

k−1∑
i=1

iεi‖H1/2λi‖+
1

2
c2

1

k−1∑
i=1

i2ε2
i

≤ 1
2
‖w̄0 − w∗‖2

H + c1

k−1∑
i=1

iεi‖H1/2λi‖+
1

2
c2

1

k−1∑
i=1

i2ε2
i .

(3.35)

Now we will show the above inequality in fact indicates the boundness of the se-

quence {H1/2λk}. There exists a subsequence {λkm} of {λk} satisfies that λk1 = λ1

and for m ≥ 2, {λkm : ‖H1/2λkm‖ > ‖H1/2λi‖ ∀i < km}. (This subsequence may

only contain finite terms.) Then for any km ≥ 1, we have that

‖H1/2λkm‖ ≤ max{1,
‖w̄0−w∗‖2H+ 2c1

km−1∑
i=1

iεi‖H1/2λi‖+ c2
1

km−1∑
i=1

i2ε2
i

‖H1/2λkm‖ }

≤ max{1, ‖w̄0 − w∗‖2
H + 2c1

km−1∑
i=1

iεi
‖H1/2λi‖
‖H1/2λkm‖

+ c2
1

km−1∑
i=1

i2ε2
i }

≤ max{1, ‖w̄0 − w∗‖2
H + 2c1

km−1∑
i=1

iεi + c2
1

km−1∑
i=1

i2ε2
i }

≤ max{1, ‖w̄0 − w∗‖2
H + 2c1

∞∑
i=1

iεi + c2
1

∞∑
i=1

i2ε2
i },

(3.36)
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where the third inequality is obtained by the definition of the subsequence λkm .

Since ‖H1/2λi‖ ≤ ‖H1/2λkm‖ for i ≤ km, we can further obtain that for any k ≥ 1,

‖H1/2λk‖ ≤ c2 := max{1, ‖w̄0 − w∗‖2
H + 2c1

∞∑
i=1

iεi + c2
1

∞∑
i=1

i2ε2
i }. (3.37)

Now we estimate the bound for ‖w̄k+1 − w∗‖. By letting w = w∗ in (3.30), we have

‖H1/2(w̄k+1 − w∗)‖ ≤ ‖H1/2(wk+1 − w∗)‖

= ‖H1/2((1 + tk−1
tk+1

)w̃k − tk−1
tk+1

w̃k−1 − w∗)‖

≤ (1− 1
tk+1

)‖H1/2(w̄k − w∗)‖+ 1
tk+1
‖H1/2(tkw̄

k − (tk − 1)w̄k−1 − w∗)‖

+(1 + tk−1
tk+1

)‖H1/2(w̃k − w̄k)‖+ tk−1
tk+1
‖H1/2(w̃k−1 − w̄k−1)‖

≤ t2k
t2k+1

‖H1/2(w̄k − w∗)‖+
c2

tk+1

+ 3c1εk,

(3.38)

where the last inequality is obtained by Lemma 3.1 (a). Thus similarly we can get

that

t2k
t2k+1

‖H1/2(w̄k − w∗)‖ ≤ t2k
t2k+1

(
t2k−1

t2k
‖H1/2(w̄k−1 − w∗)‖+

c2

tk
+ 3c1εk−1)

t2k
t2k+1

t2k−1

t2k
‖H1/2(w̄k−1 − w∗)‖ ≤ t2k

t2k+1

t2k−1

t2k
(
t2k−2

t2k−1

‖H1/2(w̄k−2 − w∗)‖+
c2

tk−1

+ 3c1εk−2)

... ≤ ...

t2k
t2k+1

t2k−1

t2k
· · · t

2
2

t23
‖H1/2(w̄2 − w∗)‖ ≤ t2k

t2k+1

t2k−1

t2k
· · · t

2
2

t23
(
t21
t22
‖H1/2(w̄1 − w∗)‖+

c2

t2
+ 3c1ε1).

(3.39)

Summing the above inequalities together, we can obtain that

‖H1/2(w̄k+1 − w∗)‖ ≤ t21
t2k+1

‖H1/2(w̄1 − w∗)‖+ c2

k∑
i=1

ti+1

t2k+1

+ 3c1

k∑
i=1

εi. (3.40)

By Lemma 3.1 (b), we have that for any k ≥ 1,

k∑
i=1

ti+1

t2k+1

≤ (3 + k)k

2(1
2
k + 1)2

≤ 2.
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Therefore, the inequality (3.40) implies that

‖H1/2(w̄k+1 − w∗)‖ ≤ 4
(k+2)2

‖H1/2(w̄1 − w∗)‖+ 2c2 + 3c1

∑∞
i=1 εi

≤ c3 := 4
9
‖H1/2(w̄1 − w∗)‖+ 2c2 + 3c1

∑∞
i=1 εi.

By the notation of the operator H, we can further obtain that

‖D1/2
1 (ūk+1 − u∗)‖ ≤ c3, ‖Q̂1/2

22 (v̄k+1 − v∗)‖ ≤ c3. (3.41)

The next step is to prove the boundness of the term ‖tkũk − u∗ − (tk − 1)ũk−1‖Q̂11
.

By noting that for k ≥ 2,

‖Q̂1/2
11 (ūk − u∗)‖ ≤ ‖D1/2

1 (uk − u∗)‖+ ‖Q̂1/2
22 (vk − v∗)‖

≤ (1 + tk−1−1

tk
)(‖D1/2

1 (ũk−1 − u∗)‖+ ‖Q̂1/2
22 (ṽk−1 − v∗)‖

+ tk−1−1

tk
(‖D1/2

1 (ũk−2 − u∗)‖+ ‖Q̂1/2
22 (ṽk−2 − v∗)‖)

≤ 2(‖D1/2
1 (ũk−1 − u∗)‖+ ‖Q̂1/2

22 (ṽk−1 − v∗)‖) + ‖D1/2
1 (ũk−2 − u∗)‖

+‖Q̂1/2
22 (ṽk−2 − v∗)‖

≤ 3(2c3 + (2 +
√

2)εk−2),

(3.42)

we have

‖tkũk − u∗ − (tk − 1)ũk−1‖Q̂11
≤ tk(‖ūk − ũk‖Q̂11

+ ‖ūk − u∗‖Q̂11
)

+(tk − 1)(‖ūk−1 − u∗‖Q̂11
+ ‖ūk−1 − ũk−1‖Q̂11

)

≤ (2tk − 1)((7 + 3
√

2)ε1 + 6c3).

Besides, for k = 1, we have

‖t1ũ1 − u∗ − (t1 − 1)ũ0‖Q̂11
= ‖ũ1 − u∗‖Q̂11

≤ ‖u1 − u∗‖D̂1
+ ‖v1 − v∗‖Q̂22

+ ‖ũ1 − ū1‖Q̂11

≤ 2c3 + ε1

≤ (2t1 − 1)((7 + 3
√

2)ε1 + 6c3).
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Finally, by Proposition 3.2 at w =
(tk − 1)w̃k−1 + w∗

tk
, we see that

t2k[θ(w̃
k)− θ(w∗)] + 1

2
‖tkw̃k − w∗ − (tk − 1)w̃k−1‖2

H

≤ t2k−1[θ(w̃k−1)− θ(w∗)] + 1
2
‖tk−1w̃

k−1 − w∗ − (tk−1 − 1)w̃k−2‖2
H

+εk‖tkw̃k − w∗ − (tk − 1)w̃k−1‖Diag(Q̂11, Q̂22)

≤ · · ·

≤ t21[θ(w̃1)− θ(w∗)] + 1
2
‖t1w̃1 − w∗ − (t1 − 1)w̃0‖2

H

+
k∑
i=1

εi‖tiw̃i − w∗ − (ti − 1)w̃i−1‖Diag(Q̂11, Q̂22)

≤ 1
2
‖w̃0 − w∗‖2

H +
k∑
i=1

εi‖tiw̃i − w∗ − (ti − 1)w̃i−1‖Diag(Q̂11, Q̂22)

≤ 1
2
‖w̃0 − w∗‖2

H +
k∑
i=1

(2ti − 1)((7 + 3
√

2)ε1 + 6c3) + (1 +
√

2)εi + c2)εi

≤ 1
2
‖w̃0 − w∗‖2

H + (1 +
√

2)
∞∑
i=1

(2i− 1)ε2
i + ((7 + 3

√
2)ε1 + 6c3 + c2)

∞∑
i=1

(2i− 1)εi

≤ 1
2
‖w̃0 − w∗‖2

H + 1
4
c0,

where

c0 := (1 +
√

2)
∞∑
i=1

(2i− 1)ε2
i + ((7 + 3

√
2)ε1 + 6c3 + c2)

∞∑
i=1

(2i− 1)εi

is a finite value by the assumption that
∞∑
i=1

iεi < ∞. By noting that tk ≥ k+1
2

, we

could obtain the inequality (3.29). This completes the proof.

3.3 An application: the regularized projection onto

the intersection of equations, inequalities and

convex sets

In this chapter, we discuss how to apply the iABCD framework provided in the

previous section to an important class of least square problems: given an arbitrary
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point, find its nearest point that satisfies many equality and inequality constraints

as well as stays in the intersection of some non-polyhedral sets.

The optimization model of the above mentioned least square problems takes the

following form:

min
X

1
2
‖X −G‖2 +

s∑
i=1

θi(X)

s.t. AX = b, BX ∈ Q, X ∈ K,
(3.43)

where s, q are positive integers, θi(·) : X → (−∞,∞] for i = 1, . . . , s are convex

functions (possibly nonsmooth), A : X → Y and B : X → Z are linear operators,

Q := {z ∈ Z : l ≤ z ≤ u} with l, u ∈ Z being lower and upper bounds, K ⊆ X

is a convex cone, G ∈ X and b ∈ Y are given data, and X , Y and Z are real

finite dimensional Euclidean spaces each equipped with an inner product 〈·, ·〉 and

its induced norm ‖ · ‖. In particular, one can let θi(·) = δCi(·) if the variable is

required to stay within some convex set Ci. The nonsmooth function θi can also be

chosen as regularization terms to impose different structures of the solutions, such

as ‖ · ‖1, ‖ · ‖2,1 or ‖ · ‖∗ for the (column-wise) sparsity or low rank structure, and

that is the reason we name the problem (3.43) as regularized projection.

By introducing variables Yi = X for i = 1 . . . s, the problem (3.43) can be

equivalently written as

min
X,Y1,...Ys

1

2
‖X −G‖2 +

s∑
i=1

θi(Yi)

s.t. AX = b, BX ∈ Q, X ∈ K, X = Yi, i = 1, . . . , s.

(3.44)

The dual problem of (3.44) takes the following form:

min θ(y, S, z, Z1, . . . Zs) :=
1

2
‖A∗y + S + B∗z +

s∑
i=1

Zi +G‖2 − 〈b, y〉

+δK∗(S) + δQ∗(−z) +
s∑
i=1

θ∗i (−Zi),
(3.45)

where θ∗i (·) denotes the convex conjugate function of θ(·) for i = 1, · · · , s and δC(·) := 0 if x ∈ C

+∞ otherwise
is the indicator function of a given convex set C.
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For notational convenience, let W ≡ Y × X × Z × X × . . . × X and W ≡

(y, S, z, Z1, . . . , Zs) ∈ W . We write the smooth part of the dual objective function

(3.45) as

φ(W ) :=
1

2
‖A∗y + S + B∗z +

s∑
i=1

Zi +G‖2 − 〈b, y〉. (3.46)

Note that only two blocks of variables are allowed in the iABCD framework. Hence,

we need to group the dual variables (y, S, z, Z1, . . . , Zs) into two parts. Motivated by

the success of many previous large scale computation with similar type of constraints,

for example, [103, 91], we prefer to put the “difficult” ones like y and S together

as one block U ≡ (y, S) and all others as the other block V ≡ (z, Z1, . . . , Zs). As

discussed in Section 2.3, the block U can be solved via the inexact sGS technique.

In the following, we focus on the approaches for solving the block V = (z, Z1, . . . , Zs).

For notational convenience, we denote Ck := A∗ỹk + S̃k +G with k ≥ 1 as the itera-

tion number. Therefore, for the kth step, the subproblem that under consideration

before any majorization is

min
z,Z1,...,Zs

1

2
‖B∗z +

s∑
i=1

Zi + Ck‖2 + δQ∗(−z) +
s∑
i=1

θ∗i (−Zi). (3.47)

Since there are still s + 1 nonsmooth functions involved in this subproblem,

one could apply the matrix Cauchy-Schwartz inequality to the block in order to the

term 1
2
‖B∗z+

∑s
i=1 Zi+C

k‖2 to obtain a relatively tight and convenient majorization

function. In many real applications (as shown in the numerical examples sections),

the linear inequality constraint BX ∈ Q in the primal form (3.43) is challenging to

solve because of the ultra large scale of the operator B. A practical way to deal with

it is to divide the operator B and the dual variable z into q ≥ 1 parts as
(BX)T ≡ (B1X,B2X, . . . ,BqX)T , ∀X ∈ X ,

B∗z ≡ (B∗1z1,B∗2z2, . . . ,B∗qzq), ∀z ≡ (z1, z2, . . . zq) ∈ Z1 ×Z2 × . . .×Zq,

where Bi : X → Zi and Z1 × Z2 × . . . × Zq = Z. By the matrix Cauchy-Schwarz

inequality (2.17), it is easy to see that

(B∗ I . . . I)∗(B∗ I . . . I) � (s+ 1)Diag (M1, . . . ,Mq,Mq+1, . . . ,Mq+s),



66
Chapter 3. An inexact majorized accelerated block coordinate descent method

for multi-block unconstrained problems

where

Mi :=


BiB∗i +

∑
j=1,...,q, j 6=i

(BiB∗jBjB∗i )1/2 for i = 1, . . . q,

I for i = q + 1, . . . , q + s.

The reasons behind the decomposition of the operator B and then majorizing them

with the above matrix Cauchy-Schwarz inequality are that in many real applica-

tions, the operator B usually is very sparse or contains some orthogonal struc-

ture between different rows. If this is the case, the quadratic terms involving∑
j=1,...,q, j 6=i

(BiB∗jBjB∗i )1/2 would be quite small compared to the block diagonal parts

BiB∗i .

Since M1, . . . ,Mq may still fail to be positive definite and can be difficult to

compute, simple positive definite operators to majorize these operators are desirable.

Here we adopt the following ideas: denote the eigenvalue decomposition of the

operator Mi for i = 1, . . . , q as

Mi =

ri∑
j=1

λijP
i
j (P

i
j )
T , i = 1, . . . , q,

where λi1 ≥ λi2 ≥ . . . ≥ λiri are the eigenvalues of Mi with ri being the rank

of Mi, and P i
1, P

i
2, . . . , P

i
ri

are the orthogonal eigenvectors of Mi. We choose the

majorization operators for i = 1, . . . , q to be

M̂i :=

ki∑
j=1

λijP
i
j (P

i
j )
T + λiki

ri∑
j=ki+1

P i
j (P

i
j )
T

=

ki∑
j=1

λijP
i
j (P

i
j )
T + λiki(I −

ki∑
j=1

P i
j (P

i
j )
T )

=

ki−1∑
j=1

(λij − λki)P i
j (P

i
j )
T + λikiI,

(3.48)

where 1 ≤ ki ≤ li is a small integer that satisfies λiki > 0. This majorization idea

has also been adopted in [91] for efficiently solving the linear systems. After the

positive definite proximal terms are obtained, each small block can be solved by the

APG-SNCG algorithm provided in Section 2.4.
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We end this section by a discussion on the generalization of the symmetric Gauss-

Seidel technique to the problems involving two non-smooth terms. Consider the

problems of the following form:

minF (x) := f1(x1) + f2(x2) + 1
2
〈x,Hx〉 − 〈r, x〉, (3.49)

where x ≡ (x1, x2) ∈ X := X1 × X2 with x1 ∈ X1 and x2 ∈ X2, f1 : X1 → (−∞,∞],

f2 : X2 → (−∞,∞] are two closed proper convex functions (possibly nonsmooth),

H : X → X is a self-adjoint positive semidefinite linear operator, and r ∈ X is the

given data. We decompose H and r according to the block structure of x such that

for any x ≡ (x1, x2) ∈ X ,

Hx ≡

 H11 H12

H∗12 H22

 x1

x2

 , 〈r, x〉 ≡ 〈r1, x1〉+ 〈r2, x2〉,

where H11 : X1 → X1 and H22 : X2 → X2 are self-adjoint positive semidefinite linear

operators, and H12 : X2 → X1 is a linear mapping whose adjoint is given by H∗12.

We further assume H11 � 0 and H22 � 0 as Theorem 2.2.

Define an operator Pf2 : X1 → X2 as

Pf2(x1) := arg min
x2
{f2(x2) + 〈x,Hx〉 − 〈r, x〉} , (3.50)

and two functions g : X1 → (−∞,+∞] and ψ : X1 → (−∞,+∞] as
g(x1) := f2(Pf2(x1)) + 1

2
〈(x1,Pf2(x1)),H(x1,Pf2(x1))〉 − 〈r, (x1,Pf2(x1))〉,

ψ(x1) := 1
2
〈x1,H11x1〉 − 〈r1, x1〉 − g(x1).

(3.51)

Since H22 is assumed to be positive definite, the above optimization problem

has a unique solution and thus, Pf2 is well defined. The following Theorem can be

obtained from [15] and [30, Theorem 10.2.1].

Proposition 3.3. The function g is continuously differentiable, with the gradient

given by

∇g(x1) = H11x1 +H12Pf2(x1)− r1. (3.52)
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Furthermore, the function ψ is convex and continuously differentiable, with the gra-

dient given by

∇ψ(x1) = −H12Pf2(x1). (3.53)

The following Theorem states the property of the nonlinear one cycle symmetric

Gauss-Seidel iteration for the problem of the form (3.49).

Theorem 3.3. Given x̄1 ∈ X1. Define

x′2 = Pf2(x̄1) := arg min
x2

{
f2(x2) +

1

2
〈(x̄1, x2),H(x̄1, x2)〉 − 〈r2, x2〉

}
.

Then
x1

+ = arg minx1
{
f1(x1) + 1

2
〈(x1, x

′
2),H(x1, x

′
2)〉 − 〈r1, x1〉

}
x2

+ = Pf2(x+
1 ) := arg minx2

{
f2(x2) + 1

2
〈(x+

1 , x2),H(x+
1 , x2)〉 − 〈r2, x2〉

}
(3.54)

solves the problem

min
x

{
f1(x1) + f2(x2) +

1

2
〈x,Hx〉 − 〈r, x〉+ ∆ψ(x1, x̄1)

}
, (3.55)

where

∆ψ(x1, x̄1) := ψ(x1)− ψ(x̄1)− 〈∇ψ(x̄1), x1 − x̄1〉 ≥ 0.

Proof. Denote (x∗1, x
∗
2) as the optimal solution of the problem (3.55). Then by

the optimality condition of the problem (3.55), we can obtain that
0 ∈ ∂f1(x∗1) +H11x

∗
1 +H12x

∗
2 − r1 +∇ψ(x∗1)−∇ψ(x̄1),

0 ∈ ∂f2(x∗2) +H∗12x
∗
1 +H22x

∗
2 − r2.

(3.56)

By the notation of the operator Pf2(·) and Proposition 3.3, we can equivalently write

(3.56) as 
0 ∈ ∂f1(x∗1) +H11x

∗
1 +H12Pf2(x̄1)− r1,

0 ∈ ∂f2(x∗2) +H∗12x
∗
1 +H22x

∗
2 − r2.

(3.57)

Comparing (3.57) and the optimality conditions for the problem (3.54) at (x+
1 , x

+
2 ),

we have that (x∗1, x
∗
2) = (x+

1 , x
+
2 ). This completes the proof.
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Remark 3.2. If f2 ≡ 0, i.e. there is only one nonsmooth function f1(·) in (3.49),

then one can derive that

Pf2(x1) = H−1
22 (r2 −H∗12x1).

This implies that ∆ψ(x1; x̄1) = 1
2
‖x1 − x̄1‖2

H12H−1
22 H∗12

for any x1, x̄1 ∈ X1, which

exactly covers the result of Theorem 2.2. In fact, ∆ψ is the (semi-)Bregman dis-

tance function associated with the function ψ, which certainly includes the (semi-

)Euclidean distance function.

Even though we obtain a nice extension of Theorem 2.2 from one nonsmooth

term to two, there is a fatal disadvantage in the above procedure that the function

ψ depends on the value of Pf2(x1). This causes a great difficulty for the algorithm to

be embedded into the iABCD framework for solving the subproblems since the (semi-

Bregman) distance proximal term ∆ψ is neither fixed nor monotone decreasing. In

order to obtain an efficient algorithm that can be used to solve the subproblems in

the iABCD framework, perhaps we’d better give up the idea to solve x1 and x2 in an

alternative fashion for the problem (3.49). In fact, we could substitute x2 directly

into the (3.49) and get a reduced optimization problem:

minF (x1,Pf2(x1)) = f(x1) + g(x1), (3.58)

where the function g is defined in (3.51). Note that g is a strongly convex function

since H11 � 0 and ∇g is continuously differentiable with Lipschitz continuous gradi-

ent by Proposition 3.3. Thus, the above problem can be efficiently solved inexactly

by the APG-SNCG introduced in Section 2.4.





Chapter 4
A majorized alternating direction method

of multipliers for linearly constrained

problems with coupled objective functions

In this chapter, we focus on designing and analyzing the algorithm for solving the

two block linearly constrained convex optimization problem (1.2). The (accelerated)

block coordinate descent type algorithm proposed in the previous chapter cannot

be applied to this kind of problems, since it is impossible to update a single block,

say u, without violating the coupled constraint A∗u+ B∗v = c.

As mentioned in the introduction chapter, a general and well-studied approach

to solve the linearly constrained problem is the method of multipliers, which is also

called the augmented Lagrangian method (ALM). Let the augmented Lagrangian

function Lσ(·, ·, ·) for the two-block problem (1.2) be defined as (1.12). Given an

initial guess of the dual variable x0 and parameters σ, τ > 0, the framework of the

ALM consists of the following iterations for the (k + 1)th step:
(uk+1, vk+1) ≈ arg min

u,v
Lσ(u, v;xk),

xk+1 = xk + τσ(A∗uk+1 + B∗vk+1 − c).

The global convergence and local linear convergence rate have been established by

71
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Rockafellar in his influential papers [81, 79]. However, to obtain even an approximate

solution (uk+1, vk+1) of the subproblem in the above framework is challenging and

time-consuming, especially at the early stage of the algorithm such that the iteration

sequences are far from the optimal solution set. Therefore, a popular and common

practice is to solve uk+1 and vk+1 alternatively by the alternating direction method

of multipliers (ADMM). However, when the objective function consists of a smooth

coupled term φ(u, v), to solve u with fixed vk may still be a difficult task, and the

same situation occurs when solving the second block v. This motivates us to apply

a proper majorization technique each step to the function φ(u, v) before solving the

subproblems. In this way we name our modified algorithm the majorized ADMM

(mADMM).

In this chapter, we analyze the global convergence, the ergodic and non-ergodic

iteration complexity and the linear convergence rate of the mADMM applying to

the linearly constrained convex optimization problems (1.2), where the objective

function consists of a smooth coupled term. Part of the results in this chapter have

already been published in [14].

4.1 A majorized ADMM with coupled objective

functions

The first part of this section is devoted to the framework of our mADMM for solving

(1.2). Following that two important inequalities, which play essential roles for our

convergence analysis, are presented. Throughout this chapter, we denote the primal

variable as w ≡ (u, v) ∈ U × V .

Assume that Q and H are defined as in (2.2) with respect to the function φ in

(1.2), so that the inequalities (2.3) and (2.4) hold. In this section, we further assume

that

H = Diag (D1,D2), (4.1)

where D1 : U → U and D2 : V → V are two self-adjoint positive semidefinite linear
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operators. In fact, this kind of structure naturally appears in applications like (1.11),

where the best possible lower bound of the generalized Hessian is Q̃ and the best

possible upper bound of the generalized Hessian is Q̃+I, where I : U×V → U×V is

the identity operator. For this case, the tightest estimation of H is I, which is block

diagonal. Since the coupled function φ(u, v) consists of two block variables u and

v, the operators Q and W can be decomposed accordingly as Q =

Q11 Q12

Q∗12 Q22


and W =

W11 W12

W∗12 W22

, where W11, Q11 : U → U and W22, Q22 : V → V are

self-adjoint positive semidefinite linear operators, and W12, Q12 : V → U are two

linear mappings whose adjoints are denoted by W∗12 and Q∗12, respectively. Denote

η ∈ [0, 1] as a constant that satisfies

|〈u, (W12 −Q12)v〉| ≤ η

2
(‖u‖2

D1
+ ‖v‖2

D2
), ∀W ∈ ∂2φ(u, v), u ∈ U , v ∈ V . (4.2)

Note that (4.2) always holds true for η = 1 according to the Cauchy-Schwarz in-

equality.

Let σ > 0. For given w′ = (u′, v′) ∈ U × V , define the following majorized

augmented Lagrangian function associated with (1.2):

L̂σ(w; (x,w′)) := p(u) + q(v) + φ̂(w;w′) + 〈x,A∗u+ B∗v − c〉+
σ

2
‖A∗u+ B∗v − c‖2,

where (w, x) = (u, v, x) ∈ U ×V ×X and the majorized function φ̂ is given by (2.4).

Then our proposed algorithm works as follows:

mADMM: A majorized alternating direction method of multipliers

Choose an initial point (u0, v0, x0) ∈ dom(p) × dom(q) × X and parameters τ > 0.

Let S and T be given self-adjoint positive semidefinite linear operators. Set k := 0.

Iterate until convergence:

Step 1. Compute uk+1 = arg min
u∈U
{L̂σ(u, vk; (xk, wk)) +

1

2
‖u− uk‖2

S}.

Step 2. Compute vk+1 = arg min
v∈V
{L̂σ(uk+1, v; (xk, wk)) +

1

2
‖v − vk‖2

T }.

Step 3. Compute xk+1 = xk + τσ(A∗uk+1 + B∗vk+1 − c).
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The majorization idea of the ADMM has also been discussed in Hong et al. [47],

as shown in (1.15). There is one difference between our approach and theirs. We

majorize φ(u, v) at (uk, vk) before the (k + 1)th iteration while the majorization

function in Hong et al.’s framework is based on (uk+1, vk) when updating vk+1. In-

terestingly, if φ(·, ·) merely consists of quadratically coupled functions and separable

smooth functions, our mADMM is exactly the same as the one proposed by Hong et

al. under a proper choice of the majorization functions. Moreover, for applications

like (1.11), a potential advantage of our method is that we only need to compute the

projection ΠK1(·, ·) once in order to compute ∇φ(·, ·) as a part of the majorization

function within one iteration, while the procedure (1.15) needs to compute ΠK1(·, ·)

at two different points (uk, vk) and (uk+1, vk).

Denote w̄ ≡ (ū, v̄) as an optimal solution of the problem (1.2) and x̄ as the cor-

responding multiplier. In order to prove the convergence of the proposed majorized

ADMM, the following constraint qualification is needed:

Assumption 4.1. There exists (û, v̂) ∈ ri (dom(p)×dom(q)) such that A∗û+B∗v̂ =

c.

Let ∂p and ∂q be the sub-differential mappings of p and q, respectively. Define

the set-valued mapping F by

F (u, v, x) := ∇φ(w) +

 ∂p(u) +Ax

∂q(v) + Bx

 , (u, v, x) ∈ U × V × X .

Under Assumption 4.1, (ū, v̄) is optimal to (1.2) if and only if there exists x̄ ∈ X

such that the following Karush-Kuhn-Tucker (KKT) condition holds:
0 ∈ F (ū, v̄, x̄),

A∗ū+ B∗v̄ = c.

(4.3)
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Furthermore, define the KKT mapping R : U × V × X → U × V × X as follows:

R(u, v, x) =


u− Proxp(u− (∇uφ(w) +Ax))

v − Proxq(v − (∇vφ(w) + Bx))

c−A∗u− B∗v

 . (4.4)

Denote Ω as the solution set to the above KKT optimality conditions. It is easy to

see that the condition (4.3) holds at (ū, v̄, x̄) ∈ Ω if and only if R(ū, v̄, x̄) = 0 for

(ū, v̄, x̄) ∈ U × V × X .

Also by the assumptions that p and q are convex functions, we know ∂p(·) and

∂q(·) are maximal monotone operators. Then, for any u, û ∈ dom(p), ξ ∈ ∂p(u),

and ξ̂ ∈ ∂p(û), we have

〈u− û, ξ − ξ̂〉 ≥ 0, (4.5)

and similarly for any v, v̂ ∈ dom(q), ζ ∈ ∂q(v), and ζ̂ ∈ ∂q(v̂), we have

〈v − v̂, ζ − ζ̂〉 ≥ 0. (4.6)

On top of the above mentioned knowledge from the convex optimization, we need

the following basic identity:

〈ξ,Gζ〉 =
1

2
(‖ξ‖2

G + ‖ζ‖2
G − ‖ξ − ζ‖2

G) =
1

2
(‖ξ + ζ‖2

G − ‖ξ‖2
G − ‖ζ‖2

G), (4.7)

which holds for any ξ, ζ in the same space and a self-adjoint positive semidefinite

operator G. This identity would be frequently used in our convergence study of the

mADMM.

Suppose that {(uk, vk, xk)} is the sequence generated by the mADMM algorithm.

In order to simplify subsequent discussions, for any given parameter τ > 0, we denote

ρ(τ) := min(τ, 1 + τ − τ 2),

and for a given optimal solution (ū, v̄, x̄) ∈ Ω and k ≥ 0, define

uke := uk − ū, vke := vk − v̄, wke := wk − w̄, xke := xk − x̄,

∆uk+1 := uk+1 − uk, ∆vk+1 := vk+1 − vk, ∆wk+1 := wk+1 − wk, ∆xk+1 := xk+1 − xk.
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For k ≥ 0, we also use the following notations in the convergence study:

x̃k+1 := xk + σ(A∗uk+1 + B∗vk+1 − c),

Ξk+1 := ‖∆vk+1‖2
D2+T + η‖∆uk+1‖2

D1
,

Θk+1 := ‖∆uk+1‖2
S + ‖∆vk+1‖2

T + 1
6
Q22

+ 1
8
‖∆wk+1‖2

Q,

Γk+1 := Θk+1 + 1
3
(τ 3σ)−1ρ(τ)‖∆xk+1‖2 + ρ(τ)‖∆vk+1‖2

σBB∗ − ‖∆uk+1‖2
ηD1
− ‖∆vk+1‖2

ηD2

(4.8)

and denote for (u, v, x) ∈ U × V × X ,
Φk(u, v, x) := (τσ)−1‖xk − x‖2 + ‖uk − u‖2

D1+S + ‖vk − v‖2
Q22+D2+T + 1

4
‖wk − w‖2

Q

+σ‖A∗u+ B∗vk − c‖2,

Ψk(u, v, x) := Φk(u, v, x) + 3
2
‖wk − w‖2

Q.

(4.9)

Proposition 4.1. Suppose that the solution set of problem (1.2) is nonempty and

Assumption 4.1 holds. Assume that S and T are chosen such that the sequence

{(uk, vk, xk)} is well defined. Then the following conclusions hold:

(i) For τ ∈ (0, 1], we have that for any k ≥ 0,(
Φk+1(ū, v̄, x̄) +

1

2
(1− τ)σ‖A∗uk+1

e + B∗vk+1
e ‖2

)
−
(
Φk(ū, v̄, x̄) +

1

2
(1− τ)σ‖A∗uke + B∗vke‖2

)
≤ −

(
Θk+1 + σ‖A∗uk+1 + B∗vk − c‖2 +

1

2
(1− τ)σ‖A∗uk+1 + B∗vk+1 − c‖2

)
.

(4.10)

(ii) For τ ≥ 0, we have that for any k ≥ 1,(
Ψk+1(ū, v̄, x̄) + Ξk+1 +

1

3
(4− τ − 2 min(τ, τ−1))σ‖A∗uk+1

e + B∗vk+1
e ‖2

)
−
(
Ψk(ū, v̄, x̄) + Ξk +

1

3
(4− τ − 2 min(τ, τ−1))σ‖A∗uke + B∗vke‖2

)
≤ −

(
Γk+1 +

1

6
ρ(τ)τ−1σ‖A∗∆uk+1 + B∗∆vk+1‖2

)
.

(4.11)
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Proof. In the mADMM iteration scheme, the optimality condition for (uk+1, vk+1)

is 
0 ∈ ∂p(uk+1) +∇uφ(wk) +Ax̃k+1 + (Q11 +D1 + S)∆uk+1 − σAB∗∆vk+1,

0 ∈ ∂q(vk+1) +∇vφ(wk) + Bx̃k+1 +Q∗12∆uk+1 + (Q22 +D2 + T )∆vk+1,

(4.12)

which can be reformulated as
−Ax̃k+1 −∇uφ(wk)− (Q11 +D1 + S)∆uk+1 + σAB∗∆vk+1 ∈ ∂p(uk+1),

−Bx̃k+1 −∇vφ(wk)− (Q22 +D2 + T )∆vk+1 −Q∗12∆uk+1 ∈ ∂q(vk+1).

(4.13)

Since (ū, v̄, x̄) satisfies the KKT system (4.3), we also have that
−Ax̄−∇uφ(w̄) ∈ ∂p(ū),

−Bx̄−∇vφ(v̄) ∈ ∂q(v̄).
(4.14)

Therefore, by letting u = uk+1, û = ū, v = vk+1 and v̂ = v̄ in the inequalities (4.5)

and (4.6), respectively, we are able to get that

0 ≤ (τσ)−1〈xk+1
e , xke − xk+1

e 〉 − (1− τ)σ‖A∗uk+1 + B∗vk+1 − c‖2

+σ〈B∗∆vk+1,A∗uk+1
e 〉 − 〈∇φ(wk)−∇φ(w̄), wk+1

e 〉 − 〈Q∗12∆uk+1, vk+1
e 〉

−〈(Q11 +D1 + S)∆uk+1, uk+1
e 〉 − 〈(Q22 +D2 + T )∆vk+1, vk+1

e 〉.
(4.15)

By taking (w,w′) = (w̄, wk) and (wk+1, w̄) in (2.3), and (w,w′) = (wk+1, wk) in

(2.4), we know that
φ(w̄) ≥ φ(wk) + 〈∇φ(wk),−wke 〉+ 1

2
‖wke‖2

Q,

φ(wk+1) ≥ φ(w̄) + 〈∇φ(w), wk+1
e 〉+ 1

2
‖wk+1

e ‖2
Q,

φ(wk+1) ≤ φ(wk) + 〈∇φ(wk),∆wk+1〉+ 1
2
‖∆wk+1‖2

Q+H.

(4.16)

Putting the above three inequalities together, we get

〈∇φ(wk)−∇φ(w̄), wk+1
e 〉 ≥

1

2
(‖wke‖2

Q + ‖wk+1
e ‖2

Q)− 1

2
‖∆wk+1‖2

Q+H. (4.17)



78
Chapter 4. A majorized alternating direction method of multipliers for

linearly constrained problems with coupled objective functions

Substituting (4.17) into (4.15), we can further obtain that

0 ≤ (τσ)−1〈xk+1
e , xke − xk+1

e 〉 − (1− τ)σ‖A∗uk+1 + B∗vk+1 − c‖2

+σ〈B∗∆vk+1,A∗uk+1
e 〉 − ‖wk+1

e ‖2
Q + 1

2
‖∆uk+1‖2

D1
+ 1

2
‖∆vk+1‖2

D2

+〈∆vk+1,Q∗12u
k+1
e 〉 − 〈(D1 + S)∆uk+1, uk+1

e 〉 − 〈(D2 + T )∆vk+1, vk+1
e 〉,

(4.18)

where we take advantage of the following equality:

1
2
(‖∆wk+1‖2

Q − ‖wk+1
e ‖2

Q − ‖wke‖2
Q)− 〈Q11∆uk+1, uk+1

e 〉 − 〈Q22∆vk+1, vk+1
e 〉

−〈Q∗12∆uk+1, vk+1
e 〉

= 1
2
(‖∆wk+1‖2

Q − ‖wk+1
e ‖2

Q − ‖wke‖2
Q)− 〈∆wk+1,Qwk+1

e 〉+ 〈Q12∆vk+1, uk+1
e 〉

= −‖wk+1
e ‖2

Q + 〈Q12∆vk+1, uk+1
e 〉.

(4.19)

From the identity (4.7) we can see that

〈(D1 + S)∆uk+1, uk+1
e 〉 =

1

2
(‖∆uk+1‖2

D1+S + ‖uk+1
e ‖2

D1+S − ‖uke‖2
D1+S),

〈(D2 + T )∆vk+1, vk+1
e 〉 =

1

2
(‖∆vk+1‖2

D2+T + ‖vk+1
e ‖2

D2+T − ‖vke‖2
D2+T ),

〈∆xk+1, xk+1
e 〉 =

1

2
(‖∆xk+1‖2 + ‖xk+1

e ‖2 − ‖xke‖2),

〈Q22∆vk+1, vk+1
e 〉 =

1

2
(‖∆vk+1‖2

Q22
+ ‖vk+1

e ‖2
Q22
− ‖vke‖2

Q22
).

(4.20)

These equalities enable us to reformulate (4.18) as

0 ≤ σ〈B∗∆vk+1,A∗uk+1
e 〉+ 〈∆vk+1,Q∗12u

k+1
e 〉 − 1

2
(‖∆uk+1‖2

S + ‖uk+1
e ‖2

D1+S − ‖uke‖2
D1+S)

−1

2
(‖∆vk+1‖2

T + ‖vk+1
e ‖2

D2+T − ‖vke‖2
D2+T )− 1

2τσ
(‖∆xk+1‖2 + ‖xk+1

e ‖2 − ‖xke‖2)

−(1− τ)σ‖A∗uk+1 + B∗vk+1 − c‖2 − ‖wk+1
e ‖2

Q.

(4.21)
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(i) Assume that τ ∈ (0, 1]. Then we get that

〈∆vk+1, Q∗12u
k+1
e 〉 =

〈 0

∆vk+1

 , Qwk+1
e

〉
− 〈Q22∆vk+1, vk+1

e 〉

≤ (
3

4
‖wk+1

e ‖2
Q +

1

3
‖∆vk+1‖2

Q22
)− 1

2
(‖∆vk+1‖2

Q22
+ ‖vk+1

e ‖2
Q22

−‖vke‖2
Q22

)

=
3

4
‖wk+1

4 ‖2
Q +

1

2
(‖vke‖2

Q22
− ‖vk+1

e ‖2
Q22

)− 1

6
‖∆vk+1‖2,

(4.22)

where the inequality is obtained by the Cauchy-Schwarz inequality1. By some simple

manipulations we can also see that

σ〈B∗∆vk+1,A∗uk+1
e 〉 =

σ

2
(‖A∗uk+1 + B∗vk+1 − c‖2 − ‖A∗uk+1 + B∗vk − c‖2)

+
σ

2
(‖B∗vke‖2 − ‖B∗vk+1

e ‖2).

(4.23)

Finally, by substituting (4.22) and (4.23) into (4.21) and recalling the definition of

Φk+1(·, ·, ·) and Θk+1 in (4.8) and (4.9), we have that

[Φk+1(ū, v̄, x̄) +
1

2
(1− τ)σ‖A∗uk+1 + B∗vk+1 − c‖2]

−[Φk(ū, v̄, x̄) +
1

2
(1− τ)σ‖A∗uk + B∗vk − c‖2]

≤ −[‖∆uk+1‖2
S + ‖∆vk+1‖2

T +
1

4
‖wk+1

e ‖2
Q +

1

4
‖wke‖2

Q + σ‖A∗uk+1 + B∗vk − c‖2

+
1

2
(1− τ)σ‖A∗uk+1 + B∗vk+1 − c‖2 +

1

2
(1− τ)σ‖A∗uk + B∗vk − c‖2]

≤ −[Θk+1 + σ‖A∗uk+1 + B∗vk − c‖2 + 1
2
(1− τ)σ‖A∗uk+1 + B∗vk+1 − c‖2],

(4.24)

where the last inequality comes from the fact that

‖wk+1
e ‖2

Q + ‖wk+1
e ‖2

Q ≥ 1
2
‖∆wk+1‖2

Q.

1The coefficient in this inequality is slightly different from the original one presented in

the paper [14]. In recent work [11], the authors made a nice observation that the term〈 0

∆vk+1

 ,Qwk+1
e

〉
can be bounded by 3

4‖w
k+1
e ‖2Q + 1

3‖∆vk+1‖2Q22
instead of 1

2‖w
k+1
e ‖2Q +

1
2‖∆vk+1‖2Q22

(see the inequality (19) in Lemma 2.1 [11]). We adopt this modification to establish

the convergence results under a weaker condition.
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This completes the proof of part (i).

(ii) Assume that τ ≥ 0. In this part, first we shall estimate the following term

σ〈B∗∆vk+1,A∗uk+1 + B∗vk+1 − c〉+ 〈∆vk+1,Q∗12u
k+1
e +Q22v

k+1
e 〉.

It follows from (4.13) that
−Bx̃k+1 −∇vφ(wk)− (Q22 +D2 + T )∆vk+1 −Q∗12∆uk+1 ∈ ∂q(vk+1),

−Bx̃k −∇vφ(wk−1)− (Q22 +D2 + T )∆vk −Q∗12∆uk ∈ ∂q(vk).
(4.25)

Since ∇φ is globally Lipschitz continuous, it is known from Clarke’s Mean-Value

Theorem [12, Proposition 2.6.5] that there exists a self-adjoint and positive semidef-

inite operator Wk ∈ conv{∂2φ([wk−1, wk])} such that

∇φ(wk)−∇φ(wk−1) =Wk∆wk,

where the set conv{∂2φ[wk−1, wk]} denotes the convex hull of all pointsW ∈ ∂2φ(z)

for any z ∈ [wk−1, wk]. Denote Wk :=

 Wk
11 Wk

12

(Wk
12)∗ Wk

22

, where Wk
11 : U → U ,

Wk
22 : V → V are self-adjoint positive semidefinite operators and Wk

12 : U → V is a

linear operator. Combining (4.25) and the monotonicity of ∂q(·), we obtain that

−〈B(x̃k+1 − x̃k),∆vk+1〉 − 〈Q22∆vk+1 +Q∗12∆uk+1,∆vk+1〉

≥ 〈∇vφ(wk)−∇vφ(wk−1),∆vk+1〉 − 〈(Q22 +D2 + T )∆vk,∆vk+1〉+ ‖∆vk+1‖2
T +D2

−〈∆uk,Q12∆vk+1〉

= 〈∆uk, (Wk
12 −Q12)∆vk+1〉 − 〈(Q22 +D2 + T −Wk

22)∆vk,∆vk+1〉+ ‖∆vk+1‖2
T +D2

≥ −η
2

(‖∆uk‖2
D1

+ ‖∆vk+1‖2
D2

)− 1

2
(‖∆vk+1‖2

T +D2
+ ‖∆vk‖2

T +D2
) + ‖∆vk+1‖2

T +D2

=
1

2
‖∆vk+1‖2

T +(1−η)D2
− 1

2
‖∆vk‖2

T +D2
− η

2
‖∆uk‖2

D1
,

where the second inequality is obtained from (4.2) and the fact that Wk
22 � Q22.

Therefore, with µk+1 = (1− τ)σ〈B∗∆vk+1,A∗uk + B∗vk − c〉, the cross term can be



4.2 The global convergence analysis 81

estimated as

σ〈B∗∆vk+1,A∗uk+1 + B∗vk+1 − c〉+ 〈Q∗12u
k+1
e +Q22v

k+1
e ,∆vk+1〉

= (1− τ)σ〈B∗∆vk+1,A∗uk + B∗vk − c〉+ 〈B∗∆vk+1, x̃k+1 − x̃k〉

+〈Q∗12u
k
e +Q22v

k
e ,∆v

k+1〉+ 〈Q∗12∆uk+1 +Q22∆vk+1,∆vk+1〉

≤ µk+1 + (
3

4
‖wke‖2

Q +
1

3
‖∆vk+1‖2

Q22
)− 1

2
‖∆vk+1‖2

T +(1−η)D2
+

1

2
‖∆vk‖2

T +D2
+
η

2
‖∆uk‖2

D1
.

(4.26)

Finally, by the Cauchy-Schwarz inequality we know that

µk+1 ≤


1

2
(1− τ)σ(‖B∗∆vk+1‖2 + ‖A∗uk + B∗vk − c‖2), τ ∈ (0, 1],

1

2
(τ − 1)σ(τ‖B∗∆vk+1‖2 + τ−1‖A∗uk + B∗vk − c‖2), τ > 1.

(4.27)

Substituting (4.26) and (4.27) into (4.21) and by some manipulations, we can obtain

that

(Ψk+1(ū, v̄, x̄) + Ξk+1)− (Ψk(ū, v̄, x̄) + Ξk)

≤ −[Γk+1 + ρ(τ)τ−1σ‖A∗uk+1 + B∗vk+1 − c‖2].
(4.28)

Note that

‖A∗uk+1 + B∗vk+1 − c‖2

= 1
3
(τσ)−2‖∆xk+1‖2 + 1

3
(‖A∗uk+1 + B∗vk+1 − c‖2 − ‖A∗uk + B∗vk − c‖2)

+1
3
(‖A∗uk+1 + B∗vk+1 − c‖2 + ‖A∗uk + B∗vk − c‖2)

≥ 1
3
(τσ)−2‖∆xk+1‖2 + 1

3
(‖A∗uk+1

e + B∗vk+1
e ‖2 − ‖A∗uke + B∗vke‖2)

+1
6
‖A∗∆uk+1 + B∗∆vk+1 − c‖2.

(4.29)

Combining (4.28) and (4.29), we can obtain the inequality (4.11). This completes

the proof of part (ii).

4.2 The global convergence analysis

With all the preparations given in the previous sections, we can now discuss the

main convergence results of this chapter.
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4.2.1 The global convergence

First we prove that under mild conditions, the iteration sequence {(uk, vk)} gener-

ated by the mADMM with τ ∈ (0, 1+
√

5
2

) converges to an optimal solution of problem

(1.2) and {xk} converges to an multiplier.

Theorem 4.1. Suppose that the solution set of (1.2) is nonempty and Assumption

4.1 holds.

(i) Assume that τ ∈ (0, 1]. Suppose that

Q11 + (1− τ)σAA∗ + S � 0, Q22 + (1− τ)σBB∗ + T � 0.

Then the generated sequence {(uk, vk)} converges to an optimal solution of (1.2)

and {xk} converges to the corresponding multiplier.

(ii) Assume that τ ∈ (0, 1+
√

5
2

). Suppose that S and T are chosen such that

Q11 + σAA∗ + S � 0, Q22 + σBB∗ + T � 0

and for some α ∈ [0, 1),

M :=
α

8
Q+ Diag (αS − ηD1, αT − ηD2) � 0. (4.30)

Then the generated sequence {(uk, vk)} converges to an optimal solution of (1.2)

and {xk} converges to the corresponding multiplier.

Proof. (i) Let τ ∈ (0, 1]. The inequality (4.10) shows that {Φk+1(ū, v̄, x̄)} is

bounded, which implies that {‖xk+1‖}, {‖wk+1
e ‖Q}, {‖uk+1

e ‖S} and {‖vk+1
e ‖Q22+σBB∗+T }

are all bounded. From the positive definiteness of Q22 + σBB∗+ T , we can see that

{‖vk+1
e ‖} is bounded. By using the inequalities

‖A∗uk+1
e ‖ ≤ ‖A∗uk+1

e + B∗vk+1
e ‖+ ‖B∗vk+1

e ‖ ≤ τσ(‖xk+1
e ‖+ ‖xke‖) + ‖B∗vk+1

e ‖,

‖uk+1
e ‖Q11 ≤ ‖wk+1

e ‖Q + ‖vk+1
e ‖Q22 ,

we know that the sequence {‖uk+1
e ‖σAA∗+Q11} is also bounded. Therefore, the se-

quence {‖uk+1
e ‖Q11+σAA∗+S} is bounded. By the positive definiteness ofQ11+σAA∗+
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S, we know that {‖uk+1
e ‖} is bounded. On the whole, the sequence {(uk, vk, xk)} is

bounded. Thus, there exists a subsequence {(uki , vki , xki)} converging to a cluster

point, say (u∞, v∞, x∞). Next we will prove that (u∞, v∞) is optimal to (1.2) and

x∞ is the corresponding multiplier.

The inequality (4.10) also implies that

lim
k→∞
‖A∗uk+1 + B∗vk − c‖ = 0, lim

k→∞
(1− τ)‖A∗uk+1 + B∗vk+1 − c‖ = 0,

lim
k→∞
‖∆wk+1‖Q+Diag (S,T ) = 0, lim

k→∞
‖∆vk+1‖Q22 = 0.

(4.31)

For τ ∈ (0, 1), since lim
k→∞
‖A∗uk+1 + B∗vk+1 − c‖ = 0, by using (4.31) we see that

lim
k→∞
‖A∗∆uk+1‖ ≤ lim

k→∞
(‖A∗uk+1 + B∗vk − c‖+ ‖A∗uk + B∗vk − c‖) = 0,

lim
k→∞
‖B∗∆vk+1‖ ≤ lim

k→∞
(‖A∗uk+1 + B∗vk+1 − c‖+ ‖A∗uk+1 + B∗vk − c‖) = 0,

lim
ki→∞

‖∆uk+1‖Q11 ≤ lim
ki→∞

(‖∆wk+1‖Q + ‖∆vk+1‖Q22) = 0,

(4.32)

which implies lim
k→∞
‖∆vk+1‖T +σBB∗+Q22 = 0 and lim

k→∞
‖∆uk+1‖S+σAA∗+Q11 = 0.

Therefore, for τ ∈ (0, 1], we know that lim
k→∞
‖∆vk+1‖T +(1−τ)σBB∗+Q22 = 0 and

lim
k→∞
‖∆uk+1‖S+(1−τ)σAA∗+Q11 = 0. By the positive definiteness of S+(1−τ)σAA∗+

Q11 and T +(1−τ)σBB∗+Q22, we could get that lim
k→∞
‖∆uk+1‖ = 0 and lim

k→∞
‖∆vk+1‖ =

0.

Now taking limits on both sides of (4.12) along the subsequence {(uki , vki , xki)},

and by using the closedness of the graphs of ∂p, ∂q and the continuity of ∇φ, we

obtain

0 ∈ F (u∞, v∞, x∞), A∗u∞ + B∗v∞ = c.

This indicates that (u∞, v∞) is an optimal solution to (1.2) and x∞ is the corre-

sponding multiplier.

Since (u∞, v∞, x∞) satisfies (4.3), all the above arguments involving (ū, v̄, x̄) can

be replaced by (u∞, v∞, x∞). Thus the subsequence {Φki(u
∞, v∞, x∞)} converges to
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0 as ki →∞. Since {Φki(u
∞, v∞, x∞)} is non-increasing, we obtain that

lim
k→∞

Φk+1(u∞, v∞, x∞) = lim
k→∞

(τσ)−1‖xk+1 − x∞‖2 + ‖vk+1 − v∞‖2
σBB∗+T +Q22

+‖uk+1 − u∞‖2
S + ‖wk+1 − w∞‖2

Q

= 0.

(4.33)

From this we can immediately get lim
k→∞

xk+1 = x∞ and lim
k→∞

vk+1 = v∞. Similar

to inequality (4.32) we have that lim
k→∞

σ‖A∗(uk+1 − u∞)‖ = 0 and lim
k→∞
‖uk+1 −

u∞‖Q11 = 0, which, together with (4.33), imply that lim
k→∞
‖uk+1 − u∞‖ = 0 by the

positive definiteness of Q11+S+σAA∗. Therefore, the whole sequence {(uk, vk, xk)}

converges to (u∞, v∞, x∞), the unique limit of the sequence. This completes the

proof for the first case.

(ii) From the inequality (4.11) and the assumptions τ ∈ (0, 1+
√

5
2

) and M � 0, we

can obtain that Γk+1 ≥ 0 and min(1, 1 + τ−1 − τ) ≥ 0. Then both {Ψk+1(ū, v̄, x̄)}

and {Ξk+1} are bounded. Thus, by a similar approach to case (i), we see that the se-

quence {(uk, vk, xk)} is bounded. Therefore, there exists a subsequence {(uki , vki , xki)}

that converges to a cluster point, say (u∞, v∞, x∞). Next we will prove that (u∞, v∞)

is optimal to problem (1.2) and x∞ is the corresponding multiplier. The inequality

(4.11) also implies that

lim
k→∞
‖∆xk+1‖ = lim

k→∞
(τσ)−1‖A∗uk+1 + B∗vk+1 − c‖ = 0,

lim
k→∞
‖∆wk+1‖M = 0, lim

k→∞
‖∆vk+1‖σBB∗+Q22+T = 0,

lim
k→∞
‖∆wk+1‖Q = 0, lim

k→∞
‖∆uk+1‖S = 0.

By the relationship that

lim
k→∞
‖A∗∆uk+1‖ ≤ lim

k→∞
(‖A∗uk+1 + B∗vk+1 − c‖+ ‖A∗uk + B∗vk − c‖+ ‖B∗∆vk+1‖)

= 0,

lim
ki→∞

‖∆uk+1‖Q11 ≤ lim
ki→∞

(‖∆wk+1‖Q + ‖∆vk+1‖Q22) = 0,

we can further get lim
k→∞
‖∆uk+1‖Q11+σAA∗+S = 0 and lim

k→∞
‖∆vk+1‖Q22+σBB∗+T = 0.

Thus, by taking a subsequence of {(uki , vki)} if necessary, we can get lim
k→∞
‖uki+1 −
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uki‖ = 0 and lim
k→∞
‖vki+1 − vki‖ = 0. The remaining proof about the convergence

of the whole sequence {(uk, vk, xk)} follows exactly the same as in case (i). This

completes the proof for the second case.

Remark 4.1. An interesting application of Theorem 4.1 is for the linearly con-

strained convex optimization problem with a quadratically coupled objective function

of the form

φ(w) =
1

2
〈w, Q̃w〉+ f(u) + g(v),

where Q̃ : U × V → U × V is a self-adjoint positive semidefinite linear operator,

f : U → (−∞,∞) and g : V → (−∞,∞) are two convex smooth functions with

Lipschitz continuous gradients. In this case, there exist four self-adjoint positive

semidefinite operators Σf , Σ̂f : U → U and Σg, Σ̂g : V → V such that

Σf � ξ � Σ̂f , ∀ξ ∈ ∂2f(u), u ∈ U and Σg � ζ � Σ̂g, ∀ζ ∈ ∂2g(v), v ∈ V ,

where ∂2f and ∂2g are defined in (2.1). Then by letting Q = Q̃ + Diag (Σf ,Σg) in

(2.3) and Q+H = Q̃+ Diag (Σ̂f , Σ̂g) in (2.4), we have η = 0 in (4.2). This implies

that M� 0 always holds in (4.30). Therefore, for τ ∈ (0, 1+
√

5
2

), the conditions for

the convergence can be equivalently written as

Q̃11 + Σf + S + σAA∗ � 0, Q̃22 + Σg + T + σBB∗ � 0. (4.34)

Note that (4.34) is necessary for the global convergence of the majorized ADMM

even if Q̃ = 0, i.e., the objective function of the original problem (1.2) is separa-

ble. Therefore, we recover the convergence conditions given in [57] for a majorized

ADMM with semi-proximal terms.

4.2.2 The iteration complexity

In this section, we will present various non-ergodic and ergodic iteration complexity

for the mADMM. The first part is devoted to the non-ergodic analysis, which shows

the O(1/k) (and o(1/k)) complexity in terms of the KKT optimality condition. The
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second part discuss the O(1/k) ergodic complexity of the primal feasibility and the

objective value.

Before showing the main result, we first present the following Lemma, which

shows the decreasing property of the difference between two consecutive iteration

points when the step length τ = 1. This property has also been discussed by He

and Yuan [42] for the classic ADMM with τ = 1.

Lemma 4.1. Assume that τ = 1. Then for any k ≥ 0, we have that

‖∆xk+1‖2
σ−1I + ‖∆uk+1‖2

S + ‖∆vk+1‖2
T +σBB∗+Q22

+ ‖∆wk+1‖2
Q̂

≤ ‖∆xk‖2
σ−1I + ‖∆uk‖2

S + ‖∆vk‖2
T +σBB∗+Q22

+ ‖∆wk‖2
Q̂.

(4.35)

Proof. Since the step-length τ = 1, the optimality conditions at the (k + 1)th

and kth iteration can be written as
−Axk+1 −∇uφ(wk)− (Q11 +D1 + S)∆uk+1 + σAB∗∆vk+1 ∈ ∂p(uk+1),

−Bxk+1 −∇vφ(wk)− (Q22 +D2 + T )∆vk+1 −Q∗12∆uk+1 ∈ ∂q(vk+1),

and 
−Axk −∇uφ(wk−1)− (Q11 +D1 + S)∆uk + σAB∗∆vk ∈ ∂p(uk),

−Bxk −∇vφ(wk−1)− (Q22 +D2 + T )∆vk −Q∗12∆uk ∈ ∂q(vk),

By the monotonicity of the subdifferential of the convex functions p and q, we have

the following inequality:

〈∆uk+1,A∆xk+1 + (∇uφ(wk)−∇uφ(wk−1)) + (Q11 +D1 + S)(∆uk+1 −∆uk)

−σAB∗(∆vk+1 −∆vk)〉 ≤ 0,

〈∆vk+1,B∆xk+1 + (∇vφ(wk)−∇vφ(wk−1)) + (Q22 +D2 + T )(∆vk+1 −∆vk)

+Q∗12(∆uk+1 −∆uk)〉 ≤ 0.

Adding the above two inequalities together, and by using the fact that

∆xk+1 −∆xk = σ(A∗∆uk+1 + B∗∆vk+1),
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and the relationship that Q̂ − Q = Diag(D1,D2), we get

σ−1〈∆xk+1,∆xk+1 −∆xk〉+ 〈∆uk+1,S(∆uk+1 −∆uk)〉+ 〈∆vk+1, T (∆vk+1 −∆vk)〉

+〈∆wk+1,∇φ(wk)−∇φ(wk−1) + Q̂(∆wk+1 −∆wk)〉

−〈∆uk+1, (σAB∗ +Q12)(∆vk+1 −∆vk)〉 ≤ 0.

(4.36)

By the globally Lipschitz continuous property of ∇φ, there exists a self-adjoint

positive semidefinite linear operator Wk ∈ conv{∂2φ([wk−1, wk])} such that

∇φ(wk)− φ(wk−1) =Wk∆wk.

Substituting the above equation into (4.36) and by recalling the identity (4.7), we

see that

(‖∆xk+1‖2
σ−1I − ‖∆xk‖2

σ−1I + ‖∆xk+1 −∆xk‖2
σ−1I) + (‖∆uk+1‖2

S − ‖∆uk‖2
S

+‖∆uk+1 −∆uk‖2
S) + (‖∆vk+1‖2

T − ‖∆vk‖2
T + ‖∆vk+1 −∆vk‖2

T ) + 2‖∆wk+1‖2
Q̂

−(‖∆wk+1‖2
Q̂−Wk

− ‖∆wk+1 −∆wk‖2
Q̂−Wk

+ ‖∆wk‖2
Q̂−Wk

)− (‖∆wk+1‖2
Q

+‖∆vk+1 −∆vk‖2
Q22

) + (‖∆vk+1‖2
Q22

+ ‖∆vk+1 −∆vk‖2
Q22
− ‖∆vk‖2

Q22
) + (‖∆uk+1‖2

σAA∗

+‖∆vk+1‖2
σBB∗ − ‖∆xk+1 −∆xk‖2

σ−1I)− (‖∆uk+1‖2
σAA∗ + ‖∆vk‖2

σBB∗) ≤ 0.

By rearranging the terms, the above inequality can be recast as

‖∆xk+1‖2
σ−1I + ‖∆uk+1‖2

S + ‖∆vk+1‖2
T +σBB∗+Q22

+ ‖∆wk+1‖2
Q̂

≤ ‖∆xk‖2
σ−1I + ‖∆uk‖2

S + ‖∆vk‖2
T +σBB∗+Q22

+ ‖∆wk‖2
Q̂ − (‖∆uk+1 −∆uk‖2

S

+‖∆vk+1 −∆vk‖2
T + ‖∆wk+1 −∆wk‖2

Q̂−Wk
+ ‖∆wk+1‖2

Wk−Q + ‖∆wk‖2
Wk

)

≤ ‖∆xk‖2
σ−1I + ‖∆uk‖2

S + ‖∆vk‖2
T +σBB∗+Q22

+ ‖∆wk‖2
Q̂,

where the last inequality is obtained by (2.2).

Denote two operators O1 : U × V → U × V and O2 : U × V → U × V as:

O1 :=
1

8
Q+ Diag(S + (1− τ)σAA∗, T +

1

6
Q22 + (1− τ)σBB∗),

O2 :=
1

8
Q+Diag (S−ηD1, T +

1

6
Q22+ρ(τ)σBB∗−ηD2)+

1

6
ρ(τ)τ−1σ

 A
B

 (A∗ B∗) .
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To prove the global nonergodic complexity of the mADMM, the following prop-

erties are also essential.

Lemma 4.2. We have the following equivalent characterization of the positive def-

inite properties of the operators:

(i) For τ ∈ (0, 1], it holds that

Q11 + (1− τ)σAA∗ + S � 0 and Q22 + (1− τ)σBB∗ + T � 0⇐⇒ O1 � 0.

(ii) For τ ∈ (0,
√

5+1
2

), if there exists α ∈ [0, 1) such that

α

8
Q+ Diag (αS − ηD1, αT − ηD2) � 0,

then we have

Q11 + σAA∗ + S � 0, Q22 + σBB∗ + T � 0⇐⇒ O2 � 0.

Proof. (i) First, let us assume that Q11 + (1 − τ)σAA∗ + S � 0 and Q22 +

(1 − τ)σBB∗ + T � 0. We prove O1 � 0 by contradiction. If there exists non-zero

w = (u, v) ∈ U × V such that 〈w,O1w〉 = 0, by noting that τ ∈ (0, 1], we have

‖w‖2
Q = 0, ‖u‖2

S+(1−τ)σAA∗ = 0, ‖v‖2
T +Q22+(1−τ)σBB∗ = 0.

This further implies v = 0 due to the assumption Q22 + (1− τ)σBB∗+T � 0. Then

by substituting v = 0 into the above equations, we have ‖u‖2
Q11+(1−τ)AA∗+S = 0,

which implies that u = 0 because of Q11 + (1− τ)σAA∗ + S � 0. This contradicts

the assumption that w 6= 0. Thus, we see O1 � 0.

Conversely, assume O1 � 0. Then for any 0 6= ṽ ∈ V , by letting w̃ := (0, ṽ) ∈

U × V we have 〈w̃,O1w̃〉 = 〈ṽ, ( 7
24
Q22 + (1 − τ)σBB∗ + T )ṽ〉 > 0. Thus, we get

7
24
Q22 + (1− τ)σBB∗ + T � 0, or equivalently, Q22 + (1− τ)σBB∗ + T � 0. By the

same approach we can also prove that Q11 + (1− τ)σAA∗ + S � 0. This completes

the proof.

(ii) The proof of this part is similar with (i) and hence, we only provide a brief one

here. Suppose that Q11 +σAA∗+S � 0 and Q22 +σBB∗+T � 0, but O2 6� 0. Then



4.2 The global convergence analysis 89

there exists nonzero w = (u, v) ∈ U×V such that ‖v‖2
T +Q22+σBB∗+(α

8
Q22+αT −ηD2) = 0,

which implies that v = 0. Moreover, we can obtain ‖u‖2
S+Q11+σAA∗+(α

8
Q11+αS−ηD1) =

0, and thus, u = 0. This contradicts with the assumption that w = 0. For the

reverse direction, if O2 � 0, then by the same approach with (i) we could obtain

Q11 + S + σAA∗ − ηD1 � 0 and Q22 + T + σBB∗ − ηD2 � 0, which further implies

Q11 + S + σAA∗ � 0 and Q22 + T + σBB∗ � 0. This completes the proof.

Theorem 4.2. Suppose that the solution set of (1.2) is nonempty and Assumption

4.1 holds. Let one of the conditions for the global convergence in Theorem 4.1 hold,

i.e., either (i) or (ii) holds:

(i) τ ∈ (0, 1], Q11 + (1− τ)σAA∗ + S � 0 and Q22 + (1− τ)σBB∗ + T � 0.

(ii) τ ∈ (0, 1+
√

5
2

), Q11 + σAA∗ + S � 0, Q22 + σBB∗ + T � 0 and there exists

some α ∈ [0, 1) such that α
8
Q+ Diag (αS − ηD1, αT − ηD2) � 0.

Then there exists a constant C only depending on the initial point and the optimal

solution set such that the sequence {(uk, vk, xk)} generated by the majorized ADMM

satisfies that for k ≥ 1,

min
1≤i≤k

{dist2(0, F (ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2} ≤ C/k, (4.37)

and for the limiting case we have that

lim
k→∞

k( min
1≤i≤k

{dist2(0, F (ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2}) = 0. (4.38)

Furthermore, when the step length τ = 1, it holds that

lim
k→∞

k(dist2(0, F (uk+1, vk+1, xk+1)) + ‖A∗uk+1 + B∗vk+1 − c‖2) = 0, (4.39)

i.e., the “ min
1≤i≤k

” can be removed from (4.38).

Proof. From the optimality condition for (uk+1, vk+1), we know that −(1− τ)σA(A∗uk+1 + B∗vk+1 − c) + (σAB∗ +Q12)∆vk+1 − S∆uk+1

−(1− τ)σB(A∗uk+1 + B∗vk+1 − c)− T ∆vk+1


−(Q+H)∆wk+1 +∇φ(wk+1)−∇φ(wk) ∈ F (uk+1, vk+1, xk+1).
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Therefore, we can obtain that

dist2(0, F (uk+1, vk+1, xk+1)) + ‖A∗uk+1 + B∗vk+1 − c‖2

≤ 5‖σAB∗∆vk+1‖2 + 5(1− τ)2σ2(‖A‖2 + ‖B‖2)‖A∗uk+1 + B∗vk+1 − c‖2

+5‖(Q+H)∆wk+1 −∇φ(wk+1) +∇φ(wk)‖2 + 5‖Q12∆vk+1‖2 + 5‖T ∆vk+1‖2

+5‖S∆uk+1‖2 + ‖A∗uk+1 + B∗vk+1 − c‖2

≤ 5σ‖A‖2‖∆vk+1‖2
σBB∗ + (5(1− τ)2σ2(‖A‖2 + ‖B‖2) + 1)‖A∗uk+1 + B∗vk+1 − c‖2

+5‖
√
Q∗12Q12‖‖∆vk+1‖2√

Q∗12Q12
+ 5‖H‖‖∆wk+1‖2

H + 5‖S‖‖∆uk+1‖2
S

+5‖T ‖‖∆vk+1‖2
T

≤ C1‖∆wk+1‖2
Ô + C2‖A∗uk+1 + B∗vk+1 − c‖2,

(4.40)

where

C1 = 5 max(σ‖A‖2, ‖
√
Q∗12Q12‖, ‖H‖, ‖S‖, ‖T ‖),

C2 = 5(1− τ)2σ2(‖A‖2 + ‖B‖2) + 1,

Ô = H + Diag (S, T + σBB∗ +
√
Q∗12Q12)

and the second inequality comes from the fact that there exists some

Wk ∈ conv{∂2φ([wk−1, wk])}

such that

‖(Q+H)∆wk+1 −∇φ(wk+1) +∇φ(wk)‖2

= ‖(Q+H−Wk)∆wk+1‖2 ≤ ‖H‖‖∆wk+1‖2
H.

Next we will estimate the upper bounds for ‖∆wk+1‖2
Ô and ‖A∗uk+1+B∗vk+1−c‖2 by

only involving the initial point and the optimal solution set under the two different

conditions.

First, assume condition (i) holds. For τ ∈ (0, 1], by using (4.10) we have that
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for any i ≥ 1,

‖∆wi+1‖2
1
8
Q+Diag (S,T + 1

6
Q22)

+ σ‖A∗ui+1 + B∗vi − c‖2 + 1
2
(1− τ)σ‖A∗ui+1 + B∗vi+1 − c‖2

≤ (Φi(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗uk+1

e + B∗vk+1
e ‖2)

−(Φi+1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗uke + B∗vke‖2),

which implies that,

k∑
i=1

(
‖∆wi+1‖2

1
8
Q+Diag (S,T + 1

6
Q22)

+ σ‖A∗ui+1 + B∗vi − c‖2

+1
2
(1− τ)σ‖A∗ui+1 + B∗vi+1 − c‖2

)
≤ (Φ1(ū, v̄, x̄) + 1

2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2)− (Φk+1(ū, v̄, x̄) + 1

2
‖A∗uk+1

e + B∗vk+1
e ‖2)

≤ Φ1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2.

This shows that
k∑
i=1

‖∆wi+1‖2
1
8
Q+Diag(S,T + 1

6
Q22)
≤ Φ1(ū, v̄, x̄) +

1

2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2,

k∑
i=1

σ‖A∗ui+1 + B∗vi − c‖2 ≤ Φ1(ū, v̄, x̄) +
1

2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2,

k∑
i=1

1

2
(1− τ)σ‖A∗ui+1 + B∗vi+1 − c‖2 ≤ Φ1(ū, v̄, x̄) +

1

2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2.

(4.41)

From the above three inequalities we can also get that

(1− τ)
k∑
i=1

‖∆ui+1‖2
σAA∗

≤ (1− τ)
k∑
i=1

(2σ‖A∗ui+1 + B∗vi − c‖2 + 2σ‖A∗ui + B∗vi − c‖2)

≤ (6− 2τ)(Φ1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2),

and similarly,

(1− τ)
k∑
i=1

‖∆vi+1‖2
σBB∗

≤ (1− τ)
k∑
i=1

(2σ‖A∗ui+1 + B∗vi − c‖2 + 2σ‖A∗ui+1 + B∗vi+1 − c‖2)

≤ (6− 2τ)(Φ1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2).
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With the notation of operator O1 we have that

k∑
i=1

‖∆wi+1‖2
O1

=
k∑
i=1

‖∆wi+1‖2
1
8
Q+Diag(S,T + 1

6
Q22)

+
k∑
i=1

‖∆wi+1‖2
(1−τ)σDiag(AA∗,BB∗)

≤ (13− 4τ)(Φ1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2).

(4.42)

If τ ∈ (0, 1), we further have that

k∑
i=1

‖A∗ui+1 + B∗vi+1 − c‖2 ≤ 2(1− τ)−1σ−1Φ1(ū, v̄, x̄) + ‖A∗u1
e + B∗v1

e‖2.

(4.43)

If τ = 1, by the condition that O1 =
1

8
Q+ Diag (S, T ) � 0, we have that

k∑
i=1

‖A∗ui+1 + B∗vi+1 − c‖2

≤
k∑
i=1

(2‖A∗ui+1 + B∗vi − c‖2 + 2‖∆vi+1‖2
BB∗)

≤
k∑
i=1

(2‖A∗ui+1 + B∗vi − c‖2 + 2‖O−
1
2

1 Diag (0,BB∗)O−
1
2

1 ‖‖∆wi+1‖2
O1

)

≤ (2σ−1 + (26− 8τ)‖O−
1
2

1 Diag (0,BB∗)O−
1
2

1 ‖)(Φ1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2),

(4.44)

where the second inequality is obtained by the fact that for any ξ, a self-adjoint pos-

itive definite operator G with square root G 1
2 and a self-adjoint positive semidefinite

operator Ĝ defined in the same Hilbert space, it always holds that ‖ξ‖2
Ĝ = 〈ξ, Ĝξ〉 =

〈ξ, (G 1
2G− 1

2 )Ĝ(G− 1
2G 1

2 )ξ〉 = 〈G 1
2 ξ, (G− 1

2 ĜG− 1
2 )G 1

2 ξ〉 ≤ ‖G− 1
2 ĜG− 1

2‖‖ξ‖2
G.

Therefore, by using (4.40), (4.42) and the positive definiteness of operator O1 due

to the assumptions that Q11 +S+(1−τ)σAA∗ � 0 and Q22 +T +(1−τ)σBB∗ � 0,

we know that

min
1≤i≤k

{dist2(0, F (ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2}

≤ (
k∑
i=1

(dist2(0, F (ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2))/k

≤ C(Φ1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2)/k,
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where

C =


C1(13− 4τ)‖O−

1
2

1 ÔO
− 1

2
1 ‖+ C2(1− τ)−1σ−1, τ ∈ (0, 1),

C1(13− 4τ)‖O−
1
2

1 ÔO
− 1

2
1 ‖+ C2(2σ−1 + (26− 8τ)‖O−

1
2

1 Diag (0,BB∗)O−
1
2

1 ‖), τ = 1.

To prove the limiting case (4.38), by using inequalities (4.42), (4.43), (4.44) and [57,

Lemma 2.1], we have that

min
1≤i≤k

‖∆wi+1‖2
O1

= o(1/k), min
1≤i≤k

‖A∗ui+1 + B∗vi+1 − c‖2 = o(1/k),

which, together with (4.40), imply that

lim
k→∞

k( min
1≤i≤k

{dist2(0, F (ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2})

≤ lim
k→∞

k( min
1≤i≤k

{C1‖O
− 1

2
1 ÔO

− 1
2

1 ‖‖∆wi+1‖2
O1

+ C2‖A∗ui+1 + B∗vi+1 − c‖2}) = 0.

Next, we shall prove (4.39) under the condition (i) and τ = 1. By (4.41), (4.44)

and the positive definiteness of the self-adjoint linear operator 1
8
Q+ Diag (S, T ), we

know that
∞∑
i=1

‖∆wi+1‖2 <∞,
∞∑
i=1

‖∆xi+1‖2 <∞. (4.45)

Then, by using Lemma 4.1, (4.45) and [17, Lemma 1.2], we know that

lim
k→∞

k(‖∆wk+1‖2
Q+H+Diag (S,T +σBB∗+Q22) + ‖∆xk+1‖2

σ−1I) = 0.

Since Q+H + Diag (S, T + σBB∗ +Q22) � Q+ Diag (S, T ) � 0, we obtain that

lim
k→∞

k‖∆wk+1‖2 = 0, lim
k→∞

k‖∆xk+1‖2
σ−1I = 0,

which, together with (4.40), imply

lim
k→∞

k(dist2(0, F (uk+1, vk+1, xk+1)) + ‖A∗uk+1 + B∗vk+1 − c‖2) = 0.

It completes the proof of the conclusions under condition (i).

For τ ∈ (0, 1+
√

5
2

), we know from (4.11) that for τ ∈ (0, 1+
√

5
2

) and any k ≥ 1,

k∑
i=1

‖∆wi+1‖2
O2

+
1

3
(τ 3σ)−1ρ(τ)‖∆xi+1‖2

≤ Ψ1(ū, v̄, x̄) + Ξ1 +
1

3
(4− τ − 2 min(τ, τ−1)σ‖A∗u1

e + B∗v1
e‖2.
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Thus, by the inequality (4.40) and the positive definiteness of O2 from Lemma 4.2,

we have

min
1≤i≤k

{dist2(0, F (ui+1, vi+1, xi+1)) + ‖A∗ui+1 + B∗vi+1 − c‖2}

≤
( k∑
i=1

dist2(0, F (ui+1, vi+1, xi+1) + ‖A∗ui+1 + B∗vi+1 − c‖2
)
/k

≤ C ′(Ψ1(ū, v̄, x̄) + Ξ1 + 1
3
(4− τ − 2 min(τ, τ−1))σ‖A∗u1

e + B∗v1
e‖2)/k,

where C ′ = C1‖O
− 1

2
2 ÔO

− 1
2

2 ‖+ 3C2τσ
−1ρ(τ)−1. The limiting property (4.38) can be

derived in the same way as for the case under condition (i).

This completes the proof of Theorem 4.2.

Remark 4.2. Theorem 4.2 gives the non-ergodic complexity of the KKT optimality

condition, which does not seem to be known even for the classic ADMM with separa-

ble objective functions. For the latter, related results about the non-ergodic iteration

complexity for the primal feasibility and the objective functions of the special classic

ADMM with τ = 1 can be found in Davis and Yin [16]. When τ 6= 1, instead of

showing the behaviour of the current kth iteration point, our form of non-ergodic

complexity states the property of the “best point among the first k iterations”, in-

dicating that the iteration sequence may satisfy the O(1/k) tolerance of the KKT

system before the kth step. Thus, it is interesting to see whether a slightly better

result with the “min1≤i≤k” removed from (4.38) can be obtained.

In the rest of this section, we discuss the ergodic iteration complexity of the

mADMM for solving problem (1.2). For k = 1, 2, · · · , denote

x̂k =
1

k

k∑
i=1

x̃i+1, ûk =
1

k

k∑
i=1

ui+1, v̂k =
1

k

k∑
i=1

vi+1, ŵk = (ûk, v̂k)

and
Λk+1 = ‖uk+1

e ‖2
D1+S + ‖vk+1

e ‖2
D2+T +Q22+σBB∗ + (τσ)−1‖xk+1‖2,

Λk+1 = Λk+1 + Ξk+1 + ‖wk+1
e ‖2

Q + max(1− τ, 1− τ−1)σ‖A∗uk+1 + B∗vk+1 − c‖2.
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Theorem 4.3. Suppose that S and T are chosen such that

Q11 + σAA∗ + S � 0, Q22 + σBB∗ + T � 0.

Assume that either (a) τ ∈ (0, 1] or (b) τ ∈ (0, 1+
√

5
2

) and (4.30) hold. Then

there exist constants D1 and D2 only depending on the initial point and the optimal

solution set such that for k ≥ 1, the following conclusions hold:

(i)

‖A∗ûk + B∗v̂k − c‖ ≤ D1/k. (4.46)

(ii) For case (b), if we further assume that S − ηD1 � 0 and T − ηD2 � 0, then

|θ(ûk, v̂k)− θ(ū, v̄)| ≤ D2/k. (4.47)

The inequality (4.47) holds for case (a) without additional assumptions.

Proof. (i) Under the conditions for case (a), the inequality (4.10) indicates that

{Φk+1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗uk+1

e + B∗vk+1
e ‖2} is a non-increasing sequence, which

implies that

(τσ)−1‖xk+1
e ‖2 ≤ Φk+1(ū, v̄, x̄) + 1

2
(1− τ)σ‖A∗uk+1

e + B∗vk+1
e ‖2

≤ Φ1(ū, v̄, x̄) + 1
2
(1− τ)σ‖A∗u1

e + B∗v1
e‖2.

Similarly, under the conditions for case (b), we can get from (4.11) that

(τσ)−1‖xk+1
e ‖2 ≤ Ψk+1(ū, v̄, x̄) + Ξk+1 + 1

3
(4− τ − 2 min{τ, τ−1})σ‖A∗uk+1

e + B∗vk+1
e ‖2

≤ Ψ1(ū, v̄, x̄) + Ξ1 + 1
3
(4− τ − 2 min{τ, τ−1})σ‖A∗u1

e + B∗v1
e‖2.

Therefore, in terms of the ergodic primal feasibility, we have that

‖A∗ûk + B∗v̂k − c‖2 = ‖ 1
k

k∑
i=1

(A∗ui+1 + B∗vi+1 − c)‖2

= ‖(τσ)−1(xk+1 − x1)‖2/k2

≤ 2‖(τσ)−1xk+1
e ‖2/k2 + 2‖(τσ)−1x1

e‖2/k2 ≤ C3/k
2,

(4.48)
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where

C3 :=


2(τσ)−1Φ1(ū, v̄, x̄) + (τ−1 − 1)‖A∗u1

e + B∗v1
e‖2 + 2‖(τσ)−1x1

e‖2, case (a),

2(τσ)−1(Ψ1(ū, v̄, x̄) + Ξ1 + 1
3
(4− τ − 2 min{τ, τ−1})σ‖A∗u1

e + B∗v1
e‖2)

+2‖(τσ)−1x1
e‖2, case (b).

Then by taking the square root on inequality (4.48), we can obtain (4.46).

(ii) For the complexity of primal objective values, first, we know from (4.3) that

p(u) ≥ p(ū) + 〈−Ax̄−∇uφ(w̄), u− ū〉, ∀u ∈ U ,

q(v) ≥ q(v̄) + 〈−Bx̄−∇vφ(w̄), v − v̄〉, ∀v ∈ V .

Therefore, summing them up and by noting A∗ū + B∗v̄ = c and the convexity of

function φ, we have that

θ(u, v)− θ(ū, v̄) ≥ −〈x̄,A∗u+ B∗v − c〉+ φ(w)− φ(w̄)− 〈∇φ(w̄), w − w̄〉

≥ −〈x̄,A∗u+ B∗v − c〉, ∀u ∈ U , v ∈ V .

Thus, with (u, v) = (ûk, v̂k), it holds that

θ(ûk, v̂k)− θ(ū, v̄) ≥ −〈x̄,A∗ûk + B∗v̂k − c〉 ≥ −1

2
(
1

k
‖x̄‖2 + k‖A∗ûk + B∗v̂k − c‖2)

≥ −1

2
(‖x̄‖2 + C3)/k,

(4.49)

where C3 is the same constant as in (4.48).

For the reverse part, by (2.3) and (2.4) we can obtain that for any i ≥ 1,

φ(wi+1) ≤ φ(wi) + 〈∇φ(wi),∆wi+1〉+
1

2
‖∆wi+1‖2

Q+H,

φ(w̄) ≥ φ(wi) + 〈∇φ(wi), w̄ − wi〉+
1

2
‖w̄ − wi‖2

Q,

which indicate that

φ(wi+1)− φ(w̄) ≤ 〈∇φ(wi), wi+1
e 〉+

1

2
‖∆wi+1‖2

Q+H −
1

2
‖wie‖2

Q. (4.50)
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By the inclusion (4.13) and the convexity of p and q, we have that

p(ū) ≥ p(uk+1) + 〈uk+1
e ,Ax̃k+1 +∇uφ(wk) + (Q11 +D1 + S)∆uk+1 − σAB∗∆vk+1〉,

q(v̄) ≥ q(vk+1) + 〈vk+1
e ,Bx̃k+1 +∇vφ(wk) + (Q22 +D2 + T )∆vk+1 +Q∗12∆uk+1〉.

(4.51)

Thus, (4.51) and (4.50) imply that for τ ∈ (0, 1] and any i ≥ 1,

θ(ui+1, vi+1)− θ(ū, v̄)

≤ 1

2
‖∆wi+1‖2

Q+H −
1

2
‖wie‖2

Q + 〈w̄ − wi+1,Q∆wi+1〉+ 〈ū− ui+1,Ax̃i+1〉

+〈v̄ − vi+1,Bx̃i+1〉 − 〈∆vi+1,Q∗12(ū− ui+1)〉+ σ〈A∗ui+1
e ,B∗∆vi+1〉

+〈ū− ui+1, (D1 + S)∆ui+1〉+ 〈v̄ − vi+1, (D2 + T )(vi+1 − vi)〉

≤ 1

2
(Λi − Λi+1)− 1

2
(‖∆ui+1‖2

S + ‖∆vi+1‖2
T + σ‖A∗ui+1 + B∗vi − c‖2

+σ(1− τ)‖A∗ui+1 + B∗vi+1 − c‖2) ≤ 1

2
(Λi − Λi+1).

(4.52)

Therefore, summing up the above inequalities over i = 1, · · · k and by using the

convexity of function θ we can obtain that

θ(ûk, v̂k)− θ(ū, v̄) ≤ (Λ1(u, v, x)− Λk+1(u, v, x))/2k ≤ Λ1/2k. (4.53)

The inequalities (4.49) and (4.53) indicate that (4.47) holds for case (a).

Next, assume that the conditions for case (b) hold. Similar to (4.52), we have

that

θ(ui+1, vi+1)− θ(ū, v̄)

≤ 1

2
(Λi − Λi+1)− 1

2
(‖∆ui+1‖2

S−ηD1
+ ‖∆vi+1‖2

T +min(τ,1+τ−τ2)σBB∗−ηD2

+ min(1, 1 + τ−1 − τ)σ‖A∗ui+1 + B∗vi+1 − c‖2).

By the assumptions that S − ηD1 � 0 and T − ηD2 � 0, we can obtain that

θ(ûk, v̂k)− θ(ū, v̄) ≤ (Λ1 − Λk+1)/2k ≤ Λ1/2k. (4.54)

Thus, by (4.53) and (4.54) we can obtain the inequality (4.47).
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Remark 4.3. The results in Theorem 4.3, which are on the ergodic complexity of

the primal feasibility and the objective function, respectively, are extended from the

work of Davis and Yin [16] on the classic ADMM with separable objective functions.

However, there is no corresponding result available on the dual problem. Therefore,

it will be very interesting to see if one can develop a more explicit ergodic complexity

result containing all the three parts in the KKT condition.

4.3 The convergence rate of the quadratically cou-

pled problems

In this section, we focus on a special class of the general linearly constrained

optimization problem (1.2), where the coupled smooth function φ is convex and

quadratic. Specifically, the problems under consideration take the following form:

min p(u) + q(v) + 1
2

〈 u

v

 ,Q

 u

v

〉
s.t. A∗u+ B∗v = c,

(4.55)

where p, q,A∗,B∗ adopt the same setting as in the general form (1.2), and Q :

U ×V → U ×V is a self-adjoint positive semidefinite linear operator with the block

structure

Q

 u

v

 ≡
 Q11 Q12

Q∗12 Q22

 u

v

 , ∀u ∈ U , v ∈ V .

Similarly as in the previous sections, we denote w :=

 u

v

 ∈ U × V .

Note that for this special choice of the function φ, the Hessian defined in (2.1)

is the constant operator Q. Thus, both the upper and lower bound of ∂2φ could be

chosen as Q, i.e., D1 = 0 and D2 = 0, and the corresponding parameter η defined

in (4.2) would be 0.

The motivation of this section is to explore a better local convergence rate of
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the proposed algorithm, beyond the previously discussed global sublinear complex-

ity. The major idea of this part is inspired by Han et al.’s recent paper [40], which

shows that the (semi-proximal) ADMM for solving problems with separable objec-

tive functions actually converges linearly under an error bound assumption. We

extend their nice results to our proposed mADMM algorithm for solving (4.55) with

quadratic coupled objective functions.

Before showing the main results, we first provide our error bound assumption

below.

Assumption 4.2. For any (w̄, x̄) ∈ Ω, there exist a positive constant η such that

dist((w, x),Ω) ≤ η‖R(w, x)‖, ∀(w, x) ∈ N (w̄, x̄), (4.56)

where R(·, ·) is defined as in (4.4) for problem (4.55) and N (w̄, x̄) ⊆ U × V × X is

a neighborhood of (w̄, x̄).

One may naturally ask for which kinds of optimization problems the error bound

hold. In fact, this is quite an interesting and important question in the optimization

community. However, to the best of our knowledge, no complete answers have been

obtained till now except the piecewise linear quadratic problems. In the next chap-

ter, we would discuss the sufficient conditions to guarantee the inequality (4.56) for

a particular kind of constrained optimization problems involving the non-polyhedral

nuclear norm function. Here we just leave it as a blanket assumption and establish

the linear rate of convergence based on Assumption 4.2.

For simplicity of the subsequent discussions, given τ ∈ (0,
√

5+1
2

), we denote two

positive parameters as

α1 := 4‖Q‖+ 4 max{‖Q11 + S‖, ‖
√
Q12Q∗12‖, ‖Q22 + T ‖, σ‖A∗A‖},

α2(τ) := 4(1− τ−1)2(‖A∗A‖+ ‖B∗B‖) + (τσ)−2, τ ∈ R,

and a self-adjoint positive semidefinite operator E : U × V → U × V as

E := Q+ Diag(Q11 + S +
√
Q12Q∗12, Q22 + T + σBB∗).
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The following proposition shows that the norm of the residue mapping R at

the current iteration point can be bounded by the weighted norm of the difference

between two latest consecutive iterations.

Proposition 4.2. Suppose that the sequence {(wk, xk)} is generated by the mADMM

algorithm for problem (4.55). Then for any k ≥ 0 and τ ∈ R, the following inequality

always holds:

‖R(wk+1, xk+1)‖2 ≤ α1‖∆wk+1‖2
E + α2(τ)‖∆xk+1‖2. (4.57)

Proof. For the problem (4.55), the optimality conditions at uk+1 and vk+1 can

be reformulated in the form of proximal mapping as follows:
uk+1 = Proxp

(
uk+1 − (∇uφ(wk) +Ax̃k+1 + (Q11 + S)∆uk+1 − σAB∗∆vk+1)

)
,

vk+1 = Proxq
(
vk+1 − (∇vφ(wk) + Bx̃k+1 +Q∗12∆uk+1 + (Q22 + T )∆vk+1)

)
.

Thus, by recalling the KKT mapping defined in (4.4) and the non-expansive property

of the proximal mappings, we have

‖R(wk+1, xk+1)‖2

≤ 4‖∇φ(wk+1)−∇φ(wk)‖2 + 4‖xk+1 − x̃k+1‖2
A∗A+B∗B

+4 max{‖Q11 + S‖, ‖
√
Q12Q∗12)‖}‖∆uk+1‖2

Q11+S+
√
Q12Q∗12

+4 max{‖Q22 + T ‖, σ‖A∗A‖}‖∆vk+1‖2
Q22+T +σBB∗ + (τσ)−2‖∆xk+1‖2

≤ α1‖∆wk+1‖2
E + α2(τ)‖∆xk+1‖2.

We also denote the following two operators M1 : U × V → U × V and M2 :

U × V → U × V as

M1 :=
7

4
Q+ κ1(τ)σ

 A
B

 (A∗ B∗) + Diag(S, T + σBB∗ +Q22),

M2 :=
1

8
Q+ κ2(τ)σ

 A
B

 (A∗ B∗) + Diag(S, T +
1

6
Q22 + ρ(τ)σBB∗),
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where κ1(τ) = 1
3
(4− τ − 2 min{τ, τ−1}) and κ2(τ) = 1

6
ρ(τ)τ−1 for given τ ∈ R.

The following lemma characterize the relationship between the positive definite-

ness of several operators, which can be proved by the same way of Lemma 4.2 in

the previous section. We omit the proof here for simplicity.

Lemma 4.3. Let τ ∈ (0, 1+
√

5
2

). Then we have the following equivalent characteri-

zation of the positive definite properties of the operators:

Q11 + σAA∗ + S � 0 and Q22 + σBB∗ + T � 0⇐⇒M2 � 0.

Now we are ready to present the main theorem of this section, which provides

the linear convergence rate of the mADMM algorithm for solving (4.55) under As-

sumption 4.2 for the dual step length τ ∈ (0, 1+
√

5
2

).

Theorem 4.4. Suppose that the solution set of (4.55) is non-empty and Assumption

4.1 and 4.2 hold. Assume τ ∈ (0, 1+
√

5
2

) and the following conditions hold:

Q11 + σAA∗ + S � 0 and Q22 + σBB∗ + T � 0.

Then there exists a positive constant κ < 1 such that for any k ≥ 1, it holds

dist2
(M1,(τσ)−1I)

(
(wk+1, xk+1),Ω

)
+‖∆vk+1‖2

T ≤ κ(dist2
(M1,(τσ)−1I)

(
(wk, xk),Ω

)
+‖∆vk‖2

T ).

(4.58)

Proof. Note that D1 = 0 and D2 = 0 in the mADMM for solving the quadratic

coupled problem (4.55). Then for any (w̄, x̄) ∈ Ω, we have from Proposition 4.1 (ii)

that for any k ≥ 1,

(‖wk+1 − w̄‖2
M1

+ (τσ)−1‖xk+1 − x̄‖2 + ‖∆vk+1‖2
T )

−(‖wk − w̄‖2
M1

+ (τσ)−1‖xk − x̄‖2 + ‖∆vk‖2
T )

≤ −(‖∆wk+1‖2
M2

+ 1
3
(στ 3)−1ρ(τ)‖∆xk+1‖2).

(4.59)

Denote (w̄k, x̄k) as the weighted projection of (wk, xk) to the solution set Ω, i.e.,

‖wk − w̄k‖2
M1

+ (τσ)−1‖xk − x̄k‖2

= dist2
(M1,(τσ)−1I)

(
(wk, xk),Ω

)
:= inf

(w,x)∈Ω
{‖wk − w‖2

M1
+ (τσ)−1‖xk − x‖2}.
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Thus, the inequality (4.59) can be recast as

(‖wk+1 − w̄k‖2
M1

+ (τσ)−1‖xk+1 − x̄k‖2 + ‖∆vk+1‖2
T )

−(dist2
(M1,(τσ)−1I)

(
(wk, xk),Ω

)
+ ‖∆vk‖2

T )

≤ −(‖∆wk+1‖2
M2

+ 1
3
(στ 3)−1ρ(τ)‖∆xk+1‖2),

which further indicates that

(dist2
(M1,(τσ)−1I)

(
(wk+1, xk+1),Ω

)
+ ‖∆vk+1‖2

T )

−(dist2
(M1,(τσ)−1I)

(
(wk, xk),Ω

)
+ ‖∆vk‖2

T )

≤ −(‖∆wk+1‖2
M2

+ 1
3
(στ 3)−1ρ(τ)‖∆xk+1‖2).

(4.60)

By Assumption 4.2 and the global convergence of {(wk, xk)} to some point in Ω, we

know that there exists a positive integer k0 such that for all k ≥ k0, the following

inequality always holds:

dist2
(
(wk+1, xk+1),Ω) ≤ η2‖R(wk+1, xk+1)‖2.

Combining the above inequality with the inequality (4.57) in Proposition 4.2, we see

that for k ≥ k0,

dist2
(
(wk+1, xk+1),Ω) ≤ η2(α1‖∆wk+1‖2

E + α2(τ)‖∆xk+1‖2).

Hence, by recalling that M2 � 0 from Lemma 4.3, we have for any k ≥ k0,

dist2
(M1,(τσ)−1I)

(
(wk+1, xk+1),Ω

)
+ ‖∆vk+1‖2

T

≤ max{‖M1‖, (τσ)−1}dist2
(
(wk+1, xk+1),Ω) + ‖∆vk+1‖2

T

≤ η2 max{‖M1‖, (τσ)−1}(α1‖∆wk+1‖2
E + α2(τ)‖∆xk+1‖2) + ‖∆vk+1‖2

T

≤ κ3(τ)(‖∆wk+1‖2
M2

+ 1
3
(στ 3)−1ρ(τ)‖∆xk+1‖2),

(4.61)

where κ3(τ) = η2 max{‖M1‖, (τσ)−1}max{‖E‖‖M2‖−1α1, 3στ
3(ρ(τ))−1α2}+1 and

the last inequality comes from the fact that ‖∆vk+1‖2
T ≤ ‖∆wk+1‖2

M2
.

Substituting the inequality (4.61) into (4.60), we can obtain that for any k ≥ k0,

dist2
(M1,(τσ)−1I)

(
(wk+1, xk+1),Ω

)
+ ‖∆vk+1‖2

T

≤ κ3(τ)

1 + κ3(τ)
(dist2

(M1,(τσ)−1I)

(
(wk, xk),Ω

)
+ ‖∆vk‖2

T ).
(4.62)
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For k < k0, define

µk = 1−
‖∆wk+1‖2

M2
+ 1

3
(στ 3)−1ρ(τ)‖∆xk+1‖2

dist2
(M1,(τσ)−1I)

(
(wk, xk),Ω

)
+ ‖∆vk‖2

T
∈ (0, 1).

Then the inequality (4.60) can be rewritten as

dist2
(M1,(τσ)−1I)

(
(wk+1, xk+1),Ω

)
+ ‖∆vk+1‖2

T

≤ µk(dist2
(M1,(τσ)−1I)

(
(wk, xk),Ω

)
+ ‖∆vk‖2

T ).
(4.63)

Therefore, by letting κ = min

{
µ1, µ2, . . . , µk0 ,

κ3(τ)

1 + κ3(τ)

}
, we can see from (4.62)

and (4.63) that the inequality (4.58) holds for any k ≥ 1.





Chapter 5
Characterization of the robust isolated

calmness

One can see from the discussions in Section 4.3 that the error bound condition plays

an important role in guaranteeing the linear convergence rate of the ADMM. In

fact, the convergence rate of a rich class of first order algorithms can be established

under the error bound conditions. For a nice survey about this topic, see [64]. This

motivates us to explore more on the error bound conditions for the constrained

composite programming. Recently, Han, Sun and Zhang [40] establish a certain

error bound for the composite semidefinite optimization problems by the isolated

calmness of the KKT system, and characterize the latter property by the second

order sufficient condition and the strict Robinson constraint qualification. In this

chapter, we shall extend their nice work to a class of composite constrained nuclear

norm problems with the form:

min f(x) + ρθ(x)

s.t. h(x) ∈ P ,
(5.1)

where f : Rm×n → R is a twice continuously differentiable function, and h :

Rm×n → Y is a twice continuously differentiable mapping, ρ > 0 is a given positive

penalty parameter, P ⊆ Y is a closed convex polyhedral, θ : Rm×n → R denotes

the nuclear norm function, i.e., θ(x) = ‖x‖∗ for all x ∈ Rm×n, and Y is a finite

105
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dimensional Euclidean space. Without loss of generality, we assume ρ = 1 in the

objective function for simplicity.

5.1 The robust isolated calmness for the nuclear

norm problems

In this section, we explore the robust isolated calmness (Definition 2.9) of the KKT

system for the problem (5.1). Different from the positive semidefinite programming,

the problem (5.1) is no longer a conic optimization problem. Fortunately, with

the results prepared in Section 2.5.1, we are able to focus on the nuclear norm

directly without referring to its epigraph. In the following, we will first analyze the

variational properties related to the nuclear norm and its proximal mapping. Based

on them, we provide a full picture about the robust isolated calmness of the KKT

system for the problem (5.1).

Since the nuclear norm function θ is Lipschitz continuous and convex, we always

have domθ = Rm×n, and θ↓(x, ·) = θ′(x; ·) for any x ∈ Rm×n [6, Theorem 2.126].

Thus, all the directional epiderivatives of θ appearing in Section 2.5.1 will be replaced

by its conventional directional derivative in this section. Furthermore, we have

θ↓↓+ (x; d, ·) = θ
′′
+(x; d, ·) and θ↓↓− (x; d, ·) = θ

′′
−(x; d, ·) for any x, d ∈ Rm×n by the

Lipschitz continuity of θ and its directional differentiability. Moreover, in his Ph.D

thesis, Ding [19, Proposition 4.3] proves that the epigraph of the nuclear norm is

C2-cone reducible1 at every point (x, t) ∈ epiθ, and thus, second order regular2 by [6,

Proposition 3.136]. In this way, we have θ is second order directional differentiable

by combining the equation (2.27) and (2.28).

We call x̄ ∈ Rm×n a stationary point of the problem (5.1) and ȳ ∈ Y a multiplier

1For the definition of C2-cone reducible, see [6, Definition 3.135].
2For the definition of second order regular, see [6, Definition 3.85].
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of x̄ if (x̄, ȳ) satisfies the following optimality condition in the sense of (2.32):
f ′(x̄)d+ 〈ȳ, h′(x̄)d〉+ θ′(x̄; d) ≥ 0, ∀d ∈ X ,

ȳ ∈ NP(h(x̄)),
(5.2)

Denote M(x̄) as the set of all the multipliers at x̄.

From Proposition 2.5 and by noting that domθ = Rm×n, the multiplier set

M(x̄) is nonempty, convex and compact at a local optimal solution x̄ ∈ Rm×n for

the problem (5.1) if and only if the following RCQ holds at x̄:

0 ∈ int{h(x̄) + h′(x̄)X − P}. (5.3)

Recall from Proposition 2.6 that the SRCQ of the problem (5.1) at a local optimal

solution x̄ and its multiplier ȳ ∈M(x̄) is given by h′(x̄)

I

X +

 TP(h(x̄)) ∩ ȳ⊥

T θ(x̄,−∇xl(x̄, ȳ))

 =

 Y
X

 . (5.4)

Denote ψ(x,d)(·) = θ
′′
(x; d, ·) for any (x, d) ∈ Rm×n ×Rm×n. Then the following

no gap second order necessary and sufficient optimality conditions can be easily

obtained by the Lipschitz continuity of the function θ and the results in [86, Theorem

3.45, Proposition 3.136 and Theorem 3.137].

Proposition 5.1. Suppose that x̄ is a local optimal solution of the problem (5.1)

and the RCQ (5.3) holds at x̄. Then the following second order necessary condition

holds:

sup
ȳ∈M(x̄)

{
〈d,∇2

xxl(x̄, ȳ)d〉 − ψ∗(x̄,d)(−∇xl(x̄, ȳ))
}
≥ 0, ∀d ∈ C(x̄) \ {0}. (5.5)

Conversely, let x̄ be a feasible solution of the problem (5.1) and the RCQ (5.3) hold

at x̄. Then the following condition

sup
ȳ∈M(x̄)

{
〈d,∇2

xxl(x̄, ȳ)d〉 − ψ∗(x̄,d)(−∇xl(x̄, ȳ))
}
> 0, ∀d ∈ C(x̄) \ {0}. (5.6)
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is necessary and sufficient for the quadratic growth condition at x̄, i.e., there exist

a constant c > 0 and a neighborhood N (x̄) of x̄ such that for any feasible point

x ∈ N (x̄), it holds

f(x) + θ(x) ≥ f(x̄) + θ(x̄) + c‖x− x̄‖2. (5.7)

5.1.1 The variational analysis of the nuclear norm

Let A,B ∈ Rm×n satisfy B ∈ ∂θ(A) and denote C := A + B. By the optimality

conditions of the proximal mapping, one can see that B ∈ ∂θ(A) is equivalent as

A = Proxθ(C), B = Proxθ∗(C). (5.8)

Suppose that C admits the following singular-value decomposition (SVD):

C = U [Σ(C) 0]V T = U [Σ(C) 0][V1 V2]T = UΣ(C)V T
1 , (5.9)

where U ∈ Om, V := [V1 V2] ∈ On with V1 ∈ Rn×m and V2 ∈ Rn×(n−m) are the

singular vectors of C, and Σ(C) := Diag(σ1(C), σ2(C), . . . , σm(C)) are the singular

values of C with σ1(C) ≥ σ2(C) ≥ . . . ≥ σm(C) being arranged in a non-increasing

order.

It is known by [20] that given the SVD of C as (5.9), the SVD of A and B can

be written as:

A = U [Σ(A) 0]V T = UΣ(A)V T
1 ,

B = U [Σ(B) 0]V T = UΣ(B)V T
1 ,

(5.10)

where Σ(A) := Diag(σ1(A), σ2(A), . . . , σm(A)),Σ(B) := Diag(σ1(B), σ2(B), . . . , σm(B))

and

σi(A) = (σi(C)− 1)+, σi(B) = σi(C)− σi(A), i = 1, 2, . . . ,m. (5.11)

Obviously σ1(A) ≥ σ2(A) ≥ . . . ≥ σm(A) and σ1(B) ≥ σ2(B) ≥ . . . ≥ σm(B).

For simplicity of the subsequent discussions, we denote the following two index

sets:

a := {1 ≤ i ≤ m : σi(A) > 0}, b := {1 ≤ i ≤ m : σi(A) = 0}. (5.12)
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We further denote the distinct nonzero singular values of A as µ1(A) > µ2(A) >

. . . > µr(A) for some nonnegative integer r and divide the set a into the following r

subsets:

a =
⋃

1≤l≤r

al, al := {i ∈ a : σi(A) = µl(A)}, l = 1, 2, . . . , r. (5.13)

From the relationship (5.11), we can see that 0 ≤ σi(B) ≤ 1 for i ∈ b. Based on it,

we also divide the set b into the following three subsets:

b1 := {i ∈ b : σi(B) = 1}, b2 := {i ∈ b : 0 < σi(B) < 1}, b3 := {i ∈ b : σi(B) = 0}.

(5.14)

In fact, the indices in (5.12), (5.13) and (5.14) can also be regarded as a classification

about the singular values of C by noting the relationship (5.11) again. That is,

a = {1 ≤ i ≤ m : σi(C) > 1}, b = {1 ≤ i ≤ m : 0 ≤ σi(C) ≤ 1},

al = {i ∈ a : σi(C) = µl(C)}, l = 1, 2, . . . , r,

b1 := {i ∈ b : σi(C) = 1}, b2 := {i ∈ b : 0 < σi(C) < 1}, b3 := {i ∈ b : σi(C) = 0},
(5.15)

where µ1(C) > µ2(C) > . . . > µr(C) > 1 denotes the distinct singular values of C

that are larger than 1.

It is known from Watson [101] that given the SVD of A ∈ Rm×n in the form

of (5.10) with the indices a and b defined in (5.12), the subgradient at A takes the

following form:

∂θ(A) =
{
UaV

T
a + UbW [Vb V2]T : W ∈ R|b|×(n−|a|), ‖W‖2 ≤ 1

}
. (5.16)

Therefore, for any H ∈ Rm×n, the directional derivative at A along H can be

computed as

θ′(A;H) = sup
S∈∂θ(A)

〈H,S〉

= tr(UT
a HVa) + ‖UT

b H[Vb V2]‖∗.
(5.17)

Now we shall discuss the directional derivative of Proxθ(·). Define a mapping

φ : Rm → Rm as

φ(x) :=
(
(x1 − 1)+, (x2 − 1)+, . . . , (xm − 1)+

)
, ∀x = (x1, x2, . . . , xm) ∈ Rm.



110 Chapter 5. Characterization of the robust isolated calmness

Suppose C ∈ Rm×n admits the SVD in the form of (5.9) with

σ(C) := (σ1(C), σ2(C), . . . , σm(C)).

By the relationship (5.10), we can rewrite the proximal mapping of the nuclear norm

as

Proxθ(C) = UDiag
(
φ(σ(C)) 0

)
V T . (5.18)

Thus, Proxθ is the spectral operator associated with the symmetric function φ in

the sense of Definition 2.4. It is easy to see that φ is directional differentiable

with the directional derivative at x = (x1, x2, . . . , xm) ∈ Rm along the direction

d := (d1, d2, . . . , dm) ∈ Rm given by

φ′(x; d) = (φ′1(x1; d1), φ′2(x2; d2), . . . , φ′m(xm; dm)),

where φ′i(xi; di) =


di xi > 1

(di)+ xi = 1

0 xi < 1

for i = 1, 2, . . . ,m.

Given a positive integer p, define two linear matrix operators S : Rp×p → Sp

and T : Rp×p → Rp×p as

S(Y ) =
1

2
(Y + Y T ), T (Y ) =

1

2
(Y − Y T ), ∀Y ∈ Rp×p. (5.19)

From Theorem 2.1, the directional derivative of Prox′θ(C; ·) takes the form of

Prox′θ(C;H) = U


Γ1(C, H̃1) Γ2(C, H̃1) Γ4(C, H̃2)

Γ3(C, H̃1)

Pb1(Λ(S(H̃b1b1)))+P
T
b1

0 0

0 0b2×b2 0

0 0 0b3×b3

0

V T ,

(5.20)

where H̃ = [H̃1 H̃2] = [UTHV1 U
THV2], S(H̃b1b1) has the eigenvalue decomposi-

tion S(H̃b1b1) = Pb1Λ(S(H̃b1b1))P
T
b1

with Pb1 ∈ O|b1|(S(H̃b1b1)), and the four blocks

Γ1(C, H̃1) ∈ R|a|×|a|, Γ2(C, H̃1) ∈ R|a|×|b|, Γ3(C, H̃1) ∈ R|b|×|a| and Γ4(C, H̃2) ∈
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R|a|×(n−m) admit the forms

(Γ1(C, H̃1))alat = (S(H̃1))alat +
µl(C) + µt(C)− 2

µl(C) + µt(C)
(T (H̃1))alat , 1 ≤ l, t ≤ r,

Γ2(C, H̃1) = ΞS ◦ (S(H̃1))ab + ΞT ◦ (T (H̃1))ab,

Γ3(C, H̃1) = ΞT
S ◦ (S(H̃1))ba + ΞT

T ◦ (T (H̃1))ba,

Γ4(C, H̃2) = Ξ2 ◦ (H̃2)a2,

and ΞS ∈ R|a|×|b|, ΞT ∈ R|a|×|b|, Ξ2 ∈ R|a|×(n−m) are given by

(ΞS)ij =
σi(C)− 1

σi(C)− σj+|a|(C)
, i = 1, 2, . . . , |a|, j = 1, 2, . . . , |b|,

(ΞT )ij =
σi(C)− 1

σi(C) + σj+|a|(C)
, i = 1, 2, . . . , |a|, j = 1, 2, . . . , |b|,

(Ξ2)ij =
σi(C)− 1

σi(C)
i = 1, 2, . . . , |a|, j = 1, 2, . . . , n−m.

In [20], Ding computes ψ∗(A,H)(B) for H ∈ Rm×n explicitly as follows, which is

the sigma term in the second order sufficient optimality condition of the problem

(2.24):

ψ∗(A,H)(B) = 2
r∑
l=1

tr
(
Ωal(A,H)

)
+ 2〈Diag(σb(B)), UT

b HA
†HVb〉, (5.21)

where σb(B) = (σi(B))i∈b and

Ωal(A,H) := (S(H̃1))Tal(Σ(A)− µl(A)Im)†(S(H̃1))al + (2µl(A))−1H̃al2H̃
T
al2

+(T (H̃1))Tal(−Σ(A)− µl(A)Im)†(T (H̃1))al , l = 1, 2, . . . r,

with H̃ = [H̃1 H̃2] = [UTHV1 U
THV2].

Define a set-valued mapping T θ on Rm×n ×Rm×n as

T θ(X,S) := {H ∈ Rm×n : θ′(X;H) = 〈H,S〉}, ∀(X,S) ∈ Rm×n ×Rm×n. (5.22)

In the following, we present several properties related to the directional deriva-

tives of θ, Proxθ and the sigma term generated by θ.
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Lemma 5.1. Suppose A,B,C ∈ Rm×n satisfy the relationship (5.8) and the index

sets a, b, b1, b2, b3 are defined as in (5.12) and (5.14). Given any H ∈ Rm×n, denote

H̃ = UTHV for U, V satisfying (5.9). Then the following conclusions hold:

(i) H ∈ T θ(A,B) if and only if H̃ has the following block structure:

H̃ =


H̃aa H̃ab H̃a2

H̃ba

ΠS|b1|+
(H̃b1b1) 0 0

0 0b2×b2 0

0 0 0b3×b3

0

 , (5.23)

where ΠSp+(·) denotes the projection onto the p× p dimensional positive semidefinite

cone.

(ii) H ∈
(
T θ(A,B)

)◦ ⇐⇒ Prox′θ(C;H) = 0.

Proof. The result of part (i) comes from [20, proposition 10]. For part (ii), by

the expression of Prox′θ(C; ·) in (5.20), we have Prox′θ(C;H) = 0 for some H ∈ Rm×n

if and only if

H̃aa = 0, H̃ab = 0, H̃ba = 0, H̃a2 = 0, H̃b1b1 � 0,

where H̃ = UTHV . And from part (i) we can see that the above conditions are

equivalent as H ∈
(
T θ(A,B)

)◦
.

Lemma 5.2. Suppose A,B,C ∈ Rm×n satisfy the relationship (5.8). Then for any

H,D ∈ Rm×n, we have

H = Prox′θ(C;H +D)⇐⇒ H ∈ T θ(A,B) and 〈H,D〉 = −ψ∗(A,H)(B). (5.24)

Proof. First, by using the expression of the second order directional derivative

for the eigenvalues and singular values [94, 105], we can compute the sigma-term
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ψ∗(A,H)(B) explicitly [20, Proposition 14] as

ψ∗(A,H)(B) =
∑

1≤l,t≤r

2

−µt(A)− µl(A)
‖(T (H̃1))alat‖2 +

∑
1≤l≤r

4

−µl(A)
‖(T (H̃1))alb1‖2

+
∑

1≤l≤r
1≤i−|a|−|b1|≤|b2|

(
2(1− σi(B))

−µl(A)
‖(S(H̃1))ali‖2 +

2(σi(B) + 1)

−µl(A)
‖(T (H̃1))ali‖2

)

+
∑

1≤l≤r
1≤i−|a|−|b1|−|b2|≤|b3|

(
2

−µl(A)
‖(S(H̃1))ali‖2 +

2

−µl(A)
‖(T (H̃1))ali‖2

)

+
∑

1≤l≤r

1

−µl(A)
‖(H̃2)al2‖2.

(5.25)

Suppose H = Prox′θ(C;H + D). Recall that Prox′θ(C; ·) has the form (5.20).

Thus, by letting H̃ = UTHV and d̃ = UTDV , we can directly obtain that H̃ has a

special block structure as

H̃ =


H̃aa H̃ab H̃a2

H̃ba

H̃b1b1 0 0

0 0b2×b2 0

0 0 0b3×b3

0

 ,

and H̃ and d̃ further satisfy that

d̃alat =
2

µl(C) + µt(C)− 2
(T (H̃1))alat , 1 ≤ l, t ≤ r,

(d̃ab)ij =
1

σi(C)− 1
(H̃ab)ij −

σj+|a|(C)

σi(C)− 1
(H̃ab)ji, i = 1, 2, . . . |a|, j = 1, 2, . . . , |b|,

(d̃ba)ji =
1

σi(C)− 1
(H̃ab)ji −

σj+|a|(C)

σi(C)− 1
(H̃ab)ij, i = 1, 2, . . . |a|, j = 1, 2, . . . , |b|,

(d̃a2)ij =
1

σi(C)− 1
(H̃a2)ij i = 1, 2, . . . , |a|, j = 1, 2, . . . , n−m,

0 � H̃b1b1 = S(H̃b1b1) ⊥ S(d̃b1b1) � 0.

This directly shows that θ′(A;H) = 〈B,H〉 by Lemma 5.1 (i). Furthermore, we can
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compute the inner product between D and H as

〈D,H〉 = 〈d̃aa, H̃aa〉+ 〈d̃ab, H̃ab〉+ 〈d̃ba, H̃ba〉+ 〈d̃a2, H̃a2〉

=
∑

1≤t,l≤r

2

µl(C) + µt(C)− 2
‖(T (H̃1))alat‖2 +

∑
1≤l≤r

4

µl(C)− 1
‖(T (H̃1))alb1‖2

+
∑

1≤l≤r
1≤i−|a|−|b1|≤|b2|

(
2(1− σi(C))

µl(C)− 1
‖(S(H̃1))ali‖2 +

2(σi(C) + 1)

µl(C)− 1
‖(T (H̃1))ali‖2

)

+
∑

1≤l≤r
1≤i−|a|−|b1|−|b2|≤|b3|

(
2

µl(C)− 1
‖(S(H̃1))ali‖2 +

2

µl(C)− 1
‖(T (H̃1))ali‖2

)

+
∑

1≤l≤r

1

µl(C)− 1
‖(H̃2)al2‖2.

Comparing the above formula with (5.25), and by noting the relationship between

the singular values of A and C in (5.11) and (5.15), we could obtain 〈D,H〉 =

−ψ∗(A,H)(B).

The reverse direction of this proposition can be shown by the above formula

without any difficulty, and hence we omit it here.

5.1.2 The robust isolated calmness

After the preparation in the previous part, now we are ready to establish the robust

isolated calmness of the KKT system by the second order sufficient condition and

the SRCQ for the problem (5.1).

Recall the definition of the natural map for the problem (5.1) given in Section

2.5.3:

G(x, y) :=

 x− Proxθ
(
x−∇xl(x, y)

)
h(x)− ΠP(h(x) + y)

 , ∀(x, y) ∈ Rm×n × Y . (5.26)

We also consider the canonically perturbed problem with a given perturbation

parameter δ := (δ1, δ2) ∈ Rm×n × Y :

min f(x) + θ(x)− 〈δ1, x〉,

s.t. h(x)− δ2 ∈ P ,
(5.27)



5.1 The robust isolated calmness for the nuclear norm problems 115

where the set of all the optimal solutions are given by

SKKT(δ) = {(x, y) ∈ Rm×n × Y : x− Proxθ
(
x−∇xl(x, y) + δ1

)
= 0,

h(x)− δ2 − ΠP(h(x)− δ2 + y) = 0}.
(5.28)

The following lemma is motivated by Klatte’s work [51] on the isolated calmness

property for the nonlinear programming.

Lemma 5.3. Suppose that x̄ ∈ Rm×n is a local optimal solution of the problem (5.1)

and the RCQ (5.3) holds at x̄. Let ȳ ∈ M(x̄). If G−1 is isolated calm at the origin

for (x̄, ȳ) and there exists ∆x ∈ C(x̄) \ {0} such that

〈∆x,∇2
xxl(x̄, ȳ)∆x〉 − ψ∗(x̄,∆x)(−∇xl(x̄, ȳ)) = 0, (5.29)

then there exists d̄ ∈ C(x̄) such that

〈d̄,∇2
xxl(x̄, ȳ)∆x〉 − 2Γ(x̄,−∇xl(x̄,ȳ))(d̄,∆x) < 0, (5.30)

where

Γ(x̄,−∇xl(x̄,ȳ))(d, h) :=
∑r

l=1 tr
(
(S(d̃1))Tal(Σ(x̄)− µl(x̄)Im)†(S(h̃1))al + (2µl(x̄))−1d̃al2h̃

T
al2

+(T (d̃1))Tal(−Σ(x̄)− µl(x̄)Im)†(T (h̃1))al
)

+ 〈Diag(σb(−∇xl(x̄, ȳ))), UT
b dx̄

†hVb〉.

Proof. We prove the conclusion by contradiction. Suppose that there does not

exist d̄ ∈ C(x̄) such that the inequality (5.30) holds. Since Γ(x̄,−∇xl(x̄,ȳ))(d, h) =

Γ(x̄,−∇xl(x̄,ȳ))(h, d) for any d, h ∈ Rm×n, we have by the assumption (5.29) that ∆x

is an optimal solution of the following linear positive semidefinite problem

min
d
〈d,∇2

xxl(x̄, ȳ)∆x〉 − Γ(x̄,−∇xl(x̄,ȳ))(d,∆x)− Γ(x̄,−∇xl(x̄,ȳ))(∆x, d)

s.t. h′(x̄)d ∈ TP(h(x̄)) ∩ ȳ⊥,

UT
b1
dVb1 � 0, UT

b1
dV[b2 b3] = 0, UT

[b2 b3]dVb = 0, UT
b dV2 = 0,

(5.31)

where the constraint sets are in fact the equivalent conditions for d ∈ C(x̄) combined

with h′(x̄)d ∈ ȳ⊥ under the RCQ condition at x̄. Obviously the RCQ condition for

the problem (5.31) holds at ∆x. Then there exists (∆y, ξ̄1, ξ̄2, ξ̄3, ξ̄4) ∈M(∆x) such
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that 
∇2
xxl(x̄, ȳ)∆x+∇h(x̄)∆y + Ξ(∆x, ξ̄1, ξ̄2, ξ̄3, ξ̄4) = 0,

h′(x̄)∆x− ΠTP (h(x̄))∩ȳ⊥(h′(x̄)∆x+ ∆y) = 0,

UT
b1

∆xVb1 − ΠS|b1|+
(UT

b1
∆xVb1 + ξ̄1) = 0,

(5.32)

where the term Ξ(∆x, ξ̄2, ξ̄3, ξ̄4, ξ̄5) is given by

Ξ(∆x, ξ̄1, ξ̄2, ξ̄3, ξ̄4) := ∇d

(
Γ(x̄,−∇xl(x̄,ȳ))(d,∆x) + Γ(x̄,−∇xl(x̄,ȳ))(d,∆x)

)∣∣∣
d=∆x

+Ub1 ξ̄1V
T
b1

+ Ub1 ξ̄2V
T

[b2 b3] + U[b2 b3]ξ̄3V
T
b + Ubξ̄4V

T
2 .

By Lemma 5.1 (i) and ∆x is a feasible point of the problem (5.31), we have

∆x ∈ T θ(x̄,−∇xl(x̄, ȳ)). Furthermore, we see that

〈∆x,Ξ(∆x, ξ̄1, ξ̄2, ξ̄3, ξ̄4)〉

= −2Γ(x̄,−∇xl(x̄,ȳ))(∆x,∆x) + 〈UT
b1

∆xVb1 , ξ̄1〉+ 〈UT
b1

∆xV[b2 b3], ξ̄2〉+ 〈UT
[b2 b3]∆xVb, ξ̄3〉

+〈UT
b ∆xV2, ξ̄4〉

= −2Γ(x̄,−∇xl(x̄,ȳ))(∆x,∆x)

= −ψ∗(x̄,∆x)(−∇xl(x̄, ȳ)),

where the first equation holds by noting that Γ(x̄,−∇xl(x̄,ȳ))(d,∆x) and Γ(x̄,−∇xl(x̄,ȳ))(d,∆x)

are linear functions of d, and the second equation comes from the feasibility of ∆x

for the problem (5.31). Therefore, we obtain from Lemma 5.2 that

∆x = Prox′θ(x̄−∇xl(x̄, ȳ); ∆x+ Ξ(∆x, ξ̄1, ξ̄2, ξ̄3, ξ̄4)).

Moreover, since Π′P(h(x̄) + ȳ;h′(x̄)∆x + ∆y) = ΠTP (h(x̄))∩ȳ⊥(h′(x̄)∆x + ∆y) by [30,

Theorem 4.1.1], we conclude by combining (5.32) that

G′((x̄, ȳ); (∆x,∆y)) =

 ∆x− Prox′θ(x̄−∇xl(x̄, ȳ); ∆x−∇2
xxl(x̄, ȳ)∆x−∇h(x̄)∆y)

h′(x̄)∆x− Π′P(h(x̄) + ȳ;h′(x̄)∆x+ ∆y)


= 0,

for ∆x 6= 0. This is a contradiction to the isolated calmness of G−1 at the origin for

(x̄, ȳ) by Lemma 2.1.
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The following proposition, which characterizes the non-empty property of the

SKKT map, can be obtained directly from [21] by noting the second order regularity

of the nuclear norm function.

Proposition 5.2. Let x̄ be an isolated local optimal solution of the problem (5.1)

and the RCQ (5.3) holds at x̄. Let y ∈M(x̄) and assume that the SRCQ (5.4) holds

at x̄ with respect to ȳ. Then there exists a neighborhood N (x̄, ȳ) of (x̄, ȳ) and N (0)

of 0 ∈ X × Y such that for any δ ∈ N (0), we have SKKT(δ) ∩N (x̄, ȳ) 6= ∅.

Our first main result of this Chapter is given in the next theorem, which fully

characterizes the robust isolated calmness of the problem (5.1) by the second order

sufficient condition and the strict Robinson constraint qualification.

Theorem 5.1. Suppose that x̄ ∈ Rm×n is a feasible solution of the problem (5.1)

and the RCQ (5.3) holds at x̄. Let ȳ ∈ M(x̄). Then the following two statements

are equivalent to each other:

(i) The second order sufficient condition (5.6) holds at x̄ and the SRCQ (5.4) holds

at x̄ with respect to ȳ ∈M(x̄).

(ii) x̄ is a locally optimal solution of the problem (5.1) and the multi-valued mapping

SKKT defined in (5.28) is robust isolated calm at the origin with respect to (x̄, ȳ).

Proof. (i)=⇒ (ii): Since the second order sufficient condition (5.6) holds at x̄, x̄

must be a local optimal solution. From Proposition 5.2 and the SRCQ assumption

at x̄ we see that the mapping SKKT is nonempty valued. Thus, it suffices to show

that SKKT is isolated calm at (x̄, ȳ) for the origin, which by Theorem 2.5 is equivalent

to the isolated calmness of G−1 at the origin with respect to (x̄, ȳ).

Under the assumption that the SRCQ holds at x̄, we have ȳ is the unique La-

grangian multiplier with respect to x̄ of the problem (5.1) by Proposition 2.6. Let

(dx, dy) ∈ Rm×n × Y satisfy that G′((x̄, ȳ); (dx, dy)) = 0, which is equivalent to say
dx − Prox′θ(x̄−∇xl(x̄, ȳ); dx −∇2

xxl(x̄, ȳ)dx −∇h(x̄)dy) = 0,

h′(x̄)dx − Π′P(h(x̄) + ȳ;h′(x̄)dx + dy) = 0.
(5.33)
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By the optimality condition that G(x̄, ȳ) = 0, we have Proxθ(x̄ − ∇xl(x̄, ȳ)) = x̄.

Then from Lemma 5.2, we can obtain the first equation in (5.33) holds if and only

if

θ′(x̄; dx) + 〈∇xl(x̄, ȳ), dx〉 = 0,

and

〈dx,∇2
xxl(x̄, ȳ)dx +∇h(x̄)dy〉 = ψ∗(x̄,dx)(−∇xl(x̄, ȳ)). (5.34)

Also by [40, Lemma 4.2] and the fact that h(x̄) = ΠP(h(x̄) + ȳ), we have that the

second equation in (5.33) holds if and only if

h′(x̄)dx ∈ TP(h(x̄)) ∩ ȳ⊥ and 〈h′(x̄)dx, dy〉 = 0. (5.35)

Thus, we have that

f ′(x̄)dx + θ′(x̄; dx) = f ′(x̄)dx − 〈∇xl(x̄, ȳ), dx〉 = −〈∇h(x̄)ȳ, dx〉 = 0,

so that dx ∈ C(x̄). Moreover, from (5.34) and (5.35) we have

〈dx,∇2
xxl(x̄, ȳ)dx〉 − ψ∗(x̄,dx)(−∇xl(x̄, ȳ)) = 0.

Since the second order sufficient condition holds at x̄, we must have dx = 0. Now

(5.33) can be simplified as
Prox′θ(x̄−∇xl(x̄, ȳ);−∇h(x̄)dy) = 0,

Π′P(h(x̄) + ȳ; dy) = 0.

By Lemma 5.1 (ii), we have from the first equation that

−∇h(x̄)dy ∈
(
T θ(x̄,−∇xl(x̄, ȳ))

)◦
,

where T θ(x̄,−∇xl(x̄, ȳ)) is defined by (5.22). Moreover, from [40, Lemma 4.2], we

have that the second equation is equivalent to say

dy ∈ (TP(h(x̄)) ∩ ȳ⊥)◦.
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Thus, we obtain that −dy
∇h(x̄)dy

 ∈
 h′(x̄)

I

Rm×n +

 TP(h(x̄)) ∩ ȳ⊥

T θ(x̄,−∇xl(x̄, ȳ))

◦ ,
so that dy = 0 by the assumption that SRCQ (5.4) holds at x̄ with respect to

ȳ ∈M(x̄).

Therefore, G−1 is isolated calm at the origin for (x̄, ȳ) by Lemma 2.1.

(ii)=⇒ (i). This part is proved by contradiction. By using Theorem 5.2 again and

the isolated calmness of G−1 at the origin for (x̄, ȳ), we have SKKT is isolated calm

at (x̄, ȳ) for the origin. First let us suppose the SRCQ (5.4) does not hold at x̄ with

respect to ȳ ∈M(x̄). Then there exists nonzero (dx, dy) ∈ Rm×n × Y such that dy

dx

 ∈
 h′(x̄)

I

Rm×n +

 TP(h(x̄)) ∩ ȳ⊥

T θ(x̄,−∇xl(x̄, ȳ))

◦ ,
which is equivalent to 

∇h(x̄)dy + dx = 0,

dx ∈
(
T θ(x̄,−∇xl(x̄, ȳ))

)◦
dy ∈ (TP(h(x̄)) ∩ ȳ⊥)◦.

(5.36)

From Lemma 5.1 (ii) and [40, Lemma 4.2], we get
Prox′θ(x̄−∇xl(x̄, ȳ);−∇h(x̄)dy) = Prox′θ(x̄−∇xl(x̄, ȳ); dx) = 0

Π′P(h(x̄) + ȳ; dy) = 0.

Since (dx, dy) is assumed to be nonzero, we have that dy 6= 0 by the first equation

in (5.36). This shows that G′((x̄, ȳ); (0, dy)) = 0 along a nonzero direction (0, dy),

which is a contradiction of the isolated calm of G−1 at the origin for (x̄, ȳ) by Lemma

2.1.

In the following, we show the second order sufficient condition (5.6) holds at

x̄. We also prove this statement by contradiction. From the previous proof we
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know that the SRCQ (5.4) holds at x̄ with respect to ȳ under the isolated calmness

assumption of G−1 at the origin for (x̄, ȳ), and thus, the multiplier ȳ ∈ M(x̄) is

unique.

By the assumption that the SRCQ holds at the local optimal solution x̄, we have

the second order necessary condition holds at x̄, i.e.,

〈d,∇2
xxl(x̄, ȳ)d〉 − ψ∗(x̄,d)(−∇xl(x̄, ȳ)) ≥ 0, ∀d ∈ C(x̄) \ {0}.

Suppose the second order sufficient condition does not hold at x̄. Since x̄ is a

local optimal solution of the problem (5.1), the second order necessary condition

(5.5) holds at x̄. Then there exists dx ∈ C(x̄) \ {0} such that

〈dx,∇2
xxl(x̄, ȳ)dx〉 − ψ∗(x̄,dx)(−∇xl(x̄, ȳ)) = 0.

By Lemma 5.3 this further indicates that there exists d̄x ∈ C(x̄) such that (5.30)

holds. Therefore, for any t > 0 sufficiently small, we have

〈(dx + td̄x),∇2
xxl(x̄, ȳ)(dx + td̄x)〉 − ψ∗(x̄,dx+td̄x)

(−∇xl(x̄, ȳ))

= 〈(dx + td̄x),∇2
xxl(x̄, ȳ)(dx + td̄x)〉 − 2Γ(x̄,−∇xl(x̄,ȳ))((dx + td̄x), (dx + td̄x))

= 〈dx,∇2
xxl(x̄, ȳ)dx〉 − 2Γ(x̄,−∇xl(x̄,ȳ))(dx, dx)

+2t
(
〈dx,∇2

xxl(x̄, ȳ)d̄x〉 − 2Γ(x̄,−∇xl(x̄,ȳ))(dx, d̄x)
)

+t2
(
〈d̄x,∇2

xxl(x̄, ȳ)d̄x〉 − 2Γ(x̄,−∇xl(x̄,ȳ))(d̄x, d̄x)
)
< 0.

By noting that dx + td̄x ∈ C(x̄) since C(x̄) is a convex cone, we see the second order

necessary condition (5.5) fails at x̄ and thus, x̄ cannot be a local optimal solution.

This contradiction implies that the second order sufficient condition (5.6) holds at

x̄.
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5.2 The robust isolated calmness for the convex

composite nuclear norm minimization prob-

lems

A specific and perhaps the most popular application of the nuclear norm mini-

mization model (5.1) is the following convex composite nuclear norm minimization

problem:

min f(Lx) + 〈c, x〉+ ‖x‖∗

s.t. Ax = b, x ∈ P ,
(5.37)

where f : Rl → R is a twice continuously differentiable and strongly convex func-

tion, L : Rm×n → Rl and A : Rm×n → Re are linear operators, c ∈ Rm×n, b ∈ Re

are the given data and P ⊆ Rm×n is a convex polyhedral. Following the notation

in the previous section, we denote θ : Rm×n → R as θ(·) ≡ ‖ · ‖∗.

The aim of this section is to provide more complete characterization of the robust

isolated calmness for the KKT system, by also combining the information provided

from the dual problem of (5.37). We show that the second order sufficient condition

for the problem (5.37), which is required in Theorem 5.1, is in fact equivalent to the

extended SRCQ of its dual problem, and vice versa. In this way, the error bound

conditions can be checked by several equivalent conditions.

In order to write down the dual problem explicitly, we first reformulate the

problem (5.37) by introducing auxiliary variables w ∈ Rl, u, v ∈ Rm×n and write

(5.37) as

min f(w) + 〈c, x〉+ θ(x)

s.t. Ax = b, Lx = w, x = v, v ∈ P ,
(5.38)

where δP(·) is the indicator function of P . The Lagrangian dual problem with

respect to the problem (5.38) is given by

max 〈b, y〉 − f ∗(−ξ)− θ∗(−s)− δ∗P(−z)

s.t. A∗y + L∗ξ + s+ z = c.
(5.39)
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Define the KKT mapping GP : Rm×n×Rl×Rm×n×Re×Rl×Rm×n associated

with the primal problem (5.37) as

GP (x,w, v, y, ξ, z) :=



−x+ Proxθ(x− c+A∗y + L∗ξ + z)

−∇f(w) + ξ

−v + ΠP(v − z)

Ax− b

Lx− w

x− v


. (5.40)

Suppose that (x̄, w̄, v̄) ∈ Rm×n×Rl×Rm×n is an optimal solution of the problem

(5.38). We useMP (x̄, w̄, v̄) to denote the set of multipliers (ȳ, ξ̄, z̄) ∈ Rm×n×Rl×

Rm×n such that GP (x̄, w̄, v̄, ȳ, ξ̄, z̄) = 0, and call (x̄, w̄, v̄, ȳ, ξ̄, z̄) a KKT point of the

problem (5.38).

The canonically perturbed problem of (5.38) takes the form of

min f(w) + 〈c, x〉+ θ(x)− 〈x, δ1〉 − 〈w, δ2〉

s.t. Ax = b− δ3, Lx = w − δ4, x = v − δ5, v − δ6 ∈ P ,
(5.41)

where δ ≡ (δ1, δ2, δ3, δ4, δ5, δ6) ∈ Rm×n × Rl × Re × Rl × Rm×n × Rm×n is the

perturbation parameter.

Similarly as in Section 2.5.3, for an given δ ≡ (δ1, δ2, δ3, δ4, δ5, δ6) ∈ Rm×n×Rl×

Re×Rl×Rm×n×Rm×n, we define the multi-valued mapping SKKT for the problem

(5.41) as

SKKT(δ) := {(x,w, v, y, ξ, z) ∈ Rm×n ×Rl ×Rm×n ×Re ×Rl ×Rm×n :

x = Proxθ(x− c+A∗y + L∗ξ + z + δ1), ∇f(w)− δ2 + ξ = 0,

Ax = b− δ3, Lx = w − δ4, x = v − δ5, v − δ6 = ΠP(v − δ6 − z)}.

Let (x̄, w̄, v̄, ȳ, ξ̄, z̄) ∈ Rm×n×Rl×Rm×n×Re×Rl×Rm×n be a KKT point of

the problem (5.38). It is known from Theorem 2.5 that the isolated calmness of G−1
P

at the origin with respect to (x̄, w̄, v̄, ȳ, ξ̄, z̄) is equivalent to the isolated calmness of

SKKT at (x̄, w̄, v̄, ȳ, ξ̄, z̄) with respect to the origin.



5.2 The robust isolated calmness for the convex composite nuclear norm
minimization problems 123

Since f is assumed to be strongly convex, f ∗ is a smooth function. We define

the KKT mapping GD : Re×Rl ×Rm×n×Rm×n×Rm×n associated with the dual

problem (5.39) as:

GD(y, ξ, s, z, x) :=



−A∗y − L∗ξ − s− z + c

Ax− b

−∇f ∗(−ξ) + Lx

s+ Proxθ∗(−s+ x)

z + Proxδ∗P (−z + x)


. (5.42)

Suppose that (ȳ, ξ̄, s̄, z̄) ∈ Re × Rl × Rm×n × Rm×n is an optimal solution of

the dual problem (5.39). Denote MD(ȳ, ξ̄, s̄, z̄) as the set of multipliers such that

GD(ȳ, ξ̄, s̄, z̄, x̄) = 0 for x̄ ∈MD(ȳ, ξ̄, s̄, z̄).

Define multi-valued mappings T θ∗ : Rm×n ×Rm×n → Rm×n and T δ∗P : Rm×n ×

Rm×n → Rm×n as

T θ∗(s, x) := {d ∈ Rm×n : (θ∗)′(s; d) = 〈d, x〉}, ∀(s, x) ∈ Rm×n ×Rm×n,

T δ∗P (z, x) := {d ∈ Rm×n : (δ∗P)′(z; d) = 〈d, x〉}, ∀(z, x) ∈ Rm×n ×Rm×n.

Definition 5.1. Let (x̄, w̄, v̄) be an optimal solution of the problem (5.38). Suppose

that MP (x̄, w̄, v̄) 6= ∅. We say the extended SRCQ for the problem (5.39) holds at

MP (x̄, w̄, v̄) with respect to (x̄, w̄, v̄) if

conv

 ⋃
(ȳ,ξ̄,z̄)∈MP (x̄,w̄,v̄)

(
T θ∗(−c+A∗ȳ + L∗ξ̄ + z̄, x̄) + T δ∗P (z̄, x̄)

)−A∗Re−L∗Rl = Rm×n.

(5.43)

This is a generalization of the previously discussed SRCQ by considering all the

points (ȳ, ξ̄, z̄) in the set MP (x̄, w̄, v̄).

Given A,B,C ∈ Rm×n satisfy the relationship (5.8), Ding [20, Proposition 12]

characterizes the set T θ∗(B,A), which shows the for any H ∈ T θ∗(B,A), it must
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admits the form

H̃ =


T (H̃aa) T (H̃ab1) H̃ab2 H̃ab3

T (H̃b1a) ΠS|b1|−
(H̃b1b1) H̃b1b2 H̃b1b3

H̃b2a H̃b2b1 H̃b2b2 H̃b2b3

H̃b3a H̃b3b1 H̃b3b2 H̃b3b3

H̃2

 , (5.44)

where H̃ = UTHV and the operator T is defined as in (5.19).

Similarly as in Section 5.1, we define φ(s,h) = (θ∗)
′′
(s;h, ·) for (s, h) ∈ Rm×n ×

Rm×n, the parabolic second order directional derivative of θ∗. The conjugate func-

tion of φ(s̄,h)(·) is the sigma term of the second order sufficient condition for the

dual problem. Before showing the main result, we first show an important observa-

tion about the sets T θ, T θ∗ and the two sigma term generated by θ and θ∗ at the

stationary point.

Lemma 5.4. Suppose A,B,C ∈ Rm×n satisfy the relationship (5.8). Then for any

H,D ∈ Rm×n, we have

(i)

H ∈ (T θ(A,B))◦ ⇐⇒ φ∗(B,H)(A) = 0 and H ∈ T θ∗(B,A).

(ii)

H ∈ (T θ∗(B,A))◦ ⇐⇒ ψ∗(A,H)(B) = 0 and H ∈ T θ(A,B).

Proof. The conclusions of the two parts could be obtained by comparing the

characterization of H between the two sides. For part (i), we have from [20,

Proposition 16] that φ∗(B,H)(A) = 0 if and only if ψ∗(A,H)(B) = 0 for H ∈ Rm×n.

Then by combining Lemma 5.3 (i), Lemma 5.4 and (5.44), one can see that either

H ∈ (T θ∗(B,A))∗ or φ∗(B,H)(A) = 0 & H ∈ T θ∗(B,A) are equivalent to say

H̃aa = 0, H̃ab = 0, H̃a2 = 0, H̃ba = 0, H̃b1b1 � 0.

Similarly for part (ii), either H ∈ (T θ∗(B,A))∗ or ψ∗(A,H)(B) = 0 & H ∈ T θ(A,B)
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can be characterized by

T (H̃aa) = 0; T (H̃ab1) = 0; T (H̃b1a) = 0; H̃b1b1 � 0,

H̃ab2 = H̃T
b2a

= 0; H̃ab3 = H̃T
b3a

= 0; H̃2 = 0.

This completes the proof.

The following proposition shows the equivalence between the primal second order

sufficient condition and the dual extended SRCQ.

Proposition 5.3. Let (x̄, w̄, v̄) ∈ Rm×n ×Rl ×Rm×n be an optimal solution of the

problem (5.38) and assume that MP (x̄, w̄, v̄) is nonempty. Then the following two

statements are equivalent to each other:

(i) The second order sufficient condition holds at (x̄, w̄, v̄) with respect to the problem

(5.38):

sup
(ȳ,ξ̄,z̄)∈MP (x̄,w̄,v̄)

{
〈dw,∇2f(w̄)dw〉 − ψ∗(x̄,dx)(−c+A∗(ȳ + L∗ξ̄ + z̄)

}
> 0,

∀(dx, dw, dv) ∈ C(x̄, w̄, v̄) \ {0},
(5.45)

where the critical cone, in the sense of (2.41), is defined by

C(x̄, w̄, v̄) = {(dx, dw, dv) ∈ Rm×n ×Rl ×Rm×n : Adx = 0, Ldx − dw = 0,

dx − dv = 0; f ′(w̄)dw = 0, dx ∈ T θ(x̄,−c), dv ∈ TP(v̄)}.
(5.46)

(ii) The extended SRCQ (5.43) holds atMP (x̄, w̄, v̄) with respect to (x̄, w̄, v̄) for the

dual problem (5.39).

Proof. First we prove (i) implies (ii) by contradiction. Suppose the condition

(5.43) fails to hold at MP (x̄, w̄, v̄). Denote

E := conv

 ⋃
(ȳ,ξ̄,z̄)∈MP (x̄,w̄,v̄)

(
T θ∗(−c+A∗ȳ + L∗ξ̄ + z̄, x̄) + T δ∗P (z̄, x̄)

)−A∗Re−L∗Rl.

Then there exists D ∈ Rm×n such that D 6∈ cl(E) since cl(E) 6= Rm×n by [80,

Theorem 6.3]. Note that cl(E) is a closed convex cone. We have by letting d̄ :=

D − Πcl(E)(D) = Π(cl(E))◦(D) 6= 0 that

〈H, d̄〉 ≤ 0, ∀H ∈ cl(E).
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By recalling the notation of E , the above inequality implies that Ad̄ = 0, Ld̄ = 0

and

〈H, d̄〉 ≤ 0, ∀H ∈ conv

 ⋃
(ȳ,ξ̄,z̄)∈MP (x̄,w̄,v̄)

(
T θ∗(−c+A∗ȳ + L∗ξ̄ + z̄, x̄) + T δ∗P (z̄, x̄)

) .

Let (ȳ, ξ̄, z̄) ∈ MP (x̄, w̄, v̄). By the optimality condition that v̄ = ΠP(v̄ − z̄) and

x̄− v̄ = 0, we have by [40, Lemma 4.2] that

TP(v̄) ∩ z̄⊥ = (TδP∗ (z̄, x̄))◦,

so that d̄ ∈ TP(v̄) ∩ z̄⊥.

Similarly, we could also obtain from the optimality condition x̄ = Proxθ(x̄− c+

A∗ȳ + L∗) and Lemma 5.4 that

ψ∗(x̄,d̄)(−c+A∗ȳ + L∗ξ̄ + z̄) = 0 and θ′(x̄; d̄) = 〈−c+A∗ȳ + L∗ξ̄ + z̄, d̄〉.

Therefore, we have d̄ 6= 0 satisfies that

Ad̄ = 0, Ld̄ = 0, 〈∇f(w̄),Ld̄〉 = 0, d̄ ∈ TP(v̄),

and

0 = θ′(x̄; d̄) + 〈c−A∗ȳ − L∗ξ̄ − z̄, d̄〉 = θ′(x̄; d̄) + 〈c, d̄〉,

which implies that (d̄,Ld̄, d̄) ∈ C(x̄, w̄, v̄) \ {0}.

Altogether, the above arguments show that for any (ȳ, ξ̄, z̄) ∈MP (x̄, w̄, v̄), there

exists (d̄,Ld̄, d̄) ∈ C(x̄, w̄, v̄) \ {0} such that

〈Ld̄,∇2f(w̄)Ld̄〉 − ψ∗(x̄,d̄)(−c+A∗ȳ + L∗ξ̄ + z̄) = 0,

which contradicts the assumption that the second order sufficient condition (5.45)

holds at (x̄, w̄, v̄). This completes the proof of the first part.

The reverse direction can also be proven by contradiction. Suppose the second

order sufficient condition fails to hold at an optimal point (x̄, w̄, v̄). Then there

exists (d̃,Ld̃, d̃) ∈ C(x̄, ū, v̄) \ {0} such that

sup
(ȳ,ξ̄,z̄)∈MP (x̄,w̄,v̄)

{
〈Ld̃,∇2f(w̄)Ld̃〉 − ψ∗

(x̄,d̃)
(−c+A∗ȳ + L∗ξ̄ + z̄)

}
= 0.
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By noting that Q � 0 and the sigma-term is always non-positive, we have that

Ld̃ = 0 and ψ∗
(x̄,d̃)

(−c+A∗ȳ + L∗ξ̄ + z̄) = 0, ∀(ȳ, ξ̄, z̄) ∈MP (x̄, w̄, v̄).

By the optimality conditions that −c+A∗ȳ+L∗ξ̄+ z̄ ∈ ∂θ(x̄) and s̄ = c−A∗ȳ−

L∗w̄ − z̄, we see

〈−c, d̃〉 = θ′(x̄; d̃) ≥ 〈−c+A∗ȳ + L∗w̄ + z̄, d̃〉.

This implies that 〈z̄, d̃〉 ≥ 0 since (A + L)d̃ = 0. From z̄ ∈ NP(v̄) and d̃ ∈ TP(v̄),

we also have 〈z̄, d̃〉 ≤ 0. Thus, 〈z̄, d̃〉 = 0 and altogether,

d̃ ∈ TP(v̄)∩ z̄⊥, ψ∗
(x̄,d̃)

(−c+A∗ȳ+L∗ξ̄+ z̄) = 0, θ′(x̄; d̃) = 〈−c+A∗ȳ+L∗ξ̄+ z̄, d̃〉.

By [40, Lemma 4.2] and Lemma 5.4, the above conditions are the same as

d̃ ∈
(
Tδ∗P (z̄, x̄)

)◦∩(T θ∗(−c+A∗ȳ+L∗ξ̄+z̄, x̄)
)◦

=

(
T θ∗(−c+A∗ȳ+L∗ξ̄+z̄, x̄)+T δ∗P (z̄, x̄)

)◦
.

By the assumption that the extended SRCQ (5.43) holds at (x̄, w̄, v̄) with respect

to MP (x̄, w̄, v̄), there exist ỹ ∈ Rm, ξ̃ ∈ Rl and

h̃ ∈ conv

 ⋃
(ȳ,ξ̄,s̄,z̄)∈MP (x̄,w̄,v̄)

(
T θ∗(−c+A∗ȳ + L∗ξ̄ + z̄, x̄) + T δ∗P (z̄, x̄)

)
such that d̃ can be decomposed as:

d̃ = h̃−A∗ỹ − L∗ξ̃.

By Carathéodory’s Theorem, there exist k ≤ (mn+1), ui ∈ [0, 1],
∑k

i=1 µi = 1, h̃i1 ∈

T θ∗(−c+A∗ȳi +L∗ξ̄i + z̄i, x̄) and h̃i2 ∈ T δ
∗
P (z̄i, x̄) for some (ȳi, ξ̄i, z̄i) ∈MP (x̄, w̄, v̄)

such that h̃ =
∑k

i=1 µi(h̃
i
1 + h̃i2). Then

〈d̃, d̃〉 = 〈d̃, h̃−A∗ỹ − L∗ξ̃〉 =
k∑
i=1

µi〈d̃, h̃i1 + h̃i2〉 ≤ 0,

which contradicts the assumption that d̃ 6= 0 and thus, the proof is finished.
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Remark 5.1. Under our assumption that f is strongly convex and twice continu-

ously differentiable, the second order sufficient condition (5.45) holds automatically.

A more interesting result is to consider a continuously differentiable function f with

Lipschitz continuous gradient. Under this setting, one could use the Clarke’s gen-

eralized Hessian given in (2.1) to replace ∇2f . All the previous and subsequent

discussions should thus be directly extended to this case.

Since the isolated calmness of the inverse of KKT mapping essentially needs the

uniqueness of the KKT solution, we would like to further explore the equivalence

between the primal second order sufficient condition and the dual SRCQ when the

multiplier set is a singleton.

Corollary 5.1. Suppose (x̄, w̄, v̄) ∈ Rm×n × Rl × Rm×n is an optimal solution of

the problem (5.38) and MP (x̄, w̄, ū) = {(ȳ, ξ̄, z̄)} is a singleton. Then the following

two statements are equivalent:

(i) The second order sufficient condition holds at (x̄, w̄, ū) with respect to the primal

problem (5.38):

〈dw,∇2f(w̄)dw〉−ψ∗(x̄,dx)(−c+A∗ȳ+L∗ξ̄+ z̄) > 0, ∀(dx, dw, dv) ∈ C(x̄, w̄, v̄) \ {0},

(5.47)

(ii) The SRCQ holds for the dual problem (5.39) at (ȳ, ξ̄, z̄) with respect to (x̄, w̄, v̄):

T θ∗(−c+A∗ȳ + L∗ξ̄ + z̄, x̄) + T δ∗P (z̄, x̄)−A∗Re − L∗Rl = Rm×n. (5.48)

We also have parallel conclusions by switching the roles of the primal and dual

problems in Proposition 5.4 and Corollary 5.1. The proof of the following proposition

is quite similar to the proof of Proposition 5.4.

Proposition 5.4. Suppose (ȳ, ξ̄, s̄, z̄) ∈ Re × Rl × Rm×n × Rm×n is an optimal

solution of the problem (5.39) and MD(ȳ, ξ̄, s̄, z̄) 6= ∅. Then the following two state-

ments are equivalent to each other:
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(i) The second order sufficient condition for the dual problem (5.39) holds at (ȳ, ξ̄, s̄, z̄):

sup
x̄∈MD(ȳ,ξ̄,s̄,z̄)

{
〈dξ,∇2f ∗(−ξ̄)dξ〉 − φ∗(−s̄,ds)(x̄)

}
> 0, ∀(dy, dξ, ds, dz) ∈ C(ȳ, ξ̄, s̄, z̄)\{0},

(5.49)

where the critical cone is defined as

C(ȳ, ξ̄, s̄, z̄) := {(dy, dξ, ds, dz) ∈ Re ×Rl ×Rm×n ×Rm×n :

A∗dy + L∗dξ + ds + dz = 0,

〈b, dy〉+ 〈∇f ∗(−ξ),−dξ〉+ (θ∗)′(−s̄;−ds) + (δ∗P)′(−z̄;−dz) = 0}.
(5.50)

(ii) The extended SRCQ holds at (ȳ, ξ̄, s̄, z̄) with respect to MD(ȳ, ξ̄, s̄, z̄) for the

primal problem (5.38):

conv

 ⋃
x̄∈MD(ȳ,ξ̄,−s̄,z̄)

 A
I

 T θ(x̄,−s̄)−
 {0}

TP(x̄) ∩ z̄⊥

 =

 Re

Rm×n

 .

(5.51)

Proof. First we prove that (i) implies (ii). Suppose (ii) does not hold. Then by

the same approach as the proof for Proposition 5.4, there exists nonzero (d̄y,−d̄z) ∈

Re ×Rm×n such that

〈d̄y, hy〉+ 〈−d̄z, hz〉 ≤ 0,

∀(hy, hz) ∈ conv

 ⋃
x̄∈MD(ȳ,ξ̄,s̄,z̄)

 A
I

 T θ(x̄,−s̄)−
 {0}

TP(x̄) ∩ z̄⊥

 .

This implies that

A∗d̄y − d̄z ∈
(
T θ(x̄,−s̄)

)◦
and d̄z ∈ (TP(x̄) ∩ z̄⊥)◦. (5.52)

By Lemma 5.4, the first inclusion indicates that

φ∗(−s̄,A∗d̄y−d̄z)(x̄) = 0, and (θ∗)′(−s̄;A∗d̄y − d̄z) = 〈x̄,A∗d̄y − d̄z〉.

Also by [40, Lemma 4.2], the second inclusion in (5.52) shows that (δ∗P)′(−z̄;−d̄z) =

〈d̄z, x̄〉.



130 Chapter 5. Characterization of the robust isolated calmness

Therefore, if we choose hs = A∗d̄y − d̄z, hξ = 0 ∈ Rl, hy = −d̄y and hz = d̄z, it

is easy to see that

(hy, hξ, hs, hz) ∈ C(ȳ, ξ̄, s̄, z̄) \ {0}, 〈hξ,∇2f ∗(−ξ̄)hξ〉 = 0, ψ∗(−s̄,hs)(x̄) = 0,

which is a contradiction of the second order sufficient condition (5.49) at x̄.

Now we prove the reverse direction. Suppose the second order sufficient condition

(5.49) does not hold at (ȳ, ξ̄, s̄, z̄). Then there exists (d̃y, d̃ξ, d̃s, d̃z) ∈ C(ȳ, ξ̄, s̄, z̄)\{0}

such that

〈d̃ξ,∇2f ∗(−ξ̄)dξ〉 = 0, φ∗
(−s̄,d̃s)

(x̄) = 0.

Again by [20, Proposition 16], the second equation above holds if and only if

ψ∗
(x̄,d̃s)

(−s̄) = 0. Then by the similar approach as the second part in Proposition

5.4, we can obtain (d̃y, d̃ξ, d̃s, d̃z) = 0. Thus, the proof is completed.

Similarly as Corollary 5.1, we can obtain stronger results with the assumption

that the multiplier set with respect to the dual problem is a singleton.

Corollary 5.2. Suppose (ȳ, ξ̄, s̄, z̄) ∈ Re×Rl×Rm×n×Rm×n is an optimal solution

to the problem (5.39) with MD(ȳ, ξ̄, s̄, z̄) = {x̄}. Then the following two conditions

are equivalent:

(i) The second order sufficient condition for the dual problem (5.39) holds at (ȳ, ξ̄, s̄, z̄):

〈dξ,∇2f ∗(−ξ̄)dξ〉 − φ∗(−s̄,ds)(x̄) > 0, ∀(dy, dξ, ds, dz) ∈ C(ȳ, ξ̄, s̄, z̄) \ {0}. (5.53)

(ii) The SRCQ holds for the primal problem (5.38) at x̄ with respect to (ȳ, ξ̄, s̄, z̄): A
I

 T θ(x̄,−s̄)−
 {0}

TP(x̄) ∩ z̄⊥

 =

 Re

Rm×n

 . (5.54)

Finally, as a combination of Theorem 5.1, Corollary 5.1 and Corollary 5.2, and

noting that the second order sufficient condition at (x̄, w̄, ū) (or (ȳ, ξ̄, s̄, z̄)) implies

that (x̄, w̄, v̄) (or (ȳ, ξ̄, s̄, z̄)) is the unique optimal solution of (5.38) (or (5.39)), we

are able to provide several equivalent characterization of the isolated calmness for

the inverse of the KKT mapping at the origin point. They are summarized in the

following theorem:
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Theorem 5.2. Let (x̄, w̄, ū, ȳ, ξ̄, s̄, z̄) ∈ Rm×n × Rl × Rm×n × Re × Rl × Rm×n ×

Rm×n satisfy GP (x̄, w̄, ū, ȳ, ξ̄, z̄) = 0 and GD(ȳ, ξ̄, s̄, z̄, x̄) = 0. Then the following

conditions are equivalent to each other:

(i) SKKT is robust isolated calm at the origin for (x̄, w̄, ū, ȳ, ξ̄, z̄).

(ii) G−1
P is isolated calm at the origin with respect to (x̄, w̄, ū, ȳ, ξ̄, z̄).

(iii) G−1
D is isolated calm at the origin with respect to (ȳ, ξ̄, s̄, z̄, x̄).

(iv) The second order sufficient condition (5.45) holds at (x̄, w̄, ū) with respect to

the primal problem (5.38) and the second order sufficient condition (5.49) holds at

(ȳ, ξ̄, s̄, z̄) with respect to the dual problem (5.39).

(v) The second order sufficient condition (5.45) holds at (x̄, w̄, ū) for the primal

problem (5.38) and the SRCQ (5.54) holds at x̄ with respect to (ȳ, ξ̄, s̄, z̄) for the

primal problem (5.38) .

(vi) The second order sufficient condition (5.49) holds at (ȳ, ξ̄, s̄, z̄) for the dual

problem (5.39) and the SRCQ (5.48) holds at (ȳ, ξ̄, z̄) with respect to (x̄, w̄, v̄) for

the dual problem (5.39) .

5.3 Discussions on the calmness of the composite

optimization problems

All the discussions in the Section 5.1 and 5.2 focused on the problems with isolated

KKT solutions. Naturally one may ask that whether there exist similar characteri-

zation about the calmness of the KKT system for the problem (5.1)? Unfortunately,

to the best of our knowledge, there are no complete answers to this question till now

if non-polyhedral functions θ are involved, including both the indicator function over

the positive semidefinite cone and the nuclear norm function.

Let us first look at an example to have some ideas about the difficulty for the

calmness property involving the non-polyhedral function. This example is modified
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from the one given by Zhou and So [108], with the initial purpose to demonstrate the

failure of an error bound condition without the strict complementarity assumption

for the unconstrained nuclear norm problem:

Consider the following problem

min 1
2
‖Ax− b‖2 + ‖x‖∗,

s.t. 〈E, x〉 ≤ 1,
(5.55)

and its dual

min 1
2
‖z + b‖2 + y

s.t. ‖A∗z + yE‖2 ≤ 1, y ≥ 0,
(5.56)

where E ∈ R2×2 is a matrix with all entries equal to 1, ‖ · ‖2 denotes the spectral

norm, i.e., the largest singular value of a given matrix, the operator A : R2×2 → R2

and the vector b ∈ R2 are defined as

Ax = B1/2diag(x), ∀x ∈ R2×2, and b = B−1/2

 5/2

−1

 ,

and the matrix B is given by B =

 3/2 −2

−2 3

 � 0.

Given a parameter δ ∈ R2×2, we consider the following canonically perturbation

of the dual problem (5.56):

min 1
2
‖z + b‖2 + y

s.t. ‖A∗z + yE + δ‖2 ≤ 1, y ≥ 0.
(5.57)

Denote the multi-valued mapping SKKT : R2×2 → R2 ×R ×R2×2 associated with

the problem (5.57) by

SKKT(δ) = {(z, y, x) ∈ R2 ×R×R2×2 : x = Prox‖·‖∗(x−A∗z − δ − yE),

z = Ax− b, y = ΠR+(y − 〈E, x〉+ 1)}.

It is easy to check that the original problem (5.56) admits an unique solution (z̄, ȳ) =
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B−1/2

 −1

−1

 , 0

 with an unique multiplier x̄ =

 1 0

0 0

. Moreover, the

second order sufficient condition of the problem (5.56) holds at (z̄, ȳ). Now let

us consider a sequence of perturbation δk =

 −εk 0

0 εk

 with εk > 0. We can

construct a sequence (zδk , yδk , xδk) ∈ SKKT(δk) by letting

zδk = B−1/2

 −1 + εk

−1− εk

 , yδk = 0, xδk =

 1 + 2εk τk

τk εk

 ,

where |τk| ≤
√
εk + 2ε2

k. This indicates that the SKKT cannot be calm at (z̄, ȳ, x̄)

with respect to the origin since ‖(zδk , yδk , xδk) − (z̄, ȳ, x̄)‖ = O(‖√εk‖) and ‖δk‖ =

O(‖εk‖).

However, for the nonlinear programming problem, Dontchev and Rockafellar [24]

show that the multi-valued mapping SKKT is isolated calm under canonical pertur-

bations for a locally optimal solution if and only if the strict Mangasarian-Fromovitz

constraint qualification (which is equivalent to the uniqueness of the Lagrange mul-

tiplier in this case [54]) and the second order sufficient optimality condition hold.

As mentioned above, both the uniqueness of the Lagrange multiplier and the second

order sufficient condition hold for the problem (5.56), while the (isolated) calm still

fails. This indicates that there exists a gap of the calmness property between the

polyhedral and non-polyhedral problems. One can check that the SRCQ for the

problem (5.57) does not hold. Therefore, a possible reason of this gap comes from

the mismatch between the SRCQ and the uniqueness of the multiplier in the general

conic problems.

Recently, there is nice work on the calmness of the solution mappings done by

Zhou and So [108]. They consider a class of unconstrained convex problems:

min h(Ax) + 〈c, x〉+ p(x) (5.58)

where A : Rm×n → Rl is a linear operator, h : Rl → (−∞,+∞] is smooth and

strongly convex function on any compact convex set V ⊆ dom(h), and p : Rm×n →
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(−∞,+∞] is a closed convex proper function. Define the multi-valued mappings

Γf : Rl → Rm×n, Γp : Rm×n → Rm×n and Γ(y, g) : Rl ×Rm×n → Rm×n as
Γf (y) := {x ∈ Rm×n : Ax = y}, ∀y ∈ Rl,

Γp(g) := {x ∈ Rm×n : −g ∈ ∂p(x)}, ∀g ∈ Rm×n,

Γ(y, g) := Γf (y) ∩ ΓP (g), ∀(y, g) ∈ Rl ×Rm×n.

Zhou and So show that if the optimal solution set Ω of (5.58) is nonempty

compact and contains x̄, then Ω = Γ(ȳ, ḡ), where ȳ = Ax̄ and ḡ = A∗∇h(ȳ) + c.

Moreover, under the assumptions that {Γf (ȳ),Γp(ḡ)} is bounded linearly regular

and ∂p is metrically subregular at x̄ for −ḡ, the solution mapping Γ is calm at (ȳ, ḡ)

for x̄. In particular, the bounded linear regularity of {Γf (ȳ),Γp(ḡ)} holds if the

strict complementarity condition is satisfied at some x̃ ∈ Ω:

0 ∈ A∗∇h(Ax̃) + c+ ri(∂p(x̃)).

Besides, the metric subregularity of the sub-differential holds for the polyhedral

functions [77], the vector `p norm for p ∈ [1, 2] or p =∞ [107], the nuclear norm [108],

and the indicator function over the SDP cone given by Theorem 2.4. It is easy to

see that the Cartesian product of the metric subregular mappings are also metric

subregular. Therefore, we could get from Zhou and So’s result that under the strict

complementarity condition, the solution mapping is calm for the problem

min
x1,x2,...,xk

h(
k∑
i=1

Aixi) +
k∑
i=1

〈ci, xi〉+
k∑
i=1

pi(xi),

where h : Rl → R is smooth and strongly convex on any compact convex set

V ⊆ dom(h), Ai : Xi → Rl are linear operators, ci ∈ Xi are given data, and

pi : Xi → (−∞,+∞] can be chosen from the polyhedral functions, the vector `p

norm for p ∈ [1, 2] or p =∞, the nuclear norm function, and the indicator function

over the SDP cone.

The above nice results provide a partial answer to the calmness of the solution

mapping. From the discussions in the previous sections, we also know the calmness
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of the solution mappings should hold under the second order sufficient condition

and the strict Robinson constraint qualification. It is thus very interesting to know

whether a unified condition can be proposed to characterize the calmness of the

optimization problems involving the non-polyhedral functions. We leave it as a

future research topic.





Chapter 6
Numerical experiments

In this chapter, we test our iABCD algorithm discussed in Chapter 3 on solving

the projection onto the intersection of the equations, inequalities and the doubly

nonnegative cone constraints:

min 1
2
‖X −G‖2

s.t. AX = b, BX ≥ d, X ∈ Sn+ ∩N ,
(6.1)

where A : Sn → RmE and B : Sn → RmI are linear operators and A is onto,

G ∈ Sn, b ∈ RmE , d ∈ RmI are given data, and N := {X ∈ Sn : X ≥ 0} denotes

the nonnegative cone.

The dual of (6.1) can be written as

min F (y, z, S, Z) := 1
2
‖A∗y + B∗z + S + Z +G‖2 − 〈b, y〉 − 〈d, z〉 − 1

2
‖G‖2

s.t. z ≥ 0, S ∈ Sn+, Z ∈ N .
(6.2)

We implement our iABCD framework to solve the above dual form, where the

variables (y, S) ∈ RmE × Sn are taken as one block, and the variables (z, Z) ∈

RmI × Sn are taken as the other one. As discussed in Section 3.3, the subproblem

of the block (y, S) would be solved by the one cycle inexact sGS technique, and the

subproblem of the block (z, Z) will be solved by the APG-SNCG method.

Denote W ≡ (y, z, S, Z) ∈ W with W := RmE × RmI × Sn × Sn. In order to
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implement the above idea, we majorize the smooth function F at W ′ ∈ W as

F (W ) ≤ F̂1(W ;W ′) := F (W ) +
1

2
‖S − S ′‖2

A∗(AA∗)−1A +
‖B‖

2
‖z − z′‖2, ∀W ∈ W .

(6.3)

Since F itself is a quadratic function, the linearization at any point must be itself

and thus, the function F̂1 satisfies the inequality (3.3) and Assumption 3.1. The first

proximal term 1
2
‖S − S ′‖2

A∗(AA∗)−1A comes from the sGS technique to solve (y, S),

and the second proximal term ‖B‖
2
‖z − z′‖2 aims to make the block (z, Z) strongly

convex and the Newton’s equation well-conditioned. The detailed framework of our

algorithm is given below.

iABCD: An inexact majorized accelerated block coordinate descent al-

gorithm for solving the problem (6.2) with APG-SNCG

Choose an initial point W 1 = W̃ 0 ∈ W . Set k = 1 and t1 = 1. Let the nonnegative

error tolerance {εk} satisfies
∑∞

i=1 iεi <∞. Iterate until convergence:

Step 1.Compute
ỹk+1/2 = arg miny{F̂1(y, Sk, zk, Zk;W k) + 〈y, δky〉},

S̃k = ΠSn+(−A∗ỹk+1/2 − B∗zk − Zk −G),

ỹk = arg miny{F̂1(y, S̃k, zk, Zk;W k) + 〈y, δ̂ky〉},

such that (δky , δ̂
k
y , δ

k
z , δ

k
Z) ∈ RmE ×RmE ×RmI × Sn satisfies

max{‖δky‖, ‖δ̂ky‖, ‖δkz‖, ‖δkZ‖} ≤ εk.

Then compute

(z̃k, Z̃k) = arg min
z,Z
{F̂1(ỹk, S̃k, z, Z;W k) + 〈z, δkz 〉+ 〈Z, δkZ〉 : z ≥ 0, Z ∈ N}.

Step 2. Compute


tk+1 = 1

2
(1 +

√
1 + 4t2k),

W k+1 = W̃ k +
tk − 1

tk+1

(W̃ k − W̃ k−1).

The equation, inequality and cone constraints of our test examples (6.1) are
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generated from the doubly nonnegative relaxation of a binary integer nonconvex

quadratic (ex-BIQ) programming that was considered in [90] :

min 1
2
〈Q, Y 〉+ 〈c, x〉

s.t. Diag(Y ) = x, α = 1, X =

 Y x

xT α

 ∈ Sn+ ∩N ,
−Yij + xi ≥ 0,−Yij + xj ≥ 0, Yij − xi − xj ≥ −1, ∀i < j, j = 2, . . . , n− 1.

(6.4)

The matrix G in the objective function of the problem (6.1) is taken to be G =

−1
2

 Q c

c 0

. The test data for Q and c in our numerical experiments are taken

from Biq Mac Library maintained by Wiegele, which is available at http://biqmac.uni-

klu.ac.at/biqmaclib.html.

Under a Slater’s condition, the KKT optimality conditions of the problem (6.1)

are given as follows:

X = G+A∗y + B∗z + S + Z,

AX = b, BX − d = ΠR
mI
+

(BX − d− z), X = ΠSn+(X − S), X = ΠN (X − Z).

We measure the accuracy of an approximate solution (y, z, S, Z) for (6.2) by the

relative residue of the KKT system:

η := max{η1, η2, η3, η4},

where

η1 :=
‖AX − b‖

1 + ‖b‖
, η2 :=

‖BX − d− ΠRmI (BX − d− z)‖
1 + ‖d‖

, η3 :=
‖X − ΠSn+(X − S)‖

1 + ‖X‖+ ‖S‖
,

η4 :=
‖X − ΠN (X − Z)‖

1 + ‖X‖+ ‖Z‖
, X = G+A∗y + B∗z + S + Z.

In addition, we compute the relative gap between the primal and dual objective

functions:

ηg :=
objp − objd

1 + |objp|+ |objd|
,

where objp := 1
2
‖X − G‖2 and objd := −1

2
‖A∗y + B∗z + S + Z + G‖2 + 〈b, y〉 +

〈d, z〉+ 1
2
‖G‖2.
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We stop the algorithms imABCD, BCD, mABCD, eRARBCG and iAPG if η < ε,

where ε is the prescribed accuracy.

In order to demonstrate the importance for the incorporation of the second order

information, we compare our iABCD method with the two-block accelerated block

coordinate gradient descent algorithm proposed by Chambolle and Pock [9]. The

two blocks are still taken as (y, S) and (z, Z). The iteration steps are given as

follows:

ABCGD: An accelerated block coordinate gradient descent algorithm for

solving the problem (6.2)

Choose an initial point W 1 = W̃ 0 ∈ W . Set k = 1 and t1 = 1. Iterate until

convergence:

Step 1. Compute Rk+ 1
2 = A∗yk + B∗zk + Sk + Zk +G and ỹk = yk − (AA∗)−1(ARk+ 1

2 − b)/2,

S̃k = ΠSn+(Sk −Rk+ 1
2/2).

Step 2. Compute Rk = A∗ỹk + B∗zk + S̃k + Zk +G and z̃k = ΠRmI+
(zk − (BRk − d)/(2λmax(BB∗))),

Z̃k = ΠN (Zk −Rk/2).

Step 3. Compute


tk+1 = 1

2
(1 +

√
1 + 4t2k),

W k+1 = W̃ k +
tk − 1

tk+1

(W̃ k − W̃ k−1).

Note that the step length is 1
2

when updating the variables for each proximal

gradient step in order to solve the variables within each block simultaneously.

Figure 6.1 and Figure 6.2 show the performance profile of the iABCD and

ABCGD algorithms for the large scale ex-BIQ problems with ε = 10−6, where

the detailed numerical results are provided in Table 6.1. A point (x, y) is in the

performance profile curve of a method if and only if it can solve exactly (100y)%

of all the tested problems at most x times slower than any other methods. The
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Figure 6.1: Performance profile of iABCD and ABCGD with ε = 10−6
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Figure 6.2: Performance profile of iABCD and ABCGD with ε = 10−6
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first four columns list the problem names, the dimension of the variable y (mE),

z (mI) and the size of the matrix G (ns), respectively. The last several columns

provide the number of iterations, the relative residual η, the relative gap between

the primal and dual objective values ηgap, and the computation times in the for-

mat of “hours:minutes:seconds”. One can see from the performance profile that the

ABCGD algorithm takes about 5 times iteration steps compared with the iABCD

algorithm, and is around 4 times faster than the ABCGD in terms of computing

time. In particular, the ABCGD method cannot solve all the large scale bdq500

problems within 50000 iterations, while our iABCD could obtain satisfied solutions

by 6000 iterations. This indicates that even though the computational cost for each

cycle of the iABCD method is larger than the ABCGD method, its overall per-

formance is extremly good. In fact, the Newton system is well-conditioned in this

case such that it only takes one or two CG iterations to obtain a satisfied Newton

direction.

We also compare the iABCD with some other existing methods. The first one is

the block coordinate descent algorithm (BCD), where we view (6.2) as a four-block

problem. The block z is solved by the APG-SNCG algorithm, while other blocks

have analytical solutions. The steps are given as follows:

BCD: An inexact block coordinate descent method for solving the prob-

lem (6.2)

Choose an initial point W 1 ∈ W . Let {εk} be a series of given summable error

tolerance such that the error vector δkz ∈ RmI satisfies ‖δkz‖ ≤ εk. Set k = 1. Iterate

until convergence:

yk+1 = (AA∗)−1(b−A(B∗zk + Sk + Zk +G)),

Sk+1 = ΠSn+(−A∗yk+1 − B∗zk − Zk −G),

zk+1 = arg min
z≥0
{F (yk+1, Sk+1, z, Zk) +

‖B‖
2
‖z − zk‖2 + 〈δkz , z〉},

Zk+1 = ΠN (−A∗yk+1 − B∗zk+1 − Sk+1 −G).
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The second framework is an enhanced version of the inexact accelerated ran-

domized block coordinate descent method (eRABCG) that is modified from [61],

where we use the proximal terms 1
2
‖y − yk‖AA∗ instead of 1

2
‖y − yk‖2

λmax(AA∗) when

updating the block yk+1, and 1
2
‖z− zk‖2

BB∗ + ‖B‖
2
‖z− zk‖2 when updating the block

zk+1. Similar idea has also been used in [91] as a comparison for solving a class of

positive semidefinite feasibility problems. The detailed steps of the eRABCG are

presented below.

eRABCG: An inexact enhanced randomized accelerated block coordinate

descent algorithm with four blocks for solving the problem (6.2)

Choose an initial point W 1 = W̃ 0 ∈ W . Set k = 1 and α0 = 1
4
. Let {εk} be a series

of given summable error tolerance such that the error vector δkz ∈ RmI satisfies

‖δkz‖ ≤ εk. Iterate until convergence:

Step 1. Compute αk = 1
2
(
√
α4
k−1 + 4α2

k−1 − α2
k−1).

Step 2. Compute Ŵ k+1 = (1− αk)Ŵ k + αkW̃
k.

Step 3. Denote R̂k = A∗ŷk +B∗ẑk + Ŝk + Ẑk +G. Choose ik ∈ {1, 2, 3, 4} uniformly

at random and update W̃ k+1
ik

according to the following rule if the k-th block is

selected:



ik = 1 : ỹk+1 = (AA∗)−1((b−AR̂k)/(4αk) +AA∗ỹkE),

ik = 2 : z̃k+1 = arg min
z≥0
{〈∇zF (Ŵ k+1), z〉+

4αk
2
‖z − z̃k‖2

BB∗+‖B‖I + 〈z, δkz 〉},

ik = 3 : Z̃k+1 = ΠN (Z̃k − R̂k/(4αk)),

ik = 4 : S̃k+1 = ΠSn+(S̃k − R̂k/(4αk)).

Set W̃ k+1
i = W̃ k

i for all i 6= ik, k = 1, 2, 3, 4.

Step 4. Set W k+1
i =

 Ŵ k
i + 4αk(W̃

k+1
i − W̃ k

i ), i = ik,

Ŵ k
i , i 6= ik,

i = 1, 2, 3, 4.

In order to know whether our proposed APG-SNCG method could universally

improve the efficiency for different algorithms, we also test two variants of the BCD
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and eRABCG, where the block z is updated by the proximal gradient step. They

are named as mBCD and eRABCG2. The numerical performance of two selected

test examples are shown in Table 6.2. One can see that the mBCD and eRABCG2

perform much worse than their inexact counterpart, even though the same outer

framework is adopted. This observation confirms the point that if there exists a

computing intensive block (the block S in our test examples as the complexity of

the eigenvalue decomposition is O(n3)), a small proximal term is always preferred

for other blocks in order to reduce the iteration numbers for the difficult block.
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Figure 6.3: Performance profile of iABCD and eRABCG with accuracy ε = 10−6.

Table 6.3 lists the results of the numerical performance of the iABCD, BCD and

eRABCG methods, with the performance profile given in Figure 6.3 and Figure 6.4.

One can see that the BCD algorithm is much less efficient compared with others,

since all the test examples cannot be solved to the accuracy ε = 10−6 within 50000

iteration steps (Therefore, we do not include the performance of the BCD in the

performance profile). This phenomenon emphasizes the power of the acceleration
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Figure 6.4: Performance profile of iABCD and eRABCG for with accuracy ε = 10−6.

technique in solving unconstrained problems. One can find that the iABCD frame-

work is 3.5 times faster than the eRABCG method, which is caused by the 4 times

enlargement (the number of the blocks is 4 in the eRABCG method) of the proximal

terms for the randomized-type accelerated block coordinate descent method.

Based on all the above observations, we shall draw a conclusion that the impress-

ing numerical performance of the iABCD algorithm is mainly due to two reasons:

one is the outer acceleration of the two-block coordinate descent framework, and

the other is the inner acceleration by the proper incorporation of the second order

information.

Table 6.1: The performance of iABCD and ABCGD with accuracy ε = 10−6.

iteration η ηgap time

problem mE ;mI | ns iabcd|abcgd iabcd|abcgd iabcd|abcgd iabcd|abcgd

be100.1 101 ; 14850 | 101 5276 | 31048 9.9-7 | 9.9-7 -2.3-7 | -7.7-8 45 | 3:08

be100.2 101 ; 14850 | 101 5747 | 30645 9.9-7 | 9.9-7 -2.0-7 | -9.4-8 47 | 3:08

be100.3 101 ; 14850 | 101 5950 | 41172 9.9-7 | 9.9-7 -3.7-7 | -8.7-8 53 | 4:02
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Table 6.1: The performance of iABCD and ABCGD with accuracy ε = 10−6.

iteration η ηgap time

problem mE ;mI | ns iabcd|abcgd iabcd|abcgd iabcd|abcgd iabcd|abcgd

be100.4 101 ; 14850 | 101 5704 | 36684 9.9-7 | 9.9-7 -2.7-7 | -7.2-8 49 | 3:48

be100.5 101 ; 14850 | 101 5762 | 39956 9.9-7 | 9.7-7 -3.1-7 | -7.6-8 51 | 4:05

be100.6 101 ; 14850 | 101 5769 | 36134 9.9-7 | 9.9-7 -1.8-7 | -7.9-8 48 | 3:40

be100.7 101 ; 14850 | 101 4994 | 28087 9.9-7 | 9.9-7 -3.3-7 | -8.4-8 40 | 2:53

be100.8 101 ; 14850 | 101 5613 | 33772 9.9-7 | 9.9-7 -1.5-7 | -5.3-8 45 | 3:32

be100.9 101 ; 14850 | 101 5763 | 40048 9.9-7 | 9.9-7 -2.7-7 | -8.1-8 51 | 4:10

be100.10 101 ; 14850 | 101 5260 | 32010 9.9-7 | 9.9-7 -3.7-7 | -8.8-8 43 | 3:46

be120.3.1 121 ; 21420 | 121 4120 | 27781 9.9-7 | 9.9-7 -2.2-7 | -5.6-8 41 | 3:42

be120.3.2 121 ; 21420 | 121 4106 | 23809 9.9-7 | 9.9-7 -2.3-7 | -6.3-8 40 | 3:00

be120.3.3 121 ; 21420 | 121 3548 | 21867 9.9-7 | 9.9-7 -9.8-8 | -6.6-8 35 | 2:53

be120.3.4 121 ; 21420 | 121 4745 | 31783 9.9-7 | 9.9-7 -3.1-7 | -6.7-8 47 | 4:08

be120.3.5 121 ; 21420 | 121 5637 | 31076 9.9-7 | 9.9-7 -4.9-8 | -7.1-8 58 | 3:51

be120.3.6 121 ; 21420 | 121 3946 | 26558 9.9-7 | 9.9-7 -1.8-7 | -4.8-8 39 | 3:26

be120.3.7 121 ; 21420 | 121 4169 | 26176 9.9-7 | 9.9-7 -2.7-7 | -6.5-8 41 | 3:37

be120.3.8 121 ; 21420 | 121 3793 | 23796 9.9-7 | 9.9-7 -1.6-7 | -3.8-8 35 | 3:11

be120.3.9 121 ; 21420 | 121 4951 | 28518 9.9-7 | 9.9-7 -2.0-7 | -5.2-8 52 | 3:58

be120.3.10 121 ; 21420 | 121 4264 | 24803 9.9-7 | 9.9-7 -3.4-7 | -5.3-8 42 | 3:06

be120.8.1 121 ; 21420 | 121 5671 | 32200 9.9-7 | 9.9-7 -3.5-7 | -8.1-8 58 | 4:26

be120.8.2 121 ; 21420 | 121 5897 | 35336 9.9-7 | 9.9-7 -3.1-7 | -7.1-8 1:02 | 4:39

be120.8.3 121 ; 21420 | 121 5199 | 33259 9.9-7 | 9.9-7 -4.9-7 | -9.2-8 52 | 4:35

be120.8.4 121 ; 21420 | 121 6688 | 40964 9.9-7 | 9.9-7 -4.0-7 | -8.0-8 1:12 | 5:26

be120.8.5 121 ; 21420 | 121 5828 | 41263 9.9-7 | 9.9-7 -3.6-7 | -6.3-8 1:03 | 5:40

be120.8.6 121 ; 21420 | 121 4735 | 29524 9.9-7 | 9.9-7 -4.8-7 | -7.8-8 47 | 3:52

be120.8.7 121 ; 21420 | 121 4456 | 29722 9.9-7 | 9.9-7 -3.8-7 | -6.5-8 44 | 3:36

be120.8.8 121 ; 21420 | 121 5979 | 35240 9.9-7 | 9.9-7 -2.8-7 | -6.4-8 1:01 | 4:52

be120.8.9 121 ; 21420 | 121 5788 | 37397 9.9-7 | 9.9-7 -3.3-7 | -8.5-8 1:02 | 4:42

be120.8.10 121 ; 21420 | 121 5636 | 35274 9.9-7 | 9.9-7 -3.5-7 | -8.0-8 58 | 4:53

be250.1 251 ; 93375 | 251 3958 | 25038 9.9-7 | 9.9-7 1.4-7 | -4.9-8 2:10 | 9:40

be250.2 251 ; 93375 | 251 4213 | 29313 9.9-7 | 9.9-7 -3.7-7 | -6.8-8 2:22 | 11:36

be250.3 251 ; 93375 | 251 4230 | 27211 9.9-7 | 9.8-7 -3.7-7 | -4.4-8 2:29 | 10:56

be250.4 251 ; 93375 | 251 4059 | 28985 9.9-7 | 9.9-7 -3.6-7 | -5.8-8 2:24 | 11:15

be250.5 251 ; 93375 | 251 4361 | 29277 9.9-7 | 9.9-7 -3.9-7 | -5.2-8 2:35 | 11:45

bqp100-1 101 ; 14850 | 101 7344 | 50000 9.9-7 | 1.1-6 -9.8-8 | -1.1-7 1:08 | 5:25
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Table 6.1: The performance of iABCD and ABCGD with accuracy ε = 10−6.

iteration η ηgap time

problem mE ;mI | ns iabcd|abcgd iabcd|abcgd iabcd|abcgd iabcd|abcgd

bqp100-2 101 ; 14850 | 101 3799 | 24170 9.9-7 | 9.9-7 -1.5-7 | -6.7-8 30 | 2:48

bqp100-3 101 ; 14850 | 101 3630 | 22570 9.9-7 | 9.9-7 8.6-8 | -5.1-8 29 | 2:35

bqp100-4 101 ; 14850 | 101 4293 | 27893 9.9-7 | 9.9-7 -2.2-7 | -5.9-8 35 | 3:13

bqp100-5 101 ; 14850 | 101 5145 | 34243 9.9-7 | 9.9-7 -1.0-7 | -4.8-8 43 | 3:29

bqp500-1 501 ; 374250 | 501 6385 | 50000 9.9-7 | 1.3-6 -1.2-6 | -1.2-7 23:40 | 1:43:49

bqp500-2 501 ; 374250 | 501 6622 | 50000 9.9-7 | 1.7-6 -1.1-6 | -1.6-7 23:21 | 1:43:49

bqp500-3 501 ; 374250 | 501 6042 | 50000 9.9-7 | 1.1-6 -1.1-6 | -9.1-8 22:10 | 1:45:49

bqp500-4 501 ; 374250 | 501 5537 | 50000 9.9-7 | 1.2-6 -1.1-6 | -8.0-8 20:05 | 1:46:16

gka1e 201 ; 59700 | 201 5292 | 37861 9.9-7 | 9.9-7 -2.6-7 | -4.8-8 2:05 | 10:59

gka2e 201 ; 59700 | 201 4623 | 29338 9.9-7 | 9.9-7 -6.8-7 | -7.1-8 1:47 | 8:29

gka3e 201 ; 59700 | 201 6033 | 40016 9.9-7 | 9.9-7 -3.7-7 | -6.0-8 2:12 | 11:44

gka4e 201 ; 59700 | 201 7001 | 47779 9.9-7 | 9.9-7 -5.9-7 | -6.9-8 2:45 | 14:09

gka5e 201 ; 59700 | 201 6245 | 42175 9.9-7 | 9.9-7 -5.3-7 | -7.8-8 2:30 | 12:30
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Chapter 7
Conclusions

In this thesis, we study the algorithms for solving multi-block large scale convex

composite optimization problems with coupled objective functions. In the first part

of this thesis, we propose an inexact majorized accelerated block coordinate descent

method for the two-block problems and prove the O(1/k2) iteration complexity. The

introduction of the inexactness enables us to solve multi-block unconstrained prob-

lems by dividing all the variables into two groups. For an illustration purpose, we

implement the iABCD framework for solving a class of composite least square prob-

lems with equations, inequalities and the convex set constraints. The subproblems

are suggested to be solved by the inexact one-cycle symmetric Gauss-Seidel tech-

nique and the APG-SNCG method, where the latter one incorporates the second

order information in order to obtain an accurate solution of the subprolems within

several steps. The convincing numerical results are presented to demonstrate the

superior performance of our proposed iABCD framework.

In the second part of this thesis, we establish the various convergence properties

of the mADMM for solving two block linearly constrained optimization problems

with coupled objective functions, which greatly extend the previous theoretical re-

sults for the ADMM to solve problems with separable objective functions. We also

prove the linear convergence rate for the quadratically coupled problems under an

error bound condition. In addition, we study the robust isolated calmness for a class
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of constrained nuclear norm minimization problems that are not necessarily convex.

Our purpose here is to have a deeper understanding of the stability, as well as the

error bound conditions, for problems involving non-polyhedral functions.

Many interesting problems related to the content of this thesis are still far from

being settled. Below we list some research directions that deserve more explorations.

• Recently, Chambolle and Dossal [8] prove the convergence of the iteration

sequence for a class of accelerated proximal gradient algorithms. We leave it

as a future work to study the convergence property of the iteration sequence

generated by the iABCD method. If this can be done, we shall further consider

the convergence rate under the error bound conditions provided in this thesis.

• For the mADMM to solve linearly constrained problems with coupled objective

functions, we only show the ergodic complexity for the primal objective values

and the primal feasibility. It is still unknown whether a KKT-type ergodic

complexity could be obtained, perhaps in the same spirit of Monteiro and

Svaiter’s work [68] on BD-HPE that include the classical ADMM with the

dual step-length equal to 1. To the best of our knowledge, this has not been

done if the semi-proximal terms are allowed in the subproblems even for solving

the problems with separable objective functions.

• We show the linear convergence rate of the mADMM for problems with quadrat-

ically coupled objective functions. It is interesting to know whether the same

type of result holds when the coupled objective function is only assumed to

be smooth.

• In this thesis, we only consider the problems with smooth coupled objective

functions. When the coupled objective function is nonsmooth, is it possible to

incorporate the smoothing technique proposed by Nesterov [72] in our iABCD

and mADMM frameworks and show the corresponding complexity?

• There are also unsolved questions about the stability and sensitivity analysis
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for the optimization problems involving nuclear norm or other non-polyhedral

functions, such as the characterization of the calmness and the Aubin property

by the constraint qualifications or others.

• The numerical results show that the hybrid of the APG and the semismooth

Newton-CG algorithm is very efficient in solving the strongly convex quadratic

problems with the nonnegative constraints. It is interesting to explore whether

this algorithm can be applied to solve other convex SC1 problems.
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