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Summary

In recent times, in order to study the relationship between large numbers

of variables based on some given information, estimation of the conditional

covariance matrix has received much attention in many areas. Even though

several statistical models and methods have been introduced in literature,

those models still have limited capability to describe different patterns of

dependence in the data. In this thesis, we study the estimation problem of

conditional covariance matrix from two aspects. First, to study the corre-

lation structure for a portfolio of financial assets, we explore the effect of

the exogenous variable on pairwise correlations by utilizing a reduced rank

model. Therefore, we could identify the functional driving factors based on

smoothing techniques and tools in factor analysis, but without additional

model specification. Simulation studies and an empirical analysis are con-

ducted to demonstrate the validity of our approach. The second problem

considered is how to efficiently estimate conditional variance functions. In-

stead of estimating the mean functions at the first stage, we propose a novel
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Summary

approach by combining the techniques in kernel smoothing and difference-

based method, which outperforms two existing approaches in most cases.

Furthermore, we provide detailed theoretical justifications in Chapter 2 and

Chapter 3 respectively, including consistency and asymptotic normality of

our proposed estimators.
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CHAPTER 1

Introduction

Modelling variances and covariance matrices are common statistical prob-

lems in different fields, such as graphical modelling, machine learning and fi-

nancial econometrics. Various popular approaches have been well understood

and applied for estimating variances. Additionally, for estimating covariance

matrices, substantive available methods have been proposed to illustrate the

structure of these matrices. Recently, due to the nature of some collected data

sets, describing and forecasting dynamic variances and covariance matrices

has attracted considerable attention. In particular, nonparametric and semi-

parametric models have been utilized and extensively studied for estimating

conditional variance functions. Although there are not many nonparametric

or semiparametric models for conditional covariance matrices, several useful

estimation strategies have been developed and widely applied in practice. In

the following, we will discuss some existing approaches to these estimation
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Chapter 1. Introduction

problems.

1.1 Conditional variance estimation

Many scientific studies require information about the volatility of a ran-

dom variable (or covolatility of two random variables) given past information

or the values of other variables, which is frequently measured by conditional

variance (or conditional covariance) in statistical analysis. Estimation of con-

ditional variance function or covariance function is important in a variety of

statistical applications. Recently, nonparametric and semiparametric regres-

sion models have also been employed for this estimation problem.

Variance function estimation via nonparametric heteroskedastic regres-

sion models is an active area in statistical analysis. Let Y ∈ R be a scalar

response, X ∈ Rp be p-dimensional covariate. The following nonparametric

model is usually considered in literature,

Y = m(X) + σ(X)ε, (1.1)

where m(x) is an unknown mean function, σ2(x) is an unknown variance

function, and ε is the error term satisfying E(ε|X) = 0, Var(ε2|X) = 1.

Given samples {(Xi, Yi) : i = 1, · · · , n}, we are particularly interested in the

conditional variance of Y given X = x, denoted by

σ2(x) = Var(Y |X = x) = E[{Y −m(X)}2|X = x]

where m(x) = E(Y |X = x). This problem has received much attention for

2



1.1. Conditional variance estimation

the univariate case p = 1. In this situation, to estimate σ2(x), a natural

idea is to firstly estimate the unknown conditional mean function m(x).

Yao and Tong (1994) proposed a direct estimator by separately estimat-

ing E(Y 2|X) and E(Y |X), and then obtained the variance estimator, but

such an estimator could introduce a large bias. Even though Härdle and

Tsybakov (1997) improved the estimator by using common bandwidth and

kernel, this method seems still not completely adaptive to the unknown con-

ditional mean function m(x). Based on the squared residuals obtained after

a preliminary estimation of m(x), Hall and Carroll (1989) considered kernel

estimators of σ2(x) and investigated the effect of the smoothness of m(x) on

the convergence rate for variance function estimator. Additionally, Ruppert,

Wand, Holst and Hössjer (1997) and Fan and Yao (1998) investigated this

problem by means of local polynomial smoothing on the estimated squared

residuals, and proved that such residual-based estimator could be adaptive

to the unknown m(x) under some regularity conditions. However, when m(x)

is not smooth enough or has high fluctuation, the estimation of m(x) is not

so efficient, and neither the estimation of σ2(x). See the discussion of Wang,

Brown, Cai and Levine (2008) and the examples therein.

There is much literature also dealing with this estimation problem when

p > 1. However, direct extension of such nonparametric estimation proce-

dures to the multivariate case may not be feasible, because it may encounter

the well-known “curse of dimensionality”. Nevertheless, several effective es-

timators may be constructed by restricting the functional form of the un-

known mean and variance functions. Some useful classes of models have been

successfully applied in high dimensional cases, including, but not limited

to, additive models and single-index models. In addition, without estimat-
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Chapter 1. Introduction

ing mean functions or computing link functions, difference-based approaches

have been studied for variance function estimation problem. The details of

difference-based methods will be further discussed in Chapter 3.

1.2 Conditional covariance matrix estimation

To our knowledge, estimating the covariance matrix (or its inverse) could

be difficult due to two main obstacles: (a) the positive-definiteness constraint

and (b) the high dimensionality problem. For modelling the constant covari-

ance matrices, a number of alternatives have been extensively studied in

literature (Pourahmadi (1999), Bickel and Levina (2008a), Bickel and Lev-

ina (2008b), Levina, Rothman and Zhu (2008), Lam and Fan (2009) and

Cai and Liu (2011)), and most of them focus on the sparse estimation pro-

cedures to achieve parsimonious structure. In real situations, the constant

assumption imposed on the covariance matrix may be violated, thus develop-

ing desirable covariance matrix estimators in this case could be much more

difficult in terms of efficiency, generality and computational cost.

The estimation problems about time varying conditional covariance ma-

trix are most commonly discussed. Consider a multivariate process {Xt},

Xt = (X1,t, · · · , Xp,t)
> with mean zero, and allow the information set at

time t − 1 represented by Ft−1, then the conditional covariance matrix as-

sumed to follow a time-varying structure is defined as

Cov(Xt|Ft−1) = Ht. (1.2)

Numerous statistical models for conditional covariance matrix Ht have been

4



1.2. Conditional covariance matrix estimation

developed in the literature.

1.2.1 Estimation through multivariate GARCH models

Bollerslev, Engle and Wooldridge (1988) introduced the VEC model, a

direct generalization of the univariate GARCH model by using the vector-

ization operation. For instance, the VEC(1, 1) model is given by

vec(Ht) = vec(Ω) + Avec(Xt−1X
>
t−1) + Bvec(Ht−1), (1.3)

where A and B are p2 × p2 matrices, and vec(·) denotes the vectorization of

p×p matrix, but some strong constraints should be imposed on the parame-

ters to ensure the positive definiteness of the conditional covariance matrix.

In order that the positivity of Ht could be easily guaranteed under weak

conditions, Engle and Kroner (1995) presented the BEKK representation for

the dynamic covariance matrix. Accordingly, the BEKK(1, 1,m) model is

expressed as

Ht = C +
m∑
j=1

AjXt−1X
>
t−1A

>
j +

m∑
j=1

BjHt−1B
>
j , (1.4)

where C, Aj, and Bj are p×p matrices, and C is positive definite. However,

estimating through these models is intractable due to the so-called curse of

dimensionality. It is thus not surprising that other less parameterized model

structure should be suggested in order to circumvent this difficulty.
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Chapter 1. Introduction

Conditional Correlation Models

One strand of literature focused on modelling of the conditional covariance

matrix Ht through the following formula,

Ht = D
1
2
t RtD

1
2
t , (1.5)

where Rt represents the conditional correlation matrix, and Dt = diag(h1,t,

· · · , hp,t) is a diagonal matrix with conditional variances as diagonal ele-

ments. Therefore, most researchers have focused on the estimation of con-

ditional correlations due to the decomposition (1.5). Conventionally, re-

searchers have modelled correlation as an unchanged and unconditional vari-

able. After many years, with some empirical evidence provided to demon-

strate an opposing view, they have gradually realized that correlation indeed

varies through time. The awareness of the time-variability of correlation has

propelled a continually growing amount of work on developing various con-

ditional correlation models. Because of the empirical evidence on the auto-

correlation structure of correlations, researchers have devoted their effort to

explore whether existing conditional variance methods on the basis of past

information, i.e. the so-called GARCH models, could be generalized with the

aim of modeling conditional correlation. An example of the earlier genera-

tion models of this sort is the Constant Conditional Correlation GARCH

model of Bollerslev (1990), in which the conditional correlation matrix Rt in

(1.5) is replaced by a constant matrix R. In addition, there were two other

alternative dynamic conditional correlation GARCH models, which were dis-

cussed in Tse and Tsui (2002) and Engle (2002), namely the VC-GARCH

and the DCC-GARCH models, respectively. More explicitly, the conditional
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1.2. Conditional covariance matrix estimation

correlation matrix Rt in VC-GARCH model is defined as

Rt = (1− θ1 − θ2)R + θ1Ψt−1 + θ2Rt−1, (1.6)

where R is a symmetric p × p positive definite parameter matrix with all

diagonal elements being 1, θ1 and θ2 are non-negative parameters satisfying

θ1+θ2 < 1, and Ψt−1 is the p×p correlation matrix of Xt−1 for the preceding

M Xt−1, · · · ,Xt−M . Analogous to VC-GARCH model, Engle (2002) studied

the following dynamic matrix process Qt = (qkl,t) given by

Qt = (1− θ1 − θ2)S + θ1Xt−1X
>
t−1 + θ2Qt−1,

where S is the p × p unconditional correlation matrix of Xt, and θ1, θ2 are

non-negative scalar parameters satisfying θ1 + θ2 < 1. Then the correlation

matrix Rt in the DCC-GARCH model is specified as

Rt = diag(q
− 1

2
11,t, · · · , q

− 1
2

pp,t) Qt diag(q
− 1

2
11,t, · · · , q

− 1
2

pp,t). (1.7)

Accordingly, expression (1.5) and the above models indicate that the con-

ditional correlations play a significant role in estimating conditional volatil-

ities and covariances. The conditional correlations of model (1.6) and (1.7)

are assumed to obey the same dynamics, but these conditions do not hold in

general. Additionally, those assumptions on the correlation matrix simplifies

the estimation procedure and largely reduces the number of parameters, but

they have limited capability to describe heteroskedasticity for more general

cases.
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Chapter 1. Introduction

Factor Models

To explore the structure of the covariance matrix, another commonly used

approach is relevant to the factor models, which could provide a parsimo-

nious representation and allow the semi-positive definiteness maintained. In

the beginning, we could briefly introduce the definition of the factor model.

Consider random variables X1, · · · , Xp, and the model assumes that they

could be expressed as

Xk = ak1F1 + · · ·+ akqFq + ηk, k = 1, · · · , p, (1.8)

where q � p, Fj, j = 1, ..., q are called factors, and ηk, k = 1, ..., p are

random disturbances with E(ηkηl) = 0 for k 6= l and uncorrelated with Fj’s,

E(ηk) = 0, E(ηkFj) = 0. Note that the factors F1, · · · , Fq are the same for

each Xk, and factors themselves could be correlated.

For those approaches designed for estimating dynamic covariance matri-

ces based on factor models, they assume that the co-movements are mainly

driven by a few underlying variables. The first category consists of factor

models with factors following GARCH-type processes. Engle, Ng and Roth-

schild (1990) recommended the K-factor GARCH model, which allows the

factors following GARCH processes and the time-varying part of conditional

covariance matrix having reduced rank K, but leaves the constant part un-

restricted. Vrontos et al. (2003) presented a full-factor GARCH model by

assuming a triangular structure of the parameter matrix and obtained con-

ditionally uncorrelated factors. Additionally, some orthogonal models have

been described in the literature. In the orthogonal GARCH (O-GARCH)

8



1.2. Conditional covariance matrix estimation

model of Alexander and Chibumba (1997), unconditionally uncorrelated

principal components were obtained by utilizing the orthogonal matrix of

eigenvectors derived from the sample covariance matrix as the linear trans-

formation matrix. The orthogonality condition was relaxed to square and

invertible in the generalized orthogonal GARCH (GO-GARCH) model of

van der Weide (2002). Unfortunately, some restrictions are imposed on the

dynamic specifications of these models. Recently, Fan, Wang and Yao (2008)

proposed an alternative for modelling multivariate volatilities by use of con-

ditionally uncorrelated components (CUCs), which are similar to the inde-

pendent components in ICA. The second category consists of latent factor

models, in which the common factors could not be expressed as functions

of past data. Diebold and Nerlove (1989) reported that the commonalities

in the conditional variance movements are well captured by latent factor

ARCH models. Usually, those factors are supposed to be conditionally un-

correlated. Recently, Sentana and Fiorentini (2001), Doz and Renault (2004),

and Fiorentini, Sentana and Shephard (2004) discussed identification, rep-

resentation and estimation of those models, as well as inference methods.

For the purposes of improving the performance of estimation algorithms,

researchers have made some efforts to alleviate computational burden. For

example, van der Weide (2002) considered a multi-step approach by identify-

ing a portion of the invertible link matrix by means of principal component

analysis (PCA) at first, and estimating the second part of the invertible

matrix as well as the remaining parameters in a second step. For the esti-

mation of the CUC model proposed by Fan, Wang and Yao (2008), a high

dimensional optimization problem has been converted to a series of simpler

subproblems.
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Chapter 1. Introduction

1.2.2 Nonparametric estimation methods

Note that the aforementioned methods are based on parametric model

representations and mainly focused on dynamic covariance matrix depen-

dent on past information. Recently, nonparametric models and methods

have been employed to address the estimation problem of conditional co-

variance matrix. In this category, there are several approaches available for

estimating dynamic covariance matrices. For example, Wu and Pourahmadi

(2003) considered large covariance matrix estimation problem in longitudinal

data analysis and designed nonparametric estimators of covariance matrices

by adopting the two-step estimation strategy presented in Fan and Zhang

(2000). By regressing each variable on its predecessors, the resulting covari-

ance matrix estimator could be guaranteed to be positive definite. Recently,

Yin et al. (2010) proposed a consistent kernel estimator for the conditional

covariance matrix. In order to achieve a sparse structure of conditional vari-

ance matrices, Chen and Leng (2015) made use of entrywise thresholding

based on the preliminary nonparametric covariance matrix estimator.

1.3 Research objectives and organizations

From the above summary, it could be observed that some research gaps

still exist.

• Most existing approaches require pre-specified structure of the condi-

tional covariance matrix (such as the multivariate GARCH models),

which may not describe covariance matrices of various types. Besides,

10



1.3. Research objectives and organizations

even though several nonparametric models and methods for modelling

conditional covariance matrix have been presented, they have limited

capability to examine how an exogenous variable could affect the be-

haviour of elements of covariance matrices, and lack the ability to iden-

tify the main drivers.

• For the estimation problem of conditional variance function, estimating

unknown conditional mean is necessary for most existing nonparamet-

ric variance estimators. However, as mentioned before, those estimators

seem to be undesirable when the mean function is heavily oscillating.

In addition, even though difference-based methods could evade this is-

sue, they demand a complex construction of the difference sequences

especially for multivariate cases.

Therefore, we aim to make some contributions to fill these gaps in the follow-

ing chapters. In Chapter 2, we study the estimation of conditional covariance

matrix, mainly focusing on the pairwise conditional correlations. Specifically,

we introduce a reduced rank model for pairwise correlation coefficients con-

ditional on an exogenous variable to extract the features of dependence.

Furthermore, our proposed model is applied to investigate the well-known

asymmetric effect of market return on stock returns correlations. In Chapter

3, we propose a novel approach to model conditional variance (covariance)

function, by combining the strength of kernel smoothing and difference-based

methods. Numerical studies based on comparisons between our estimator and

its competitors are conducted. The results suggest that our estimation strat-

egy could outperform other two estimators in most situations. Chapter 4

contains a overall conclusion of this thesis and discussions on open questions

11



Chapter 1. Introduction

of future research.
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CHAPTER 2

A Reduced Rank Model for

Conditional Correlations

2.1 Introduction

In the financial world, often financial market participants must manage

a large number of financial assets simultaneously. The obvious examples are

equity investors who often face risks which could affect assets in portfolio

in various ways and must therefore find a solution to hedge against these

risks. In practice, this may be achieved by means of diversification across

several stock markets and/or asset classes, for instance. However, construct-

ing an efficient portfolio to benefit the most from diversification is not a

straightforward matter since it requires knowledge about comovements and

associations, i.e. correlations, of the assets in question. In addition, such

knowledge about the correlations is required in a wide range of financial

13



Chapter 2. A Reduced Rank Model for Conditional Correlations

applications, especially asset capital allocation, risk management, pricing

models and option pricing among others. We will develop in this chapter

an alternative method that is capable of explaining what drives correlations

between financial assets and how. The new method, which we will refer to

hereafter as the reduced rank model for conditional correlation coefficients, is

designed for studying pairwise conditional correlation structure of financial

returns in a functional context of a semiparametric factor model.

In chapter 1, several popular statistical models of GARCH type about

conditional correlations have been reviewed. A well-known example is the

Constant Conditional Correlation GARCH model of Bollerslev (1990). In ad-

dition, there are other alternative dynamic conditional correlation GARCH

models, which have been discussed, for example, in Tse and Tsui (2002), En-

gle (2002) and Aielli (2013) namely the VC-GARCH, DCC-GARCH and the

cDCC models, respectively. Although introduced with some general speci-

fications and do not suffer from the curse of dimensionality problem, these

models have quite limited capability. In particular, these models are not able

to explain the roles market variables, such as return or volatility, play in driv-

ing changes in the behavior of correlations between stock returns, which are

of particular interest to financial analysts (see, for example, Ang and Chen

(2002) and Amira, Taamouti and Tsafack (2011)).

As an alternative, Pelletier (2006) proposed a model with a regime-

switching correlation framework, which presented that the correlations re-

main constant in each regime while the change between the states was con-

trolled by transition probabilities. Silvennoinen and Teräsvirta (2015) intro-

duced an alternative model which they referred to as the Smooth Transi-

14



2.1. Introduction

tion Conditional Correlation GARCH (STCC-GARCH) model. The STCC-

GARCH model enables the conditional correlations to change between two

states smoothly as a function of a transition variable. Hence, these models

are associated to some extent with a pre-specified model structure of the

covariance (e.g. the GARCH-type evolution or regime-switching GARCH

model, etc). This leads to an important limitation which resides in the fact

that the number of parameters required explodes with the dimension of the

model (see e.g. Kring et al. (2007) and Santos and Moura (2014)).

Since the ability to model co-movements for portfolios with a large num-

ber of assets and the changes in their behavior are essential in many areas

of financial management, existence of the above-mentioned drawbacks sug-

gests that directly modeling the assets by a multivariate GARCH model

might not be feasible. Instead, an asset manager must consider some form

of factor-model techniques so as to reduce the overall dimension of the time

series modeling problem. The use of factors to reduce the dimensionality

of multivariate GARCH models was proposed in a seminal paper by En-

gle, Ng and Rothschild (1990), and further developed by, among the others,

Vrontos et al. (2003) and Lanne and Saikkonen (2007). More recently Shep-

pard and Xu (2014) introduced the so-called Factor-HEAVY (F-HEAVY)

model utilizing high frequency data, which has a deep root into the GARCH

modeling of conditional volatility. Nonetheless, the purpose of most existing

factor-based models, including the F-HEAVY, is to study the way in which

covariance matrix changes, while these changes are driven by the past in-

formation generated by the time series themselves. As the results, the focus

of the studies in multivariate factor GARCH is on predictive models, rather

than on nonparametric measurement of past volatility and correlations. On
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Chapter 2. A Reduced Rank Model for Conditional Correlations

the contrary, the semiparametric factor model introduced in this chapter en-

ables examination of what exogenous forces and how they drive the changes

in the correlations of returns. We focus on exploring the asymmetric effect

of the exogenous variable on pairwise correlations and identifying the main

drivers of the asymmetry in pairwise correlations in a similar spirit to Ang

and Chen (2002) and Amira, Taamouti and Tsafack (2011). The importance

of the factor-approach is to summarize the common patterns in the pairwise

correlations. It will soon be clear that the method developed in this pa-

per sits well within the well-known functional data analysis framework and

hence inherits the ability to deal with high-dimensional time series problems.

Furthermore, it is based on nonprametric smoothing and thus model free,

which makes it less likely to suffer modeling mis-specification compared to

the existing methods.

The new technique begins with the empirical estimation of the pairwise

correlation coefficients of the returns conditional on a particular variable that

is of empirical interest, the selection of which is determined by the research

problem under consideration. For the sake of clarity, one can think the above

conditional variable as playing a similar role in our model to the transition

variable in the STCC-GARCH model of Silvennoinen and Teräsvirta (2015).

Since the (pairwise) conditional correlation coefficients are derived based on

unknown conditional mean and conditional variance, their estimators must

be constructed using empirical estimates. Under the assumption that the

conditional correlation coefficient functions share a finite number of common

factors, we explore a method of common functional factor analysis along the

line of the existing techniques of principal component analysis. To this end,

we establish estimators of both the orthogonal functional factors and the

16



2.1. Introduction

corresponding loading coefficients. The theoretical analysis in this chapter

concentrates on the derivation of consistency and the asymptotic distribution

of these estimators that are needed in order to perform statistical inference

in the analysis.

Moreover, the empirical investigation of this chapter focuses on estima-

tion and analysis of the conditional correlation coefficients for returns of a

portfolio of assets, which consists of thirty major American companies in-

cluded in the Dow Jones Industrial Average, i.e. Dow30 hereafter. A full list

of companies included in the Dow30 can be found in various websites, for

example www.money.cnn.com. From the empirical point of view, the ques-

tions of how and what drives the observed time-varying correlation structure

in financial markets relate directly to the selection of the conditional vari-

able used in the estimation of the newly developed reduced rank model.

In the current chapter, we examine suggestions from two popular school of

thoughts, which focuses on market volatility and market return as the driv-

ing factors, respectively. Interestingly, we are able to establish the empirical

evidence in support of the well-known asymmetric-effect of market return

on the conditional correlations of the stock returns only when the possible

leverage-effect on the market has been taken into consideration. The volatil-

ity effect of market return seems to lead to high correlations of the stock

returns during the bull market, so that the asymmetric-effect of market re-

turn is not evidenced. Nonetheless, once the leverage-effect in the market is

disentangled and the volatility effect is removed, correlations of the stock re-

turns drop significantly in the bull market. In turn, this leads to the apparent

asymmetric-effect of the market return.
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This chapter is organized as follows. Section 2.2 discusses the basic con-

struction of our new method, including model assumptions, identification

and estimation procedures. Section 2.3 presents the main asymptotic results

of the chapter, which focus on the consistency and asymptotic distribution

of all the nonparametric estimators involved. These results are convincingly

demonstrated by Monte Carlo simulations in Section 2.4. We then perform

empirical analysis in Section 2.5, while all technical proofs are given in Sec-

tion 2.7.

2.2 Conditional correlation coefficients

Note that, in the current section and the next, the conditioning variable,

denoted by U, plays a similar role in our model to the so-called transition

variable in the STCC-GARCH model of Silvennoinen and Teräsvirta (2015).

In practice, the choice of U can be selected in accordance to the empirical

question under investigation. However, since the purpose here is to introduce

the model in the general context, we will illustrate and discuss this process

in more specific details in Section 2.5. In this section, we first present the

basic construction of our new method, reduced rank model for conditional

correlation coefficients, which includes model assumption and identification.

Then, we discuss the model’s practical operation, which covers the estima-

tion procedures and suggested methods of selecting the number of common

factors.
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2.2. Conditional correlation coefficients

2.2.1 Definitions

In the current chapter, we first focus on the study of pairwise condi-

tional correlations. Suppose r1 and r2 are returns of two stocks with E(r1) =

E(r2) = 0, so that the unconditional correlation coefficient is defined as

ρ1,2 =
E(r1r2)√
Er21Er

2
2

, (2.1)

where E(r1r2) measures the co-movement of r1 and r2. We have by condi-

tioning upon U,

E(r1r2|U) = µ1(U)µ2(U) + E{(r1 − µ1(U))(r2 − µ2(U))|U}, (2.2)

where µk(U) = E(rk|U), k = 1, 2. In other words, the co-movement between

r1 and r2 is determined by U based on (i) the effect on the means of r1 and

r2, and (ii) the effect through the conditional covariance after the effect due

to the conditional mean is removed.

Expression (2.2) suggests that we need to consider these two effects sepa-

rately. After standardization, we may define the correlation due to the effect

passing through the conditional means as

φ1,2(U) =
E(r1|U)E(r2|U)√
E(r21|U)E(r22|U)

, (2.3)

where |φ1,2(U)| ≤ 1 due to the Cauchy-Schwartz inequality. The quantity

in (2.3) measures the co-movement in the conditional mean and hence it is

referred to as the “conditional mean correlation”. Similarly, we may define

the correlation due to the effect passing through the conditional covariance
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as

%1,2(U) =
E{(r1 − µ1(U))(r2 − µ2(U))|U}√

E((r1 − µ1(U))2|U)E((r2 − µ2(U))2|U)
. (2.4)

In (2.4), %1,2(U) is the effect of U on the cross correlation between r1−µ1(U)

and r2 − µ2(U) with the effect on the mean being removed and is therefore

referred to as the “conditional correlation coefficient”.

Ang and Chen (2002) introduced a measure of conditional correlation,

which was defined as Corr(r1, r2|c1 ≤ U ≤ c2). However, this definition can

cause confusion. In this chapter, we discuss the conditional correlation by

considering c1 → c2, i.e. Corr(r1, r2|U). As an example, we consider the

capital asset pricing model (CAPM) in financial analysis, which states that

rk = αk + βkU + ek, k = 1, ...,m, (2.5)

where U is the market return with Var(U) = σ2
U , and

E(ek|U) = 0, Cov(ek, e`|U) =

 σ2
k, if ` = k,

0, otherwise.

We have the unconditional correlation

ρk,` =
βkβ`σ

2
U

(β2
kσ

2
U + σ2

k)
1/2(β2

`σ
2
U + σ2

` )
1/2
,

but the conditional correlation

%k,`(U) = 0.
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2.2. Conditional correlation coefficients

However, if the noises share some common innovations, for example, if

ek = ρk1(U)ε1 + ρk2(U)ε2, k = 1, ...,m

then

%k,`(U) =
ρk1(U)ρ`1(U) + ρk2(U)ρ`2(U)

{ρ2k1(U) + ρ2k2(U)}1/2{ρ2`1(U) + ρ2`2(U)}1/2
.

It is thus important to note that the conditional correlation coefficient de-

fined above is not caused by the common factors in the conditional mean.

2.2.2 Model assumption and identification

Suppose there are m assets to be considered and the return of the k-th

asset is written as

rk = µk(U) + σk(U)εk, k = 1, ...,m, (2.6)

where E(ε2k|U) ≡ 1 almost surely. When U is selected as the market return,

it is not difficult to see that the CAPM model described in (2.5) can be

taken as a special case. When dealing with sample correlations, it should be

taken into account that the return of a given stock should be standardized

before being used for estimation of the correlation. Hence, it is useful for the

estimation purpose to consider the model

(rk − µk(U))2 = σ2
k(U) + σ2

k(U)ξk, k = 1, ...,m,

where ξk,t = ε2k,t − 1, as done in Fan and Yao (1998), for example.
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For the co-movement of εk, k = 1, ...,m, we assume that the conditional

correlation coefficient functions share p ≤ m common functional factors

based on

E(εkε`|U) ≡ %k,`(U) = ak` +Gk`(U) = ak` + b
[1]
k`F1(U) + ...+ b

[p]
k`Fp(U),(2.7)

where as usual it is assumed that

E{Fj(U)} = 0, E{Fj1(U)Fj2(U)} = 0, j, j1, j2 = 1, ..., p, j1 6= j2, (2.8)

and

V ar(F1) ≥ ... ≥ V ar(Fp)

for identification purpose. In our analysis, we incorporate uncorrelated mea-

surement errors to reflect additive measurement errors, so that the model we

consider is

εkε` = %k,`(U) + εk,` = ak` + b
[1]
k`F1(U) + ...+ b

[p]
k`Fp(U) + εk,`, (2.9)

where εk,` are conditionally uncorrelated with each other for all 1 ≤ k < ` ≤

m, i.e.

E{εk1,`1εk2,`2|U} = 0, if {k1, `1} 6= {k2, `2}.

With observations at {(rk,t, Ut) : t = 1, ....n, k = 1, ...,m}, where t and

k denote respectively the t-th time point and the k-th asset, our model of

interest is thus (2.6) with

εk,tε`,t = ak` + b
[1]
k`F1(Ut) + ...+ b

[p]
k`Fp(Ut) + εk,`,t, (2.10)
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2.2. Conditional correlation coefficients

which we will refer to hereafter as the “reduced rank model”.

The reduced rank model differs from most existing models since here the

common functional factors F1(U), ..., Fp(U) and corresponding coefficients

are all unobservable. A similar model was considered in studies on semi-

parametric comparison of regression curves. A few well-known examples are

Härdle and Marron (1990) and Munk and Dette (1998), who studied the

comparison of two functions, and James, Hastie and Sugar (2000), who used

a similar model but under a random effect setting. In addition, the semipara-

metric panel data model was also investigated by Boneva, Linton and Vogt

(2015). They examined the common component structure of nonparamet-

ric functions, however, their dependent variables are observable. Under our

model framework, εk,t, k = 1, ...,m, are latent variables and are designed to

be estimated nonparametrically based on a GARCH framework. Naturally,

the estimation error at the first stage will be inherited, which may increase

the difficulty in identifying common factors and estimating corresponding

loadings.

In the remaining of this section, we discuss in details the theoretical con-

struction of our method. To do so, let us denote the vector of individual con-

ditional correlation coefficient functions by %(u) = (%1,2(u), ..., %1,m(u), %2,3(u),

..., %2,m(u), ..., %m−1,m(u))>. In addition, let G(U) = (G12(U), · · · , G1m(U),

G23(U), · · · , G2m(U), · · · , Gm−1,m(U))> and a = (a12, ..., a1m, a23, ..., a2m, ...,

am−1,m)>, then write %(u) = a+ G(u) and G(U) = BF(U), where

B = (b1, ..., bp) and F(U) = (F1(U), · · · , Fp(U))>, (2.11)

where bk = (b
[k]
12 , · · · , b

[k]
1m, b

[k]
23 , · · · , b

[k]
2m, · · · , b

[k]
m−1,m)>, k = 1, ..., p.
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Consequently, with observations at {Ut : t = 1, ..., n}, we define the

m(m− 1)/2× n matrices

G = (G(U1), · · · ,G(Un)), F = (F(U1), · · · ,F(Un)), % = (%(U1), · · · , %(Un))

and write

G = BF and % = a1>n + G,

where 1n is a column vector of length n with all elements being 1. For ease

of exposition, hereafter we let M = m(m− 1)/2.

From (2.7), since it is reasonable to assume that the information of the

pairwise conditional correlation coefficients could be fully captured by the p

uncorrelated functional factors, our plan is to apply a similar technique used

in principal component analysis to our problem. Let us denote the covariance

matrix of G(U) by

Λ = Cov(G(U)) = E{G(U)G>(U)}. (2.12)

An immediate idea is to employ the eigenvalue-eigenvector decomposition.

For simplicity, we assume that eigenvalues λ1, ..., λM of Λ satisfy λ1 > · · · >

λp > 0 and λp+1 = · · · = λM = 0 and let V1, ...,VM denote the corresponding

orthonormal eigenvectors. Then Λ can be factorized as

Λ = VDV> = V∗1D
∗V∗>1 , (2.13)

where D = diag(λ1, ..., λM) is a M×M diagonal matrix, V = (V1, ...,VM) =

(V∗1,V
∗
2) is a M ×M matrix, D∗ = diag(λ1, ..., λp), V∗1 = (V1, ...,Vp), and
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2.2. Conditional correlation coefficients

V∗2 = (Vp+1, ...,VM).

On the one hand, we have the eigenvalue-eigenvector decomposition stated

in (2.13). But on the other hand, we indicated previously that G(U) =

BF(U), so that

Λ = BE{F(U)F>(U)}B>. (2.14)

In order to proceed, we assume E{F(U)F>(U)} = D∗, which is equivalent

to suggesting that F(U) = V∗>1 G(U). Another way of illustrating this point

is to consider the matrix E{G(U)F>(U)}, which is

E{G(U)G>(U)V∗1} = E{BF(U)F>(U)},

ΛV∗1 = BD∗,

V∗1D
∗ = BD∗,

since D∗ = diag(λ1, ..., λp), thus

B = V∗1 or bj = Vj. (2.15)

Expressions (2.15) will be essential when we introduce the estimation pro-

cedure in the next section.

2.2.3 Estimator of conditional correlation coefficients

Let µ̂k(u), µ̂`(u), σ̂2
k(u) and σ̂2

` (u) be local linear estimators of µk(u),

µ`(u), σ2
k(u) and σ2

` (u), respectively. Furthermore, note that εk and ε` are

unobservable in practice, but can be estimated by ε̂k,t = (rk,t−µ̂k(Ut))/σ̂k(Ut)
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and ε̂`,t = (r`,t − µ̂`(Ut))/σ̂`(Ut). We can then write

ε̂k,tε̂`,t = %k,`(Ut) + εk,`,t + ε̂k,tε̂`,t − εk,tε`,t.

By applying local linear method, an alternative estimator of %k,`(u) can be

constructed as

%̂k,`(u) =

∑n
t=1Wn,h(Ut − u)ε̂k,tε̂`,t∑n

t=1Wn,h(Ut − u)
, (2.16)

where Wn,h(Ut − u) = sn,h,2Kh(Ut − u)− sn,h,1Kh(Ut − u)(Ut − u), K(·) is a

kernel function, Kh(Ut−u) = K
(
Ut−u
h

)
/h, and sn,h,r =

∑n
t=1Kh(Ut−u)(Ut−

u)r for r = 0, 1, 2. Moreover, by letting

%∗k,`(u) =

∑n
t=1Wn,h(Ut − u)εk,tε`,t∑n

t=1Wn,h(Ut − u)
,

then we are able to write

%̂k,`(u) = %∗k,`(u) +

∑n
t=1Wn,h(Ut − u)(ε̂k,tε̂`,t − εk,tε`,t)∑n

t=1Wn,h(Ut − u)
. (2.17)

We will present in Section 2.3 the asymptotic properties of %̂k,`(u).

2.2.4 Estimators of common functional factors and coefficients

The basic construction of the model discussed in Section 2.2.2 suggests

that we can make use of the eigenvalue-eigenvector decomposition to esti-

mate the common functional factors and loading coefficients. To do so, we

must first obtain an empirical estimate of the covariance matrix Λ, which
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2.2. Conditional correlation coefficients

we will take the following approximation in the current chapter

ΛG =
1

n
GG>.

Once the empirical estimate of the conditional correlation coefficients are

obtained, then we may estimate ak` by

âk` = n−1
n∑
t=1

%̂k,`(Ut).

We then estimate each function Gk`(u) separately by

Ĝk`(u) =

∑n
t=1(ε̂k,tε̂`,t − âk`)Wn,h(Ut − u)∑n

t=1Wn,h(Ut − u)
, (2.18)

so that we may form Ĝ(U) = (Ĝ12(U), · · · , Ĝ1m(U), Ĝ23(U), · · · , Ĝ2m(U), · · · ,

Ĝm−1,m(U))>. With observations at {Ut : t = 1, ..., n}, the M × n matrix G

can be estimated by Ĝ = (Ĝ(U1), · · · , Ĝ(Un)). Accordingly, an estimate of

ΛG can be constructed as

ΛĜ =
1

n
ĜĜ>.

Secondly, we obtain the empirical estimates of the eigenvalues λ1, ..., λM

and the corresponding orthonormal eigenvectors V1, ...,VM of Λ. The asymp-

totic results presented in Section 2.3 suggest that we can do so through

computing the eigenvalues and the corresponding orthonormal eigenvectors

of ΛĜ, which are defined in this chapter as λ̂1, ..., λ̂M and V̂1, ..., V̂M , respec-
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tively. Recall that our goal is to obtain

B̂ = (b̂1, ..., b̂p) and F̂(U) = (F̂1(U), · · · , F̂p(U))>, (2.19)

where b̂k = (b̂
[k]
12 · · · b̂

[k]
1m, b̂

[k]
23 , · · · b̂

[k]
2m, · · · , b̂

[k]
m−1,m)>, k = 1, ...,m. They are the

estimates of B and F(U) as defined in (2.19), respectively. The first p compo-

nent functions can be obtained by F̂j(u) = V̂>j Ĝ(u) for j = 1, ..., p. Finally,

based on (2.15) we can directly estimate bj by b̂j = V̂j.

Next, we present the estimators of the common functional factors and

loading coefficients under the assumption that there exist a number of com-

mon factors p ≤ m such that λ1 > · · · > λp > 0, λp+1 = · · · = λM = 0.

However, this quantity is unknown in practice. Furthermore, previous ex-

perience of functional principal component analysis shows that statistical

inference is more difficult for higher-order principal components. Estimation

of the new reduced rank model does share a similar difficulty and so selecting

the number of common factors is also an important model selection problem.

To this end, Li, Wang and Carroll (2013) introduced a number of infor-

mation criteria, which are useful in selecting the number of principal com-

ponents within the context of functional data analysis. In principle, these

criteria should also be useful for selecting the common factors in our context.

Inspired by Bai and Ng (2002), we consider the following class of information

criteria:

IC(p) = log[σ̂2
[p]] + pgM,n, (2.20)
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where

σ̂2
[p] =

1

nM

n∑
t=1

m∑
k=1

m∑
6̀=k

(
ε̂k,tε̂`,t − âk` − b̂[1]k` F̂1(Ut)− · · · − b̂[p]k` F̂p(Ut)

)2

is defined similarly to the estimated variance in Bai and Ng (2002) and

gM,n =

(
M + n

nM

)
log

(
nM

M + n

)
,

is a penalty function. Finally, we select the number of components as

p̂ = min
p
IC(p).

2.3 Asymptotics

We first present the asymptotic properties of the estimator for %k,`(u).

For the estimator %̂k,`(u) defined by (2.16), the following asymptotic results

are provided.

Theorem 2.1. Suppose that the regularity conditions (C1)-(C6) in the Ap-

pendix hold, then for particular k and `, as n→∞, we have

(nh)1/2{%̂k,`(u)− %k,`(u)− 1

2
wK2 B%̂k,`(u)h2} → N(0, f−1U (u)ω2,k,`(u)), (2.21)

where

B%̂k,`(u) = %′′k,`(u)− %k,`(u)(σ2
k(u))′′

2σ2
k(u)

− %k,`(u)(σ2
` (u))′′

2σ2
` (u)

,

ω2,k,`(u) = ν2Kζ
k,`
ε (u) +

1

4
ν2K∗K%

2
k,`(u)ζk,`ξ (u)− %k,`(u)νK,K∗Kζ

k,`
ε,ξ (u),
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with

ζk,`ε (u) = E{ε2k,`,t|Ut = u}, ζk,`ξ (u) = E{(ξk,t + ξ`,t)
2|Ut = u},

ζk,`ε,ξ (u) = E{εk,`,t(ξk,t + ξ`,t)|Ut = u}.

Next, we present asymptotic results for estimators of F̂j(u) and b̂
[j]
k` . Let

ε̃t = (ε1,2,t, ..., ε1,m,t, ε2,3,t, ..., ε2,m,t, ..., εm−1,m,t)
>,

ξ̃t = (ξ1,t + ξ2,t, ..., ξ1,t + ξm,t, ξ2,t + ξ3,t, ..., ξ2,t + ξm,t, ..., ξm−1,t + ξm,t)
>,

and ε = (ε̃1, ..., ε̃n), ξ = (ξ̃1, ..., ξ̃n).

Theorem 2.2. Suppose that the eigenvalues of Λ satisfy λ1 > ... > λp > 0,

λp+1 = · · · = λM = 0. Let I be the identity matrix of size M , and (λjI−Λ)+

be the Moore-Penrose inverse of λjI − Λ. Under conditions (C1)-(C6), as

n→∞, for j = 1, ..., p,

√
n

(
λ̂j − λj − (

1

2
wK2 h

2)E
{

2Fj(U)F ′′j (U)− b>j Fj(U)(%(U) ◦ σ(U))
})

d−→ N(0, σ2
λj

), (2.22)

where ◦ denotes the hadamard product of two matrices having the same

dimensions, and

σ2λj = E{I2j,1}+ 2
∞∑
s=1

E{Ij,1Ij,s+1}

= E
{
F 2
j (U1)b

>
j Cov

(
2ε̃1 − %(U1) ◦ ξ̃1

∣∣U1

)
bj

}
+ E{F 4

j (U1)} − λ2j

+2
∞∑
s=1

E
{
Fj(U1)Fj(Us+1)b

>
j Cov

(
2ε̃1 − %(U1) ◦ ξ̃1, 2ε̃s+1 − %(Us+1) ◦ ξ̃s+1

∣∣U1, Us+1

)
bj

}
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+2
∞∑
s=1

E{(F 2
j (U1)− λj)(F 2

j (Us+1)− λj)},

with

Ij,t = 2b>j ε̃tFj(Ut)− b>j (%(Ut) ◦ ξ̃t)Fj(Ut) + F 2
j (Ut)− EF 2

j (U).

Moreover, for the corresponding estimated eigenvectors V̂1, ..., V̂p, under con-

ditions (C1)-(C6), as n→∞, for j = 1, ..., p,

√
n
(

V̂j − Vj − (
1

2
wK2 h

2)EWj,1

)
d−→ NM(0,ΣVj), (2.23)

where

EWj,1 = E
{

(λjI−Λ)+
[ p∑

i=1

ViFi(Ut)F
′′
j (Ut) +

p∑
i=1

ViFj(Ut)F
′′
i (Ut)

−1

2

p∑
i=1

ViFi(Ut)V
>
j (%(Ut) ◦ σ(Ut))−

1

2
Fj(Ut)(%(Ut) ◦ σ(Ut))

]}
,

ΣVj = Cov(Hj,1) + 2

∞∑
s=1

Cov(Hj,1,Hj,s+1)

= (λjI−Λ)+

[( p∑
i=1

ViV
>
j Fi(U1) + Fj(U1)I

)
Cov

(
ε̃1 −

1

2
%(U1) ◦ ξ̃1|U1

)
( p∑

i=1

VjV
>
i Fi(U1) + Fj(U1)I

)
+ 2

∞∑
s=1

Cov
(( p∑

i=1

ViV
>
j Fi(U1) + Fj(U1)I

)(
ε̃1 −

1

2
%(U1) ◦ ξ̃1

)
,

( p∑
i=1

ViV
>
j Fi(Us+1) + Fj(Us+1)I

)(
ε̃s+1 −

1

2
%(Us+1) ◦ ξ̃s+1

))
+
( p∑

i=1

ViFi(U1)Fj(U1)
)( p∑

i=1

V>i Fi(U1)Fj(U1)
)

+2

∞∑
s=1

Cov
( p∑

i=1

ViFi(U1)Fj(U1),

p∑
i=1

ViFi(Us+1)Fj(Us+1)
)]

(λjI−Λ)+,

with

Wj,t = (λjI−Λ)+
[ p∑
i=1

ViFi(Ut)F
′′
j (Ut) +

p∑
i=1

ViFj(Ut)F
′′
i (Ut)
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−1

2

p∑
i=1

ViFi(Ut)V
>
j (%(Ut) ◦ σ(Ut))−

1

2
Fj(Ut)(%(Ut) ◦ σ(Ut))

]
,

Hj,t = (λjI−Λ)+
[( p∑

i=1

ViV
>
j Fi(Ut) + Fj(Ut)I

)(
ε̃t −

1

2
%(Ut) ◦ ξ̃t

)
+

p∑
i=1

ViFi(Ut)Fj(Ut)
]
.

Because bj = Vj by (2.15), and bj = (b
[j]
12, ..., b

[j]
1m, b

[j]
23, ..., b

[j]
2m, ..., b

[j]
m−1,m),

the asymptotic results for the estimated coefficients vector b̂j is equivalent to

results for V̂j. In this case, the following corollary could be obtained directly

from the above theorem.

Corollary 2.1. Suppose that all assumptions in Section 2.7 are fulfilled,

then for a particular estimated vector b̂j, as n→∞, for j = 1, ..., p,

√
n
(
b̂j − bj − (

1

2
wK2 h

2)EWj,1

)
d−→ NM(0,ΣVj), (2.24)

where EWj,1 and ΣVj are the same as which have been given in Theorem

2.2.

Theorem 2.3. Assume that conditions (C1)-(C6) in Section 2.7 hold, and

section 2.2.4 shows that Fj(u) = V>j G(u), F̂j(u) = V̂>j Ĝ(u), as n → ∞, we

have

√
nh

(
F̂j(u)− Fj(u)− (

1

2
wK2 h

2)EA1(u)

)
d−→ N(0, σ2

Fj
), (2.25)

where

EA1(u) = [F ′′j (u)− EF ′′j (U)]− 1

2
V>j

[(
%(u) ◦ σ(u)

)
− E

(
%(U) ◦ σ(U)

)]
+E
[
Fi(U)F ′′j (U)V>i + Fj(U)F ′′i (U)V>i −

1

2
V>j (%(U) ◦ σ(U))Fi(U)V>i
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−1

2
(%>(U) ◦ σ>(U))Fj(U)

]
(λj −Λ)+V∗1F(u),

σ2
Fj

=
V >j

[
ν2KVar(ε̃1) + 1

4ν
2
K∗K

(
(%(u)%>(u)) ◦Var(ξ̃1)

)
− νK,K∗KE{ε̃1(%>(u) ◦ ξ̃>1 )}

]
Vj

fU (u)
.

Finally, we present the asymptotic consistency of p̂, which is selected as

the minimizer of the above-introduced information criterion, to the true num-

ber of common factors. Assume that the true value of p is p0. For p ≤ p0, de-

note V∗1,[p] = (V1, ...,Vp), V∗1,[p+1:p0]
= (Vp+1, ...,Vp0), D∗[p] = diag(λ1, ..., λp),

and D∗[p+1:p0]
= diag(λp+1, ..., λp0).

Theorem 2.4. Let p̂ be the minimizer of the information criterion defined

in (2.20) among 0 ≤ p ≤ pmax with pmax > p0 being a fixed search limit,

and the regularity conditions (C1)-(C6) hold. If the penalty function gn

satisfies (i) gm,n
P−→ 0, (ii) gm,n/

(
h2 +

(
logn
nh

) 1
2

)
P−→ ∞ as n → ∞. Then,

limn→∞ P (p̂ = p0) = 1.

2.4 Simulation Studies

The main focus of this section is to present simulation studies that ex-

amine the finite sample performance of the newly proposed framework. In

particular, our objective is to examine the finite sample performance of (i)

the local linear estimator for the conditional co-movement of returns, (ii)

the newly proposed estimators for the common factors, (iii) the information

criterion for selecting the number of the common factors, and to conduct a

robustness analysis of the finite sample performance under some specific fea-

tures, which are common in finance. To achieve these objectives, our studies

are conducted based on simulated data from a known data generating pro-
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Table 2.1: Finite Sample Performance of the Estimation Procedure

m = 15 m = 30

v ASE 100 300 600 100 300 600
2 ASEF1 0.1187 0.0467 0.0321 0.1046 0.0419 0.0279

ASEF2 0.1145 0.0592 0.0347 0.1011 0.0496 0.0329

ASEC 0.0057 0.0021 0.0009 0.0065 0.0018 0.0008

3 ASEF1 0.1834 0.0877 0.0552 0.1709 0.0838 0.0529

ASEF2 0.1070 0.0603 0.0318 0.1104 0.0472 0.0321

ASEC 0.0052 0.0019 0.0009 0.0063 0.0018 0.0009

cess. Specifically, we assume that the return process follows

rk = ak + bkµ(U) + ck0ε0 + ck1ε1f1(U) + ck2ε2f2(U), k = 1, ...,m, (2.26)

where ak, bk, ck0, ck1, ck2 are constant coefficients and ε0, ε1, ε2 are random ren-

ovations with zero mean. For the model in (2.26), it is clear that E(rk|U) =

ak+bkµ(U). In all the simulation studies in this section, we define µ(U) = U

with U ∼ Uniform(0, 1), while the required parameters in (2.26) are gener-

ated from independent normal distributions, specifically ak, bk, ck0, ck1, ck2 ∼

Normal(0, 0.2). In order to demonstrate the robustness of our method, we

consider two illustrative scenarios as follows:

Scenario 1: Let ε0, ε1, ε2
IID∼ Normal(0,1). In addition, let

f1(U) =
√

1 + cos(vπU) and f2(U) =
√

1 + sin(2πU).
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The above specifications suggest that we have

Cov(rk, r`|U) = Corr(rk, r`|U) ≡ Ck`(U) = αk` + βk`F1(U) + γk`F2(U),

(2.27)

where αk` = ck0c`0 +ck1c`1 +ck2c`2, βk` = ck1c`1 and γk` = ck2c`2. In the other

words, Ck`(U) involves two common factors defined by

F1(U) = cos(vπU) and F2(U) = sin(2πU). (2.28)

In the simulation study that follows, we set the value of parameter v in

(2.28) as either 2 or 3. Note that the latter introduces a rougher first common

factor compared to the former and hence the resulting conditional correlation

functions are less smooth as the results. These functions can be considered

as representing structural breaks in the conditional co-movements of returns.

Scenario 2: Let f1(U) and f2(U) be defined as in Scenario 1, where v = 2,

but let ε0, ε1, ε2
IID∼ tν . Such specifications suggest that we have instead the

Ck`(U) with parameters αk` = ck0c`0σ
2
ε + ck1c`1σ

2
ε + ck2c`2σ

2
ε , βk` = ck1c`1σ

2
ε

and γk` = ck2c`2σ
2
ε , where σ2

ε = ν/(ν− 2) is the unconditional variance of εj,

for j = 1, 2, 3. In the simulation study that follows, we set the parameter ν to

20, 15, 10 or 5. In the probability theory, it is well-known that the Student’s

t distribution has heavier tails than those of the normal distribution. Hence,

from the finance point of view, Scenario 2 simulate return processes with

a heavy-tailed behavior. The first three parameter values, namely 20, 15,

and 10, reflect the range of values we obtain by fitting the Student’s t-

distribution with the MLE to the empirically estimated standardized returns

of the Dow30, which is denoted in Section 2.5 by ε̂k,t. To this end, it seems
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to be the case that multiple estimation and smoothing steps, which are

required, lead to confidence intervals that includes point-estimates which

are relatively close to normality (see Section 2.5.1 for details). In addition,

ν = 5 is included as a benchmark.

Figure 2.1: Boxplots for eigenvalues calculated based on Ck`(·) and Ĉk`(·) at
m = 30.

(a) Scenario 1 for v = 2 with n = 100 and 600 (left and right panel,
respectively)

(b) Scenario 1 for v = 3 with n = 100 and 600 (left and right panel,
respectively)

We will concentrate first on the simulation work done based on the Sce-

nario 1. For the first set of simulation results in Tables 2.1, 2.2 and Fig-

ure 2.1, we set the number of observations on the time series dimension as

n = 100, 300, 600 or 1000. We would also like to investigate the importance

of the number of assets in the portfolio on the finite sample performance
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Table 2.2: Finite Sample Performance of the Information Criteria

v m n p̂ = 0 p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4

2 15 100 0.2560 0.5960 0.1480 0.0000 0.0000

300 0.0640 0.3760 0.5600 0.0000 0.0000

600 0.0160 0.2520 0.7320 0.0000 0.0000

1000 0.0080 0.0800 0.9120 0.0000 0.0000

30 100 0.2360 0.5760 0.1680 0.0000 0.0000

300 0.0440 0.3760 0.5800 0.0000 0.0000

600 0.0000 0.0000 0.9960 0.0040 0.0000

1000 0.0000 0.0000 1.0000 0.0000 0.0000

3 15 100 0.2480 0.4520 0.3000 0.0000 0.0000

300 0.0360 0.1280 0.8360 0.0000 0.0000

600 0.0120 0.0800 0.9080 0.0000 0.0000

1000 0.0560 0.0160 0.9280 0.0000 0.0000

30 100 0.2400 0.4360 0.3240 0.0000 0.0000

300 0.0200 0.1000 0.8800 0.0000 0.0000

600 0.0120 0.0680 0.9200 0.0000 0.0000

1000 0.0000 0.0000 1.0000 0.0000 0.0000

and therefore set the parameter m as either 15 or 30. The number of simu-

lation replications is 250. We focus first on the finite-sample performance of

the local linear estimator for the conditional co-movement and the proposed

estimators for the common factors. The relevant simulation results are sum-

marized in Table 2.1 and Figure 2.1. In the table, the short abbreviation

“ASE” stands for the “average squared errors”. For j = 1, 2,

ASEFj =
1

n

n∑
t=1

{F̂j(Ut)− Fj(Ut)}2

and

ASEC =
1

nM

n∑
t=1

m∑
k=1

m∑
` 6=k

{Ĉk`(Ut)− Ck`(Ut)}2
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Table 2.3: Finite Sample Performance with Non-normal Renovations at m =
30

ν = 20 ν = 10 ν = 5

ASE 100 600 100 600 100 600
ASEF1 0.1377 0.0283 0.1591 0.0404 0.3558 0.2777

ASEF2 0.1564 0.0382 0.1985 0.0642 0.4443 0.2719

ASEC 0.0072 0.0012 0.0116 0.0017 0.0314 0.0054

measure the finite-sample performance of the proposed estimator for the jth

common factor and for the estimator of the conditional co-movement of re-

turns for any one simulation replication, respectively. For given values of m

and n, Table 2.1 reports the averages of ASEFj over the simulation replica-

tions. In all cases, the estimation errors have a strong tendency to converge

to zero as the number of observations increases. An interesting point to make

is the fact that increasing the number of asset from m = 15 to m = 30 is

able to slightly improve the overall finite sample performance. In addition,

the short abbreviations “R” and “E” (for example, as in “1R” and “1E”)

in Figure 2.1 indicate that the eigenvalues are computed based on Ck`(·)

(as defined in (2.27)) and Ĉk`(·), respectively. Since there are two common

factors, i.e. p0 = 2, in our model example, 3R and 4R in Figure 2.1 are ap-

propriately equal to zero. From the figures, it is apparent that the estimation

of the eigenvalues performs well, especially since 3E and 4E in the figures are

virtually zero across all simulation replications and since the distributions of

the estimates tend to follow closely those of the true eigenvalues. Therefore,

we have convincing evidence that the proposed estimation procedure for the

common factors perform well especially for the number of observations of

above 500, i.e. about two-year of sample for daily return data.
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The important factor contributing to this success is the ability of our

method to accurately estimate the conditional co-movement of the simulated

returns. In Table 2.1, this is demonstrated by the small magnitude and the

tendency of the averaged ASEC to converge to zero. Let us also point out

that specifying the conditional variable U as in Section 4.1 of the current

chapter contains a special case, which is consistent to taking τ = t
n
∈ (0, 1),

for t = 1, . . . , n. When such a special case is considered our experimental

design is of a similar nature to that of Engle (2002), which was also used

in Aslanidis and Casas (2013), CS hereafter, to illustrate the finite sample

performance of the local-linear estimator introduced in their paper. Note

that for this special case the CS estimator is merely a simplified version

of the local linear estimator introduced in the current chapter. On the one

hand, this suggests that satisfactory simulation results in this section can

be interpreted as the ability of our method to nonparametrically model the

conditional covariance matrix of returns under misspecification. On the other

hand, it also means that the finite-sample superiority of the nonparametric

estimator found in CS over the DCC and cDCC models should also hold for

the local linear estimator introduced in the current chapter.

Our attention is now shifted to the finite sample performance of the

above-introduced information criterion for selecting the number of common

factors. Note that the error terms, which are required in the calculation, are

estimated based on εk = (rk − ak − bkU)/
√
σ2
k(U), where σ2

k(U) = c2k0 +

c2k1f
2
1 (U) + c2k2f

2
2 (U). The empirical distribution of the selected number of

components summarized in Table 2.2 is obtained by setting pmax = 4 with

p0 = 2, which should be obvious from the specification of (2.27). In Table 2.2,

it is clear that lower numbers of common factors than p0 are often wrongly
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Table 2.4: Finite Sample Performance with Non-normal Renovations at m =
30

ν n p̂ = 0 p̂ = 1 p̂ = 2 p̂ = 3 p̂ = 4

20 100 0.2600 0.6200 0.1200 0.0000 0.0000

600 0.0040 0.0080 0.9800 0.0000 0.0000

10 100 0.1050 0.7100 0.1850 0.0000 0.0000

600 0.0000 0.0150 0.9850 0.0000 0.0000

5 100 0.1950 0.6100 0.1950 0.0000 0.0000

600 0.0000 0.0750 0.9250 0.0000 0.0000

selected when n = 100. However, the results improve substantially as we

increase the number of observations to n = 300. Further improvement is

made when n = 600 and 1000 where the right number of common factors is

selected up to 100% of the replications for m = 30.

We will now concentrate on the simulation work done based on the Sce-

nario 2. Since the importance of the size of portfolio has already examined

previously, it is sufficient for our purpose to set the number of observations, n,

to either 100 or 600 with m = 30. The simulation results are presented in Ta-

bles 2.3 and 2.4. In Table 2.3, the effects of the deviation from the normality

assumption by within the range found in our empirical data, i.e. ν is between

20 to 10, seem to be minimal. Significance changes in the results only be-

come apparent by a reduction of the degree of freedom to ν = 5, i.e. a level

by which data transformation might be required for an application where

empirical support for the Student’s t-distribution and the degree of freedom

can be established. Nonetheless, such a negative changes are not apparent

in Table 2.4, which show the finite sample performance of the information

criteria. The information criteria seems to have performed consistently well

across the degree of freedom in question.
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2.5. Effects of market variables on the correlation structure

2.5 Effects of market variables on the correlation struc-

ture

The empirical study in this section focuses on estimation and analysis of

the conditional correlation coefficients for returns of a portfolio of the Dow30

for the observation period between 1 July 1990 to 31 July 2014. Important

questions that will be the subject of main interest are how and what drives

the observed time-varying correlation structure of the Dow30 portfolio. In the

literature, while there is a broad agreement that the correlation structure in

financial markets is not constant over time, an outstanding issue of concern

is on the driving factor (or factors) behind the observed time variation.

Generally, there are two school of thoughts, who are contradictorily in favor

of the market volatility and the market return, respectively. The following

paragraphs provide a brief review of these arguments in turn.

A number of previous studies have found that the cross-correlations es-

timated during volatile periods are significantly larger compared to those

computed during calm periods. Using multivariate GARCH models, Lon-

gin and Solnik (1995) reported that cross correlations among international

markets tended to grow especially in periods of high volatility. Similarly,

Ramchand and Susmel (1998) examined the relation between variance and

correlation under a conditional time and state varying structure, and found

that the correlations are much larger when U.S. market is in a high variance

condition. Furthermore, Chesnay and Jondeau (2001) applied a multivari-

ate Markov-switching model, where the correlation matrix are varied across

regimes, to explore the relationship between stock market turbulence and
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international correlation, and detected the significant increase of correlation

during the turbulent periods. In addition, there were also other studies based

on the Markov-switching models who have also found that correlation was

generally higher in high-volatility regime (see, for example, Ang and Bekaert

(2002)).

On the other hand, Longin and Solnik (2001) established a pattern of

asymmetric dependence using extreme value theory, which implied that in-

ternational stock markets were more highly correlated during extraordinary

market downturns than during extraordinary market upturns. Later, Ang

and Chen (2002) developed a statistic for testing the asymmetries in condi-

tional correlations based on exceedance correlation and established evidence

in support of Longin and Solnik (2001). Another branch of relevant work

attempted to connect the variability of correlations of stock returns to the

overall economic condition, which was represented by a proxy of market

return. Erb, Harvey and Viskanta (1994), for example, suggested that cor-

relations were time-varying and dependent on the economic circumstances.

More importantly, they found a strong tendency for correlation to rise during

periods of recession.

It is noteworthy that these schools of thought often consider the mar-

ket return and volatility as two separate and competing entities. Hence, in

order to perform the empirical analysis of interest, we may select the con-

ditional variable, U, as either a measure of the market return or that of the

market volatility. However, in the literature it has long been discussed the

observed tendency of an asset’s volatility to be negatively associated with

the asset’s return, i.e. what is commonly referred to as the “leverage effect”.

42



2.5. Effects of market variables on the correlation structure

Furthermore, it has also been demonstrated that the leverage effect is ba-

sically asymmetric, i.e. declines in stock prices are accompanied by larger

increases in volatility than the decrease in volatility that accompanies ris-

ing stock markets. Hence, it is also the main interest of the research in this

section to also examine if and how the presence of the leverage effect affects

our investigation on the driving factor behind the observed time variation

of stocks correlations. For the sake of clarity, we will present first in Section

2.5.1 relevant methodological details and estimation results, while a through

discussion on the financial implications and interpretation will be given in

the Section 2.5.2.

2.5.1 Relevant methodological details and estimation results

Let us begin with the following empirical details: (i) The data used,

which consist of the daily close prices (adjusted for dividends and splits) of

the Dow30 components and S&P500, and the Chicago Board Options Ex-

change Market Volatility Index (VIX) between 1 July 1990 to 31 July 2014,

are retrieved from Yahoo Finance. (ii) Usually, the closing prices are trans-

formed into returns by taking natural logarithms and differencing. These

leads, therefore, to m = 30 with M = 30× (30− 1)/2 = 435 conditional cor-

relation coefficients and n = 6068 number of observations. (iii) The market

volatility is represented in our study by the VIX, which is a popular measure

of the implied volatility of S&P 500 index options. (iv) The market return

is represented in our study by the return of S&P500. Furthermore, it is as-

sumed that the return follows an AR(1)+GARCH(1,1) process. Intuitively,

this assumption implies that the leverage-effect may influence the market
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return through both volatility and its persistence that leads to temporally

dependence of the market return, i.e. autocorrelation. As the results, the

leverage-effect for the market can be excluded by first modeling the condi-

tional mean and volatility using the AR(1)+GARCH(1,1) model, then de-

volatilizing the raw market return using the resulting conditional variances.

Hereafter, let us refer to the resulting process as the devolatilized market

return such that raw S&P500 return counterpart is referred to as the non-

devolatilized market return. (v) We also apply a similar devolatilization to

the Dow30 returns.

For the sake of clarity, let us also collect a list of methodological remarks

here: (vi) The estimation procedure employed can be summarized as the fol-

lowing steps.

Step 1: For a given selection of U, (either as the nondevolatilized/devolatilized

market return or the VIX for market volatility) the first step in our estima-

tion procedure is to obtain the local linear estimates of µk(U), µ`(U), σ2
k(U),

and σ2
` (U).

Step 2: These are then used in the calculation of the estimates for the con-

ditional correlation functions, i.e. %̂k,`(u) in (2.16).

Step 3: The asymptotic results in Section 2.3 suggest that we can calculate

Ĝk,`(u) as %̂k,`(u) − âk`, then construct Ĝ in order to obtain the covariance

matrix ΛĜ = 1
n
ĜĜ>.

Step 4: We are then able to calculate V∗1p for each value of p ≤ m, so that

the common factor analysis can be conducted based on the IC(p) criterion

defined in (2.20).

Step 5: Once the number of common factors is selected, we are then able

to obtain the empirical estimate of the common factor based on F̂1(u) =
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V̂ >1 Ĝ(u).

The 99% point-wise confidence bands are computed based on the asymp-

totic variance formula, σ2
F1
, which was defined in Theorem 2.3. This cal-

culation requires the use of V̂1, which is calculated under the condition

‖ V1 ‖= 1, where ε̂k,t = (rk,t − µ̂k(Ut))/σ̂k(Ut), ε̂`,t = (r`,t − µ̂`(Ut))/σ̂`(Ut)

and ξ̂k,t = ε̂2k,t−1. Step 6: To compute the involved nonparametric estimators

, we employ the normal kernel function given by K(x) = 1√
2π
e−(x

2/2) with

h = std(U)/n0.2. The above choice of kernel function leads to ν2K = 1/2
√
π,

ν2K∗K = 1/2
√

2π and νK,K∗K = 1/
√

3
√

2π. (vii) The methods and associated

results introduced in the current chapter are readily applicable to higher-

frequency financial data. For example, we should be able to employ, as con-

veniently in our empirical analysis, the intraday return at the one-minute

(or five-minute, ten-minute, etc) sampling frequency. Nonetheless, it is im-

portant to note that the main motivation of the current study is on the iden-

tification and estimation of the asymmetry of the overall cross-correlations.

This differs significantly from other studies that motivate the use of higher

frequency-financial data such as Sheppard and Xu (2014). (viii) We have

also tried different specifications on the conditional mean and conditional

variance equations. However, the functional-based nature of the method and

use of the smooth technique mean that they do not bring about significant

changes to the results. (ix) We have also attempted to incorporate the asym-

metry in the leverage effect into our analysis. This was done by modeling

the volatility based on the GJR-GARCH model of Glosten, Jagannathan

and Runkle (1993). Although the asymmetric effect of market variables were

felt more strongly in magnitude, the differences in the results were not sta-

tistically significant. (x) Comparing to, for example, the cDCC model, where
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O(m3) (alternatively O(m2) or smaller) calculations are required for the full

likelihood function (for the composite likelihood function) because of com-

putation of the inverse matrix and constant matrix, our proposed factor

approach is based on nonparametric model structure in which m conditional

variance functions are estimated at first stage, then m(m− 1)/2 conditional

correlations are estimated nonparametrically. In addition, the eigenvectors

of a m(m− 1)/2 by m(m− 1)/2 matrix need to be computed to obtain the

common functional factors.

The first picture in each panel in Figure 2.2 displays empirical estimates

of 435 correlation functions of the Dow30 components conditioned on a given

selection of U , i.e. UDv, UNv and UV which denote the devolatilized, nonde-

volatilized market return and the market volatility, respectively. Although

the correlation functions in each of these pictures seem to have its own pat-

tern, overall they tend to share some essential common features. Let us take

the first picture of panel (a), which represents the case for UDv, as an ex-

ample. In most cases, large negative or positive return on the S&P500 index

implies high correlations, i.e. a convex v-shaped conditional correlation func-

tion. The common feature is even more apparent in the first picture of panel

(c), which represents the case of UV , where we witness (almost linearly)

positive correlation functions with low degree of variation.

Table 2.5: Information Criterion for Common Factor Analysis

U IC(p̂ = 1) IC(p̂ = 2) IC(p̂ = 3) IC(p̂ = 4) IC(p̂ = 5) IC(p̂ = 6)

UDv 0.7893 0.8435 0.8981 0.9521 1.0063 1.0598

UNv 1.0833 1.1370 1.1910 1.2450 1.2988 1.3527

UV 0.4641 0.5194 0.5730 0.6271 0.6800 0.7350
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Figure 2.2: Empirical estimates of %k,`(U) based on %̂k,`(U) and %̂
[j]
k,`(U) for

j = 1.
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Figure 2.3: b̂
[1]
k` presented in ascending order and the 90%.

0 50 100 150 200 250 300 350 400 450

b
[1
]

k
ℓ

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
UDv

0 50 100 150 200 250 300 350 400 450

b
[1
]

k
ℓ

-0.1

-0.05

0

0.05

0.1

0.15
UNv

0 50 100 150 200 250 300 350 400 450

b
[1
]

k
ℓ

0.02

0.03

0.04

0.05

0.06

0.07
UV

Next we perform the common factor analysis based on the information

criterion presented in (2.20). The relevant IC(p̂) values are shown in Table

2.5. For each of the rows, minimization of these values suggests that a single

common factor, p = 1, should be selected for all cases. The second pictures

in panels (a) to (c) of Figure 2.2 present the empirical estimates of the condi-

tional correlation coefficient functions calculated according to the suggestion

made by the information criterion that there exists only one common factor,

i.e. %k,`(U) = ak` + Gk`(U) = ak` + b
[1]
k`F1(U). Hereafter, let us denote these

estimates by %̂
[1]
k,`(U) = âk` + b̂

[1]
k` F̂1(U), where the upper-subscript [1] indi-

cates an involvement of a single common factor. In all cases of U, the graphs
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2.5. Effects of market variables on the correlation structure

Figure 2.4: Empirical estimate of common factors
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seem to provide graphical evidence in support of a single common factor, i.e.

a conclusion reached due to the fact that the shape of %̂
[1]
k,`(U) closely follows

that of %̂k,`(U). As the results, the financial discussion in the next section

will focus heavily on F1(U). For the sake of completion, we present in panels

(a), (b) and (c) of Figures 2.4 empirical estimates of F1(U) computed based

on UV , UNv and UDv respectively. The 99% point-wise confidence bands were

calculated as discussed in Step 4. The red-solid curve in each of the figures

will be discussed in detailed in the next section.

We will now focus on the coefficients b
[j]
k` . In a sense, b

[j]
k` should quantify

the contribution of the j-th common factor on the k` conditional correla-
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tion function, i.e. a role which is usually played by the so-called functional

principal component scores in the functional data analysis literature. This is

not the case in our model, however, due to the necessity of the assumption

B = V∗1, which is stated in (2.15). Nonetheless, since a single common factor

was selected, the shape of %̂
[1]
k,`(U) depends on b

[1]
k` and so it is important that

we perform inferences for b̂
[1]
k` . To do so we calculate the standard errors and

consequently the 90% confidence intervals of b̂
[1]
k` . Figure 2.3 presents b̂

[1]
k` in

ascending order together with the associated 90% confidence intervals for the

cases of UDv, UNv and UV (see panels (a), (b) and (c), respectively). In panel

(a), the fact that most of the b̂
[1]
k` presented are positive further suggests that

the shape of the common factor is well taken by the (pairwise) conditional

correlation functions under consideration. In addition, a similar conclusion

can also be obtained in panels (b) and (c) but with stronger statistical sig-

nificance. Observe, however, that the confidence bands in (c) seem to be

smaller than those in panels (a) and (b). This is due mostly to the empirical

estimate of ΣV1 , which is quite small compared to those for cases of the mar-

ket returns. Such a result was influenced by %̂k,`(UV ), which we witnessed in

Figure 2.2(c) that they were (almost linearly) positive correlation functions

with relatively low degree of variation. In this case, higher correlation leads

to larger value of the largest eigenvalue, but also the eigenvector with lower

variance. In addition, the first common factor explains up to 97% of the total

variations compared to only 70% and 77% in panels (a) and (b), respectively.
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2.5. Effects of market variables on the correlation structure

2.5.2 Financial implications and interpretations

In this section, we will discuss first important implications of the above

results about the effects of the market variables on correlation structure of

the Dow30 portfolio. We will then focus more specifically on the asymmetric

effect of market return.

Let us begin with the kind of effect that market volatility has on the

correlations of the returns of the Dow30. Here, the VIX is used as a proxy

for the market volatility. The estimation result in Figure 2.4(a) suggests

that correlation significantly increases during volatile periods. This finding

is in agreement with the conclusion made by many existing studies (some

studies of which are mentioned in the paragraph just above Section 2.5.1).

We consider next the empirical estimates of the common factors presented

in Figures 2.4(b) and (c) which are associated with the nondevolatilized and

devoatilized market returns, respectively. In these cases, the first common

factor provides a strong evidence against the constant-correlation hypothesis,

which was championed by a number of earlier studies (see Kaplanis (1988),

for example).

An important question often investigated in the literature is whether

co-movements in the returns are stronger during general market recession

than they are during boom periods (see Andersen et al. (2001), and Ches-

nay and Jondeau (2001), for example). In order to shed some light on this

issue, we draw in Figure 2.4(b) a solid red-line, which represents the ex-

act replication of the blue estimate that runs across the negative region of

UNv. The fact that the solid red-line lays almost everywhere in between the
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pairwise confidence bands provides an empirical evidence (at least at the

1% significance level) against such an asymmetry. In the next step, we per-

form a similar analysis to the above, but this time based on UDv, i.e. the

devolatilized market return and the result is reported in Figure 2.4(c). We

find that the correlations decrease quite significantly in the positive region

of the market return compared to those presented in Figure 2.4(b). The fact

that the solid red-line lays almost everywhere outside the pairwise confidence

bands provides an empirical evidence in support of the asymmetric effect of

market return on the conditional correlations of the stock returns. Such a

finding can be interpreted as follows. Once the leverage-effect in the market

is disentangled and the volatility effect is removed, correlations of the stock

returns drop significantly during the bull while remaining unchanged in the

bear market. In effect, the tailing off in the correlations leads to the apparent

asymmetric-effect of the market return, which is clearly apparent in Figure

2.4(c).

The above discussion considered two extreme cases, where the condi-

tional variable is either the devolatilized, UDv, or nondevolatilized, UNv. For

the sake of comparison, we also consider a case by which devolatilization is

done based on AR(0)+GARCH(1,1). This practice reflects the point we have

made that the leverage-effect does not only influence market return through

volatility, but also through volatility persistence, which leads to temporally

dependence of return, i.e. autocorrelation. However, we have found the result

to be closely similar to that in Figure 2.4(c) and so it is not reported.
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2.6 Conclusions

In this chapter, we first derived and provided theoretical discussion (specif-

ically the uniform consistency and asymptotic distribution) of an alternative

local-linear-smoothing estimator for the (pairwise) conditional correlation

coefficients of asset returns. By treating the resulting conditional correlation

coefficients as functional data, we developed a new method to study the

correlation structure for a portfolio of financial assets. The new method was

developed along the line of tools in principal component analysis, which con-

sist of selecting the number and estimation of the common factors together

with the corresponding loadings. More importantly, it was based on nonpra-

metric smoothing and thus model free, which makes it less likely to suffer

modeling mis-specification compared to the existing methods. We provided

detailed theoretical discussion, in particular the consistency and asymptotic

distribution, of the information criterion and the nonparametric estimators

involved under some regularity conditions. As illustrated in our empirical

analysis, the new technique was capable of describing the movement of the

local (pairwise) correlations of financial returns conditional upon a particu-

lar measure of interest. We studied the effects of a set of market variables,

e.g. return and volatility, on the correlation structure of asset returns for a

portfolio which consists of the Dow30 components. Under our model setting,

we were able to identify the common functional factor that influenced the

behavior of cross conditional correlations of the returns. The common factor

estimation showed evidence of the well-known asymmetric effect of market

return on stock returns correlations. However, through the calculation of the

relevant asymptotic pointwise confidence bands, we found that the asym-
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metric effect was statistically significant only when the leverage effect on the

market was taken into consideration. The volatility effect on market return

seemed to lead to higher correlations of the stock returns during the bull

market, so that the asymmetric effect was not evidenced.

2.7 Theoretical justification

To make statistical inference, we need to find the asymptotic distribution

of the estimators, including those for µk(u), σ2
k(u), %k,`(u), Fj(u) and ak`, b

[j]
k` ,

k = 1, ...,m, 1 ≤ k < ` ≤ m, j = 1, ..., p. The assumptions needed for our

analysis are listed below, and the proofs of theorems are provided.

(C1) Let fU(·) denote the marginal density of Ut, and fs(·, ·) denote the joint

density of (Ut, Ut+s). Suppose that f(·) has a bounded support, such as

[c, d], fU(u) > 0, and |fU(u)− fU(u′)| ≤ ∆1|u− u′| for all given points

u, u′ ∈ [c, d] and some ∆1 > 0. Meanwhile, fs(u0, us) > 0 for u0, us ∈

[c, d]. Further, supu∈[c,d] fU(u) ≤ L0 < ∞, supu0,us∈[c,d] fs(u0, us) ≤

L1 <∞.

(C2) E|rk,t|4(1+δ) ≤ L2 < ∞, E|εk,`,t|4(1+δ) ≤ L2 < ∞, for k, ` = 1, ...,m,

t = 1, ..., n, and some δ > 0. Meanwhile,

sup
u0∈[c,d]

E[|rk,t|4(1+δ)|Ut = u0] ≤ L2 <∞,

sup
u0∈[c,d]

E[|εk,`,t|4(1+δ)|Ut = u0] ≤ L2 <∞,

sup
u0,us∈[c,d]

E[|εk,`,t||Ut = u0, Ut+s = us] ≤ L2 <∞,

sup
u0,us∈[c,d]

E[|εk,`,tεk,`,t+s||Ut = u0, Ut+s = us] ≤ L2 <∞,
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for all s ∈ Z and some sufficiently large L2. Moreover, for particular

k1, k2 and `1, `2,

E{εk1,`1,tεk2,`2,t|Ut = u0} = 0, if {k1, `1} 6= {k2, `2},

E{εk1,`1,tεk2,`2,t+s|Ut = u0, Ut+s = us} = 0, if {k1, `1} 6= {k2, `2}.

(C3) The time series {(r1,t, r2,t, · · · , rm,t, Ut) : t = 1, ..., n} are strictly sta-

tionary and strong mixing with mixing coefficient α(N) ≤ CN−β for

some C > 0 and β > 2 + 2
δ

for the same δ as in (C2). Further-

more, suppose that (r1,t, r2,t, · · · , rm,t, Ut) has the same distribution

with (r1, r2, · · · , rm, , U).

(C4) (i) µk(u), σ2
k(u), k = 1, ...,m are differentiable, and µ′′k(u), σ2′′

k (u) are

uniformly continuous.

(ii) Fj(·), j = 1, ..., p are differentiable, and F ′′j (·), j = 1, ..., p are

uniformly continuous. In addition, the coefficients ak`, b
[j]
k` are

bounded by some constants ā, b̄ < ∞, i.e. ak` < ā, |b[j]k` | ≤ b̄

for all 1 ≤ k < ` ≤ m and j = 1, ..., p.

(C5) The continuous symmetric kernel function K(·) has the following prop-

erties:

(i)
∫
|K(v)|dv <∞,

∫
K2(v)dv <∞, and

∫
K(v)dv = 1,

∫
vK(v)dv =

0,
∫
v2K(v)dv = wK2 ,

∫
K2(v)dv = ν2K .

(ii) For some 0 < C1 <∞ and 0 < ∆2 <∞, either K(·) is a bounded

function with a bounded support on R (such as [−C1, C1]), satis-

fying the Lipschitz condition, i.e. |K(v1)−K(v2)| ≤ ∆2|v1 − v2|,

or K(·) is differentiable, when v →∞, K(v)ec0v → 0 (c0 > 0).
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(iii) Let K ∗ K(v) =
∫
K(x)K(x + v)dx, and νK,K∗K =

∫
K(v)K ∗

K(v)dv, ν2K∗K =
∫

(K ∗K(v))2dv.

(C6) As n→∞, h→ 0, such that h = O(n−
1
5 ).

At the beginning, we introduce the following lemma, which will serve as

essential tools to derive asymptotic results for the estimators.

Lemma 2.1. Under the regularity conditions, for model Yt = m(Ut) +

σ(Ut)εt, t = 1, ..., n, where (Ut, Yt) is a strictly stationary time series, and

E{εt|Ut} = 0. Let m̂(u) be the local linear estimator of m(u).

(i) We have uniformly

m̂(u) = m(u) +
1

2
wK2 m

′′(u)h2 +
1

nfU(u)

n∑
t=1

Kh(Ut − u)σ(Ut)εt + δn, (2.29)

where δn = oP (h2 + {log n/(nh)}1/2).

(ii)

sup
u∈[c,d]

∣∣∣∣∣ 1n
n∑
t=1

[Kh(Ut − u)Yt − E {Kh(Ut − u)Yt}]

∣∣∣∣∣ = Op({log n/(nh)}1/2), (2.30)

sup
u,v∈[c,d]

∣∣∣∣∣ 1n
n∑
t=1

[Kh(Ut − u)Kh(Ut − v)Yt − E {Kh(Ut − u)Kh(Ut − v)Yt}]

∣∣∣∣∣
= Op(

1

h
{log n/(nh)}1/2). (2.31)

Proof of Lemma 2.1. The proof of (i) could be found in Fan and Gijbels

(1996), Fan and Yao (2003), and (ii) follows immediately from the results

provided by Mack and Silverman (1982)and Hansen (2008).
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Denote Kh(Ut−u) by Kh,t(u), and denote K ∗Kh(Ut−u) by K ∗Kh,t(u).

By this Lemma, we have the following results.

(a) Estimator of µk(u)

µ̂k(u)− µk(u) =
1

2
wK2 µ

′′
k(u)h2 +N1(u) + δn,

where

N1(u) =
1

nfU(u)

n∑
t=1

Kh,t(u)σk(Ut)εk,t
d→ N{0, (nhfU(u))−1ν2Kσ

2
k(u)}.

(b) Estimator of σ2
k(u).

σ̂2
k(u) = σ2

k(u) +
1

2
wK2 (σ2

k(u))′′h2 +N2(u) + δn,

where

N2(u) =
1

nfU(u)

n∑
t=1

Kh,t(u)σ2
k(Ut)ξk,t

d→ N{0, ν
2
Kσ

4
k(u)σ∗2k (u)

nhfU(u)
},

where ξk,t = ε2k,t − 1 and σ∗2k (u) = E(ξ2k|U = u).

(c) Estimator of %k,`(u): %̂k,`(u). By the definition of %∗k,`(u) and (2.29),

%∗k,`(u) = %k,`(u) +
1

2
wK2 %

′′
k,`(u)h2 +

1

nfU(u)

n∑
t=1

Kh,t(u)εk,`,t + δn.

From (2.17),

%̂k,`(u) = %∗k,`(u) +

∑n
t=1Wn,h(Ut − u)(ε̂k,tε̂`,t − εk,tε`,t)∑n

t=1Wn,h(Ut − u)
.
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Together with above results,

rk,t − µ̂k(Ut) = σk(Ut)εk,t −
1

2
µ′′k(Ut)w

K
2 h

2 − 1

nfU (Ut)

n∑
q=1

Kh,q(Ut)σk(Uq)εk,q + δn,

1

σ̂k(Ut)
=

1

σk(Ut)

[
1−

σ2k
′′
(Ut)w

K
2 h

2

4σ2k(Ut)
− 1

2nfU (Ut)σ2k(Ut)

n∑
q=1

Kh,q(Ut)σ
2
k(Uq)ξk,q + δn

]
,

hence,

ε̂k,t = εk,t −
1

2
wK2

[
µ′′k(Ut)

σk(Ut)
+
εk,tσ

2
k
′′
(Ut)

2σ2k(Ut)

]
h2 − 1

nσk(Ut)fU (Ut)

n∑
q=1

Kh,q(Ut)σk(Uq)εk,q

−
εk,t

2nfU (Ut)σ2k(Ut)

n∑
q=1

Kh,q(Ut)σ
2
k(Ut)ξk,q + δn,

similarly,

ε̂`,t = ε`,t −
1

2
wK2

[
µ′′` (Ut)

σ`(Ut)
+
ε`,tσ

2
`
′′
(Ut)

2σ2` (Ut)

]
h2 − 1

nσ`(Ut)fU (Ut)

n∑
q=1

Kh,q(Ut)σ`(Uq)ε`,q

−
ε`,t

2nfU (Ut)σ2` (Ut)

n∑
q=1

Kh,q(Ut)σ
2
` (Ut)ξ`,q + δn,

thus,

ε̂k,tε̂`,t − εk,tε`,t = −1

2
wK2

[µ′′k(Ut)ε`,t
σk(Ut)

+
µ′′` (Ut)εk,t
σ`(Ut)

+

(
σ2
′′
k (Ut)

2σ2k(Ut)
+
σ2
′′
` (Ut)

2σ2` (Ut)

)
εk,tε`,t

]
h2

− 1

nfU (Ut)

n∑
q=1

Kh,q(Ut)
[ε`,tσk(Uq)εk,q

σk(Ut)
+
εk,tσ`(Uq)ε`,q

σ`(Ut)

+
(σ2k(Uq)ξk,q

2σ2k(Ut)
+
σ2` (Uq)ξ`,q
2σ2` (Ut)

)
εk,tε`,t

]
+ δn,

by taking conditional expectation at Ut = u,

E(ε̂k,tε̂`,t − εk,tε`,t|Ut = u)

= −1

2
wK

2

[
%k,`(u)σ2′′

k (u)

2σ2
k(u)

+
%k,`(u)σ2′′

` (u)

2σ2
` (u)

]
h2 − E

{ 1

nfU (Ut)

n∑
q=1

Kh,q(Ut)
[ε`,tσk(Uq)εk,q

σk(Ut)

+
εk,tσ`(Uq)ε`,q

σ`(Ut)
+
(σ2

k(Uq)ξk,q
2σ2

k(Ut)
+
σ2
` (Uq)ξ`,q
2σ2

` (Ut)

)
εk,tε`,t

]∣∣∣Ut = u
}

+ δn, (2.32)
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for the second part of (2.32) on the right hand side, we focus on the ap-

proximation of the first term E
{

1
nfU (Ut)

∑n
q=1Kh,q(Ut)

ε`,tσk(Uq)εk,q
σk(Ut)

}
, and

the others could be approximated similarly. For example, for q = t,

E

[
1

nfU (Ut)
Kh,q(Ut)

ε`,tσk(Uq)εk,q
σk(Ut)

∣∣∣Ut = u

]
= O(

1

nh
),

for q 6= t,

E

[
1

nfU (Ut)
Kh,q(Ut)

ε`,tσk(Uq)εk,q
σk(Ut)

∣∣∣Ut = u

]
= 0.

Therefore,

E(ε̂k,tε̂`,t − εk,tε`,t|Ut = u) = −1

2
wK2

[
%k,`(u)σ2′′

k (u)

2σ2
k(u)

+
%k,`(u)σ2′′

` (u)

2σ2
` (u)

]
h2 + δn,

then the following result could be derived by applying (2.31), i.e.

%̂k,`(u)− %∗k,`(u) = −1

2
wK2

[
%k,`(u)σ2′′

k (u)

2σ2
k(u)

+
%k,`(u)σ2′′

` (u)

2σ2
` (u)

]
h2 − %k,`(u)

nfU(u)
n∑
t=1

K ∗Kh,t(u)

[
σ2
k(Ut)ξk,t
2σ2

k(u)
+
σ2
` (Ut)ξ`,t
2σ2

` (u)

]
+ δn,

where K ∗K(v) =
∫
K(x)K(x+ v)dx, and K ∗Kh,t(u) = 1

h
K ∗K(u−Ut

h
).

Finally,

%̂k,`(u)− %k,`(u) = %̂k,`(u)− %∗k,`(u) + %∗k,`(u)− %k,`(u)

=
1

2
wK2 B%̂k,`(u)h2 +N%̂(u) + δn, (2.33)

where

B%̂k,`(u) = %′′k,`(u)− %k,`(u)

(
σ2
′′
k (u)

2σ2k(u)
+
σ2
′′
` (u)

2σ2` (u)

)
,

59



Chapter 2. A Reduced Rank Model for Conditional Correlations

N%̂(u) =
1

nfU (u)

n∑
t=1

[
Kh,t(u)εk,`,t −K ∗Kh,t(u)%k,`(u)

(
σ2k(Ut)ξk,t

2σ2k(u)
+
σ2` (Ut)ξ`,t

2σ2` (u)

)]
.

Lemma 2.2. Suppose that all assumptions are fulfilled, then for particular

k and `, as n→∞, we have uniformly,

%̂k,`(u)− %k,`(u)

=
1

2
wK2

[
%′′k,`(u)− %k,`(u)

(
σ2′′

k (u)

2σ2
k(u)

+
σ2′′

` (u)

2σ2
` (u)

)]
h2 +

1

nfU(u)

n∑
t=1

Kh,t(u)εk,`,t

− %k,`(u)

nfU(u)

n∑
t=1

K ∗Kh,t(u)

[
σ2
k(Ut)ξk,t
2σ2

k(u)
+
σ2
` (Ut)ξ`,t
2σ2

` (u)

]
+Op(δn),

where Kh,t = Kh(Ut − u), K ∗Kh,t(u) = 1
h
K ∗K(u−Ut

h
), and δn = oP (h2 +

{log n/(nh)}1/2).

Proof of Lemma 2.2. The proof of this lemma could be found from the

derivation of (2.33).

Proof of Theorem 2.1. By Lemma 2.2,

%̂k,`(u) = %k,`(u) +
1

2
wK2 B%̂k,`(u)h2 +N%̂(u) + δn,

where

B%̂k,`(u) = %′′k,`(u)− %k,`(u)

(
σ2
′′
k (u)

2σ2k(u)
+
σ2
′′
` (u)

2σ2` (u)

)
,

N%̂(u) =
1

nfU (u)

n∑
t=1

[
Kh,t(u)εk,`,t −K ∗Kh,t(u)%k,`(u)

(
σ2k(Ut)ξk,t

2σ2k(u)
+
σ2` (Ut)ξ`,t

2σ2` (u)

)]
.

For simplicity, let

Zn,t(u) = Kh,t(u)εk,`,t −K ∗Kh,t(u)%k,`(u)

(
σ2
k(Ut)ξk,t
2σ2

k(u)
+
σ2
` (Ut)ξ`,t
2σ2

` (u)

)
,
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then

%̂k,`(u)− %k,`(u)− 1

2
wK2 B%̂k,`(u)h2 =

1

nfU(u)

n∑
t=1

Zn,t(u) + δn.

Based on the above formula,

E{N%̂(u)} = E{ 1

nfU (u)

n∑
t=1

Zn,t(u)},

Var{N%̂(u)} =
1

nf2U (u)
Var{Zn,1(u)}+

2

nf2U (u)

n−1∑
s=1

(1− s

n
)Cov(Zn,1(u), Zn,s+1(u)).

According to the assumptions, E{εk,`,t|Ut} = 0, E{ξk,t|Ut} = 0, E{ξ`,t|Ut} =

0, then E{Zn,t(u)|Ut} = 0, E{N%̂(u)} = 0, and

E{Z2
n,t(u)|Ut} = K2

h,t(u)E{ε2k,`,t|Ut}+K ∗K2
h,t(u)%2k,`(u)

[σ4k(Ut)E{ξ2k,t|Ut}
4σ4k(u)

+
σ4` (Ut)E{ξ2`,t|Ut}

4σ4` (u)
+
σ2k(Ut)σ

2
` (Ut)E{ξk,tξ`,t|Ut}

2σ2k(u)σ2` (u)

]
−Kh,t(u)K ∗Kh,t(u)%k,`(u)

[σ2k(Ut)E{ξk,tεk,`,t|Ut}
σ2k(u)

+
σ2` (Ut)E{ξ`,tεk,`,t|Ut}

σ2` (u)

]
,

then

E{Z2
n,t(u)}

=
fU(u)

h

[
ν2Kζ

k,`
ε (u) +

1

4
ν2K∗K%

2
k,`(u)ζk,`ξ (u)− %k,`(u)νK,K∗Kζ

k,`
ε,ξ (u)

]
+ o(

1

h
),

where

ζk,`ε (u) = E{ε2k,`,t|Ut = u}, ζk,`ξ (u) = E{(ξk,t + ξ`,t)
2|Ut = u},

ζk,`ε,ξ (u) = E{εk,`,t(ξk,t + ξ`,t)|Ut = u}.
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Let dn →∞ be a sequence of integers such that hdn → 0. Define

Z1 =
dn−1∑
s=1

|Cov(Zn,1(u), Zn,s+1(u))|, Z2 =
n−1∑
s=dn

|Cov(Zn,1(u), Zn,s+1(u))|.

Conditioning on (U1, Us+1), and by (C2), (C4) and (C5),

|Cov(Zn,1(u), Zn,s+1(u))|

=E
{ 1

h2

[
K

(
U1 − u
h

)
εk,`,1 −K ∗K

(
U1 − u
h

)
%k,`(u)

(
σ2k(U1)ξk,1

2σ2k(u)
+
σ2` (U1)ξ`,1

2σ2` (u)

)]
[
K

(
Us+1 − u

h

)
εk,`,s+1 −K ∗K

(
Us+1 − u

h

)
%k,`(u)(

σ2k(Us+1)ξk,s+1

2σ2k(u)
+
σ2` (Us+1)ξ`,s+1

2σ2` (u)

)]}
≤ CL2

for some generic constant C > 0. Then it follows that Z1 ≤ dnCL2. We now

consider the contribution of Z2. For this α-mixing process, by Davydov’s

lemma,

|Cov(Zn,1(u), Zn,s+1(u))| = E|(Zn,1(u)Zn,s+1(u))| ≤ 8[α(s)]
δ

1+δ {E|Zn,1(u)|2(1+δ)}
1

1+δ .

By conditioning on U1, and using (C2) and (C3),

E|Zn,1(u)|2(1+δ)

=E

∣∣∣∣Kh,1(u)εk,`,1 −K ∗Kh,1(u)%k,`(u)

(
σ2
k(U1)ξk,1
2σ2

k(u)
+
σ2
` (U1)ξ`,1
2σ2

` (u)

)∣∣∣∣2(1+δ)
≤CL2h

−2(1+δ)+1.

Hence, for δ
1+δ

< γ < 1,

Z2 ≤
n−1∑
s=dn

8[α(s)]
δ

1+δ {E|Z̃n,1(u)|2(1+δ)}
1

1+δ ≤ (CL2)
1

1+δ 8(h−2(1+δ)+1)
1

1+δ

∞∑
s=dn

[s−β]
δ

1+δ
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≤Mh−2+
1

1+δ

∞∑
s=dn

s−2 = Mh−2+
1

1+δ d−γn

∞∑
s=dn

s−2+γ = o(1/h)

by taking h−1+
1

1+δ d−γn = 1. Together with the above results,

n−1∑
s=1

Cov(Zn,1(u), Zn,s+1(u)) = o(1/h),

Thus,

Var{N%̂(u)}

=
1

nhfU(u)

[
ν2Kζ

k,`
ε (u) +

1

4
ν2K∗K%

2
k,`(u)ζk,`ξ (u)− %k,`(u)νK,K∗Kζ

k,`
ε,ξ (u)

]
+ o(

1

nh
).

Therefore, the following asymptotic normality could be obtained accord-

ingly,

(nh)1/2{%̂k,`(u)− %k,`(u)− 1

2
wK2 B%̂k,`(u)h2} → N(0, f−1U (u)ω2,k,`(u)),

where

B%̂k,`(u) = %′′k,`(u)− %k,`(u)

(
σ2′′

k (u)

2σ2
k(u)

+
σ2′′

` (u)

2σ2
` (u)

)
,

ω2,k,`(u) = ν2Kζ
k,`
ε (u) +

1

4
ν2K∗K%

2
k,`(u)ζk,`ξ (u)− %k,`(u)νK,K∗Kζ

k,`
ε,ξ (u).

Proof of Theorem 2.2. From section 2.2.4, local linear method is applied

to estimate Gk`(u),

Ĝk`(u) =

∑n
t=1(ε̂k,tε̂`,t − âk`)Wn,h(Ut − u)∑n

t=1Wn,h(Ut − u)
= %̂k,`(u)− âk`,
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Chapter 2. A Reduced Rank Model for Conditional Correlations

By (2.33), together with the definition of âk` as well as (2.7), for a particular

Gk`(u), under the regularity conditions, we could have uniformly for u ∈

[c, d],

Ĝk`(u) =Gk`(u) + %̂k,`(u)− %k,`(u)− âk` + ak`

=Gk`(u) +
1

2
wK2 h

2B%̂k,`(u) +N%̂(u)− 1

2
wK2 h

2
( 1

n

n∑
t=1

B%̂k,`(Ut)
)

− 1

n

n∑
t=1

N%̂(Ut)−
1

n

n∑
t=1

Gk`(Ut) + δn, (2.34)

where δn = oP (h2 + {log n/(nh)}1/2).

Let Kf (u) = (
Kh,1(u)

fU (u)
, ...,

Kh,n(u)

fU (u)
)>, K ∗Kf (u) = (

K∗Kh,1(u)
fU (u)

, ...,
K∗Kh,n(u)
fU (u)

)>,

%(u) =



%1,2(u)

...
%1,m(u)
%2,3(u)

...
%2,m(u)

...
%m−1,m(u))


, %′′(u) =



%′′1,2(u)

...
%′′1,m(u)

%′′2,3(u)

...
%′′2,m(u)

...
%′′m−1,m(u))


, σ(u) =



σ2
′′

1 (u)

2σ21(u)
+
σ2
′′

2 (u)

2σ22(u)

...
σ2
′′

1 (u)

2σ21(u)
+
σ2
′′
m (u)

2σ2m(u)

σ2
′′

2 (u)

2σ22(u)
+
σ2
′′

3 (u)

2σ23(u)

...
σ2
′′

2 (u)

2σ22(u)
+
σ2
′′
m (u)

2σ2m(u)

...
σ2
′′
m−1(u)

2σ2m−1(u)
+
σ2
′′
m (u)

2σ2m(u)


,

and

ε =



ε1,2,1 ··· ε1,2,n

...
...

ε1,m,1 ··· ε1,m,n
ε2,3,1 ··· ε2,3,n

...
...

ε2,m,1 ··· ε2,m,n

...
...

εm−1,m,1 ··· εm−1,m,n

 = (ε̃1, ..., ε̃n),
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ξ =



ξ1,1+ξ2,1 ··· ξ1,n+ξ2,n

...
...

ξ1,1+ξm,1 ··· ξ1,n+ξm,n
ξ2,1+ξ3,1 ··· ξ2,n+ξ3,n

...
...

ξ2,1+ξm,1 ··· ξ2,n+ξm,n

...
...

ξm−1,1+ξm,1 ··· ξm−1,n+ξm,n


= (ξ̃1, .., ξ̃n),

σξ(u) =



σ21(U1)ξ1,1

σ21(u)
+
σ22(U1)ξ2,1

σ22(u)
···

σ21(Un)ξ1,n

σ21(u)
+
σ22(Un)ξ2,n

σ22(u)

...
...

σ21(U1)ξ1,1

σ21(u)
+
σ2m(U1)ξm,1

σ2m(u)
···

σ21(Un)ξ1,n

σ21(u)
+
σ2m(Un)ξm,n

σ2m(u)

σ22(U1)ξ2,1

σ22(u)
+
σ23(U1)ξ3,1

σ23(u)
···

σ22(Un)ξ2,n

σ22(u)
+
σ23(Un)ξ3,n

σ23(u)

...
...

σ22(U1)ξ2,1

σ22(u)
+
σ2m(U1)ξm,1

σ2m(u)
···

σ22(Un)ξ2,n

σ22(u)
+
σ2m(Un)ξm,n

σ2m(u)

...
...

σ2m−1(U1)ξ2,1

σ2m−1(u)
+
σ2m(U1)ξm,1

σ2m(u)
···

σ2m−1(Un)ξm−1,n

σ2m−1(u)
+
σ2m(Un)ξm,n

σ2m(u)


= (σ̃ξ,1(u), ..., σ̃ξ,n(u)),

therefore,

Ĝ(u) = G(u) +
1

2
wK2 h

2[%′′(u)− 1

2
%(u) ◦ σ(u)] +

1

n
εKf (u)

− 1

2n
%(u) ◦ (σξ(u)K ∗Kf (u))− 1

2
wK2 h

2
[ 1

n

n∑
t=1

%′′(Ut)−
1

2n

n∑
t=1

%(Ut) ◦ σ(Ut)
]

− 1

n

n∑
t=1

G(Ut)−
1

n

n∑
t=1

[ 1

n
εKf (Ut)−

1

2n
%(Ut) ◦ (σξ(Ut)K ∗Kf (Ut))

]
+ δn,

(2.35)

and

Ĝ = G +
1

2
wK2 h

2(%′′ − 1

2
% ◦ σ) +

1

n
εKf −

1

2n
% ◦ (σξK ∗Kf )−

1

n
G1n1>n

−1

2
wK2 h

2(
1

n
%′′1n1>n −

1

2n
(% ◦ σ)1n1>n )

− 1

n

[ 1

n
εKf1n1>n −

1

2n

(
% ◦ (σξK ∗Kf )

)
1n1>n

]
+ δn
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Chapter 2. A Reduced Rank Model for Conditional Correlations

= G + Ẽn,

where ◦ denotes the hadamard product of two matrices, %, %′′, σ are

M × n matrices, i.e. % = (%(U1), ..., %(Un)), %′′ = (%′′(U1), ..., %
′′(Un)), σ =

(σ(U1), ..., σ(Un)), Kf is a n × n matrix, K ∗Kf is a n2 × n matrix, and

σξ is a M × n2 matrix, i.e. Kf = (Kf (U1), ..., Kf (Un)), K ∗Kf = diag(K ∗

Kf (U1), ..., K ∗Kf (Un)), and σξ = (σξ(U1), ...,σξ(Un)).

Recall %k,`(u) = ak` + Gk`(u) by (2.7), then % = a1M1>n + G, %′′ = G′′,

therefore,

En = ΛĜ −Λ

=
1

n
ĜĜ> − E{G(U)G(U)>} =

1

n
(G + Ẽn)(G + Ẽn)> − E{G(U)G(U)>}

= (
1

2
wK2 h

2)
1

n

[
G′′G> + GG′′> − 1

2
(% ◦ σ)G> − 1

2
G(%> ◦ σ>)

]
− 1

2n2

[(
% ◦ (σξK ∗Kf )

)
G> + G

(
%> ◦ (K ∗K>f σ

>
ξ )
)]

+
1

n2

(
εKfG

> + GK>f ε
>
)

+
1

n
GG> − E{G(U)G(U)>}+ op(

1√
n

),

due to the fact that h = O(n−
1
5 ) as n→∞, andEGk`(U) = 0,

∑n
t=1Gk`(Ut) =

Op(
√
n),

G1n = Op(
√
n), G′′1n = Op(n).

Note that under condition (C5), K(·) is a bounded function with a bounded

support, satisfying the Lipschitz condition, then K ∗ K(·) is also bounded

with bounded support, and Lipschitz continuous. Note that by (C1), (C2)

and (C4), we have E|Gk`(U)/f(U)|2+δ <∞, E
∣∣∣%k1,`1 (U)Gk2`2 (U)

2σ2
k1

(U)fU (U)

∣∣∣2+δ <∞,

E
∣∣∣%k1,`1 (U)Gk2`2 (U)

2σ2
`1
(U)fU (U)

∣∣∣2+δ < ∞, for particular k, ` and k1, `1, k2, `2, thus the
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2.7. Theoretical justification

following equations hold uniformly for u ∈ [c, d],

∣∣∣∣∣∣ 1n
n∑
q=1

Gk`(Uq)
Kh(u− Uq)
f(Uq)

−Gk`(u)

∣∣∣∣∣∣ = Op(h
2 +

(
logn

nh

) 1
2

),

∣∣∣ 1
n

n∑
q=1

%k1,`1(Uq)Gk2,`2(Uq)

2σ2k1(Uq)fU (Uq)
K ∗Kh(u− Uq)−

%k1,`1(u)Gk2,`2(u)

2σ2k1(u)

∣∣∣
= Op(h

2 +

(
log n

nh

) 1
2

),∣∣∣ 1
n

n∑
q=1

%k1,`1(Uq)Gk2,`2(Uq)

2σ2`1(Uq)fU (Uq)
K ∗Kh(u− Uq)−

%k1,`1(u)Gk2,`2(u)

2σ2`1(u)

∣∣∣
= Op(h

2 +

(
log n

nh

) 1
2

),

then the following term could be approximated accordingly,

1

n2
GK>f ε

> =
1

n
Gε> + op(

1√
n

),

1

2n2
G(%> ◦ (K ∗K>f σ

>
ξ )) =

1

2n
G(%> ◦ ξ>) + op(

1√
n

).

Therefore,

En = ΛĜ −Λ = (
1

2
wK2 h

2)Wn + Hn1 + H>n1 + Hn2

+op(
1√
n

)1m(m−1)
2

1>m(m−1)
2

, (2.36)

where

Wn =
1

n
[GG′′> + G′′G> − 1

2
G(%> ◦ σ>)− 1

2
(% ◦ σ)G>],

Hn1 =
1

n
G[ε> − 1

2
(%> ◦ ξ>)],

Hn2 =
1

n
GG> − E{G(U)G(U)>}.

Because Λ is a real symmetric matrix, and Vj is the normalized eigenvector
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Chapter 2. A Reduced Rank Model for Conditional Correlations

associated with a simple eigenvalue λj of Λ for j = 1, ..., p. Then by the

results in Magnus (1985), a real-valued function uj and a vector function Vj

(j = 1, ..., p) are defined for all Λ∗ in some neighbourhood N(Λ) of Λ such

that

uj(Λ) = λj, Vj(Λ) = Vj, uj(ΛĜ) = λ̂j, Vj(ΛĜ) = V̂j,

Λ∗Vj = ujVj, V>j Vj = 1, Λ∗ ∈ N(Λ).

Moreover, the functions uj and Vj are∞ times differentiable, and the differ-

entials at Λ are

duj = V>j dΛ
∗Vj,

dVj = (λjI−Λ)+dΛ∗Vj, (2.37)

where I is the identity matrix of size M , and (λjI−Λ)+ is the Moore-Penrose

inverse of λjI−Λ.

Recall the definition of λj, Vj and λ̂j, V̂j, by applying (2.37) and Taylor’s

expansion,

λ̂j − λj = V >j (ΛĜ −Λ)Vj + op(
1√
n

)

= V >j EnVj + op(
1√
n

), (2.38)

V̂j − Vj = (λjI−Λ)+(ΛĜ −Λ)Vj + op(
1√
n

)

= (λjI−Λ)+EnVj + op(
1√
n

). (2.39)

(i) Since we have assumed that F(U) = V∗>1 G(U), i.e. Fj(U) = V>j G(U),
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2.7. Theoretical justification

e>j F = V>j G, e>j F′′ = V>j G′′, and bj = Vj by (2.15),

λ̂j − λj = V >j

[
(
1

2
wK2 h

2)Wn + Hn1 + H>n1 + Hn2

]
Vj + op(

1√
n

)

= (
1

2
wK2 h

2)V>j WnVj + V>j (Hn1 + H>n1)Vj + V>j Hn2Vj + op(
1√
n

),

with

(
1

2
wK2 h

2)V>j WnVj = (
1

2
wK2 h

2)[
2

n
V>j GG′′>Vj −

1

n
V>j G(%> ◦ σ>)Vj ]

= (
1

2
wK2 h

2)[
2

n

n∑
t=1

Fj(Ut)F
′′
j (Ut)−

1

n

n∑
t=1

V>j (%(Ut) ◦ σ(Ut))Fj(Ut)]

= (
1

2
wK2 h

2)[
2

n

n∑
t=1

Fj(Ut)F
′′
j (Ut)−

1

n

n∑
t=1

Fj(Ut)b
>
j (%(Ut) ◦ σ(Ut))]

V>j (Hn1 + H>n1)Vj =
2

n
V>j Gε>Vj −

1

n
V>j G(%> ◦ ξ>)Vj

=
2

n

n∑
t=1

Fj(Ut)V
>
j ε̃t −

1

n

n∑
t=1

Fj(Ut)V
>
j (%(Ut) ◦ ξ̃t)

=
1

n

n∑
t=1

Fj(Ut)b
>
j [2ε̃t − (%(Ut) ◦ ξ̃t)]

V>j Hn2Vj = V>j [
1

n
GG> − E{G(U)G(U)>}]Vj

=
1

n

n∑
t=1

F 2
j (Ut)− EF 2

j (U),

where ε = (ε̃1, ..., ε̃n), and ξ = (ξ̃1, ..., ξ̃n).

Then, because Fj(·), F ′′j (·) are uniformly continuous by (C4), together

with (C1) and (C2), we could show that E|Fj(Ut)|4+δ <∞, E|Fj(Ut)F ′′j (Ut)|2+δ

<∞, E|b>j (%(Ut)◦σ(Ut))Fj(Ut)|2+δ <∞, E|b>j ε̃tFj(Ut)|2+δ <∞, E|b>j (%(Ut)◦

ξ̃t)Fj(Ut)|2+δ < ∞, and by Hölder’s inequality, E|2b>j ε̃tFj(Ut) − b>j (%(Ut) ◦

ξ̃t)Fj(Ut) + F 2
j (Ut)|2+δ <∞ could be obtained accordingly.

Under the α-mixing condition (C3),
∑∞

N=1 α(N)
δ

2+δ ≤
∑∞

N=1N
−(2+ 2

δ
)( δ

2+δ
)
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=
∑∞

N=1N
−2+ 2

2+δ <∞, then

1

n

n∑
t=1

Fj(Ut)F
′′
j (Ut) = E{Fj(U)F ′′(U)}+O(

1√
n

),

1

n

n∑
t=1

Fj(Ut)b
>
j (%(Ut) ◦ σ(Ut)) = E{Fj(U)b>j (%(U) ◦ σ(U))}+O(

1√
n

),

thus

√
n
(
λ̂j − λj − (

1

2
wK2 h

2)E{2Fj(U)F ′′(U)− b>j Fj(U)(%(U) ◦ σ(U))}
)

=
1√
n

n∑
t=1

[
2b>j ε̃tFj(Ut)− b>j (%(Ut) ◦ ξ̃t)Fj(Ut) + F 2

j (Ut)− EF 2
j (U)

]
+ o(1).

Let Ij,t = 2b>j ε̃tFj(Ut) − b>j (%(Ut) ◦ ξ̃t)Fj(Ut) + F 2
j (Ut) − EF 2

j (U), since

E{ε̃t|Ut} = 0, E{ξ̃t|Ut} = 0, for a particular t,

Var(Ij,t) = Var{2b>j ε̃tFj(Ut)− b>j (%(Ut) ◦ ξ̃t)Fj(Ut)}+ Var{F 2
j (Ut)− EF 2

j (U)}

= Var{b>j [2ε̃t − (%(Ut) ◦ ξ̃t)]Fj(Ut)}+ E{F 4
j (Ut)} − λ2j ,

for time t and t+ s,

Cov(Ij,t, Ij,t+s)

= Cov
(
b>j [2ε̃t − (%(Ut) ◦ ξ̃t)]Fj(Ut) + F 2

j (Ut)− EF 2
j (U), b>j [2ε̃t+s −

(%(Ut+s) ◦ ξ̃t+s)]Fj(Ut+s) + F 2
j (Ut+s)− EF 2

j (U)
)

= E
{
b>j [2ε̃t − (%(Ut) ◦ ξ̃t)][2ε̃>t+s − (%>(Ut+s) ◦ ξ̃>t+s)]bjFj(Ut)Fj(Ut+s)

}
+E{F 2

j (Ut)F
2
j (Ut+s)}.
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hence, by CLT result for α-mixing series,

√
n

(
λ̂j − λj − (

1

2
wK2 h

2)E
{

2Fj(U)F ′′(U)− b>j Fj(U)(%(U) ◦ σ(U))
})

d−→ N(0, σ2
λj

),

where

σ2λj =E{I2j,1}+ 2

∞∑
s=1

E{Ij,1, Ij,s+1}

=E
{
F 2
j (U1)b

>
j Cov

(
2ε̃1 − %(U1) ◦ ξ̃1

∣∣U1

)
bj

}
+ E{F 4

j (U1)} − λ2j

+2

∞∑
s=1

E
{
Fj(U1)Fj(Us+1)b

>
j Cov

(
2ε̃1 − %(U1) ◦ ξ̃1, 2ε̃s+1 − %(Us+1) ◦ ξ̃s+1

∣∣U1, Us+1

)
bj

}
+2

∞∑
s=1

E{(F 2
j (U1)− λj)(F 2

j (Us+1)− λj)}

(ii) Similarly, consider the asymptotic properties of the estimated eigenvec-

tor V̂j. Let Ip be the identity matrix of size p, then substitute (2.36) into

(2.39),

V̂j − Vj = (λjI−Λ)+EnVj + op(
1√
n

)

= (λjI−Λ)+
[
(
1

2
wK2 h

2)Wn + Hn1 + H>n1 + Hn2

]
Vj + op(

1√
n

).

Specifically, G = BF = V∗1F by (2.15), and
∑p

i=1 ViV
>
i = V∗1V

∗>
1 , V∗>1 V∗1 =

Ip. Moreover, (λjI − Λ)>ΛVj = (λjI − Λ)λjVj = 0, which means that

(λjI−Λ)+ΛVj = 0. Thus,

(
1

2
wK2 h

2)(λjI−Λ)+WnVj

= (
1

2
wK2 h

2)(λjI−Λ)+
1

n

n∑
t=1

[ p∑
i=1

ViFi(Ut)F
′′
j (Ut) +

p∑
i=1

ViFj(Ut)F
′′
i (Ut)
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−1

2

p∑
i=1

ViFi(Ut)V
>
j (%(Ut) ◦ σ(Ut))−

1

2
Fj(Ut)(%(Ut) ◦ σ(Ut))

]
,

(λjI−Λ)+Hn1Vj

= (λjI−Λ)+
1

n

n∑
t=1

p∑
i=1

ViV
>
j [ε̃t −

1

2
(%(Ut) ◦ ξ̃t)]Fi(Ut),

(λjI−Λ)+H>n1Vj

= (λjI−Λ)+
1

n

n∑
t=1

[ε̃t −
1

2
(%(Ut) ◦ ξ̃t)]Fj(Ut),

(λjI−Λ)+Hn2Vj

= (λjI−Λ)+[
1

n
GG> −Λ]Vj = (λjI−Λ)+

1

n

n∑
t=1

p∑
i=1

ViFi(Ut)Fj(Ut).

To investigate the asymptotic normality of the eigenvector V̂j, we consider

the asymptotic result of y>V̂j for y ∈ RM . Under the α-mixing condition

(C3),
∑∞

N=1 α(N)
δ

2+δ ≤
∑∞

N=1N
−(2+ 2

δ
)( δ

2+δ
) =

∑∞
N=1N

−2+ 2
2+δ <∞. Let

Wj,t = (λjI−Λ)+
[ p∑
i=1

ViFi(Ut)F
′′
j (Ut) +

p∑
i=1

ViFj(Ut)F
′′
i (Ut)

−1

2

p∑
i=1

ViFi(Ut)V
>
j (%(Ut) ◦ σ(Ut))−

1

2
Fj(Ut)(%(Ut) ◦ σ(Ut))

]
,

Hj,t = (λjI−Λ)+
[ p∑
i=1

ViV
>
j

(
ε̃t −

1

2
(%(Ut) ◦ ξ̃t)

)
Fi(Ut) +

(
ε̃t −

1

2
(%(Ut) ◦ ξ̃t)

)
Fj(Ut)

+

p∑
i=1

ViFi(Ut)Fj(Ut)
]

= (λjI−Λ)+
[( p∑

i=1

ViV
>
j Fi(Ut) + Fj(Ut)I

)(
ε̃t −

1

2
%(Ut) ◦ ξ̃t

)
+

p∑
i=1

ViFi(Ut)Fj(Ut)
]
,

by (C1), (C2) and (C4), for the same δ in the assumptions, E|y>Hj,t|2+δ <

∞, and E|y>Wj,t|2+δ < ∞, then for an arbitrary linear combination y>V̂j
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for y ∈ RM ,

√
n
(

y>V̂j − y>Vj − (
1

2
wK2 h

2)Ey>Wj,1

)
=

1

n

n∑
t=1

y>Hj,t + op(1),

hence, by CLT result for α-mixing series, which means that

√
n
(

y>V̂j − y>Vj − (
1

2
wK2 h

2)Ey>Wj,1

)
d−→ N(0, y>ΣVjy)

where

EWj,1 = E
{

(λjI−Λ)+
[ p∑

i=1

ViFi(Ut)F
′′
j (Ut) +

p∑
i=1

ViFj(Ut)F
′′
i (Ut)

−1

2

p∑
i=1

ViFi(Ut)V
>
j (%(Ut) ◦ σ(Ut))−

1

2
Fj(Ut)(%(Ut) ◦ σ(Ut))

]}
,

ΣVj
= Cov(Hj,1) + 2

∞∑
s=1

Cov(Hj,1,Hj,s+1)

= (λjI−Λ)+

[( p∑
i=1

ViV
>
j Fi(U1) + Fj(U1)I

)
Cov

(
ε̃1 −

1

2
%(U1) ◦ ξ̃1|U1

)
( p∑

i=1

VjV
>
i Fi(U1) + Fj(U1)I

)
+ 2

∞∑
s=1

Cov
(( p∑

i=1

ViV
>
j Fi(U1) + Fj(U1)I

)(
ε̃1 −

1

2
%(U1) ◦ ξ̃1

)
,

( p∑
i=1

ViV
>
j Fi(Us+1) + Fj(Us+1)I

)(
ε̃s+1 −

1

2
%(Us+1) ◦ ξ̃s+1

))
+
( p∑

i=1

ViFi(U1)Fj(U1)
)( p∑

i=1

V>i Fi(U1)Fj(U1)
)

+2

∞∑
s=1

Cov
( p∑

i=1

ViFi(U1)Fj(U1),

p∑
i=1

ViFi(Us+1)Fj(Us+1)
)]

(λjI−Λ)+,

therefore, by cramér-wold theorem,

√
n
(

V̂j − Vj − (
1

2
wK2 h

2)EWj,1

)
d−→ NM(0,ΣVj).

Proof of Theorem 2.3. From (2.35), we could directly have the following
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equation,

Ĝ(u) = G(u) +
1

2
wK2 h

2[%′′(u)− 1

2
%(u) ◦ σ(u)] +

1

n
εKf (u)

− 1

2n
%(u) ◦ (σξ(u)K ∗Kf (u))− 1

2
wK2 h

2
[ 1

n

n∑
t=1

%′′(Ut)−
1

2n

n∑
t=1

%(Ut) ◦ σ(Ut)
]

− 1

n

n∑
t=1

G(Ut)−
1

n

n∑
t=1

[ 1

n
εKf (Ut)−

1

2n
%(Ut) ◦ (σξ(Ut)K ∗Kf (Ut))

]
+ δn,

and recall (2.15), (2.36), %′′(u) = BF′′(u) = V∗1F
′′(u), %′′ = BF′′ = V∗1F,

hence,

F̂j(u)− Fj(u)

= V̂>j Ĝ(u)−V>j G(u) =
(
Vj + (λjI−Λ)+EnVj)

>(G(u) + Ĝ(u)−G(u)
)
−V>j G(u)

= V>j (
1

2
wK2 h

2)Wn(λjI−Λ)+G(u) + V>j (Ĝ(u)−G(u)) + δn

= V>j (
1

2
wK2 h

2)Wn(λjI−Λ)+V∗1F(u) + (
1

2
wK2 h

2)
[
F ′′j (u)− 1

2
V>j

(
%(u) ◦ σ(u)

)
−
( 1

n
e>j F′′1n −

1

2n
V>j (% ◦ σ)1n

)]
+

1

n
V>j

[
εKf (u)− 1

2
%(u) ◦

(
σξ(u)K ∗Kf (u)

)]
+δn

= (
1

2
wK2 h

2)A1(u) +A2(u) + δn,

where

A1(u) = V >j Wn(λjI−Λ)+V∗1F(u) + F ′′j (u)− 1

2
V>j

(
%(u) ◦ σ(u)

)
−
( 1

n
e>j F′′1n −

1

2n
V>j (% ◦ σ)1n

)
=

1

n

n∑
t=1

[ p∑
i=1

Fi(Ut)F
′′
j (Ut)V

>
i +

p∑
i=1

Fj(Ut)F
′′
i (Ut)V

>
i

−1

2

p∑
i=1

V>j (%(Ut) ◦ σ(Ut))Fi(Ut)V
>
i −

1

2
(%>(Ut) ◦ σ>(Ut))Fj(Ut)

]
(λjI−Λ)+V∗1F(u)

+
[
F ′′j (u)− 1

2
V>j

(
%(u) ◦ σ(u)

)
−
( 1

n

n∑
t=1

F ′′j (Ut)−
1

2n

n∑
t=1

V>j (%(Ut) ◦ σ(Ut))
)]
,

A2(u) =
1

n
V>j

[
εKf (u)− 1

2
%(u) ◦

(
σξ(u)K ∗Kf (u)

)]
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=
1

nfU (u)

n∑
t=1

[
V >j ε̃tKh(Ut − u)− 1

2
V>j

(
%(u) ◦ σ̃ξ,t(u)

)
K ∗Kh(Ut − u)

]
.

Then

EA1(u) = [F ′′j (u)− EF ′′j (U)]− 1

2
V>j

[(
%(u) ◦ σ(u)

)
− E

(
%(U) ◦ σ(U)

)]
+E
[
Fi(U)F ′′j (U)V>i + Fj(U)F ′′i (U)V>i −

1

2
V>j (%(U) ◦ σ(U))Fi(U)V>i

−1

2
(%>(U) ◦ σ>(U))Fj(U)

]
(λjI−Λ)+V∗1F(u),

EA2(u) =
1

nfU (u)

[
V >j ε̃1Kh(U1 − u)− 1

2
V>j

(
%(u) ◦ σ̃ξ,1(u)

)
K ∗Kh(U1 − u)

]
= 0,

and let

A2(u) =
1

n

n∑
t=1

Rt(u),

with

Rt(u) =
1

fU(u)

[
V >j ε̃tKh(Ut − u)− 1

2
V>j

(
%(u) ◦ σ̃ξ,t(u)

)
K ∗Kh(Ut − u)

]
.

Note that

Var(R1(u)) =
1

hfU (u)
V >j

[
ν2KVar(ε̃1) +

1

4
ν2K∗K

(
(%(u)%>(u)) ◦Var(ξ̃1)

)
−νK,K∗KE{ε̃1(%>(u) ◦ ξ̃>1 )}

]
Vj + o(

1

h
),

by stationarity in (C3), we have

Var(A2(u)) =
1

n
Var(R1(u)) +

2

n

n−1∑
s=1

(1− s

n
)Cov(R1(u), Rs+1(u)).
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Let dn →∞ be a sequence of integers such that hdn → 0. Define

Q1 =
dn−1∑
s=1

|Cov(R1(u), Rs+1(u))|, Q2 =
n−1∑
s=dn

|Cov(R1(u), Rs+1(u))|.

Conditioning on (U1, Us+1), and by (C2), (C4) and (C5),

|Cov(R1(u), Rs+1(u))|

= |E{E(R1(u), Rs+1(u)|U1, Us+1)}|

=
∣∣∣E{E( 1

f2(u)

[
V >j ε̃1Kh(U1 − u)− 1

2
V>j

(
%(u) ◦ σ̃ξ,1(u)

)
K ∗Kh(U1 − u)

]
[
V >j ε̃tKh(Us+1 − u)− 1

2
V>j

(
%(u) ◦ σ̃ξ,s+1(u)

)
K ∗Kh(Us+1 − u)

])∣∣∣∣U1, Us+1

}∣∣∣
≤ CL2 ≤M0

for M0 > 0 and some generic constant C > 0. Then it follows that Q1 ≤

dnM0. We now consider the contribution of Q2. For this α-mixing process,

by Davydov’s lemma,

|Cov(R1(u), Rs+1(u))| = E|R1(u)Rs+1(u)| ≤ 8[α(s)]
δ

1+δ {E|R1|2(1+δ)}
1

1+δ .

By conditioning on U1, and using (C2) and (C3),

E|R1|2(1+δ) =E

∣∣∣∣∣∣
V >j ε̃1Kh(U1 − u)− 1

2V>j

(
%(u) ◦ σ̃ξ,1(u)

)
K ∗Kh(U1 − u)

fU (u)

∣∣∣∣∣∣
2(1+δ)

≤ CL2h
−2(1+δ)+1.

Hence, for δ
1+δ

< γ < 1,

Q2 ≤
n−1∑
s=dn

8[α(s)]
δ

1+δ {E|R1|2(1+δ)}
1

1+δ ≤ (CL2)
1

1+δ 8(h−2(1+δ)+1)
1

1+δ

∞∑
s=dn

[s−β]
δ

1+δ
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≤M1h
−2+ 1

1+δ

∞∑
s=dn

s−2 = M1h
−2+ 1

1+δ d−γn

∞∑
s=dn

s−2+γ = o(1/h)

by taking h−1+
1

1+δ d−γn = 1. Together with the above results,

n−1∑
s=1

Cov(R1(u), Rs+1(u)) = o(1/h),

and

Var(A2(u))

=
V >j

[
ν2KVar(ε̃1) + 1

4ν
2
K∗K

(
(%(u)%>(u)) ◦Var(ξ̃1)

)
− νK,K∗KE{ε̃1(%>(u) ◦ ξ̃>1 )}

]
Vj

nhfU (u)

+o(
1

nh
).

Therefore, as n → ∞, h → 0, similar to other nonparametric estimators

for strong mixing time series, the following asymptotic normality could be

established,

√
nh

(
F̂j(u)− Fj(u)− (

1

2
wK2 h

2)EA1(u)

)
d−→ N(0, σ2

Fj
),

where

EA1(u) = [F ′′j (u)− EF ′′j (U)]− 1

2
V>j

[(
%(u) ◦ σ(u)

)
− E

(
%(U) ◦ σ(U)

)]
+E
[
Fi(U)F ′′j (U)V>i + Fj(U)F ′′i (U)V>i −

1

2
V>j (%(U) ◦ σ(U))Fi(U)V>i

−1

2
(%>(U) ◦ σ>(U))Fj(U)

]
(λj −Λ)+V∗1F(u),

σ2
Fj

=
V >j

[
ν2KVar(ε̃1) + 1

4ν
2
K∗K

(
(%(u)%>(u)) ◦Var(ξ̃1)

)
− νK,K∗KE{ε̃1(%>(u) ◦ ξ̃>1 )}

]
Vj

fU (u)
.
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Proof of Theorem 2.4. Let

ˆ̃εt =



ε̂1,2,t

...
ε̂1,m,t
ε̂2,3,t

...
ε̂2,m,t

...
ε̂m−1,m,t


, ˆ̃εt =



ε̂1,tε̂2,t

...
ε̂1,tε̂m,t
ε̂2,tε̂3,t

...
ε̂2,tε̂m,t

...
ε̂m−1,tε̂m,t


, B̂ = (V̂1, ..., V̂p), F̂[1:p](Ut) =

(
F̂1(Ut)

...
F̂p(Ut)

)
.

Lemma 2.3. Let p̂ be the minimizer of the information criteria defined in

(2.20) among 0 ≤ p ≤ pmax with pmax > p0 being a fixed search limit.

Consider the cases that p ≤ p0, under the regularity conditions given before,

σ̂2
[p] −

1
M
E‖ε̃1‖2 → 1

M
tr(D∗[p+1:p0]

) in probability and tr(D∗[p+1:p0]
) = 0 for

p = p0.

Proof of Lemma 2.3. For p ≤ p0,

Mσ̂2[p] =
1

n

n∑
t=1

‖ˆ̃εt − â− B̂F̂(Ut)‖2 =
1

n

n∑
t=1

‖ˆ̃εt − â− V̂∗1,[p]F̂[1:p](Ut)‖2

=
1

n

n∑
t=1

‖ˆ̃εt − â− V̂∗1,[p]V̂
∗>
1,[p]Ĝ(Ut)‖2

=
1

n

n∑
t=1

‖ˆ̃εt − %̂(Ut) + (I− V̂∗1,[p]V̂
∗>
1,[p])(%̂(Ut)− â)‖2.

Define Mσ∗2[p] = 1
n

∑n
t=1 ‖ε̃t − a − V∗1,[p]V

∗>
1,[p]G(Ut)‖2, recall that %(Ut) =

a+ G(Ut), F(Ut) = F[1:p](Ut) = V∗>1,[p]G(Ut), B = V∗1,[p], and V∗>1,[p]V
∗
1,[p] = Ip,

V∗>1,[p]V
∗
1,[p+1:p0]

= 0, thus

Mσ∗2[p] =
1

n

n∑
t=1

‖ε̃t − a−V∗1,[p]V
∗>
1,[p]G(Ut)‖2

=
1

n

n∑
t=1

‖ε̃t − %(Ut) + %(Ut)− a−V∗1,[p]V
∗>
1,[p]G(Ut)‖2

=
1

n

n∑
t=1

‖ε̃t − %(Ut) +
(
I−V∗1,[p]V

∗>
1,[p]

)(
V∗1,[p]F[1:p](Ut) + V∗1,[p+1:p0]

F[p+1:p0](Ut)
)
‖2
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=
1

n

n∑
t=1

‖ε̃t + V∗1,[p+1:p0]
F[p+1:p0](Ut)

)
‖2

=
1

n

n∑
t=1

[
ε̃>t ε̃t + 2F>[p+1:p0]

(Ut)V
∗>
1,[p+1:p0]

ε̃t + F>[p+1:p0]
(Ut)F[p+1:p0](Ut)

]
.

Therefore, by law of large numbers,

Mσ∗2[p] → Eε̃>1 ε̃1 + E(F>[p+1:p0]
(U1)F[p+1:p0](U1)) = Eε̃>1 ε̃1 + tr(D∗[p+1:p0]

) a.s.

Furthermore,

M(σ̂2[p] − σ
∗2
[p])

=
1

n

n∑
t=1

[
(ˆ̃εt − %̂(Ut))

>(ˆ̃εt − %̂(Ut)) + 2Ĝ>(Ut)(I− V̂∗1,[p]V̂
∗>
1,[p])(

ˆ̃εt − %̂(Ut))

+Ĝ>(Ut)(I− V̂∗1,[p]V̂
∗>
1,[p])Ĝ(Ut)

]
− 1

n

n∑
t=1

[
ε̃>t ε̃t + 2F>[p+1:p0]

(Ut)V
∗>
1,[p+1:p0]

ε̃t

+F>[p+1:p0]
(Ut)F[p+1:p0](Ut)

]
=

1

n

n∑
t=1

[
(ˆ̃εt − %̂(Ut))

>(ˆ̃εt − %̂(Ut))− ε̃>t ε̃t + 2Ĝ>(Ut)(I− V̂∗1,[p]V̂
∗>
1,[p])(

ˆ̃εt − %̂(Ut))

−2F>[p+1:p0]
(Ut)V

∗>
1,[p+1:p0]

ε̃t + Ĝ>(Ut)(I− V̂∗1,[p]V̂
∗>
1,[p])Ĝ(Ut)

−F>[p+1:p0]
(Ut)F[p+1:p0](Ut)

]
=Op(h

2 +

(
log n

nh

) 1
2

),

by the convergence results of ˆ̃εt, %̂(Ut), Ĝ(Ut) and V̂∗1,[p], it means that

M(σ̂2
[p] − σ∗2[p])→ 0 in probability for p ≤ p0.

Hence, we could deduce that σ̂2
[p]−

1
M
E‖ε̃1‖2 → 1

M
tr(D∗[p+1:p0]

) in probability.

Lemma 2.4. For p > p0, under the same regularity conditions, σ̂2
[p]− σ̂2

[p0]
=
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Op(h
2 +

(
logn
nh

) 1
2 ).

Proof of Lemma 2.4. For p > p0,

Mσ̂2[p] =
1

n

n∑
t=1

‖ˆ̃εt − â− B̂F̂(Ut)‖2 =
1

n

n∑
t=1

‖ˆ̃εt − â− V̂∗1,[p]F̂[1:p](Ut)‖2

=
1

n

n∑
t=1

‖ˆ̃εt − %̂(Ut) + (I− V̂∗1,[p0]V̂
∗>
1,[p0]

− V̂∗1,[p0+1:p]V̂
∗>
1,[p0:p]

)(%̂(Ut)− â)‖2

=
1

n

n∑
t=1

[
(ˆ̃εt − %̂(Ut))

>(ˆ̃εt − %̂(Ut)) + 2Ĝ>(Ut)(I− V̂∗1,[p0]V̂
∗>
1,[p0]

− V̂∗1,[p0+1:p]

V̂∗>1,[p0+1:p])(
ˆ̃εt − %̂(Ut)) + Ĝ>(Ut)(I− V̂∗1,[p0]V̂

∗>
1,[p0]

− V̂∗1,[p0+1:p]V̂
∗>
1,[p0+1:p])Ĝ(Ut)

]
,

Mσ̂2[p0] =
1

n

n∑
t=1

[
(ˆ̃εt − %̂(Ut))

>(ˆ̃εt − %̂(Ut)) + 2Ĝ>(Ut)(I− V̂∗1,[p0]V̂
∗>
1,[p0]

)(ˆ̃εt − %̂(Ut))

+Ĝ>(Ut)(I− V̂∗1,[p0]V̂
∗>
1,[p0]

)Ĝ(Ut)
]
,

together with G(Ut) = V∗1,[p0]F(Ut), V∗>1,[p0]V
∗
1,[p0+1:p] = 0, then

M |σ̂2[p] − σ̂
2
[p0]
| =

∣∣∣ 1
n

n∑
t=1

2Ĝ>(Ut)V̂
∗
1,[p0+1:p]V̂

∗>
1,[p0+1:p])(

ˆ̃εt − %̂(Ut))

+
1

n

n∑
t=1

Ĝ>(Ut)V̂
∗
1,[p0+1:p]V̂

∗>
1,[p0+1:p]Ĝ(Ut)

∣∣∣
=

∣∣∣ 1
n

n∑
t=1

2G>(Ut)V
∗
1,[p0+1:p]V

∗>
1,[p0+1:p])(ε̃t − %(Ut))

+
1

n

n∑
t=1

G>(Ut)V
∗
1,[p0+1:p]V

∗>
1,[p0+1:p]G(Ut) +Op(h

2 +

(
log n

nh

) 1
2

)
∣∣∣

= Op(h
2 +

(
log n

nh

) 1
2

).
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2.7. Theoretical justification

Now we only discuss the consistency of IC(p).

For p < p0, by Lemma 2.3 and gn
P−→ 0,

IC(p)− IC(p0) = log(σ̂2
[p])− log(σ̂2

[p0]
) + (p− p0)gn

= log

(
1 +

σ̂2
[p] − σ̂2

[p0]

σ̂2
[p0]

)
+ (p− p0)gn

=

(
σ̂2
[p] − σ̂2

[p0]

σ̂2
[p0]

)
(1 + o(1)) + (p− p0)gn

P−→
tr(D∗[p+1:p0]

)

E‖ε̃1‖2
> 0.

Then IC(p) > IC(p0) with probability tending to 1.

For p > p0, by Lemma 2.4 and gn/
(
h2 +

(
logn
nh

) 1
2

)
P−→∞,

IC(p)− IC(p0) = log(σ̂2
[p])− log(σ̂2

[p0]
) + (p− p0)gn

=

(
σ̂2
[p] − σ̂2

[p0]

σ̂2
[p0]

)
(1 + o(1)) + (p− p0)gn

= Op(h
2 +

(
log n

nh

) 1
2

) + (p− p0)gn > 0.

Therefore, p̂ which minimizes IC(p) converge to p0 with probability going

to 1.
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CHAPTER 3

A Hybrid Estimation of Conditional

Variance or Covariance Function

3.1 Introduction

The estimation of variance functions without estimation of the mean

functions have been extensively discussed in literature. The mechanism be-

hind is the cross-difference can itself remove the mean automatically. In par-

ticular, difference-based estimators for estimating constant variances have a

long history. Here we present the definition of the difference scheme.

Definition 3.1. A difference scheme of order m ∈ N is a vector d =

(dr)r=0,··· ,m ∈ Rm+1 satisfying

m∑
r=0

dr = 0,
m∑
r=0

d2r = 1.
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3.1. Introduction

The original idea could date back to Von Neumann (1941). Later, Rice (1984)

introduced a popular first-order difference-based estimator

σ̂2 =
1

2(n− 1)

n−1∑
i=1

(Yi+1 − Yi)2, (3.1)

with d0 = 1
2

and d1 = −1
2
. Hall, Kay and Titterinton (1990) provided the

m-th order variance estimator

σ̂2 =
1

(n−m)

n−m∑
i=1

(
m∑
r=0

drYi+r

)2

, (3.2)

based on optimal difference sequences {dr : r = 0, · · · ,m} minimizing the

asymptotic MSE of this variance estimator. Recently, Müller, Schick and We-

felmeyer (2003) proposed a covariate-matched U-statistic for noise variances

in nonparametric regression. Except for estimation under univariate setting,

difference-based constant variance estimators also have been examined for

multivariate case. A generalized difference scheme is defined as follows.

Definition 3.2. A generalized difference scheme is a vector d = (dr)r∈J ,

satisfying ∑
r∈J

dr = 0,
∑
r∈J

d2r = 1,

where J ⊂ Zp denotes a particular index set.

Munk, Bissantz, Wagner and Freitag (2005) investigated the influences of

dimensionality and smoothness of m(x) on the optimal convergence rate of

the difference-based approach, and suggested a class of estimators with a

generalized polynomial weighted difference scheme.

The difference sequence scheme have also been utilized for nonconstant
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variance function estimation. Brown and Levine (2007) constructed a sort of

difference-based variance estimator of order m by applying local polynomial

smoothing based on squared pseudo residual of order m. Moreover, based

upon the square of first-order differences, Wang, Brown, Cai and Levine

(2008) presented a kernel estimator and established the result that the per-

formance of their estimator is much better compared with the residual-based

estimator, while the conditional mean function is not smooth enough. For

multivariate case, Cai, Levine and Wang (2009) extended the difference se-

quence approach described in Munk, Bissantz, Wagner and Freitag (2005)

to multidimensional nonparametric regression models, and derived the min-

imax convergence rate of this estimator. However, for multidimensional X,

the construction of the cross-difference is not easy due to the index sets

selection; see for example Munk, Bissantz, Wagner and Freitag (2005), Cai,

Levine and Wang (2009). In this chapter, we propose a novel approach to the

estimation of conditional variance function. We do not define the complex

difference sequence scheme, but construct a local variance estimate based on

kernel weighted squared differences at the first stage, then estimate variance

functions by kernel smoothing. Therefore, our method is a combination of

the techniques in kernel smoothing and difference-based approach.

The remainder of this chapter is organized as follows. Section 3.2 presents

our new strategy for estimating the unknown conditional variance function

(or conditional covariance function). In Section 3.3, we establish the asymp-

totic normality of our proposed estimator. We then perform a simulation

study to make a comparison with two existing methods in Section 3.4. All

the technical proofs are given in Section 3.6.
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3.2. Estimation

3.2 Estimation

In this chapter, we consider the nonparametric multivariate regression

model

Y = m(X) + σ(X)ε,

Z = g(X) + φ(X)ε,

(3.3)

where X is p-dimensional covariate, Y and Z are scalar responses, and ε, is

the error term with E(ε|X) = 0, and E(ε2|X) = 1. In this section, we will

present our estimation method for both the conditional variance function

and conditional covariance function. Therefore, the estimation of

σ2(x) = Var(Y |X = x), φ2(x) = Var(Z|X = x)

and

σY,Z(x) = Cov(Y, Z|X = x) = E
(

(Y −m(X))(Z − g(X))|X = x
)

is the primary focus of this chapter.

3.2.1 The hybrid estimation of conditional variance function

In order to illustrate the estimation procedure of conditional variance

function, we take the nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, ..., n, (3.4)
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as an example, where {(Xi, Yi) : i = 1, · · · , n} have the same distribution

as (X, Y ) and E(εi|Xi) = 0, Var(ε2i |Xi) = 1. It is noteworthy that both the

mean function m(·) and the variance function σ2(·) are unknown, and the

estimation of conditional variance function σ2(·) is of our interest. Consider

the unconditional variance σ2
0 = E(Y − E(Y ))2, we could observe that its

estimate is usually done by its sample version, i.e.,

σ̂2
0 =

1

n

n∑
i=1

{Yi − Ȳ }2.

where Ȳ is the sample mean. However, it is not easy to see that σ̂2
0 can also

be written as

σ̂2
0 =

1

2n2

n∑
i=1

n∑
j=1

{Yi − Yj}2. (3.5)

As a result, this enlightens us to propose a new estimator based on a local

version of (3.5).

Without estimating the conditional mean m(x) at first, our conditional

variance estimator σ̂2(x) is described as follows,

σ̂2(x) =
1

2

∑n
i=1Kh(Xi − x)s2i,b∑n
i=1Kh(Xi − x)

,

with

s2i,b =

∑n
j=1Kb(Xi −Xj)(Yi − Yj)2∑n

j=1Kb(Xi −Xj)
,

(3.6)

where K(·) and K(·) are kernel functions, h and b are two bandwidths,

Kh(·) = h−pK(·/h), and Kb(·) = b−pK(·/b). Alternatively, we could define
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3.2. Estimation

σ̂2(x) as

σ̂2(x) =
1

2

∑n
i=1Wn,h(Xi − x)s2i,b∑n
i=1Wn,h(Xi − x)

,

with

s2i,b =

∑n
j=1Wn,b(Xi −Xj)(Yi − Yj)2∑n

j=1Wn,b(Xi −Xj)
,

(3.7)

where h and b are also bandwidths,

Wn,h(Xi − x) = wn,h,2Kh(Xi − x)− wn,h,1Kh(Xi − x)(Xi − x),

Wn,b(Xi − x) = ωn,b,2Kb(Xi − x)− ωn,b,1Kb(Xi − x)(Xi − x),

and wn,h,r =
∑n

i=1Kh(Xi− x)(Xi− x)r , ωn,b,r =
∑n

i=1Kb(Xi− x)(Xi− x)r

for r = 0, 1, 2. The basic idea behind is that we first use s2i,b to measure the

local variation around Yi, then apply kernel smoothing on those s2i,b. Note

that the reason we define s2i,b in this way is that we could quantify local

variation relying on nearest neighbours without constructing a complicated

difference sequence scheme.

3.2.2 The hybrid estimation of conditional covariance function

Due to the fact that

σY,Z(x) = Cov(Y, Z|X = x) =
1

4
[Var(Y + Z|X = x)− Var(Y − Z|X = x)] ,

we could estimate the conditional covariance function σY,Z(x) by separately

estimating conditional variances of Y +Z and Y −Z. Let σ2
+(x) = Var(Y +

Z|X = x), σ2
−(x) = Var(Y − Z|X = x), and denote the nonparametric
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estimator for σ2
+(x) and σ2

−(x) by σ̂2
+(x) and σ̂2

−(x) respectively. Therefore,

by applying the same estimation strategy for conditional variance function,

our nonparametric estimator σ̂Y,Z(x) for σY,Z(x) could be defined based on

σ̂2
+(x) and σ̂2

−(x) accordingly. Similar to (3.6) and (3.7), we define σ̂2
+(x) and

σ̂2
−(x) as follows,

σ̂2
+(x) =

1

2

∑n
i=1Kh+(Xi − x)v2i,b+∑n
i=1Kh+(Xi − x)

, σ̂2
−(x) =

1

2

∑n
i=1Kh−(Xi − x)v2i,b−∑n
i=1Kh−(Xi − x)

,

(3.8)

where

v2i,b+ =

∑n
j=1Kb+(Xi −Xj)[(Yi + Zi)− (Yj + Zj)]

2∑n
j=1Kb+(Xi −Xj)

,

v2i,b− =

∑n
j=1Kb−(Xi −Xj)[(Yi − Zi)− (Yj − Zj)]2∑n

j=1Kb−(Xi −Xj)
;

or,

σ̂2
+(x) =

1

2

∑n
i=1Wn,h+(Xi − x)v2i,b+∑n
i=1Wn,h+(Xi − x)

, σ̂2
−(x) =

1

2

∑n
i=1Wn,h−(Xi − x)v2i,b−∑n
i=1Wn,h−(Xi − x)

,

(3.9)

where

v2i,b+ =

∑n
j=1Wn,b+(Xi −Xj)[(Yi + Zi)− (Yj + Zj)]

2∑n
j=1Wn,b+(Xi −Xj)

,

v2i,b− =

∑n
j=1Wn,b−(Xi −Xj)[(Yi − Zi)− (Yj − Zj)]2∑n

j=1Wn,b−(Xi −Xj)
,

with functions Kb+(·), Kb−(·), Kb+(·), Kb−(·), Wn,b+(·), Wn,b−(·), Wn,b+(·),

Wn,b−(·), and bandwidths b+, b−, h+, h− defined similar to those in (3.6)

and (3.7). Subsequently, our estimator for the conditional covariance function
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σY,Z(x) is

σ̂Y,Z(x) =
1

4
[σ̂2

+(x)− σ̂2
−(x)].

3.3 Asymptotics

In this section, we will discuss the asymptotic properties of our proposed

estimators for conditional variance and conditional covariance function. We

will only present the results for estimators in the form of (3.6) and (3.9),

and results for estimators of other forms could be derived similarly.

For the nonparametric conditional variance estimator σ̂2(x), we could es-

tablish the following asymptotic result. We only present here the asymptotic

normality for σ̂2(x), and results for φ̂2(x) is similar.

Theorem 3.1. Suppose that the regularity conditions (C1)-(C6) in Section

3.6 hold, then for a particular x, as n→∞, we have

√
nhp{σ̂2(x)− σ2(x)−B(x)} d−→ N

(
0,
σ4(x)Var(ε21)

4f(x)
ν2K,K

)
, (3.10)

where

B(x) =
1

2
h2tr

{
2MK

2 ∇σ2(x)(∇f(x))>

f(x)
+ MK

2 S(x)

}
+

1

2
b2tr

{
MK

2 ∇m(x)(∇m(x))>

+MK
2 ∇σ2(x)(∇f(x))> + MK

2 S(x)
}
,

ν2K,K =

∫ [∫ (
K(v) +K(v +

bu

h
)
)
K(u)du

]2
dv,

with MK
2 =

∫
K(v)vv>dv, ∇m(x) = ∂m(x)/∂x, ∇σ2(x) = ∂σ2(x)/∂x,

H(x) = ∂2m(x)/∂x∂>x, and S(x) = ∂2σ2(x)/∂x∂>x.
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Remark 3.1. It can be observed from (3.10) that if b = o(h),

B(x) =
1

2
h2tr

{
2MK

2 ∇σ2(x)(∇f(x))>

f(x)
+ MK

2 S(x)

}
+ o(h2),

ν2K,K =

∫ [∫ (
K(v) +K(v +

bu

h
)
)
K(u)du

]2
dv = 4

∫
K2(v) dv + o(1).

This indicates that our estimator σ̂2(x) has the same order of asymptotic

bias, and the same asymptotic variance as the residual-based estimator pro-

posed in Fan and Yao (1998), when the bandwidth b is of smaller order

than bandwidth h. Therefore, our newly developed estimator σ̂2(x) could

achieve the same asymptotic efficiency as the estimator applied in Fan and

Yao (1998), if we choose the bandwidth b very small compared with h.

Next, we could also study the asymptotic property of σ̂Y,Z(x) in a similar

way. Recall that

σ2
+(x) = Var(Y + Z|X = x) = σ2(x) + φ2(x) + 2σY,Z(x),

σ2
−(x) = Var(Y − Z|X = x) = σ2(x) + φ2(x)− 2σY,Z(x),

and let

µ+(x) = m(x) + g(x), µ−(x) = m(x)− g(x),

∇µ+(x) = ∂µ+(x)/∂x, ∇µ−(x) = ∂µ−(x)/∂x,

∇σ2
+(x) = ∂σ2

+(x)/∂x, ∇σ2
−(x) = ∂σ2

−(x)/∂x,

H+(x) = ∂2µ+(x)/∂x∂>x, H−(x) = ∂2µ−(x)/∂x∂>x,

S+(x) = ∂2σ2
+(x)/∂x∂>x, S−(x) = ∂2σ2

−(x)/∂x∂>x.

based on the definitions of estimators σ̂2
+(x), σ̂2

−(x) and σ̂Y,Z(x), we could
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3.3. Asymptotics

obtain the following asymptotic results.

Theorem 3.2. Let b+ = o(h+), b− = o(h−), and h− = O(h+). Under the

regularity conditions (C1)-(C6) in section 3.6 with h and b replaced by h+,

h− and b+, b−, then for a particular x, as n→∞, we have

√
nhp−{σ̂Y,Z(x)− σY,Z(x)−BY,Z(x)}

d−→ N

0,
γ2cov(x)ν2K,K,+ +

γ2(x)ν2K,K,−
4

− θ(x)νK,K,2
2

4f(x)

 ,(3.11)

where

BY,Z(x) =
1

8
h2+tr

{
2MK

2 ∇σ2+(x)(∇f(x))>

f(x)
+ MK

2 S+(x)

}

−1

8
h2−tr

{
2MK

2 ∇σ2−(x)(∇f(x))>

f(x)
+ MK

2 S−(x)

}
,

γ2(x) =E
{[
σ2(X1)(ε

2
1 − 1) + φ2(X1)(ε

2
1 − 1)

]2|X1 = x
}
,

γ2cov(x) =E
{
σ2(X1)φ

2(X1)(ε
2
1 − 1)2|X1 = x

}
,

θ(x) =E
{[
σ2(X1)(ε

2
1 − 1) + φ2(X1)(ε

2
1 − 1)

][
σ(X1)φ(X1)

(ε21 − 1)
]
|X1 = x

}
,

ν2K,K,+ =

∫ [hp−
hp+

K

(
h−v

h+

)
+K(v)

]2
dv,

ν2K,K,− =

∫ [hp−
hp+

K

(
h−v

h+

)
−K(v)

]2
dv,

νK,K,2 =

∫ [h2p−
h2p+

K2(
h−v

h+
)−K2(v)

]
dv.

Remark 3.2. Note that if the selected bandwidths h+ = h−, then as n→∞,

√
nhp−{σ̂Y,Z(x)− σY,Z(x)−BY,Z(x)} d−→ N

(
0,
γ2cov(x)ν2K,K,+

4f(x)

)
,
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where

BY,Z(x) =
1

2
h2−tr

{
2MK

2 ∇σ2Y,Z(x)(∇f(x))>

f(x)
+ MK

2 SY,Z(x)

}
,

∇σY,Z(x) = ∂σY,Z(x)/∂x, SY,Z(x) = ∂2σY,Z(x)/∂x∂>x.

3.4 Numerical Results

In this section, simulation studies for the finite sample performance of

our method for estimating conditional variance and covariance functions will

be presented. Particularly, the residual-based method of Fan and Yao (1998)

and the difference-based method of Cai, Levine and Wang (2009) are also

investigated for comparison.

3.4.1 A simulation study for conditional variance estimation

For the estimation problem of conditional variance function, we will

mainly compare the performance of our variance estimator σ̂2(x) with the

residual-based local linear estimator σ̂2
FY (x) of Fan and Yao (1998) and the

difference-based estimator σ̂2
CLW (x) of Cai, Levine and Wang (2009).

We simulate 500 random realizations of size n from the following model

Yi = m(Xi) + σ(Xi)εi,

and we assume that εi ∼ N(0, 1), Xi = (X1i, · · · , Xpi) for i = 1, · · · , n. In

order to examine the performance of our estimator, we will conduct a simula-

tion study for the cases p = 1, 2, 3, 4, 5 with n = 200, 500, 1000, and consider
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the following set of conditional mean functions and variance functions,

Model 1: m1(x) = 3
4

sin(5
2
πx1), σ

2
1(x) = 0.5.

Model 2: m2(x) = 3
4

sin(5πx1), σ
2
1(x) = 0.5.

Model 3: m3(x) = 3
4

sin(10πx1), σ
2
1(x) = 0.5.

Model 4: m4(x) = 3
2

sin(5
2
πx1), σ

2
1(x) = 0.5.

Model 5: m5(x) = 3
2

sin(5πx1), σ
2
1(x) = 0.5.

Model 6: m6(x) = 3
2

sin(10πx1), σ
2
1(x) = 0.5.

Model 7: m1(x) = 3
4

sin(5
2
πx1), σ

2
2(x) = x2p + 0.5.

Model 8: m2(x) = 3
4

sin(5πx1), σ
2
2(x) = x2p + 0.5.

Model 9: m3(x) = 3
4

sin(10πx1), σ
2
2(x) = x2p + 0.5.

Model 10: m4(x) = 3
2

sin(5
2
πx1), σ

2
2(x) = x2p + 0.5.

Model 11: m5(x) = 3
2

sin(5πx1), σ
2
2(x) = x2p + 0.5.

Model 12: m6(x) = 3
2

sin(10πx1), σ
2
2(x) = x2p + 0.5.

Model 13: m7(x) = 0.2 sin(πxp) + 0.4e−16x
2
p , σ2

3(x) = (0.4e−2x
2
1 + 0.2)2.

Model 14: m8(x) = sin(πxp) + 2e−16x
2
p , σ2

3(x) = (0.4e−2x
2
1 + 0.2)2.

Model 15: m9(x) = 2 sin(πxp) + 4e−16x
2
p , σ2

3(x) = (0.4e−2x
2
1 + 0.2)2.

Note that only three variance functions are being studied, while sev-

eral different mean functions are investigated for each variance function.

The variance functions σ2
1(x) in Model 1-6 are the same constant, σ2

2(x) in
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Model 7-12 are the same quadratic functions in xp-direction, and σ2
3(x) in

Model 13-15 are functions in x1-direction, which have been considered in

Fan and Yao (1998). Meanwhile, to investigate the influence of oscillation of

mean functions on the estimated variances, we assumed sinusoid functions

for conditional means. Most importantly, the mean functions examined for

each variance function are arranged based on the amplitude of oscillation in

particular directions.

From the theoretical results in Theorem 3.1, if the selected bandwidth b

is of smaller order than bandwidth h, then our variance estimator σ̂2(x) has

the same asymptotic efficiency as σ̂2
FY (x). As a result, to choose appropriate

bandwidth b is of great significance in the estimation process. In this case,

instead of selecting a common bandwidth when computing s2i,b (i = 1, · · · , n),

we adopt the following method to obtain s2i,b. At the beginning, we could

compute the distances between all Xi (i = 1, · · · , n) and their respective

neighbours. For a particular Xi, we define the distance between Xi and Xj

(j = 1, · · · , n) as the L2-norm of Xi−Xj (‖Xi−Xj‖), denoted by d(i, j). Let

Xil be the l-th nearest neighbour of Xi, which means that the distance d(i, il)

is the l-th smallest among all d(i, j) for j = 1, · · · , n. Therefore, we employ

a set of d(i, il) with different values of l as the bandwidths to quantify local

variation, and then compare the obtained conditional variance estimators

for different l. For the sake of convenience, we will denote d(i, il) by di(l)

hereafter, and let d̄2(l) = 1
n

∑n
i=1 d

2
i (l).

Our estimation procedure is described as follows. At the first stage, we

estimate the local variance around a particular Yi (i = 1, · · · , n) by using
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bandwidth di(l) for l = 2, · · · , L (L large enough). In addition, we use

K
(

Xi −Xj

di(l)

)
∝

(
1− d2(i, j)

d2i (l)

)
I(d(i, j) < di(l)) + 10

(
1− d2(i, j)

d2(l)

)
I(d(i, j) < d̄(l))

as the kernel weight at Xj when estimating local variance around (Xi, Yi),

here I(d(i, j) < di(l)) = 1 if d(i, j) < di(l), otherwise I(d(i, j) < di(l)) = 0;

and the function I(d(i, j) < d̄(l)) is defined similarly. Note that more weight

is given for Xj when Xj is very close to Xi. In this step, we compute the

local variance estimator s2i,di(l) for different values of l, which may contribute

a lot to the following step. Next, to obtain the conditional variance estimator

σ̂2(x), we choose product kernels created from the normal kernel and employ

bandwidth h selected by cross-validation. Because of using different band-

widths di(l) in the first step, we could obtain a set of conditional variance

estimators, denoted by σ̂2(x, l) (l = 2, · · · , L).

In order to obtain the ultimate conditional variance estimator, we need

to determine the value l0 such that σ̂2(x, l0) could approximate the true

conditional variance well in a sense. To this end, we first compute the

standard deviation of (σ̂2(Xi, l − 1), σ̂2(Xi, l), σ̂
2(Xi, l + 1)) for this par-

ticular l and each Xi, thereby we could observe the change of conditional

variance estimator at all (Xi, Yi), i = 1, · · · , n, when the bandwidth at

the first stage is slightly adjusted. Let sd(i, l) be the standard deviation

of (σ̂2(Xi, l − 1), σ̂2(Xi, l), σ̂
2(Xi, l + 1)), and denote the average of these

standard deviations by sd(l) = 1
n

∑n
i=1 sd(i, l). Therefore, for different val-

ues of k, starting from l = p + 1 for l ∈ [p + 1, L
2
], if we could find an

integer l∗ such that sd(l∗) < min(sd(l∗ + 1), sd(l∗ + 2), · · · , sd(l∗ + k)),
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then we select l0(k) = l∗, or l∗ + 1, or l∗ + 2 by observing the values of

sd(l∗ + 1), sd(l∗ + 2), · · · , sd(l∗ + k + 1), and sd(l∗ + k + 2); otherwise, we

may assign a suitable value for l0, for example dL
2
e, where dL

2
e is the small-

est integer larger than L
2
. Consequently, to observe the performance of our

conditional variance estimator with different k, denoted by σ̂2(x, l0(k)), we

compute the results for the cases k = 2, 3, · · · , 6. Finally, our conditional

variance estimator is constructed as σ̂2(x) = min2≤k≤6 σ̂
2(x, l0(k)).

For comparison purposes, the same Model 1-16 are investigated by using

residual-based method in Fan and Yao (1998) and difference-based method

in Cai, Levine and Wang (2009) with difference scheme of order p. We con-

sider sample sizes n = 200, 500, 1000, and a random design of the sample

Xi. In order to compare the performance of the three estimators, we fur-

ther compute the discrete mean squared error (DMSE) of σ̂2(x) , σ̂2
FY (x)

and σ̂2
CLW (x), denoted by DMSE(σ̂2), DMSE(σ̂2

FY ) and DMSE(σ̂2
CLW )

respectively. Accordingly, the discrete mean squared error (DMSE) of these

three estimators are defined as

DMSE(σ̂2) =
1

n

n∑
i=1

[
σ̂2(Xi)− σ2(Xi)

]2
,

DMSE(σ̂2
FY ) =

1

n

n∑
i=1

[
σ̂2
FY (Xi)− σ2(Xi)

]2
,

DMSE(σ̂2
CLW ) =

1

n

n∑
i=1

[
σ̂2
CLW (Xi)− σ2(Xi)

]2
.

Therefore, we report the mean ofDMSE(σ̂2),DMSE(σ̂2
FY ),DMSE(σ̂2

CLW ),

denoted by MDMSE(σ̂2), MDMSE(σ̂2
FY ), MDMSE(σ̂2

CLW ), based on 500

simulations for comparison.
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Table 3.1: Performance of conditional variance estimators for p = 1

n Model m(x) σ2(x) MDMSE(σ̂2) MDMSE(σ̂2
CLW ) MDMSE(σ̂2

FY )

200

1 m1

σ2
1

0.0114 0.0175 0.0135

2 m2 0.0148 0.0214 0.0177

3 m3 0.0311 0.0462 0.0346

4 m4 0.0130 0.0209 0.0162

5 m5 0.0170 0.0356 0.0182

6 m6 0.0252 0.2000 0.0399

7 m1

σ2
2

0.4851 0.9323 0.6010

8 m2 0.5462 0.9615 0.7014

9 m3 0.5444 0.9204 0.7679

10 m4 0.5212 1.0041 0.6189

11 m5 0.6430 1.1640 0.7111

12 m6 0.9109 1.5801 1.0575

13 m7

σ2
3

0.0026 0.0044 0.0033

14 m8 0.0028 0.0048 0.0036

15 m9 0.0030 0.0060 0.0040

500

1 m1

σ2
1

0.0042 0.0052 0.0044

2 m2 0.0047 0.0057 0.0061

3 m3 0.0075 0.0083 0.0135

4 m4 0.0044 0.0055 0.0050

5 m5 0.0054 0.0059 0.0059

6 m6 0.0092 0.0126 0.0108

7 m1

σ2
2

0.2323 0.4077 0.2618

8 m2 0.2413 0.4152 0.2735

9 m3 0.2709 0.4259 0.3100

10 m4 0.2316 0.4130 0.2650

11 m5 0.2578 0.4332 0.2963

12 m6 0.3382 0.5274 0.4513

13 m7

σ2
3

0.0013 0.0019 0.0014

14 m8 0.0013 0.0020 0.0016

15 m9 0.0013 0.0021 0.0016

1000

1 m1

σ2
1

0.0029 0.0027 0.0021

2 m2 0.0025 0.0028 0.0027

3 m3 0.0032 0.0033 0.0059

4 m4 0.0027 0.0027 0.0022

5 m5 0.0024 0.0027 0.0026

6 m6 0.0039 0.0033 0.0043

7 m1

σ2
2

0.1369 0.1903 0.1278

8 m2 0.1389 0.1979 0.1349

9 m3 0.1364 0.1994 0.1410

10 m4 0.1381 0.1943 0.1314

11 m5 0.1377 0.2071 0.1466

12 m6 0.1610 0.2299 0.2056

13 m7

σ2
3

0.0008 0.0010 0.0008

14 m8 0.0008 0.0010 0.0008

15 m9 0.0008 0.0010 0.0008
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Table 3.2: Performance of conditional variance estimators for p = 2

n Model m(x) σ2(x) MDMSE(σ̂2) MDMSE(σ̂2
CLW ) MDMSE(σ̂2

FY )

200

1 m1

σ2
1

0.0428 0.0492 0.0632

2 m2 0.0329 0.1138 0.0976

3 m3 0.0361 0.1286 0.0972

4 m4 0.3297 0.3574 0.0527

5 m5 0.5984 1.2252 1.2510

6 m6 0.6588 1.4591 1.2665

7 m1

σ2
2

0.9989 1.7368 1.3541

8 m2 1.0011 2.1181 1.3825

9 m3 0.9864 2.1002 1.3532

10 m4 1.7410 2.5037 2.2720

11 m5 1.5757 4.0130 3.0497

12 m6 1.6313 4.3611 3.0924

13 m7

σ2
3

0.0050 0.0087 0.0061

14 m8 0.0129 0.0302 0.0103

15 m9 0.0409 0.2536 0.0165

500

1 m1

σ2
1

0.0164 0.0157 0.0202

2 m2 0.0399 0.0362 0.0863

3 m3 0.0396 0.0999 0.0859

4 m4 0.0602 0.0572 0.0306

5 m5 0.7777 0.5265 0.1022

6 m6 0.7941 1.3589 1.2519

7 m1

σ2
2

0.5966 0.9692 0.7802

8 m2 0.6121 1.0326 0.8262

9 m3 0.6277 1.2634 0.8726

10 m4 0.9927 1.4304 0.9411

11 m5 1.3888 1.6348 2.3735

12 m6 1.3803 3.0961 2.4325

13 m7

σ2
3

0.0031 0.0044 0.0034

14 m8 0.0056 0.0077 0.0058

15 m9 0.0105 0.0347 0.0081

1000

1 m1

σ2
1

0.0037 0.0057 0.0110

2 m2 0.0457 0.0181 0.0232

3 m3 0.0413 0.0641 0.0844

4 m4 0.0097 0.0134 0.0150

5 m5 0.5760 0.2124 0.0591

6 m6 0.8023 0.9086 1.2765

7 m1

σ2
2

0.4006 0.6481 0.4010

8 m2 0.4188 0.6075 0.5491

9 m3 0.4131 0.7483 0.5445

10 m4 0.4647 0.7542 0.5389

11 m5 1.3853 1.1947 0.9391

12 m6 1.1931 1.8995 2.0324

13 m7

σ2
3

0.0020 0.0026 0.0020

14 m8 0.0027 0.0034 0.0033

15 m9 0.0051 0.0092 0.0047
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Table 3.3: Performance of conditional variance estimators for p = 3

n Model m(x) σ2(x) MDMSE(σ̂2) MDMSE(σ̂2
CLW ) MDMSE(σ̂2

FY )

200

1 m1

σ2
1

0.0228 0.1206 0.1014

2 m2 0.0258 0.1615 0.1071

3 m3 0.0246 0.1553 0.1041

4 m4 0.2839 1.0942 1.2129

5 m5 0.3347 1.5679 1.2821

6 m6 0.3412 1.5807 1.2863

7 m1

σ2
2

1.5367 3.2758 1.9891

8 m2 1.5690 3.5507 2.0891

9 m3 1.5458 3.5723 2.0407

10 m4 1.8297 4.9991 3.6569

11 m5 1.8898 5.9557 3.8234

12 m6 1.8956 6.2148 3.8821

13 m7

σ2
3

0.0080 0.0148 0.0095

14 m8 0.0513 0.1711 0.0165

15 m9 0.5824 2.4709 0.0773

500

1 m1

σ2
1

0.0174 0.0514 0.0858

2 m2 0.0193 0.1107 0.0909

3 m3 0.0197 0.1124 0.0897

4 m4 0.5327 0.5920 0.7617

5 m5 0.5565 1.3843 1.2689

6 m6 0.5693 1.3947 1.2637

7 m1

σ2
2

1.0863 1.8944 1.2750

8 m2 1.0912 2.1377 1.3336

9 m3 1.1016 2.1341 1.3187

10 m4 1.4148 2.7029 2.8344

11 m5 1.4788 4.2447 3.0893

12 m6 1.4970 4.2369 3.0303

13 m7

σ2
3

0.0058 0.0091 0.0060

14 m8 0.0283 0.0674 0.0112

15 m9 0.1640 0.8965 0.0286

1000

1 m1

σ2
1

0.0192 0.0333 0.0431

2 m2 0.0181 0.0805 0.0843

3 m3 0.0186 0.0962 0.0842

4 m4 0.5335 0.3980 0.0471

5 m5 0.5986 1.1097 1.2680

6 m6 0.6160 1.3300 1.2668

7 m1

σ2
2

0.8327 1.2420 0.8816

8 m2 0.8289 1.4408 0.8961

9 m3 0.8314 1.4853 0.8985

10 m4 1.2610 1.9433 1.6739

11 m5 1.2250 2.9768 2.5112

12 m6 1.2493 3.3439 2.5205

13 m7

σ2
3

0.0044 0.0062 0.0042

14 m8 0.0229 0.0312 0.0088

15 m9 0.0795 0.3701 0.0163
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Table 3.4: Performance of conditional variance estimators for p = 4

n Model m(x) σ2(x) MDMSE(σ̂2) MDMSE(σ̂2
CLW ) MDMSE(σ̂2

FY )

200

1 m1

σ2
1

0.0254 0.1809 0.1157

2 m2 0.0251 0.1722 0.1232

3 m3 0.0241 0.1693 0.1145

4 m4 0.1143 1.6459 1.2592

5 m5 0.1233 1.5848 1.3293

6 m6 0.1193 1.5781 1.2715

7 m1

σ2
2

2.2042 3.6416 2.5415

8 m2 2.2128 3.5563 2.5768

9 m3 2.2074 3.4584 2.5208

10 m4 2.0660 6.1529 4.3181

11 m5 2.0913 6.1030 4.5845

12 m6 2.0794 5.8240 4.2987

13 m7

σ2
3

0.0113 0.0171 0.0120

14 m8 0.0867 0.4408 0.0279

15 m9 1.5112 6.8118 0.2281

500

1 m1

σ2
1

0.0111 0.1105 0.0924

2 m2 0.0117 0.1227 0.0963

3 m3 0.0123 0.1238 0.0962

4 m4 0.2196 1.2878 1.2383

5 m5 0.2496 1.4056 1.2798

6 m6 0.2466 1.4233 1.2729

8 m1

σ2
2

1.7345 2.8007 1.9064

9 m2 1.7246 2.8585 1.9579

10 m3 1.7266 2.8745 1.9564

11 m4 1.6882 4.7443 3.5924

12 m5 1.6949 5.0090 3.6887

13 m6 1.7164 5.0945 3.7712

14 m7

σ2
3

0.0091 0.0137 0.0089

15 m8 0.0674 0.2460 0.0168

16 m9 0.9129 3.7876 0.0847

1000

1 m1

σ2
1

0.0073 0.0747 0.0837

2 m3 0.0067 0.0975 0.0850

3 m4 0.0072 0.1013 0.0860

4 m5 0.2883 0.9650 1.2222

5 m6 0.3197 1.3256 1.2584

6 m7 0.3315 1.3511 1.2680

7 m1

σ2
2

1.4646 1.8917 1.3736

8 m2 1.4493 1.9445 1.3546

9 m3 1.4550 2.0138 1.3913

10 m4 1.4587 3.3513 3.0218

11 m5 1.4519 3.8572 3.0308

12 m6 1.4748 4.0691 3.1315

13 m8

σ2
3

0.0076 0.0104 0.0068

14 m9 0.0614 0.1452 0.0135

15 m10 0.6737 2.1888 0.0428
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Table 3.5: Performance of conditional variance estimators for p = 5

n Model m(x) σ2(x) MDMSE(σ̂2) MDMSE(σ̂2
CLW ) MDMSE(σ̂2

FY )

200

1 m1

σ2
1

0.0551 0.2107 0.1343

2 m2 0.0538 0.2036 0.1318

3 m3 0.0518 0.1974 0.1297

4 m4 0.0683 1.7009 1.3031

5 m5 0.0669 1.7528 1.3467

6 m6 0.0674 1.6897 1.3107

7 m1

σ2
2

3.0061 4.4049 3.2052

8 m2 2.9846 4.4441 3.1885

9 m3 3.0004 4.3137 3.0978

10 m4 2.7058 7.0634 5.1131

11 m5 2.6253 7.1578 5.1083

12 m6 2.6287 6.7993 4.9117

13 m7

σ2
3

0.0150 0.0220 0.0147

14 m8 0.0659 0.6959 0.0810

15 m9 1.1080 10.6302 0.7867

500

1 m1

σ2
1

0.0272 0.1289 0.0964

2 m2 0.0265 0.1308 0.0994

3 m3 0.0275 0.1363 0.1021

4 m4 0.0768 1.4567 1.2520

5 m5 0.0783 1.4477 1.2809

6 m6 0.0837 1.4674 1.2945

7 m1

σ2
2

2.4954 3.3306 2.3558

8 m2 2.4945 3.3315 2.3797

9 m3 2.4761 3.4566 2.4436

10 m4 2.2329 5.4682 4.0433

11 m5 2.2176 5.4968 4.1140

12 m6 2.2079 5.8292 4.2921

13 m7

σ2
3

0.0806 0.5102 0.0224

14 m8 0.0128 0.0177 0.0115

15 m9 1.3894 7.8304 0.1575

1000

1 m1

σ2
1

0.0183 0.1049 0.0885

2 m3 0.0167 0.1070 0.0891

3 m4 0.0174 0.1090 0.0896

4 m5 0.1133 1.3064 1.2469

5 m6 0.1271 1.3627 1.2702

6 m7 0.1309 1.3769 1.2782

7 m2

σ2
2

2.1991 2.7969 2.0402

8 m3 2.1864 2.7528 2.0001

9 m4 2.1870 2.7703 2.0050

10 m5 1.9742 4.9037 3.8248

11 m6 1.9671 4.8539 3.7687

12 m7 1.9646 4.9279 3.8135

13 m7

σ2
3

0.0111 0.0153 0.0091

14 m8 0.0840 0.3736 0.0176

15 m9 1.3978 5.7884 0.0839
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Tables 3.1-3.5 summarize the simulation results using three methods for

p = 1, 2, 3, 4, 5 individually. For different sample sizes n = 200, 500, 1000,

we present the MDMSE(σ̂2), MDMSE(σ̂2
FY ), MDMSE(σ̂2

CLW ) for each

model, and the minimum value of each row is marked in bold font. In Table

3.1, results for three conditional variance estimators are displayed for Model

1-16 when p = 1. In this case, the mean functions and variance functions are

functions of x1. From this table, it can be observed that our estimator σ̂2(x)

outperforms σ̂2
CLW (x) and σ̂2

FY (x) in general. The MDMSEs for Model 13-

15 with σ2
3(x) = (0.4e−2x

2
1 + 0.2)2 are the smallest, while the MDMSEs

for Model 7-12 with σ2
2(x) = x21 + 0.5 are the largest. Particularly, for the

case that the real conditional variance function is constant σ2
1(x) = 0.5,

our conditional variance estimator definitely performs better than other two

estimators for the sample sizes n = 200, 500. However, the performance of

these three estimators does not differ too much, when we increase the sam-

ple size to n = 1000. Additionally, by observing the results for larger sample

sizes n = 500, 1000, the accuracy of σ̂2
CLW (x) seems higher than that of

σ̂2
FY (x) for Model 3 and Model 6 with heavily oscillating mean functions

m3 and m6, which is in accordance with the finding in Wang, Brown, Cai

and Levine (2008). Here our conditional variance estimator σ̂2(x) could fur-

ther improve accuracy in general, except for several special cases. Next, for

the case that the real conditional variance function is σ2
2(x) = x21 + 0.5,

our variance estimator also performs better than other two estimators in

general, but surprisingly its performance is slightly worse than σ̂2
FY (x) when

n = 1000 for not strongly oscillating mean functions, such as m1, m2 and m4.

Finally, when the variance function considered is σ2
3(x) = (0.4e−2x

2
1 + 0.2)2,

the estimation errors are smallest among all considered models. In partic-
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ular for sample sizes n = 200, 500, it could be easily seen from Table 3.1

that DMSE(σ̂2) for Model 13-15 are the smallest, DMSE(σ̂2
CLW ) for those

three models are the largest, and the estimation errors increase as the am-

plitude of fluctuation becomes larger. When n = 1000, this phenomenon is

not obviously observed but σ̂2(x) and σ̂2
FY (x) still possess higher accuracy.

Therefore, we could conclude that not only the oscillation and smoothness

may affect the performance of variance estimators, but also the variation

pattern of the variance functions may have an influence on it.

A detailed description of simulation results for p = 1 has been pro-

vided above, whereas the results for models with multivariate mean and

variance functions are also of great importance. For higher dimensions p >

1, the similar studies are also conducted based on three estimation ap-

proaches. Table 3.2 shows the comparison results for p = 2. It is appar-

ent that the MDMSE(σ̂2)s are still smaller than MDMSE(σ̂2
CLW )s and

MDMSE(σ̂2
FY )s generally, which indicates that our variance estimator are

superior to other two estimators in most cases. Specifically, when the con-

stant variance function σ2
1(x) is considered, our estimator σ̂2(x) has signifi-

cantly the smallest DMSEs especially for Model 3 and Model 6, considering

all sample sizes (n = 200, 500, 1000). But for other models with variance func-

tion σ2
1(x), either σ̂2

CLW (x) or σ̂2
FY (x) may be superior to σ̂2(x) by taking

different sample sizes into account. Next, for models with variance function

σ2
2(x), our estimator seems competitive except for two special cases (n = 500,

Model 10; n = 1000, Model 11). However, when the variance function σ2
3(x)

is examined, the MDMSEs of two difference-based estimators increase appar-

ently as the the amplitude of fluctuation of mean functions grows. Particu-

larly, it is worth noting that even though the MDMSE(σ̂2)s are significantly
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smaller than MDMSE(σ̂2
CLW )s, they are larger than MDMSE(σ̂2

FY ) when

estimating Model 15 with mean function m9.

For the case that p = 3, DMSE(σ̂2)s are the smallest among models

considered with variance functions σ2
1 and σ2

2, therefore it may be reasonable

to apply our proposed estimator to estimate conditional variances for similar

cases. Unfortunately, the performance of our variance estimator is not very

satisfactory for models with variance function σ2
3, since σ̂2

FY could obtain the

smallest DMSEs especially for Model 14 and Model 15 with mean function

m8 and m9. Moreover, the results for higher dimensions p = 4, 5 agree with

previous findings for p = 3, except that σ̂2
FY (x) may perform better than our

σ̂2(x) for Model 7-9 when considering larger sample sizes n = 500, 1000. This

finding indicates that σ̂2
FY (x) may be much more appropriate for estimating

variance functions like σ2
2 with not strongly oscillating mean functions.

3.4.2 A simulation study for conditional covariance estimation

For the estimation problem of conditional covariance function, we will

also focus on comparing the performance of our conditional covariance esti-

mator with those estimators by means of residual-based local linear smooth-

ing and conventional difference-based method.

We simulate 500 random realizations of size n from the following model

Yi = m(Xi) + 2(X1i − 0.3)e0i + e1i,

Zi = g(Xi) + 2(X1i − 0.5)e0i + e2i,

(3.12)

and we assume that e0i, e1i, e2i are independent and generated from N(0, 1),
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Xi = (X1i, · · · , Xpi) for i = 1, · · · , n. Here we consider conditional mean

functions m(x) = Ψ cos(τπx1) and g(x) = Ψ sin(τπx1), and then the true

conditional covariance of Y and Z given X = x is actually σY,Z(x) = 4(x1−

0.3)(x1 − 0.5).

Following the estimation procedure described in Section 3.2.2, we will also

compare the performance of three types of conditional covariance estimators

in a similar way, by investigating the situations with different values for Ψ

and τ . Since our estimation approach is based on the estimated conditional

variances of Y + Z and Y − Z, the same method presented in Section 3.4.1

could be directly employed for estimating conditional covariance functions.

In the following, we will study the influence of oscillation and fluctuation of

mean functions on the accuracy of estimating conditional covariance func-

tions. Therefore, analogous to Section 3.4.1, the three types of conditional

covariance estimators are denoted by σ̂Y,Z(x), σ̂Y,ZFY (x) and σ̂Y,ZCLW (x),

and the accuracy of these estimators are measured by MDMSE(σ̂Y,Z),

MDMSE(σ̂Y,ZFY ) and MDMSE(σ̂Y,ZCLW ) respectively.

Table 3.6 displays the simulation results for the conditional covariance

estimators based on three estimation strategies. For the case that the true

conditional covariance function σY,Z(x) = 4(x1 − 0.3)(x1 − 0.5), our condi-

tional covariance estimator outperforms other two types of covariance es-

timators. Compared with the estimator σ̂Y,ZFY (x) utilizing residual-based

local linear smoothing of Fan and Yao (1998), our estimator σ̂Y,Z(x) approx-

imates much more accurately especially when the conditional mean functions

m(x) and g(x) are highly oscillating. Meanwhile, our estimation approach

seems slightly better than the conventional difference-based method in all
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Table 3.6: Performance of conditional covariance estimators for p = 1

n σY,Z(x) Ψ τ MDMSE(σ̂2
Y,Z) MDMSE(σ̂2

Y,ZCLW
) MDMSE(σ̂2

Y,ZFY
)

100 4(x1 − 0.3)(x1 − 0.5)

0 - 0.0965 0.2039 0.1157

1 1 0.0966 0.2045 0.1169

1 5 0.0979 0.2086 0.1411

1 10 0.1074 0.2077 0.1710

1 20 0.1522 0.2274 0.1740

4 1 0.0969 0.2071 0.1530

4 5 0.1007 0.2486 0.8468

4 10 0.1185 0.3049 1.9635

4 20 0.1368 0.6413 2.0301

10 1 0.0981 0.2167 0.9586

10 5 0.1094 0.5455 16.9590

10 10 0.1315 1.5478 46.3867

10 20 0.6343 8.6348 47.5867

500 4(x1 − 0.3)(x1 − 0.5)

0 - 0.0264 0.0449 0.0268

1 1 0.0264 0.0449 0.0269

1 5 0.0264 0.0449 0.0314

1 10 0.0263 0.0449 0.0365

1 20 0.0271 0.0452 0.0418

4 1 0.0264 0.0449 0.0299

4 5 0.0265 0.0450 0.3670

4 10 0.0271 0.0453 0.4643

4 20 0.0297 0.0474 0.6028

10 1 0.0264 0.0450 0.1266

10 5 0.0273 0.0459 11.5837

10 10 0.0294 0.0481 12.1740

10 20 0.0335 0.0630 15.6445

1000 4(x1 − 0.3)(x1 − 0.5)

0 - 0.0152 0.0226 0.0153

1 1 0.0152 0.0226 0.0153

1 5 0.0152 0.0226 0.0175

1 10 0.0152 0.0226 0.0209

1 20 0.0152 0.0226 0.0247

4 1 0.0152 0.0226 0.0164

4 5 0.0152 0.0226 0.3445

4 10 0.0154 0.0225 0.2259

4 20 0.0160 0.0227 0.3925

10 1 0.0152 0.0226 0.0553

10 5 0.0151 0.0227 12.2780

10 10 0.0157 0.0227 5.5099

10 20 0.0175 0.0240 10.5522

situations. It is worth mentioning that the estimation errors of our estimator

does not significantly increase when the amplitude of oscillation and fluctu-
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ation is enlarged, especially for larger sample sizes.

3.5 Discussion

This chapter presents a novel approach to modelling the conditional

variance (or covariance) function by applying the techniques both in ker-

nel smoothing and difference-based methods. Without estimating the condi-

tional mean or constructing a complicated difference scheme, our proposed

variance estimator σ̂2(x) defined in (3.6) or (3.7) could possess desirable

asymptotic properties and exhibit good performance in most cases. Specifi-

cally, it could be directly observed from Theorem 3.1 that, our conditional

variance estimator σ̂2(x) has the same asymptotic variance as the residual-

based estimator σ̂2
FY (x) when the bandwidth b = o(h), which demonstrates

the validity of our newly developed variance estimator from the theoretical

point of view. More importantly, to understand the influence of oscillation

and fluctuation of true functions on estimation accuracy, we have examined

the estimators’ performance for models with three conditional variance func-

tions and different sinusoid conditional mean functions. Note that not only

the effect of oscillation and fluctuation of the mean functions have been con-

sidered, variance functions of different forms are also studied. As illustrated

in our simulation study, our proposed estimator outperforms other two es-

timators in most cases. Focusing on the results for larger sample sizes, our

variance estimator performs slightly better than other two estimators for

the true conditional variance function being constant especially in case of

strongly oscillating mean functions when p = 1, 2, whereas our estimation

strategy is absolutely superior to other two methods for higher dimensions
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p = 3, 4, 5. For the true conditional variance function being a quadratic func-

tion in xp direction, the performance of two existing estimators is hardly

comparable to our estimator when the mean function is heavily oscillating

and fluctuating, while the residual-based estimator may gain higher accuracy

in case of not heavily oscillating and fluctuating mean functions. However,

our estimator seems no longer competitive when modelling the variance func-

tion considered in Fan and Yao (1998), especially for mean functions with

large amplitude of fluctuation.

3.6 Proofs

Before presenting the asymptotic results, we introduce the assumptions

needed for our analysis. The following regularity conditions are assumed.

(C1) Let f(·) denote the marginal density of Xi, and f`(·, ·) denote the joint

density of (Xi,Xi+`). Suppose that f(·) has a closed and bounded

support, such as D ∈ Rp, f(x) > 0, and |f(x)−f(x′)| ≤ ∆1‖x−x′‖ for

all given x,x′ ∈ D and some ∆1 > 0, also f`(x0,x`) > 0 for x0,x` ∈ D.

Meanwhile, supx∈D f(x) ≤ L0 < ∞, supx0,x`∈D f`(x0,x`) ≤ L0 < ∞.

Further, denote the gradient and Hessian matrix of f(x) by ∇f(x) and

Hf (x).

(C2) E|Yi|4(1+δ) ≤ L2 < ∞, E|Zi|4(1+δ) ≤ L2 < ∞, and E(|Yi|4(1+δ)|Xi) ≤

L2 < ∞, E(|Zi|4(1+δ)|Xi) ≤ L2 < ∞, i = 1, ..., n, for L2 large enough

and constant δ > 0.

(C3) The process {(Xi, Yi, Zi) : t = 1, ..., n} is strictly stationary and strong
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mixing with mixing coefficient α(N) ≤ CN−β for some C > 0 and

β > 2 + 2
δ

for the same δ as in (C2).

(C4) m(·), g(·), and σ2(·), φ2(·) are differentiable, and the Hessian matrix

of m(·), g(·) and σ2(·), φ2(·) are uniformly continuous.

(C5) The continuous symmetric kernel function K(·) has the following prop-

erties, and the assumptions are also required for kernel K(·).

(i)
∫
|K(v)|dv <∞,

∫
K2(v)dv <∞, and

∫
K(v)dv = 1,

∫
vK(v)dv =

0,
∫
K(v)vv>dv = MK

2 .

(ii) For a vector c0 with all positive elements and a scalar ∆2 with

0 < ∆2 < ∞, either K(·) is a bounded function with a bounded

support on Rp , satisfying the Lipschitz condition, i.e. |K(v1) −

K(v2)| ≤ ∆2‖v1 − v2‖, or K(·) is differentiable, when ‖v‖ → ∞,

K(v)ec
>
0 v → 0.

(C6) As n → ∞, h → 0, b → 0, such that nhp+2 → ∞, nbp+2 → ∞ and

b = o(h).

Lemma 3.1. Under the regularity conditions (C1)-(C6) in Section 3.6, for

model (3.3) where (Xi, Yi) is a strictly stationary time series, for a particular

x, we have uniformly for x∗ ∈ D,

1

n

n∑
i=1

Kb(Xi − x∗)Yi = E {Kb(X1 − x∗)Y1}
(

1 +Op({log n/(nbp)}1/2)
)
, (3.13)

1

n

n∑
i=1

Kh(Xi − x)Kb(Xi − x∗)Yi = E {Kh(X1 − x)Kb(X1 − x∗)Y1}
[
1 +

Op({log n/(nbp)}1/2)
]
, (3.14)
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The results in Lemma 3.1 could be derived similarly as those presented in

Mack and Silverman (1982) and Fan and Yao (2003).

Proof of Theorem 3.1. From model (3.3), it is easily seen that we can

write

(Yi − Yj)2 = (m(Xi)−m(Xj))
2 + σ2(Xi) + σ2(Xj) + ηij, (3.15)

where

ηij = 2(m(Xi)−m(Xj))[σ(Xi)εi − σ(Xj)εj]− 2σ(Xi)σ(Xj)εiεj

+σ2(Xi)(ε
2
i − 1) + σ2(Xj)(ε

2
j − 1),

with

E(ηij|Xs, s = 1, ..., n) = 0.

By Condition (C4) and Taylor’s expansion to the second order, for Xi and

Xj in the local neighbourhood of x,

m(Xi)−m(Xj) = (Xi − x)>∇m(x)− (Xj − x)>∇m(x)

+
1

2
(Xi − x)>H(x)(Xi − x)− 1

2
(Xj − x)>H(x)(Xj − x)

+O(||Xi − x||3 + ||Xj − x||3), (3.16)

where ∇m(x) = ∂m(x)/∂x,H(x) = ∂2m(x)/∂x∂x>. Analogously, we have

σ2(Xi) + σ2(Xj) = 2σ2(x) + (Xi − x)>∇σ2(x) + (Xj − x)>∇σ2(x)

+
1

2
(Xi − x)>S(x)(Xi − x) +

1

2
(Xj − x)>S(x)(Xj − x)

+O(||Xi − x||3 + ||Xj − x||3), (3.17)
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where ∇σ2(x) = ∂σ2(x)/∂x,S(x) = ∂2σ2(x)/∂x∂>x. By Condition (C1)

and Taylor’s expansion, for Xi in the neighbourhood of x,

f(Xi) = f(x) + (Xi − x)>∇f(x) +
1

2
(Xi − x)>Hf (x)(Xi − x). (3.18)

From (3.6), we could obtain that

σ̂2(x)− σ2(x) =
1

2

∑n
i=1Kh(Xi − x)

[∑n
j=1Kb(Xi−Xj)(Yi−Yj)2∑n

j=1Kb(Xi−Xj)
− 2σ2(x)

]
∑n

i=1Kh(Xi − x)
,

=
1

2

n∑
i=1

Kh(Xi − x)

{∑n
j=1Kb(Xi −Xj)

[
(Yi − Yj)2 − 2σ2(x)

]∑n
j=1Kb(Xi −Xj)

∑n
i=1Kh(Xi − x)

}

=
1

2

n∑
i=1

Kh(Xi − x)

{
1
n2

∑n
j=1Kb(Xi −Xj)

[
(Yi − Yj)2 − 2σ2(x)

]
1
n

∑n
j=1Kb(Xi −Xj)

1
n

∑n
i=1Kh(Xi − x)

}
,

where Kh(.) = h−pK(./h), Kb(.) = b−pK(./b), then by Condition (C5)(i)

and Lemma 3.1,

1

n

n∑
i=1

Kh(Xi − x) = f(x)(1 +O(h2) +Op

(√
logn

nhp

)
),

1

n

n∑
j=1

Kb(Xi −Xj) = f(Xi)(1 +O(b2) +Op

(√
logn

nbp

)
).

Therefore,

σ̂2(x)− σ2(x) =
1

2

n∑
i=1

Kh(Xi − x)

{
1
n2

∑n
j=1Kb(Xi −Xj)

[
(Yi − Yj)2 − 2σ2(x)

]
f(Xi)f(x)

}
(

1 +O(h2) +O(b2) +Op

(√
logn

nhp

)
+Op

(√
logn

nbp

))
,

=
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
{Yi − Yj}2 − 2σ2(x)

]
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1 +O(h2) +O(b2) +Op

(√
logn

nhp

)
+Op

(√
logn

nbp

))
.

Moreover, by Taylor’s expansion (3.16) and (3.17),

1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
{Yi − Yj}2 − 2σ2(x)

]
=A1(x) + A2(x) + A3(x) + A4(x) + A5(x) + A6(x)

+
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)
O
(
‖Xi − x‖3 + ‖Xj − x‖3

)
,

where

A1(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
(Xi − x)>∇m(x)

−(Xj − x)>∇m(x)
]2
,

A2(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[1

2
(Xi − x)>H(x)(Xi − x)

−1

2
(Xj − x)>H(x)(Xj − x)

]2
,

A3(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
(Xi − x)>∇m(x)

−(Xj − x)>∇m(x)
] [1

2
(Xi − x)>H(x)(Xi − x)− 1

2
(Xj − x)>H(x)(Xj − x)

]
,

A4(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
(Xi − x)>∇σ2(x)

+(Xj − x)>∇σ2(x)
]
,

A5(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[1

2
(Xi − x)>S(x)(Xi − x)

−1

2
(Xj − x)>S(x)(Xj − x)

]
,

A6(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)
ηij ,
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with

ηij = 2(m(Xi)−m(Xj))[σ(Xi)εi − σ(Xj)εj]− 2σ(Xi)σ(Xj)εiεj

+σ2(Xi)(ε
2
i − 1) + σ2(Xj)(ε

2
j − 1).

By results in Lemma 3.1, for a particular x, we could approximate the

above terms as follows,

A1(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
(Xi − x)>∇m(x)

−(Xj − x)>∇m(x)
]2

=
1

2nhpf(x)

n∑
j=1

∫
K(

Xj − x

h
+
bu

h
)K(u)

[
(Xj − x + bu)>∇m(x)

−(Xj − x)>∇m(x)
]2
du

[
1 +Op

(√
logn

nbp

)]

=
1

2

∫∫
K(v +

bu

h
)K(u)[(bu)>∇m(x)]2

f(x + hv)

f(x)
dudv +Op

(
b2
√
logn

nbp

)

=
1

2

∫∫
K(t)K(u)[(bu)>∇m(x)]2

f(x + ht− bu)

f(x)
dudt +Op

(
b2
√
logn

nbp

)

=
1

2
b2tr{MK

2 ∇m(x)(∇m(x))>}+O(h2b2) +Op

(
b2
√
logn

nbp

)
,

where the last equality holds because of Taylor’s expansion.

Based on Conditions (C1)-(C6), Lemma 3.1 and the similar arguments,

we have

A2(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[1

2
(Xi − x)>H(x)(Xi − x)

−1

2
(Xj − x)>H(x)(Xj − x)

]2
=

1

2nhpf(x)

n∑
j=1

∫
K(

Xj − x

h
+
bu

h
)K(u)

[1

2
(Xj − x + bu)>H(x)(Xj − x + bu)
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−1

2
(Xj − x)>H(x)(Xj − x)

]2
du

[
1 +Op

(√
logn

nbp

)]

=
1

2

∫∫
K(v +

bu

h
)K(u)

[
(bu)>H(x)(hv) +

1

2
(bu)>H(x)(bu)

]2 f(x + hv)

f(x)
dudv

+Op

(
b2
√
logn

nbp

)

=
1

2

∫∫
K(t)K(u)

[
(bu)>H(x)(ht− bu) +

1

2
(bu)>H(x)(bu)

]2 f(x + ht− bu)

f(x)
dudt

+Op

(
b2
√
logn

nbp

)

= O(h2b2 + b4) +Op

(
b2
√
logn

nbp

)
,

where the last equality is obtained due to Condition (C5) and Taylor’s ex-

pansion. Besides,

A3(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
(Xi − x)>∇m(x)

−(Xj − x)>∇m(x)
] [1

2
(Xi − x)>H(x)(Xi − x)− 1

2
(Xj − x)>H(x)(Xj − x)

]
=

1

2nhpf(x)

n∑
j=1

∫
K(

Xj − x

h
+
bu

h
)K(u)

[
(Xj − x + bu)>∇m(x)

−(Xj − x)>∇m(x)
][

(Xj − x + bu)>H(x)(Xj − x + bu)

−(Xj − x)>H(x)(Xj − x)
]
du

[
1 +Op

(√
logn

nbp

)]

=
1

2

∫∫
K(v +

bu

h
)K(u)

[
(bu)>∇m(x)

][
(bu)>H(x)(bu) + 2(bu)>H(x)(hv)

]
f(x + hv)

f(x)
dudv +Op

(
b2
√
logn

nbp

)

= o(b2) +Op

(
b2
√
logn

nbp

)
,

A4(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
(Xi − x)>∇σ2(x)
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+(Xj − x)>∇σ2(x)
]
,

=
1

2

∫∫
K(v +

bu

h
)K(u)[(bu + hv)>∇σ2(x) + (hv)>∇σ2(x)]

f(x + hv)

f(x)
dudv

+Op

(
b2
√
logn

nbp

)

=
1

2

∫∫
K(t)K(u)[(ht)>∇σ2(x) + (ht− bu)>∇σ2(x)]

f(x + ht− bu)

f(x)
dudt

+Op

(
b2
√
logn

nbp

)

= (h2 +
1

2
b2)[∇f(x)]>MK

2 ∇σ2(x)/f(x) + o(h2 + b2) +Op

(
b2
√
logn

nbp

)
,

and

A5(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[1

2
(Xi − x)>S(x)(Xi − x)

−1

2
(Xj − x)>S(x)(Xj − x)

]
=

1

2nhpf(x)

n∑
j=1

∫
K(

Xj − x

h
+
bu

h
)K(u)

[1

2
(Xj − x + bu)>S(x)(Xj − x + bu)

−1

2
(Xj − x)>S(x)(Xj − x)

]
du

[
1 +Op

(√
logn

nbp

)]

=
1

2

∫∫
K(v +

bu

h
)K(u)

[1

2
(hv + bu)>S(x)(hv + bu)− 1

2
(hv)>S(x)(hv)

]
f(x + hv)

f(x)
dudv +Op

(
b2
√
logn

nbp

)

= (
1

2
h2 +

1

4
b2)tr{MK

2 S(x)}+O(h3) +Op

(
b2
√
logn

nbp

)
.

More importantly,

A6(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)
ηij

=A61(x) +A62(x) +A63(x),
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where

A61(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
σ2(Xi)(ε

2
i − 1)

+σ2(Xj)(ε
2
j − 1)

]
,

A62(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
2(m(Xi)−m(Xj))

(σ(Xi)εi − σ(Xj)εj)
]
,

A63(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
− 2σ(Xi)σ(Xj)εiεj

]
,

because of the definition of ηij.

Note that by Lemma 3.1 and the similar technique utilized before, we

could obtain that

A62(x) = o(h2 + b2), A63(x) = o(h2 + b2),

consequently we will focus on A61 in the following. By Lemma 3.1, we ap-

proximate

A61(x) =
1

2n2f(x)

n∑
i=1

n∑
j=1

Kh(Xi − x)Kb(Xi −Xj)

f(Xi)

[
σ2(Xi)(ε

2
i − 1)

+σ2(Xj)(ε
2
j − 1)

]
=

1

2nhpf(x)

n∑
j=1

{∫ [
K(

Xj − x

h
) +K(

Xj − x

h
+
bu

h
)

]
K(u)du

}
σ2(Xj)(ε

2
j − 1)[

1 +Op

(√
logn

nbp

)]
,

=
1

n

n∑
j=1

Ij(x)

[
1 +Op

(√
logn

nbp

)]
,
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by letting

Ij(x) =
1

2hpf(x)

{∫ [
K(

Xj − x

h
) +K(

Xj − x

h
+
bu

h
)

]
K(u)du

}
σ2(Xj)(ε

2
j−1).

Note that by Condition (C2),

Var(I1(x)) =
σ4(x)Var(ε21)

4hpf(x)

∫ [∫ (
K(v) +K(v +

bu

h
)
)
K(u)du

]2
dv + o(

1

hp
),

by stationarity in (C3), we have

Var(A61(x)) =
1

n
Var(I1(x)) +

2

n

n−1∑
`=1

(1− `

n
)Cov(I1(x), I`+1(x)).

Let dn →∞ be a sequence of integers such that hpdn → 0. Define

R1(x) =
dn−1∑
`=1

|Cov(I1(x), I`+1(x))|, R2(x) =
n−1∑
`=dn

|Cov(I1(x), I`+1(x))|.

by Condition (C2), (C4) and (C5) and conditioning on (X1,X`+1), we have

|Cov(I1(x), I`+1(x))|

= |E{E(I1(x)I`+1(x)|X1,X`+1)}|

=
∣∣∣E{E( 1

4h2pf2(x)

[{∫ [
K(

X1 − x

h
) +K(

X1 − x

h
+
bu

h
)

]
K(u)du

}
σ2(X1)(ε

2
1 − 1)

][{∫ [
K(

X`+1 − x

h
) +K(

X`+1 − x

h
+
bu

h
)

]
K(u)du

}
σ2(X`+1)(ε

2
`+1 − 1)

])∣∣∣∣X1,X`+1

}∣∣∣
≤ CM0,

for M0 > 0 and some generic constant C > 0. Then it follows that R1(x) ≤

CdnM0. We now consider the contribution of R2(x). Because of the property
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of α-mixing process, then by Davydov’s lemma,

|Cov(I1(x), I`+1(x))| = E|I1(x)I`+1(x)| ≤ 8[α(`)]
δ

1+δ {E|I1(x)|2(1+δ)}
1

1+δ .

By conditioning on X1, and using (C2) and (C3),

E|I1(x)|2(1+δ)

=E
∣∣∣ 1

2hpf(x)

{∫ [
K(

Xj − x

h
) +K(

Xj − x

h
+
bu

h
)

]
K(u)du

}
σ2(Xj)(ε

2
j − 1)

∣∣∣2(1+δ)
≤ CM1h

−2p(1+δ)+p,

for M1 > 0. Hence, for δ
1+δ

< γ < 1,

R2(x) ≤
n−1∑
`=dn

8[α(`)]
δ

1+δ {E|I1(x)|2(1+δ)}
1

1+δ

≤ (CM1)
1

1+δ 8(h−2p(1+δ)+p)
1

1+δ

∞∑
`=dn

[`−β]
δ

1+δ

≤ M2h
−2p+ p

1+δ

∞∑
`=dn

`−2 = M2h
−2p+ p

1+δ d−γn

∞∑
`=dn

`−2+γ = o(1/hp),

by taking h−p+
p

1+δ d−γn = 1. Together with above results,

n−1∑
s=1

Cov(I1(u), Is+1(u)) = o(1/hp),

and

Var(
1

n

n∑
j=1

Ij(x)) =
σ4(x)Var(ε21)

4hpf(x)

∫ [∫ (
K(v) +K(v +

bu

h
)
)
K(u)du

]2
dv + o(

1

hp
).

Subsequently, as n→∞, h→ 0, similar to other nonparametric estimators
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for strong mixing time series, the asymptotic normality of the estimator

σ̂2(x) could be established by employing the so-called small-block and large-

block arguments, thus

√
nhp{σ̂2(x)− σ2(x)−B(x)} d−→ N

(
0,
σ4(x)Var(ε21)

4f(x)
ν2K,K

)
,

where

B(x) =
1

2
h2tr

{
2MK

2 ∇σ2(x)(∇f(x))>

f(x)
+ MK

2 S(x)

}
+

1

2
b2tr

{
MK

2 ∇m(x)(∇m(x))> + MK
2 ∇σ2(x)(∇f(x))> + MK

2 S(x)
}
,

ν2K,K =

∫ [∫ (
K(v) +K(v +

bu

h
)
)
K(u)du

]2
dv.

Proof of Theorem 3.2. Note that

σ2
+(x) = Var(Y + Z|X = x) = σ2(x) + φ2(x) + 2σY,Z(x),

σ2
−(x) = Var(Y − Z|X = x) = σ2(x) + φ2(x)− 2σY,Z(x),

and σY,Z(x) = 1
4
[σ2

+(x)−σ2
−(x)], based on the definitions of estimators σ̂2

+(x),

σ̂2
−(x) and σ̂Y,Z(x), we could obtain the following expressions immediately

from the conclusions in Theorem 3.1. Therefore,

σ̂2+(x)− σ2+(x)

=
1

2
h2+tr

{
2MK

2 ∇σ2+(x)(∇f(x))>

f(x)
+ MK

2 S+(x)

}
+

1

2
b2+tr

{
MK

2 ∇µ+(x)(∇µ+(x))>

+MK
2 ∇σ2+(x)(∇f(x))> + MK

2 S+(x)
}

+
1

2nhp+f(x)

n∑
j=1

{∫ [
K(

Xj − x

h+
)
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+K(
Xj − x

h+
+
b+u

h+
)
]
K(u)du

} {
σ2(Xj)(ε

2
j − 1) + φ2(Xj)(ε

2
j − 1)

+2σ(Xj)φ(Xj)[ε
2
j − 1]

}
+ op(h

2
+ +

√
logn

nhp+
),

and

σ̂2−(x)− σ2−(x)

=
1

2
h2−tr

{
2MK

2 ∇σ2−(x)(∇f(x))>

f(x)
+ MK

2 S−(x)

}
+

1

2
b2−tr

{
MK

2 ∇µ−(x)(∇µ−(x))>

+MK
2 ∇σ2−(x)(∇f(x))> + MK

2 S−(x)
}

+
1

2nhp−f(x)

n∑
j=1

{∫ [
K(

Xj − x

h−
)

+K(
Xj − x

h−
+
b−u

h−
)
]
K(u)du

} {
σ2(Xj)(ε

2
j − 1) + φ2(Xj)(ε

2
j − 1)

−2σ(Xj)φ(Xj)[ε
2
j − 1]

}
+ op(h

2
− +

√
logn

nhp−
),

consequently, if b+ = o(h+), b− = o(h−) and h− = O(h+), then

σ̂Y,Z(x)− σY,Z(x)

=
1

4

[
σ̂2+(x)− σ̂2−(x)− (σ2+(x)− σ2−(x))

]
=

1

8
h2+tr

{
2MK

2 ∇σ2+(x)(∇f(x))>

f(x)
+ MK

2 S+(x)

}

−1

8
h2−tr

{
2MK

2 ∇σ2−(x)(∇f(x))>

f(x)
+ MK

2 S−(x)

}

+
1

8nf(x)

n∑
j=1

K ∗K−h+,h−(Xj − x)
[
σ2(Xj)(ε

2
j − 1) + φ2(Xj)(ε

2
j − 1)

]
+

1

8nf(x)

n∑
j=1

K ∗K+
h+,h−

(Xj − x)
[
2σ(Xj)φ(Xj)(ε

2
j − 1)

]
+op

(
h2− +

√
logn

nhp−

)
,
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where

K ∗K−h+,h−(Xj − x) =
1

hp+

∫ [
K(

Xj − x

h+
) +K(

Xj − x

h+
+
b+u

h+
)
]
K(u)du

− 1

hp−

∫ [
K(

Xj − x

h−
) +K(

Xj − x

h−
+
b+u

h−
)
]
K(u)du,

K ∗K+
h+,h−

(Xj − x) =
1

hp+

∫ [
K(

Xj − x

h+
) +K(

Xj − x

h+
+
b+u

h+
)
]
K(u)du

+
1

hp−

∫ [
K(

Xj − x

h−
) +K(

Xj − x

h−
+
b+u

h−
)
]
K(u)du.

By letting

Qj(x) =
1

8f(x)
K ∗K−h+,h−(Xj − x)

[
σ2(Xj)(ε

2
j − 1) + φ2(Xj)(ε

2
j − 1)

]
+

1

8f(x)
K ∗K+

h+,h−
(Xj − x)

[
2σ(Xj)φ(Xj)(ε

2
j − 1)

]
,

and b+ = o(h+), b− = o(h−), we could obtain that

Var(Q1(x))

=
1

4f(x)hp−
γ2cov(x)

∫ [hp−
hp+
K

(
h−v

h+

)
+K(v)

]2
dv

+
1

16f(x)hp−
γ2(x)

∫ [hp−
hp+
K

(
h−v

h+

)
−K(v)

]2
dv

− 1

8f(x)hp−
θ(x)

∫ [h2p−
h2p+

K2(
h−v

h+
)−K2(v)

]
dv + o(

1

hp−
),

where

γ2(x) = E
{[
σ2(X1)(ε

2
1 − 1) + φ2(X1)(ε

2
1 − 1)

]2|X1 = x
}
,

γ2cov(x) = E
{
σ2(X1)φ

2(X1)(ε
2
1 − 1)2|X1 = x

}
,

θ(x) = E
{[
σ2(X1)(ε

2
1 − 1) + φ2(X1)(ε

2
1 − 1)

]
[
σ(X1)φ(X1)(ε

2
1 − 1)

]
|X1 = x

}
.
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Therefore, following the similar arguments in the proof of Theorem 3.1 based

on the regular conditions and stationarity,

Var(
1

n

n∑
j=1

Qj(x))

=
Var(Q1(x))

n
+ o(

1

nhp−
)

=
1

4nf(x)hp−
γ2cov(x)

∫ [hp−
hp+
K

(
h−v

h+

)
+K(v)

]2
dv

+
1

16nf(x)hp−
γ2(x)

∫ [hp−
hp+
K

(
h−v

h+

)
−K(v)

]2
dv

− 1

8nf(x)hp−
θ(x)

∫ [h2p−
h2p+

K2(
h−v

h+
)−K2(v)

]
dv + o(

1

nhp−
).

Consequently, by assuming b+ = o(h+) and b− = o(h−), we could establish

the asymptotic distribution of the conditional covariance estimator σ̂Y,Z(x)

as follows,

√
nhp−{σ̂Y,Z(x)− σY,Z(x)−BY,Z(x)}

d−→ N

0,
γ2cov(x)ν2K,K,+ +

γ2(x)ν2K,K,−
4

− θ(x)νK,K,2
2

4f(x)

 ,

where

BY,Z(x) =
1

8
h2+tr

{
2MK

2 ∇σ2+(x)(∇f(x))>

f(x)
+ MK

2 S+(x)

}

−1

8
h2−tr

{
2MK

2 ∇σ2−(x)(∇f(x))>

f(x)
+ MK

2 S−(x)

}
,

ν2K,K,+ =

∫ [hp−
hp+

K

(
h−v

h+

)
+K(v)

]2
dv,

ν2K,K,− =

∫ [hp−
hp+

K

(
h−v

h+

)
−K(v)

]2
dv,

νK,K,2 =

∫ [h2p−
h2p+

K2(
h−v

h+
)−K2(v)

]
dv.
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CHAPTER 4

Conclusion and Future work

In Chapter 2, we investigated the estimation problem of conditional co-

variance matrix from the perspective of the behaviour of dynamic conditional

correlation coefficients. In the beginning, we obtained the nonparametric es-

timators of unknown conditional means and variances by local linear smooth-

ing. Next, the resulting estimators for pairwise conditional correlations were

also derived through smoothing techniques based on preliminary estimates.

Since factor models serve as an effective tool in dimension reduction, we

introduced a reduced rank model for the conditional correlation coefficients

to characterize the variation pattern, by regarding F1(u), · · · , Fp(u) as func-

tional common factors. Our estimation of common functional factors and co-

efficients relies on nonparametric smoothing, thus it is model free and allows

much more flexibility. In addition, a detailed theoretical discussion of the

estimators of conditional correlation coefficients, common functional factors
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and loadings was presented under some regularity conditions. Moreover, as

indicated in our empirical analysis, it is worth mentioning that our proposed

approach could successfully describe the movement of pairwise correlations

and explain the asymmetric effect of returns on the conditional correlations

through estimated common factors.

In Chapter 3 of this thesis, the estimation problem of conditional variance

functions was examined. Instead of relying on estimates of the conditional

means, we proposed a new approach by incorporating the smoothing tech-

niques into the difference-based methods. Therefore, we could take advan-

tage of difference-based approaches by omitting a complicated construction

of difference sequences, but providing estimates of local variations by ker-

nel smoothing at the first stage. Asymptotic properties of our conditional

variance (covariance) estimator were examined under some mild conditions.

Finally, a simulation study was conducted for the purpose of comparing the

performance of our variance estimator with the residual-based estimator of

Fan and Yao (1998) and the difference-based estimator of Cai, Levine and

Wang (2009). By investigating various sets of conditional mean functions

and variance functions, our developed estimator seems superior to other two

estimators in most situations.

There are some open problems for future research.

1. In Chapter 2, we only imposed a factor model structure on all pair-

wise conditional correlations, and focused on the problem about iden-

tifying common functional factors. Actually, we could introduce the

factor model representation into the error terms, and study the esti-

mation problem of conditional covariance matrix directly. Specifically,
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let Z = (z1, ..., zp)
> ∈ Rp be a p-dimensional random vector, and

µ(u) = (µ1(u), ..., µp(u))> be a vector of measurable functions of u on

an interval. For a random variable U , we consider the following model

framework for zk,

zk = µk(U) + xk, k = 1, ..., p, (4.1)

where µk(u) = E(zk|U = u) is the conditional mean function of zk, k =

1, ..., p, and X = (x1, · · · ,xp)> is defined to be a zero-mean random

vector. We introduce the following conditional factor model

xk = `k1(U)ε1 + ...+ `kq(U)εq + σkηk, k = 1, ..., p. (4.2)

where ε1, ..., εq and η1, ..., ηp are IID random variables with mean 0 and

variance 1. Subsequently, it follows that

V ar(zk|U) = `2k1(U) + ...+ `2kq(U) + σ2
k, k = 1, ..., p,

and

Cov(zk, zj|U) = `k1(U)`j1(U) + ...+ `kq(U)`jq(U), k 6= j.

Rewrite (4.2) as

X = L(U)ε+ η, (4.3)
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with ε = (ε1, ..., εq)
>, η = (η1, ..., ηp)

>, and

L(U) =


`11(U) · · · `1q(U)

...
...

`p1(U) · · · `pq(U)

 ,

then ε1, ..., εq in (4.3) are actually latent common factors, and `kj(u), k =

1, ..., p, j = 1, ..., q are functional factor loadings. Therefore, the main

focus will be to construct effective approaches to estimate the condi-

tional variance-covariance matrix Σ(U) given by

Σ(U) = E(XX>|U) = L(U)L>(U) + Ση, (4.4)

where Ση = diag(σ2
1, ..., σ

2
p).

2. A much more convenient approach to modelling conditional variance (co-

variance) functions has been constructed in Chapter 3, and reveals

better performance in the simulation study. Therefore, the estimated

conditional variances (covariances) could serve as raw estimates of the

elements in the conditional covariance matrix. Most importantly, fur-

ther studies about some specific structures of conditional covariance

matrices (such as sparsity), could also be conducted based on those

raw estimators.
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