
Towards Effective Relational Keyword Search
Using Semantics

ZENG ZHONG

(B.Eng, Nankai University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2015

ACKNOWLEDGEMENT

This thesis would not have been completed without the guidance and help of

many people.

My first and foremost thank goes to my two supervisors Prof. Ling Tok Wang

and Prof. Lee Mong Li. Prof. Ling has provided invaluable guidance through

every stage of my PhD study. His rigorous attitude on research inspires me to

think critically, while his insightful advice helps me identify research problems and

work them out independently. Prof. Lee has spent countless hours supervising me

and discussing with me. Her heuristic guidance helps me clarify my ideas, while

her constructive suggestions improves my technical writing and presentation skills.

Both Prof. Ling and Prof. Lee are always supportive and encouraging not only in

my research, but also in the everyday life. Their kindness and wisdom will keep

me moving forward in the rest of my life. I am sincerely grateful to them.

I would like to thank Prof. Tan Kian Lee and Prof. Stephane Bressan for serving

on my thesis committee and providing many useful comments on the thesis.

I appreciate all the people coauthoring with me: Prof. Gillian Dobbie, Dr. Le

Thuy Ngoc, and especially Dr. Bao Zhifeng. Dr. Bao Zhifeng has collaborated

i

with me for almost every piece of my research work. He has provided me useful

advice and continuous help in the past five years.

I would like to thank my lab-mates and friends in School of Computing. The

time we have spent together will be my precious memory forever.

Last but not least, my deepest love is reserved for my parents, Zeng Xuequn

and Chen Juxian, and my wife Lu Chengjing. They have always supported and

encouraged me during my whole PhD career. Their love and support give me the

faith and strength to overcome any difficulties in my life.

ii

CONTENTS

Acknowledgement i

Summary vii

1 Introduction 1

1.1 Research Problems . 2

1.2 Thesis Contributions . 8

1.2.1 ORA Semantics for Relational Keyword Search 8

1.2.2 Semantic Path Ranking Scheme for Relational Keyword Search 9

1.2.3 Keyword Context and User Search Target in Relational Key-

word Queries . 10

1.2.4 Keyword Queries involving Aggregates and GROUPBY . . . 11

1.3 Thesis Outline . 12

2 Related Work 14

2.1 Basic Concepts . 14

2.2 Processing Keyword Queries . 16

iii

2.2.1 Data Graph Approach . 16

2.2.2 Schema Graph Approach . 20

2.2.3 Other Approaches . 23

2.2.4 Summary . 25

2.3 Ranking Keyword Query Answers 28

2.3.1 Ranking Strategies . 28

2.3.2 Top-K Query Answers . 31

2.4 Presenting Keyword Query Answers 32

2.4.1 Query Answer Analysis . 33

2.4.2 Keyword Query Refinement 34

2.5 XML Keyword Search . 35

3 Object-Relationship-Attribute Semantics for Relational Keyword

Search 37

3.1 Classification of Relations . 38

3.2 ORM Data Graph . 41

3.3 ORM Search . 43

3.4 Performance Study . 48

3.4.1 Effectiveness Experiments 49

3.4.2 Efficiency Experiments . 53

3.5 Conclusion . 54

4 Semantic Path Ranking Scheme for Relational Keyword Search 56

4.1 Motivation . 57

4.2 Semantic Paths between ORM Nodes 62

4.3 Proposed Ranking Scheme . 65

4.4 Performance Study . 70

iv

4.5 Conclusion . 76

5 Keyword Context and User Search Target in Relational Keyword

Queries 77

5.1 Motivation . 78

5.2 ORM Schema Graph . 80

5.3 Extended Keyword Queries . 82

5.3.1 Query Analysis . 83

5.3.2 Query Interpretation . 87

5.3.3 Query Pattern Ranking . 90

5.3.4 SQL Statement Generation 94

5.4 ExpressQ System . 95

5.5 Performance Study . 100

5.5.1 Effectiveness Experiments 100

5.5.2 Efficiency Experiments . 105

5.6 Conclusion . 107

6 Keyword Queries involving Aggregates and GROUPBY 108

6.1 Motivation . 109

6.2 Preliminaries . 113

6.3 Aggregate Queries on Normalized Database 115

6.3.1 Pattern Generation and Annotation 115

6.3.2 Pattern Disambiguation . 118

6.3.3 Pattern Translation . 120

6.3.4 Nested Aggregate Queries 124

6.4 Aggregate Queries on Unnormalized Database 125

6.4.1 Query Rewriting . 130

v

6.5 Algorithms . 132

6.6 Performance Study . 135

6.6.1 Effectiveness Experiments 137

6.6.2 Efficiency Experiments . 143

6.7 PowerQ System . 144

6.8 Conclusion . 146

7 Conclusion 147

7.1 Future Work . 150

Bibliography 154

Appendix A ExpressQ Demo System 164

A.1 System Architecture . 165

A.2 User Interaction . 169

A.3 Demonstration . 171

Appendix B PowerQ Demo System 172

B.1 System Architecture . 173

B.2 Demonstration . 178

vi

SUMMARY

Keyword search over relational databases has been widely studied in recent

years. In contrast to structured queries, it enables users to pose queries without

learning query languages or database schemas, and has become a flexible and pop-

ular approach to access database information. However, the interpretation of a

keyword query is ambiguous. Existing research on relational keyword search has

been focused on the efficient computation of search results and ranking strategies to

improve the quality of results. But they do not consider the Object-Relationship-

Attribute (ORA) semantics in the database, and thus suffer from the problems of

returning incomplete answers, an overwhelming number of answers, and even in-

correct answers. In addition, they do not consider the normal forms of the database

relations, and return different answers for different schemas of the same data con-

tent. Hence, users may fail to find the answers that satisfy their search intention.

In this thesis, we address these problems by exploiting the ORA semantics in rela-

tional databases for keyword query processing in order to improve the completeness

and correctness of keyword search.

First, we analyze the semantics of the relations in a database. We classify the

vii

relations into object relations, relationship relations, mixed relations, and compo-

nent relations. An object (relationship resp.) relation captures the information

of objects (relationships resp.), while a mixed relation captures the information

of both objects and their associated many-to-one relationships. The information

of multivalued attributes of objects and relationships are captured by component

relations. We refer to these semantics as the Object-Relationship-Attribute (ORA)

semantics. We construct an Object-Relationship-Mixed (ORM) data graph where

each node represents either an object, or a relationship, or an object together with

its many-to-one relationship in the database. Keyword queries are processed via

the ORM data graph because the information of objects and relationships in the

ORM data graph enable us to retrieve more complete and informative answers

compared to existing methods.

Second, we investigate how objects in a relational database are related via re-

lationships. We identify four types of paths, namely, simple path, recursive path,

palindrome path and complex path, whereby a pair of nodes in the ORM data graph

can be connected. These paths capture the semantic meanings between objects to-

gether with relationships in the database, and reflect different query interpretations.

We compute and rank query answers by considering the semantic paths between

each pair of keyword match nodes in the answers. Compared to existing ranking

schemes which typically rank answers based on the number of tuples, our approach

ranks answers based on the semantic paths and is more meaningful. Even if two

answers contain the same number of tuples, they can still be distinguished by their

different semantic paths. Further, the semantic paths are used to annotate answers

to facilitate users’ understanding.

Third, we extend the keyword query language to include keywords that match

meta-data, that is, the names of relations and attributes. These keywords provide

viii

the context of subsequent keywords and explicitly indicate the search targets of

the query. Thus, the ambiguity of keyword queries are significantly reduced and

we can infer users’ search intention more precisely than existing methods. We

use the ORA semantics to construct an ORM schema graph and determine the

objects and relationships referred to by the keywords in a query. We obtain a set

of minimal connected graphs called query patterns to represent the possible search

intentions of the user. We rank the query patterns based on the search targets of

the query and the number of objects captured in the patterns. The top-k ranked

query patterns are translated into SQL statements to retrieve the information that

the user is interested in.

Finally, we further extend keyword queries to incorporate aggregate functions

and GROUPBY, e.g., {John COUNT Course}. The work in [79] supports aggregate

functions in keyword queries. However, it does not have the concept of objects

and cannot distinguish objects with same attribute value, e.g., two students called

John. As a result, it may return incorrect answers. In contrast, we utilize the ORA

semantics to distinguish objects with the same attribute value and detect duplica-

tions of objects in relationships in order to compute aggregates correctly. Based on

the ORM schema graph, we generate a set of query patterns and annotate these

patterns to determine various query interpretations. Furthermore, we detect du-

plications of objects/relationships arising from unnormalized relations, and extend

our approach to handle aggregate queries on unnormalized databases. We show

that without the ORA semantics, it is impossible to process aggregate functions

correctly.

ix

LIST OF FIGURES

1.1 An example university database . 3

1.2 The schema graph and the data graph for the database in Figure 1.1 3

1.3 Sample answers for query {John Mary} in Example 1.3 5

1.4 A database that consists of an unnormalized relation 7

2.1 Time line for main relational keyword search techniques 25

2.2 Relationships among main relational keyword search techniques . . 26

3.1 Example relational database . 38

3.2 The ER diagram for the database in Figure 3.1 39

3.3 ORM data graph for the database in Figure 3.1 42

3.4 Two Steiner trees for query {John Mary} in Example 3.1 47

3.5 Number of answers retrieved by ORMSearch and DPBF 51

3.6 Precision of ORMSearch vs. DPBF 52

3.7 Efficiency of ORMSearch vs. DPBF on sample queries 53

3.8 Efficiency of ORMSearch vs. DPBF on random queries 54

4.1 Example student registration database 57

x

4.2 Data graph of database in Figure 4.1 58

4.3 Sample answers for Q1 = {John Steven} 58

4.4 ORM data graph of the database in Figure 4.1 59

4.5 ER diagram of database in Figure 4.1 60

4.6 An annotated answer for Q1 = {John Steven} 60

4.7 Annotated answers for query Q2 = {Java DB} 61

4.8 Three semantic paths between the object nodes c1 and c2 66

4.9 ER diagram of the ACM Digital Library dataset 71

4.10 Average precision of ranking schemes for top-5 and 10 answers . . . 73

4.11 Average precision of ranking schemes for top-20 and 50 answers . . 74

4.12 Annotated answers for query Q4 . 75

4.13 Annotated answers for query Q3 . 76

5.1 Example university database . 79

5.2 ORM schema graph of Figure 5.1 81

5.3 Query pattern for query Q2 in Example 5.5 89

5.4 Query patterns for query Q1 in Example 5.6 90

5.5 Query patterns in Example 5.7 . 93

5.6 Query pattern in Example 5.8 . 94

5.7 Screenshot of query interpretations in ExpressQ 96

5.8 Comparison of SQL generation time by ExpressQ and SPARK . . . 105

5.9 Comparison of SQL generation by ExpressQ and SQL execution time 106

6.1 Example university database . 110

6.2 An unnormalized university database 111

6.3 ORM schema graph of Figure 6.1 117

6.4 Query pattern obtained using basic terms in the query Q4 117

xi

6.5 Annotated query patterns of Q4 and Q5 117

6.6 A query pattern for Q4 . 120

6.7 Query pattern in Example 6.7 . 125

6.8 An unnormalized relation . 126

6.9 ORM schema graph of Figure 6.8 128

6.10 Query pattern in Example 6.9 . 130

6.11 Comparison of SQL generation time by our approach and SQAK . . 143

6.12 Screenshot of annotated query patterns 145

A.1 System Architecture . 165

A.2 Screenshot of possible keyword matches 166

A.3 Screenshot of query interpretations 168

A.4 Screenshot of answers retrieved . 170

B.1 System Architecture . 173

B.2 Screenshot of annotated query patterns 175

B.3 Screenshot of answers to query pattern P2 in Figure B.2 177

xii

LIST OF TABLES

3.1 Queries used in experiments . 49

3.2 Results of queries for IMDB dataset 50

4.1 Database schema . 70

4.2 Queries used in experiments . 70

4.3 Ranking of two sample answers for query Q4 75

4.4 Ranking of two sample answers for query Q3 76

5.1 Example Queries . 85

5.2 Sequence of tags generated for the queries in Table 5.1 85

5.3 Queries for the TPCH database . 100

5.4 Queries for the ACMDL database 101

5.5 SQL statements generated for the TPCH database 102

5.6 SQL statements generated for the ACMDL database 104

6.1 Mappings of relations in Example 6.8 128

6.2 Database schemas . 136

6.3 Queries for the TPCH database . 136

xiii

6.4 Queries for the ACMDL database 137

6.5 Answers of queries for the normalized TPCH database 139

6.6 Answers of queries for the normalized ACMDL database 140

6.7 Unnormalized database schemas . 141

6.8 Query answers on the unnormalized TPCH (Our approach returns

the same answer as Table 6.5) . 142

6.9 Query answers on the unnormalized ACMDL (Our approach returns

the same answer as Table 6.6) . 142

xiv

CHAPTER 1

INTRODUCTION

As increasing amounts of data over the Internet are stored in relational databases,

designing effective mechanisms for users to query large and complex databases has

been one of the most elusive goals of the database research community. Traditional

structured query models such as SQL provide functionalities for users to query rela-

tional databases precisely. However, they require users to be knowledgeable about

database schemas and query languages, which can be challenging and error-prone.

On the other hand, the success of web search engines has made keyword search

the most popular search paradigm for ordinary users. Keyword search over rela-

tional databases has gained traction as it enables users to query databases without

knowing the database schemas or having to write complicated SQL queries [11, 43,

41, 67, 69, 15, 44, 46, 42, 84].

1

1.1 Research Problems

Research in relational keyword search can be broadly classified into two cate-

gories: (a) data graph approach [11, 43] and (b) schema graph approach [44] In

data graph approach, the relational database is materialized as a graph where each

node represents a tuple and each edge represents a foreign key-key reference. An

answer to a keyword query is typically defined as a minimal connected subgraph

which contains all the keywords. The graph search is equivalent to the Steiner

tree problem, which is NP-complete. On the other hand, schema graph approach

models the database schema as a schema graph where each node represents a re-

lation and each edge represents a foreign key-key constraint. Based on the schema

graph, it translates a keyword query into a set of SQL statements, and leverages on

relational DBMSs to evaluate the statements and retrieve answers. The details of

these two approaches are examined in Chapter 2. Both approaches are computa-

tionally expensive and typically return a lot of answers. As such, current research

has been focused on the efficiency of computation of results from multiple tuples

[41, 46, 40, 31, 73] as well as ranking strategies to improve the quality of results

[67, 69, 84, 13]. However, the retrieval of informative answers that satisfy users’

search intention remains a challenge.

We observe that a relational database is essentially a repository of objects that

interact with each other via relationships. When a user issues a keyword query,

each keyword is usually directed at some object of interest, or relationship along

with the associated objects. Hence, users would expect information of the ob-

ject/relationship to be fully retrieved.

Let us consider the example university database in Figure 1.1. The rela-

tions Student and Lecturer store the core information about students and lec-

turers respectively. The qualifications of a lecturer are captured in the relation

2

Qualification since each lecturer could have more than one qualification. The re-

lation Course stores both the core information about courses and the many-to-one

relationship between courses and lecturers. This reflects the application constraints

that each course is associated with only one lecturer. The relation Enrol captures

the many-to-many relationships between students and courses. Figure 1.2 shows

the schema graph and the data graph of this database. The data graph is undirected

as direction is not a major concern for query processing.

Student

sid name age

s1 John 24

s2 Edward 18

s3 Mary 21

Course

cid title credit lid

c1 Database Design 4.0 l1

c2 Information Retrieval 3.0 l2

c3 Java Programming 3.5 l2

c4 Multimedia 4.0 l3

Lecturer

lid name office

l1 Steven COM2 215

l2 Jane COM1 316

l3 Jane COM2 302

Qualification

lid degree major university

q1 l1 PhD CS University of Wisconsin-Madison

q2 l1 Master EE University of Toronto

q3 l2 PhD CS National University of Singapore

q4 l3 PhD Math Massachusetts Institute of Technology

Enrol

sid cid grade

e1 s1 c1 B

e2 s1 c3 A

e3 s2 c1 A

e4 s2 c2 B

e5 s3 c2 A

e6 s3 c4 B

Figure 1.1: An example university database

StudentCourse Enrol

Lecturer

Qualification

s1

s2 s3c2

e2e1

e3

e4 e5

c3

c1

l1

q1

q2 l2 q3 e6

c4l3

q4

(a) (b)

Figure 1.2: The schema graph and the data graph for the database in Figure 1.1

3

Example 1.1. [incomplete answer] Suppose a user issues the keyword query

{Steven} to retrieve all the information about him. Existing works in both data

graph approach and schema graph approach will only return his lid, name, and

office, that is, the tuple 〈l1, Steven, COM2 215〉 in the Lecturer relation. However,

information about the degrees and associated majors and universities of Steven,

which are stored in the Qualification relation, is not retrieved. 2

Example 1.2. [incomplete answer] Suppose a user wants to know the infor-

mation of the course where a student Mary obtains grade A, and issues the keyword

query {Mary A}. Existing works in both approaches will retrieve the tuple 〈s3,

Mary, 21〉 in the Student relation and the tuple 〈s3, c2, A〉 in the Enrol relation,

as the two query keywords occur in these tuples respectively and there exists a for-

eign key reference between them. This answer is not informative as details such as

the course id, title and credit is not retrieved. 2

Examples 1.1 and 1.2 show that existing works on relational keyword search

retrieve incomplete information of objects and relationships so that the answers do

not satisfy user’ search intention. This is because existing works do not consider the

semantics of objects and relationships in the relational database and thus cannot

analyze users’ search intention.

In addition, relational keyword queries are inherently ambiguous. Existing key-

word search methods consider all the possible interpretations of a keyword query

and retrieve the corresponding information from the relational database. Conse-

quently, a huge number of answers are returned although many of them are probably

not useful to the user. We illustrate this problem in Example 1.3.

Example 1.3. [irrelevant answer] Suppose a user issues the keyword query

{John Mary}. Figure 1.3 shows two sample answers obtained by existing works

4

in both data graph approach and schema graph approach. Intuitively, the first re-

sult shown in Figure 1.3(a) indicates that student s1 (John) is enrolled in the

course c3 (Java Programming) and student s3 (Mary) is enrolled in the course

c2 (Information Retrieval). Both c1 and c2 are taught by the same lecturer l2

(Jane). The second result shown in Figure 1.3(b) means that student s2 (Edward)

is enrolled in the same course c1 (Database Design) as John; Edward is also en-

rolled in the same course c2 (Information Retrieval) as Mary. We observe that

only the first answer is likely useful to the user. 2

s1

s3c2

e2

e5

c3

l2 s1

s2 s3c2

e1

e3

e4 e5

c1

(a) (b)

Figure 1.3: Sample answers for query {John Mary} in Example 1.3

Furthermore, existing works largely ignore queries that retrieve statistical in-

formation from databases. This kind of queries involve aggregate functions and

GROUPBY, and thus are called aggregate queries. The work in [79] developed

a system called SQAK that allows aggregate queries to be expressed using sim-

ple keywords. However, this system does not consider the semantics of objects

and relationships in the database, and thus suffers from the problems of returning

incorrect answers. We illustrate the problem of SQAK in Example 1.4.

Example 1.4. [incorrect answer] Suppose a user is interested in the number

of courses taught by lecturer Jane, and issues the aggregate query {Jane COUNT

Courses}. The keyword COUNT indicates the aggregate function COUNT on the

courses, and SQAK will generate the following SQL statement for the query:

5

SELECT L.name, COUNT(C.cid)

FROM Course C, Lecturer L

WHERE C.lid=L.lid AND L.name=‘Jane’

GROUP BY L.name

We observe that the keyword Jane matches the names of two lecturers l2 and

l3 in Figure 1.1. This naturally implies that we should find the number of courses

for each of these lecturers, that is, 2 courses for l2 and 1 course for l3. However,

SQAK does not distinguish between these two “different” name matches for different

lecturers, and returns 3 for the number of courses, which is incorrect. 2

Finally, many applications often denormalize their databases to improve run-

time performance. This denormalization leads to data duplication which affects

the database schema graph and data graph. As existing works do not consider

unnormalized relations in the database, they suffer from the problems of returning

missing answers and duplicated answers.

Consider the database that consists of the single Enrolment relation in Fig-

ure 1.4. The Enrolment relation is unnormalized and obtained by joining the

Student, Enrol and Course relations in Figure 1.1. The schema graph of this

database contains a single node that represents the Enrolment relation, while the

data graph contains 6 nodes that represents the tuples in this relation. Note that

both the schema graph and the data graph contains no edges because of no foreign

key - key constraints/references.

Example 1.5. [missing answer] Suppose a user wants to know the information

of students that enrol both the Database and Java courses, and issues the keyword

query {Database Java}. The keyword Database occurs in the tuples e1 and e3,

while the keyword Java occurs in the tuple e2 in the Enrolment relation. Existing

works in both data graph approach and schema graph approach will return empty

6

Enrolment

sid name age cid title credit lid grade

e1 s1 John 24 c1 Database Design 4.0 l1 B

e2 s1 John 24 c3 Java Programming 3.5 l2 A

e3 s2 Edward 18 c1 Database Design 4.0 l1 A

e4 s2 Edward 18 c2 Information Retrieval 3.0 l2 B

e5 s3 Mary 21 c2 Information Retrieval 3.0 l2 A

e6 s3 Mary 21 c4 Multimedia 4.0 l3 B

Figure 1.4: A database that consists of an unnormalized relation

result because there does not exist a foreign key reference between e2 and e1 (or

e3). However, Figure 1.4 shows that the student s1 enrols both the Database and

Java courses. In other words, this answer is missing by existing works. 2

Example 1.6. [duplicated answer] Suppose a user issues the keyword query

{Database} to retrieve the information about this course. Existing works in both

data graph approach and schema graph approach will return tuples e1 and e3 as

two answers. Both the answers contain the same information about the Database

course, as the information of courses are duplicated in the Enrolment relation. In

other words, these two answers are duplicated to the user, as s/he is only interested

in the course information. 2

The above examples illustrate problems that arise when we do not consider the

semantics of objects and relationships in databases. This motivates us to develop

a semantic approach to improve the completeness and correctness of relational

keyword queries. Specifically, we address the problems of returning incomplete

answers, irrelevant answers, incorrect answers, missing answers, and duplicated

answers in relational keyword search. This requires us to tackle the following tasks:

1. Exploit the semantics of objects and relationships in the relational database,

and process keyword queries by examining the objects/relationships referred

to by keywords, so that users can obtain complete answers to their queries.

7

2. Investigate how objects are related via relationships in query answers for

ranking and presenting these answers, so that users can understand and find

relevant answers that satisfy their search intention.

3. Disambiguate keyword queries by allowing keywords that match metadata,

that is, the names of relations and attributes, so that users can indicate their

search intention explicitly and obtain relevant answers to their queries.

4. Support keyword queries involving aggregates and GROUPBY based on the

ORA semantics, so that users can retrieve correct answers from the database.

1.2 Thesis Contributions

In this dissertation, we focus on improving the effectiveness of relational keyword

search by utilizing the semantics of objects, relationships and their attributes in

the database. This is achieved in four aspects. First, we propose the Object-

Relationship-Attribute (ORA) semantics in relational databases. Based on the

ORA semantics, we introduce the ORM data graph and the ORM schema graph

to model the database and its schema respectively. Second, we identify different

types of paths where a pair of nodes in the ORM data graph can be connected, and

propose a semantic path ranking scheme for relational keyword search. Third, we

extend the keyword query language to include metadata keywords, and identify the

keyword context and search target in the extended keyword queries. Fourth, we

incorporate keyword queries with aggregate functions and GROUPBY, and process

these queries on both normalized and unnormalized databases.

1.2.1 ORA Semantics for Relational Keyword Search

Existing works typically process keyword queries using data graph approach or

schema graph approach. In both approaches, the database is modeled as a graph

8

that captures the information of how relations/tuples are connected in the database.

However, neither of them has considered the ORA semantics in the database.

We examine the limitations of existing works on relational keyword search, and

exploit the ORA semantics in the database to address the problems of retrieving in-

formative and useful answers. Particularly, we classify the relations in the database

into object relations, relationship relations, mixed relations and component rela-

tions. An object (relationship resp.) relation captures the information of objects

(relationships resp.). Such information are the single-valued attributes of an object

class (relationship type). The multivalued attributes of an object class (relationship

type) are captured in the component relations. A mixed relation contains informa-

tion of both objects and relationships, which occurs when we have a many-to-one

relationship. We call these semantics the Object-Relationship-Attribute (ORA)

semantics in the database. Based on the ORA semantics, we model the database

schema as an Object-Relationship-Mixed (ORM) schema graph, and the database

instance as an Object-Relationship-Mixed (ORM) data graph. We propose a se-

mantic approach to process keyword queries based on the types of nodes that match

keywords in the ORM data graph. We will show that our approach retrieves more

informative and useful answers compared to the existing methods, and is efficient.

1.2.2 Semantic Path Ranking Scheme for Relational Key-

word Search

When the database is modeled as a data graph, an answer to a keyword query

is typically considered as a minimal connected subgraph of tuples which contains

nodes that match keywords in the query. This graph search is equivalent to the

Steiner tree problem, which is NP-complete [33]. Since the keywords in a query may

match nodes which are connected by many paths in the data graph, many answers

9

are returned which often overwhelms users. Further, the answers are presented as

subgraphs of tuples which are not easily understood by users.

We observe that when a user searches for some target object, s/he is interested

in objects that are related in some way to the target object as well. Based on

this observation, we investigate how the objects together with relationships in the

database are related by examining the paths where a pair of nodes in the ORM

data graph can be connected. We classify these paths into four types, namely,

simple path, recursive path, palindrome path and complex path. Based on these

semantic paths, we propose a semantic path based ranking scheme for relational

keyword search. Our approach has the advantage of distinguishing paths with the

same length by their different types compared to existing ranking schemes. Query

answers are grouped based on semantic paths to reflect different query interpreta-

tions, and are annotated with ORA semantics to facilitate users’ understanding.

This allows users to identify answers that are relevant to their queries.

1.2.3 Keyword Context and User Search Target in Rela-

tional Keyword Queries

Traditionally, a keyword query is considered as a set of user-specified keywords.

These keywords only match tuple values and are independent with each other.

This assumption limits the expressive capability of keyword queries and leads to

ambiguous query interpretations.

We observe that whenever the user issues a keyword query, s/he always has

some particular search intention in mind. If the user can explicitly indicates his/her

search intention with keywords, we will be able to reduce the ambiguity of keyword

queries and retrieve the answers that satisfy the user’s search intention precisely.

To achieve this, we extend the keyword query language and describe an semantic

10

approach to process the extended keyword queries. Our approach considers the

keywords that match metadata such as the names of relations and attributes, and

utilizes them to provide the context of subsequent keywords in the query. We

determine the objects and relationships referred to by the keywords and use the

ORM schema graph to infer the search target of the query. Then, we construct

a set of minimal connected graphs called query patterns, to represent the user’s

possible search intentions. Finally, we translate the top-k ranked query patterns

into SQL statements to retrieve information that the user is interested in. We

develop a system prototype called ExpressQ to process extended keyword queries

and show that our system is able to retrieve relevant answers for the user.

1.2.4 Keyword Queries involving Aggregates and GROUPBY

Keyword queries involving aggregate functions is a powerful mechanism that

provides users with a summary of the data. Research on relational keyword search

has focused on the computation and ranking of query answers, but largely ignores

aggregate queries. The work in [79] extends keywords by supporting aggregate func-

tions in their SQAK system. We examine how SQAK answers aggregate queries in

relational keyword search, and identify its problems of returning incorrect answers

due to its unawareness of the ORA semantics in the database.

We extend keyword queries to incorporate aggregates and GROUPBY, and pro-

pose a semantic approach to answer these queries. Our approach utilizes the ORM

schema graph to capture the ORA semantics in the database, and determines the

various interpretations of a query before generating the corresponding SQL state-

ments. These semantics enable us to distinguish objects with the same attribute

value and detect duplications of objects in relationships to compute the answers

correctly. Further, we develop a mechanism to detect the duplications of objects

11

and relationships arising from unnormalized relations in the database, and extend

our approach to handle aggregate queries on unnormalized databases. We build a

system prototype called PowerQ to process aggregate queries on both normalized

and unnormalized databases, and show the advantages of PowerQ in retrieving

correct statistical information for users.

In summary, we utilize the ORM data/schema graph based on the ORA se-

mantics in the database to solve the problems of existing keyword search methods.

Without the ORA semantics, it is impossible to solve those problems.

The research in this thesis have led to the following publications: [87], [85], [86],

[88], [89], [90], [63], [64] and [66].

1.3 Thesis Outline

The rest of this dissertation is organized as follows.

• Chapter 2 reviews the related work. We first examine the existing approaches

to relational keyword search, followed by ranking strategies and top-k query

answers. Next, we review other topics related to relational keyword search.

Finally, we discuss some works on XML keyword search.

• Chapter 3 exploits the ORA semantics in the database, and introduces the

ORM schema graph and ORM data graph. We describe our approach to

process keyword queries based on the ORM data graph.

• Chapter 4 presents our semantic path ranking scheme to rank and present

query answers.

• Chapter 5 discusses our approach to identify keyword context and search

12

target in keyword queries, and infer users’ search intention based on the

ORM schema graph.

• Chapter 6 describes our approach to answer keyword queries with aggregates

and GROUPBY on both normalized and unnormalized databases.

• Chapter 7 concludes this thesis with future work.

• Appendix A presents our system ExpressQ to process extended keyword

queries.

• Appendix B presents our system PowerQ to process queries involving aggre-

gates and GROUPBY.

13

CHAPTER 2

RELATED WORK

Keyword search over relational databases has been widely studied for more than

ten years. In this chapter, we will introduce the basic concepts in relational keyword

search and review the various approaches to process keyword queries. Then we will

discuss ranking strategies and top-k query answers for relational databases as well

as presentation of query answers to facilitate users’ understanding.

2.1 Basic Concepts

A relational database D is a collection of relations. A relation R is denoted

as R(A1, A2, · · · , An), where R is the relation name and Ai, i ∈ [1, n] is an at-

tribute name. A tuple t in R is denoted as t(a1, a2, · · · , an), where ai is the value

of attribute Ai. Two relations R1 and R2 can be connected via an inclusion de-

pendency R1[P1] ⊆ R2[P2], where P1 and P2 are sets of attributes in R1 and R2

respectively [83]. This constraint states that given any tuples t1 ∈ R1 and t2 ∈ R2,

14

we have the values of P1 in t1 agree with the values of P2 in t2. Further, if P2 is a

candidate key of R2, we say R1 references R2, and P1 in R1 is a foreign key.

The schema graph of a database is a directed graph where each node represents

a relation and each edge represents a foreign key - key constraint [43]. On the

other hand, the data graph of a database is an undirected graph where each node

represents a tuple and each edge represents a foreign key - key reference between

tuples [44]. Both the schema graph and the data graph capture the information of

how relations/tuples are connected in the database. Note that the nodes in these

graphs do not have types and the edges do not have labels. The data graph is

undirected as direction does not affect the processing of keyword queries.

Relational databases can be queried by structured queries and keyword queries.

SQL [29], the most widely used language for structured queries, allows users to

state precisely their search intention. For instance, if the user wants to know the

students that take the Java course in Figure 1.1, s/he can issue the following SQL

statement:

SELECT S.sid, S.name, S.age

FROM Student S, Enrol E, Course C

WHERE S.sid=E1.sid AND C.cid=E1.cid AND C.title like ‘%Java%’

However, SQL requires users to have detailed knowledge about the database

schema and the query language, which makes it difficult to use for ordinary users.

In contrast, keyword queries enable users to pose queries without the need to

have full knowledge of the database schema or the query language. A keyword

query is simply considered as a set of user-specified keywords. For example, to

find students that take the Java course, one can simply issue the keyword query

{Student Java}.

15

2.2 Processing Keyword Queries

In web search engines such as Google [5] and Yahoo! [8], keyword queries

are processed by matching keywords with web documents. A query answer is a

document that contains query keywords. In contrast, an answer to a keyword

query on relational databases is not limited to a single tuple, but a set of tuples.

This is because the query keywords may match different tuples in databases, and

these tuples can be linked by foreign key - key references. In other words, the

granularity of the search target is ambiguous. Thus, the existing keyword search

methods on the web do not apply to relational databases.

Existing works on relational database keyword search process keyword queries

based on the schema graph or data graph of a database. Keyword queries are

inherently ambiguous due to their limited expressive capability. A keyword query

often have multiple interpretations. Handling all the possible interpretations of

a query involves a lot of computations, which is inefficient. As a result, research

on relational keyword search has been focused on how to process keyword queries

efficiently. These works can be broadly classified into data graph approach and

schema graph approach.

2.2.1 Data Graph Approach

In data graph approach, the database is materialized as a data graph. The

first work that utilizes this approach is BANKS [44]. Given a keyword query

Q = {k1 k2, · · · kn}, BANKS first identifies the set of keyword match nodes in the

data graph. Let Si be the set of nodes that match keyword ki, i ∈ [1, n]. An answer

to the query Q is defined as a minimal connected subgraph that contains at least

one node from every Si, i ∈ [1, n].

16

This graph search is equivalent to the Steiner tree problem, which is NP-

complete [33]. A backward expanding search algorithm is proposed to search for

the answers. In particular, the algorithm starts a copy of Dijkstra’s single source

shortest path algorithm [27] from each keyword match node. All these copies are

run concurrently by creating an iterator interface to the shortest path algorithm,

and creating an instance of the iterator for each keyword match node. Then it

traverses the data graph to find a common node which connects at least one node

from each set Si. The common node is considered as the root of the Steiner tree

while the keyword match nodes are considered as leaves.

BANKS-II [46] proposes a bidirectional search algorithm to improve the perfor-

mance of BANKS by reducing the search space. Compared to BANKS, it starts

a backward expanding search from the keyword match nodes and performs a for-

ward search from the visited nodes during backward expanding search. The idea

of this search strategy is to allow forward search from potential root towards key-

word match nodes, in order to avoid unnecessary backward expanding on nodes

that have a large number of edges. A prioritization scheme is proposed to allow

preferential expansions of paths that have less branches.

DPBF [31] considers keyword query processing as the group Steiner tree prob-

lem. Let n be the number of keywords in the query Q and x and y be the number

of nodes and edges in the data graph G. It advocates that n is typically small, and

G is a sparse graph with a large number of nodes, that is, y << x2, and proposes

a dynamic programming solution to process Q as follows.

Let T (v,Q, h) denote a tree that contains all the keywords in Q with minimum

cost, where v is the root and h is the height of the tree. Initially, if a single node

v in G matches all the keywords, then v is the optimal Steiner tree for Q. This

Steiner tree does not have any edges and has h = 0. Otherwise, we need to connect

17

multiple nodes in order to match all the keywords in Q. The optimal tree for Q

must have h > 0 and we obtain T (v,Q, h) based on two expanding strategies:

1. Tree grow: Create a tree T (v,Q, h) from T (u,Q, h − 1), where node v is

directly connected to node u.

2. Tree merge: Merge two trees T (v,Q1, h) and T (v,Q2, h), where Q = Q1∪Q2.

DPBF finds the optimal (top-1) answer in O (3nx + 2n((n + logx)x) + y) time.

Further, this complexity becomes O (xlogx + y) when n is fixed. In contrast,

BANKS and BANKS-II finds the optimal answer in O (x2logx + xy) time.

BLINKS [40] proposes to find the distinct roots of Steiner trees for a keyword

query. In other words, a query answer is the root of the Steiner tree that has the

best score among all the Steiner trees at this root. This distinct root semantics

avoids the case where a “hub” node that connects to many keyword match nodes

becomes the root for a huge number of Steiner trees. These Steiner trees overlap and

each carries little additional information from the rest. Based on the distinct root

semantics, BLINKS devises a bi-level indexing mechanism to prune and accelerate

searching for top-k query answers. In particular, it partitions the data graph into

multiple subgraphs called blocks. Then it stores summary information at the block

level to initiate and guide search among blocks, and more detailed information for

each block to accelerate search within the block. With the connectivity information

provided by the index, the search space can be significantly reduced. However, since

the distinct root semantics only returns roots of Steiner trees, the query answers

may not be informative and useful to users.

The works in [60, 47, 75] define a query answer as a subgraph that contains

additional nodes and edges compared to an Steiner tree. The intuition is that

subgraphs contain more information about how keyword match nodes are related

18

to each other than Steiner trees. These works require some parameters to constrain

the output subgraphs for keyword queries, which is difficult for users to specify. For

instance, EASE [60] studies how to calculate the radius of a graph. Given a node

v in a graph, it computes the maximal value among the distances between v and

any node u in the graph. This value is called the centric distance of v in the graph.

The radius of this graph is the minimal value among the centric distances of all the

nodes in the graph. An answer to a keyword query is a subgraph which has the

user-specified radius and contains the query keywords. A graph index as opposed

to the inverted index is devised to improve search efficiency.

[75] proposes a concept called community as a multi-center subgraph of the

data graph to define a query answer. A community consists of three sets of nodes,

namely, Vl, Vc and Vp. Vl is a set of keyword match nodes, Vc is a set of center

nodes whose distances to every keyword match node in Vl are not larger than the

user-specified radius, and Vp is a set of nodes on any path between a center node

and a keyword match node that has its distance not larger than the radius. An

algorithm that enumerates all communities in polynomial delay is presented.

Finally, [47] examines the distances between keyword match nodes in order to

avoid producing answers where keyword match nodes are far from each other. An

answer to a keyword query is defined as an r-clique, which is a set of keyword match

nodes in the data graph such that the distance between each pair of nodes is not

larger than r. The Steiner trees are used to illustrate the relationships among the

nodes in r-cliques.

The above works assume that the data graph is in-memory. In contrast, [28]

addresses the problem of keyword search on data graphs that are significantly larger

than memory. It proposes a multi-granular graph representation technique which

combines a condensed version of the graph that is always memory resident, along

19

with details of whatever parts of the graph in a cache. Then it gives two alternative

approaches to extend the existing in-memory keyword search algorithms based on

the multi-granular data graph.

2.2.2 Schema Graph Approach

In schema graph approach, the database schema is utilized to process a keyword

query. The first work that employs this approach is DBXplorer [11]. It proposes

the join tree for a keyword query as a subgraph of the schema graph that satisfies

two following conditions:

1. Each leaf relation covers a keyword with its tuples matching that keyword.

2. All the leaf relations collectively cover all the query keywords.

Thus, by joining all the relations in a join tree, the output tuples will match all

keywords in the query. To process a keyword query, DBXplorer first identifies the

relations which contain the keyword match tuples. Then it traverses the schema

graph to enumerates all the join trees for the query. For each join tree, it generates

an SQL statement that joins all the relations and projects their attributes. Each

output tuple of the SQL statement is considered as a query answer. As relations

in join trees may have many attributes, the output tuples of SQL statements may

overwhelm users with a lot of irrelevant information.

In DBXplorer, a join tree may contain redundant relations that cover the same

query keyword as the other relations. Besides, it does not consider self joins of

relations where a relation joins itself via many-to-many relationships with other

relations. DISCOVER [43] identifies theses limitations and introduces the notion of

candidate networks. In contrast to a join tree, a candidate network is a connected

graph and may have multiple nodes that correspond to the same relation. The

20

nodes in the candidate network are connected based on the edges in the schema

graph. Given a keyword query, DISCOVER performs a breadth-first traversal

on the schema graph to generate candidate networks that satisfy the following

conditions:

1. Total: every keyword in the query is covered by at least one relation in the

candidate network.

2. Minimal: no relation can be removed from the candidate network and the

candidate network is still total.

These candidate networks are translated into SQL statements to retrieve the

information from the database. Similar to DBXplorer, DISCOVER projects all

the attributes of the joining relations in SQL statements and thus outputs answers

with a lot of irrelevant information. To evaluate candidate networks efficiently, DIS-

COVER also proposes to reuse common join expressions so that the total number

of joins is reduced.

Two variants of DISCOVER [41, 69] relax the requirement that an answer to a

keyword query should match all the keywords. Given a keyword query, these works

only consider whether a relation covers some keyword or not. When traversing the

schema graph, they generate candidate networks such that every non-intermediate

node represents a relation that covers some keyword. Thus, joining all the relations

in such a candidate network will output tuples that match at least one keyword

in the query. After evaluating the candidate networks of the keyword query, the

answers are ranked based on an IR-style ranking scheme.

The work in [73] focuses on utilizing the power of DBMSs to process keyword

queries efficiently. In addition to finding the minimal connected graphs of tuples

that contain all the query keywords as DISCOVER, it also investigates how to

21

compute query answers of other semantics such as distinct root semantics in [40]

and multi-center subgraphs (communities) in [75], using schema graph approach.

The proposed method can efficiently support keyword queries of these different

semantics in the same framework, and does not need additional indexing or pre-

computing. This is achieved by pruning unnecessary tuples in relations that do not

participate in any results in order to reduce the number of tuples for processing.

[58] studies the Steiner tree problem and introduces the notion of compact

Steiner trees to approximate the Steiner tree problem for efficient query processing

in polynomial time. It proposes a structure-aware index that stores the informa-

tion of tuple references in the database as relations. This indexing mechanism is

supported by DBMSs for the progressive computation of query answers.

SQAK [79] investigates the trade-off between expressive power and ease of use of

keyword queries, and proposes to answer aggregate queries using simple keywords.

SQAK classifies aggregate queries into two categories. For the first category, a key-

word query has one keyword that specifies an aggregate function such as COUNT,

SUM, MIX or MAX. For instance, query {John COUNT Course} that counts the

number of courses taken by student John. For the second category, a keyword query

has a reserved keyword with followed by two keywords that specify a nested aggre-

gate function. For instance, query {Student with MAX COUNT Course} that finds

the student who takes the most number of courses. To process an aggregate query,

SQAK first parses the query to obtain the information of the aggregate functions,

aggregate attributes and the keyword match relations. A relation is matched if a

keyword matches its name, or the name of one of its attributes, or the value of some

of its tuples. Then, it finds a set of minimal connected subgraphs of the schema

graph which contain all the keyword match relations. Finally, it ranks these sub-

graphs and translates the top ranked subgraph into an SQL statement to compute

22

the aggregate functions. A subgraph for an aggregate query of the first category

is translated into an SQL statement that contains a SELECT-FROM-WHERE

clause and a GROUP BY clause, while a subgraph for an aggregate query of the

second category is translated into an SQL statement with three parts: the first

part computes the inner aggregate function, the second part computes the outer

aggregate function based on the result of the inner aggregate function, and the last

part outputs the specified attributes.

[15] considers the scenario where a-priori access to the database instance for

indexes construction is not available, and exploits the relative positions of the

keywords in the query alongside auxiliary external knowledge to make an educated

guess of the search intention of the query. To achieve this, it maintains a matrix

to store the probabilities of mappings between query keywords and the database,

namely, relation names, attribute names, and tuple values. Given a keyword query,

[15] first identifies the keywords that match the meta-data, i.e., the names relations

and attributes, and computes the probabilities of their mappings. Based on these

mappings, it estimates the probabilities of the mappings between the neighbor

keywords and the tuple values of the relations, and updates the probability matrix

accordingly. Finally, it produces the best mapping for all the query keywords

in terms of the total probabilities, and uses this mapping to generate the SQL

statement that retrieves the query answers.

2.2.3 Other Approaches

Besides data graph and schema graph approaches, [13, 42, 91, 17, 50, 77, 36, 35]

try to process keyword queries using other approaches. The work in [13, 42] utilizes

a hybrid approach which utilizes both the data graph and the schema graph to

model the database as an authority transfer data graph. A random walk process [32]

23

as opposed to Google’s PageRank [21] is performed on the authority transfer data

graph to obtain the nodes with the highest authority values. These nodes are

returned as the query answers.

A probabilistic approach based on a Hidden Markov Model (HMM) [34] is

adopted in [17] where query keywords are mapped to relation names, attribute

names and tuple values based on [15]. The idea is that HMM has the advantage

of modeling the important properties of keyword queries, namely, the positions

of query keywords and the probabilities of mappings between keywords and the

database.

The work in [91] examines the problem of aggregate keyword search on a uni-

versal relation. Given a keyword query, it finds a set of tuples that are grouped by

a minimal number of attributes and contain all the keywords.

A variant of keyword queries called précis queries is studied in [50, 77]. An

answer to a précis query is a database that is a subset of the original database.

The output database contains the keyword match relations, and the relations that

link to the keyword match relations in the schema graph. The number of relations

and attributes in the output database is specified by a constant. The tuples in these

relations either match the query keywords, or link to the keyword match tuples by

foreign key - key references.

More recently, [36, 35] define an answer to a keyword query as a tree of tuples

called object summary (OS), where the root tuple matches the keywords and the

other tuples link to the root by foreign key - key references. Intuitively, the root

of an OS indicates a subject while the other nodes of the OS give the relevant

information of this subject in the database. An OS can be very large in size

and thus may overwhelm users with too many details. Thus, [36] studies how

to efficiently compute OSs with a specified size in order to give a simplified and

24

stand-alone presentation of an OS.

2.2.4 Summary

2002

DBXplorer

DISCOVER

BANKS

2003

DISCOVER
-II

2004 2005

ObjectRank

2007 2008

SPARK

DPBF

BLINKS

SQAK

EASE

2011

MetadataBANKS-II

2006

Effective
KWS

Figure 2.1: Time line for main relational keyword search techniques

We summarize the main techniques to process keyword queries and their key

contributions in Figure 2.2. Figure 2.1 shows the time line for the main approaches

to relational keyword search. The work in [25] proposes a framework for evalu-

ating various keyword search strategies and [24] gives an empirical performance

evaluation based on this framework. They find that many strategies perform com-

parably despite contrary claims appearing in the literature with regard to their

search effectiveness and runtime performance.

We observe that the main idea of data graph approach is to traverse the data

graph in order to find the subgraphs that are qualified to be answers. The advantage

of this approach is that the information of tuples and their references in the database

are precisely captured by the data graph. This enables us to answer keyword queries

of various semantics such as Distinct root [40], r-Radius Steiner Graph [60], r-

clique [47] etc.

Unfortunately, the graph search in data graph approach is computationally

expensive. For example, finding Steiner trees in [44] and r-clique in [47] are proved

to be NP-complete. Besides, the data graph of the database could be very large

25

EASE
SIGMOD 2008

Communities
ICDE 2009

BANKS-II
VLDB 2005

DPBF
ICDE 2007

Metadata
SIGMOD 2011

Tree
Semantics

Data Graph Approach

Graph
Semantics

BANKS
ICDE 2002

BLINKS
SIGMOD 2007

*Steiner trees semantics
*backward expanding search

*bidirectional search to
reduce search space

*r-radius graph semantics
*graph indexing

*dynamic programming

*distinct root semantics
*bi-level indexing

*multi-center
graph semantics

Schema Graph Approach

DBXplorer
ICDE 2002

*breadth-first traversal
algorithm to find join trees

DISCOVER
VLDB 2002

DISCOVER-II
VLDB 2003

SPARK
SIGMOD 2007

SQAK
SIGMOD 2008

EffectiveKWS
SIGMOD 2006

*find total and minimal
join trees

*permit aggregate queries *normalize ranking factors

*allow answers match part of keywords
*ranking scheme and top-k query

*exploit inter-dependencies
among keywords

Figure 2.2: Relationships among main relational keyword search techniques

26

so that it has to be stored in external disk. A naive use of in-memory search

algorithms on the data graph would result in a very significant IO cost [28]. Thus,

research has been focused on the efficient computation of query answers. The

strategies include proposing efficient search algorithms [46, 31], devising indexing

mechanisms [60, 40], and finding approximate answers [47].

However, since the same keyword can match many graph nodes, and different

keyword match nodes can be connected via many paths in the data graph, data

graph approach usually returns an overwhelming number of answers of various

search intentions. Many of these answers are irrelevant and not easily understood

by users. In order to retrieve useful and informative answers, we need to interpret

the search intentions of keyword queries. We advocate that this requires us to know

the ORA semantics in the database, as we will show in Chapters 3 and 4.

On the other hand, the main idea of schema graph approach is to translate key-

word queries into SQL statements, and leverage DBMSs to retrieve query answers.

As each SQL statement actually represents one keyword query interpretation, query

answers are automatically grouped by query interpretation. [73] has demonstrated

the efficiency of answering keyword queries of different semantics. In addition, the

schema graph is generally small and has a low cost of memory usage.

However, schema graph approach does not consider the search intentions of

keyword queries and may generate a huge number of SQL statements, many of

which produce empty results. This is because a relation can repeatedly join it-

self via many-to-many relationships with other relations to obtain different SQL

statements. Existing works typically need some criteria (e.g., maximum number

of joins) to stop the repeating joins. This leads to some answers obtained by data

graph approach cannot be found using schema graph approach. Besides, it is diffi-

cult to know which attributes should be projected in SQL statements since we do

27

not know the search intentions of keyword queries. Existing works simply project

all the attributes of the joining relations. This will produce answers with a lot of

attributes, which is overwhelming to users. Thus, the main challenge of schema

graph approach is to interpret the possible search intentions of keyword queries

and generate SQL statements for the most likely interpretations. To achieve this,

we need to consider the ORA semantics in the database, as we will describe in

Chapters 5 and 6.

In summary, existing works do not consider the ORA semantics in the database,

and thus cannot interpret the search intentions of keyword queries. Instead, they

generate query answers for the possible search intentions and return a huge amount

of answers, many of which are complex and do not satisfy users’ information needs.

2.3 Ranking Keyword Query Answers

Given that keyword queries are inherently ambiguous and have many answers,

existing works propose to rank query answers based on their relevance to keyword

queries. By outputting answers of high relevance first, the users can find the answers

that they are interested in quickly. In this section, we discuss ranking techniques

for relational keyword search from two angles: (1) ranking strategies which evaluate

the relevance of query answers; and (2) top-k keyword query which computes top-k

ranked query answers.

2.3.1 Ranking Strategies

Early works such as [11] and [43] propose that the relevance of a query answer

is inversely proportional to the number of nodes in the answer. The intuition is

that an answer with more nodes is more sophisticated and complex. Inspired by

28

the IR relevance ranking strategies, [41] considers each tuple in an answer as a

document and computes its TF-IDF similarity scores. TF-IDF (Term Frequency—

Inverse Document Frequency) similarity is one of the most widely used approaches

to measure the relevance of keyword queries in web search [12]. The main idea of

TF-IDF similarity score can be summarized as follows:

1. A keyword appearing in many documents should not be regarded as being

more important than a keyword that appears in a few document.

2. A document with more occurrences of a keyword should not be regarded as

being less important for that keyword than a document that has less occur-

rences of that keyword.

3. A normalization factor is needed to balance between long and short docu-

ments.

After obtaining the TF-IDF similarity score for each tuple in the answer, the

relevance of the answer is a combination of all these scores. [67] improves the effec-

tiveness of [41] by normalizing its ranking formula, which includes tuple tree size

normalization, document length normalization, document frequency normalization

and inter-document weight normalization. The proposed ranking scheme also takes

into account the keywords that match the names of relations and attributes, and

the co-occurring keywords in the queries. [69] considers all the tuples in an answer

as a virtual document to avoid the side effect in [41] which over rewards the contri-

butions of the same keyword in different tuples in the same answer. In addition, it

also proposes a completeness factor to penalize the answers that only match part of

keywords for short queries. Besides the TF-IDF measure, [18] advocates the use of

relevance-based language model which is also from IR relevance ranking strategies,

to capture the relevance between keyword queries and answers.

29

Another approach to evaluate the relevance of query answers is to utilize node

importance in answers. [44] assigns weights to nodes and edges in the data graph

according to node degrees. These weights measure the importance of nodes and

edges in the data graph. Then the relevance of a query answer is a combination of

weights of keyword match nodes and edges in the answer. [13] performs a random

walk process as opposed to Google’s PageRank to calculate node importance. This

process models a random surfer moving in the data graph from node to node by

either walking through the edges or jumping to a random node. After the process

gets stable, the probability that the random surfer appears in a node represents

the importance of this node. The intuitions of this process can be summarized as

follows:

1. A tuple is important if it is referenced by many other tuples.

2. A tuple is important if it is referenced by another important tuple.

[84] considers keyword match nodes as well as the intermediate nodes because

they are observed to affect the relevance of answers.

In addition to the above approaches, [26] considers a number of scoring factors

and proposes to use machine learning techniques to train a comprehensive scoring

function. [15] extends the Hungarian algorithm [20] to compute the probabilities of

mappings between query keywords and the names of relations/attributes and tuple

values. The query answers are ranked in order of their mappings.

As we can see, none of the above ranking strategies takes into account the

semantics of objects and relationships. This may lead to counter-intuitive ranking

results. For example, since the information of an object in the database may be

stored in more than one tuple, query answers with the same number of tuples

may involve different number of objects. If we only consider the number of tuples

30

in these answers, we will rank them equally. This is counter-intuitive as answers

involving more objects should be ranked lower.

2.3.2 Top-K Query Answers

Top-k keyword query aims to compute the top-k ranked answers before enu-

merating all the answers, so that the query processing can be stopped early. [41]

proposes two algorithms to answer top-k keyword queries, namely, the Sparse algo-

rithm for queries with relative few answers and the Pipelined algorithm for queries

with a relatively large number of answers. The idea of the Sparse algorithm is to

discard candidate networks that are guaranteed not to produce a top-k answer dur-

ing the query processing. To achieve this, it computes a bound for the maximum

possible score of an answer produced by a candidate network. If it does not exceed

the scores of the k answers that are already produced, then the candidate network

can be safely removed from further consideration. The Pipelined algorithm sorts

the tuples in the relations of the candidate network based on their TF-IDF simi-

larity scores, and keeps track of the prefix of tuples retrieved from each relation.

In each iteration of the algorithm, it retrieves a new tuple t from one relation and

proceeds to identify the potential answer in which t can participate. If the answer

has a higher score than the maximum possible future score that any unseen answer

can achieve, then it is returned as one of the top-k answers. Both the Sparse and

Pipelined algorithms rely on the monotonicity of the scoring function.

The work in [69] proposes two algorithms, namely, the Skyline Sweeping algo-

rithm and the Block Pipeline algorithm to support top-k keyword query based on

a non-monotonic scoring function. This is achieved by identifying a monotonic,

upper bounding function to the actual scoring function. The Skyline Sweeping

algorithm minimizes the number of join checking operations which typically dom-

31

inates the cost of the Pipeline algorithm in [41]. The intuition is that if there are

two candidates x and y and the upper bound score of x is higher than that of

y, then y should not be checked unless x has been checked. The Block Pipeline

algorithm further reduces the gap between the upper bound scores and the cor-

responding real scores in the Skyline Sweeping algorithm. The idea is to employ

another local non-monotonic upper bounding function that bounds the real score

of query answers more accurately.

2.4 Presenting Keyword Query Answers

After obtaining the answers of keyword queries, it is important to present them

in such a way so that users can understand them easily. This is trivial in keyword

search over documents as the returned documents are self-describing. However, in

relational keyword search, the returned answers are subgraphs of tuples connected

via foreign key - key references. How to convey the meanings of these answers in a

human interpretable way remains a challenge.

There are relatively few works that address the problem of presenting the an-

swers of relational keyword queries. Existing works typically represent an answer

in two ways. The first way directly outputs all the tuples in the answer [70, 16].

Clearly, this approach do not help users understand query answers. The second

way presents the subgraph of the tuples. The values of tuples are attached to the

corresponding nodes in the subgraph. This approach visually shows the structure

of the answer, and is widely adopted by the existing relational keyword search

engines [10, 80, 48].

However, only presenting the graph structure of query answers is not sufficient

to facilitate users’ understanding. This is because the semantics of objects and

32

relationships in the answers are missing. [76] utilizes the object-connector-property

(OCP) model [9] to represent XML fragments that are answers to keyword search

over data graphs. This model has the advantage of distinguishing objects and

relationships in XML documents, but does not apply to relational keyword search.

2.4.1 Query Answer Analysis

Query answer analysis provides an opportunity to help users understand query

answers. For instance, TreeCluster [71] clusters query answers to facilitate users’

quick browsing through the results. It labels the schema information of the answers

and clusters them into groups. Answers in the same group are isomorphic to each

other. For groups with many answers, it further partitions them based on the

keyword match nodes in the answers.

[51] generates a data cloud to summarize the answers of a keyword query over

structured data. The data cloud contains the most significant or representative

terms within the answers. The users can click on the terms to refine search results

and thus gain insight into the diverse answers.

[78] finds the most frequent terms in answers. These terms reflect the con-

cepts that are most closely related to the query, and thus provide users relevant

information to refine the answers.

[74] computes the structural statistics for keyword queries. In particular, it

classifies query keywords into dimensional and general keywords, and computes

subgraphs that contain all the dimensional keywords and some general keywords.

These subgraphs are grouped based on the dimensional keywords to compute the

statistical information of the subgraphs.

33

2.4.2 Keyword Query Refinement

Keyword query refinement studies the scenario when a keyword query is an

imperfect description of the user’s search intention, and offers a solution that auto-

matically refines the query in order to better represent the user’s search intention

and help him/her find the intended answers easily.

[72] formulates the problem of keyword query cleaning as a combinatoric search

problem, which is NP-hard in general but solvable in polynomial time if the database

term length is bounded. The search space consists of all possible segmentations and

modifications of query keywords. The proposed framework takes into account se-

mantic synonym expansion, spelling error correction, keyword permutation, and

database term grouping. A dynamic programming algorithm is presented to find

the best k cleaned keyword queries.

[59] proposes a type-ahead search techniques in relational databases, which finds

answers “on the fly” as the user types in query keywords. It allows users to explore

data as they type, thus brings instant gratification to the users in the search process.

To achieve a high interactive speed, it proposes a query prediction model to predict

the most likely complete keywords given the other keywords in the query.

[38] addresses the incompleteness and impreciseness in keyword query results by

mapping keywords to predicates or order-by clauses in SQL statements. The idea

is to study the correlations between a keyword and a predicate/order-by clause by

analyzing the differences of query answers arising from two queries that only differ

by the keyword.

34

2.5 XML Keyword Search

In addition to relational keyword search, keyword search over XML (eXtensible

Markup Language [4]) documents has also attracted a lot of research studies in re-

cent years. We briefly review some important literatures on XML keyword search,

as keyword search over relational databases and XML documents share many sim-

ilarities. We can use the ideas of XML keyword search to solve the problems of

relational keyword search.

XML keyword search can be classified into tree-based approach and graph-based

approach [68]. In the tree-based approach, the XML data does not contain ID refer-

ences and is modeled as a tree. The research has been focused on the identification

of meaningful answers by various semantics, and the efficient computation of these

answers. The current semantics of answers include:

1. LCA (Lowest Common Ancestor) [39], which finds the lowest common ances-

tors of keyword match nodes in the XML tree.

2. Variants of LCA semantics such as SLCA (Smallest LCA) [81], ELCA (Exclu-

sive LCA) [82], VLCA (Valuable LCA) [57] and MLCA (Meaningful LCA) [62].

3. non-LCA [14], which exploits the statistics of XML documents to determine

query answers.

In the graph-based approach, the XML data contains ID references and is mod-

eled as a graph. XML keyword search is reduced to a similar problem to relational

keyword search in data graph approach.

Recently, [54, 53, 52] identify the problems of existing XML keyword search

techniques, and propose a semantic approach to solve the problems by exploiting

the ORA semantics in XML data. The ORA semantics captures the semantics of

35

objects/relationships and their attributes in XML data, and can be discovered using

the method in [61]. Based on the ORA semantics, XML data can be represented by

an object tree. The works in [54, 53, 52] demonstrate that this object tree can help

avoid meaningless answers, missing answers, duplicated answers, and incomplete

answers, and improve the effectiveness of XML keyword search. This inspires us to

explore the ORA semantics for effective keyword search in relational databases.

36

CHAPTER 3

OBJECT-RELATIONSHIP-

ATTRIBUTE SEMANTICS FOR

RELATIONAL KEYWORD SEARCH

In the previous chapter, we have reviewed existing relational keyword search

methods and highlighted their limitations to retrieve informative and relevant an-

swers. In this chapter, we present a semantic approach to improve the effectiveness

of relational keyword queries. We discuss how we utilize key and foreign key con-

straints to classify the relations in a relational schema. This allows us to determine

the semantics of objects, relationships and their attributes in the database. We

call these semantics the (Object-Relationship-Attribute) ORA semantics in the

database. We propose an Object-Relationship-Mixed (ORM) data graph to cap-

ture the ORA semantics and design an algorithm to process keyword queries based

on the ORM data graph.

37

3.1 Classification of Relations

We observe that when a user issues a keyword query, each keyword is usually

directed at some object of interest, or relationship along with the associated objects.

Let us consider the sample relational database in Figure 3.1. The relations Student

and Lecturer store the core information about students and lecturers respectively.

The qualifications of lecturers are captured in the relation Qualification since

each lecturer could have more than one qualification. The relation Course stores

both the core information about courses and the many-to-one relationships between

courses and lecturers. This reflects the application constraints that each course is

associated with only one lecturer. The relation Enrol captures the many-to-many

relationship between students and courses.

Student

sid name age

s1 John 24

s2 Edward 18

s3 Mary 21

Course

cid title credit lid

c1 Database Design 4.0 l1

c2 Information Retrieval 3.0 l2

c3 Java Programming 3.5 l2

c4 Multimedia 4.0 l3

Lecturer

lid name office

l1 Steven COM2 215

l2 Jane COM1 316

l3 Jane COM2 302

Qualification

lid degree major university

q1 l1 PhD CS University of Wisconsin-Madison

q2 l1 Master EE University of Toronto

q3 l2 PhD CS National University of Singapore

q4 l3 PhD Math Massachusetts Institute of Technology

Enrol

sid cid grade

e1 s1 c1 B

e2 s1 c3 A

e3 s2 c1 A

e4 s2 c2 B

e5 s3 c2 A

e6 s3 c4 B

Figure 3.1: Example relational database

A relational database is typically designed using some conceptual model such

as the ER diagram to capture the semantics in the real world in terms of entity and

relationship types. Figure 3.2 shows the ER diagram for the relational database in

38

Student

Entrol

Course Teach Lecturer

sid
name

age

grade

cid title credit lid name office

degree
major

university

Qualification

m

m

m m

Figure 3.2: The ER diagram for the database in Figure 3.1

Figure 3.1. The process of semantics discovery essentially reverses the translation

from ER model to relational schema. There has been much research on discovering

semantics from relational schema such as [22, 30, 83]. Here, we build upon these

works and utilize primary key constraint and foreign key constraint to classify the

relations in a relational schema.

Similar to [83], we have four types of relations, namely, object relation, rela-

tionship relation, mixed relation and component relation. Intuitively, an object

(relationship resp.) relation contains the majority of the attributes of an entity

(relationship resp.) type. A relation is a mixed relation if it encompasses both

an entity type and a relationship type. A mixed relation occurs when there is a

many-to-one relationship, e.g., the Teach relationship type in the ER diagram in

Figure 3.2. A component relation represents a component part or the multi-valued

attribute of an entity or relationship type, e.g, qualification is a multivalued at-

tribute of Lecturer and is translated to the Qualification relation. We call these

39

semantics the Object-Relationship-Attribute (ORA) semantics in the database.

We utilize key and foreign key constraints to classify the relations in a relational

schema into object, relationship, mixed or component relations as follows:

1. A relation R is an object relation if there exists some relation R′ that refer-

ences R, and R does not reference other relations.

2. A relation R is a relationship relation if the primary key of R comprises more

than one disjoint foreign key.

3. A relation R is a mixed relation if (a) there exists two relations R′ and R′′

such that R′ references R and R references R′′, and (b) the primary key of R

does not contain more than one disjoint foreign key.

4. A relation R1 is a component relation if (a) no relation references R1, (b) the

primary key of R1 does not contain more than one disjoint foreign key, and

(c) the inclusion dependency R1[A1] ⊆ R[K] holds, where A1 is a subset of

attributes in R1 and K is a candidate key of R.

An object (relationship resp.) relation contains the core information about ob-

jects (relationships resp.), while a mixed relation contains information about both

objects and relationships. The information of multi-valued attributes of objects

and relationships are stored in component relations.

In order to differentiate the objects and relationships when processing a keyword

query, we will employ the concept of semantic dependencies proposed in [65]. A se-

mantic dependency indicates a semantic relationship between two sets of attributes.

Let R be a relation in the database, A be an attribute of R and K1, K2, · · · , Kz be

a set of keys of object/mixed relations in the database. A is said to be semantically

dependent on K1, K2, · · · , Kn, denoted by K1, K2, · · · , Kz
Sem−→ A, if we have:

40

a. K1 ∪K2 ∪ · · · ∪Kz ⊆ R, and

b. the value of A needs to be updated whenever any of the value of Ki, 1 ≤ i ≤ z,

is updated, and

c. there does not exist K such that K is a key of an object/mixed relation,

K 6= Ki, ∀i = 1, 2, · · · , z, and we have K1, K2, · · · , Kz, K
Sem−→ A.

For example, the mixed relation Emp(eno, ename, birthdate, address, dno,

joindate) contains information about the employee and the date s/he joins a de-

partment. In this case, joindate is an attribute of the relationships between em-

ployees and their departments. This constraint can be captured by the semantic

dependency {eno, dno} Sem−→ joindate, indicating that the value of joindate will

be updated when {eno, dno} is updated. We consider the attributes eno, ename,

birthdate, address the object part of the relation, and the attribute joindate the

relationship part of the relation.

3.2 ORM Data Graph

Based on the ORA semantics, we construct an ORM data graph that con-

sists of three types of nodes, namely, object nodes (rectangle), relationship nodes

(diamond) and mixed nodes (hexagon). Each node includes some tuple in the

corresponding relation. Tuples in the component relations are attached to their

corresponding object (relationship or mixed) type nodes. In contrast to the tradi-

tional data graph where each node corresponds to a tuple in the database, a node

in an ORM data graph may correspond to a list of tuples. Two nodes are connected

via an edge if there exists a foreign key-key reference between tuples in the nodes.

Figure 3.3 shows the ORM data graph for the database in Figure 3.1. We use

uppercase to label a node in the ORM data graph if it corresponds to a list of

41

tuples, and lowercase if a node corresponds to a single tuple. Node L1 is an object

node that includes the tuple l1 in the object relation Lecturer. In addition, both

tuple q1 and q2 in the component relation Qualification are associated with l1 and

attached to L1. Thus, node L1 corresponds to a list of tuples {l1, q1, q2}. Node c1

is a mixed node that corresponds to the tuple c1. There is an edge between nodes

L1 and c1 because of the foreign key-key reference between the tuples l1 and c1.

L1

c1

e1

e3

s2

e2

s1

e4

c3

L2

c2 e5 s3

e6

c2L2

Legend:

Mixed NodeRelationship NodeObject Node

Figure 3.3: ORM data graph for the database in Figure 3.1

We propose to process keyword queries based on the ORM data graph. A

keyword query Q is defined as Q = {k1 k2 · · · kn}, where ki, i ∈ [1, n] denotes a

keyword. Each keyword is a term that specifies the user’s search interest. Existing

works consider that a keyword matches a tuple if the keyword is contained in the

values of this tuple, and the goal of keyword query processing is to return the

minimal number of tuples that collectively contain all the query keywords. While

this approach retrieves all the tuples that contain the query keywords, the user will

be overwhelmed with a large number of answers.

In contrast, we say that a query keyword matches a node in the ORM data

graph if the keyword occurs in some tuple in the node. We will process the query

depending on the types of nodes that the keywords match. The following example

illustrate our approach based on the ORM data graph in Figure 3.3.

42

Example 3.1. Suppose we have a query {Steven}. Since the keyword Steven

matches object node L1 in the data graph, we will retrieve all the information about

the lecturer object Steven, including his qualifications. In other words, the three

tuples {l1, q1, q2} are returned as the answer.

On the other hand, if we have the keyword query {Mary A}, we see that the

keyword A matches the relationship node e5 in the ORM data graph, while the

keyword Mary matches object node s3 that is directly connected to e5. Thus, we will

return the information about the relationship along with all the participating objects,

including the student object Mary and the course object Information Retrieval.

Finally, for the keyword query {John Mary}, since the keywords John and Mary

both match object nodes s1 and s3 in the ORM data graph in Figure 3.3, we will

return a tree of nodes {s1− e2− c3− L2− c2− e5− s3}. Note that the node L2

corresponds to a lecturer object which is common to both John and Mary. 2

Compared to Examples 1.1, 1.2 and 1.3 in Introduction, it is clear that the

ORM data graph enables us to retrieve more complete and informative answers

than existing keyword search methods.

3.3 ORM Search

We will now give the details of how we process keyword queries based on the

ORM data graph. For each object relation R, we cluster the tuples in R and

its component relations. Similarly, for each relationship (mixed) relation R, we

also cluster the tuples in R and its component relations. Based on the clusters

obtained, we can construct an undirected Object-Relationship-Mixed (ORM) data

graph G(V,E).

Each node v ∈ V corresponds to a cluster of tuples C. We have v.label = C,

43

where v.tids is the list of tuple ids in cluster C, and v.type ∈ {object, relationship,

mixed} depending on whether tuples in the cluster are from an object relation, a

relationship relation, or a mixed relation. An edge e(u, v) ∈ E indicates a foreign

key-key reference between tuples in u and v.

A query keyword k matches a node u in the ORM data graph G if k occurs

in some tuple in u. Let Obj(k) and Rel(k) be the sets of object and relationship

nodes that match k respectively. Based on the semantic dependencies, if a keyword

k matches the object part of a mixed node u, then we add u to Obj(k). Otherwise,

if k matches the relationship part of u, we add u to Rel(k).

If Obj(k) 6= ∅, that is, k matches some object nodes and/or the object part of

mixed nodes, then we retrieve all the tuples associated with the nodes in Obj(k). If

Rel(k) 6= ∅, that is, k matches some relationship nodes and/or the relationship part

of mixed nodes, then we retrieve the tuples associated with each node v ∈ Rel(k),

as well as the tuples in the object and mixed nodes that are directly connected to

v in the ORM data graph. The intuition is that when a keyword refers to some

relationship, the user is either interested in the information about the relationship,

or the information about the objects of the relationship. Thus, we will retrieve

the information about the relationship, as well as the information about all the

participating objects of this relationship.

After obtaining the tuples that match each keyword, we need to combine the

results from different keyword matches. Given a keyword query Q, we have two

main cases.

Case 1. ∃k ∈ Q,Rel(k) 6= ∅

For this case, the keywords in the query match either object, relationship or

mixed nodes. For each such keyword k, we check each node v ∈ Rel(k) whether

the rest of the keywords match object and mixed nodes that are directly connected

44

to v in the ORM data graph. If so, then we return this answer. We can view the

answer as a tree where the relationship node v is the root and the object and mixed

type nodes are the leaves.

Recall the keyword query {Mary A} in Example 3.1. The keyword Mary matches

the object node s3, while keyword A matches relationship nodes {e2, e3, e5} in the

ORM data graph in Figure 3.3. Hence, we have Obj(Mary) = {s3} and Rel(A) =

{e2, e3, e5}. Since s3 and e5 are directly connected in the ORM data graph, we

return the tuples associated with e5, as well as the tuples in s3 and c2 as the

answer. Intuitively, this answer means that the student Mary obtained grade A for

the course Information Retrieval.

Case 2. ∀k ∈ Q,Rel(k) = ∅

For this case, all the keywords match only object and mixed nodes and we

generate all the possible combinations of nodes from Obj(k1), Obj(k2), · · · , Obj(kn).

For each node combination, we apply the standard graph traversal method to find

the set of Steiner trees that connect these nodes. For each Steiner tree, we will

check whether there exists a node v such that the path from each keyword matched

node to v comprises of nodes from different relations in the schema. If so, we output

this tree as a query answer.

Recall the query {John Mary} in Example 3.1. Figure 3.4 shows two Steiner

trees of this query in the ORM data graph. We will output the Steiner tree in

Figure 3.4(a) but not in Figure 3.4(b) as the the former contains node L2 such

that both paths L2− c3− e2− s1 and L2− c2− e5− s3 comprises of nodes from

different relations, while the latter does not contain such a node.

Algorithm 1 (ORMSearch) gives the details. The input is a keyword query Q,

ORM data graph G and parameter K. We initialize two priority queues PQo and

PQr to store candidate result trees ordered by the number of nodes in the tree

45

Algorithm 1: ORMSearch

Input: keyword query Q = {k1 k2 · · · kn}, K, ORM data graph G
Output: answer set Result

1 Result ← ∅; PQo ← ∅; PQr ← ∅;
2 for i = 1 to n do
3 let Rel(ki) be the set of relationship/mixed nodes in G that match ki;
4 foreach node v ∈ Rel(ki) do
5 create a tree Tv,ki that consists of v and its neighboring nodes in G;
6 update PQr with Tv,ki ;

7 let Obj(ki) be the set of object/mixed nodes in G that match ki;
8 foreach node v ∈ Obj(ki) do
9 create a tree Tv,ki with root v;

10 update PQo with Tv,ki ;

11 count = 0;
12 while PQr 6= ∅ do
13 T = dequeue PQr;
14 let W be the set of keywords that are associated with T ;
15 foreach keyword k ∈ Q−W do
16 if k matches some node in T then
17 W = W ∪ {k};
18 if W = Q then
19 add T to Result; count++;
20 if count = K then
21 break;

22 count = 0;
23 while PQo 6= ∅ do
24 T = dequeue PQo;
25 let v be the root of T and W be the set of keywords associated with T ;
26 if W = Q then
27 add T to Result; count++;
28 if count = K then
29 break;

30 else
31 foreach node u that is directly connected to v in G do
32 create a new tree T ′ from T by adding u as the new root;
33 if ∃ node y ∈ T ′ s.t. every path from y to a leaf node consists of nodes

from distinct relations then
34 update PQo with T ′;

35 foreach set of keywords W ′ ⊂ Q s.t. W ∩W ′ = ∅ do
36 if ∃ tree T ′ s.t. v is the root of T ′ and W ′ is the set of keywords

associated with T ′ then
37 merge T ′ with T to form T ′′;
38 if ∃ node y ∈ T ′′ s.t. every path from y to a leaf node consists of

nodes from distinct relations then
39 update PQo with T ′′;

40 return top-K trees in Result;

46

e2

s1

c3

L2

c2 e5 s3

c1

e1

e3

s2

s1

e4 c2 e5 s3

(a) (b)

Figure 3.4: Two Steiner trees for query {John Mary} in Example 3.1

(Line 1). For each keyword k, we find the set of nodes in G that match k. We

partition the nodes into two sets: Obj(k) and Rel(k). For each node v ∈ Rel(k),

we create a tree Tv,k that consists of v and its neighboring nodes in the ORM data

graph G. Tv,k is associated with the keyword k to denote that k matches some

node in the tree. If the tree already exists in queue PQr, we update the associated

keywords of the tree by adding k. Otherwise, we insert the tree into queue PQr

(Lines 4-6). Similarly, for each node v ∈ Obj(k), we create a tree Tv,k with root

node v. If the tree exists in the queue PQo, we update the associated keywords of

the tree by adding k. Otherwise, we insert the tree into PQo (Lines 8-10).

Next, we combine the results from different keyword matches. Lines 11-21

process the trees in PQr (Case 1). We initialize a variable count, and iteratively

dequeue a tree T from PQr. We obtain the set of keywords W associated with

T (Lines 13-14). For each query keyword k that does not appear in W , we check

whether k matches some node in T . If so, we put k into W (Lines 15-17). Finally,

if every query keyword matches some node in T , we will put T into Result and

increase count (Lines 18-19). This process terminates when count equals to K, i.e.,

we have already found K number of results (Lines 20-21).

Lines 22-39 process the trees in PQo (Case 2). In each iteration, we dequeue a

tree T from PQo. Let v be the root and W be the set of keywords associated with

T . If every keyword matches some node in T , we put T into Result and increase

47

count (Lines 24-27). We exit the loop when count = K. Otherwise, we traverse

the ORM data graph G to find the set of Steiner trees that associate all the query

keywords. We use tree grow and tree merge strategies in [31] to expand Steiner

trees associated with partial keywords to those associated with all query keywords.

For each node u that is directly connected to v in G, we create a new tree T ′

from T by adding u as the new root of T ′ (Lines 31-32). This process is called

tree growing. We first check whether there exists a node y in the new tree T ′ such

that every path from y to a leaf node consists of nodes from distinct relations. If

so, then we check if PQo already contains a tree with root u and associated with

keywords W . If yes, then we update PQo with the smaller tree, else we insert T ′

into PQo (Lines 33-34).

For each set of keywords W ′ such that W ′ is a subset of Q and W ′ has no

common keywords with W , we check whether we have found a tree T ′ with root v

and associated with keywords W ′ in previous iterations. If T ′ exists, we create a

new tree T ′′ by merging T ′ and T . T ′′ is rooted at v and associated with keywords

W ∪W ′ (Lines 35-37). This process is called tree merging. After that, we check

whether there exists a node y in the new tree T ′′ such that every path from y to

a leaf node consists of nodes from distinct relations. If so, we update queue PQo

with T ′′ (Lines 38-39). Finally, we return the top-K trees in Result (Line 40).

3.4 Performance Study

In this section, we evaluate the effectiveness and the efficiency of the proposed

ORM search algorithm. We adopt the traditional data graph approach as the

baseline because our approach also performs search directly on the data. We use the

well-established Steiner tree and the state-of-the-art DPBF [31] implementation.

48

Since the ranking of answers is orthogonal to this work, we will output query

answers ordered by the number of nodes in the answers.

Two real world datasets are used in our experiments: the Internet Movie

Database (IMDB) [6] and the DBLP data (DBLP) [3]. For the IMDB dataset,

we convert a subset of its raw text files into 8 relations. The total number of tuples

is 2,168,813. For the DBLP dataset, the schema consists of 6 relations and the data

consists of 881,867 tuples. Table 3.1 shows the keyword queries used.

The experiments were performed on an Intel(R) Core(TM) i7-2600 CPU 3.40GHz

with 8GB of RAM. All the algorithms were implemented using JDK 1.7 and JDBC.

The inverted indices are built using MySQL v5.5 fulltext index.

Table 3.1: Queries used in experiments

DBLP

DQ1 Keyword Search

DQ2 SIGMOD Jeffrey

DQ3 Jim Gray Alexander

DQ4 PageRank Computing research

DQ5 Query optimization Yannis Papakonstantinou

DQ6 Conceptual design relational database

DQ7 Ling Tok Wang Object Relationship

IMDB

IQ1 Christopher Nolan

IQ2 Woody Allen

IQ3 Johnny Depp Jack

IQ4 Jamie Paul Jones

IQ5 Steven Horse drama

IQ6 Peter Parker comedy

IQ7 American Comedy Page Ellen

3.4.1 Effectiveness Experiments

We first compare the query answers returned by ORMSearch and DPBF. Ta-

ble 3.2 shows a sample of the answers for the IMDB dataset. We observe that

49

the answers obtained by DPBF are not as informative as those obtained by ORM-

Search. For instance, Q1 is a query about the movie Inception. ORMSearch re-

trieves all the information about this movie but DPBF does not retrieve the genre

information. Q2 is a query about the movie Intouchables and the character name

Nouvel. Compared to ORMSearch, DPBF provides no information about the actor

who played the character Nouvel in Intouchables. For Q3, ORMSearch retrieves

movies where Jeremy plays the character Cruise, as well as movies where both

Jeremy and Cruise act in. In contrast, DPBF retrieves 174 results, many of which

are not useful.

Table 3.2: Results of queries for IMDB dataset

Query ORMSearch DPBF
Q1:
Inception

1. Movie: Inception 2010 Action Adventure Mystery 1. Movie: Inception 2010

Q2:
Intouchables
Nouvel

1. Movie: Intouchables 2011 Comedy Drama
Character: Nouvel auxiliaire 2
Actor: Cayrey, Jean Fran

1. Movie: Intouchables 2011
Character: Nouvel auxiliaire

Q3:
Cruise
Jeremy

1. Movie: Car Jack 2008 Action Adventure Crime
Character: Cruise
Actor: Anus, Jeremy

2. Movie: August 2008 Drama
Actor: Bobb, Jeremy
Actor: Cruise, Tom

3. Movie: Mission: Impossible-Ghost Protocol 2011
Actor: Renner, Jeremy
Actor: Cruise, Tom

1. Character: Cruise
Actor: Anus, Jeremy

2. Character: Cruise Guy
Actor: Palko, Jeremy

3. Movie: Knocked Down 2008
Character: Irving Cruise
Character: Cab Driver
Actor: Aimone, Jeremy

...

Figure 3.5 (a) and (b) show the number of answers retrieved for each query on

both datasets when we set the maximum answer size to 7 and 9 respectively. We see

that DPBF typically produces more answers than ORMSearch. Moreover, when

the maximum answer size increases from 7 to 9, the number of answers returned

by DPBF increases significantly.

To further verify that our approach can achieve a better search quality than

the base line, we carried out a survey where we show the queries to 6 users and

collect the possible search intentions (at most 5) of each query. Three of the 6 users

50

1

4

16

64

256

1024

4096

16384

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7

N
um

be
r o

f R
es

ul
ts

 (L
og

-s
ca

le
d)

DPBF size=7 ORMSearch size=7 DPBF size=9 ORMSearch size=9

(a) DBLP data

1

4

16

64

256

1024

4096

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7

N
um

be
r o

f R
es

ul
ts

 (L
og

-S
ca

le
d)

DPBF size=7 ORMSearch size=7 DPBF size=9 ORMSearch size=9

(b) IMDB data

Figure 3.5: Number of answers retrieved by ORMSearch and DPBF

51

come from CS research students while the others come from other faculties. For

each particular search intention, we generate an SQL statement and take the SQL

execution results. Results of all the SQLs form the ground truth for us to determine

the precision of the answers obtained by ORMSearch and DPBF. Figure 3.6(a) and

(b) show that ORMSearch is able to achieve a much higher precision than DPBF

for most of the queries. Both ORMSearch and DPBF has a precision of 1.0 for

query DQ2 as it has only one possible search intention. The precision of DPBF is

low for query DQ6 as it is inherently ambiguous with a large number of possible

search intentions. However, ORMSearch is still able to improve the precision by

retrieving more informative and useful results.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7

Pr
ec

is
io

n

DPBF size=7 ORMSearch size=7

(a) DBLP data

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7

Pr
ec

is
io

n

DPBF size=7 ORMSearch size=7

(b) IMDB data

Figure 3.6: Precision of ORMSearch vs. DPBF

52

3.4.2 Efficiency Experiments

Finally, we compare the execution time of the two approaches. Figure 3.7(a)

and (b) show the results. As we can see, ORMSearch is about 2∼3 times faster

than DPBF, especially when the maximum answer size is 9.

0
1
2
3
4
5
6
7
8
9

10

DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7

Ex
ec

ut
io

n
Ti

m
e

(s
)

DPBF size=7 ORMSearch size=7 DPBF size=9 ORMSearch size=9

(a) DBLP data

0

1

2

3

4

5

6

7

8

9

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7

Ex
ec

ut
io

n
Ti

m
e

(s
)

DPBF size=7 ORMSearch size=7 DPBF size=9 ORMSearch size=9

(b) IMDB data

Figure 3.7: Efficiency of ORMSearch vs. DPBF on sample queries

Besides the queries in Table 3.1, we also randomly generate 40 queries for each

dataset whose lengths vary from 2 to 5 keywords, with 10 queries for each query

size. For each query, we test the execution time of ORMSearch and DPBF for

retrieving first output 10, 50 and 200 results respectively. The average execution

time on cold cache is recorded in Figure 3.8(a) and (b). On average, ORMSearch is

53

about 6∼8 times faster than DPBF. Further, the time required by ORMSearch to

retrieve 10, 50, and 200 results are almost the same, while the execution time for

DPBF increases. The gap between ORMSearch and DPBF widens as the number of

keywords increases. This is because our ORM data graph has fewer nodes compared

to the traditional data graph.

0

5

10

15

20

25

30

35

2 3 4 5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Keywords

ORMSearch T10

DPBF T10

ORMSearch T50

DPBF T50

ORMSearch T200

DPBF T200

(a) DBLP data

0
5

10
15
20
25
30
35
40
45
50

2 3 4 5

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Keywords

ORMSearch T10

DPBF T10

ORMSearch T50

DPBF T50

ORMSearch T200

DPBF T200

(b) IMDB data

Figure 3.8: Efficiency of ORMSearch vs. DPBF on random queries

3.5 Conclusion

In this chapter, we have described the ORA semantics and proposed a semantic

approach to retrieve informative and useful answers for keyword queries. This is

54

achieved by exploiting the ORA semantics and constructing an ORM data graph to

capture the objects and relationships in the database. Compared to the traditional

data graph, each node in the ORM data graph is associated with a type and may

correspond to a list of tuples. Based on the ORM data graph, we devised an

efficient algorithm to process keyword queries. Experiments on two real world

datasets verify the effectiveness and efficiency of our approach.

55

CHAPTER 4

SEMANTIC PATH RANKING SCHEME

FOR RELATIONAL KEYWORD

SEARCH

In Chapter 3, we have discussed a solution to process keyword queries over rela-

tional databases for retrieval of useful and informative answers. We have proposed

the ORM data graph to capture the ORA semantics in the database, and pro-

cess keyword queries based on the objects and relationships that match keywords.

In this chapter, we examine how objects are related to each other in a relational

database, and propose a semantic approach to compute and rank answers of key-

word queries. We will annotate and group these answers with ORA semantics to

facilitate users’ understanding.

56

4.1 Motivation

Recall that existing works typically use a data graph to model the database.

Each node in the data graph represents a tuple and each edge represents a foreign

key-key reference [44]. An answer to a keyword query is a minimal connected

subgraph of tuples which contains nodes that match keywords in the query. Since

the keywords in a query may match nodes which are connected by many paths

in the data graph, many answers are returned, with possibly complex subgraphs

whose meanings are not easy to understand.

Let us consider the student registration database in Figure 4.1. The corre-

sponding data graph is shown in Figure 4.2. Suppose a user issues the query Q1

= {John Steven}. Figure 4.3 shows a sample of the answers obtained based on

the data graph. Clearly, the meanings of these subgraphs are hard for the user to

understand.

AffiliateTo

StaffID DeptID

a1 l1 d1

a2 l1 d2

Enrol

SID Code Grade

e1 s1 cs421 B

e2 s1 cs203 A

e3 s2 cs203 B

PreReq

Code PreqCode

p1 cs421 cs203

Student

SID Name

s1 Mary Smith

s2 John Depp

Lecturer

StaffID Name

l1 Steven Lee

Course

Code Title StaffID

cs421 DB l1

cs203 Java l1

Department

DeptID Name

d1 CS

d2 IS

Figure 4.1: Example student registration database

One approach to address the above problem is to rank the query answers. The

methods range from simple heuristic rules such as ranking the answers based on

their sizes (answers with the fewest nodes are ranked highest) [43], to using the

TF-IDF model [41, 67, 69] which examines the similarities of textual information

57

s1

cs421

e1

e2 cs203

s2

p1

l1

e3 a1

a2

d1

d2

Figure 4.2: Data graph of database in Figure 4.1

cs203

s2

l1

e3

cs421

cs203

s2

p1

l1

e3

s1

cs421

e1

e2 cs203

s2

l1

e3

(a) (b) (c)

Figure 4.3: Sample answers for Q1 = {John Steven}

between the query and the answers, and the Random Walk model [44, 46, 84]

which examines the importance of nodes in answers to evaluate their relevance to

the query. Another approach is to organize query answers into clusters so that

users can explore the relevant clusters first. Two query answers are clustered into

a group if they are isomorphic [71]. However, none of these approaches consider

the semantics of the answers.

In Chapter 3, we observe that a relational database is, in fact, a repository

of real world objects that interact with each other via relationships. When a user

searches for some target object, s/he is interested in objects that are related in some

way to the target object. This intuition has been incorporated in the search engine

of Yahoo! [8] and Google [5]. The work in [37] examines the relationships between

objects in knowledge bases to explain the connections between object pairs.

58

In this work, we utilize the compact ORM data graph to model the tuples

in a relational database, and investigate how the objects in a relational database

are related. We identify four types of semantic paths where a pair of nodes in

the ORM data graph can be connected. These four types of semantic paths form

different interpretations of the query answers. Based on these paths, we develop an

algorithm to compute and rank the answers of keyword queries. We group the query

answers by the types of semantic paths to reflect different query interpretations,

and annotate each answer to facilitate users’ understanding. Experimental results

demonstrate that our semantic path-based approach is able to rank answers that

are close to users’ information needs higher compared to existing ranking methods.

Figure 4.4 shows the ORM data graph of Figure 4.1 comprising object nodes

(rectangles), relationship nodes (diamonds) and mixed nodes (hexagons). Each

node has an id and a relation name, e.g., the mixed node with id cs421 occurs in

the mixed relation Course.

l1

s1

s2

e2

e1

p1

e3

Student

Student

Lecturer

Course

CourseEnrol

Enrol

Enrol PreReq

cs421

cs203 a1

a2

d1d2
Department Department

AffiliateTo

AffiliateTo

Legend:

Mixed node

Relationship node

Object node

Figure 4.4: ORM data graph of the database in Figure 4.1

Figure 4.5 shows the ER diagram of the student registration database in Fig-

ure 4.1. Based on the ER model, we see that the database comprises of Student,

Course, Lecturer and Department objects that interact with each other via the

relationships Enrol, Teach, PreReq and AffiliateTo.

Example 4.1. Given the query Q1 = {John Steven}, the keywords match tu-

59

Student

Entrol

Course Teach Lecturer

SID Name

Code Title StaffID Name

PreReq

Grade

m 1

m

m

m

m

Department

AffiliateTo

DeptID Name

m

m

Figure 4.5: ER diagram of database in Figure 4.1

ples from different relations: John matches tuple s2 in the Student relation, while

Steven matches tuple l1 in the Lecturer relation. These two tuples correspond to

the student and lecturer objects respectively. The ER diagram shows that these two

objects are possibly related via the relationships Enrol and Teach, and connected

through the object type Course. This suggests that the user is interested in the

course which is enrolled by student John, and taught by lecturer Steven. We can

annotate the query answer by the relationships (see Figure 4.6). Note that the

information of the course cs203 and its relationship with the lecturer l1 is stored

together in a tuple since each course is associated with only one lecturer. 2

l1

s2 e3

Student

LecturerCourse

Enrol{John}

{Steven}

cs203

Figure 4.6: An annotated answer for Q1 = {John Steven}

60

Example 4.2. Next, suppose a user issues the query Q2 = {Java DB}. The key-

words Java and DB match two tuples in the Course relation, i.e., 〈cs421, DB, l1〉

and 〈cs203, Java, l1〉. These two tuples correspond to the course objects with iden-

tifier cs421 and cs203. Based on the ER diagram in Figure 4.5, these two objects

are related via the relationships PreReq, Enrol and Teach as follows:

a. Pre-requisite of a course (Pre-Req), e.g., cs203 is a pre-requisite of cs421.

b. Students who are enrolled in both courses (Enrol), e.g., student s1 (Mary

Smith) is enrolled in both courses cs421 and cs203.

c. Lecturers who teach both Java and DB (Teach), e.g., lecturer l1 (Steven Lee)

teaches both courses cs421 and cs203.

Again, we can annotate the answers by the relationships as shown in Figure 4.7. 2

p1

Course

Course

PreReq

{Java}

{DB}

cs421

cs203

s1

e2

e1

Student

Course

Course

Enrol

Enrol {Java}

{DB}

cs421

cs203 l1

Lecturer

Course

Course{Java}

{DB}

cs203

cs421

(a) (b) (c)

Figure 4.7: Annotated answers for query Q2 = {Java DB}

The above examples show that by analyzing the relationships between objects,

we can annotate keyword query answers to better facilitate users’ understanding.

Here, we want to utilize semantics to address the meanings of keyword query an-

swers for relational databases.

61

4.2 Semantic Paths between ORM Nodes

Since the semantics of objects are modeled as object nodes and object part of

mixed nodes, and the semantics of relationships between objects are modeled as

relationship nodes and relationship part of mixed nodes in the ORM data graph,

we examine how the objects in the database are related by analyzing the various

possible ways where a pair of object/mixed nodes can be connected in the graph.

Let u and v be two nodes in the ORM data graph G, and P be the set of paths

between u and v. Each path p ∈ P is a sequence of nodes 〈u, · · · , v〉. The length

of p is given by the number of nodes in p, denoted by |p|. We can form a new path

p = 〈va, · · · , vb〉 by joining two paths p1 = 〈va, · · · , vc〉 and p2 = 〈vc, · · · , vb〉 over a

common node vc; we say that p can be decomposed into sub-paths p1 and p2.

We call the paths between two object/mixed nodes semantic paths since they

capture the ORA semantics, and classify them as follows:

(A) Simple Path

A path p between u and v is a simple path if u and v are object/mixed nodes, and

all the nodes in p have distinct names.

sp(u, v, p) =

true if u.type = object/mixed and v.type = object/mixed

and ∀b ∈ p, b.name is distinct

false otherwise

Example 4.3. Consider the two object nodes s2 and l1 in Figure 4.4. We have a

path p = 〈s2, e3, cs203, l1〉, where nodes s2, e3, cs203 and l1 have distinct names

Student, Enrol, Course and Lecturer respectively. We say that nodes s2 and l1

are related via a simple path: student s2 enrols in course cs203 lectured by l1. 2

62

(B) Recursive Path

A path p between u and v is a recursive path if u and v are both object nodes or

mixed nodes and have the same name, and all the object/mixed nodes in the path

p have the same name as u and v.

rp(u, v, p) =

true if (u.type = v.type = object or u.type = v.type = mixed)

and ∀b ∈ p such that b.type = object/mixed,

b.name = u.name = v.name

false otherwise

Example 4.4. Consider the path p = 〈cs421, p1, cs203〉 between mixed nodes cs421

and cs203 in Figure 4.4. Both the mixed nodes have the same name Course, and are

related via the recursive relationship set PreReq, indicating that the course cs203

is a prerequisite of the course cs421. Other examples of recursive paths include

ancestor-descendant, paper-citation, etc. 2

(C) Palindrome Path

A path p between u and v is a palindrome path if both u and v have the same

name, and we can find some object/mixed node c ∈ p such that the nodes in the

paths from c to u, and c to v have the same sequence of names.

pp(u, v, p) =

true if u.name = v.name and ∃ object/mixed node c ∈ p

s.t. p can be decomposed into sub-paths

p1 = 〈u, b1, · · · , bj, c〉, p2 = 〈c, b′j, · · · , b′1, v〉 where

sp(u, c, p1) = sp(c, v, p2) = true and

bi.name = b′i.name ∀bi ∈ p1, b
′
i ∈ p2, 1 ≤ i ≤ j

false otherwise

63

Example 4.5. Consider the mixed nodes cs421 and cs203 in Figure 4.4. Both

nodes have the same name Course. The path p = 〈cs203, e2, s1, e1, cs421〉 between

cs421 and cs203 can be decomposed into two simple sub-paths p1 = 〈cs203, e2, s1〉

and p2 = 〈s1, e1, cs421〉 with the common object node s1, indicating that student s1

is enrolled in both courses cs421 and cs203. 2

(D) Complex Path

Any path that does not satisfy the conditions for the above three semantic path

types is a complex path. A complex path is essentially a combination of simple

paths and recursive paths, and has a path length |p| ≥ 3. In other words,

cp(u, v, p) =

true if we can decompose p into a set of sub-paths SP s.t.

for any sub-path p′ = 〈va, · · · , vb〉 ∈ SP, |p′| ≤ 3 and

either sp(va, vb, p
′) or rp(va, vb, p

′) is true

false otherwise

Example 4.6. The path p = 〈s2, e3, cs203, p1, cs421, l1〉 in Figure 4.4 is a com-

bination of two simple paths and one recursive path because we can decompose it

into sub-paths p1 = 〈s2, e3, cs203〉, p2 = 〈cs203, p1, cs421〉 and p3 = 〈cs421, l1〉

such that sp(s2, cs203, p1), rp(cs203, cs421, p2), and sp(cs421, l1, p3) are true. This

complex path indicates that student s2 and lecturer l1 are related because s2 enrols

in the course cs203, which is a prerequisite of cs421, and cs421 is lectured by l1. 2

The four types of semantic paths are complete to capture the semantic meanings

between objects in the database. When we evaluate the relevance of query answers,

different semantic paths in the answers reflect different interpretations of the query.

64

Lemma 4.1. The four types of semantic paths (simple, recursive, palindrome,

complex) are complete.

Proof. We show that any path between two object/mixed nodes in an ORM data

graph can satisfy the condition of one and only one semantic path type. Let path

p = 〈u, · · · , v〉, where u and v are object/mixed nodes, we have

Case 1: |p| ≤ 3. We check whether it satisfies the condition of sp, rp or pp.

Case 2: |p| > 3. If u and v have the same name, then we decompose p into

two sub-paths of the same length and check whether they satisfy the condition of pp.

Otherwise, we can always decompose p into sub-paths of length less than or equal

to 3 which will satisfy the condition of sp or rp, hence it is cp by definition.

4.3 Proposed Ranking Scheme

In this section, we describe our method called pathRank to compute and rank

keyword query answers. We first generate Steiner trees that contain all the query

keywords. Then we augment the keyword match relationship nodes in the Steiner

trees with their associated object and mixed nodes. Finally we rank the Steiner

trees based on type of semantic paths they contain.

Example 4.7. Let us consider the database in Fig 4.1. Suppose we have additional

tuples c1 and c2 in the Course relation and each course can now be taught by more

than one lecturer. Thus, these tuples will be represented as object nodes in the ORM

data graph. Figure 4.8 shows examples of three semantic types of paths between the

object nodes c1 and c2. Although these paths consist of the same number of nodes,

they are of different types. Figure 4.8(a) is a palindrome path, i.e., both courses

c1 and c2 are taught by lecturers in the same department. Figure 4.8(b) contains

recursive paths where c2 is a pre-requisite of c1. Figure 4.8(c) is a complex path,

65

i.e., there exists another course c6 such that it is enrolled by the same student s1

as c1 and is taught by the same lecturer l3 as c2. We see that Figure 4.8(a) is

the most interesting to the user, while Figure 4.8(c) is the most complex and least

interesting. 2

Department

c1 c2
Course Course

Teach

l1

d1

l2

a1

t1 t2
Teach

a2
AffiliateToAffiliateTo

LecturerLecturer

Course

Course

p1

c1 c2
Course

c3 c4
Course

p2

c5
Course

p3 p4
PreReqPreReq

PreReqPreReq

C

P

C

P

P

C

C

P
e1

c1 c2
Course Course

e2

s1

c6

t2

l3

t1

Course

LecturerStudent

Enrol Teach

Enrol Teach

(a) (b) (c)

Figure 4.8: Three semantic paths between the object nodes c1 and c2

We give the highest score to simple and palindrome paths because they are more

intuitive and informative. These paths are similar to the Lowest Common Ancestor

(LCA) of two matched nodes in XML keyword search [39]. Complex paths have the

lowest scores since they require more users’ effort to understand their meanings.

Let Obj(k) and Rel(k) be the sets of object and relationship nodes that match

keyword k in the ORM data graph. Note that if k matches the object part of a

mixed node u, then we add u to Obj(k). Otherwise, if k matches the relationship

part of u, we add u to Rel(k).

Given two nodes u and v that match keyword ki and kj respectively in a Steiner

tree T , we have the two following cases:

a. Both u ∈ Obj(ki) and v ∈ Obj(kj). We determine the type of the path

between u and v as described in Section 4.2.

b. Either u ∈ Rel(ki) or v ∈ Rel(kj). Without loss of generality, suppose

u ∈ Rel(ki) and v ∈ Obj(kj). Let Su be the set of object/mixed nodes

66

that are directly connected to u, and p′ be the path between v and some

node s ∈ Su that has the highest score. Then the type of the semantic path

between u and v is given by the type of path p′.

c. Both u ∈ Rel(ki) and v ∈ Rel(kj). Let Su and Sv be the sets of object/mixed

nodes that are directly connected to u and v respectively. Let p′ be the path

between s ∈ Su and t ∈ Sv that has the highest score. Then the type of the

semantic path between u and v is given by the type of path p′.

Let V be the set of matched nodes in a Steiner tree T and C
|V |
2 be the number

of node pairs in V . The score of T w.r.t keyword query Q is defined as follows:

score(T,Q) =

∑

u,v∈V,u.id<v.id
pathscore(u,v)
num(u,v)

∗ 1

C
|V |
2

|V | > 1

1 |V | = 1

where num(u, v) is the number of object/mixed nodes in the path between nodes

u and v in V , and

pathscore(u, v) =

3 if the path between u and v is a simple or palindrome path

2 if the path between u and v is a recursive path

1 if the path between u and v is a complex path

Note that our proposed ranking scheme considers the semantic paths between

matched nodes as well as the number of participating objects in Steiner trees, since

the information of objects are captured by object and mixed nodes. Compared to

existing ranking schemes, our ranking scheme can distinguish paths with the same

length by their different types.

67

Algorithm 2 shows the details of pathRank. The input is a keyword query Q,

an integer maxSize which specifies the maximum number of nodes in a Steiner

tree, and the ORM data graph G. The output is a set of ranked answers Result.

We first classify the matched nodes for each keyword k into Obj(k) and Rel(k)

(Lines 3-4). Then we generate a set of Steiner trees that contain all the query

keywords (Line 5). For each Steiner tree T , we check if a keyword k matches the

relationship part of a mixed node or some relationship node v, i.e., v ∈ Rel(k),

and add the object/mixed nodes that are directly connected to v in the ORM data

graph and the associated edges into T (Lines 8-11). Lines 12-33 compute the score

of T . If there is only one node in T , we set its score to 1 according to the scoring

function (Lines 12-13). Otherwise, we determine the score of the semantic path

for each pair of matched nodes u and v in T such that u.id < v.id (Lines 15-30).

Suppose u and v match query keywords ki and kj respectively. We put u (v) into

the set Su (Sv) if u ∈ Obj(ki) (v ∈ Obj(kj)). If u ∈ Rel(ki) (v ∈ Rel(kj)), then we

put the object/mixed nodes that are directly connected to u (v) into set Su (Sv)

(Lines 17-24). For each pair of nodes from Su and Sv, we determine the score of

the semantic path between the nodes. We assign the highest path score to the path

between u and v. Lines 31-33 compute the final score for T .

Since the generation of Steiner trees is known to be NP-complete [44], we analyze

the time complexity of our path based ranking scheme. Let m be the number of

object/mixed relations in the database. In the worst case, we need to check the

semantic path between each pair of object/mixed nodes in the ORM data graph.

The identification of a semantic path type requires to scan the path once. As a

result, the time complexity of our ranking scheme is O (m2).

68

Algorithm 2: pathRank

Input: keyword query Q = {k1 · · · kn}, maxSize, ORM data graph G
Output: answer set Result

1 Result ← ∅;
2 for i = 1 to n do
3 let Obj(ki) be the set of object/mixed nodes in G that match ki;
4 let Rel(ki) be the set of relationship/mixed nodes in G that match ki;

5 Result = generateSteinerTree(Q, G, maxSize);
6 foreach Steiner Tree T ∈ Result do
7 let V be the set of matched nodes in T ;
8 foreach v ∈ V do
9 if v ∈ Rel(k) then

10 add object/mixed nodes that are directly connected to v in G into T ;
11 add the associated edges in G into T ;

12 if |V | = 1 then
13 T .score =1;
14 else
15 foreach u, v ∈ V such that u.id < v.id do
16 Su ← ∅; Sv ← ∅;
17 if u ∈ Obj(ki) then
18 add u into Su;
19 else if u ∈ Rel(ki) then
20 add object/mixed nodes that are directly connected to u in T into

Su;
21 if v ∈ Obj(kj) then
22 add v into Sv;
23 else if v ∈ Rel(kj) then
24 add object/mixed nodes that are directly connected to v in T into

Sv;
25 score = 0;
26 foreach s ∈ Su, t ∈ Sv do
27 z = pathscore(s, t);
28 if score < z then
29 score = z;

30 pathscore(u, v) = score;
31 let num be the number of object/mixed nodes between u and v;
32 T .score += pathscore(u, v)/num;

33 T .score = T .score/(|V | ∗ (|V | − 1)/2);

34 return Sort(Result);

69

4.4 Performance Study

We implement the algorithms in Java, and carry out experiments on an Intel(R)

Core(TM) i7-2600 CPU 3.40GHz with 8GB of RAM. We use a subset of real world

ACM Digital Library publication dataset from 1995 to 2006 [1]. There are 65,982

publications and 106,590 citations. Table 4.1 shows the details of the relations

in the schema and the corresponding number of tuples. Figure 4.9 shows the ER

diagram for this dataset.

Table 4.2 gives the keyword queries used in our experiments. The selectivities

of keywords in the queries range from only one match (e.g., keyword QSplat in Q1)

to hundreds of matches (e.g., keyword query in Q9). The search intentions of the

queries vary from obvious (e.g., Q9 and Q10) to ambiguous (e.g., Q1, Q4 and Q5

etc.).

Table 4.1: Database schema

Relation #Tuples

Paper(paper id, title, pages, URL) 65,982

Author(author id, name, affiliation) 81,987

Conf(conf id, title, year) 1,342

Write(paper id, author id) 165,686

Cite(citing id, cited id) 106,590

Table 4.2: Queries used in experiments

Queries

Q1 Streaming QSplat hierarchical wavelets

Q2 Texture synthesis painting

Q3 lambda calculus resource usage

Q4 Jeffrey Naughton David DeWitt

Q5 Gray Alexander

Q6 Alla Sheffer Hugues Hoppe

Q7 Brad Calder Timothy Sherwood

Q8 Yannis Papakonstantinou

Q9 Jagadish query

Q10 Stonebraker SIGMOD

70

Conf

Accept

Paper Write Author

conf_id title

paper_id title author_id name

Cite

pages URL

year

affiliation

m m

m

1

m

m

Figure 4.9: ER diagram of the ACM Digital Library dataset

We compare our semantic path ranking method (Path) with the following rank-

ing schemes used in state-of-the-art relational keyword search such as Discover [43],

BANKS [44] and SPARK [69]:

1. Number of nodes in answer (Size) [43].

2. Node prestige and proximity (Prestige) [44].

3. TF-IDF similarity between query and answer (Tf-idf) [41, 69].

We also conduct a user study to verify that our semantic path ranking scheme

is able to output more intuitive and informative answers compared to existing

ranking methods. We show the queries in Table 4.2 together with the ER diagram

in Figure 4.9 to 10 users, and obtain their possible search intentions. The users

come from research students and undergraduate students in the CS department.

For each search intention, we generate the corresponding SQL statements to retrieve

the results from the database to form the ground truth. We allow a maximum depth

71

of 3 if the search intention involves recursions such as the paper-citation relation,

since users probably will not be interested in very long recursive relationships.

We use the metric Average Precision [12] to evaluate the relevance of answers

returned by the four ranking schemes. Let A be the set of top-k answers to a

keyword query Q. We define the precision of A as follows:

Precision(k) =
|A ∩R|
|A|

where R is the set of relevant answers obtained from our user study. Then the

average precision is given by:

AvePrecision =

∑k
i=1(Precision(i) ∗ rel(i))

|R|

where rel(i) is equal to 1 if the answer at position i is relevant, and 0 otherwise.

Figure 4.10 and 4.11 show the average precision of four ranking methods for the

queries in Table 4.2 when we vary k. The proposed Path method is able to achieve

a higher average precision compared to Size, Prestige and Tf-idf for most of

the queries. The performance of Path increases significantly as k decreases. All

the ranking schemes are able to retrieve all the relevant answers when k is equal

to 50. However, Size, Prestige and Tf-idf start to miss relevant answers as k

decreases.

For query Q9 and Q10, all the ranking schemes achieve an average precision of

1 because the search intentions are straightforward, and the relevant answers are

ranked on the top by all the ranking schemes. Thus, we can see that Path is more

effective than the other ranking schemes when the queries are ambiguous.

For query Q2, Path has a lower average precision than Prestige and Tf-idf

when k is equal to 5 or 10. This is because path cannot differentiate the Texture

72

synthesis paper from the Synthesis of bidirectional texture functions

paper, while Prestige and Tf-idf can find that the former is more likely pre-

ferred as its node prestige or inverse document frequency is high.

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Av
er

ag
e

Pr
ec

is
io

n

Path Size Prestige Tf-idf

(a) Top-5 answers

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Av
er

ag
e

Pr
ec

is
io

n

Path Size Prestige Tf-idf

(b) Top-10 answers

Figure 4.10: Average precision of ranking schemes for top-5 and 10 answers

Table 4.3 shows two sample answers for query Q4 which comprises of two au-

thor names David Dewitt and Jeffrey Naughton, and the rankings provided by

the four schemes. The first answer indicates that both authors have published

some papers in the conference SIGMOD’95, while the second answer indicates that

there is a citation between the papers of these authors. Although the first an-

swer is more intuitive and useful compared to the second answer, it is given a

lower rank by the Size, Prestige and Tf-idf. Only the proposed Path ranks the

73

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Av
er

ag
e

Pr
ec

is
io

n

Path Size Prestige Tf-idf

(a) Top-20 answers

0

0.2

0.4

0.6

0.8

1

1.2

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Av
er

ag
e

Pr
ec

is
io

n

Path Size Prestige Tf-idf

(b) Top-50 answers

Figure 4.11: Average precision of ranking schemes for top-20 and 50 answers

74

first answer higher than the second since the former contains a palindrome path

(〈Author,Write, Paper, Conf, Paper,Write, Author〉), while the latter has a com-

plex path. Figure 4.12 shows the corresponding annotated answers output by our

approach to facilitate users’ understanding.

Table 4.3: Ranking of two sample answers for query Q4

Sample query answers Size[43] Prestige[44] Tf-idf[41, 69] Path[Ours]

(a)

c1: SIGMOD’95

7 12 7 3
p1: Implementing crash recovery in ...
a1: David Dewitt

p2: Adaptive parallel aggregation ...
a2: Jeffrey F. Naughton

(b)

p3: Simultaneous optimization and ...

3 9 3 11
a2: Jeffrey F. Naughton

p4: NiagaraCQ
a1: David DeWitt

a1

a2

w1

w2

c1
Conf

Paper

Paper

Write

Write Author

Author {David Dewitt}

{Jeffrey Naughton}

p2

p1 a1

a2

w3

w4

Paper

Paper

Write

Write Author

Author {David Dewitt}

{Jeffrey Naughton}
ct1

Cite
p4

p3

(a) (b)

Figure 4.12: Annotated answers for query Q4

Table 4.4 shows two sample answers for query Q3 and their rankings by the

different schemes. The keywords in this query match two paper titles. The first

answer indicates that these two papers are related via 2 Paper-Cite relationships,

while the second answer indicates that these two papers are related via a third

paper published in the same conference and cites one of these papers. We observe

that although the second answer is complex and not easy to understand, it is

ranked higher by Size and Prestige. Tf-idf gives the similarly ranks to these

two answers without considering the type of the semantic paths. In contrast, Path

ranks the first answer much higher because it contains a recursive path while the

second answer contains a complex path. Figure 4.13 shows the annotated answers.

75

Table 4.4: Ranking of two sample answers for query Q3

Sample query answers Size[43] Prestige[44] Tf-idf[41, 69] Path[Ours]

(a)

p1: Resource usage analysis

9 7 10 4
p2: Once upon a type
p3: A call-by-need lambda calculus

(b)

c1: POPL’04

2 5 11 21
p4: Channel dependent types for ...
p1: Resource usage analysis

p5: ... lambda calculus...

ct1

ct2

Cite

Cite PaperPaper {Resource usage}

{lambda calculus}Paper

p1p2

p3
{lambda calculus}

ct3

c1
Conf

Paper

Paper

Cite Paper {Resource usage}

p4

p5

p1

(a) (b)

Figure 4.13: Annotated answers for query Q3

4.5 Conclusion

In this chapter, we have studied the problems of existing keyword search to

output query answers, and proposed a semantic approach to help users find infor-

mative answers. This is achieved by capturing the ORA semantics in the database

using the ORM data graph. We examine how objects are related and identified

four types of semantic paths between object/mixed nodes, namely, simple paths,

recursive paths, palindrome paths and complex paths. These semantic paths form

different interpretations of the query answers. We rank and group query answers

based on the semantic paths, and annotate them to facilitate users’ understanding.

Our approach has the advantage of distinguishing paths with the same length by

their different types. Experimental results on a real world dataset demonstrate the

effectiveness of our path-based approach.

76

CHAPTER 5

KEYWORD CONTEXT AND USER

SEARCH TARGET IN RELATIONAL

KEYWORD QUERIES

So far, keyword search on relational databases considers a keyword query as a set

of user specified keywords that only match tuple values, and assumes that keywords

are independent of each other. This limits the expressive power of keyword queries

and makes it difficult to infer the search intentions of the queries. In this chapter,

we extend keyword queries to allow keywords that match meta-data, i.e., names of

relations and attributes. This enables users to better express their search targets

and provides the context of subsequent keywords in the query. We design a semantic

approach to process these extended keyword queries and introduce the notion of

query patterns to depict users’ possible search intentions. We also design a ranking

scheme that considers the search targets and number of objects in query patterns.

77

5.1 Motivation

The traditional approach to evaluate a keyword query first materializes the

database as a graph where each node represents a tuple and each edge represents

a foreign key-key reference, and then finds the minimal connected subgraphs that

contain all the keywords [44, 46, 42, 84]. But this is computationally expensive as

the number of subgraphs is huge. Another approach translates a keyword query

into a set of SQL statements, and leverages on relational DBMSs to evaluate the

statements and retrieve answers [11, 43, 41, 67, 69]. However, these works do not

analyze the users’ search intention, and often return an overwhelming amount of

answers, many of which are complex and not easily understood.

The work in [15] exploits the relative positions of keywords in a query along

with auxiliary external knowledge to make an educated guess of the users’ search

intention. They measure the likelihood of mapping from a keyword to the database,

namely, a relation or an attribute or a tuple, and generate the most probable

mappings for the query keywords.

In Chapters 3 and 4, we show that a relational database is essentially a repos-

itory of objects that interact with each other via relationships that are embedded

in the foreign key-key references. Further, when a user issues a query, s/he must

have some particular search intention in mind. If we can determine the keywords

that refer to the same object or relationship in the database, we would be able to

infer the search target of the user. These keywords can also provide the context of

subsequent query keywords that impose conditions on the search target.

Figure 5.1 shows a sample university database. Suppose a user issues a keyword

query {Student Brown}. The keyword Brown can refer to a student name or a

department address. However, since the keyword Student matches the name of

the Student relation, we deduce that the user is more likely to be interested in a

78

student called Brown than the address of a department. In other words, a keyword

that matches a relation name specifies a target object or relationship, while a

keyword that matches an attribute name indicates the information that the user

wants to retrieve for the target object/relationship. Keywords that match tuple

values impose restrictions on the object/relationship.

Student

Sid Name Age Deptid

s1 Smith 21 d1

s2 Green 22 d1

s3 Brown 25 d1

StudentSkill

Sid Skill

s1 Java

s2 SQL

s3 Java

s3 PhP

Project

Pid Name Budget

p1 XML 40k

p2 RDB 50k

p3 Survey 30k

Department

Deptid Name Address

d1 computing Brown Street

d2 marketing Queen Street

StuProj

Sid Pid JoinDate

s1 p1 2010

s2 p1 2009

s2 p2 2010

s3 p2 2007

s3 p3 2008ProjDept

Pid Deptid

p1 d1

p2 d1

p3 d2

Figure 5.1: Example university database

This motivates us to extend the expressive power of keyword queries so that

users can better express their search intentions. We design a semantic approach

based on the ORM schema graph to process these extended keyword queries. We

consider keywords that match meta-data, i.e., names of relations and attributes,

and utilize them to provide the context of subsequent keywords in the query. We

examine the various ways objects in a database interact with each other, and con-

struct query patterns based on the ORM schema graph to denote users’ possible

search intentions. We propose a ranking scheme that takes into account the search

targets of the query as well as the number of objects captured in a query pattern.

The top-k ranked query patterns are used to generate SQL statements. We de-

velop a prototype system called ExpressQ to process extended keyword queries.

79

Experimental results on two databases demonstrate the effectiveness of ExpressQ

in generating SQL statements to retrieve relevant information for users.

5.2 ORM Schema Graph

Recall that in Chapter 3, we classify the relations in a database into object

relations, relationship relations, mixed relations and component relations. An ob-

ject (relationship resp.) relation captures the information of objects (relationships

resp.), i.e., the single-valued attributes of an object class (relationship type). Mul-

tivalued attributes are captured in the component relations. A mixed relation

contains information of both objects and relationships, which occurs when we have

a many-to-one relationship.

For the example database in Figure 5.1, Project and Department relations are

object relations as they contain single-valued attributes of project and department

objects respectively, while StuProj and ProjDept relations are relationship rela-

tions. Student is a mixed relation as it captures information of student objects

and the many-to-one relationships between student and department objects. The

StudentSkill relation is a component relation containing the multivalued attribute

of students.

We can model the relational schema with an undirected graph called Object-

Relationship-Mixed (ORM) schema graph G = (V,E). Each node v ∈ V comprises

of an object/relationship/mixed relation and its component relations, and is as-

sociated with a v.type ∈ {object, relationship, mixed}. Two nodes u and v are

connected via an edge e(u, v) ∈ E if there exists a foreign key-key constraint from

the relations in u to that in v.

Figure 5.2 shows the ORM schema graph of the database in Figure 5.1. It has

80

two object nodes (rectangle), two relationship nodes (diamond) and one mixed node

(hexagon). The node Department is an object node that comprises of the object

relation Department, while the node Student is a mixed node that comprises of

the mixed relation Student and component relation StudentSkill. These two nodes

are connected via an edge because there is a foreign key-key constraint from the

relation Student to the relation Department.

Object Node

Relationship Node

Legend:

Mixed Node

Student DepartmentStuProj

Project ProjDept

Figure 5.2: ORM schema graph of Figure 5.1

Suppose a user issues the keyword query {Smith Green}. Both keywords match

some student name in the Student relation. Based on the ORM schema graph in

Figure 5.2, these two students are possibly related via the relationship StuProj,

the many-to-one relationship with departments, and a combination of these rela-

tionships. Thus, some of the possible interpretations of this query are:

a. Find information on the project in which both students Green and Smith are

involved.

b. Find information on the department in which both students Green and Smith

study.

c. Find information on the department which conducts a project that involves

the student Green and the student Smith studies in.

81

Existing works would consider all the above query interpretations and retrieve

the corresponding information from the database. Consequently, the user is often

overwhelmed by a huge number of answers, many of which are complex and not

easily understood.

5.3 Extended Keyword Queries

In order to reduce the ambiguity of keyword queries, we propose to allow users to

explicitly indicate his/her search intention whenever possible. This can be achieved

by augmenting the query with additional keywords that match the names of rela-

tions and attributes. For example, if the user would like to find the information

on the department that both the student Smith and the student Green study

in, s/he can express the query as {Department Student Smith Student Green}.

The keyword Department matches the name of the Department relation, indicat-

ing that the user is interested in the information of the department. While the

keyword Student matches the name of the Student relation, giving the context

that the keywords Smith and Green refer to names of two students.

Definition 5.1. An extended keyword query consists of a sequence of keywords

Q = {k1 k2 · · · kn} such that each keyword k matches a relation name, or an

attribute name or a tuple value.

Given an extended keyword query, we want to generate a set of SQL statements

that best capture the user’s search intention. This entails the following steps:

a. Query analysis. We parse each keyword in the query and utilize the ORM

schema graph of the database to determine the object or relationship that

a keyword refers to. The semantic information of each keyword is captured

82

in a tag, and tags that refer to the same object or relationship are grouped

together.

b. Query interpretation. Based on the groups of tags, we generate a set of

minimal connected graphs called query patterns, that represent the possible

search intentions of the query, and rank these patterns.

c. SQL statement generation. The top-k ranked query patterns are used to

generate SQL statements to retrieve results from the relational database.

The following sections give the details of each of these steps.

5.3.1 Query Analysis

Given an extended keyword query Q = {k1 k2 · · · kn}, we will determine the

interpretation(s) of each keyword in Q. We capture each keyword interpretation in

a tag T = (label, attr, cond), where label is the name of the object or relationship,

attr is the attribute name, and cond is the restriction on the object or relationship.

The restriction occurs in the form of a value. The tag(s) for a keyword k is generated

depending on the following type of matches:

a. k matches the name of some object/mixed/relationship relation.

This indicates that k refers to some object or relationship. The name of

the object is given by the corresponding object or mixed node in the ORM

schema graph, while the name of the relationship can be obtained from the

corresponding relationship node in the graph. We capture this keyword in-

terpretation by creating a tag (k, null, null) for this keyword.

b. k matches the name of a component relation or an attribute name.

83

This implies that k refers to the attribute of the some object or relationship

l, and we create a tag (l, k, null) for this keyword.

c. k matches some tuple value.

Clearly, k refers to the value of some attribute a of an object or relationship

l, and we create a tag (l, a, k) for this keyword.

Example 5.1. Consider the keyword queries in Table 5.1. Table 5.2 shows the

sequences of tags generated for these queries. For query Q1, we know that the key-

word Department matches an object relation, while the keyword Student matches

a mixed relation from the ORM schema graph in Figure 5.2. Hence, these key-

words refer to the names of department and student objects in the database, and

we capture their interpretations in the corresponding tags. On the other hand, the

keywords Smith and Green match the Name attribute values of some tuples in the

Student relation, and we capture these information in their tags T13 and T15.

Query Q2 contains the keyword Skill that matches an attribute name. From

the ORM schema graph, we see that this attribute belongs to the component rela-

tion StudentSkill which is associated with the mixed node Student. Hence, we

know that skill is a multivalued attribute of the student object and we capture this

interpretation in the tag T23. Further, the keywords Java and PhP match the Skill

attribute values of some tuples.

Note that Q3 contains the keyword Brown that matches the Name attribute

value of some tuple in Student relation, as well as the Address attribute value of

some tuple in Department relation. In this case, we create a tag for each match.

The tag T34 in Table 5.2 captures the interpretation that keyword Brown refers to

a student name, while the tag T ′34 captures the interpretation that Brown refers to

a department address. Hence, we see that Q3 has two sequences of tags, denoting

two different query interpretations. 2

84

Table 5.1: Example Queries

Q1 Department Student Smith Student Green

Q2 Project Student Skill Java PhP

Q3 Project Student Green Brown

Table 5.2: Sequence of tags generated for the queries in Table 5.1

Q1
T11 = (Department,null,null), T12 = (Student,null,null), T13 = (Student,Name,Smith),
T14 = (Student,null,null), T15 = (Student,Name,Green)

Q2
T21 = (Project,null,null), T22 = (Student,null,null), T23 = (Student,Skill,null),
T24 = (Student,Skill,Java), T25 = (Student,Skill,PhP)

Q3
T31 = (Project,null,null), T32 = (Student,null,null), T33 = (Student,Name,Green),
T34 = (Student,Name,Brown)
T31 = (Project,null,null), T32 = (Student,null,null), T33 = (Student,Name,Green),
T ′34 = (Department,Address,Brown)

After creating a sequence of tags for the keywords in the query, we group the

tags that refer to the same object or relationship together. Clearly, tags that do

not have the same label are placed into different groups since their keywords refer

to different objects/relationships. However, keywords with tags that have the same

label do not necessarily refer to the same object/relationship.

Example 5.2. Consider query Q1 in Table 5.1 and its sequence of tags in Ta-

ble 5.2. All these tags except T11 have the same label Student. However, their

keywords actually refer to different objects: keywords Student and Smith refer to

the student named Smith, while keywords Student and Green refer to the student

named Green. 2

This example demonstrates the need to process the tags of keywords in a key-

word query in sequence, and examine the objects or relationships referred to by the

current and preceding keywords.

Let T be the sequence of tags for the query Q. We put a tag Ti ∈ T into a new

group to denote a different object/relationship if one of these following cases is true:

85

Case 1. Ti has a different label from all the tags Tj ∈ T , j ∈ [1, i− 1].

Case 2. Ti has the same label as Tj ∈ T for some j ∈ [1, i− 1], and the attr and

cond of Ti are null.

Case 3. Ti has the same label and attr as Tj ∈ T for some j ∈ [1, i− 1], and attr

is not a multivalued attribute.

A tag that satisfies Case 2 indicates that its keyword refers to a new ob-

ject/relationship and provides the context for the next keyword in the query. Hence,

we create a new group for this tag. On the other hand, a tag that satisfies Case 3

indicates that both its keyword and the preceding keyword refer to the same single-

valued attribute of an object/relationship or its values. Since an object/relationship

cannot have a single-valued attribute with two values, the keyword of this tag must

refer to a new object/relationship.

Example 5.3. Let us consider the sequence of tags for Q1. Tags T11 and T12 belong

to two different groups g1 and g2 since they have different labels. Since tag T13 has

the same label Student as its preceding tag T12, it is placed in the same group g2.

T14 is put in a new group g3 because its attr and cond are null and it refers to

a different student object (Case 2). Since T15 has the same label as T14, it is put

in g3. Note that we cannot put T15 in g2 because Name is a single valued attribute

of students, and it is impossible for the same student to have two different names

(Case 3). In other words, the keywords Smith and Green are the names of two

different students. Hence, the tags for Q1 are grouped as follows:

• g11 = {T11} refers to some department object,

86

• g12 = {T12, T13} refers to a student named Smith,

• g13 = {T14, T15} refers to a student named Green. 2

The following example illustrates a query involving multivalued attributes.

Example 5.4. Consider query Q2 and its sequence of tags in Table 5.2. The tags

T22, T23, and T24 have the same label and are put in the same group. Note that T24

and its preceding tag T23 have the same label and attr. They are put in the same

group because the attribute Skill is a multivalued attribute. In other words, the

keywords Java and PhP refer to the values of the multivalued attribute Skill, and

the user is interested in a student who knows both Java and PhP. Hence, the tags

for Q2 are grouped as follows:

• g21 = {T21} refers to some project object,

• g22 = {T22, T23, T24} refers to a student with skills Java and PhP. 2

5.3.2 Query Interpretation

After grouping the tags of a query, the next step is to generate query patterns.

Each query pattern is a minimal connected graphs that represents one possible

search intention of the query. Intuitively, we construct a query pattern by creating a

node to represent each object/relationship referred to by each group of tags. These

nodes will correspond to nodes in the ORM schema graph and we can connect them

based on the edges in the graph.

Let S = {g1, g2, · · · , gm} be a set of tag groupings, and G = (V,E) be the

ORM schema graph. A query pattern P = (V ′, E ′) is constructed as follows.

For each group of tags gi ∈ S, 1 ≤ i ≤ m, we create a node ui to denote the

87

object/relationship referred to by gi. The corresponding object class or relationship

type is given by a node vi in G. We say that ui corresponds to vi in G.

Let D′ = {u1, u2, · · · , um} and D = {v1, v2, · · · , vm}. We first insert the nodes

in D′ into the query pattern P . If |D′| = 1, then all the tags in the query are in

one group which refers to the same object/relationship. Hence, the query pattern

P has only a single node. However, if we have |D′| > 1, then we need to use the

schema graph G to connect these nodes. We have two cases to handle:

Case A. Object class/relationship type of every object/relationship is distinct.

In this case, all the nodes in D′ correspond to distinct nodes in D, i.e., |D′| =

|D|. We find a minimal subgraph H of G that connects all the nodes in D. For each

intermediate node x in H, we create a node x′ that corresponds to x and insert it

into P . For each edge e(x, y) in H, we create an edge e(x′, y′) in P .

Case B. Object class/relationship type of each object/relationship is not distinct.

In this case, some objects (or relationships) have the same object class (or re-

lationship type). In other words, two or more nodes in D′ correspond to the same

node in G, i.e., |D′| > |D|. We cluster the nodes in D′ according to their object

classes, and connect the nodes between the clusters. We try to find a node u ∈ D′

such that u can connect to the other nodes in D′ based on the paths between

their corresponding nodes in the ORM schema graph. If no such node exists, we

create a node x′ that corresponds to some node x ∈ G to connect all the nodes in D′.

The following examples illustrate these cases.

Example 5.5. Let us consider the set of tag groupings S = {g21, g22} obtained for

query Q2 in Example 5.4. We create two nodes u1 and u2 to represent g21 and g22

respectively. Nodes u1 and u2 correspond to the nodes Project and Student in the

88

ORM schema graph in Figure 5.2 respectively (Case A). Since the Student and

Project nodes can be connected via the StuProj node in the ORM schema graph,

we create a new node u3 that corresponds to the StuProj node to connect u1 and

u2, and output the graph as a query pattern (see Figure 5.3). This query pattern

captures the user’s intention to find the information on the project that involves the

student with both skills Java and PhP. 2

Project

u2

StuProj

u1

Student
Skill={Java,PhP}

u3

Figure 5.3: Query pattern for query Q2 in Example 5.5

Example 5.6. Consider the 3 groups of tags g11, g12 and g13 obtained for Q1 in

Example 5.3. We create a set of nodes D′ = {u1, u2, u3} for these groups, and

D = {Student, Department}. Note that the corresponding object classes of the

nodes in D′ are not distinct (Case B). Node u1 corresponds to the Department node

in the ORM schema graph, while both nodes u2 and u3 correspond to the Student

node. We cluster the nodes in D′ according to their object classes, and connect

the nodes between the clusters, i.e., c1 = {u1} and c2 = {u2, u3}, and we try to

connect u1 to u2 and u3. Based on the ORM schema graph, the Department node

can connect to the Student node directly. Hence, we create two edges to connect

u1 to u2 and u3 respectively. Figure 5.4(a) shows the query pattern P1 obtained

which indicates that the user wants to find information on the department that both

students Smith and Green study in.

Further, we observe that the Department node can also connect to the Student

node via the path Department − ProjDept − Project − StuProj − Student in

the ORM schema graph. By creating nodes u4 and u5 (correspond to ProjDept), u6

and u7 (correspond to Project), u8 and u9 (correspond to StuProj), we obtain the

89

query pattern P2 in Figure 5.4(b). This pattern indicates that the user is interested

in the department with projects involving both students Smith and Green. 2

Department

u2

u3

u1
Student

Name=Smith

Student
Name=Green

u2

u3

u1

Student
Name=Smith

Student
Name=Green

Department

ProjDept Project StuProj

StuProjProjDept Project

u4 u6 u8

u5 u7 u9

(a) P1 (b) P2

Figure 5.4: Query patterns for query Q1 in Example 5.6

5.3.3 Query Pattern Ranking

After generating the various query patterns, the next step is to rank them.

The standard method typically ranks graphs based on the number of nodes, i.e., a

smaller graph is more easily understood and is ranked higher than a larger complex

graph. This approach does not consider the semantics of objects and relationships

in the graphs. For example, a query to find a student who have both skills Java and

PhP will have a graph with 3 nodes (StudentSkill − Student − StudentSkill),

each of which denotes a relation tuple. However, all 3 nodes refer to the same

student object. It should not be ranked equally as a graph with 3 nodes such as

Student − StuProj − Project, where nodes Student and Project refer to two

different objects.

We observe that when a user issues a query, s/he must have some particular

search intention in mind. We refer to the objects/relationships that meet the user’s

interest in the search intention as the search targets of the query. Our proposed

ranking scheme aims to take into account the search targets of the query as well as

the number of object/mixed nodes in the query patterns.

90

In order to identify the search targets of a query, we classify the nodes that

correspond to the tag groups into target nodes and condition nodes since they

denote the objects and relationships that the user is interested in. A target node

specifies the search target of the query, while a condition node indicates the search

conditions of the query. In our Example 5.6, u1 is a target node since the user is

interested in the information on a department. On the other hand, u2 and u3 are

condition nodes as they specify two particular students by their names. We define

target nodes and condition nodes formally as below:

Definition 5.2. Let u be an object/relationship node referred to by a tag group g.

We say u is a condition node if ∃ T ∈ g such that T.cond 6= null. Otherwise, u

is a target node if:

1. ∀ T ∈ g, we have T.cond = null or

2. ∃ T ∈ g such that T.attr 6= null and @ T ′ ∈ g where T ′.attr = T.attr

The first condition indicates that the user is interested in the information of an

object/relationship, while the second condition indicates that the user is interested

in obtaining information on an object/relationship attribute.

Note that a node can be both a target node and a condition node. Suppose we

have the following group of tags:

T1 = (Department,null,null)

T2 = (Department,Address,Queen)

T3 = (Department,Name,null)

This group of tags refers to a department object node that is both a target and a

condition node since the semantics of the tags indicate that the user is interested

in the name of the department in Queen street.

Let X be the set of target nodes, Y be the set of condition nodes, and N be the

91

number of object and mixed nodes in a query pattern P . We compute a score for

P by counting the number of objects involved in the query pattern and the average

distance between the target and condition nodes. We define the score of a query

pattern P as:

score(P) =
1

N ∗
∑

u∈X,v∈Y

dist(u,v,P)
|X|∗|Y |

where dist(u, v, P) is the total number of object and mixed nodes in the path

connecting two nodes u and v in P .

Query patterns with fewer object/mixed nodes, and a shorter average distance

between target nodes and condition nodes will be scored higher.

Example 5.7. Figure 5.5 shows two query patterns P1 and P2 for the query Q3 =

{Project Student Green Brown}. P1 indicates that the user wants to find the

information on the project that involves both the students Green and Brown, while

P2 indicates that the user is interested in the project involving the student Green

who studies in the department in Brown street. Both these query patterns have 3

object/mixed nodes. Besides, node u1 is a target node while nodes u2 and u3 are

condition nodes. We compute the average distance between the target node (u1)

and the condition nodes (u2 and u3) for both query patterns. P1 has an average

distance of 2+2
2

= 2, while P2 has an average distance of 2+3
2

= 2.5. Thus, we have

score(P1) = 1
6

and score(P2) = 2
15

, and P1 will be ranked higher than P2. 2

We see that the proposed ranking complies with human intuition that both the

students Green and Brown are “closely” related to the target project in P1. In

contrast, the department in Brown street is related to the target project because it

has some student (Green) involves in the project in P2. On the other hand, if we

use the traditional method which ranks graphs based on the number of nodes, P1

will be ranked lower than P2 since P1 contains 5 nodes while P2 contains 4 nodes.

92

Project

StuProj

StuProj

u2

u3

Student
Name=Brown

Student
Name=Green

u4

u1

u5

Project StuProj

u3

u2

Student
Name=Green

u1 u4

Department
Address=Brown

(a) P1 (b) P2

Figure 5.5: Query patterns in Example 5.7

Note that a query may not contain keywords that explicitly indicate the search

target. For example, none of the keywords in the query {Project XML Project

RDB} indicate the search targets explicitly. In this case, we will need to infer the

target nodes.

The work in [60] defines the centric distance of a node u as the longest distance

between u and any node in the graph. Further, the radius of the graph is the

minimal value among the centric distances of every node. A query answer is a

graph whose radius is not larger than a specified value. Here, we use the radius of

query patterns to determine the target nodes.

We define the centric distance of a node u in P as the longest distance between

u and any node v in P , that is,

centric(u, P) = maxv∈P dist(u, v, P)

Then the radius of P is given by the shortest centric distance among all the nodes

in P . We infer that a node u is a target node if its centric distance is equal to the

radius of P .

Example 5.8. Figure 5.6 shows a query pattern for the query {Project XML

Project RDB} with 3 object nodes. Both the nodes u1 and u2 correspond to the

Project node in the ORM schema graph and are condition nodes. There is no

93

target node in the pattern according to Definition 5.2. Thus, we will look for a node

whose centric distance is equal to the radius of the query pattern. This gives us

u4 as the target node, indicating that the user is interested in the department that

conducts both projects XML and RDB. We compute the average distance between u4

and the condition nodes u1 and u2, and obtain a score of 1
6

for this pattern. 2

Department ProjDeptProjDept

u1 u2u3 u4 u5
Project

Name=XML

Project
Name=RDB

Figure 5.6: Query pattern in Example 5.8

5.3.4 SQL Statement Generation

Finally, we generate a set of SQL statements based on the top-k query patterns.

These SQLs statements are used to retrieve results from the relational database.

The results are then returned as answers to the extended keyword query. We

generate an SQL statement for each query pattern P as follows:

SELECT clause. For each target node u in P , if u specifies a search target via an

object or relationship name (Condition 1 in Definition 5.2), then we include all the

attributes of the relations of u in the SELECT clause. Otherwise, if u specifies a

search target via an attribute name (Condition 2 in Definition 5.2), then we include

only the corresponding attribute of the relations of u in the SELECT clause. If u is

inferred from the radius of P , then we assume that the user is interested in all the

information of u and include all the attributes of the relations of u in the clause.

FROM clause. The FROM clause contains the relations of all the nodes in P .

WHERE clause. The WHERE clause joins the relations in the FROM clause

based on the foreign key-key constraints. Further, for each condition node u in

94

P , we check the group of tags that refer to the object/relationship denoted by u.

For each tag T such that T.cond 6= null, we include the condition “Tk.label.attr

contains Tk.val” in the WHERE clause.

Example 5.9. Consider the query pattern P1 in Figure 5.4(a). Node u1 is a

target node and denotes a department object, while nodes u2 and u3 are condition

nodes that denote the student objects named Smith and Green respectively. We will

generate the following statement for the query pattern:

SELECT D.Deptid, D.Name, D.Address

FROM Department D, Student S1, Student E2

WHERE D.Deptid=S1.Deptid AND D.Deptid=S2.Deptid AND

S1.Name contains ‘Smith’ AND S2.Name contains ‘Green’ 2

5.4 ExpressQ System

We have developed a prototype system called ExpressQ1 which enables users

to query the database using extended keyword queries. Through a series of user

interactions, ExpressQ determines the search intention, and generates SQL state-

ments to retrieve the answers. Figure 5.7 shows a screenshot where ExpressQ lists

the ranked interpretations of the query {Project Student Green Brown} on the

university database in Figure 5.1. ExpressQ displays the query patterns to denote

the query interpretations and gives the semantic information of the nodes. The

target and condition nodes are annotated and query keywords are highlighted.

Further, ExpressQ depicts the query patterns in human natural language to

facilitate users’ understanding of these patterns. For example, the top ranked

pattern is described as “Find the projects that involve the student with name

1The ExpressQ prototype is available at http://expressq.comp.nus.edu.sg.

95

http://expressq.comp.nus.edu.sg

Figure 5.7: Screenshot of query interpretations in ExpressQ

matching Green and involve the student with name matching Brown”. Thereby,

the user can easily identify the intended query pattern by the graph structure, and

verify its meaning by the description. ExpressQ offers the opportunity for user

to choose the intended query patterns. The selected patterns will be translated

into SQL statements in order to retrieve the answers to the query. Details of the

ExpressQ system architecture are provided in Appendix A.

Here, we describe the algorithms of the main components in the system, that

is, the Query Analyzer (Algorithm 3) and the Query Interpreter (Algorithm 4).

Given a query Q and the ORM schema graph G, we first call the Query Analyzer

96

to produce a list of sets of tag groupings. Since a keyword in an extended keyword

query may be ambiguous, and may be associated with multiple tags, we enumerate

the different sequence of tags for a query. For each sequence of tags, the Query

Analyzer produces a set of tag groupings. Then we call the Query Interpreter to

generate a list of query patterns for each set of tag groupings. We compute the

scores of the query patterns and output the top-k patterns. Finally, we generate

the SQL statements for the top-k ranked query patterns. The results of these SQLs

are returned as the answers of Q.

Algorithm 3 describes the details of the Query Analyzer. The input is an

extended keyword query Q and the ORM schema graph of the database G. The

output is a list of sets of tag groups L where each group of keyword tags refer to

the same object or relationship. We create a list of tags for each keyword in the

query (Lines 2-3). For each sequence of tags, we group the tags that refer to the

same object or relationship. We initialize S and put the tag of the first keyword

T1 into a group g (Lines 5-6). Next, we check whether the tags of the subsequent

keywords can be put into the same group g, and create new groups if needed (Lines

8-19). Finally, we insert S into the list L (Line 20). Line 21 returns all the sets of

tag groupings in L.

Algorithm 4 gives the details of the Query Interpreter. For each group of tags

gi in S, we create a node ui to denote the object/relationship referred to by gi. We

add ui into set D′ and its corresponding node vi in the ORM schema graph into

set D. Then we insert ui into the query pattern P (Lines 3-7).

If D′ has only one node, we simply add P into Plist (Lines 8-9). Otherwise,

we compare the number of nodes in D′ and D. If |D′| = |D|, we find the minimal

subgraph H of G that connects all the nodes in D. For each intermediate node x

in H, we create a node x′ that corresponds to x and insert it into P . For each edge

97

Algorithm 3: QueryAnalyzer

Input: Q = {k1 · · · kn}, ORM schema graph G
Output: list of sets of tag groupings L

1 L← ∅;
2 for i = 1 to n do
3 TagListi = createTags(ki, G);
4 foreach tag sequence {T1, · · · , Tn}, Ti ∈ TagListi do
5 S ← ∅;
6 let g = {T1}, glabel = T1.label, newg = false;
7 for i = 2 to n do
8 if Ti.label 6= glabel then
9 newg = true;

10 else if Ti.attr = null ∧ Ti.cond = null then
11 newg = true;
12 else if Ti.attr is not multivalued ∧∃j ∈ [i− |g|, i− 1] such that

Tj .attr = Ti.attr then
13 newg = true;
14 if newg is true then
15 S = S ∪ {g}; g ← ∅;
16 g = g ∪ {Ti}; glabel = Ti.label;

17 else
18 g = g ∪ {Ti};
19 S = S ∪ {g};
20 insert S into L;

21 return L;

e(x, y) in H, we create an edge e(x′, y′) in P . Then we add P into Plist (Lines

10-16). If |D′| is larger to |D|, we divide the nodes in D′ into clusters c1, c2, · · · , cm

such that the nodes in each ci correspond to a node vi in D, and |ci| ≤ |ci+1|,

∀i ∈ [1,m− 1].

If the smallest cluster c1 has only one node u1, then we connect u1 to the nodes

in c2, c3, · · · , cm. Let H be the path that connect v1 and vi in G. We connect u1

to the nodes in ci based on H (Lines 17-25).

On the other hand, if c1 has more than one node, then we will use a node x′

that corresponds to some node x ∈ G−D to connect all the nodes in c1, c2, · · · , cm.

For each object or mixed node x in G−D, we first create a copy P ′ of P , and insert

a node x′ that corresponds to x into P ′. Again, let H be the path that connect x

98

Algorithm 4: QueryInterpreter
Input: set of tag groupings S, ORM schema graph G
Output: list of query patterns Plist

1 Plist← ∅; D′ ← ∅; D ← ∅;
2 let P be a query pattern;
3 for i = 1 to |S| do
4 create a node ui for group of tags gi;
5 let ui corresponds to vi in G;
6 D′ = D′ ∪ {ui}; D = D ∪ {vi};
7 insert ui into P ;

8 if |D′| = 1 then
9 add P into Plist;

10 else if |D′| = |D| then
11 H = findSubgraph(D, G);
12 foreach intermediate node x in H do
13 create a node x′ and insert it into P ;
14 foreach edge e(x, y) in H do
15 create an edge e(x′, y′) in P ;
16 add P into Plist;

17 else if |D′| > |D| then
18 let D′ = c1 ∪ c2 · · · ∪ cm, |ci| ≤ |ci+1|, i ∈ [1,m− 1];
19 if |c1| = 1 then
20 let u1 be the node in c1;
21 for i = 2 to m do
22 let H be the path that connects v1 and vi in G;
23 for j = 1 to |ci| do
24 connect u1 to ui,j in ci based on H;

25 add P into Plist;

26 else
27 foreach object/mixed node x in G−D do
28 P ′ = P ;
29 create a node x′ and insert it into P ′;
30 for i = 1 to m do
31 let H be the path that connects x and vi in G;
32 for j = 1 to |ci| do
33 connect x′ to ui,j in ci based on H;

34 add P ′ into Plist;

35 return Plist;

99

and vi in G. We connect x′ to the nodes in ci based on H. After all the nodes in

D′ are connected, we add P ′ into Plist (Lines 26-34). Finally, we return all the

query patterns in Plist (Line 35).

5.5 Performance Study

In this section, we evaluate the effectiveness and efficiency of ExpressQ. We

implement the algorithms in Java and carry out experiments on a 3.40GHz CPU

with 8GB RAM. We use two relational databases in our experiments: the TPC-H

database (TPCH) [7] and the ACM Digital Library publication (ACMDL) [1].

We construct 7 queries for each database. Tables 5.3 and 5.4 show the queries

and the corresponding descriptions (or search intentions). The keywords of these

queries may match relation names, attribute names and tuple values.

Table 5.3: Queries for the TPCH database

Query Description

T1 part type nickel find the information of the parts with type ‘nickel’
T2 part retailprice name rose find the retail price of the part ‘rose’
T3 customer phone mktseg-

ment automobile
find the phone of the customers who are in ‘automo-
bile’ market segment

T4 orders date priority high
China

find the date of the orders that have ‘high’ priority
and come from ‘China’

T5 supplier Canada find the information of the suppliers in ‘Canada’
T6 supplier part cornflower find the information of the suppliers who supply part

‘cornflower’
T7 customer name lineitem

ship rail
find the name of the customers who order lineitems
by ‘ship’ and ‘rail’

5.5.1 Effectiveness Experiments

One of the advantages of ExpressQ is its ability to identify the context of key-

words and the search targets of a query to retrieve the user intended information.

100

Table 5.4: Queries for the ACMDL database

Query Description

A1 author “Tok Wang Ling” find the information of the author “Tok Wang Ling”
A2 paper “keyword search” find the information of the papers on “keyword

search”
A3 author Jagadish affiliation find the affiliations of the author ‘Jagadish’
A4 publisher code proceeding

SIGMOD
find the code of the publisher for the ‘SIGMOD’ pro-
ceedings

A5 paper title author Hristidis find the title of the papers authored by ‘Hristidis’
A6 editor name proceeding

EDBT ICDT
find the names of the common editors for the pro-
ceedings ‘EDBT’ and ‘ICDT’

A7 author name paper “query
processing” “data integra-
tion”

find the name of the authors with both papers “query
processing” and “data integration”

We verify its effectiveness by comparing ExpressQ with SPARK [69], an existing

relational keyword search engine that does not consider keyword contexts or search

targets. SPARK finds the relations whose tuples matches the query keywords, and

constructs a set of minimal connected graphs called candidate networks based on

these relations. The candidate networks are ranked according to their sizes, and

SQL statements are generated from the top-k networks.

Results for the TPCH Database

Table 5.5 shows the generated SQL statements that best match the descriptions

of the queries for the TPCH database. We see that although both ExpressQ and

SPARK generate the same SQL statement for query T1, they differ greatly for the

rest of the queries.

Queries T2 to T4 show that ExpressQ is more selective in its retrieval of in-

formation as it identifies the search target in the query. ExpressQ retrieves only

the retail price of the part rose for T2, whereas SPARK overwhelms the user by

retrieving all the attributes of this part. This is because ExpressQ has identified

retailprice as the search target in T2. Similarly, ExpressQ retrieves only the cus-

101

Table 5.5: SQL statements generated for the TPCH database

ExpressQ SPARK

T1 select R1.partkey, R1.name... from
part R1 where match(R1.type) against
(‘nickel’ in boolean mode);

select R1.partkey, R1.name... from
part R1 where match(R1.type) against
(‘nickel’ in boolean mode);

T2 select R1.retailprice from part R1
where match(R1.name) against (‘rose’
in boolean mode);

select R1.partkey, R1.name,
R1.mfgr, R1.brand, R1.type,
R1.size... from part R1 where
match(R1.name) against (‘rose’ in
boolean mode);

T3 select R1.phone from customer R1
where match(R1.mktsegment) against
(‘automobile’ in boolean mode);

select R1.custkey, R1.name,
R1.address... from customer R1
where match(R1.mktsegment) against
(‘automobile’ in boolean mode);

T4 select R1.date from orders
R1, customer R2, nation R3
where R1.custkey=R2.custkey and
R2.nationkey=R3.nationkey and
match(R1.priority) against (‘high’ in
boolean mode) and match(R3.name)
against (‘China’ in boolean mode);

select R1.orderkey, R1.custkey,
..., R2.custkey, R2.name... from
orders R1, customer R2, nation R3
where R1.custkey=R2.custkey and
R2.nationkey=R3.nationkey and
match(R1.priority) against (‘high’ in
boolean mode) and match(R3.name)
against (‘China’ in boolean mode);

T5 select R2.suppkey, R2.name,
R2.address... from nation
R1, supplier R2 where
R2.nationkey=R1.nationkey and
match(R1.name) against (‘Canada’ in
boolean mode);

select R1.nationkey, R1.name,
R1.regionkey, R1.comment from
nation R1 where match(R1.name)
against (‘Canada’ in boolean mode);

T6 select R3.suppkey, R3.name... from
part R1, partsupp R2, supplier
R3 where R2.suppkey=R3.suppkey
and R2.partkey=R1.partkey and
match(R1.name) against (‘cornflower’
in boolean mode);

select R1.partkey, R1.name...
R1.comment from part R1 where
match(R1.name) against (‘cornflower’
in boolean mode);

T7 select R1.name from cus-
tomer R1, orders R2, lineitem
R3, orders R4, lineitem R5
where R2.custkey=R1.custkey
and R3.orderkey=R2.orderkey
and R4.custkey=R1.custkey and
R5.orderkey=R4.orderkey and
match(R3.shipmode) against
(‘ship’ in boolean mode) and
match(R5.shipmode) against (‘rail’
in boolean mode);

select R1.orderkey, R1.partkey, ...,
R2.orderkey, R2.custkey... from
lineitem R1, orders R2, lineitem
R3 where R1.orderkey=R2.orderkey
and R3.orderkey=R2.orderkey
and match(R1.shipmode) against
(‘ship’ in boolean mode) and
match(R3.shipmode) against (‘rail’
in boolean mode);

102

tomer phone and order date information for T3 and T4 respectively, while SPARK

retrieves all the attributes of the relations in the FROM clause.

Queries T5 to T7 demonstrate that by considering the context of keywords,

ExpressQ is able to generate SQL statements to retrieve information that the user

is interested in. ExpressQ uses the context provided by the keyword supplier

in both T5 and T6 to correctly generate SQL statements that retrieve supplier

information.

In contrast, SPARK generates SQL statements to retrieve information on the

nation ‘Canada’ for T5, and part information for T6. We see that this does not

match the query descriptions of T5 and T6 in Table 5.3. Similarly, for T7, the SQL

statement obtained from ExpressQ retrieves the intended customer information,

while SPARK retrieves item information instead.

Results for the ACMDL Database

Table 5.6 gives the results for the ACMDL database. Both ExpressQ and

SPARK generate the same SQL statements for queries A1 and A2 because these

are relatively straightforward keyword queries. However, for query A3, ExpressQ

correctly retrieves the affiliation of the author Jagadish while SPARK retrieves

all the attributes except the affiliation of the author. This is because SPARK is

unable to identify that affiliation is the search target of a query.

Queries A4 to A7 show that the context of keywords is important and enables

ExpressQ to correctly generate SQL statements that retrieves the intended infor-

mation: publisher information for A4, paper information for A5, editor information

for A6, and author information for A7. On the other hand, we observe that SPARK

retrieves information that clearly do not match the query descriptions, e.g., pro-

ceedings for A4, and authors for A5.

103

Table 5.6: SQL statements generated for the ACMDL database

ExpressQ SPARK

A1 select R1.author id, R1.name from au-
thor R1 where match(R1.name) against
(“‘Tok Wang Ling”’ in boolean mode);

select R1.author id, R1.name from au-
thor R1 where match(R1.name) against
(“‘Tok Wang Ling”’ in boolean mode);

A2 select R1.paper id, ..., R1.title... from
paper R1 where match(R1.title) against
(“‘keyword search”’ in boolean mode);

select R1.paper id, ..., R1.title... from
paper R1 where match(R1.title) against
(“‘keyword search”’ in boolean mode);

A3 select R11.affiliation from au-
thor R1, author aff history R11
where R11.author id=R1.author id and
match(R1.name) against (‘Jagadish’);

select R1.author id, R1.name from
author R1 where match(R1.name)
against (‘Jagadish’ in boolean mode);

A4 select R2.code from proceed-
ing R1, publisher R2 where
R1.publisher id=R2.publisher id and
match(R1.acronym) against (‘SIG-
MOD’ in boolean mode);

select R1.proc id, R1.publisher id,
R1.acronym, R1.description,
R1.class, R1.title, R1.volume,
R1.isbn13... from proceeding R1
where match(R1.acronym) against
(‘SIGMOD’ in boolean mode);

A5 select R3.title from author
R1, author paper R2, paper
R3 where R2.paper id=R3.paper id
and R2.author id=R1.author id and
match(R1.name) against (‘Hristidis’ in
boolean mode);

select R1.author id, R1.name from
author R1 where match(R1.name)
against (‘Hristidis’ in boolean mode)

A6 select R1.name from editor R1,
edit proceeding R2, proceeding
R3, edit proceeding R4, proceed-
ing R5 where R2.proc id=R3.proc id
and R2.editor id=R1.editor id
and R4.proc id=R5.proc id and
R4.editor id=R1.editor id and
match(R3.acronym) against (‘EDBT’ in
boolean mode) and match(R5.acronym)
against (‘ICDT’ in boolean mode);

select R1.proc id, ...,
R2.publisher id, ..., R3.proc id
from proceeding R1, pub-
lisher R2, proceeding R3 where
R1.publisher id=R2.publisher id and
R3.publisher id=R2.publisher id and
match(R1.acronym) against (’EDBT’ in
boolean mode) and match(R3.acronym)
against (’ICDT’ in boolean mode);

A7 select R1.name from author
R1, author paper R2, paper
R3, author paper R4, paper
R5 where R2.paper id=R3.paper id
and R2.author id=R1.author id
and R4.paper id=R5.paper id and
R4.author id=R1.author id and
match(R3.title) against (“‘query
processing”’ in boolean mode) and
match(R5.title) against (“‘data integra-
tion”’ in boolean mode);

select R1.paper id, R1.proc id,,
R2.citing, R2.cited, R3.paper id,
R3.proc id... from paper
R1, paper citation R2, paper
R3 where R2.citing=R1.paper id
and R2.cited=R3.paper id and
match(R1.title) against (“‘query
processing”’ in boolean mode) and
match(R3.title) against (“‘data integra-
tion”’ in boolean mode);

104

The results of this set of experiments clearly indicate that identifying the key-

word context and search targets of queries greatly enhances the evaluation of key-

word queries and leads to the retrieval of appropriate information.

5.5.2 Efficiency Experiments

Finally, we compare the time taken by ExpressQ and SPARK to generate SQL

statements for the queries. Figure 5.8 shows the results for both TPCH and

ACMDL queries in Tables 5.3 and 5.4 on cold cache.

0

2

4

6

8

10

12

14

16

T1 T2 T3 T4 T5 T6 T7

tim
e

(m
s)

ExpressQ SPARK

(a) TPCH

0

5

10

15

20

25

30

35

40

45

A1 A2 A3 A4 A5 A6 A7

tim
e

(m
s)

ExpressQ SPARK

(b) ACMDL

Figure 5.8: Comparison of SQL generation time by ExpressQ and SPARK

We observe that SPARK is faster than ExpressQ when the number of nodes

in the candidate network/query pattern is small. This is because SPARK does

105

not analyze the search intention of the queries but only finds candidate networks

containing all the keywords that match tuple values.

However, SPARK is slower than ExpressQ for queries T4, T7, A6 and A7. This

is because the number of nodes in the candidate networks for these queries is large,

and SPARK needs more time to enumerate the networks in a breadth-first traversal

manner. For example, SPARK generates 339 intermediate graphs before finding

the top 3 candidate networks for query T7. In contrast, ExpressQ finds the path

customer−lineitem−orders in the ORM schema graph, and builds the query

pattern based on this path directly.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

T1 T2 T3 T4 T5 T6 T7

SQL Gneration SQL Evaluation

(a) TPCH

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A1 A2 A3 A4 A5 A6 A7

SQL Gneration SQL Evaluation

(b) ACMDL

Figure 5.9: Comparison of SQL generation by ExpressQ and SQL execution time

Figure 5.9 compares the time taken by ExpressQ to generate SQL statements,

106

and the time needed to execute these statements over the databases. We see that

the execution of SQL statements dominates the overall processing time (in seconds),

indicating that the extra time taken by ExpressQ to analyze the queries (in ms)

to identify the search intention of the user is a good tradeoff. We note that the

execution time of SQL statements varies significantly with the number of results

retrieved and the number of joins. For example, the SQL statement for query T7

takes more than 30 minutes to join 5 relations, while the SQL statement for query

T5 takes only 78 ms to retrieve 412 results.

5.6 Conclusion

In this chapter, we have examined the problem of enhancing the expressive

power and evaluation of relational keyword queries. This is achieved by extending

the keyword queries in two aspects. First, we consider keywords that match meta-

data, i.e., names of relations and attributes, and utilize them to provide the context

of subsequent keywords in the query. Second, we use the ORM schema graph to

enrich the semantics of the keywords, and identify sets of keywords that refer to

the same object/relationship in the database, in order to infer the search target

of the query. The proposed approach is implemented in a prototype system called

ExpressQ that analyzes keyword queries to identify the user’s search intention and

generates SQL statements to retrieve relevant information. Experimental results

demonstrate that the effectiveness of ExpressQ.

107

CHAPTER 6

KEYWORD QUERIES INVOLVING

AGGREGATES AND GROUPBY

In Chapter 5, we have extended the keyword query language to include meta-

data keywords so that users can better express their search intentions in the queries.

These keywords provide the context of subsequent keywords and indicate the search

target of the query, thus enhancing the query evaluation for retrieval of appropriate

information. In this chapter, we further extend the expressive power of keyword

queries by incorporating aggregate functions and GROUPBY. We study the lim-

itation of existing methods to process keyword queries involving aggregates and

GROUPBY, and propose a semantic approach to address the problem of answer-

ing aggregate queries correctly.

108

6.1 Motivation

Existing works in relational keyword search have focused on the efficient com-

putation of answers from multiple tuples, and largely ignore queries to retrieve

statistical information from databases. This kind of queries typically involve ag-

gregates and GROUPBY, and are called aggregate queries.

Keyword search with aggregate queries is a powerful mechanism that provides

users with a summary of the data. The work in [79] developed a prototype system

called SQAK that allows aggregate queries to be expressed using simple keywords.

An aggregate query in SQAK comprises of a set of terms and one of the terms is

an aggregate function such as COUNT , SUM , AV G, MIN , or MAX.

SQAK models the database schema as a schema graph where each node repre-

sents a relation and each edge represents a foreign key-key reference. Then SQAK

identifies the matches of each term in a query. A relation is matched if a term

matches its name, or the name of one of its attributes, or the value of some of its

tuples. A set of minimal connected subgraphs of the schema graph that contain the

matched relations are generated. These subgraphs are translated into SQL state-

ments to retrieve answers from the database. Note that an aggregate function(s)

is applied to the attribute that follows the aggregate term in the query.

Figure 6.1 shows a sample university database. Suppose we want to know the

total credits obtained by the student Green. We can issue a keyword query Q1 =

{Green SUM Credit}, where the term SUM indicates the aggregate function SUM

on the course credits, and SQAK will generate the following SQL statement:

SELECT S.Sname, SUM(C.Credit)

FROM Student S, Enrol E, Course C

WHERE E.Sid=S.Sid AND E.Code=C.Code

AND S.Sname=‘Green’ GROUP BY Sname

109

Course

Code Title Credit

c1 Java 5.0

c2 Database 4.0

c3 Multimedia 3.0

Lecturer

Lid Lname Did

l1 Steven d1

l2 George d1

Enrol

Sid Code Grade

s1 c1 A

s1 c2 B

s1 c3 B

s2 c1 A

s3 c1 A

s3 c3 B

Teach

Code Lid Bid

c1 l1 b1

c1 l1 b2

c1 l2 b1

c2 l1 b2

c2 l1 b3

c3 l2 b4

Textbook

Bid Tname Price

b1 Programming Language 10

b2 Discrete Mathematics 15

b3 Database Management 12

b4 Multimedia Technologies 20

Department

Did Dname Fid

d1 CS f1

Faculty

Fid Fname

f1 Engineering

Student

Sid Sname Age

s1 George 22

s2 Green 24

s3 Green 21

Figure 6.1: Example university database

We observe that SQAK may compute incorrect answers when a query term

matches multiple tuples. We see that the term Green in Q1 matches the names of

two students s2 and s3 in Figure 6.1. This naturally implies that we should find

the sum of the credits obtained by each of these students, i.e., the total credits for

s2 is 5 while the total credits for s3 is 8. However, SQAK does not distinguish

between these two “different” name matches, and outputs a total credits of 13 for

students called Green, which is incorrect.

Similarly, SQAK may return incorrect answers when a query matches a relation

that has more than 2 foreign keys. For instance, the Teach relation in Figure 6.1

contains 3 foreign keys that reference the relations Course, Lecturer and Textbook

respectively, and depicts that a course can be taught by more than one lecturer

using different textbooks. Suppose we have a query Q2 = {Java SUM Price},

where the term Java matches a course title while the term Price matches an

attribute of the Textbook relation. This implies that we should return the total

price of the textbooks that are used in the Java course. Based on the Teach

relation, there are 2 such textbooks b1 and b2 whose total price is 25. But SQAK

will generate the following SQL statement:

110

SELECT C.Title, SUM(B.Price)

FROM Course C, Teach T, Textbook B

WHERE T.Bid=B.Bid AND T.Code=C.Code

AND C.Title=‘Java’ GROUP BY C.Title

which returns 35 for total price because textbook b1 appears 2 times for the Java

course (i.e., c1) in the Teach relation. This answer is incorrect as a student does

not need 2 copies of the same textbook for a course.

Furthermore, many applications often denormalize their databases to improve

runtime performance. This denormalization leads to data duplication which affects

the database schema graph. As SQAK does not consider unnormalized relations in

the database, it will return incorrect answers for aggregate queries.

Figure 6.2 shows an unnormalized university database where the Lecturer rela-

tion now has a foreign key that references the Faculty relation. Consider the query

Q3 = {Engineering COUNT Department}, where the term Engineering matches

a faculty name while the term Department matches the name of the Department

relation. SQAK will find the number of departments in Engineering faculty by

joining the relations Department, Lecturer and Faculty, and output an incorrect

answer 2. This is because the values of attributes Did and Fid in the Lecturer

relation are duplicated.

Department

Did Dname

d1 CS

Faculty

Fid Fname

f1 Engineering

Lecturer

Lid Lname Did Fid

l1 Steven d1 f1

l2 George d1 f1

Figure 6.2: An unnormalized university database

We advocate that a relational database is essentially a repository of objects that

interacts with each other via relationships that are embedded in foreign key-key

111

references. Since SQAK does not consider the ORA semantics in the database, it

will not be able to distinguish objects with the same attribute value (as in Q1), and

it will fail to detect the duplications of objects in relationships (as in Q2). This

leads to the incorrect computations of aggregate queries. In addition, if relations

are unnormalized with duplicate information of objects and relationships, SQAK

may compute the same information repeatedly and return incorrect answers to

aggregate queries (as in Q3).

In this work, we propose a semantic approach to answer keyword queries involv-

ing aggregates and GROUPBY in relational keyword search. Our approach utilizes

the ORM schema graph to capture the ORA semantics in the database. Given an

aggregate query, we analyze the context of query keywords, identify the various

interpretations of the query and then apply aggregate functions and GROUPBY

on the appropriate attributes of objects/relationships based on the ORM schema

graph. Each query interpretation is denoted as a minimal connected graph called

annotated query pattern. The top-k ranked annotated query patterns are trans-

lated into SQL statements to compute the answers to the aggregate query. We

distinguish the objects with the same attribute value as well as detect the du-

plications of objects in relationships in order to avoid incorrect computations of

aggregate functions. Further, we develop a mechanism to detect duplicate infor-

mation of objects and relationships arising from unnormalized relations so that the

aggregate functions will not repeatedly compute statistics for the same information.

The contributions of our work are summarized as follows:

1. We examine how SQAK answers aggregate queries in relational keyword

search, and identify its problems of returning incorrect answers due to its

unawareness of the ORA semantics in the database.

2. We extend the keyword query language to incorporate aggregate functions

112

and GROUPBY, and propose a semantic approach to process aggregate

queries. We show that without the ORA semantics, it is impossible to process

the aggregate functions correctly.

3. We detect the duplications of objects and relationships arising from unnor-

malized relations, and extend our approach to handle aggregate queries on

unnormalized databases correctly.

4. We implement our approach in a prototype system called PowerQ, and con-

duct extensive experiments to demonstrate the effectiveness of PowerQ in

retrieving statistical information for users.

6.2 Preliminaries

In Chapter 5, we extend the keyword query language to include keywords that

match meta-data, i.e., the names of relations and attributes. These keywords

reduce query ambiguity by providing the context of subsequent keywords in the

query. Consider the query {Lecturer George} on the database in Figure 6.1. The

keyword George can refer to a student name or a lecturer name. However, since

the keyword Lecturer matches the name of the relation Lecturer and provides

the context of the keyword George, we deduce that the user is more likely to be

interested in a lecturer named George rather than a student. Here, we further

extend the keyword query language to incorporate aggregates and GROUPBY.

Definition 6.1. A keyword query Q is a sequence of terms {t1 t2 · · · tn} where

each term ti either matches a relation name, an attribute name, a tuple value,

GROUPBY or an aggregate function MIN , MAX, AV G, SUM or COUNT .

In order to properly interpret a keyword query involving aggregate functions

113

and GROUPBY, we impose the following constraints on the terms in the query:

1. The last term tn cannot match an aggregate function or GROUPBY.

2. For each term ti, i < n that matches the aggregate function MIN , MAX,

AV G or SUM , the next term ti+1 should match an attribute name.

3. For each term ti, i < n that matches COUNT or GROUPBY, the next term

ti+1 should match either a relation name or an attribute name.

For example, a query that satisfies the last constraint is {COUNT Student GROUPBY

Course}. An SQL statement to find the number of students in each course is gen-

erated as follows:

SELECT C.Code, COUNT(S.Sid) As numSid

FROM Student S, Enrol E, Course C

WHERE E.Sid=S.Sid AND E.Code=C.Code

GROUPBY C.Code

Note that the terms Student and Course match the names of the Student and

Course relations, and are mapped to Sid and Code respectively.

Recall that in Chapter 5, we introduce the notion of query patterns to depict the

interpretations of a keyword query. These query patterns are generated from the

ORM schema graph of the database. In this work, we also utilize query patterns

to capture the interpretations of an aggregate query. However, since we extend

the keyword query to include GROUPBY and aggregate functions, we need to

annotate the nodes that the GROUPBY and aggregate functions are applicable to.

Annotating the appropriate nodes is important as it will facilitate the translation

of the query pattern into SQL statements to retrieve the correct answers for the

aggregate query. We will discuss how we achieve this in the next section.

114

6.3 Aggregate Queries on Normalized Database

Given a keyword query Q = {t1 t2 · · · tn}, we first classify the terms ti into

basic terms and operators. A basic term matches a relation name, or an attribute

name, or a tuple value, while an operator matches GROUPBY or an aggregate

function. Then we process Q as follows:

a. Pattern generation and annotation. We utilize the ORM schema graph

of the database and the basic terms in the query to generate a set of query

patterns, and annotate these patterns with the operators.

b. Pattern disambiguation. We disambiguate the query patterns by annotat-

ing the object/mixed nodes with GROUPBY. This is to distinguish objects

with the same attribute value in the database.

c. Pattern translation. We translate the top-k ranked query patterns into

SQL statements to compute the aggregate functions in the query.

We explain the details of these steps in the following sections.

6.3.1 Pattern Generation and Annotation

We use the basic terms in a query to generate a set of initial query patterns.

Each pattern P contains a set of nodes that represent the objects or relationships

referred to by the basic terms. The nodes are connected based on the ORM schema

graph as described in Chapter 5. A node is annotated with the condition a = t if

the basic term t refers to the value of the attribute a of the object or relationship.

For each operator ti ∈ Q, we examine the matches of its subsequent term ti+1

in Q to annotate query pattern P . We have two cases:

115

a. ti+1 matches the name of some object/mixed/relationship relation.

This indicates that ti+1 refers to some object or relationship, and the operator

ti is applied on the identifier id of this object or relationship. We annotate

the node that represents this object/relationship in P with ti(id), id is given

by the primary key of the relation.

b. ti+1 matches the name of a component relation or an attribute name.

This indicates that ti+1 refers to some attribute a of an object or relationship,

and ti is applied on this object/relationship attribute. We annotate the node

that represents this object/relationship in P with ti(a).

The following examples illustrate the various annotations.

Example 6.1. Consider query Q4 = {Green George COUNT Code} on the exam-

ple database in Figure 6.1. Figure 6.3 shows the ORM schema graph of the database

where Student, Course, Faculty and Textbook are object nodes while Enrol and

Teach are relationship nodes. We have mixed nodes Lecturer and Departement

because of the many-to-one relationships between lecturers and departments, and

the many-to-one relationships between departments and faculties.

Figure 6.4 shows a query pattern obtained using the basic terms Green, George

and Code. This pattern contains 2 Student object nodes, 1 Course object node

and 2 Enrol relationship nodes, and depicts the query interpretation to find the

common courses taken by students Green and George. For the operator COUNT,

its subsequent term Code matches an attribute name in the Course relation. We

annotate the Course node with COUNT(Code). Figure 6.5(a) shows the annotated

query pattern P1 that depicts the query interpretation to find the total number of

courses taken by students Green and George. 2

116

Object Node

Relationship Node

Legend:

Mixed NodeTextbook

Teach Course

Enrol Student

FacultyLecturer Department

Figure 6.3: ORM schema graph of Figure 6.1

Course
(Code)

Enrol EnrolStudent
Sname=Green

Student
Sname=George

Figure 6.4: Query pattern obtained using basic terms in the query Q4

Course
COUNT(Code)

Enrol

Enrol

Student
Sname=Green

Student
Sname=George Course

GROUPBY(Code)

Teach

Lecturer
COUNT(Lid)

(a) P1 (b) P2

Figure 6.5: Annotated query patterns of Q4 and Q5

117

Example 6.2. Let us now consider a query Q5 = {COUNT Lecturer GROUPBY

Course} which has two basic terms Lecturer and Course. We generate a query

pattern that contains a Teach relationship node between the objects Lecturer and

Course. For the operator GROUPBY, since its subsequent term Course matches

the name of the Course relation, and refers to a course object, we obtain the

identifier of the course object and annotate the corresponding Course node in the

query pattern with GROUPBY(Code). Similarly, operator COUNT has a subsequent

term Lecturer that matches the name of the Lecturer relation. We annotate the

Lecturer node with COUNT(Lid) and obtain the annotated query pattern P2 in Fig-

ure 6.5(b). This query pattern indicates that the user is interested in the number

of lecturers for each course. 2

6.3.2 Pattern Disambiguation

After annotating the query pattern with operators, we examine the object and

mixed nodes in the pattern. An object/mixed node with the condition a = t refers

to an object such that its value of attribute a matches the basic term t. However,

since this condition could be satisfied by more than one object in the database,

there are two different interpretations of t in the context of the aggregate query:

1. Apply the aggregate function(s) for every distinct object satisfying the con-

dition a = t.

2. Apply the aggregate function(s) for all the objects satisfying the condition

a = t.

These two interpretations will lead to different results of the aggregate func-

tion(s) and we need to distinguish them in the annotated query pattern. Note that

118

SQAK does not distinguish objects satisfying the same condition, and thus returns

incorrect answers to the query.

Let P be an annotated query pattern for aggregate query Q and U be a set of

object/mixed nodes in P . We generate a set of patterns S to indicate if objects

with the same value will be distinguished for aggregates. Initially, S only contains

the pattern P . For each node u ∈ U that is annotated with the condition a = t,

we check if more than one object satisfies this condition in the database. If so, we

create a copy of each pattern in S to indicate if objects that satisfy the condition

a = t will be distinguished in these patterns. Let P1 be a pattern in S and P2 be a

copy of P1. We annotate u in P2 with GROUPBY(id), where id is the identifier of

the object referred to by u. In particular, P1 indicates that aggregate function(s)

is applied for all the objects that satisfy a = t, while P2 indicates that aggregate

function(s) is applied for every distinct object with a = t.

Example 6.3. Consider the query pattern P1 for the query Q4 = {Green George

COUNT Code} in Figure 6.5(a). This pattern contains three object/mixed nodes:

one Course node and two Student nodes that are annotated with the conditions

Sname = Green and Sname = George respectively. For the Student node imposed

by the condition Sname = George, we do not need to create new copies of query

patterns as there is only one student called George in Figure 6.1. However, for the

Student node imposed by the condition Sname = Green, we know that there are

two students called Green in Figure 6.1. Hence, we create a copy P3 of the pattern

P1 and annotate this node with GROUPBY(Sid) in P3. Figure 6.6 shows the query

pattern P3. It indicates that the aggregate function counts the number of courses

enrolled by each student called Green. In contrast, pattern P1 indicates that the

count aggregate is applied for both these two students. 2

119

Course
COUNT(Code)

Enrol

Enrol

Student
Sname=Green
GROUPBY(Sid)

Student
Sname=George

P3

Figure 6.6: A query pattern for Q4

Next, we rank the query patterns. Recall that in Chapter 5, we classify nodes

in a query pattern into target nodes and condition nodes. A target node specifies

the search target of the query, and a condition node indicates the search conditions

of the query. A query pattern is ranked based on its number of object/mixed nodes

and the average distance between the target and condition nodes. Patterns with

fewer object/mixed nodes, and a shorter average distance are ranked higher.

Here, we extend the definitions of target nodes and condition nodes in order

to rank the query patterns of an aggregate query. Let P be an annotated query

pattern and u be a node in P . We say u is a target node if u is annotated with

an aggregate function. Otherwise, u is a condition node if u is annotated with a

condition or GROUPBY.

6.3.3 Pattern Translation

Finally, we translate the top-k ranked query patterns into SQL statements. A

straightforward way to translate an annotated query pattern is to join the relations

of all the nodes in the pattern, select the tuples that satisfy the conditions imposed

by basic terms from the join result, and then apply GROUPBY and aggregate

function(s) on the selected tuples. However, this may generate an SQL statement

that gives an incorrect answer to the query.

120

Example 6.4. Consider the query pattern P2 for the query Q5 = {COUNT Lecturer

GROUPBY Course} in Figure 6.5(b). If we simply translate P2 into an SQL state-

ment that joins the relations Teach, Lecturer and Course, and applies the count

aggregate on the lecturer id Lid after grouping the tuples by the course code, we

may obtain wrong answers as the same lecturer may be counted multiple times.

This is because the Teach node in P2 is in fact a ternary relationship involving the

objects course, lecturer and textbook (see the ORM schema graph in Figure 6.3).

Since different Bid may have the same Lid and Code, we should project the Teach

relation on the foreign keys 〈Lid, Code〉 to remove duplicates before joining with the

relations Lecturer and Course. 2

The above example demonstrates the need to examine the type of nodes in a

query pattern if we want to generate the SQL statement correctly. In particular,

if the query pattern contains a relationship node u, we should look at its corre-

sponding node v in the ORM schema graph to determine if a projection is needed

to remove duplicates. Note that SQAK does not detect the duplications of objects

in relationships, and suffers from the problem of returning incorrect answers.

Given a query pattern P , We generate an SQL statement as follows:

SELECT clause. If a node u ∈ P is annotated with t(a) and t matches an

aggregate function, we include t in the SELECT clause. t is applied on attribute

a. If u is annotated with GROUPBY (a), we include a in the SELECT clause to

facilitate users’ understanding of the aggregate function(s).

FROM clause. This clause includes the relations of all the nodes in P . For each

relationship node u ∈ P , we check its corresponding node v in the ORM schema

graph. Let Nu = {u1, u2, · · · , ux} be a set of object/mixed nodes that are directly

121

connected to u in P , and Nv = {v1, v2, · · · , vy} be the set of object/mixed nodes

that are directly connected to v in the ORM schema graph. If x < y, then this

indicates that P contains a subset of the participating objects of the relationship

v, and we project the foreign keys k1, k2, · · · , kx in the relation of u such that ki

references the relation of ui in Nu, i ∈ [1, x]. This projection eliminates duplicates

and we replace the relation of u in the FROM clause with the relation obtained by

this projection.

WHERE clause. The WHERE clause joins all the relations in the FROM clause

based on foreign key - key constraints. For each node u ∈ P that is annotated

with a condition a = t, we include the condition “Ru.a contains t” where Ru is the

relation corresponding to u.

GROUPBY clause. If a node u is annotated with t(a) and t matches GROUPBY,

then we include the attribute a in the GROUPBY clause.

Example 6.5. Recall the query pattern P3 in Figure 6.6 for query Q4 = {Green

George COUNT Code}. It depicts the query interpretation to find total number of

courses enrolled by the student George and each of the students called Green. The

Course node is annotated with COUNT(Code), so we include the aggregate function

COUNT (Code) in the SELECT clause. The FROM clause contains the relations

corresponding to each of the nodes in P3. Then we add the conditions to join these

relations in the WHERE clause, as well as the conditions in the two annotated

Student object nodes. Since the Student node imposed by the condition Sname

= Green is also annotated with GROUPBY to distinguish different students called

Green, we include the id of its relation in the GROUPBY clause, and obtain the

following SQL statement:

122

SELECT S1.Sid, COUNT(C.Code) AS numCode

FROM Course C, Enrol E1, Student S1, Enrol E2, Student S2

WHERE C.Code=E1.Code AND C.Code=E2.Code

AND S1.Sid=E1.Sid AND S1.Sname contains ‘Green’

AND S2.Sid=E2.Sid AND S2.Sname contains ‘George’

GROUP BY S1.Sid

By applying GROUPBY on the student ids, we can distinguish the students s2 and

s3, both having the same name Green, so that the aggregate function COUNT is

computed for the courses of each student. 2

Example 6.6. Let us translate the query pattern P2 in Figure 6.5(b) for Q5 =

{COUNT Lecturer GROUPBY Course}. It indicates that the user is interested in

the number of lecturers for each course. The Lecturer node is annotated with

COUNT(Lid) while Course node is annotated with GROUPBY (Code). Hence, we in-

clude aggregate function COUNT (Lid) in the SELECT clause, and attribute Code

in the GROUPBY clause. The Teach node in P2 is connected to two object/mixed

nodes, while the corresponding Teach node in the ORM schema graph in Fig-

ure 6.3 is connected to three object/mixed nodes. We generate a subquery “SELECT

DISTINCT Lid, Code FROM Teach” to project the attributes Lid and Code in the

Teach relation. The subquery has a DISTINCT keyword and thus eliminates any

duplicates of 〈Lid, Code〉 for different Bid. We use the result of this subquery to

join the other relations in the FROM clause. The SQL statement generated is:

SELECT C.Code, COUNT(L.Lid) AS numLid

FROM Lecturer L, Course C,

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE T.Lid=L.Lid AND T.Code=C.Code

GROUP BY C.Code 2

123

6.3.4 Nested Aggregate Queries

So far, we have described how to handle keyword queries involving simple ag-

gregate functions and GROUPBY. In order to maximize the power of aggregate

queries, we also want to support queries with nested aggregate functions.

Given a keyword query Q = {t1 t2 · · · tn}, we relax the constraints on the

terms so that if the term ti, i < n matches an aggregate function, the next term

ti+1 can also match an aggregate function. In this case, the aggregate function ti

is applied on the result of the aggregate function ti+1.

Let P be a query pattern obtained from basic terms in the query. We annotate

P with ti(f), where f is the attribute name assigned to the result of the aggregate

function ti+1. Then we generate a nested SQL statement for P . The inner query

computes the aggregate function ti+1, while the outer query includes the inner

query in the FROM clause and computes the aggregate function ti.

Example 6.7. Suppose the user issues a query {AVG COUNT Lecturer GROUPBY

Course} to find the average number of lecturers that teach a course. Both the terms

AVG and COUNT match some aggregate function. We obtain the query pattern and

annotate the operators COUNT and GROUPBY. For the AVG operator, we annotate the

pattern with AVG(numLid), where numLid is the attribute name given to the result

of the aggregate function COUNT . Figure 6.7 shows the annotated query pattern.

To translate the query pattern, we first generate the inner SQL query similar to

that in Example 6.6. Then we include it in the FROM clause of the outer SQL

query to compute the aggregate function AV G. The SQL statement generated is as

follows:

SELECT AVG(R.numLid) AS avgnumLid

FROM (SELECT C.Code, COUNT(L.Lid) AS numLid

FROM Lecturer L, Course C,

124

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE T.Lid=L.Lid AND T.Code=C.Code

GROUP BY C.Code) R 2

AVG(numLid)

Course
GROUPBY(Code)

TeachLecturer
COUNT(Lid)

Figure 6.7: Query pattern in Example 6.7

6.4 Aggregate Queries on Unnormalized Database

Relations in a relational database are often unnormalized to reduce the num-

ber of joins and improve query processing performance. A relational database that

contains unnormalized relations is called an unnormalized database. The denormal-

ization process will duplicate information in the database and SQAK may obtain

incorrect results for keyword queries involving aggregates.

Recall that in Figure 6.2, the Lecturer relation is denormalized by adding a

foreign key Fid that references the Faculty relation. This allows queries that are

frequently issued on lecturers and their faculties to be answered quickly without the

need to join the Department relation. Given a query Q3 = {Engineering COUNT

Department}, SQAK will join the relations Lecturer, Department and Faculty

and return incorrect number of departments in the Engineering faculty as it does

not handle unnormalized relations.

In order to generate SQL statements correctly for keyword queries involving ag-

gregates and GROUPBY, we need to determine if relations are unnormalized. This

can be done by examining the functional dependencies that hold on the relations.

Consider the unnormalized relation Enrolment in Figure 6.8 that is obtained

125

by joining the Student, Enrol and Course relations in Figure 6.1. The following

functional dependencies hold on the Enrolment relation:

• Sid→ Sname,Age

• Code→ Title, Credit

• Sid, Code→ Grade

We deduce that {Sid, Code} is the key of the Enrolment relation, and it violates

second normal form (2NF) [23] as Sname and Age only depends on Sid.

Enrolment

Sid Sname Age Code Title Credit Grade

s1 George 22 c1 Java 5.0 A

s1 George 22 c2 Database 4.0 B

s1 George 22 c3 Multimedia 3.0 B

s2 Green 24 c1 Java 5.0 A

s3 Green 21 c1 Java 5.0 A

s3 Green 21 c3 Multimedia 3.0 B

Figure 6.8: An unnormalized relation

A naive approach to handle a keyword query involving aggregates and GROUPBY

on the unnormalized database is to generate a copy of the database where every

relation is normalized and then process the query as described in Section 6.3. How-

ever, this approach is expensive and not feasible in practice.

We observe that although the relations are unnormalized, the information of ob-

jects and relationships in the database remain the same. Hence, if we can keep track

of the objects and relationships information in an unnormalized database, then we

can continue to process keyword queries involving aggregates and GROUPBY cor-

rectly.

126

Recall that the ORM schema graph captures the information of objects and

relationships in the database by classifying the relations into different types. These

relations are assumed to be in 3NF. Thus, we generate a normalized view of the

unnormalized database comprising of a minimal set of relations in 3NF. Then we

classify the relations in this normalized view and construct the ORM schema graph

to represent the information of objects/relationships in the unnormalized database.

Let D = {R1, R2, · · · , Rj} be the set of relations in the original unnormalized

database schema, and D′ be the set of relations in the normalized view. For each

Ri ∈ D, 1 ≤ i ≤ j, if Ri is in 3NF, then we add it to D′. Otherwise, we normalize

Ri into a set of relations in 3NF and add them to D′. Finally, relations in D′

with the same key are merged. We use relational algebra operators to express the

mappings of the relations from D to D′, and vice versa.

Example 6.8. Let us generate the normalized view of the unnormalized database

in Figure 6.8. The database has a single relation Enrolment with schema D below:

Enrolment(Sid, Code, Sname,Age, T itle, Credit, Grade)

Since the Enrolment relation is not in 3NF, we decompose it into 3NF relations

Student′, Enrol′ and Course′, and obtain the normalized view D′ as follows:

Student′(Sid, Sname,Age)

Enrol′(Sid, Code,Grade)

Course′(Code, T itle, Credit)

Based on D′, we construct the ORM schema graph of the unnormalized database

(see Figure 6.9). Table 6.1 shows the mappings of the relations in D and D′. 2

After obtaining the normalized view D′ and the ORM schema graph G of the

unnormalized database with schema D, we can proceed to evaluate an aggregate

query Q on D correctly as follows:

127

Object Node

Relationship Node

Legend:

Mixed Node

Course'

Enrol' Student'

Figure 6.9: ORM schema graph of Figure 6.8

Table 6.1: Mappings of relations in Example 6.8

Student′ = ΠSid,Sname,Age(Enrolment)
Enrol′ = ΠSid,Code,Grade(Enrolment)
Course′ = ΠCode,T itle,Credit(Enrolment)

(a) From original schema D to normalized view D′

Enrolment = Student′ ./ Enrol′ ./ Course′

(b) From normalized view D′ to original schema D

First, we identify the matches of each basic term in the unnormalized database.

Let R be the relation in D such that a basic term t matches the relation name of

R, or the name of an attribute in R, or the value of some tuples in R. We obtain

the corresponding relations of R in D′ based on the mappings from D to D′.

Next, we utilize the relations in D′ to generate the query patterns based on

G, and annotate these patterns with the operators in the query as described in

Section 6.3. Note that the generated query patterns are based on the normalized

view D′, since G is constructed from D′.

Finally, we translate the annotated query patterns into SQL statements to be

executed over the original unnormalized database. This requires us to map the

relations in D′ back to their corresponding relations in D. Depending on the

mappings, a relation R′ that corresponds to a node in the query pattern may

become a subquery in the SQL statement.

128

Example 6.9. Consider query Q4 = {Green George COUNT Code} on the unnor-

malized database in Figure 6.8. The terms Green and George match the Sname

attribute values of some tuples in the Enrolment relation, while the term Code

matches the name of an attribute in Enrolment. Based on Table 6.1(a), these

matches correspond to 2 Student′ relations and 1 Course′ relation in the normal-

ized view of the database respectively. This indicates that Green and George refer

to two student objects, while Code refers to a course object. Based on the ORM

schema graph in Figure 6.9, we generate a query pattern that connects 2 Student’

nodes and 1 Course’ node via 2 Enrol’ nodes, and annotate it with operators

COUNT and GROUPBY. Figure 6.10 shows the query pattern obtained. It depicts the

query interpretation to find the total number of courses taken by the student George

and each student called Green. We use the mappings in Table 6.1(b) to translate

the query pattern and obtain an SQL statement with 5 subqueries, namely, 2 sub-

queries for Student′ relation, 2 subqueries for Enrol′ relation, and 1 subquery for

Course′ relation in the normalized view of the database.

SELECT S1’.Sid, COUNT(C’.Code) AS numCode FROM

(SELECT DISTINCT Code, Title, Credit FROM Enrolment) C’,

(SELECT Sid, Code, Grade FROM Enrolment) E1’,

(SELECT DISTINCT Sid, Sname, Age FROM Enrolment) S1’,

(SELECT Sid, Code, Grade FROM Enrolment) E2’,

(SELECT DISTINCT Sid, Sname, Age FROM Enrolment) S2’

WHERE C’.Code=E1’.Code AND C’.Code=E2’.Code

AND S1’.Sid=E1’.Sid AND S1’.Sname contains ‘Green’

AND S2’.Sid=E2’.Sid AND S2’.Sname contains ‘George’

GROUP BY S1’.Sid 2

129

Course'
COUNT(Code)

Enrol'

Enrol'

Student'
Sname=Green
GROUPBY(Sid)

Student'
Sname=George

Figure 6.10: Query pattern in Example 6.9

6.4.1 Query Rewriting

The generated SQL statement may contain a lot of subqueries since the mapping

from a relation R′ ∈ D′ to a relation R ∈ D for a node in P often involve a subset of

the attributes of R. Joining relations obtained from subqueries is time consuming

due to the lack of indexes. Hence, it is crucial to rewrite the SQL statement to

improve query performance.

We observe that some attributes in the SELECT clause of subqueries are never

used, and can be removed. In Example 6.9, we can rewrite the subquery “SELECT

DISTINCT Code, Title, Credit FROM Enrolment” to “SELECT DISTINCT Code

FROM Enrolment”, since Title and Credit are not used.

Further, some select conditions in the SQL statement can be moved to the

WHERE clause of subqueries so that tuples can be filtered out before the join, e.g.,

we can rewrite the subquery “SELECT DISTINCT Sid, Sname, Age FROM Enrolment”

to “SELECT DISTINCT Sid, Sname, Age FROM Enrolment WHERE Sname contains

‘Green’” to filter out the students whose names are not Green.

Finally, relations are unnormalized to reduce the number of joins. We can try

to use the unnormalized relation to replace the joining of relations obtained from

subqueries. For example, the Enrolment relation is equivalent to the joins of re-

lations obtained from the subqueries “SELECT DISTINCT Code, Title, Credit

130

FROM Enrolment”, “SELECT Sid, Code, Grade FROM Enrolment”, and “SELECT

DISTINCT Sid, Sname, Age FROM Enrolment”. Hence, we can use the Enrolment

relation to replace these subqueries.

Based on the above observations, We derive the following heuristics to rewrite

an SQL statement sql for the unnormalized database:

Rule 1: If a subquery projects an attribute that does not appear in the SELECT

and WHERE clause of sql, then remove this attribute.

Rule 2: If a subquery projects an attribute a that appears in the condition “a

contains t” of sql, then put this condition in the WHERE clause of the subquery.

Rule 3: Let s1, s2, · · · , sm be a set of subqueries in sql. If there exists a relation R

such that s1 ./ s2 ./ · · · ./ sm = ΠL(R), where L is a superkey of R, then replace

s1 ./ s2 ./ · · · ./ sm with R.

Example 6.10. Consider the SQL statement in Example 6.9. Since the joins of

the subqueries

“SELECT DISTINCT Code, Title, Credit FROM Enrolment”,

“SELECT Sid, Code, Grade FROM Enrolment”, and

“SELECT DISTINCT Sid, Sname, Age FROM Enrolment”

is equivalent to the Enrolment relation, we use the Enrolment relation to replace

C ′ ./ E1′ ./ S1′. Further, we see that the joins of the subqueries

“SELECT Sid, Code, Grade FROM Enrolment” and

“SELECT DISTINCT Sid, Sname, Age FROM Enrolment”

is equivalent to a relation obtained by projecting a super key (Sid, Code, Title,

Credit, and Grade) of the Enrolment relation. Hence, we can also use the Enrolment

relation to replace E2′ ./ S2′. We rewrite the SQL query and obtain the following:

131

SELECT R1.Sid, COUNT(R1.Code) AS numCode

FROM Enrolment R1, Enrolment R2

WHERE R1.Code=R2.Code AND R1.Sname contains ‘Green’

AND R2.Sname contains ‘George’

GROUP BY R1.Sid 2

6.5 Algorithms

In this section, we present the algorithms for processing keyword queries involv-

ing aggregates and GROUPBY.

Algorithm 5 generates a normalized view D′ of the database schema D, if D is

not normalized. For each relation R in D, if R is in 3NF, we add it into D′ directly;

otherwise, we normalize R into a set of 3NF relations and add these relations into

D′. After checking all the relations in D, we enumerate each pair of relations R′1

and R′2 in D′. If R′1 and R′2 have the same key, then we merge them into a single

relation R′.

Algorithm 5: NormalizeDB
Input: database schema D
Output: normalized view D′

1 D′ ← ∅;
2 foreach relation R in D do
3 if R is in 3NF then
4 add R into D′;
5 else
6 normalize R into a set of 3NF relations F ;
7 foreach relation R′ in F do
8 add R′ into D′;

9 foreach pair of relaitons R′1 and R′2 in D′ do
10 if R′1.key = R′2.key then
11 merge R′1 and R′2 into R′;

12 return D′;

132

After generating the database schema D and the normalized view D′, we obtain

the mappings between D and D′. Then, we use Algorithm 6 to process a keyword

query Q and generate the SQL statements. If the database schema D is normalized,

we construct the ORM schema graph G based on D. For each basic term t in Q, we

find its matches in the database and create a tag for each of the matches to capture

the corresponding interpretation of t. We insert these tags into a tag list taglist

(Lines 4-7). Based on taglist and G, we generate a list of query patterns ptnlist,

and annotate these patterns with the operators in Q (Lines 8-9). After annotating

the patterns, we translate each pattern P in ptnlist into an SQL statement sql

according to D, and insert it into sqllist (Lines 10-12).

On the other hand, if the database schema D is unnormalized, we construct

the ORM schema graph G based on D′. For each basic term t, we create the tags

for t based on the matches in D and their mappings in D′. Similarly, we generate

a list of query patterns ptnlist based on the tags and the ORM schema graph,

and annotate each pattern P in ptnlist with the operators. Then we translate each

pattern P into an SQL statement sql based on D′, and map the relations of D′ back

to the relations of D in sql. Finally, we rewrite sql to sql′ to reduce the number of

subqueries and insert sql′ into sqllist (Lines 14-26).

Algorithm 7 shows the details of annotating the query patterns. For each pat-

tern P in ptnlist, we annotate P with the operators in the query Q. For each

operator t in Q, let t′ be the next term of t in Q. If t′ is a basic term, we check its

matches in D. Let u be a node in P and R be the relation of u. If t′ matches the

name of R, then we annotate u with t(R.key); otherwise, if t′ matches the name of

an attribute a of R, we annotate u with t(R.a). If t′ is also an operator, then we

annotate the pattern P with t(t′) to indicate that t is a nested aggregate function

(Lines 3-12).

133

Algorithm 6: Keyword Search

Input: aggregate query Q, database schema D, normalized view D′

Output: list of SQL statements sqllist
1 sqllist← ∅; ptnlist← ∅; taglist← ∅;
2 if D is normalized then
3 G = createORMGraph(D);
4 foreach basic term t in Q do
5 matches = findMatch(t, D);
6 tagset = createTag(matches, G);
7 insert tagset into taglist;

8 ptnlist = createPattern(taglist, G);
9 ptnlist = annotatePattern(Q, ptnlist);

10 foreach pattern P in ptnlist do
11 sql = translate(P , D);
12 insert sql into sqllist;

13 else
14 G = createORMGraph(D′);
15 foreach basic term t in Q do
16 matches = findMatch(t, D);
17 map matches of D into matches′ of D′;
18 tagset = createTag(matches′, G);
19 insert tagset into taglist;

20 ptnlist = createPattern(taglist, G);
21 ptnlist = annotatePattern(Q, ptnlist);
22 foreach pattern P in ptnlist do
23 sql = translate(P , D′);
24 map the relations of D′ to the relations of D in sql;
25 sql′ = rewrite(sql);
26 insert sql′ into sqllist;

27 return sqllist;

Next, we check the annotated nodes in the query patterns. For each pattern P

in ptnlist, we create a set S and add P into S. For each object/mixed node u in P ,

if u is annotated with the condition a = t, we find a set of tuples T that satisfy this

condition in the relation of u. If T contains more than one tuple, we generate new

copies of patterns in S to distinguish the objects that satisfy the same condition.

For each Pattern P in S, we create a copy P ′ of P , annotate node u in P ′ with

GROUPBY(R.key), and add P ′ into S. Finally, we add the patterns in S into the

pattern list aptnlist (Lines 13-24).

134

Algorithm 7: Annotate Pattern
Input: aggregate query Q, list of patterns ptnlist
Output: list of annotated patterns aptnlist

1 aptnlistist← ∅;
2 foreach pattern P in ptnlist do
3 foreach operator t in Q do
4 let t′ be the next term of t in Q;
5 if t′ is a basic term then
6 let u be a node in P and R be the relation of u;
7 if t′ matches the name of R then
8 annotate u with t(R.key);
9 else if t′ matches an attribute a in R then

10 annotate u with t(R.a);

11 else if t′ is an operator then
12 annotate P with t(t′);

13 foreach pattern P in ptnlist do
14 S = {P};
15 foreach object/mixed node u in P do
16 if u is annotated with condition a = t then
17 let R be the relation of u and T be the tuples satisfying a = t in R;
18 if |T | > 1 then
19 foreach pattern P in S do
20 create a copy P ′ of P ;
21 annotate u in P ′ with GROUPBY(R.key);
22 add P ′ into S;

23 add the patterns in S into aptnlistist;

24 return aptnlistist;

6.6 Performance Study

In this section, we evaluate the performance of our approach to process keyword

queries involving aggregates and GROUPBY. We implement the algorithms in Java

and carry out experiments on a 3.40 GHz CPU with 8 GB RAM. We use two

relational databases in our experiments: the TPC-H database (TPCH) [7] and

the ACM Digital Library publication (ACMDL) [1]. Table 6.2 shows the schemas

of these databases. We construct queries involving aggregates and GROUPBY

for each database. Tables 6.3 and 6.4 show the queries and the corresponding

descriptions (or search intentions).

135

Table 6.2: Database schemas

TPCH

Part(partkey, pname, type, size, retailprice)

Supplier(suppkey, sname, nationkey, acctbal)

Lineitem(partkey, suppkey, orderkey, quantity)

Order(orderkey, custkey, amount, date, priority)

Customer(custkey, cname, nationkey, mktsegment)

Nation(nationkey, nname, regionkey)

Region(regionkey, rname)

ACMDL

Paper(paperid, procid, date, ptitle)

Author(authorid, fname, lname)
Editor(editorid, fname, lname)
Proceeding(procid, acronym, title, date, pages, publisherid)

Publisher(publisherid, code, name)

Write(paperid, authorid)

Edit(editorid, procid)

Table 6.3: Queries for the TPCH database

Query Description

T1 AVG amount Find the average amount of orders
T2 MAX COUNT order GROUPBY

nation
Find the maximum number of orders for each
nation

T3 COUNT order “royal olive” Find the number of orders that contains the
“royal olive”

T4 MAX acctbal “yellow tomato” Find the maximum balance of suppliers that
supply the “yellow tomato”

T5 COUNT supplier “Indian black
chocolate”

Find the number of suppliers for “Indian black
chocolate”

T6 COUNT part GROUPBY sup-
plier

Find the number of parts supplied by each sup-
plier

T7 COUNT order SUM amount
GROUPBY mktsegment

Find the number of orders and their total
amount for each market segment

T8 COUNT supplier “pink rose”
“white rose”

Find the number of suppliers for “pink rose”
and “white rose”

136

Table 6.4: Queries for the ACMDL database

Query Description

A1 AVG pages Find the average pages of proceedings
A2 COUNT paper GROUPBY pro-

ceeding SIGMOD
Find the number of papers in each ‘SIGMOD’
proceeding

A3 COUNT proceeding Smith Find the number of proceedings edited by
‘Smith’

A4 MAX date Gill Find the date of the latest papers written by
‘Gill’

A5 COUNT author “database tun-
ing”

Find the number of authors for each “database
tuning” paper

A6 COUNT paper MAX date IEEE Find the number of papers published by
‘IEEE’ and most recent date

A7 COUNT paper author John Mary Find the number of papers co-authored by
‘John’ and ‘Mary’

A8 COUNT editor SIGIR CIKM Find the number of editors that edit proceed-
ings ‘SIGIR’ and ‘CIKM’

6.6.1 Effectiveness Experiments

Our approach utilizes the ORM schema graph to capture the ORA semantics

in the database, and generates a list of annotated query patterns from the ORM

schema graph to represent the various interpretations of a keyword query. Based

on these patterns, we distinguish objects with the same value and detect duplicate

objects in relationships in order to compute the answers correctly.

We compare our approach with SQAK [79], the state-of-the-art relational key-

word search engine that processes aggregate queries without considering the ORA

semantics.

SQAK takes an aggregate query and finds a set of relations that are matched by

query terms. A relation is matched if a term matches the name of the relation, or

the name of one of its attributes, or the relation tuples. Based on these relations, it

generates a set of minimal connected graphs called simple query networks (SQN).

The SQNs are used to generate the SQL statements to return the answers.

137

Results for the TPCH Database

We use the generated SQL statements that best match the query descriptions

in Table 6.3 to compute the query answers. Table 6.5 shows the results returned by

SQAK and our approach, as well as the explanations for these answers. Although

both SQAK and our approach give the same answer for queries T1 and T2, they

differ greatly for the rest.

Queries T3 and T4 show that our approach is able to distinguish the various

interpretations of query terms that match objects with the same value. For query

T3, our approach returns the number of orders for each “royal olive” part, while

SQAK returns the number of orders for all the “royal olive” parts. This is because

we differentiate parts with the same name by their object identifiers partkey. Sim-

ilarly, for T4, our approach returns the maximum account balance of suppliers for

each “yellow tomato” part, whereas SQAK returns the maximum account balance

among all the suppliers that supply a “yellow tomato”.

Queries T5 and T6 show that by examining the relationships and their partici-

pating objects, our approach is able to detect the duplicate objects in relationships

and generate SQL statements that compute the aggregates correctly. For query

T5, our approach returns 4 for the number of suppliers that supply “Indian black

chocolate”. SQAK counts the same suppliers multiple times for different the orders

and returns 22, a value that is way above the actual number of suppliers. Similarly

for T6, our approach detects the duplicates of suppliers for different orders, and

returns the correct number of parts supplied by each supplier, while SQAK returns

incorrect answers.

Queries T7 and T8 demonstrate that our approach can answer aggregate queries

that SQAK does not handle. Query T7 requires an SQL statement that contains

2 aggregate functions in the SELECT clause. However, SQAK restricts that the

138

SELECT clause of a generated SQL statement specifies exactly one aggregate func-

tion. Query T8 requires an SQL statement to join 2 Part relations, but SQAK

does not generate SQL statements that contain self joins of relations.

Table 6.5: Answers of queries for the normalized TPCH database

SQAK Our Proposed Approach

Answer Explanation Answer Explanation

T1
AVG amount:
1.42× 105

average amount of
orders

AVG amount:
1.42× 105

average amount of
orders

T2
MAX COUNT
order: 6568

maximum number of
orders in a nation

MAX COUNT
order: 6568

maximum number of
orders in a nation

T3 1 answer: 229
incorrect answer:
mix all “royal olive”
parts

8 answers:
23, 22, 29, 27,
33, 35, 33, 27

number of orders for
each “royal olive”
part

T4
1 answer:
9844.00

incorrect answer:
mix all “yellow
tomato” parts

13 answers:
6361.20,
9538.15, ...,
7916.56

maximum account
balance of suppliers
for each “yellow
tomato” part

T5
COUNT supplier:
22

incorrect answer:
same suppliers are
counted multiple
times for various
orders

COUNT supplier:
4

number of suppliers
that supply “Indian
black chocolate”

T6
1000 answers:
593, 571, 595,
606, ...

incorrect answers:
same parts are
counted multiple
times for various
orders

1000 answers:
80, 80, 79, 80, ...

number of parts sup-
plied for each sup-
plier

T7 N.A.
do not handle more
than one aggregate

5 answers:
〈2.99× 104,
4.26× 109〉, ...,
〈3.03× 104,
4.33× 109〉

one answer for each
market segment

T8 N.A.
do not handle self
joins of relations

3 answers:
1, 1, 1

number of suppliers
that supply a partic-
ular “pink rose” and
a particular “white
rose”

139

Results for the ACMDL Database

Table 6.6 shows the answers and the explanations for the queries on the ACMDL

database. Query A1 is relatively straightforward, and both our approach and

SQAK return the correct answer. For A2, SQAK also gives the correct answer

because the term SIGMOD matches a proceeding acronym and there is no proceed-

ings with the same acronym.

Table 6.6: Answers of queries for the normalized ACMDL database

SQAK Our Proposed Approach

Answer Explanation Answer Explanation

A1 AVG ages: 297
average pages of pro-
ceedings

AVG ages: 297
average pages of pro-
ceedings

A2
36 answers:
84, 84, 82, ...

number of papers for
each ‘SIGMOD’ pro-
ceeding

36 answers: 84,
84, 82, ...

number of papers for
each ‘SIGMOD’ pro-
ceeding

A3 1 answer: 62
incorrect answer:
mix all editors named
‘Smith’

61 answers:
1, 1, 2, ...

number of proceed-
ings edited by each
editor named ‘Smith’

A4
1 answer:
2011-06-13

incorrect answer:
mix all authors
named ‘Gill’

36 answers:
1994-05-01,
1998-08-01, ...

most recent date of
papers written by
each author named
‘Gill’

A5
4 answers:
2, 4, 6, 4

incorrect answers:
mix papers with the
same title

6 answers:
2, 2, 2, 6, 2, 2

number of authors
for each “database
tuning” paper

A6 N.A.
do not handle more
than one aggregate

4 answers:
〈4011,
2011-01-25〉, ...

number of papers
published by ‘IEEE’
and their most recent
date

A7 N.A.
do not handle self
joins of relations

46 answers:
1, 32, 8, 1, ...

number of papers co-
authored by a par-
ticular author ‘John’
and a particular au-
thor ‘Mary’

A8 N.A.
do not handle self
joins of relations

2 answers: 1, 1

number of editors
that edit a ‘SI-
GIR’ and a ‘CIKM’
proceeding

140

For queries A3 and A4, there are 61 editors with name Smith and 36 authors

with name Gill in the database. Since SQAK does not distinguish the editors

and authors with the same name, it returns incorrect number of proceedings and

the most recent date of papers respectively. Similarly, for query A5, our approach

returns 6 answers while SQAK only returns 4 answers, as it mixes some papers

with the same title.

Query A6 involves 2 aggregate functions. Queries A6 and A7 require self joins

of two Author relations and two Editor relations respectively. SQAK is unable to

process these queries, while our approach returns the correct answers.

Queries on Unnormalized Databases

Next, we denormalize the ACMDL and TPCH databases, and obtain the un-

normalized database schemas in Table 6.7. We use the queries in Tables 6.3 and

6.4 on the unnormalized databases and compare the results returned by SQAK and

our approach.

Table 6.7: Unnormalized database schemas

TPCH’

Ordering(partkey, suppkey, orderkey, pname, type, size, retailprice, sname,

nationkey, regionkey, acctbal, custkey, amount, date, priority, quantity)
Customer(custkey, cname, nationkey, regionkey, mktsegment)

Nation(nationkey, nname)

Region(regionkey, rname)

ACMDL’

PaperAuthor(paperid, authorid, procid, date, title, fname, lname)

EditorProceeding(editorid, procid, fname, lname, acronym, title, date, pages,

publisherid)
Publisher(publisherid, code, name)

Tables 6.8 and 6.9 show that our approach continues to return correct answers

to the queries. In contrast, SQAK either returns incorrect answers or does not

handle the queries.

141

Table 6.8: Query answers on the unnormalized TPCH
(Our approach returns the same answer as Table 6.5)

SQAK Explanation

T1 AVG amount: 1.78× 105 incorrect answer: count duplicate orders

T2 MAX COUNT order: 26485 incorrect answer: count duplicate orders

T3 1 answer: 229

incorrect answers: The same reason as Table 6.5

T4 1 answer: 9844.00
T5 COUNT supplier: 22
T6 1000 answers: 593, 571, ...
T7 N.A.
T8 N.A.

Table 6.9: Query answers on the unnormalized ACMDL
(Our approach returns the same answer as Table 6.6)

SQAK Explanation

A1 AVG ages: 637 incorrect answers: count duplicate proceedings

A2
36 answers: 2000, 408, 14858,
...

incorrect answers: count duplicate papers

A3 1 answer: 62

incorrect answers: The same reason as Table 6.6

A4 1 answer: 2011-06-13
A5 4 answers: 2, 4, 6, 4
A6 N.A.
A7 N.A.
A8 N.A.

For queries T1 and T2, SQAK returns the values 1.78 × 105 and 26485 re-

spectively because the information of orders are duplicated in the unnormalized

relation Ordering. Similarly, SQAK returns the answer 637 for A1, and 2000,

408, 14858, etc. (totally 36 answers) for A2, both of which are incorrect as the

information of proceedings and papers are duplicated in the unnormalized rela-

tions EditorProceeding and PaperAuthor. Note that these queries are answered

correctly by SQAK when the database is normalized.

For queries T3 to T6 and queries A3 to A5, SQAK returns the incorrect answers

for the same reason as discussed in Tables 6.5 and 6.6.

This set of experiments clearly demonstrate that the ORA semantics are im-

portant to distinguish the various interpretations of keyword queries so that the

142

generated SQL statements will compute statistical information from the database

correctly.

6.6.2 Efficiency Experiments

Finally, we compare the time taken by our approach and SQAK to generate

SQL statements. Figure 6.11 shows the results for TPCH and ACMDL queries in

Tables 6.3 and 6.4.

0

1

2

3

4

5

6

7

8

T1 T2 T3 T4 T5 T6 T7 T8

Ti
m

e
(m

s)

Proposed Approach SQAK

(a) TPCH

0

2

4

6

8

10

12

14

16

A1 A2 A3 A4 A5 A6 A7 A8

Ti
m

e
(m

s)

Proposed Approach SQAK

(b) ACMDL

Figure 6.11: Comparison of SQL generation time by our approach and SQAK

We observe that our approach is slightly slower than SQAK for most of the

queries. This is because SQAK does not analyze the interpretations of keyword

queries but only finds SQNs containing all the query terms. It also does not dis-

143

tinguish objects with the same attribute value and does not detect the duplicate

objects in relationships. Besides, it does not consider the duplications arising from

unnormalized relations.

Take query A7 for example. We first parse this query into basic terms (paper,

author, John, Mary) and operators (COUNT). Then, we generate a query pattern

with one Paper node, two Write nodes and two Author nodes. We annotate the

Paper node with the Count operator, and split the pattern into 4 patterns in order

to distinguish the authors called John and the authors called Mary respectively.

Finally, we detect if information of paper and author objects are duplicated in write

relationships, and translate the patterns into SQL statements.

In contrast, SQAK simply does not handle the query because both the terms

John and Mary match the values of some tuples in the Author relation.

As the SQL execution time dominates the overall processing time (in seconds),

we see that the extra time (in ms) required by our approach to interpret the keyword

queries and detect the duplicates is a good tradeoff and important to retrieve correct

answers from the databases.

6.7 PowerQ System

We have built an interactive keyword search engine called PowerQ1 to answer ag-

gregate queries using our proposed approach. PowerQ extends the keyword query

language to include aggregate functions and GROUPBY, and utilizes the ORM

schema graph to capture the ORA semantics in the database. Through user in-

teractions, PowerQ can determine users’ search intention, and translate aggregate

queries into SQL statements to compute the answers correctly.

Figure 6.12 shows a screenshot of the interface where PowerQ lists the anno-

1The PowerQ prototype is available at http://powerq.comp.nus.edu.sg.

144

http://powerq.comp.nus.edu.sg

Figure 6.12: Screenshot of annotated query patterns

tated query patterns of the query {COUNT Code George Green} on the database

in Figure 6.1. From these annotated query patterns, we can see how the keyword

match objects and/or relationships interact and form the interpretations of the

query. The basic terms are highlighted in red color while the operators are high-

lighted in blue color in the annotations of the query patterns. Further, the pattern

nodes are highlighted to indicate the objects/relationships that aggregate functions

and/or GROUPBY are applicable to. The meanings of the annotated query pat-

terns are described in human natural language to facilitate users’ understanding.

In Figure 6.12, the description of P2 is to “Find the count of the courses that are

taught by the lecturer with name matching George and are enrolled by the student

with name matching Green group by Sid”, while the description of P1 is to “Find

the count of the courses that are taught by the lecturer with name matching George

145

and are enrolled by the student with name matching Green”. Compare the descrip-

tions of these two patterns, we can see that PowerQ distinguishes objects with the

same attribute value in order to answer the aggregate query correctly. Appendix B

provides details on the architecture of the PowerQ system.

6.8 Conclusion

In this chapter, we have investigated the problem of answering keyword queries

involving aggregates and GROUPBY on relational databases. The existing work

does not consider the ORA semantics, and thus suffers from the problems of return-

ing incorrect answers. We address these problems by utilizing the ORM schema

graph to capture the ORA semantics, and propose a semantic approach to an-

swer aggregate queries. Given an aggregate query, we generate a set of annotated

query patterns to represent various interpretations of the query. Based on these

patterns, we distinguish objects with the same attribute value and detect dupli-

cations of objects in relationships. The top-k ranked patterns are translated into

SQL statements which apply aggregate functions to compute the statistical infor-

mation correctly. Further, we develop a mechanism to detect duplications arising

from unnormalized relations, and extend our approach to handle aggregate queries

on unnormalized databases. Experimental results demonstrate the our approach

returns correct answers to aggregate queries both on normalized and unnormalized

databases. The proposed approach has been implemented in a prototype system

called PowerQ.

146

CHAPTER 7

CONCLUSION

Keyword search over relational databases has gained attraction due to its ease

of use. However, we find that existing relational keyword search methods do not

consider the ORA semantics in the database and thus suffer from the problems

of retrieving incomplete answers, irrelevant answers, incorrect answers, missing an-

swers and duplicated answers. In addition, traditional keyword queries have limited

expressive power and are inherently ambiguous. A keyword query often has multi-

ple interpretations. Existing works do not analyze the search intention of the query

and retrieve answers for each possible interpretation of the query. This leads to

an overwhelming number of answers mixed by various query interpretations, many

of which are complex, and may not satisfy the user’s search intention. Further,

existing works on relational keyword queries do not provide for the retrieval of

statistical information from the database. The work in [79] allows queries involv-

ing aggregate functions to be expressed using simple keywords. However, it does

not take into account the ORA semantics for query processing, and may compute

147

aggregate functions incorrectly.

In this thesis, we have exploited the ORA semantics in relational databases and

utilized these semantics to improve the completeness and correctness of relational

keyword search. The contributions of research are summarized as follows:

In Chapter 3, we have examined existing relational keyword search methods, and

identified their problems of retrieving incomplete and irrelevant answers. To ad-

dress these problems, we classify the relations in the database into object relations,

relationship relations, mixed relations and component relations. An object (rela-

tionship resp.) relation captures the information of objects (relationships resp.),

i.e., the single-valued attributes of an object class (relationship type). Multivalued

attributes are captured in the component relations. A mixed relation contains infor-

mation of both objects and relationships, which occurs when we have a many-to-one

relationship. We refer to these semantic information as the Object-Relationship-

Attribute (ORA) semantics of the database. Based on the ORA semantics, we

construct an ORM data graph to represent the objects and relationships in the

database. In contrast to the traditional data graph, a node in the ORM data

graph is associated with a type and may correspond to a list of tuples. We propose

a semantic approach to relational keyword search via the ORM data graph. Our

approach processes keyword queries depending on the objects and relationships

that match keywords, and retrieves complete and informative query answers.

In Chapter 4, we have studied the problems of existing keyword search methods

to output query answers, and proposed a semantic approach to help users find

informative answers. This is achieved by investigating how objects are related via

relationships in the database using the ORM data graph. We identify simple paths,

recursive paths, palindrome paths and complex paths between a pair of nodes in

the ORM data graph. Based on these semantic paths, we propose a semantic path

148

ranking scheme for relational keyword queries. Compared to the existing ranking

schemes, our method has the advantage of distinguishing the paths with the same

length in the answers according to their different types. The query answers are

further annotated with the ORA semantics and grouped based on semantic paths

to facilitate users’ understanding.

In Chapter 5, we have enhanced the expressive power of keyword queries by

extending the keyword query language to include keywords that match meta-data,

that is, the names of relations and attributes. These keywords provide the con-

text of subsequent keywords in the query and indicate the search targets of the

query. We model the database schema as an ORM schema graph. Given an ex-

tended keyword query, we utilize the ORM schema graph to identify the objects

and relationships referred to by the query keywords, and construct a set of minimal

connected graphs called query patterns to denote the user’s possible search inten-

tions. We rank these query patterns based on the search targets of the query as well

as the number of objects captured in the patterns. The top-k ranked patterns are

translated into SQL statements to retrieve the answers to the query. We develop

a system called ExpressQ to process extended keyword queries. We demonstrate

that ExpressQ is able to infer the search intention and leads to the retrieval of user

intended information.

In Chapter 6, we have further extended the keyword query language to incorpo-

rate aggregate functions and GROUPBY. We study the existing work SQAK that

supports aggregate functions in keyword queries, and identify its serious problems

of returning incorrect answers due to its unawareness of the ORA semantics in the

database. To avoid these problems, we utilize the ORM schema graph to capture

the ORA semantics in the database, and process aggregate queries using a semantic

approach. Given an aggregate query, we classify the terms in the query into basic

149

terms and operators. A basic term matches a relation name, or an attribute name,

or a tuple value, while an operator matches GROUPBY or an aggregate function.

Then, we generate a set of query patterns using the basic terms and annotate these

patterns using the operators in the query. Based on the annotated query patterns,

we distinguish objects with the same attribute value and detect duplications of

objects in relationships in order to generate the SQL statements that compute the

aggregate functions correctly. We show that without using the ORA semantics, it is

impossible to process aggregate queries correctly. Further, we develop a mechanism

to detect duplications of objects/relationships arising from unnormalized relations,

and extend our approach to answer aggregate queries on unnormalized databases

correctly. Our approach is implemented in a system call PowerQ. We show that

PowerQ can determine the user’s search intention, and compute the answers to

aggregate queries correctly.

Above all, by utilizing the ORA semantics in the database, we avoid the prob-

lems of incomplete answers, irrelevant answers, incorrect answers, missing answers

and duplicated answers in existing keyword search methods, and thus improve the

completeness and correctness of relational keyword search. This is because the

ORA semantics allow us to analyze users’ search intention and lead to the retrieval

of user intended information.

7.1 Future Work

The usability of a database is as important as its capability [45]. Keyword

search is an effective way to increase the database usability by providing a simple

yet powerful paradigm for querying the database. Having shown how the ORA

150

semantics is able to improve the completeness and correctness of keyword search,

we would like to further explore how these semantics can be utilized in the following

topics.

Temporal Keyword Search

In keyword search on the web, many documents such as web pages contain-

ing news and events are sensitive to certain time periods. Hence, to retrieve the

most relevant pages, the user may desire to issue keyword queries with temporal

constraints. Temporal keyword search is not as simple as the post-precessing of

query answers according to the temporal constraints. Instead, it raises challenges

to quickly compute answers using time-aware indexes and to rank these answers

based on both their content and temporal information. The work in [49] pro-

poses an indexing and ranking framework for temporal keyword search on the web.

The framework leverages the classical vector space model and provides a complete

scheme for indexing, query processing and ranking of the temporal keyword queries.

The work in [19] studies efficient computation and ranking of answers to temporal

queries for XML keyword search.

In addition to web and XML documents, many applications store temporal

information in relational databases. For instance, a medical record database can

contain temporal information such as the visit histories of patients, the periods of

patents’ insurances, the diagnosis of doctors etc. Hence, it is desirable to support

temporal keyword search over relational databases. We advocate that the ORA

semantics is helpful for temporal keyword search in two aspects. First, we need the

ORA semantics to interpret query keywords as well as temporal constraints for com-

plete and correct retrieval of user intended information. Second, we need the ORA

semantics to investigate the time periods that keyword match objects/relationships

151

interact with each other for effective ranking strategies. Without using the ORA

semantics, we would suffer from the similar serious problems as existing works on

relational keyword search.

Keyword Search over Semistructured and Structured Data

Depending on applications, the same information can be represented by un-

structured (e.g., documents), semi-structured (e.g., XML), and structured (e.g.,

relational database) data. For example, we can store the information of Computer

Science Bibliography [2] in a single XML document, or in several relations with for-

eign key - key constraints. Since users do not have to be knowledgeable about the

data organization before issuing keyword queries, it is important to return consis-

tent answers for the same query, regardless of whether the data is semi-structured

or structured, and what the schema is. Otherwise, users will become confused over

the different outputs and doubt the correctness of the search method.

In Chapter 6, we have studied the aggregate queries on both normalized and

unnormalized databases. Recently, [52] proposed a schema-independent keyword

search method for XML data. Both the works return consistent answers for the

same query regardless of the database schemas. However, they do not investigate

if query answers remain the same when an XML document is transformed to a

relational database, and vice versa.

In the future work, we would like to compare the similarities and differences be-

tween XML keyword search and relational keyword search, and attempt to process

keyword queries on XML and relational databases using a unified method. This

requires us to return correct answers consistently no matter the input data is in the

form of an XML document or a relational database. Our idea is that although the

data may have various representations, the information of objects and relationships

152

in the data remain the same. Hence, we can process keyword queries correctly and

consistently by keeping track of the objects/relationships information in the data,

and their mappings to XML fragments and database tuples.

153

BIBLIOGRAPHY

[1] ACM Digital Library (ACMDL). http://dl.acm.org/.

[2] Computer Science Bibliography (DBLP). http://dblp.uni-trier.de/xml/.

[3] D2RQ benchemarking. http://sites.wiwiss.fu-berlin.de/suhl/bizer/

d2rq/benchmarks/.

[4] Extensible Markup Language (XML). http://www.w3.org/XML/.

[5] Google Search. https://www.google.com.

[6] Internet Movie Database (IMDB). http://www.imdb.com/interfaces.

[7] TPC-H Benchmark (TPC-H). http://www.tpc.org/tpch/.

[8] Yahoo Search. https://search.yahoo.com/.

[9] H. Achiezra. Understanding Complex Answers of Queries on Graphs. Hebrew

University of Jerusalem, 2009.

154

http://dl.acm.org/
http://dblp.uni-trier.de/xml/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rq/benchmarks/
http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rq/benchmarks/
http://www.w3.org/XML/
https://www.google.com
http://www.imdb.com/interfaces
http://www.tpc.org/tpch/
https://search.yahoo.com/

[10] B. Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind Hulgeri, Charuta

Nakhe, Parag Parag, and S. Sudarshan. Banks: Browsing and keyword search-

ing in relational databases. In VLDB, 2002.

[11] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A system

for keyword-based search over relational databases. In ICDE, 2002.

[12] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-

trieval. Addison-Wesley Longman Publishing Co., Inc., 1999.

[13] Andrey Balmin, Vagelis Hristidis, and Yannis Papakonstantinou. ObjectRank:

authority-based keyword search in databases. In VLDB, 2004.

[14] Zhifeng Bao, Tok Wang Ling, Bo Chen, and Jiaheng Lu. Effective xml keyword

search with relevance oriented ranking. In ICDE, 2009.

[15] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo Lado,

and Yannis Velegrakis. Keyword search over relational databases: a metadata

approach. In SIGMOD, 2011.

[16] Sonia Bergamaschi, Francesco Guerra, Matteo Interlandi, Raquel Trillo-Lado,

and Yannis Velegrakis. QUEST: A keyword search system for relational data

based on semantic and machine learning techniques. In VLDB, 2013.

[17] Sonia Bergamaschi, Francesco Guerra, Silvia Rota, and Yannis Velegrakis.

A hidden markov model approach to keyword-based search over relational

databases. In ER, 2011.

[18] Veli Bicer, Thanh Tran, and Radoslav Nedkov. Ranking support for keyword

search on structured data using relevance models. In CIKM, 2011.

155

[19] Rasha Bin-Thalab, Neamat El-Tazi, and Mohamed E.El-Sharkawi. TX-Kw:

An effective temporal xml keyword search. IJACSA, 2013.

[20] François Bourgeois and Jean-Claude Lassalle. An extension of the munkres al-

gorithm for the assignment problem to rectangular matrices. Commun. ACM,

1971.

[21] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual

web search engine. In WWW, 1998.

[22] Mal Castellanos and Flix Saltor. Semantic enrichment of database schemas:

An object oriented approach. In Proceedings of the First International Work-

shop on Interoperability in Multidatabases Systems, 1991.

[23] E. F. Codd. Further normalization of the data base relational model. IBM

Research Report, San Jose, California, 1971.

[24] Joel Coffman and Alfred Weaver. An empirical performance evaluation of

relational keyword search techniques. IEEE Trans. on Knowl. and Data Eng.,

2014.

[25] Joel Coffman and Alfred C. Weaver. A framework for evaluating database

keyword search strategies. In CIKM, 2010.

[26] Joel Coffman and Alfred C. Weaver. Learning to rank results in relational

keyword search. In CIKM, 2011.

[27] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2 edition, 2001.

[28] Bhavana Bharat Dalvi, Meghana Kshirsagar, and S. Sudarshan. Keyword

search on external memory data graphs. Proc. VLDB Endow., 2008.

156

[29] C J Date. A Guide to the SQL Standard. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1986.

[30] Kathi Hogshead Davis and Adarsh K. Arora. Converting a relational database

model into an entity-relationship model. In Proceedings of the Sixth Interna-

tional Conference on Entity-Relationship Approach, 1988.

[31] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin.

Finding top-k min-cost connected trees in databases. In ICDE, 2007.

[32] Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Networks.

Mathematical Assn of America, 1984.

[33] S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks,

1971.

[34] Robert J Elliott, Lakhdar Aggoun, and John B Moore. Hidden Markov Models.

Springer, 1994.

[35] Georgios Fakas, Zhi Cai, and Nikos Mamoulis. Diverse and proportional size-l

object summaries for keyword search. In SIGMOD, 2015.

[36] Georgios J. Fakas, Zhi Cai, and Nikos Mamoulis. Size-l object summaries for

relational keyword search. In VLDB, 2011.

[37] Lujun Fang, Anish Das Sarma, Cong Yu, and Philip Bohannon. REX: ex-

plaining relationships between entity pairs. Proc. VLDB Endow., 2011.

[38] Venkatesh Ganti, Yeye He, and Dong Xin. Keyword++: A framework to

improve keyword search over entity databases. Proc. VLDB Endow., 2010.

[39] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.

XRANK: Ranked keyword search over xml documents. In SIGMOD, 2003.

157

[40] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. BLINKS: ranked keyword

searches on graphs. In SIGMOD, 2007.

[41] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient IR-

style keyword search over relational databases. In VLDB, 2003.

[42] Vagelis Hristidis, Heasoo Hwang, and Yannis Papakonstantinou. Authority-

based keyword search in databases. ACM Trans. Database Syst., 2008.

[43] Vagelis Hristidis and Yannis Papakonstantinou. Discover: keyword search in

relational databases. In VLDB, 2002.

[44] Arvind Hulgeri and Charuta Nakhe. Keyword searching and browsing in

databases using BANKS. In ICDE, 2002.

[45] H. V. Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian, Yun-

yao Li, Arnab Nandi, and Cong Yu. Making database systems usable. In

SIGMOD, 2007.

[46] Varun Kacholia, Shashank Pandit, and Soumen Chakrabarti. Bidirectional

expansion for keyword search on graph databases. In VLDB, 2005.

[47] Mehdi Kargar and Aijun An. Keyword search in graphs: finding r-cliques. In

VLDB, 2011.

[48] Mehdi Kargar, Aijun An, Nick Cercone, Parke Godfrey, Jaroslaw Szlichta, and

Xiaohui Yu. MeanKS: Meaningful keyword search in relational databases with

complex schema. In SIGMOD, 2014.

[49] Ali Khodaei, Cyrus Shahabi, and Amir Khodaei. Temporal-textual retrieval:

Time and keyword search in web documents. IJNGC, 2012.

158

[50] Georgia Koutrika, Alkis Simitsis, and Yannis Ioannidis. Précis: The essence

of a query answer. In ICDE, 2006.

[51] Georgia Koutrika, Zahra Mohammadi Zadeh, and Hector Garcia-Molina. Data

clouds: summarizing keyword search results over structured data. In EDBT,

2009.

[52] Thuy Ngoc Le, Zhifeng Bao, and Tok Wang Ling. Schema-independence in

xml keyword search. In ER, 2014.

[53] Thuy Ngoc Le, Tok Wang Ling, H.V. Jagadish, and Jiaheng Lu. Object

semantics for xml keyword search. In DASFAA, 2014.

[54] Thuy Ngoc Le, Huayu Wu, Tok Wang Ling, Luochen Li, and Jiaheng Lu. From

structure-based to semantics-based: Towards effective xml keyword search. In

ER, 2013.

[55] Fei Li and H. V. Jagadish. Usability, databases, and HCI. IEEE Data Eng.

Bull., 2012.

[56] Fei Li and Hosagrahar V Jagadish. NaLIR: An interactive natural language

interface for querying relational databases. In SIGMOD, 2014.

[57] Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. Effective keyword

search for valuable lcas over xml documents. In CIKM, 2007.

[58] Guoliang Li, Jianhua Feng, Xiaofang Zhou, and Jianyong Wang. Providing

built-in keyword search capabilities in rdbms. The VLDB Journal, 2011.

[59] Guoliang Li, Shengyue Ji, Chen Li, and Jianhua Feng. Efficient type-ahead

search on relational data: A tastier approach. In SIGMOD, 2009.

159

[60] Guoliang Li, Beng Chin Ooi, and Jianhua Feng. EASE: an effective 3-in-

1 keyword search method for unstructured, semi-structured and structured

data. In SIGMOD, 2008.

[61] Luochen Li, ThuyNgoc Le, Huayu Wu, TokWang Ling, and Stéphane Bressan.

Discovering semantics from data-centric xml. In DEXA, 2013.

[62] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-free xquery. In VLDB,

2004.

[63] Tok Wang Ling, Thuy Ngoc Le, and Zhong Zeng. Semantics-based keyword

search over xml and relational databases. In SoICT, 2013.

[64] Tok Wang Ling, Thuy Ngoc Le, and Zhong Zeng. Towards an intelligent

keyword search over xml and relational databases. In BigComp, 2014.

[65] Tok Wang Ling and Mong Li Lee. Relational to entity-relationship schema

translation using semantic and inclusion dependencies. Integr. Comput.-Aided

Eng., 1995.

[66] Tok Wang Ling, Zhong Zeng, Thuy Ngoc Le, and Mong Li Lee. Ora-semantics

based keyword search in xml and relational databases. In KEYS, 2016.

[67] Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury. Effective keyword

search in relational databases. In SIGMOD, 2006.

[68] Ziyang Liu and Yi Chen. Processing keyword search on xml: a survey. World

Wide Web, 2011.

[69] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. SPARK: top-k keyword

query in relational databases. In SIGMOD, 2007.

160

[70] Yi Luo, Wei Wang, and Xuemin Lin. SPARK: A keyword search engine on

relational databases. In ICDE, 2008.

[71] Zhaohui Peng, Jun Zhang, Shan Wang, and Lu Qin. TreeCluster: Clustering

results of keyword search over databases. In WAIM, 2006.

[72] Ken Q. Pu and Xiaohui Yu. Keyword query cleaning. Proc. VLDB Endow.,

2008.

[73] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Keyword search in databases: The

power of rdbms. In SIGMOD, 2009.

[74] Lu Qin, Jeffrey Xu Yu, and Lijun Chang. Computing structural statistics by

keywords in databases. In ICDE, 2011.

[75] Lu Qin, Jeffrey Xu Yu, Lijun Chang, and Yufei Tao. Querying communities

in relational databases. In ICDE, 2009.

[76] Yehoshua Sagiv. A personal perspective on keyword search over data graphs.

In ICDT, 2013.

[77] Alkis Simitsis, Georgia Koutrika, and Yannis Ioannidis. Précis: From unstruc-

tured keywords as queries to structured databases as answers. The VLDB

Journal, 2008.

[78] Yufei Tao and Jeffrey Xu Yu. Finding frequent co-occurring terms in relational

keyword search. In EDBT, 2009.

[79] Sandeep Tata and Guy M. Lohman. SQAK: Doing more with keywords. In

SIGMOD, 2008.

161

[80] Shan Wang, Zhaohui Peng, Jun Zhang, Lu Qin, Sheng Wang, Jeffrey Xu Yu,

and Bolin Ding. NUITS: a novel user interface for efficient keyword search

over databases. In VLDB, 2006.

[81] Yu Xu and Yannis Papakonstantinou. Efficient keyword search for smallest

lcas in xml databases. In SIGMOD, 2005.

[82] Yu Xu and Yannis Papakonstantinou. Efficient lca based keyword search in

xml data. In EDBT, 2008.

[83] Ling-Ling Yan and Tok Wang Ling. Translating relational schema with con-

straints into OODB schema. In Database Semantics Conference, 1933.

[84] Xiaohui Yu and Huxia Shi. CI-Rank: Ranking keyword search results based

on collective importance. In ICDE, 2012.

[85] Zhong Zeng, Zhifeng Bao, Dobbie Gillian, Mong Li Lee, and Tok Wang Ling.

Semantic path ranking scheme for relational keyword queries. In DEXA, 2014.

[86] Zhong Zeng, Zhifeng Bao, Thuy Ngoc Le, Mong Li Lee, and Tok Wang Ling.

ExpressQ: Identifying keyword context and search target in relational keyword

queries. In CIKM, 2014.

[87] Zhong Zeng, Zhifeng Bao, Mong Li Lee, and Tok Wang Ling. A semantic

approach to keyword search over relational databases. In ER, 2013.

[88] Zhong Zeng, Zhifeng Bao, Mong Li Lee, and Tok Wang Ling. Towards an

interactive keyword search over relational databases. In WWW, 2015.

[89] Zhong Zeng, Mong Li Lee, and Tok Wang Ling. Answering keyword queries

involving aggregates and groupby on relational databases. In EDBT, 2016.

162

[90] Zhong Zeng, Mong Li Lee, and Tok Wang Ling. PowerQ: An interactive

keyword search engine for aggregate queries on relational databases. In EDBT,

2016.

[91] Bin Zhou and Jian Pei. Answering aggregate keyword queries on relational

databases using minimal group-bys. In EDBT, 2009.

163

APPENDIX A

EXPRESSQ DEMO SYSTEM

Based on Chapter 5, we have developed a system called ExpressQ that actively

involves the user in the search process in order to address the following challenges

in relational keyword queries:

1. How to identify the search target of a user query?

2. How to identify the context of a keyword since keywords can match tuple

values as well as meta-data such as the names of relation and attributes [86]?

3. How to present the query answers such that they facilitate human under-

standing and convey the relationship between data items [87, 55]?

ExpressQ captures the ORA semantics in the database, and handles keywords

matching the names of relations and attributes. Given a keyword query, ExpressQ

infers the search target of the query by identifying the objects/relationships referred

to by the keywords. Then it constructs query patterns to represent the user’s

possible search intentions, and rank the patterns. The meanings of these query

164

patterns are described in human natural languages in order to facilitate users’

understanding. Based on the user’s choice of query patterns, ExpressQ will generate

SQL statements to retrieve the answers.

The work in [56] presents a natural language interface for querying RDB. How-

ever, their focus is how to understand a loosely structured query, while we strive to

interpret the search intention of a keyword query and interactively construct SQLs.

A.1 System Architecture

Figure A.1 depicts the architecture of ExpressQ. The system takes as input a

keyword query, and generates a set of SQL statements that best capture the user’s

search intention. During the query processing, it interacts with the user in the front

end and communicates with the database and its corresponding schema in the back

end, in order to retrieve the information that the user is interested in. There are

four main components in ExpressQ, namely, Query Analyzer, Query Interpreter,

Ranker, and SQL Generator. We will discuss the functions of these components.

Database

DB
Index

DB
Schema

ORM
Schema Graph

Query
Interpreter

Ranker

Query
Analyzer

SQL
Generator

Keyword tags

Query patterns

Interactive
UI

Figure A.1: System Architecture

Query Analyzer

The Query Analyzer parses each keyword in the query and obtains the possible

matches of the keywords. Based on the ORM schema graph of the database, the

165

Query Analyzer determines the object/relationship that a keyword refers to. The

semantic information of each keyword is captured in a tag, and the tags that refer

to the same object or relationship are grouped together.

Consider the keyword query {Project Student Green Brown} on the database

in Figure 5.1. Figure A.2 shows the screenshot of the interface where ExpressQ

lists the different matches of the keywords in this query for the user to select. Note

that the keyword Brown has two matches and thus can refer to a student or a

department object.

Figure A.2: Screenshot of possible keyword matches

Query Interpreter

The Query Interpreter constructs a set of query patterns to represent the pos-

sible search intentions of the user. A query pattern is a minimal connected graph

derived from the ORM schema graph. Intuitively, the Query Interpreter creates

166

a node to denote each object/relationship referred to by keywords. These nodes

will correspond to the nodes in the ORM schema graph and the Query Interpreter

connects them based on the edges in the graph.

For example, given the selected keyword matches for the keyword query {Project

Student Green Brown} in Figure A.2, ExpressQ creates 3 nodes to denote a project

object, the student named Green and the student named Brown. Based on the ORM

schema graph in Figure 5.2, the Project node can connect to the Student node via

the StuProj node. Hence, ExpressQ connects these three objects by creating two

StuProj relationships between the students and the project. The query pattern P1

obtained is shown in Figure A.3, indicating that the user is interested in projects

that involve both the students Green and Brown.

Further, the Project node can also connect to the Student node via the path

Project − ProjDept − Department − Student in the ORM schema graph. By

creating nodes (ProjDept and Department) according to this path, we obtain the

query pattern P2 in Figure A.3. It depicts the user’s intention to find projects

which involve Green and are conducted by the department where Brown studies.

Ranker

Since ExpressQ may generate multiple query patterns for a keyword query, it is

necessary to rank these patterns. The Ranker in ExpressQ takes into account how

many objects are involved in the query patterns. This is captured by the number

of object/mixed nodes in the patterns. The Ranker also identifies the target nodes

and the condition nodes in the patterns. A target node indicates the output object

of the query while a condition node indicates the restrictions for the output object.

Consequently, query patterns with fewer object/mixed nodes, and a shorter average

distance between target nodes and condition nodes will be ranked higher.

167

Figure A.3: Screenshot of query interpretations

In Figure A.3, query pattern P1 contains 3 object/mixed nodes while query

pattern P2 contains 4 object/mixed nodes. Both P1 and P2 have one target node

(Project) and two condition nodes (Student). We compute the average distance

between the Project node and two Student nodes. P1 has an average distance of

2 while the P2 has an average distance of 2.5. Thus, P1 is ranked higher than P2.

SQL Generator

Finally, the SQL Generator translates a query pattern into an SQL statement

to retrieve the result from the database. Existing RDB keyword search engines

typically generate SQLs that project every attribute of joining relations [48, 70].

As a result, many irrelevant attributes are projected, which makes the output

168

overwhelming and difficult to understand.

In contrast, ExpressQ only projects the information on the target node. In

particular, if the target node specifies the output object by its name, then the

SQL Generator will include all the attributes of the object in the SELECT clause.

Otherwise, if it specifies the name of an attribute of the output object, then the

system will include the corresponding attribute in the SELECT clause.

For example, ExpressQ will translate the query pattern P1 in Figure A.3 to the

following SQL statement:

SELECT P.Pid, P.Name, P.Budget

FROM Project P, StuProj SP1, Student S1, StuProj SP2, Student S2

WHERE P.Pid=SP1.Pid AND P.Pid=SP2.Pid AND

SP1.Sid=S1.Sid AND SP2.Sid=S2.Sid AND

S1.Name contains ‘Green’ AND S2.Name contains ‘Brown’

Note that ExpressQ only outputs the relevant project information. In contrast,

existing works will project the attributes of 5 relations in the FROM clause, and

the output will contain a lot of irrelevant information.

A.2 User Interaction

One key feature of ExpressQ is its friendly interaction with the user to under-

stand his/her search intention so that it can be selective in its generation of SQL

statements and subsequent retrieval of relevant answers for the user.

As the user often has some particular search intention in mind, ExpressQ ac-

tively involves the user in the query evaluation process. In particular, if a keyword

is associated with more than one tag, the user is offered the opportunity to choose

the tag(s); if the Query Interpreter constructs more than one query pattern, the

169

user is again allowed to select his/her intended query pattern and retrieve the cor-

responding answers. This interactive approach has the advantage of systematically

leading the user to obtain answers that satisfy his/her search intention. This ap-

proach also gives the user insight into how the query is interpreted by the system

and the results that can be expected.

Recall the query {Project Student Green Brown} in Figure A.2. Suppose

the user issues this query to find the projects that involve both the students Green

and Brown. Since the keyword Brown can refer to a student named Brown or a

department at Brown street, the ExpressQ shows the possible matches for the user

to choose from (see Figure A.2). If the user selects Brown as referring to a student

name, then ExpressQ will show how the students Brown and Green can relate to a

project in terms of query patterns (see Figure A.3).

Figure A.4: Screenshot of answers retrieved

Another feature of ExpressQ is it depicts the query interpretations and an-

swers in human natural language to facilitate users’ understanding. For instance,

The query pattern P1 in Figure A.3 is represented as a graph annotated with the

semantics of objects and relationships. The meaning of this pattern is to “Find

the projects that involve the student with name matching Green and involve the

student with name matching Brown”. Thereby, the user can easily identify the

170

intended query pattern by the graph structure, and verify its meaning by the de-

scription. After the user selects a query pattern, ExpressQ retrieves the answers

and represents them according to the corresponding search intention. Figure A.4

shows the screenshot of the interface which displays the answers w.r.t. the query

pattern P1 in Figure A.3.

A.3 Demonstration

The ExpressQ prototype with a web-based browsing interface is available at

http://expressq.comp.nus.edu.sg. ExpressQ communicates with a Java based

server, and we can run queries over a number of real world applications such as the

IMDB database [6], and the ACM Digital Library [1].

Through this demonstration, we can highlight three keypoints. First, the inter-

pretation of the user’s search intention is critical to keyword search over relational

database. This requires the keyword search system to know the ORA semantics in

the database. Second, keywords that match the meta-data are helpful to infer the

search intention of the user since they provide the context of subsequent keywords

in the query. Third, the presentations of the query interpretations and query an-

swers are important to facilitate users’ understanding and subsequent interaction

with the system.

171

http://expressq.comp.nus.edu.sg

APPENDIX B

POWERQ DEMO SYSTEM

Based on Chapter 6, we have also developed a system called PowerQ to an-

swer keyword queries involving aggregates and GROUPBY. Given an aggregate

query, it utilizes the ORM schema graph to identify the various interpretations of

the query and applies aggregate functions and GROUPBY on the appropriate at-

tributes of objects/relationships. Each query interpretation is denoted as a graph

called an annotated query pattern, whose meaning is described in natural language.

The query patterns that satisfy the user’s search intention are translated into SQL

statements to compute the answers. During the query processing, PowerQ dis-

tinguishes the objects with the same attribute value and detects the duplications

of objects/relationships regardless of whether the database is normalized or not.

Otherwise, the aggregate function(s) cannot be computed correctly.

172

B.1 System Architecture

Figure B.1 shows the architecture of PowerQ. The frontend of PowerQ interacts

with the user during the query processing, while the backend communicates with

the database and the ORM schema graph to compute the query answers. The

main components in PowerQ are Query Parser/Analyzer, Query Interpreter, SQL

Generator, Visualization Module and Normalization Module. We will describe each

of these components.

Query
Parser/Analyzer

Query
Interpreter

SQL
Generator

Visualization
Module

Term Tags

Annotated
Query Patterns

Frontend

Database DB Index

ORM
Schema Graph

Normalization
Module DB Schema

Normalized
View

Backend

Figure B.1: System Architecture

Query Parser/Analyzer

Given an aggregate query, the Query Parser/Analyzer classifies the terms in the

query into basic terms and operators. A basic term matches a relation name, or

an attribute name, or a tuple value in the database, while an operator matches an

aggregate function or GROUPBY. For the basic terms, the Query parser/Analyzer

obtains their matches and determines the objects/relationships referred to by these

terms based on the ORM schema graph of the database.

173

Query Interpreter

The Query Interpreter generates a set of initial query patterns based on the

basic terms of the query and the ORM schema graph of the database. Each query

pattern contains a set of nodes that represents the objects/relationships referred

to by the basic terms. For each operator ti, if its subsequent term ti+1 refers to

some object or relationship, the Query Interpreter annotates the corresponding

node with ti(id), where id is the identifier of the object/relationship; otherwise, if

ti+1 refers to some attribute a of an object or relationship, the Query Interpreter

annotates the corresponding node with ti(a).

Consider the aggregate query {COUNT Code George Green} on the database in

Figure 6.1. PowerQ first utilizes the basic terms Code, George and Green to obtain

a query pattern that consists of 5 nodes, namely, Lecturer − Teach − Course −

Enrol − Student. For the operator COUNT, since its subsequent term Code matches

the name of an attribute in the Course relation, we will annotate the Course node

with COUNT(Code), and obtain the annotated query pattern P1 in Figure B.2. This

pattern depicts the query interpretation to find the total number of courses which

are taught by lecturer George and enrolled by student Green.

In an annotated query pattern, an object/mixed node with the condition a = t

refers to an object such that its value of attribute a matches the basic term t.

However, since this condition could be satisfied by more than one object in the

database, we have two different interpretations:

1. Apply the aggregate functions(s) for every distinct object satisfying a = t.

2. Apply the aggregate function(s) for all the objects satisfying a = t.

The Query Interpreter distinguishes these two interpretations by annotating the

object/mixed node with GROUPBY(id), where id is the identifier of the object.

174

Figure B.2: Screenshot of annotated query patterns

By applying GROUPBY on object identifiers, we can distinguish objects with the

same attribute value and compute the aggregate functions for each of them.

In Figure B.2, the annotated query pattern P1 contains a Student node that

is annotated with the condition Sname = Green. From the database in Figure 6.1,

we know that there are two students called Green. Hence, we have a second query

pattern P2 that is similar to P1, except that we annotate the Student node in

P2 with GROUPBY(Sid) in Figure B.2. P1 counts the number of courses for all the

students called Green, while P2 counts the number of courses for each student called

Green separately.

SQL Generator

The SQL Generator translates an annotated query pattern into an SQL state-

ment to compute the answers. Consider the query pattern P2 in Figure B.2. Pow-

175

erQ will generate the following SQL statement for this pattern:

SELECT S.Sid, COUNT(C.Code)

FROM Lecturer L, Course C, Enrol E, Student S

(SELECT DISTINCT Lid, Code FROM Teach) T

WHERE L.Lid=T.Lid AND C.Code=T.Code AND S.Sid=E.Sid

AND C.Code=E.Code

GROUP BY S.Sid

Note that this statement has a subquery “SELECT DISTINCT Lid, Code FROM

Teach” to project the distinct attributes Lid and Code in the Teach relation. This

is because the Teach node in P2 is in fact a ternary relationship involving course,

lecturer and textbook objects (see the ORM schema graph in Figure 6.3). The same

course can be taught by a lecturer using different textbooks. That is, the same Lid

and Code are duplicated for different Bid in the Teach relation. PowerQ detects

duplicated objects in relationships in order to compute the aggregates correctly.

Visualization Module

The Visualization Module represents the various interpretations of a keyword

query, and actively interacts with the user to obtain the interpretations that sat-

isfy his/her search intention. In particular, if a term has multiple matches in the

database and refers to different objects/relationships, the user is offered the oppor-

tunity to choose the matches. If more than one query pattern is constructed for

the query, the user is again allowed to choose his/her intended query patterns.

One feature of PowerQ is that it represents query interpretations visually and

describes them in human natural language in order to facilitate users’ understand-

ing. For instance, the annotated query pattern P2 in Figure B.2 is represented as

a graph annotated with semantics of objects and relationships. The nodes with

176

operators in the graph are highlighted to indicate the objects/relationships that

aggregates are applicable to. The description of this pattern is to “Find the count

of the courses that are taught by the lecturer with name matching George and are

enrolled by the student with name matching Green group by Sid”. The user can

easily identify the intended query interpretation by the graph structure, and verify

its meaning by the description. After the user chooses a query pattern, PowerQ

computes the answers and represents them according to the corresponding search

intention. Figure B.3 shows the screenshot of the interface which displays the query

answers for the query pattern P2 in Figure B.2 and the detailed information for

user to verify the answers.

Figure B.3: Screenshot of answers to query pattern P2 in Figure B.2

Normalization Module

Relations in a relational database are often denormalized to improve query

processing performance. This denormalization process will duplicate information

of objects and relationships in the database and lead to incorrect computation of

answers for an aggregate query.

177

PowerQ is able to detect denormalization and keep track of the object/relationship

information in the database to answer aggregate queries correctly. This is achieved

by examining the functional dependencies hold on the relations. If the database is

denormalized, then it generates a normalized view of the database which comprises

of a minimal set of normalized relations, and obtains the mappings of relations

in the normalized view and the original schema. The normalized view is used to

construct the ORM schema graph of the denormalized database and build query

patterns of the query, while the mappings are used to generate the SQL statements

which continue to compute the answers correctly.

B.2 Demonstration

The PowerQ prototype with a web-based browser is available at http://powerq.

comp.nus.edu.sg. PowerQ exploits the ORA semantics in the database, distin-

guishes objects with the same attribute value, and detects duplications of objects

in relationship to answer aggregate queries correctly. Further, we can run the ag-

gregate queries on a denormalized data and show how PowerQ continues to process

the aggregate queries correctly.

Through this demonstration, we highlight the importance of the ORA seman-

tics to relational keyword search. This is reflected in three aspects. First, the

interpretation of keyword queries requires the system to know the semantics of

objects/relationships. Second, in order to answer queries involving aggregates and

GROUPBY correctly, we need to distinguish objects with the same attribute value

and detect duplications of objects in relationships. Third, we need to keep track of

objects and relationships in the database, so that queries on denormalized databases

can continue to be handled correctly.

178

http://powerq.comp.nus.edu.sg
http://powerq.comp.nus.edu.sg

	Acknowledgement
	Summary
	Introduction
	Research Problems
	Thesis Contributions
	ORA Semantics for Relational Keyword Search
	Semantic Path Ranking Scheme for Relational Keyword Search
	Keyword Context and User Search Target in Relational Keyword Queries
	Keyword Queries involving Aggregates and GROUPBY

	Thesis Outline

	Related Work
	Basic Concepts
	Processing Keyword Queries
	Data Graph Approach
	Schema Graph Approach
	Other Approaches
	Summary

	Ranking Keyword Query Answers
	Ranking Strategies
	Top-K Query Answers

	Presenting Keyword Query Answers
	Query Answer Analysis
	Keyword Query Refinement

	XML Keyword Search

	Object-Relationship-Attribute Semantics for Relational Keyword Search
	Classification of Relations
	ORM Data Graph
	ORM Search
	Performance Study
	Effectiveness Experiments
	Efficiency Experiments

	Conclusion

	Semantic Path Ranking Scheme for Relational Keyword Search
	Motivation
	Semantic Paths between ORM Nodes
	Proposed Ranking Scheme
	Performance Study
	Conclusion

	Keyword Context and User Search Target in Relational Keyword Queries
	Motivation
	ORM Schema Graph
	Extended Keyword Queries
	Query Analysis
	Query Interpretation
	Query Pattern Ranking
	SQL Statement Generation

	ExpressQ System
	Performance Study
	Effectiveness Experiments
	Efficiency Experiments

	Conclusion

	Keyword Queries involving Aggregates and GROUPBY
	Motivation
	Preliminaries
	Aggregate Queries on Normalized Database
	Pattern Generation and Annotation
	Pattern Disambiguation
	Pattern Translation
	Nested Aggregate Queries

	Aggregate Queries on Unnormalized Database
	Query Rewriting

	Algorithms
	Performance Study
	Effectiveness Experiments
	Efficiency Experiments

	PowerQ System
	Conclusion

	Conclusion
	Future Work

	Bibliography
	Appendix ExpressQ Demo System
	System Architecture
	User Interaction
	Demonstration

	Appendix PowerQ Demo System
	System Architecture
	Demonstration

