
National University of Singapore

Master Thesis : Statistics and Applied
Probabilities

Efficient Extreme Classification
with Label Taxonomy based

Neural Network

Author :
Nicolas Maurice

Supervisors at UPMC-LIP6/team Machine Learning and
Artificial Intelligence :
Patrick Gallinari

Thierry Artières

Supervisor at NUS - Department of Statistics :
Tao Yu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48814348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 6
1.1 Challenges in Extreme Classification 7

1.1.1 Class Imbalance/Data scarsity 7
1.1.2 High dimensionality/Large sample size 9
1.1.3 Structure and Label dependence exploitation 9
1.1.4 Training/Inference Complexity reduction 9

2 Extreme Single Label Classification 11
2.1 Introduction . 11
2.2 Flat Approaches . 11

2.2.1 Machine learning reduction 12
2.2.2 Embedding approaches 15

2.3 Hierarchical Approaches . 18
2.3.1 Introduction . 18
2.3.2 Hierarchical Structure Learning 20
2.3.3 Discriminative Models Learning 23

3 Label Taxonomy based Neural Network 27
3.1 Principle . 27
3.2 Model . 29
3.3 Optimization . 30
3.4 Backpropagation algorithm . 33

4 Experiments and results 39
4.1 Dataset . 39
4.2 Weights initialization . 40

4.2.1 Reminder : the label taxonomy based Neural Net-
work’s architecture . 40

4.2.2 About the weights initialization 40
4.3 Experimental setups . 41

4.3.1 The loss weighting . 41

1

Chapter 0 CONTENTS p.2

4.3.2 The learning rate η . 41
4.3.3 The dimension of the hidden layers 42

4.4 Convergence issues encountered 42
4.5 Results . 44

4.5.1 Performances and loss evolution during optimization . 44
4.5.2 Final performances . 45

4.6 Conclusion . 46

Bibliography 47

CONTENTS

List of Tables

4.1 Description of training and test sets 40
4.2 Sequence of weights to update at each epoch (when a cross

mark the weights at the corresponding are updated when blank
the weights keep untouched during the full epoch). This se-
quence is followed twice (so during 22 epochs) then we repeat
epochs on full network until we consider that the model has
converged . 43

4.3 Table of performances in percentage of example correctly cat-
egorized by the model at the end of the optimization 45

3

List of Figures

1.1 Landscape of research challenges in Extreme Classification
(Yimin Yang talk at WSC workshop WSDM 2014) 8

2.1 Example of hierarchical classifier (binary). Each node (besides
the root) is associated with a classifier fi. They are eight pos-
sible labels l0 = {1, · · · , 8} and for example l14 = {5, 6, 7, 8}
and l9 = {1, 2}. 19

2.2 Hierarchical structures . 21
2.3 Illustrating the use of class attributes reflecting the hierarchi-

cal structure. Class attribute vectors have the same dimension
as the number of nodes in the hierarchy (root not counted).
For label 3 the components corresponding to nodes 8 and 3
are set to one since they are on the path from the root to node
3 : Λ(3) = (0, 0, 1, 0, 0, 0, 0, 1, 0, 0). 26

3.1 Label Taxonomy based Neural Network 30
3.2 Example of Inference. Black units correspond to the unit with

the largest value in the output layer. Here L4 is predicted . . 31

4.1 Evolution of performances and Loss function during optimiza-
tion (blue curves correspond to train set and green curves to
test set. Hyperparemeters chosen : η = 0.1 and λ : −1 44

4

Acknoledgements

Thanks to Patrick Gallinari and Thierry Artières my supervisors at UPMC
(University Pierre & Marie Curie in Paris) where I followed a 6 months
internship in the Machine Learning and Artificial Intelligence team and has
been one of the most enriching experience in my career

I also would like to thanks Dr Yu Tao in the deparment of Statistics at
NUS (National Univerity of Singapore) who accepted to be my supervisor

5

Chapter 1

Introduction

A fundamental characteristic of the Human mind is the ability to put infor-
mation into categories. For example, we naturaly extract semantic concepts
from visual information or text data, that allow us to organise knowledge.
One of the main purpose of artificial intelligence is to endow the machine
with the same abilities. The past decades have known a large research effort
in the Machine Learning commmunity to automate daily classification tasks.
Among many others, Handwritten Digit Recognition (Lecun et al., 1998 [17])
and spam filtering (Tretyakov, 2004 [26]) are succesful industrial applications
of classification tools.

Despite this success stories, we have to highlight the gap that still exist,
in terms of scale and complexity, between the problems that Humans can
naturally tackle and the one a machine can solve. Almost every classification
problems solved by computers count at most a few hundred of classes while
Humans are able to discriminate between several thousands of categories.
Obviously, this is due to the basic fact of high level human inteligence, Hu-
mans describe the world thanks to an extremely large semantic space. As
an example psychologists consider that we are able to make the difference
between thirty thousand visual categories (Biederman, 1987 [7]) and we have
a potentially unbounded number of semantic concepts to explain wich are
the relevant topics for a given textual document.

Thanks to social and collaborative websites such as Wikipedia, Facebook,
Instagram, etc. The past few years have also been the witnesses of an ex-
ponential growth of the amount of data uploaded every day on the internet.
For example, between 2002 and the end of 2014, the number of articles on
the english version of Wikipedia has jumped from 20,000 to 4.7 millions and
during the year 2014, Instagram has known an average of 40 millions pictures

6

Chapter 1 Introduction p.7

shared daily. The relevant point is that all this datas (textual or visual) in
most cases come with a system of labels that describe it. For example, every
article on Wikipedia is tagged with at least one topic of the roughly 1 million
labels reported in the Wikipedia hierarchy. In order to deal with this kind
of very large datasets and create user friendly applications such as search
engines, it is critical to first create learning machines that can efficiently deal
with a large number of categories.

This field of research called Extreme Classification has remained unex-
plored until recently and most of the existing classic machine learning al-
gorithms are not well suited to problems of this size because of their large
time and space computational complexity. In most cases, the computational
ressources needed to solve a problem grow much faster than the volume of
data. This thesis proposes a new approach that efficiently solves classification
problems with a large number of categories.

1.1 Challenges in Extreme Classification

As we said earlier, Extreme Classification is an emerging field of research
which goal is to handle classification tasks that involve a large number of cate-
gories (that we will also call labels or classes). Thanks to several workshops, it
has become more popular the past few years, for example the ECML-PKDD
Large Scale Hierarchical Text Classification (LSHTC) workshop series 2010-
2013, the NIPS 2013 Extreme Classification workshop and more recenty the
WSDM 2014 Web-Scale classification workshop. During the same period
some contests have been organized such has the Pascal Large Scale Hierar-
chical Text Classification in conjunction with the workshop, the Imagenet
challenge or the BioAsQ challenge.

We can distinguish two main problems in Extreme Classification, single
label classification which means that an instance belongs to one and only
one category, and multilabel classification where an instance can belong to
several categories. In the following we will raise the speficities involved by
problems of large scale.

1.1.1 Class Imbalance/Data scarsity

A first issue encountered when dealing with Extreme Classification prob-
lems is the categories average size. Indeed the larger the number of cate-
gories, the smaller the average category size, this has been observed on sev-

Challenges in Extreme Classification

Chapter 1 Introduction p.8

eral datasets, see on figure 1.1, the same conclusion does not hold for small
size dataset such as CLEF and RCV. An example of dataset used for regular
classification is the MNIST database of handwritten digits (Lecun et al, 1998
[17]), that counts 70,000 examples divided into ten classes of balanced sizes.
On the other hand, in Extreme Classification problems, when the number of
labels gets large, the average size of a category decreases. For example, the
DMOZ database (Directory Mozilla) is an open-content directory of World
Wide Web links, as of April 2013 it listed 5 millions links grouped into more
than one million categories.

Figure 1.1: Landscape of research challenges in Extreme Classification
(Yimin Yang talk at WSC workshop WSDM 2014)

Coupled with this scarsity of datas, a second issue comes from the fact
that the size of the different categories is often very imbalanced. As depicted
on Figure 1.1, for most of the Extreme Classification datasets, the size of
the categories are power law distributed. Even though solutions to the class
imbalance have already been proposed (Japkowitcz and Stephen, 2002 [15]),

Challenges in Extreme Classification

Chapter 1 Introduction p.9

the scale of the considered problems was much smaller.

1.1.2 High dimensionality/Large sample size

In Extreme Classification problems we often deal with an input space of
very large dimensionality. In the large Wikipedia’s documents database, that
has roughly 325,000 categories, an instance is represented by more than one
million features. Indeed for textual data such as DMOZ or Wikipedia, some
words of the vocabulary are very specific to some catagories, it comes up
that to manage to discriminate between more categories, we need a larger
vocabulary.

Since each category is represented by at least one instance, a second fact
that is naturally related to the large number of labels is the very large size
of the datasets. As quoted before, the DMOZ database counts roughly 5
millions examples.

1.1.3 Structure and Label dependence exploitation

Databases concerned by Extreme Classification, because of their large size
often comes with a structure that organizes the categories. For example,
the Wikipedia database comes with a graph that structures the labels and
with DMOZ, labels are organized in a hierarchy. This kind of structures
carry semantic information about the relationship between the labels and this
information can be leveraged in order to improve classification performances.

Another kind of structure information is the co-occurence between labels
in extreme multilabels problems, some classes are positevely correlated while
many others never appear together.

1.1.4 Training/Inference Complexity reduction

The different issues quoted previously : sample size, dimensionality of
the input space... result in both memory and time computational burden
for classical machine learning algorithm. For example using the one versus
rest classifier, that needs to learn one binary classifier for each category
(Rifkin and Klautau, 2004b [23]), on the Wikipedia dataset (325,000 labels,
dimension of the input space : 1 million), more than 1000 GB would be
necessary to store all the parameters. An issue even more problematical
is the necessity to evaluate all the 325K classifiers to recover the relevant

Challenges in Extreme Classification

Chapter 1 Introduction p.10

categories of a tested instance, it makes the inference’s computational time
far too long.

The same negative effects due to the large number of labels occur with
several other methods such as single large margin classifiers (Weston and
Watkins, 1998 [32]) and deep neural networks (Bengio, 2009 [3]). It is there-
fore critical to come up with new approaches having sublinear training and
inference complexity in the number of categories.

Challenges in Extreme Classification

Chapter 2

Extreme Single Label
Classification

2.1 Introduction

Contrary to multilabel classification where an instance can belong to multi-
ple categories, single label classification consists in classifying instances that
can belong to only one category. It is a well studied problem in machine
learning with several solution widely applied in the industry. However from
now on with the very fast expansion of the volume of data uploaded every
day on the internet with website such as Wikipedia or Instagram, most of
the tradional approaches became obsolete because they do not scale to ex-
treme classification. Single label classification has been initially tackled with
flat methods. Recently there has been an increased interest in hierarchical
techniques. In this chapter we propose to present the main contributions in
the litterature from this two families of approaches that can be applied to
solve extreme single label classification.

2.2 Flat Approaches

Hierarchical and flat approaches are opposed in the sense that hierarchical
methods rely on a hierarchy of labels to reduce their inference complexity,
we will see later how. We can distinguish two groups of flat methods, first
machine learning reduction(Allwein et al., 2001 [1], Dietterich and Bakiri,
1995 [12]), second single machine classifier (Weinderberg and Chapelle, 2008,
[30], Weston et Watkins, 1999 [33]). The first consists in learning several
binary classifiers and then to combine the prediction of all these classifiers to
create a classifier over all the labels, for example the one-vs-rest method that

11

Chapter 2 Extreme Single Label Classification p.12

will be described later. On the other hand we have single machine methods
that are either embeddings method or extension of binary classifiers.

We will not focus here on extension of binary classifier. Support vector
machines and logistic regression have been extended to multiclass (M-SVM)(
Weston et Watkins, 1999 [33]). Softmax regression or more recently deep neu-
ral network (Bengio, 2009 [3]) are solutions to multiclass classification tasks
that have proven their performances however they don’t scale to extreme
classification, so we will not describe these methods here.

2.2.1 Machine learning reduction

Machine learning reduction consists in creating a model of classification
with multiple possible categories that relies on several binary classifiers. In
other words, the main goal is to combine the prediction of several binary
classifiers in order to make a prediction on an instance that can belong to
several categories. Many different methods already exist that only differ on
how the binary classifiers are combined to create the multiclass classifier, for
example Error Correcting Output Codes, One-versus-All, One-versus-One
and Filter Trees among others (Allwein, 2001 [1]).

For example with One-vs-One classifier, for each pair of labels a binary
classifier that discriminates between the two labels is trained, at inference an
instance is put through all these classifiers and the label that has received the
largest number of votes is predicted. Such method has proven good accuracy
but at inference it involves to test a classifier for each pair of labels making
the complexity quadratic in the number of labels O(L2), which is way to
large for extreme classification.

Binary classification

Let us suppose we are given an input space X and Y a set of categories
an instance of the input space can belong to. A classification problem is
a supervised learning task that consists in, based on a training set S =
{(xi, yi)}1≤i≤n ∈ (X ,Y)n of correctly identified observations (in which each
instance xi belongs to the category yi), to create a classification rule that
allows to predict which category in Y an unknown instance belongs to.

Binary classification is the simplest case of classification where there are
only two possible categories Y = {−1, 1}. This is one of the most studied
machine learning problem because of its obvious practical interest on his own

Flat Approaches

Chapter 2 Extreme Single Label Classification p.13

and because as we have seen earlier we can use it as building block of more
sophisticated multiclass machine learning system.

If we choose an empirical risk minimisation point of view, basically binary
classification consists in finding the best hypothesis h : X → {−1, 1} from
a set of hypothesis H that minimizes the average number of disagreements
between the prediction h(xi) and the actual label yi over the training set S.
For h ∈ H and L a loss function that measures the penalty of measuring
h(xi) when the actual label is yi, we can define the empirical risk as,

RS(h) =
1

n

n
∑

i=1

L(h(xi), yi)

The empirical risk is an approximation of the classifier’s expected risk on
the distribution P from which the data was drawn. To prevent overfitting
we often add a regularization term (Vapnik, 2000 [27]),

RS(h) =
1

n

n
∑

i=1

L(h(xi), yi) + λ‖h‖

where λ > 0 is a fixed hyper parameter that weigths the importance given
to this regularisation term. The goal of the optimisation is to find the hy-
pothesis h⋆ in H that minimizes the empiracl risk,

h⋆ = arg min
h∈H

RS(h)

Depending on the problem we can use various classes of hypothesis such
as linear models, kernel machines or neural networks. In the case of a linear
hypothesis, an hyphotesis h is parametrized by a vector w and hw(x) =
wTx + b where b is a bias term. In this case looking for best hyphotesis h⋆

is equivalent to find the vector w⋆ that minimizes RS(hw) according to the
loss function L.

The natural loss function we would like to consider is the zero-one loss, that
is equal to 0 if h(xi) = yi (correct prediction) and 1 otherwise : L0/1(h(xi), yi) =
1{h(xi)6=yi}. The zero-one loss is natural in the sense that it counts the num-
ber of missed predictions but it also involves a disadvantage it is not convex
(wrt h(x)). In order to handle this issue we usually use surrogates of the
zero-one loss such as Hinge loss or Logistic loss.

Flat Approaches

Chapter 2 Extreme Single Label Classification p.14

{

LHinge(h(x), y) = max(1, 1− y.h(x))

LLogistic(h(x), y) = log(1 + exp(y.h(x)))

This two functions are upper-bounds of the zero-one loss, it involves that
by minimizing this two surrogated losses we can also bound the zero-one
loss. When the linear hyphotesis is chosen, the Hinge loss and the logis-
tic loss stand for respectively Support Vector Machines (SVM) and Logistic
Regression (LR). To optimize these problems various solutions exist such
as stochastic gradient and dual coordinate descent algorithm. These two
methods SVM and LR have proven state of the art performances on several
datasets, and are widely used either to solve binary problems or to build
multiclass classifiers as we will see in the following.

One-versus-Rest Classifier

The One-versus-Rest Classifier also called One-versus-All classifier is one
of the simplest approach of multiclass reduction to binary. It consists in, for
each category, training one binary classifier that discriminates if an instance
belongs to the selected category or to any other one. At inference, all the
classifiers are tested and the category whose binary classifier has the largest
score (in other word the most confident binary classifier) is predicted. A
widely cited paper dealing with this method is (Rifkin and Klautau, 2004b
[23]), in which it is empirically shown that One-vs-All method outperform
other approaches such as ulti class support vector machines (M-SVM), One-
vs-One classifier (one binary classifier for each pair of categories) and Error
Correcting Output Codes (ECOC). An other aspect that we can benefit from
One-vs-All is that binary classifiers can be trained and tested independently
so OVA can be parallelized easily.

Error Coding Output Codes

Error Correcting Output Codes (ECOC) is a method to classify with mul-
tiple categories, it has been introduced in (Dietterich and Bakiri, 1995 [12]).
The methods consist in associating to each one of the L classes a binary
code of lenght de. These binary codes or codewords are usually represented
as the rows of a coding matrix M ∈ {−1,+1}L×de. For each column of
the matrix we train a binary classifier to answer the binary classification
problem induced by the column. For a training set S = {(xi, yi), i ≤ n},

a given column l induces two subset of S, the subset of postive examples

Flat Approaches

Chapter 2 Extreme Single Label Classification p.15

S+ = {(xi, yi),Mi,l = +1} that corresponds to the examples that belongs to

either one of the labels that have been coded by a +1 in column l. Similarly
we have the negative examples S− = {(xi, yi),Mi,l = −1} that have been

coded by −1. These de binary classifiers hi (also called dichotomizers) are
then used to make the final prediction over the L categories. A given test
instance x has a predicted codeword h(x) = (h1(x), · · · , hde(x)) and the pre-
dicted label for x is the label whose codeword in the coding matrix is the
closest D(x) = arg minl d(h(x),Ml,.). D is called the decoding procedure, it
generally uses the hamming distance dH that counts the number of different
bits between two codewords.

2.2.2 Embedding approaches

Nearest Neighbor (NN) approaches are powerful non parametric methods
that can split an input space into multiple classification regions with complex
non linear boundaries (Bishop, 2006 [8]). They have achieved state of the
art performances when the distance metric used is learned, as for large mar-
gin nearest neighbor (Winderberg and Saul, 2009 [31]). However, Nearest
Neighbor does not scale well to extreme classification because of its linear
computational complexity in the number of examples in the training set.
Some solutions have been suggested to speed up the nearest neighbor search
such as k-d trees (Bentley, 1975 [5]) that reduces the search complexity to
O(d logn) where d is the dimension of the input space and n is the size of
the training set, at the cost of a small drop of performance. This method
has been improved by at the same time learning the metric distance and
projecting the data into a space of lower dimension de (de << d). For exam-
ple, Large margin Component Analysis (Toressani and Chih Lee, 2006 [25]),
results in a complexity of O(de(d + n)) (or O(de(d + logn)) if k-d trees are
used).

Another lead to speed up nearest neighbor is nearest centroid classifier
(NC). It consists in computing the centroids of each class j :

uj =
1

#{yi = j}

∑

yi=j

xi

,

the average vector of all the elements of the training set within a given
class. At inference an instance x is assigned to the class wich centroid is the
closest, y = arg minj ‖x − uj‖. This method also called Rocchio classifier

Flat Approaches

Chapter 2 Extreme Single Label Classification p.16

is widely adopted in the text classification community, with a complexity in
O(dL) where L is the number of classes instead of O(dn), this methods scales
well to problems with very large data set. Despite this improved complexity,
it remains very costly for extreme classification where both d and L are large.
Moreover, the high dimensionality of the input space generally leads to poor
performances when euclidian distance for example is used for nearest mean
search.

The combination of distance metric learning and dimensionality reduction
has proven effectivity to reduce the inference complexity of Nearest Neighbor
while maintaining a state of the art performance. On the other hand Nearest
Centroids allows a complexity reduction up to linear dependance with respect
to the number of categories rather than the size of the training set. Embedding
methods try to take advantage of both previous method. To do so they
project (or map) the data and the labels into the same space of low dimension
de (with de << d and de << n) and then try to locate the projected data as
close as possible to the projection of the correct label. The final complexity
is then O(de(d + L)) and can be reduce to O(de(d + logL)) using k-d trees.

Embedding procedure consists in learning two projection matrices, first
W ∈ Mde,d that projects the examples and second V ∈ Mde,L that projects
the labels, the common space of projection is called the latent space. A label
y is represented in the original label space by a vector of size L made of zeros
except a one at yth position : φ(y) = (0, · · · , 1, · · · , 0). In the latent space
an instance x is represented by Wx and a label y by V φ(y). The main goal
of embeddings is to learn the two matrices W and V such that in the latent
space an example is close to the right label. At inference, the prediction on
an instance x is then naturally the label whose representation in the latent
space is the closest to the projection of x :

fembed(x) = arg min
y

d(Wx, V φ(y))

where d is a similarity measure in the latent space generally the euclidean
distance or the inner product. The two matrices can be learned either sepa-
ratly or jointly. The label embedding matrix V can also be learned using prior
information such that the similarity between labels. In (Bengio et Al, 2010
[2]) such similarity information is obtained via the confusion matrix of a pre-
viously trained One-vs-Rest classifier whereas in (Weinberger and Chapelle,
2009 [30]) the similarity between labels is calculated as the distance between
the labels in an existing hierarchy.

Flat Approaches

Chapter 2 Extreme Single Label Classification p.17

Sequence of convex model

In (Weinberger and Chapelle, 2009 [30]) a two steps procedure is sug-
gested to learn the embedding matrices. The first step uses prior information
(supposed to be available) to calculate V . Based on a dissimilarity matrix
C ∈ ML(R+) in which Cij corresponds to the dissimilarity between label i
and label j. A metric multi-dimensional scaling is solved in order to project
similar labels in neighboring regions of the latent space. This problem cor-
responds to minimize :

∑

i,j

(‖Vi − Vj‖
2 − Cij)

2 (with Vi the ith column of V)

It can be easily done, if C defines squared euclidean distances which is the
case if the costs are defined as the length of the shortest path between nodes
in a hierarchy of labels and then squared.

Once V is found we need to find a proper W that maps each input as close
as possible to its label representation, that can be done by setting :

W ∗ = arg min
W

∑

i

‖V φ(yi)−Wxi‖
2 + λ‖W‖2F

The parameter λ is the weight of the regularization of W , which is nec-
essary to prevent potential overfitting due to high number of parameters in
W . W ∗ is an instance of a linear ridge regression and can be found very
accurately by solving with linear conjuguate gradient for each row of W .

At inference, prediction on an example x is naturally done by finding the
label whose representation in the latent space is the closest to the projection
of x :

h(x) = arg min
i≤L

‖Wx− V φ(i)‖

Joint non convex model

A second possible approach is to find W and V at the same time without
using prior information. Even though such procedures poses an ”egg and
chicken” problem as pointed out by (Weinberger and Chapelle, 2009 [30]).
A joint optimazation procedure has been suggested in (Bengio et al., 2010,
[2]) :

Flat Approaches

Chapter 2 Extreme Single Label Classification p.18

minimize : γ‖W‖FRO +
1

n

n
∑

i=1

ξi

s.t.

(Wxi)
TV φ(yi) ≥ (Wxi)

TV φ(yj) + 1− ξi, ∀i 6= j

‖Vk‖ ≤ 1, ∀k ≤ L

ξi ≥ 0, ∀i ≤ n

In this case no prior information is used and the scheme to minimize in non-
convex because of the first constraint. Training can be efficiently performed
by using stochastic gradient descent with randomly initialized weights. At
inference a distinct similarity measure can be used : d(a, b) = aT b which is
the dot product in the latent space. Despite the apparent difficulty of this
problem, it has shown better performances than the previous convex one in
real world extreme classification problems (Bengio et al., 2010, [2]).

2.3 Hierarchical Approaches

2.3.1 Introduction

Given x ∈ X an instance of an input space, classification tasks aim to
assign x to its relevant caterogy among several possible categories Y . In
order to decrease the complexity w.r.t the number of possible labels a natural
lead is to apply divide and conquer strategies. Hierarchical classifiers (Liu
et al., 2005 [19]; Silla and Freitas, 2011, [24]) are one of the main divide and
conquer approaches adopted when dealing with a large number of categories.
This popularity is due to both accuracy and effeciency reasons. An other
particularity that makes hierarchical methods such popular is that most of
the real world extreme clasification problems come with a taxonomy that
structures the labels. For example DMOZ which is a comprehensive directory
of the Web that comes with a strong hierarchical backbone organization. We
can also quote the MESH directory that organizes medical subjects in a
hierarchy and that is then used by PubMed to index more than 24 millions
citations in biomedical litterature.

First, exploiting hierarchical information can lead to important perfomance
improvements in classification (Bennett and Nguyen, 2009 [4]; Koller and
Sahami, 1997 [16]; Weigend et al., 1999 [29]). Moreover, flat approaches
are most of the time computationnaly prohibitive for real world applications

Hierarchical Approaches

Chapter 2 Extreme Single Label Classification p.19

because they don’t scale to problems with a large number of labels. On the
other hand, hierarchical methods can easily decrease the time complexity
up to logarithmic dependance w.r.t the number of classes for example by
using balanced trees (Beygelzimer et al., 2009b [6]; Deng et al., 2011 [11]).
It is then easy to understand why these kind of approaches are getting very
popular in a context of extreme classification.

A label tree is a tree T = (N,E,F,L) with N + 1 nodes indexed N =
{0, · · · , n}, a set of edges E = {(p1, c1), · · · , (p|E|, c|E|)} which are ordered
pairs of parent and child node indices, a set of node predictors F = {f1, · · · , fN}
and labels sets L = {l0, · · · , lN} where lk indicates the set of labels to which
an instance should belong if it arrives at the node k and progress from generic
to specific along the tree. The root set contains all the labels |l0| = L and
each child label set is a subset of its parent label set with lp = ∪(p,c)∈E lc.
Generally they are two kinds of structures, regular trees in which each node
has a single parent, or Directed Acyclic Graphs (DAG) where many parents
are allowed for a single node.

0

1 2 3 4 5 6 7 8

9 10 11 12

1413

Figure 2.1: Example of hierarchical classifier (binary). Each node (besides
the root) is associated with a classifier fi. They are eight possible labels
l0 = {1, · · · , 8} and for example l14 = {5, 6, 7, 8} and l9 = {1, 2}.

Each node predictor fc is trained in order to predict whether or not the
example x belongs to the set of labels lc. At inference, the prediction is per-
formed by applying algorithm 1. The process is a depth first search (DFS)

Hierarchical Approaches

Chapter 2 Extreme Single Label Classification p.20

based on the scores of the local classifiers. It starts at the root node and at
each round selects among the current node’s children the one whose associ-
ated classifier has the largest score (the most confident child). The process
is repeated until a leaf is reached and the label corresponding to this leaf is
predicted.

Algorithm 1: Hierarchical Prediction Algorithm

Input: Test example x
Output: The predicted label
Let p = 0 ;
repeat

p← argmaxc, (p,c)∈E fc(x);

until |lp| = 1;
return lp

In the following we will describe the main methods concerning hierarchical
classification suggested in the litterature. These approaches can be split into
three groups. First find algorithms to learn descriminative hierarchies from
the data regarless of the internal node’s classifiers. The second line of work
is interested in learning performing classifiers based on a given hierarchy.
The last family of methods consists in learning jointly the structure of the
hierarchy and the node’s classifiers.

2.3.2 Hierarchical Structure Learning

Most of the classification models used when dealing with several possible
categories are flat models such as M-SVM (Weston and Watkins, 1998 [32])
or One-vs-Rest (Rifkin and Klautau, 2004 [23]) to name a few, that have
linear to quadratic complexity w.r.t the number of labels. Such complexities
are restrictive for Extreme Classification where problems can have up to hun-
dred of thousands categories. In order to apply divide and conquer strategies,
authors have started to create discriminatives hierarchies (Chen et al., 2004
[10]; Liu et al, 2005 [19]; Vural and Dy, 2004 [28]; Zhang et al., 2010 [36]).
Methods that have been proposed ever since can be very different, for exam-
ple (Marszalek and Schmid, 2007 [20]) learn a class hierarchy by exploiting
the semantics of the classes and some additional knowledge about interclass
relationships such as Wordnet. Another approach has been introduced in
(Griffin and Perona, 2008 [14]) it relies on a recursive top-down partioning of
the set of classes to build hierarchies conversely in (Zhigang et al., 2005 [37])

Hierarchical Approaches

Chapter 2 Extreme Single Label Classification p.21

a bottom up agglomerative clustering is applied. Another lead has been sug-
gested in (Liu et al., 2005 [18]) to use a method based on K-means clustering
whereas in (Zhang et al., 2010 [36]) the structure of the classes hierarchy is
randomly sampled and then evaluated by cross-validation.

Among these different approaches, (Bengio et al., 2010 [2]; Griffin and
Perona, 2008 [14]) have empiracally proven the superiority of top-down ap-
proaches over the other ones. Therefore, the discussion concerning Hierchical
structure learning is not really how the structure is learned but what kind
of structure allows the best performing method in terms of generalization
performances and inference speed. Two main groups of structures are put
in competition, tree structured class hierarchies in which each child has one
and only one parent and Directed Acyclic Graphs (DAG) in which a child
can have several parents, see figure 2.2

1 2 3

1,2,3

54

1,2,3,4,5

4,5

(a) Tree structure

1 2 3 4 5

1,2,3 1,3,4 4,5

1,2,3,4,5

(b) Directed Acyclic Graph

Figure 2.2: Hierarchical structures

Spectral Clustering

The goal of clustering algorithm is to split a group of items into multiple
subgroups or clusters such that items within the same subgroup are similar
to each other. The similarity between items is defined in terms of distance
measure. For example K-means algorithm aims to optimize the within cluster
sum of square distances. Spectral clustering algorithms are powerful alter-
natives to K-means. Spectral clustering consits in first representing the set
of items as a graph in which the vertices N stand for the items and the
edges E are associated to a weight that represents the similarity between

Hierarchical Approaches

Chapter 2 Extreme Single Label Classification p.22

the items. The similarity matrix is denoted W = (wij)(i,j)∈N . The similarity
matrix can be calculated in different ways and will result in different type of
graph. A first option is the k-nearest neighboor approach where each node of
the graph is connected to only his k-nearest neighboors (acording to a given
ditance measure) with weight 1 and all the other weights set to 0, W is then
a more or less sparse matrix made of zeros and ones, (wij = 1, ∀(i, j) ∈ E),
not necessarily symetric with k ones per column. On the other hand we can
obtain a dense graph by using a gaussian kernel : wij = exp(‖ui−uj‖2/2σ2),
where ui stands for item associated to node i.

Once the graph is defined, the next step consists in spliting the items
into different clusters such that the sum of the weigts edges linking vertices
belonging to different clusters is minimized. For two clusters A and B, this
quantity is called the cut : cut(A,B) =

∑

i∈A,j∈B wij. (Ng et al., 2002 [22])
suggest to minimize instead the normalized cut which leads to more balanced
clusters. The corresponding objective function is :

JN =
cut(A,B)

V ol(A)
+

cut(A,B)

V ol(B)

where V ol(A) =
∑

i∈A,j∈N wij is the volume of the cluster A. This problem
can equivalently be formulated as an eigenvalue problem : (D−W)y = λDy
where D is the diagonal matrix with dii =

∑

j wij and y is the indicator
vector of vertices belonging to clusters A (y = 1) and B (y = −1). This
problem is actually NP-hard and in order to solve it we need to relax the
binary condition to a continuous condition : y ∈ [−1, 1]|N |. The solution
is then obtained by the second eigenvector of the normalized laplacian :
L = D− 1

2 (D −W)D− 1
2 .

Finally we need to choose to which cluster associate each vertice from the
solution of the previous problem. If the second eigenvector y∗ is considered,
the clustering is obtained thanks to a simple thresholding rule : A = {i :
y∗i > 0} and B = {i : y∗i < 0}.

Learning Class Hierarchies

So far the most promising approaches to learn hierarchical structures as
suggested in the litterature are based on recursive partitioning of the set of
classes using spectral clustering (Bengio et al., 2010 [2]; Chen et al., 2004
[10]; Griffin and Perona, 2008 [14], Marszalek and Schmid, 2008 [21]). The

Hierarchical Approaches

Chapter 2 Extreme Single Label Classification p.23

research effort is now focused on finding the best form of hierarchical struc-
tures.

Tree structured class hierarchies The goal is to partition the categories
into separable clusters. In order to apply spectral clustering methods where
the categories stand for the items (nodes of the graph), the similariaty matrix
used is the symmetrized confusion matrix between the classes (Godbole et al.,
2002 [13]). The underlying idea is that to evaluate how much two categories
are similar, a lead is to count how many times an instance belonging to one
of the two categories is misclassified into the other category. For example
the confusion matrix can be obtained from a previously trained surrogate
classifier such as One-vs-Rest. Most of the time the confusion matrix is
obtained by averaging different confusion matrices and using k-fold cross
validation to guarantee more stability. For a given depth and branching
factor for the hierarchy, (Bengio et al., 2010 [2]) recursively solve graph cut
problems (with a previously built affinity matrix) until the desired shape
is obtained. Another approach proposed by (Griffin and Perona, 2008 [14])
who, instead of fixing the branching factor, use selt-tunning spectral clustering
(Zelnik-Manor and Perona, 2004 [35]) to automatically find the number of
clusters at each step.

DAG structured class hierarchies To create DAG structures, conversely
to trees, spectral clustering is directly applied on the instances of the train-
ing set (Marszalek and Schmid, 2008 [21]). At each step the examples
S = {(xi, yi), i ≤ n} are partitioned into two clusters R and L. The la-
bels are then distributed into two groups R and L, following a simple rule,
whenever a class c has one of its instance belonging to a cluster (cluster R for
example), then c is associated to the corresponding group of classes (R in the
same example) : R = {y : ∃(x, y) ∈ R} (respectively L = {y : ∃(x, y) ∈ L}).
Obviously defined this way R and L are very likely to overlap. In practice,
(Marszalek and Schmid, 2008 [21]) suggest to relax the division rule in order
to obtain shallower hierarchies, by considering that a class is assigned to a
cluster only if a large enough proportion of the instances within the class
belong to the corresponding cluster.

2.3.3 Discriminative Models Learning

Independant Optimization of Models : Pachinko Machines

Pachinko Machines (Liu et al., 2005 [19]; Yang et al., 2003 [34]) is the
most simple case of hierarchical classification and corresponds to the early

Hierarchical Approaches

Chapter 2 Extreme Single Label Classification p.24

work in the field. It consists in learning independently classifiers at each
node of a given hierarchy. It is simple in the sense that the hierarchy is
only used to partition the training data in order to learn local classifiers. At
each interior node η ∈ N, fη is trained considering the positive data as the
subset of training examples that belong to one of the leaf descending from η
: S+ = {xi : yi ∈ lη} and the negative values the examples that belong to
any label descending from a sibling of η : S− = {xi : yi ∈

⋃

(pη ,c)∈E
c 6=η

lc} where

pη is the father node of η.

(Bengio et al., 2010 [2]) suggested to use a Support Vector Machine form
of objective function to make the optimization. Denoting bj(x) the index of
the best node in the hierarchy at depth j and Cj(y) = 1 if y ∈ lj and −1
otherwise , we have :

Remp(h) =
1

n

n
∑

i=1

max
j∈B(xi)

1(yi /∈ lj) ≤ Gh =
1

n

n
∑

i=1

D(xi)
∑

j=1

max (1, 1− Cj(yi).fj(xi))

where B(x) = {b1(x), · · · , dD(x)(x)} and D(x) is the depth of the final
prediction of x. This obective function ends up in the followin optimization
problem :

N
∑

j=1

(

γ‖wj‖
2 +

1

n

n
∑

i=1

ξij

)

s.t ∀(i, j),

{

Cj(yi)fj(xi) ≥ 1− ξij
ξij ≥ 0

Since the parameters of the local classifiers wj do not interact in the objec-
tive, the optimization problem can be decomposed, therefore the local classi-
fiers can be trained in parallel. This property is very desirable and explains
the success of these models in the early stages of hierarchical classification.

Joint Optimization of Models

On the opposite side from Pachinko Machines some authors have recently
proposed to learn the hierarchical classifier as a unique classifier and learn
all its parameters jointly. The main idea underlying this approach is to make
individual errors (at a given node) impact the updates of all the parameters
of each local classifier. When learning a hierachical problem, the set of pa-
rameters w = (wi)i≤N of the model is the solution of the generic problem
:

Hierarchical Approaches

Chapter 2 Extreme Single Label Classification p.25

Minimize : arg min
w

R(w) + C × Lemp(w)

where Lemp is the empirical loss on the training set and R(w) is a regular-
ization term and C is a constant hyper-parameter controlling the trade-off
between the two terms. For the Pachinko Machine, both the regularization
term and the empirical loss are fully decomposable and no interaction exists
between the parameters of the local classifier, however inter-dependence can
be introduced.

A first framework has been introduced by (Cai and Hofmann, 2004 [9]) as
a generalization of the classical multiclass support vector machines :

Minimize : γ
N
∑

j=1

‖wj‖
2 +

1

N

n
∑

i=1

ξi

s.t ∀i,

{

F (xi, yi;w)− F (xi, c;w) ≥ 1− ξi (∀c 6= yi)
ξi ≥ 0

where F (x, y;w) is the linear discriminant function corresponding to the
class y and is expressed as :

F (x, y;w) = 〈w,Φ(x, y)〉 =
N
∑

η=1

λη(y)〈wη, x〉

In this formula, Φ(x, y) = Λ(y)⊗ x (⊗ stands for the tensor dot product)
where Λ(y) = (λη(y))η≤N is a vector made of zeros and ones such as λη(y) =
1 if y ∈ lη (label y belongs to the descendance of node η) and λη(y) =
0 otherwise, see on figure 2.3. In other words, classes are represented by
binary attribute vectors of size the number of nodes in the hierarchy (root
not counted). Similarly, if the structure considered is a DAG then class c
attribute vector is made of ones for every node that has c in its descendance.

The main idea behind this approach is that the attribute vectors capture
semantic relation between the classes of the hierarchy. For example, on
figure 2.3, labels 1 and 3 have closer attribute vectors than 1 and 7 that
are far away from each other in the hierarchy.

Hierarchical Approaches

Chapter 2 Extreme Single Label Classification p.26

1 2 3 4 5 6 7

1098

0

Figure 2.3: Illustrating the use of class attributes reflecting the hierarchical
structure. Class attribute vectors have the same dimension as the number
of nodes in the hierarchy (root not counted). For label 3 the components
corresponding to nodes 8 and 3 are set to one since they are on the path
from the root to node 3 : Λ(3) = (0, 0, 1, 0, 0, 0, 0, 1, 0, 0).

Sequential Learning of Models

As seen earlier, Pachinko Machines are appealing because training is eas-
ily parallelizable since the local classifiers are totally independent. However,
not taking into consideration the semantic relashionships between classes the
classes decrease the capacity of a hierarchical classifier to reach state of the
art performances. On the other hand, jointly learned models have achieved
record breaking performances in many studies (Bengio et al., 2010 [2]; Cai
and Hofmann, 2004 [9]) but training them efficiently is a challenging task
moreover in Extreme Classification because of all the interdependencies be-
tween the parameters that make the parallelisation of the learning process
almost impossible. Sequential Learning is an intermediate framework of re-
search that leverage the available hierarchical information by training local
classifiers sequentially. This approach allows to parallelize the training and
make it more feasible.

Hierarchical Approaches

Chapter 3

Label Taxonomy based Neural
Network

3.1 Principle

Our goal is to build a method that allows, fast inference and high accuracy.
To do so we propose a method called Label Taxonomy based Neural Network.
This approach is a hierarchical approach based on an existing taxonomy of
labels. In our case we are given a data set of examples that belongs to
one of several possible categories, this data set also provides a hierarchy (or
taxonomy) that organizes the labels. The taxonomy presents a particularity,
labels are the leaves of the hierarchy. We can benefit from this particularity
to create a hierarchical classifier over all the possible labels by creating a
classifier at each interior node of the taxonomy that classify an example
into the right son’s branch. The classification over all the labels is then
naturally completed by following the sequence of answers given by the interior
node’s classifiers until we reach a leaf, the final prediction made is the label
corresponding to the leaf we reached.

Contrary to a regular hierarchical model in which the classifiers at each
interior node are trained over the input space that has a very large dimension
(up to one milion features), our method proposes to first map the input space
into low dimensional spaces and then train the different node’s classifiers over
these mapped spaces. The benefits of such a method are obvious, first using
a hierarchical method drastically decreases the inference’s complexity wrt
the number of categories since the number of classifiers we need to test to
make a prediction is upper bounded by the maximal depth of the taxonomy.
In comparison the One-vs-All classifier need to test as many classifiers as the

27

Chapter 3 Label Taxonomy based Neural Network p.28

number of categories to make a prediction. On the other hand mapping the
input space into low dimensional spaces avoids to train and test the interior
node’s classifier over the input space that has a very large dimension, it
follows a huge economy of computational ressources at training and inference.

Our approach proposes to successevely remap the input space from node
to node by following the hierarchy from top to bottom. Basically, the input
space of dimension d is first mapped into a space of dimension de with de <<
d, this mapping will be used by the root’s classifier at training and inference.
This first mapping is then remap into new spaces of dimension de or lower, at
each root’s son so their classifier can be trained on their own mapped space.
This new mappings are then remaped into new spaces of low dimension
following the hierarchy and so on.

For example, if N is a node in the hierarchy and X is an instance of the
input space that has been mapped into Xfather(N) at node father(N) then
here is the scheme of mapping at node N :

Xfather(N)

mapping
��

XN
//

mapping
qq
qq
q

xxqq
qq
q

��

mapping
PP

PP
P

''P
PP

PP

classification

Xson(N)1 · · · Xson(N)#sons(N)

This approach presents several assets. First, the input space is only
mapped once at the root, the next mappings at regular nodes are done from
a low dimensionsional space to a low dimensional space, so we need to deal
with a space of large dimension only once, it ensues a large saving of com-
putational ressources. Second, since we have a chain of successive mappings,
the highest nodes are concerned by their own classification problem but also
by all their descendants ones. So the highest nodes’ mappings will take out
all the information they need to answer their own classification problem but
also take out the information their descendants need. Third, by introduc-
ing non linearity properties in the model (we will see later how), the fact of
remapping gives additional liberties to the model, it results more flexibility
to fit the problem.

Principle

Chapter 3 Label Taxonomy based Neural Network p.29

3.2 Model

To formalize our approach, an interresting lead is to use Neural Networks,
indeed the successive mappings reminds the successive layers of a Neural
Network. Moreover a competitive advantage of using Neural Networks is to
introduce some non linearity in the model. By putting our mappings through
a sigmoid or an hyperbolic tangent function, we give more flexibility and a
better chance to the model to fit the problem.

In terms of Neural Network, our approach consists in successive hidden
layers of low dimension, one hidden layer at each interior node of the hier-
archy, it corresponds to the successive mapings. The leaves of the taxonomy
don’t need an hidden layer since there is no classification to complete at these
nodes. Each node’s hidden layer is fully connected to the hidden layer of the
node’s father, and the root’s hidden layer is fully connected to the input
space. The number of units in each hidden layer (very low in comparison
with the dimension of the input space) is arbitrarly fixed when creating the
architecture.

The architecture we just described is not complete and only corresponds
to the mapping part of the approach, each mapping is represented by an
hidden layer. To handle the classification, we add an output layer at each
interior node with as many units as the number of sons of the corresponding
node. This output layer is fully connected to the node’s hidden layer (see on
figure 3.1) and it will behave like a One-vs-All classifier that discriminates
between the node’s son, except that it will be trained over the space of the
corresponding hidden layer instead of the input space.

More precisely the output layers are made of several units, one for each
son of the corresponding node, these units correspond to the activity of each
son and take values between 0 and 1. Basically when we focus on an interior
node the different sons define non overlappings subsets of labels (the ones
descendind from a given son), the activities will measure the confidence the
node’s classifiers has to classify an instance into each one of this subset of
labels. When we put an instance from the input space through the neural
network, all the units in the output layers activate. Our goal is, for each
node, to maximize the activity of the correct son (the branch to follow to
reach the correct label) and minimize the activity of the others sons. At
inference, the final classification is performed by following the branchs with
the largest activities until we reach a leaf that is the label predicted, as we

Model

Chapter 3 Label Taxonomy based Neural Network p.30

Figure 3.1: Label Taxonomy based Neural Network

L2 L3 L4

L5 L7 L8

L6

L1

N1

N2 N3

N4 N5

Hidden layer :

Output layer :

Input space :

Hidden layer :

Interior Node :

Leaf or Label :

Mapping :

Classification :

Tree’s branch :

can see on figure 3.2.

3.3 Optimization

First the notations, if X is an instance in the input space :

• N = {n1, · · · , nN} correspond to the set of the N interior nodes (not
leaf) in the hierarchy. They corresponds to the nodes where a classifier
is needed. We also suppose that n1 refers to the root of the taxonomy.

• For n ∈ N , we denote f(n) the father of n.

Optimization

Chapter 3 Label Taxonomy based Neural Network p.31

Figure 3.2: Example of Inference. Black units correspond to the unit with
the largest value in the output layer. Here L4 is predicted

L2 L3 L4

L5 L7 L8

L6

L1

N1

N2 N3

N4 N5

• For n ∈ N , we denote s(n) the sons’ list of n. #s(n) refers to the
number of sons of node n and s(n)i refers ot the ith son of n (i ≤ #s(n)).

• Xn corresponds to the mapping (hidden layer) of X at node n, and we
consider that Xf(n1) = X the input instance.

• For all n and m such as n is father of m, we denote Wn,m the mapping
matrice from hidden layer n to m.

• At node n, we denote PX
n the output layer of dimension #s(n) that

corresponds to the activities of each branch wrt the instance X .

• Vn corresponds to the classification matrix at each node, connecting
the hidden layer to the output layer.

Here is the scheme at node n :

Optimization

Chapter 3 Label Taxonomy based Neural Network p.32

Xf(n)

Wf(n),n

��

Xn Vn
//

Wn,s(n)1

✇✇
✇✇

{{✇✇
✇✇

��

Wn,s(n)#s(n)

❏❏
❏❏

%%❏
❏❏

❏

PX
n

Xs(n)1 · · · Xs(n)#s(n)

And we have,

{

Xn = tanh(Wf(n),nXf(n))

PX
n = σ(VnXn)

(3.1)

where σ corresponds to a sigmoid function :

σ :

∣

∣

∣

∣

R → [0 , 1]
x 7−→ 1

1+e−x

and tanh is the usual hyperbolic tangent function. Note that we commited
a misuse of language in equation (3.1), it has to be understood as the function
applied to every coordinates of the vector.

The choice of using an hyperbolic tangent function and a sigmoid is to
add non linearity properties to the model and make it more flexible. More
precisely to keep mappings that take positive and negative values we have
chosen an hyperbolic tangent to map and a sigmoid to calculate the activity
units since we want the activities to be positive values.

We have several parameters (or weights) to optimize, at each interior node
we look for the best W and the best V . Given a training set S, we propose
to minimize the next problem :

LW.,.,V.
=

1

2

∑

(X,Y)∈S

∑

n∈N (Y)

λn‖P
X
n − n(Y)‖2F wrt W.,. and V.

where, for a label Y :

• N (Y) corresponds to the family of nodes in the taxonomy that have Y
in their descendants.

Optimization

Chapter 3 Label Taxonomy based Neural Network p.33

• for n ∈ N (Y), n(Y) is a vector made of 0 except a 1 at the position
corresponding to the branch of Y . n(Y) has dimension #s(n)

• λn are hyper-parameters that we fix before optimisation to give more
or less weight to some nodes in the loss calculation. For example, we
can give more importance to the loss due to the root by choosing λn1

large.

Easily speaking, for an example X that belongs to label Y , at each node
concerned by Y (node that has Y in his descendance), we try to maximize
the activity of the branch that we have to follow to reach Y and to minimize
the activity of the other branchs.

The optimisation is completed by stochastic gradient descent :

Algorithm 2: Stochastic gradient descent algorithm

Data: Training set S
Result: W.,. and V. that minimize LW.,.,V.

Randomly initiate W.,. and V.;
while Convergence criterion is not met do

Randomly pick an example (X, Y) ∈ S;

/* Calculate the gradient step with

LX,Y
W.,.,V.

=
∑

n∈N (Y)

λn‖PX
n − n(Y)‖2 */

stepW ←− ∂LX,Y
W.,.,V.

/∂W.,.;

stepV ←− ∂LX,Y
W.,.,V.

/∂V.;

/* Update W.,. and V. with learning rate η */

W.,. ←−W.,. − η.stepW ;
V. ←− V. − η.stepV ;

return W.,. and V.

3.4 Backpropagation algorithm

Introduction

The main point of the stochastic gradient algorithm is that we need to
calculate ∂LX,Y

W.,.,V.
/∂W which is the gradient of the loss function for a given

Backpropagation algorithm

Chapter 3 Label Taxonomy based Neural Network p.34

example. Moreover, this calculation has to be done at each step of the
descent, and the descent can have up to millions of steps (depending on the
size of the training set). A time effective method widely used when dealing
with neural networks is the backpropagation algorithm. It consists in finding
a recursive formula that links the gradient’s coordinates by taking advantage
of the structure of successive layers. Then to use this formula to successively
calculate all the coordinates of the gradient.

A particularity of our model is that contrary to regular neural networks in
which there is only one output layer at the last layer, in our model we have
outputs at each layers of the neural network so we can not use the regular
backpropagation algorithm. In our case, a first solution to calculate the
gradient would be for each output layer to consider the neural network that
has the same architecture as our basic network but with all the output layers
removed except the selected one. Then compute the gradient for each one of
these networks, since they have only one output layer we can use a regular
backpropagation algorithm to make the calculation. Finally by summing all
these intermediate gradients we obtain the global gradient.

The main issue with this näıve solution is that we make extra matrices
multiplications. For example, to calculate each one of the intermediate gra-
dients we need one multiplication by the matrix that makes the mapping
from the input space to the first hidden layer, this matrix is huge (the input
space as a very large dimension) and each multiplication is time consuming.
In this section, we propose to find a backpropagation algorithm that suits
our problem and avoid to make extra matrices multiplications.

Notations

To make the next proof clearer we will simplify the notations. For (X, Y) ∈
S, we denote N (Y) = {1, · · · , nY } the ordered sequence of nodes to cross
in the hierarchy to reach the label Y , 1 corresponding to the root of the
taxonomy. We will also denote Wk = Wk−1,k, ∀k ∈ N (Y).

The corresponding mapping sequence can be then written :

{

X0 = X

Xn = tanh(WnXn−1), ∀n ∈ {1, · · · , nY }

Backpropagation algorithm

Chapter 3 Label Taxonomy based Neural Network p.35

and,

LX,Y
W.,.,V.

=
1

2

nY
∑

n=1

λn‖σ(VnXn)− vYn ‖
2
F

Calculation of ∂LX,Y

W
.,.
,V

.

/∂Wn

In the following, for any function f considered df |x relates to the matrix
of the differential of f evaluated in x.

Step 1 With W = (W1, · · · ,WnY
) and H = (H1, · · · , HnY

), the Taylor
formula applied to Xn at the first order is,

Xn(W + H) = Xn(W) + dtanh|Xn

[

HnXn−1(W) + Wn dXn−1|W H
]

+ o(H)

And we obtain the next recursive formula on dXn|W ,

dXn|W H = dtanh|Xn
HnXn−1 + dtanh|Xn

Wn dXn−1|W H , ∀H

Using the recursivity, it is then easy to show that,

dXn|W H =
n
∑

k=1

Bn
kHkXk−1 (3.2)

where,

{

Bn
n = dtanh|Xn

, ∀n ∈ {1, · · · , nY }

Bn
k = Bn

nWnB
n−1
n−1 · · ·B

k+1
k+1WkB

k
k , ∀k < n

Step 2 If ln =
λn

2
‖σ(VnXn)− vYn ‖

2
F , it follows from step 1 that,

dln|W H = λn(σ(VnXn)− vYn)T dσ|VnXn
Vn dXn|W H

=
n
∑

k=1

AnB
n
kHkXk−1 by (3.2)

= Tr

(

n
∑

k=1

Xk−1AnB
n
kHk

)

(trace applied to a scalar and Tr(AB) = Tr(BA))

(3.3)

Backpropagation algorithm

Chapter 3 Label Taxonomy based Neural Network p.36

with An = λn(σ(VnXn) − vYn)T dσ|VnXn
Vn where .T is the transposition

operator for matrices.

We can finally conclude,

dLX,Y
W.,.,V.

∣

∣

∣

W
H =

nY
∑

n=1

dln|W H

= Tr

(

nY
∑

n=1

n
∑

k=1

Xk−1AnB
n
kHk

)

= Tr

(

nY
∑

k=1

Xk−1TkHk

)

(3.4)

where we denote Tk =
nY
∑

n=k

AnB
n
k

and by definiton of the gradient,

∂LX,Y
W.,.,V.

/∂Wk(W) = (Xk−1Tk)T , ∀k ∈ {1, · · · , nY }

Step 3 Our point here is that from now on the calculation of ∂LX,Y
W.,.,V.

/∂Wk

relies on the calculation of Tk and as we will see, the calculation of Tk can
be done recursively.

If k < nY , we can write :

Tk =

nY
∑

n=k

AnB
n
k = AkB

k
k +

nY
∑

n=k+1

AnB
n
k

and, since we have Bn
k = Bn

k+1WkB
k
k , it comes,

Tk = AkB
k
k +

nY
∑

n=k+1

AnB
n
k+1WkB

k
k = (Ak + (

nY
∑

n=k+1

AnB
n
k+1)Wk)Bk

k

We can finally conclude on our recursive formula,

{

TnY
= AnY

BnY
nY

Tk = (Ak + Tk+1Wk)Bk
k , ∀k < nY

Backpropagation algorithm

Chapter 3 Label Taxonomy based Neural Network p.37

Conclusion To summarize,

∂LX,Y
W.,.,V.

/∂Wk = (Xk−1Tk)
T , ∀k ∈ {1, · · · , nY }

with,

{

TnY
= AnY

BnY
nY

Tk = (Ak + Tk+1Wk)Bk
k , ∀k < nY

where, ∀n ∈ {1, · · · , nY },

{

Bn
n = dtanh|Xn

An = λn(σ(VnXn)− vYn)T dσ|VnXn
Vn

It is called a backpropagation algorithm because as we can see the recursive
formula is actually a backward recursive formula. If we think in the Neural
Network based on the taxonomy, it means that we calculate the coordinates
of the gradient node by node starting from the node that is the closest from
the leaves and going backward finishing by the root.

To conclude on our basic goal, we can see that by using this algorithm, we
only multiply once by each matrix Wk. The same occurs with all the Ak and
Bk

k that we need to calculate many times with the naive method presented in
introduction. Reducing the number of matricial operations drasticly speed
up the calculation of the gradient making each step of the stochastic descent
up to ten times faster than the naive method.

Backpropagation algorithm

Chapter 3 Label Taxonomy based Neural Network p.38

Algorithm 3: Backpropagation algorithm

Result: Calculation of T = [T1, · · · , TnY
]

/* Initialization */

A←− λnY
(σ(VnY

XnY
)− vYnY

)T dσ|VnY
XnY

VnY
;

B ←− dtanh|XnY
;

T [nY]←− AB;

/* Backpropagation */

for k from (nY − 1) to 1 do
/* Compute Ak and Bk

k */

A←− λn(σ(VkXk)− vYk)T dσ|VkXk
Vk;

B ←− dtanh|Xk
;

/* Compute T [k] thanks to T [k + 1] */

T [k]←− (A + T [k + 1]Wk)B;

return T

Backpropagation algorithm

Chapter 4

Experiments and results

We performed experiments on a large scale multi-class single label datasets.
The proposed method label taxonomy base Neural Netwok is compared to
standard hierarchical classification, and to two machine learning reduction
methods : ECOC and One-vs-All.

4.1 Dataset

We used dataset with 150 classes. The dataset was created by randomly
selecting the corresponding classes from a large scale dataset released for
the first PASCAL large scale hierarchical text classificaiton challenge. This
dataset was extracted from the open Mozilla directory DMOZ (www.dmoz.org).
The classes are organized in a tree hierarchy, classes being at the leaves of
the hierarchy and internal nodes being not instantiated classes. Hierarchy is
of depth 5.

The documents were provided as word counts over a vocubalary of size
347,255. Since the features space dimensionality is the number of words in the
vocabulary, it was impossible to work on the full feature space. For a matter
of computational resources we had to remove words from the vocabulary.
The option retained has been to remove every words that appears less than
a certain number of times over the whole documents corpus. This option
is criticable since non common words are expected to be very discriminative
between documents. We tested the solution using OVA and ECOC for various
cutting threshold to evaluate the consequences involded by a reduction of
vocabulary. We finnaly decided to keep the words that appear a least ten
times over the whole documents corpus. Decreasing the dimention of the
features space from 347,255 to roughly 20,000. Statistics of the final dataset

39

Chapter 4 Experiments and results p.40

are datailed in table 4.1

Set Space dimension #categories #examples
Training

16479 150
14302

Test 3514

Table 4.1: Description of training and test sets

4.2 Weights initialization

4.2.1 Reminder : the label taxonomy based Neural

Network’s architecture

They are 150 classes that are the leaves of a hierarchy of depth 5. A first
weights matrix map the input space to the first hidden layer, it corresponds
to the root node’s mapping. This matrix is denoted W0,1 has dimension
d× dhidden0 , where d is the dimension of the input space (in our case 16470)
and dhidden0 is the dimension of the first hidden layer. Next step, for each
node n of the hierarchy at depth 1, a matrix W1,n maps the first hidden layer
to a new hidden layer belonging to the second level of hidden layers. They are
as many hidden layers in the second level as the number of nodes of depth 1,
the corresponding mapping matrices have dimension dhidden0×dhidden1 . Next
step, matrices of dimension dhidden1 × dhidden2 maps the hidden layers of the
second level to the hidden layers of the third level and so on following the
hierarchy.

This way there is an hidden layer at each interior node of the hierarchy.
Finally each one of these hidden layers are mapped to an output layer with
as many units as the number of sons of the corresponding node. For a node
n, we denote Vn the matrice that projects the hidden layer of node n to
its output layer, Vn has dimension dhiddendepth(n)

×#s(n) where #s(n) is the
number of sons of note n.

4.2.2 About the weights initialization

The coordinates of the matrice W.,. and V. are the pool of weights we
need to optimize in order to minimize the loss function. Before starting the
gradient descent algorithm, the matrices W.,. and V. are randomly initialized.

Weights initialization

Chapter 4 Experiments and results p.41

• Matrices W.,.’s coordinates are randomly picked in [−0.25; 0.25] follow-
ing a uniform probability distribution.

• Matrices V.’s coordinates are initialized either at
1

16
or −

1

16
.

These choices of weight initialization are experimental. They have been
made because they led to the best convergence behavior during the first steps
of the gradient descent.

4.3 Experimental setups

4.3.1 The loss weighting

We recall the form of the loss function we aim to minimize :

LX,Y
W.,.,V.

=
1

2

nY
∑

n=1

λn‖σ(VnXn)− vYn ‖
2
F

The parameters λ. can be set in order to attribute more or less importance
to the error commited by some layers. For example, we could attribute more
weight to the nodes in the uppest layers (closest to the root) because we
want them to be as accurate as possible. Thus using a hierarchical inference
implies that when one of the uppest classifiers misclassify an example, it
is then impossible to recover the example in its correct category. We tried
various sets of lambdas :

λn = 1, ∀n

λn =
1

(1 + depth(n))k
, k ∈ {1, 2}

4.3.2 The learning rate η

They are various hyper parameters that can be set in order to increase the
performance of the optimization algorithm.

The principle of the gradient descent algorithm is a step by step procedure
consisting in slightly modifying the sets of weight following the gradient of
the loss function, in order to make the set of weights converge to a minimizer
of the loss function. By following a rule like :

Experimental setups

Chapter 4 Experiments and results p.42

Wnew ←Wold − η.
∂L

∂W

where η is called the learning rate of the procedure.

η influences the size of the steps of the procedure. Choosing a large η will
accelerate the learning procedures since the step will be larger. On the other
hand choosing η too large may lead to bad convergence behavior because
when W gets close to the minimizer of the loss function, the last steps can
be too large and instead of converging to the minimizer the algorithm will
step over this point. Usually η is chosen betwenn 0.001 and 0.01. We tested
η = 0.01 and η = 0.1

4.3.3 The dimension of the hidden layers

The dimension of the hidden layers is the hyperparameter that will most
influence the memory and time complexity of our model. Since the main
goal of our approach is to decrease the inference complexity to 0(L) wrt the
number of labels. We arbitrary decided to choose de ≃ 10 × log(L) wich
is the recommended dimension for random ECOC. In our case we have 150
labels so we set all the hidden layers’ dimension to 50.

Unfortunately, we did not have enough time to try all the possibilities
of hidden layer’s dimensions. A very promising idea was to decrease the
dimension of the hidden layers as the layers were deep in the hierarchy. The
main idea behind this choice was that the deeper a node is in the hierarchy
the less information the node and its descendance need to perform their
classification task because they are less categories in the subtree. It is very
likely that decreasing the number of units in the deepest layers would not
decrease the final performance of the model but it would have led to a huge
drop of complexity.

4.4 Convergence issues encountered

When we first tested the optimization we met with a critical issue, the
uppest layer corresponding to the root and the nodes of depth 1 and 2 showed
great performances but the hidden layers corresponding to the deepest node
(at depth 3 and 4) were unable to learn correctly, leading to global very poor
performances.

Convergence issues encountered

Chapter 4 Experiments and results p.43

When we tried to explain why we observed this effect, we focused on the
fact that during the optimization procedure the weights in the uppest layers
are updated way more often than the weights in the deepest levels. For
example et us look at a node n at depth 4 with two sons corresponding to
label l1 and l2. The weights corresponding to the mapping at hidden layer
n are updated only when an example from category l1 or l2 is picked to
calculate the gradient step. On the other hand the weights mapping at the
root are updated at every steps. Since they are 150 categories, statistically it
means that weigths at root node are updated almost 75 times when weights
of node n are updated once (if we consider that the number of examples per
category is balanced).

This was an hypothetic example (very likely to happend) but it illustrates
the fact that the deepest weights may not be able to follow the updating
intensity of the uppest weights during the optimization. To fix this issue we
decided to use a technic similar to the dropout used in deep learning to avoid
overfitting by randomly turning off some neurons at each step of the gradient
descent. In our case we decided to sequentially update the weights starting
from the deepest weights while keeping the uppest weights untouched.

As we have seen earlier at each step of the descent, in order to calculate
the gradient, we randomly pick an example from the training set that has not
already been picked until all the possibles examples have been used. Going
through all the training set is called an epoch. Usually models need several
epochs to make the weights converge to the minimizer of the loss function.

Epoch 1 2 3 4 5 6 7 8 9 10 11
Depth 0 × × × × × × × × × × ×
Depth 1 ×
Depth 2 × × ×
Depth 3 × × × × × × ×
Depth 4 × × × × × × × × × × ×

Table 4.2: Sequence of weights to update at each epoch (when a cross mark
the weights at the corresponding are updated when blank the weights keep
untouched during the full epoch). This sequence is followed twice (so during
22 epochs) then we repeat epochs on full network until we consider that the
model has converged

Convergence issues encountered

Chapter 4 Experiments and results p.44

In order to fix the issue of convergence of the deepest layers, at each epoch
we decided to update weights only at certains depth following the sequence
described in table 4.2

The choice of the sequence has been made to ensure that the deepest
weights are well optimized before updating upper weights. The weights at
depth 0 corresponding to the first mapping matrix (from the input space) are
always updated because they are the one selecting information in the input
space.

4.5 Results

Computation has been done using Python, I used the library numpy to
store the weights matrices, calculate the gradient steps and perform all the
matrices calculation. I also used the library SciPy to store training and
test set as sparse matrices in order to prevent to overload the RAM during
experiments and to accelerate the optimization algorithm.

4.5.1 Performances and loss evolution during optimiza-
tion

0 10 20 30 40 50 60 70
0.0

0.2

0.4

0.6

0.8

1.0

(a) Performance evolution

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

(b) Loss evolution

Figure 4.1: Evolution of performances and Loss function during optimization
(blue curves correspond to train set and green curves to test set. Hyper-
paremeters chosen : η = 0.1 and λ : −1

Results

Chapter 4 Experiments and results p.45

4.5.2 Final performances

In table 4.3, we gather the performances obtained with each combination
of hyper parameters. We also refer the performances obtained by the compar-
ison baseline on the same dataset : standard hierarchical approach, ECOC
and One-vs-All.

About the comparison baseline

One-vs-All Regular OVA classifier as described in chapter 2. This model
has an inference time complexity linear wrt L the number of labels, it makes
it a very bad candidate for Extreme Classification but is known to lead to
high performances and is useful to measure the highest performances that
can be reached.

Random ECOC We generated 500 random ECOC matrices, optimized
500 ECOC based on each one of this coding matrices and finally kept the
performances of the one that led to the best results. With an inference
time complexity in O(L) wrt the number of labels, random ECOC is a good
candidate for Extreme Classification but is known to be disapointing when
the number of labels gets to large.

Standard hierarchical approach We trained a One-vs-All classifier at
each interior node of the hierarchy that discriminates between the node’s
sons. As we have seen in chapter 2 hierarchical approaches are very good
solutions to decrease inference complexity by using a divide and conquer
trick.

Table of performances

Model
Label Taxonomy based NN

Hier. ECOC OVAη = 0.1 η = 0.01
λ : 0 λ : −1 λ : −2 λ : 0) λ : −1 λ : −2

Training 99.04 99.13 92.86 87.69 88.48 80.65 99.32 99.45 99.56
Test 78.51 79.65 73.36 78.40 69.46 64.23 80.04 80.92 81.57

Table 4.3: Table of performances in percentage of example correctly catego-
rized by the model at the end of the optimization

Results

Chapter 4 Experiments and results p.46

The performance with η = 0.01 are lower beacause the optimization is
actually not finished after 30 epochs because the learning rate is too small.
The evolution of the performances with η = 0.1 and λ(−2) during optimiza-
tion showed a strange patern : they increased until reaching a maximum and
then drop down, we could not find an explanation to this phenomenom.

Finally we notice that as we expected we found the best performances of
our model for a set of λs decreasing wrt the depth of the layer, attributing
more importance to the error commited by the uppest layers leads to better
performances.

4.6 Conclusion

As we can see in table 4.3 the model that gives the best performances is
the OVA but it is also the most costly in computional ressources with a time
complexity linear wrt the number of labels and make it a very bad candidate
for extreme classification. Random ECOC gives performances slightly better
than the hierarchical approach but it is very likely that if we increase the
number of labels the hierarchical will scale way better than ECOC.

In the end Label Taxonomy based Neural Network gives slightly lower
performances than the classical hierarchical approach. This result is very
promisive since our model uses 10 times less weights than the classical hier-
archical approach and could use up to 100 times less weights if we decrease
the number of units in the hidden layers as they are deep in the network.

Personnaly this work of research at UPMC (University Pierre et Marie
Curie in Paris) as a research intern in the Machine Learning and Artificial
Intelligence team has been a great experience and an excellent dive into the
machine learning. I learned a lot about various classification models, learned
how to optimize complex statistical models.

Conclusion

Bibliography

[1] Erin L Allwein, Robert E Schapire, and Yoram Singer. Reducing multi-
class to binary: A unifying approach for margin classifiers. The Journal
of Machine Learning Research, 1:113–141, 2001.

[2] Samy Bengio, Jason Weston, and David Grangier. Label embedding
trees for large multi-class tasks. In Advances in Neural Information
Processing Systems, pages 163–171, 2010.

[3] Yoshua Bengio. Learning deep architectures for ai. Foundations and
trends in Machine Learning, 2(1):1–127, 2009.

[4] Paul N Bennett and Nam Nguyen. Refined experts: improving classi-
fication in large taxonomies. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information
retrieval, pages 11–18. ACM, 2009.

[5] Jon Louis Bentley. Multidimensional binary search trees used for asso-
ciative searching. Communications of the ACM, 18(9):509–517, 1975.

[6] Alina Beygelzimer, John Langford, and Pradeep Ravikumar. Error-
correcting tournaments. In Algorithmic Learning Theory, pages 247–262.
Springer, 2009.

[7] Irving Biederman. Recognition-by-components: a theory of human im-
age understanding. Psychological review, 94(2):115, 1987.

[8] Christopher M Bishop et al. Pattern recognition and machine learning,
volume 4. springer New York, 2006.

[9] Lijuan Cai and Thomas Hofmann. Hierarchical document categorization
with support vector machines. In Proceedings of the thirteenth ACM
international conference on Information and knowledge management,
pages 78–87. ACM, 2004.

47

Chapter 4 BIBLIOGRAPHY p.48

[10] Yangchi Chen, Melba M Crawford, and Joydeep Ghosh. Integrat-
ing support vector machines in a hierarchical output space decompo-
sition framework. In Geoscience and Remote Sensing Symposium, 2004.
IGARSS’04. Proceedings. 2004 IEEE International, volume 2, pages
949–952. IEEE, 2004.

[11] Jia Deng, Sanjeev Satheesh, Alexander C Berg, and Fei Li. Fast and
balanced: Efficient label tree learning for large scale object recognition.
In Advances in Neural Information Processing Systems, pages 567–575,
2011.

[12] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning
problems via error-correcting output codes. arXiv preprint cs/9501101,
1995.

[13] Shantanu Godbole, Sunita Sarawagi, and Soumen Chakrabarti. Scal-
ing multi-class support vector machines using inter-class confusion. In
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 513–518. ACM, 2002.

[14] Gregory Griffin and Pietro Perona. Learning and using taxonomies for
fast visual categorization. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[15] Nathalie Japkowicz and Shaju Stephen. The class imbalance problem:
A systematic study. Intelligent data analysis, 6(5):429–449, 2002.

[16] Daphne Koller and Mehran Sahami. Hierarchically classifying docu-
ments using very few words. 1997.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[18] Song Liu, Haoran Yi, Liang-Tien Chia, and Deepu Rajan. Adaptive
hierarchical multi-class svm classifier for texture-based image classifica-
tion. In Multimedia and Expo, 2005. ICME 2005. IEEE International
Conference on, pages 4–pp. IEEE, 2005.

[19] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and
Wei-Ying Ma. Support vector machines classification with a very large-
scale taxonomy. ACM SIGKDD Explorations Newsletter, 7(1):36–43,
2005.

BIBLIOGRAPHY

Chapter 4 BIBLIOGRAPHY p.49

[20] Marcin Marszalek and Cordelia Schmid. Semantic hierarchies for visual
object recognition. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1–7. IEEE, 2007.

[21] Marcin Marsza lek and Cordelia Schmid. Constructing category hier-
archies for visual recognition. In Computer Vision–ECCV 2008, pages
479–491. Springer, 2008.

[22] Andrew Y Ng, Michael I Jordan, Yair Weiss, et al. On spectral clus-
tering: Analysis and an algorithm. Advances in neural information
processing systems, 2:849–856, 2002.

[23] Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classifica-
tion. The Journal of Machine Learning Research, 5:101–141, 2004.

[24] Carlos N Silla Jr and Alex A Freitas. A survey of hierarchical classifica-
tion across different application domains. Data Mining and Knowledge
Discovery, 22(1-2):31–72, 2011.

[25] Lorenzo Torresani and Kuang-chih Lee. Large margin component anal-
ysis. In Advances in neural information processing systems, pages 1385–
1392, 2006.

[26] Konstantin Tretyakov. Machine learning techniques in spam filtering. In
Data Mining Problem-oriented Seminar, volume 3, pages 60–79, 2004.

[27] Vladimir Vapnik. The nature of statistical learning theory. Springer
Science & Business Media, 2000.

[28] Volkan Vural and Jennifer G Dy. A hierarchical method for multi-class
support vector machines. In Proceedings of the twenty-first international
conference on Machine learning, page 105. ACM, 2004.

[29] Andreas S Weigend, Erik D Wiener, and Jan O Pedersen. Exploiting
hierarchy in text categorization. Information Retrieval, 1(3):193–216,
1999.

[30] Kilian Q Weinberger and Olivier Chapelle. Large margin taxonomy
embedding for document categorization. In Advances in Neural Infor-
mation Processing Systems, pages 1737–1744, 2009.

[31] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for
large margin nearest neighbor classification. The Journal of Machine
Learning Research, 10:207–244, 2009.

BIBLIOGRAPHY

Chapter 4 BIBLIOGRAPHY p.50

[32] Jason Weston and Chris Watkins. Multi-class support vector machines.
Technical report, Citeseer, 1998.

[33] Jason Weston, Chris Watkins, et al. Support vector machines for multi-
class pattern recognition. In ESANN, volume 99, pages 219–224, 1999.

[34] Yiming Yang, Jian Zhang, and Bryan Kisiel. A scalability analysis of
classifiers in text categorization. In Proceedings of the 26th annual in-
ternational ACM SIGIR conference on Research and development in
informaion retrieval, pages 96–103. ACM, 2003.

[35] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering.
In Advances in neural information processing systems, pages 1601–1608,
2004.

[36] Ning Zhang, Ling-Yu Duan, Qingming Huang, Lingfang Li, Wen Gao,
and Ling Guan. Automatic video genre categorization and event de-
tection techniques on large-scale sports data. In Proceedings of the
2010 Conference of the Center for Advanced Studies on Collaborative
Research, pages 283–297. IBM Corp., 2010.

[37] Liu Zhigang, Shi Wenzhong, Qin Qianqing, Li Xiaowen, and Xie
Donghui. Hierarchical support vector machines. In Geoscience and Re-
mote Sensing Symposium, 2005. IGARSS’05. Proceedings. 2005 IEEE
International, volume 1, pages 4–pp. IEEE, 2005.

BIBLIOGRAPHY

