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SUMMARY 

The design and management of infrastructure system under long-term 

uncertainty is a challenge to system planners and/or managers. Such 

infrastructures are critical to the well-functioning of modern cities and society, 

providing for example emergency and medical services, power, transportation, 

etc. Yet, they require billion if not hundreds of million dollar investments, and 

architecture/design decisions will last for several decades of planned 

operations. Typical approaches to system architecture and design do not 

account well for long term uncertainty, leaving the system to perform 

potentially in a sub-optimal manner some years later after launch. To improve 

the expected long-term lifecycle performance, a novel approach incorporating 

the concept of flexibility is proposed in this study. Similar to the concept of a 

real option, flexibility in engineering design provides “the right, but not the 

obligation, to change a system easily to adapt to the realization of uncertainty 

drivers.” The proposed approach explored in this study is a multi-stage 

stochastic programming model based on a Sample Average Approximation 

scheme. The flexibility strategies are modeled using the novel concept of 

managerial decision rules and captured by non-anticipative constraints in the 

model. Such approach differs from standard methods in real options analysis 

used to analyze flexibility in irreversible investment projects and based on 
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dynamic programming techniques. It provides more freedom to emulate the 

actual decision making process to exercise flexibility at optimal times, 

parameterizing the design and decision making process, and making it suitable 

for stochastic programming. The proposed approach to analyze flexibility in 

infrastructure systems is explored through two engineering applications. The 

first application is about the design and management of Emergency Medical 

Service systems. The problem consists of deploying emergency resources over 

time and space during the system’s life cycle considering flexibility, which is 

an extended version of existing capacity and resource allocation problems. The 

second application is about nuclear power plants. It aims to study deployment 

of nuclear plants capacity in phases to satisfy electricity demand and to deal 

with uncertainty related to the social acceptance of the technology. To make 

the approach applicable and validate the solutions found using the default 

Branch & Bound algorithm in the optimization software, a hybrid algorithm is 

introduced for solving the stochastic programming problem. The hybrid 

algorithm finds the same form of solutions as the Branch and Bound algorithm; 

similar expected lifecycle cost, and outperforms other alternatives in terms of 

the quality of solution and the time to best solution.  
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Chapter 1 INTRODUCTION 

“Human nature is knowledge.” – Aristotle (c. 384 – 322 BC) 

 

“The beginning is the most important part of the work.” – Plato (c. 428 – 348 

BC) 

 

This thesis is concerned with the design and management of flexible 

infrastructure systems in urban contexts under uncertainty. The thesis presents 

a novel analytical methodology to design flexible infrastructure systems in 

uncertain environments and to evaluate design alternatives objectively and 

quantitatively based on the anticipated long term life cycle performance. The 

proposed methodology aims to complement existing methods for design and 

large-scale system project evaluation by analytically measuring the anticipated 

long term life cycle performance of the system in consideration of 

strategic-level flexibility. The strategic-level flexibility strategies are exercised 

by managerial decision rules and captured by the non-anticipative constraints 

in the mathematical models, which contrasts to standard Real Option Analysis 

(ROA) methods based on dynamic programming (DP), such as the 

Black-Scholes model (Black & Scholes, 1973), and binominal lattice-based 

analysis. Managerial decision rules are akin to “IF-THEN-ELSE” statements 

similar to triggering mechanisms that provide guidance on when and how it is 
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best to exercise flexibility strategies based on the realization of uncertainty 

sources. 

The idea of flexibility, also known as real options, is the right – but not the 

obligation – to undertake initiatives for mitigating unexpected risks or for 

seizing new opportunities to improve life cycle performance. For example, a 

parking garage sited near the Blue Water Shopping Mall in the United 

Kingdom was studied by considering this concept (de Neufville et al., 2006). 

Typical design approaches favor deploying capacity all at once at the 

beginning of the life cycle. In the garage example, a typical approach would 

have been to design the garage to satisfy demand up to a certain (optimal) 

capacity. Such design would either lose demand and opportunity for profit 

when demand was higher than installed capacity, or waste money on high 

construction costs and unused capacity when the demand was lower than 

expected. In contrast, a flexible parking garage would deploy smaller capacity 

initially, thus reducing initial capital costs, but build in flexibility in the form 

of stronger pillars and infrastructure, for a potential vertical capacity 

expansion, only if and when needed. If the demand was not satisfied by current 

capacity for two consecutive years, managers would expand capacity 

vertically by adding one more floor. If the demand was flat or even lower 

down, then this capacity expansion may not be needed. This flexibility 

strategy on the one hand would help save money by deploying less capacity 

initially (i.e., mitigating downside risks), and on the other hand provide 
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contingencies to capture more demand if needed and generate more profits 

(i.e., capitalizing on upside opportunities). Other real world examples of 

flexibility in engineering systems design include the Health Care Services 

Corporation  building in Chicago, Tufts Dental School in downtown Boston 

(Guma et al., 2009), and 26 de Abril Bridge in Lisbon.  These examples 

mainly relate to the design of old-fashioned, capital-intensive infrastructure, 

which are typically long-lived and operate in significantly uncertain 

environments. The anticipated long term life cycle performance is an 

observational performance indicator that is expected under particular 

conditions over the system life cycle. This performance can be measured 

either by financial metrics, such as Net Present Value (NPV) and Levelized 

Cost of Electricity (LCOE), or by non-financial metrics, like the service level 

in supply chain management or incident coverage rate (or fleet size) in an 

Emergency Medical Service (EMS) system. 

The design and management of infrastructure systems is challenged by the 

fast growth of urban population. Indeed system needs, demands, and 

regulations will inevitably change over a long system life cycle (Eckert et al., 

2009). The anticipated long term life cycle performance of a system will be 

influenced by such changes and may even fail to meet the target. In planning 

and architecture of this type of systems – such as emergency services, power 

plants, electricity distribution grids, and water supply networks – it is 

important to consider the ability to adapt and upgrade the infrastructure system 
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to efficiently support essential public services and urban development under 

uncertainty, so as to ensure continued quality services. Plainly optimizing the 

planning and operations in a rigid manner may leave aside alternative 

solutions that could extract additional value from uncertainty, position better 

the system to mitigate risks and capitalize on upside opportunities. Another 

approach for dealing with uncertainty is robust design. The robust design 

allows a system to perform well in a range of possible scenarios without the 

need to change the configuration. The robust system is not changeable based 

on the realization of uncertainty sources, and thus may not be able to take 

advantage of upside opportunities as well as reducing downside risks. The 

analysis of flexibility also poses a challenge to existing engineering systems 

design and project evaluation approaches. The form of the solutions from 

typical real options analysis used to quantify the value of flexibility based on 

dynamic programming and ordinary differential equations (Dixit & Pindyck, 

1994; Trigeorgis, 1996) may be difficult to understand and implement in 

operations when managers lack training in economics and/or the advanced 

backward induction processes required as part of these methods. This is 

because decision-makers need to position themselves in the decision tree, 

project the future uncertainty drivers, and roll back to the present time to 

determine the best course of action. This requires advanced mathematical 

training and a deep understanding of dynamic programming techniques not 

only to find the actual solution, but to use it in operations. The performance of 
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a flexible system may be worse than that of an inflexible system if the 

flexibility is incorrectly implemented. Such issues will affect the appreciation 

of flexibility in engineering systems design. 

This thesis addresses the challenges of the design and management of 

infrastructure systems and the analysis of flexibility by explicitly considering 

uncertainty, strategic-level flexibility, and managerial decision rules. The 

objective is to help infrastructure systems obtain a better life cycle 

performance under uncertainty by indicating stochastically optimal flexible 

design alternatives, while providing solutions that are easy to in practice. To 

do so, a novel analytical methodology is proposed to rigorously design and 

evaluate flexible infrastructure systems. Section 1.1 specifically explains the 

motivations underlying this work. The intended audience and limits of this 

thesis are described in Section 1.2. Section 1.3 provides an overall summary of 

the structure of this thesis.  

1.1 Motivations 

1.1.1 Current Considerations in Design and Management of 

Infrastructure Systems 

The design and management of infrastructure systems that mainly focus on 

distributing resources to particular customers in order to satisfy specific 

requirements (e.g., service level, demand) will be the major concerns of this 

thesis. Two examples of infrastructure systems (an EMS system and a nuclear 
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power plants (NPP) system) will be discussed in the case studies of the thesis. 

The EMS system is dedicated to providing out-of-hospital medical care to 

patients and transporting them to the hospital if needed. The nuclear power 

system, which consists of multiple nuclear power plants, focuses on generating 

electricity and transmitting it to consumers through the power grid to fulfill a 

contract. These are conceptually good examples of infrastructure system as 

both EMS systems and NPP systems are critical to urban society and provide 

specialized, necessary services. Out-of-hospital treatment is absolutely needed 

for saving people’s lives, while electricity is a daily necessity in modern 

society. How to deploy and maintain the capacity of those systems is a major 

concern for decision makers, especially considering a long term horizon, 

which is inevitably subject to demographic, market conditions, regulatory, and 

technological changes. More importantly, these requirements are highly 

uncertain and may evolve over time, which makes the deployment even more 

difficult. Design for flexibility – especially deploying the capacity of those 

infrastructures over time and space – gives us an opportunity to change the 

system to adapt to the future scenarios and thus improve the system’s life 

cycle performance. 

Approaches for the design and management of infrastructure systems are 

similar to those for typical engineering systems. Thus, the consideration of 

uncertainty in typical engineering systems design should be included in the 

design of infrastructure systems. Uncertainty is defined as anything (known or 
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unknown) affecting the performance of an engineering system (Cardin, 2011). 

The importance of uncertainty in engineering systems is well demonstrated by 

the case of the Iridium cell-phone system. The Iridium satellite constellation 

was launched by Motorola® in 1998 to provide cell-phone communication 

over Earth’s surface and consisted of 66 satellites in orbit plus spare satellites 

in case of failure (Fossa et al., 1998). The demand forecast was over optimistic 

and the company then decided to launch all satellites once instead of 

deploying a part of the capacity. Soon the development of land based cellular 

network occupied the market. The Iridium system thus lost a lot of demand 

and eventually failed. The system cost $4 billion to create but sold for only 

about $20 million, making the company bankrupt (Hesseldahl, 2001). 

Overestimating the demand for Iridium technology, and underestimating the 

level of competition, was the main cause of this failure (de Weck et al., 2004). 

This case clearly illustrates how uncertainty can affect the performance of 

engineering systems. 

In the design and management of infrastructure systems, it is often the 

case that considerations of uncertainty are based on the short term. Moreover, 

such considerations are simplified by weighting one or several future scenarios. 

These current approaches make sense, but are incomplete in terms of 

reflecting the future. The life cycle or lifetime of an infrastructure system is 

relatively long (e.g., 10+ years), and the growth of the urban population during 

the life cycle has direct and significant impacts on the demand of the system. 
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Considering short-term uncertainty in the design procedure is of little help for 

strategic-level decision making and management. The system may be 

successful at the beginning of the life cycle, but become sub-optimal a few 

periods later. This ultimately affects the overall life cycle performance because 

the design does not fully and explicitly account for the future.  

Due to bias in the uncertainty, designers and managers prefer robust 

systems that can resist uncertainty and maintain a certain level of performance 

over the life cycle. Uncertainty, however, does not only bring risks to 

engineering systems, but also creates opportunities. The upside of demand 

uncertainty could bring additional profit to a system designed for an average 

demand scenario, but only if the system has the ability to adapt to the change. 

Robust systems are incapable of taking advantage of upside opportunities, 

even though they are successful in dealing with downside risks. On the other 

hand, flexibility in engineering systems design provides “the ability but not the 

obligation, to easily change the system in face of uncertainty” (Trigeorgis, 

1996). Design for flexibility enables systems to pro-actively deal with 

uncertainty and change themselves accordingly over a range of uncertainty 

scenarios in order to improve the expected system life cycle performance. 

Such applications demonstrate the positive impact of flexibility in engineering 

systems design, although design for flexibility has not spread widely yet.     
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1.1.2 Current Real Option Analysis Methods 

The other motivation of this thesis is to find the stochastically optimal timing 

to exercise flexibility. In real life flexibility sometimes may not be exercised 

correctly, and/or never exercised in some cases. This is due to several reasons 

such as the lack of necessary knowledge for implementation, the change of 

leadership, or missing of document materials tracking such developments in 

infrastructures.  

Several ROA methods exist for evaluating flexibility in engineering 

design (or real options). A close-form method, like Black-Scholes (B-S) from 

financial options analysis, is applicable when constant cost is assumed in the 

system (Black & Scholes, 1973). The finite difference method for option 

pricing is sometimes used if the option can be modeled using a partial 

differential equation (Brennan & Schwartz, 1985). As the most commonly 

used method, binominal lattices allow for flexibility analysis, where relevant 

and differing rules may be encoded at each node (Copeland & Antikarov, 

2001). Monte Carlo simulations, in contrast to the above methods, provide 

opportunities to tackle high-dimension problems and deal with a large number 

of uncertainty scenarios (de Neufville & Scholtes, 2011).  

For ROA in a current engineering context, lattice-based methods and 

Monte Carlo simulations are used more by decision makers than the B-S 

model. This is because the B-S model is not well suited for real options due to 

some important differences between financial options and real options (de 
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Neufville, 2010) – more details are provided on these in Sections 2.1.4 and 

2.4.2. However, the solution emerging from a lattice-based ROA approach 

may be difficult to analyze and implement in practice. On the one hand, 

lattice-based methods can only consider and analyze one decision rule at a 

time (i.e., they often use the same expected value maximizing rule inspired 

from Bellman’s formulation). On the other hand, without the necessary 

mathematical knowledge, practitioners and managers may find it difficult to 

apply the folding back procedures to determine the optimal policy. These raise 

questions regarding both the evaluation and the analysis of embedded 

flexibility for more practical applications. For simulation-based approaches, 

even though they are able to take into account multiple uncertainty sources 

and decision rules at a time, they may be time-consuming to use if finding the 

stochastically optimal initial configuration and the best decision rules for a 

flexible design is the objective. More details on standard ROA methods is 

provided in Section 2.1.4, while Section 2.4.2 provides more details on the 

criticisms with each ROA method.  

Using only available tools, it may be challenging to analyze different rules 

when the total number of possible rules is considerably large. Only a subset of 

all the possible rules can be evaluated in a finite time. If lucky, the optimal rule 

may be found through an exhaustive search. However, in most cases, 

sub-optimal solutions are obtained, treated, and applied as optimal solutions. 

The value of flexibility given by such evaluation procedures may not be the 
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stochastically optimal one (and may be far from it). This value could even be 

negative if the rule is sub-optimal. Thus, flexibility in engineering systems 

design may not be favorable to decision makers due to this incomplete 

evaluation. This biases practitioners’ and managers’ decision making regarding 

what type of design should be chosen (i.e., robust or flexible design).  

The value of flexibility may also be affected by incorrect exercise in 

practice. Solutions from lattice-based models may not be intuitive to use 

without the required mathematical knowledge of dynamic programming, and 

thus are difficult to correctly implement. Indeed, determining when to exercise 

flexibility strategies in lattice-based ROA approaches requires decision makers 

to determine their position in the lattice, and apply a backward induction 

process to find the optimal policy. If the process is conceptually difficult to 

use, it has less chances of being used in practice. Finding the position in the 

lattice may be challenging, as it requires fitting the evolution of historical data 

to the closest and nearest stage and state. Another issue is that design for 

flexibility may require a larger budget for infrastructure (e.g., strong pillars for 

capacity expansion in the case of parking garage). Thus, the flexibility may 

become a burden to practitioners and managers if it is incorrectly or never 

exercised. The long term life cycle performance of the system will ultimately 

be affected by such inappropriate decision making. 

The issues discussed above in the evaluation and analysis of flexibility 

have not been well addressed in the literature in the area of ROA; more 
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specifically, no existing method can deliver an acceptable outcome as a simple, 

intuitive, and optimal policy for exercising flexibility strategies in the face of 

long term uncertainty so that the value of a flexible design solution could be 

fully appreciated by decision makers. Thus, this thesis aims to address this 

particular issue more analytically by modeling a design problem using 

mathematical programming, with the goal of optimizing the anticipated long 

term life cycle performance. The output of the proposed model is supposed to 

offer decision makers a guidance or policy to exercise flexibility strategies.       

1.2 Intended Audience and Application 

This thesis targets system designers, managers, and practitioners who are 

working in engineering systems design, especially in the field of urban 

systems. The design procedure for flexibility allows infrastructure systems to 

change themselves according to the different scenarios that may arise. Flexible 

designs have the ability to pro-actively deal with uncertainty, while robust 

designs focus on having a high performance under a range of scenarios 

without the need to change the system configuration. The design procedure 

was specifically crafted for the design of infrastructure systems, but can be 

applied to normal engineering/complex systems as well. 

The proposed design approach aims to identify the stochastically optimal 

flexible design configuration, including the initial configuration and follow-up 

managerial decision rules. The approach aims to find the optimal design 
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configuration among all possible flexible designs under the flexibility 

paradigm, and to improve the expected life cycle performance a step further. 

This differs slightly from the idea of “optimal design” in the traditional design 

paradigm. The ROA method considered in the approach is different from the 

existing methods often used in the evaluation of flexibility. In the proposed 

approach, the design problems are formulated using mathematical 

programming. Strategic-level flexibility is analyzed via managerial decision 

rules and captured by non-anticipative constraints. This is not the first time 

that managerial decision rules have been applied for the analysis of flexibility: 

past work considered Monte Carlo simulations as tools to evaluate decision 

rules under uncertainty (de Neufville & Scholtes, 2011). Such studies typically 

proposed a decision rule and analyzed the system flexibility in light of such 

decision rule, without necessarily finding the one is optimal in a stochastic 

sense. For example, in the parking garage case mentioned above, a threshold 

value was given for triggering the exercise of flexibility. That is, if the demand 

cannot be satisfied for ܰ  consecutive years, the decision rule will be 

exercised. The flexibility strategy may be exercised too often when this value 

is small (e.g., ܰ ൌ 1), thus increasing costs with too many unnecessary 

expansions. Also the strategy may seldom be exercised if this threshold is too 

high (e.g., ܰ ൌ 3 or more), so that the flexibility cannot help capitalizing on 

upside opportunities. It is clear that an inappropriate threshold may affect the 

value of flexibility and its corresponding exercise in practice. Mathematical 
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programming, by contrast, allows for the evaluation of a variety of decision 

rules and the determination of the stochastically optimal one or the so called 

“sweet spot” for that threshold. It should be noted that the true optimal design 

configuration is not always available because of the complexity of the design 

problem. The procedure suggests a feasible approach for systematically 

evaluating and implementing flexibility in a finite amount of time, with the 

goal of getting as close as possible to the optimal design.  

This thesis also targets researchers who are interested in studying and 

promoting flexibility in engineering systems design. The proposed 

methodology hopes to open their minds about analytically modeling design 

problems and collaborating with experts in different areas (e.g., optimization, 

game theory, system dynamics, graph theory, etc.). For specific design 

problems – such as power distribution grids and urban transit – particular 

expertise can be a catalyst. 

The design approach proposed in this thesis can also be used more widely 

in engineering systems design and applied to systems that are not in urban 

contexts. In particular, the methodology is suited for the design and 

management of resource allocation systems (of which the EMS system is an 

example). Moreover, tactical- and/or operational-level flexibility can also be 

considered in the design procedure.           
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1.3 Thesis Structure 

The thesis is organized as follows. Chapter 2 surveys the literature to give the 

audience an overview of the existing work regarding flexibility and to 

determine the contributions of previous research in the area of engineering 

systems design. This chapter also investigates the current work in terms of 

EMS systems and nuclear power systems and discusses the shortcomings of 

the existing work. Chapter 3 introduces the research questions, hypothesis, and 

research approaches of this study. Chapter 4 presents the methodology for the 

design and management of flexible infrastructure systems from a generic 

standpoint, including the design and evaluation procedures. Chapter 5 and 6 

describe the applications used to verify the methodology in two urban contexts. 

Specifically, Chapter 5 describes an application of design and management of 

EMS systems for flexibility, while Chapter 6 describes an application of siting 

nuclear power plants for flexibility. A problem statement, uncertainty 

recognition, mathematical formulations, and numerical analysis are contained 

in each chapter. Chapter 7 summarizes the findings of the previous two 

chapters. Chapter 8 concludes the work and highlights research opportunities 

in related areas. 
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Chapter 2 LITERATURE REVIEW 

“The only thing you absolutely have to know, is the location of the library.” – 

Albert Einstein (1879 – 1955) 

 

“Know the enemy and know yourself, and you can fight a hundred battles with 

no danger of defeat.” – Sun Tzu (c. 545 – 480 BC, the Art of War) 

 

This chapter aims to fulfill five objectives. The first objective is to position the 

thesis within the design for flexibility paradigm, and to identify potential 

contribution to current research work in this field, by analytically modeling 

design problems using mathematical programming. An overview of the 

existing state of flexibility in engineering systems design is provided in 

Section 2.1. The second objective is to identify potential contribution to 

existing designs of EMS systems by incorporating strategic-level flexibility, 

and to determine how expected life cycle performance can be improved by 

such flexible designs. Section 2.2 provides an overview of past and current 

designs in the context of EMS systems. The third objective is to identify 

potential contribution to nuclear power systems by considering a 

socio-technical factor in the design procedure. To this end an overview of 

nuclear power systems is provided in Section 2.3, including engineering 

design and social aspects. The EMS system and the nuclear power system are 

two representative cases that will be studied in the later chapters of this thesis.  
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First of all, both systems are good examples of infrastructure system. They 

also have more than one facility to maintain the regular operation, and the 

facilities are geographically located at different sites. Both systems offer their 

resource or service to customers to fulfill specific requirements, either from a 

single facility (e.g., an emergency station and/or an emergency vehicle), or a 

whole system (e.g., a power system). Last but not least, these two systems are 

obviously important, and there is still plenty of room to improve the system’s 

performance. On the one hand, an EMS system is indispensable to the society 

as it provides out-of-hospital medical care to save patients’ lives. On the other 

hand, the nuclear power system plays an important role in the power system, 

generating electricity without large CO2 emissions. Any improvement in these 

systems could bring significant economic and/or social influence. Section 2.4 

explains identified research gaps and opportunities in each field, to fulfill the 

fourth objective. The fifth objective is to highlight the contributions by 

indicating how this thesis intends to address these issues and extends to 

broader applications.  

2.1 Flexibility in Engineering Systems Design 

To best position the thesis in design for flexibility paradigm, this section 

summarizes the existing state of such research field. Since this thesis aims to 

propose a novel design approach for infrastructure systems, one may ask “how 

can one improve the long term performance of an infrastructure system?” The 
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concept of flexibility will be considered as a possible design alternative to 

address this question. This idea of flexibility in engineering systems design, 

also known as real options, is to provide “the right but not the obligation, to 

easily change the system in the face of uncertainty” (Trigeorgis, 1996). 

Flexibility is a multi-disciplinary concept which is popular in many fields 

(Saleh et al., 2009), such as decision theory, manufacturing systems, 

engineering design, etc. To people from different fields, flexibility indicates 

different meanings and even has different names (e.g., adaptability). In the 

realm of engineering systems design, Saleh et al. (2009) suggested there was a 

need to make a distinction between flexibility in the design process and 

flexibility of a design (or flexible systems), as they were considerably different 

and were implemented by different means. In a design process, flexibility is 

considered as the opposite of rigidity in specifying system requirements. On 

the other hand, flexibility of a design usually implies that such system has the 

ability to adapt to the change of circumstances, with certain characteristics. 

The thesis focuses on the latter concept, dedicating to improve system life 

cycle performance by designing flexible systems.  

Tomiyama et al. (2006; 2009)  developed a well-reputed classification of 

“Design Theory and Methodology” (DTM) for engineering design procedures 

based on General Design Theory (GDT) (Tomiyama & Yoshikawa, 1987; 

Yoshikawa, 1981; Yoshikawa & Uehara, 1985), where a variety of design 

methodologies were discussed, such as adaptable design, axiomatic design, 
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Taguchi method (robust design) (Taguchi, 1987), Design Structure Matrix 

(DSM) (Steward, 1981), etc. de Neufville and Scholtes (2011) proposed a 

practical four-step process for developing flexibility in engineering systems 

design. In the light of de Neufville and Scholtes’ work, Cardin (2014) 

provided a five-phase structure for enabling flexibility in engineering systems. 

The overview is based on the taxonomy prepared by Cardin (2014), as the five 

phases are discussed in Subsections 2.1.1 to 2.1.5 in sequence. Subsection 

2.1.6 focuses on fulfilling the objective of situating this thesis as part of the 

flexibility in engineering systems design.  

2.1.1 Phase I – Baseline Design 

It is better to consider design for flexibility starting from an existing design 

configuration. Existing design configurations are usually optimized based on 

deterministic point forecasts, which can be considered as baseline designs or 

rigid designs. They are often not capable of changing themselves to adapt to 

uncertainties, as explained by Cardin (2014). Baseline designs may perform 

well in resisting downside risks attribute to robustness, but may fail in 

capturing upside opportunities. This phase aims to help designers and 

managers start from what they know and/or what they have on hand, and to 

help structuring necessary thought process regarding design for flexibility.  

Design procedures for typical engineering systems (e.g., satellite systems, 

power plants or oil platform) are suited for baseline design. The concept of 
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design procedure discussed here indicates the same idea as DTM does. 

Detailed procedures can be found in Tomiyama et al. (2006; 2009), Finger and 

Dixon (1989a, 1989b). Note that such designs are not necessarily to be “purely” 

rigid. Some designs for resource allocation problems considered phasing 

option (i.e., deploy resource in phases) to improve system life cycle 

performance. Relevant literature is discussed in Section 2.2. These designs, 

however, are not conceptually flexible designs, because the option is exercised 

via fixed rules. Systems cannot change themselves to adapt to different 

uncertainty scenarios by taking advantage of such option. Thus, those designs 

are treated as baseline designs as well in the thesis, particularly for 

infrastructure systems.  

2.1.2 Phase II – Uncertainty Recognition 

Uncertainty always exists, and really has impacts on system life cycle 

performance. Normally uncertainty is considered as a source of downsides as 

it can destroy value, such as unexpected performance of technology or painful 

environmental conditions (e.g., earthquake, tsunami). On the other hand, it can 

also bring opportunities for better performance, such as better market 

conditions or lower costs. As uncertainty is inevitable to engineering systems 

design, recognizing uncertainties is considered to be the prerequisite to design 

for flexibility.  

The procedures in this phase help designer find out and model main 
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uncertainty sources, based on formal and practical approaches suggested by de 

Weck and Eckert (2007), aiming at quantifying, characterizing and modeling 

major uncertainties for systems designs. Formal approaches are comprised of 

probability theory, statistics, and Bayesian theory (Bayes & Price, 1763). On 

the other hand, practical approaches consist of binominal lattice, decision trees, 

and scenario planning. The binominal lattice model allows for modeling both 

uncertainty and outcome at discrete time steps (Cox et al., 1979). Dynamic 

programming is used in the recursive calculation at each node of the lattice. 

Lattices-based models are better suited for continuous events (i.e., 

uncertainties with continuous probability). In contrast, decision tree models 

are suited for discrete events (i.e., uncertainties with discrete probability), and 

so be scenario planning (Helmer, 1967; Howard, 1966). The limits of these 

practical approaches are fairly clear. To deal with more than one uncertainty 

source, the development of quadranomial and even multinominal approaches 

are alternative approaches. They are, however, very difficult to use and 

analyze because of the curse of dimensionality, which is exacerbated with 

considerations of multiple uncertainty sources (Copeland & Antikarov, 2001; 

Kamrad & Ritchken, 1991). 

To moderately fulfill the target in this phase, either formal or practical 

approaches are necessary. Statistical tools are used for regression analysis with 

respect to historical data. Probability theory and Bayesian theory are applied 

for determining probability distribution, as complements to reversion analysis. 
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The difficulties of applying such formal approaches are selecting proper data 

set (e.g., range, availability), mean trend profile (e.g., linear, polynomial), 

stochastic model (e.g. Geometric Brownian Motion (GBM) process, mean 

reversion process), etc. All formal approaches including scenario planning are 

applicable in industry (de Weck & Eckert, 2007; Halpern, 2003; Morgan & 

Henrion, 1992). Lattices-based and decision tree models, by contrast, are not 

widely used in industry (Cardin & de Neufville, 2009; Engel & Browning, 

2008).  

2.1.3 Phase III – Concept Generation 

Conceiving flexible designs is the main target in this phase, once the major 

uncertainties are identified and modeled. The procedures in the phase are 

concerned with strategy generation and enabler identification. Such 

procedures aim to provide directions to determine where to focus the design 

effort, as it is impossible to address all possible flexible concepts. Procedures 

are categorized according to what they specifically focus on. The outcome of 

the procedures is a set of flexible design concepts that can proactively deal 

with uncertainty, compared to baseline designs obtained in phase I. Overall, 

the performance of flexible design concepts can arguably better that that of 

baseline designs. 

Strategy generation 

The purpose of strategy generation is fairly obvious. It aims to generate 
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flexible strategies and design alternatives to flexibly encounter uncertainty. 

Useful guidelines are provided in industrial contexts for this strategy 

generation (Fricke & Schulz, 2005; Suh, 1990). Trigeorgis (1996) suggested 

canonical real option strategies to designers for generating flexible design 

concepts, such as option to expand, option to deploy in phases over time and 

space, option to defer investment, option to abandonment, etc. They can be 

further divided into flexibility “in” and “on” the system (Wang & de Neufville, 

2005). In depth technical knowledge is required for technical flexibility in the 

system, while it is not necessarily required for managerial flexibility on the 

system. Besides, Cardin et al. (2013a) suggested an experimental methodology 

for generating flexible concepts via a short-lecture regarding the idea of 

uncertainty and flexibility, with a prompting mechanism. Designers are able to 

be aware of the impacts by uncertainty, and how flexibility could help address 

such issues. 

Enabler identification 

The objective of enabler identification is to identify the components of 

systems, which can be applied to enable the flexibility. Plenty of authors have 

contributed to the development and analysis to access flexibility in products 

(Keese et al., 2009; Qureshi et al., 2006; Rajan et al., 2005). Many principles 

that are used in design for flexible products can be applied to design for 

flexible complex systems, even though these two entities are quite different.  

Design Structure Matrix (DSM) introduced by Steward (1981) aims to 
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show design tasks as a series of network interactions. It lists all constituent 

subsystems/activities, corresponding information exchange, interactions, and 

dependency patterns (Eppinger & Browning, 2012). The matrix can highlight 

a large number of system elements and their relationship in a compact way. As 

one of DSM-based procedures, change propagation analysis (CPA) focuses on 

changing potential areas for inserting flexibility. Application of applying CPA 

can be found in (Giffin et al., 2009). Hu (2013) developed a DSM-based 

method relying on Bayesian network and risk propagation analysis, which is 

conceptually similar to CPA. The sensitive DSM (sDSM) looks for the most 

sensitive design variables to changes and requirements to embed flexibility 

(Kalligeros, 2006), while engineering system matrix (ESM) considers human 

factors and system drivers by extending original DSM (Strauss & Corbin, 

1998). 

2.1.4 Phase IV – Design Space Exploration 

The procedures in the phase aim to help designers explore the design space to 

determine the most valuable flexible design concepts and decision rules for the 

system. This phase includes quantitative concepts evaluation and 

computationally efficient search. The outcome of this phase should be a set of 

recommended flexible design concepts with better life cycle performance than 

baseline design in Phase I. The flexible concepts are provided with clear life 

cycle performance quantifications, and recommendations in terms of 
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managerial decision rules. This thesis aims at proposing a better quantitative 

approach for evaluating flexibility strategies for use in an engineering context, 

which is one of the main contributions. 

Quantitative concepts evaluation 

Real option analysis has been applied to quantitatively evaluate flexible 

concepts more recently (Copeland & Antikarov, 2001; Dixit & Pindyck, 1994; 

Myers, 1984), as it can handle uncertainty that Discounted Case Flow (DCF) 

analysis cannot. The techniques are directly derived from the valuation 

approaches developed to financial options theory (Black & Scholes, 1973). 

These include the Black-Scholes model, lattice-based, and simulation-based 

approaches. The B-S model is developed for financial options valuation, and is 

not well suited in an engineering context because of the difference between 

financial and real options. 

Lattice-based approaches, in particular the binominal lattice based 

approach, is one of the most popular approaches to perform ROA in 

irreversible investment in real, large-scale projects. The binominal lattice 

model was firstly proposed by Cox et al. (1979). Figure 2.1 shows a graphical 

example of a binominal lattice model in consideration of three periods. ܵ 

denotes the state at the initial period of a system’s life cycle, which could be 

price (in financial theory), or other uncertainty drivers such as emergency 

incidents (in EMS systems) and electricity demand (in energy systems). 

Variables ݑ and ݀ represent the up and down factors scaling the response in 
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previous period, with corresponding probabilities ݌ and 1 െ  ,respectively ,݌

for some given probability 0 ,݌ ൏ ݌ ൏ 1. 

 

Figure 2.1 A three-period binominal lattice model. 

In addition, ߤ and ߪ denote the periodically expected growth rate and 

standard deviation, respectively, which can be derived from historical data on 

a particular stochastic process. The model is derived on the implicit 

assumption of Geometric Brownian Motion (i.e., random walk). The values of 

the rates for moving up and down plus the probabilities can then be calculated 

as: 

 u e t    (2.1) 

 d e t    (2.2) 
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  (2.3) 

where ∆ݐ is the step length that could be a second, a day, or a year. The 

expected value of a ݊ th node at period ݐ with a discount rate ݎ can be 

calculated by the following equation, based on Bellman’s equations in 

dynamic programming: 
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where ܴ ൌ 1 ൅   .ݎ

In decision analysis, the best design decision is determined at each stage 

by a folding back process, developed based on dynamic programming. An 

important different with lattice analysis is that paths do not recombine. The 

process starts from optimizing the system life cycle performance at the final 

stage, and goes backward until the initial stage where the expected life cycle 

performance is calculated. Babajide et al. (2009) applied such technique for 

evaluating a flexible oil platform design under uncertainty regarding reservoir 

compartmentalization and future oil price. Cardin et al. (2012) delivered 

another case study regarding Accelerator-Driven Subcritical Reactor (ADSR) 

technology, followed by the similar approach. As an innovative nuclear 

technology, ADSR is suggested to generate electricity by coupling a LINear 

Accelerator with a standard nuclear reactor core. Their case study 

demonstrated that design for flexibility could be valuable and worthwhile in 

nuclear technology.  

In addition to techniques based on folding back principle, Monte-Carlo 

simulation is suggested as an effective alternative to evaluate flexible concepts. 

de Neufville et al. (2006) applied the approach to quantify a flexible design for 

a parking garage, compared to a rigid n-floor design. Designs are analyzed and 

compared under different scenarios of demand generated by GBM, instead of 
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deterministic demand projections. The flexible design allowed for capacity 

expansion if the demand was not satisfied in two consecutive years. A simple 

logical “IF-THEN-ELSE” statement is a representation of managerial decision 

rules, which can be used to guide managers to response to an observation. The 

decision rule for implementing flexibility is not unique. Even for the same 

statement, the value of parameters can vary in a certain range (e.g., “two” in 

the last statement could be “one” or “three”), depending on expert 

recommendations. 

As discussed in Subsection 2.1.2, decision analysis and binominal lattice 

do not account for multiple uncertainty sources. In particular, decision analysis 

is better suited for discrete events, while binominal lattice can handle most 

continuous uncertainty sources. Monte-Carlo simulation is capable of dealing 

with multiple uncertainty sources, no matter what type the uncertainty is. It 

provides more freedom for modeling decision rules, design variables, and 

parameters. However, exploring and evaluating many decision rules and 

design variables is difficult and time-consuming. 

Computational efficient search 

As the design space can be extremely large, designers need to efficiently 

search the whole or part of design space to determine the most valuable 

flexible design configuration in finite time. The procedures - including 

decision-based design, multi-attribute tradespace exploration, screen methods, 

and design category - help designers systematically and efficiently fulfill this 
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target.  

The basis of the decision-based design (DBD) was developed by Simon 

(1977), and the mechanism of evaluation and selection of designs was 

proposed by Hazelrigg (1998). This method is eventually applied for 

flexibility based on the framework of Olewnik et al. (2003) and Olewnik and 

Lewis (2006), which is an extension of Hazelrigg (1998). DBD is suited for 

the case that there are more than one metrics of interest excluding economics. 

However, developing models and searching representative scenarios can be 

time-consuming. The framework of multi-attribute tradespace exploration 

(MATE) was suggested by Ross (2006), exploring the design space to 

determine configuration based on decision-makers’ utility attributes. Since the 

attributes normally are not single, a Pareto set is used for comparing candidate 

configurations. Hu and Poh (2010) proposed a Pareto set-based model to 

efficiently search the design space. Similar to DBD, MATE has difficulties in 

computational time regarding modeling and searching, and calculating 

expected utilities in design context. Screed methods were firstly introduced by 

Jacoby and Loucks (1972), relying on techniques such as optimization 

algorithms and design of experiments (DOE) to speed up the search procedure. 

de Neufville and Scholtes (2011) suggested three types of screen methods: 

top-down, bottom-up, and simulator. Top-down screen methods use the similar 

means as in system dynamics to represent the relationship between the parts of 

systems. Bottom-up screen methods use simplified model to describe the 
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detailed one. Statistical tools and/or fundamental principles are used in 

simulators. Heuristic algorithms and simulation-optimization algorithms are 

applied for design space exploration. Relevant applications can be found in 

(Buurman et al., 2009; Deng et al., 2013; Hassan & de Neufville, 2006; Wang, 

2005). To efficiently model the problem and search the design space, the 

model fidelity could be reduced. The shortage of screen methods is such loss 

in model resolution. Cardin (2007) proposed an approach called operating plan 

procedure, which explores the design space by selecting a small group of 

representative scenarios of uncertainty. The selected scenarios keep high 

fidelity so the model represents the real problem in a certain level of degree. 

This approach was applied in mining (Cardin et al., 2008) and infrastructures 

(Cardin & de Neufville, 2013). Both screen methods and category methods 

cannot guarantee the global optimality of the solutions, due to limited time and 

computational resource. Moreover, DBD, screen methods, and category 

methods are not widely applied in industry (Cardin, 2014).  

2.1.5 Phase V – Process Management 

The procedures in this phase aim to address social and collaborative issues 

under which flexibility design and configuration is generated. The whole 

decision-making process involves many stakeholders with different 

backgrounds in the hierarchical structure. Although designers can embed 

flexibility into the system, managers may exercise flexibility in suboptimal 
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timing or never exercise it due to many reasons such as the unawareness of the 

concept, budgetary constraints, and operating conditions. This ultimately 

affects the system life cycle performance as the embedded flexibility becomes 

a burden instead of an advantage. To address such issues, this phase studies 

how to create a comfortable condition for flexible concept generation, how to 

reduce barriers for exercising flexibility, and how to weaken the affects by 

agency problems and/or information asymmetries. 

As an important methodology for studying agency behavior, game theory 

has received much attention from outside world since it was introduced by von 

Neumann and Morgenstern (1944) and Nash (1950). Game theory is 

considered as “the study of mathematical models of conflict and cooperation 

between intelligent rational decision-makers” (Myerson, 1997). It is useful in 

addressing agency problems, capturing the dynamics of information 

asymmetries, and thus facilitating flexibility in design. This methodology has 

been explored recently and there exists opportunities for research in a further 

step (Dias & Teixeira, 2003). More specifically, it is demonstrated that the 

integration of real option and game theory – also known as option games – 

could be a valuable tool for dealing with multi-stakeholder decision-making 

problems with respect to flexibility in design, in the context of public 

infrastructures (Smit & Trigeorgis, 2009), enterprises (Ferreira et al., 2009; 

Smit, 2001). 

As an experimental methodology, serious gaming (also referred as 
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“serious games” or “simulation gaming”) provides a research platform for 

studying the process management of flexibility in design. Serious games are 

designed for specific purpose rather than pure entertainment. The “serious” 

adjective is generally prepended to refer to products used by industries like 

defense, education, scientific exploration, heath care, emergency management, 

city planning, engineering, religion, and politics (GAIA, 2015). This technique 

can be helpful in engineering contexts for understanding the dynamics of 

decision-making, even though it is usually used in business school (Faria et al., 

2008). For instance, Cardin et al. (2013b) investigated how decision-making 

processes regarding siting fire stations affect the system performance of an 

EMS system in the Singapore context, firstly considering flexibility in design 

in serious gaming.   

2.1.6 Thesis Positioning within Flexibility in Engineering Design 

This thesis fits best within the phases of design space exploration and process 

management. The reason is that the thesis presents a general methodology to 

support the design for flexibility via mathematical programming tools in urban 

contexts. This methodology provides an opportunity to analytically and 

systematically investigate possible decision rules, and to determine the 

stochastically optimal initial configurations. As a means for exercising 

flexibility, managerial decision rules are simple, easy, and fairly intuitive to 

managers. These rules can help designers promote their flexible design 
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concepts, and help managers take advantage of embedded flexibility to 

improve life cycle performance of the system. Even though mathematical 

models may have the issue on model resolution loss, the advantages on 

modeling and computational efficiency can be attractive in both academia and 

industry.     

2.2 Design and Management of EMS Systems 

Emergency services (or rescue services) are defined by the Wikipedia as the 

organizations that ensure public safety and health by addressing different types 

of emergencies. Emergency services are comprised of police, fire rescue 

services, and emergency medical services. Police departments focus on 

tackling crimes, and ensuring safety for both health and assets. Fire 

departments provide fire trucks and firefighters to deal with fire emergencies. 

Emergency medical services dedicate on supplying ambulances and 

professionals for out-of-hospital care. This section focuses on providing an 

overview of the design and management of EMS systems. 

More specifically, the design and management of EMS systems is mainly 

concerned with the decision-making processes about siting ambulance/fire 

stations, and allocating/reallocating ambulances. These issues have been of 

interest to researchers over recent decades (Başar et al., 2012). Savas (1969) 

suggested a standard four-step approach for systematically analyzing EMS 

systems. Owen and Daskin (1998), Brotcorne et al. (2003), Goldberg (2004), 
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and Farahani et al. (2012) reviewed much of the body of research applying 

operations research methodology to solve resource allocation problems in the 

context of EMS systems. Past work majorly falls into two categories in terms 

of objectives: maximal covering location problems (MCLP), and set covering 

location problems (SCLP). Typical decisions in EMS systems can be 

categorized into strategic-, tactical- and operational-levels. Strategic-level 

decision-making processes care about where to site stations among a set of 

candidate sites, and how many vehicles/ambulances are needed for the system. 

Tactical-level decision-making processes focus on allocating and reallocating 

ambulances every tactical period (e.g., 3 to 6 months). Operational-level 

decision-making processes are concerned with daily incident response issues, 

i.e., sending available ambulances to respond to specific incidents/accidents. 

As the concept of flexibility was reviewed in Section 2.1, one may now ask 

“can the concept of flexibility be used for the design and management of EMS 

systems?” This question is best addressed before reviewing the literature 

regarding EMS systems. 

This section provides an overview of design and management of EMS 

systems based on two types of location problems. More specifically, 

subsection 2.2.1 provides an overview of MCLP, while subsection 2.2.2 

provides an overview of SCLP. Subsection 2.2.4 indicates where to situate this 

thesis best within the area regarding design and management of EMS systems.  
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2.2.1 Maximal Covering Location Problem 

MCLP aims to maximize preferred goals subject to limited resources (e.g., 

facilities, budget, etc.). Goals can be any system target of interest, such as 

demand coverage, incident coverage rate, system service level, etc. MCLP is 

normally applied for the situation that one or a group of companies operate the 

EMS system, because the restrictions of resources are always highlighted 

during the design and management. 

Short-term (single period) problems 

MCLP was firstly proposed by Church and ReVelle (1974), referred to the 

following mathematical formulation of the design problem: 
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where 

ܫ  ൌ denotes	the	set	of	demand	nodes; 

ܬ  ൌ denotes	the	set	of	facility	sites; 

௜ݔ  ൌ 1	if	a	facility	is	allocated	to	site	݆,	and	0	otherwise; 

௜ݕ  ൌ 1	if	demand	node	݅	is	covered	by	facilities,	and	0	otherwise; 

 ܽ௜ ൌ population	to	be	served	at	demand	node	݅; 

݌  ൌ the	number	of	facilities	to	be	located. 

In Problem (2.5), a demand node is a geographic region where emergency 
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incidents arise. As in Toregas et al. (1971), it was assumed that the sites in the 

set ௜ܰ  could respond to the incidents occurred in node ݅  within 

predetermined time. Its target was to maximize the covered population in a 

single time period, subject to limited number of facilities. No uncertainty was 

considered in this model. Real world applications of Problem (2.5) can be 

found in Eaton et al. (1985) and Schilling et al. (1979).  

 Daskin (1983) extended MCLP into the Maximal Expected Covering 

Location Problem (MEXCLP), by considering facilities being unavailable 

when a call entered the service system. The model aimed at maximizing the 

expected number of covered demand covered by multiple times instead of the 

population. The objective function was written as the formulation: 

   1

1 1
max  1 .

M Nj
k jkj k

p p h y
 

    (2.6) 

Differed from Church and ReVelle (1974), it was assumed that there could 

be more than one facilities at a node. The coefficient term ሺ1 െ  ௝ିଵ was݌ሻ݌

the weight associated with the objective of maximizing demand covered by at 

least ݆ times. Facilities were assumed to be identical and independent, i.e., the 

availability of each facility was independent with busyness probability ݌, and 

independent from candidate nodes. MEXCLP showed the benefits of 

considering multiple demand coverage for improving system performance; 

however, it does not consider multiple time periods. 

 Batta et al. (1989) revisited MEXCLP and relaxed three underlying 

assumptions of MEXCLP: facilities operated independently, facilities had the 
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same busyness probability, and the busyness probability was independent from 

locations. By embedding the hypercube queuing model developed by Larson 

(1974), the adjusted MEXCLP used correction factors to relax the 

independency of facilities (or servers) availability. The formulation of 

correction factors is as follows: 
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The idea behind approximation (2.7) was that the probability of 

dispatching ݆th closest facility was proportional to the probability of ݆ െ 1th 

closest facilities being unavailable and the probability of the target facility 

being available. As can be seen, MEXCLP was the special case when the 

approximation was equal to 1. In addition, Rajagopalan et al. (2007) replaced 

the original formulation of MEXCLP by non-linear terms, with the assumption 

of calls being non-uniformly distributed. The non-linear formulation used for 

replacing the inner summation term of formulation (2.6) was ௝݄ሺ1 െ  .௬ೕሻ݌

This modeling trick reduced the size of the problem, however, turned the 

problem into a non-linear one. Rajagopalan et al. (2007) applied 

meta-heuristic algorithms to solve the non-linear MEXCLP, due to the limit of 

linear solvers. 

 ReVelle and Hogan (1989a) extended the basic MCLP into a Maximal 

Availability Location Problem (MALP), by taking the system reliability into 
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consideration. The concept of busy fraction proposed by Daskin (1983) was 

applied here as well. The reliability was represented by a chance constraint 

originated by Charnes and Cooper (1959), in which server availability was 

either uniform system-wide or not. Marianov and ReVelle (1996) proposed a 

queuing model to represent the availability neighborhood of a demand node. 

This neighborhood was modeled as an M/G/s-loss system, and the probability 

of at least one server being available in the neighborhood was shown as 

1 െ	ቀ
ଵ

௣ೞషభା௦௨೔ ఒ೔⁄
ቁ  ௜ is the Poisson intensity at node ݅, andߣ ௦ିଵ. The term of݌

 The queueing MALP .ݏ ௦ is the probability of system being in the state݌

model had a better approximation of system availability, and thus had a better 

performance. It was assumed that travel times were normally distributed in 

this model. Sorensen and Church (2010) introduced a hybrid model called 

Local Reliability Maximal Expected Covering Location Problem, which 

combined the objective of MEXCLP and the local busyness estimates of 

MALP. This hybrid model allowed for calculating a series of local ݍ௜,௞ values 

instead of a single ݏ௜  value for each node. The parameters ݍ௜,௞  and ݏ௜ 

represent the reliability of service at node ݅ for different number of servers. 

Berman and Krass (2002) discussed a generalized maximal covering location 

problem with the consideration of partial coverage of customers. That is, a 

customer at a node could be covered at different levels of coverage by 

facilities, depending on the distance from the facility to the customer. Berman 
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et al. (2013) studied three basic types of location problems: expected covering 

problem, robust covering problem, and expected p-robust covering problem, 

by considering uncertain travel time. The objectives aimed at maximizing the 

covered demand nodes under different conditions. 

 Hogan and ReVelle (1986) suggested an idea of backup coverage as a 

decision criterion. In addition to maximizing the number of demand nodes 

covered once, the Backup Coverage Problem further aimed at maximizing the 

number of demand nodes covered twice (i.e., the backup coverage). The 

objective function could be formulated as: 

  max   1 .i i i i
i I i I

Z w a y w a u
 

      (2.8) 

The weight parameter ݓ  in the formulation (2.8) represented the 

preference between the first coverage and the backup coverage. Based on this 

decision criterion, Gendreau et al. (1997) proposed a Tabu search algorithm 

originated by Glover (1990) to handle a design problem, with the goal of 

maximizing double coverage subject to limited units of servers. Araz et al. 

(2007) developed a maximal covering location model based on fuzzy logic. 

The objective was to maximize the overall satisfactory level of individual 

goals (e.g., coverage based on different requirements), which were formulated 

by the fuzzy membership functions to represent the linguistic terms of 

“approximately greater than or equal to ” and “approximately less than or 

equal to”. Silva and Serra (2008) proposed a covering model to handle 
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emergency calls with different priorities, incorporating priority queuing theory. 

The objective of Priority Queuing Covering Location Problem is to maximize 

the population covered by all priorities, as shown in formulation (2.9). 

 [ ]max   .k
i ij

k i j

Z a X   (2.9) 

The assignment variable ݔ௜௝
௞  denoted whether a demand node ݅  was 

assigned to a site ݆ for priority ݇’s urgencies. The values of all ݔ௜௝
௞  with 

different priorities were not necessary to coincide, which could be considered 

as a form of operational flexibility implemented by the optimizer. 

 Pirkul and Schilling (1991) introduced a capacitated covering model by 

considering workload limit on the facilities. Demand nodes now could only be 

responded to when facilities did not exceed the workload, and the system thus 

needed more facilities in order to have the same level of covered population as 

MCLP. Marianov and ReVelle (1992a, 1992b) discussed fire protection siting 

problems with capacitated stations, based on the framework of MCLP and 

MEXCLP. The problems considered the cases that a demand node covered by 

more than one type of servers. McLay (2009) introduced a Maximal Expected 

Covering Location Problem with Two Types of Servers: Advanced Life 

Support (ALS) and Basic Life Support (BLS). BLS can only provide basic 

medical care service and it is powerless if a Priority I incident occurs. ALS, by 

contrary, provides advance medical care service that can handle such Priority I 

incidents. The design issue was that the number of ALS was limited, and the 
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response time for ALS was strictly less than a specific time. The objective 

function was formulated as follows: 
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The objective was to maximize the expected number of Priority I covered 

in an amount of time. The performance of the system depended on the 

definition of Priority I and public recognition of such definition. Besides, 

Serra (1996) considered a problem where emergency service was coherent 

hierarchical. That is, regions corresponding to a given hierarchical level 

belonged to the same one region in the next hierarchical level. The concept of 

coherent hierarchy applied here was helpful for defining optimal capacities of 

the facilities because the coherent hierarchy existed in real world, leading to 

an applicable model.  

Long-term (multiple periods) problems 

To investigate long term life cycle performance, some past work focused on 

system-wide strategic-level decision-making dynamics by developing 

multi-period models. Schilling (1980) presented a Multi-objective Dynamic 

Location model that merged T static MCLP models in such a manner that 

future service levels were considered collectively. The multi-objective was to 

maximize the coverage at each time period. The outcome of Multi-objective 

Dynamic Location was different from the simple summation of T static MCLP 

models because the decisions were inherited over the life cycle. In other words, 
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station was decided to be constructed at site ݆  at time ݐ  would remain 

available at time ݐ ൌ ݐ ൅ 1…ܶ. Gunawardane (1982) introduced dynamic 

extensions to MCLP with deterministic demand incidents in a given planning 

horizon, referred to the following formulations: 
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where 

ଵܬ  ൌ set	of	facilities	'open'at	the	beginning; 

ଶܬ  ൌ ܬ െ  ;ଵܬ

 ܽ௜௧ ൌ population	of	demand	center	݅	at	time	ݐ; 

௧݌  ൌ the	limit	on	number	of	facilities	in	period	ݐ; 

௜௧ݕ  ൌ 1	if	demand	center	݅	is	݊ݐ݋	served	in	period	ݐ,	and	0	otherwise; 

௝௧ݔ  ൌ 1	if	݆	is	'open'	in	ݐ. 

Problem (2.11) aimed to minimize the uncovered population over life 

cycle. The goal was the same as maximizing the covered population, because 

the total population was fixed here. Differing from Schilling (1980), facilities 

in Problem (2.11) were allowed to be closed. However, a facility could not be 

opened again if it was closed in a previous period. 

 Schmid and Doerner (2010) developed a multi-period version of the 
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Double Standard Model considering time-varying coverage areas. The model 

maximized the demand covered by at least two vehicles in the long term and 

allowed vehicles to be reallocated throughout the planning horizon 

simultaneously. Başar et al. (2011) suggested a Multi-period Backup Double 

Covering Model with two response regulations, with the goal of maximizing 

the double covered population over life cycle in Istanbul. The assumption 

made by Schilling (1980) was applied here as well. In general, for such long 

term planning, the number of facilities that was allowed for operating at time 

 was limited. Work discussed above was deterministic, i.e., no uncertainty ݐ

was considered.   

2.2.2 Set Covering Location Problem 

SCLP, in contrast to MCLP, aims at minimizing targets subject to specific 

requirements such as system coverage, service level, etc. The targets of 

interest can be economic (e.g., total costs) and non-economic (e.g., travel 

distances). SCLP is basically applied for the case that the government or 

public organizations operate the EMS system. To achieve a high level of 

coverage (e.g., 90% to 95%), the service supplier would like to fulfill this goal 

with minimal costs. 

Short-term (single period) problems 

Toregas et al. (1971) developed the first deterministic SCLP for the design of 

EMS systems, referred to the following formulations: 
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where 

݊ ൌ denotes	the	number	of	demand	points; 

௝ݔ ൌ 1	if	a	facility	is	established	at	point	݆, and	0	otherwise; 

௜ܰ ൌ ൛݆ห ௝݀௜ ൑  .ൟݏ

Problem (2.12) firstly assumed that an urgency at node ݆ could only be 

responded by a facility on time if the distance between the node ݆ and the 

facility was less than or equal to ݏ. This assumption was widely accepted and 

applied in later work; see, for example, Church and ReVelle (1974), Daskin 

(1983), Ball and Lin (1993), etc. The deterministic SCLP aimed at minimizing 

the total number of facilities for operating the system. 

 Chapman and White (1974) developed an early probabilistic version of 

SCLP by taking system-wide busy fraction into consideration. Aly and White 

(1978) considered the traveling time as the uncertainty. Instead of defining a 

response zone, the demand point could be responded on time anywhere if the 

traveling time was no greater than a specific upper bound. The chance 

constraint ܲݎ൫ݐ௜௝ ൑ ௜൯ݐ ൑ ௜ߛ  represented the requirements on the system 

service level, i.e., the probability of response time for region ݅ being less than 

or equal to the upper bound should be no more than required service level ߛ௜. 

Revelle and Hogan (1989b) suggested an enhanced probabilistic model by 
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considering a detailed average busy fraction of vehicles. This average busy 

fraction is shown as: 

 .
24

i

i

k
k M

i
j

j N

t f

q
x











  (2.13) 

where 

̅ݐ ൌ the	average	duration	of	a	call	ሺhoursሻ; 

௞݂ ൌ frequency	of	calls	at	demand	node	݇	ሺcalls/dayሻ; 

௜ܯ ൌ the	set	of	demand	nodes	within	ܵ	of	node	݅. 

This idea of busy fraction was interpreted as the reliability of the system, 

and higher busy fraction indicated lower system reliability. In addition to 

Revelle and Hogan (1989b), Ball and Lin (1993) introduced a reliability 

constraint on the number of vehicles to guarantee that emergency incidents 

could be responded to with a given probability ݌. The demand here was 

generated according to a new better than used distribution. That is, the 

probability of a stochastic system will survive addition ݐ time when it has 

survived for ݏ time, is no greater than the probability of a new system will 

survive ݐ time. In contrast to previous work, this reliability model aimed at 

minimizing the total costs for operating the system. To clarify, the definition of 

reliability here is fairly different from the definition in quality engineering 

contexts. Reliability describes “the ability of a system or component to 

function under stated conditions for a specific period of time” (Institute of 

Electrical and Electronics Engineers, 1990). The concept of reliability in EMS 
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systems is better interpreted as availability. 

 Beraldi et al. (2004) proposed a stochastic formulation of SCLP where the 

probabilistic constraint was formulated as ܲ൫∑ ௜௝ݔ ൒ ௜௝∈ே೔ߦ ൯ ൒  with the ,݌

goal of minimizing the costs. The random variable ߦ௜ denoted the service 

request at node ݅, and ݔ௜௝ denoted the number of vehicles located at site ݆ 

for responding to request from node ݅. It was assumed that requests could be 

fully responded if the number of vehicles was no less than the number of 

requests, regardless the density of the requests. Beraldi and Bruni (2009) 

subsequently extended the work of Beraldi et al. (2004) to a new stochastic 

programming paradigm incorporating representative scenarios, based on the 

same assumption on the request response. The availability or reliability of the 

system was defined as the proportion of representative scenarios being 

covered. In other words, if the system availability was required to be 0.95, 

service requests in at least 95% of the scenarios needed to be fulfilled. 

Queuing theory was applied for SCLP to study the stochastic processes, as 

for MCLP. Marianov and ReVelle (1994) considered the service system as a 

M/M/s-loss queuing system. The probability of all servers being busy could be 

derived from the following equation: 
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The left hand side of formulation (2.14) was actually the Erlang B formula, 

which was applied mostly in telecommunication systems. The parameter 
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1 െ  is the requirement on system reliability. Marianov and Serra (2002) ߙ

used the formulation (2.15) to express the cumulative distribution function of 

the waiting time in a manner of M/M/m queue system. 
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where ߬ is the bound for the waiting time that cannot be exceeded by ߙ 

percent of times. This probability was independent from ݌଴, but only on ݉, 

 and ߬. In addition, Baron et al. (2009) suggested a location problem ,ߩ ,ߤ

with stochastic demand and congestion. It studied the system stability 

condition and the lower bounds on the system availability, based on partially 

accessible queuing system. The model used a server availability constraint to 

guarantee the service quality of the mobile servers. Noyan (2010) considered a 

similar problem as Baron et al. (2009) in a single-stage stochastic model, 

integrating a chance constraint and a stochastic dominance constraint. Besides, 

Pirkul and Schilling (1988) suggested a set covering model incorporating the 

concept of backup coverage and capacitated workload, which were applied in 

MCLP as discussed in subsection 2.2.1. Marianov and Serra (2001) proposed a 

model for a hierarchical EMS system, with the goal of minimizing the cost of 

locating high-level and low-level response centers. Jia et al. (2007a) discussed 

covering problems with respect to large scale emergencies. The number of 

demand nodes and facilities could be hundreds or even thousands. Typical 

solution approaches could not efficiently address such large-scale problems. 
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Jia et al. (2007b) then provided three heuristic algorithms for finding optimal 

solutions. The heuristics were also applied to sequential decision-making 

processes (i.e., long-term problems). 

Long-term (multiple periods) problems 

Similar to MCLP, some work was developed based on SCLP from a long-term 

perspective. Gunawardane (1982) extended a deterministic single-period 

SCLP to a multi-period SCLP, with the assumptions of stations being open 

cannot be closed, and vice versa. Daskin et al. (1992) looked into a dynamic 

location problem in order to find a planning horizon ߬∗ and a corresponding 

initial design configurations ܺ∗ for at least one optimal decision policy. The 

initial configuration was suited for planning horizons that were less than or 

equal to ߬∗. The model was developed under the same assumption as in 

Gunawardane (1982). Zarandi et al. (2013) proposed a large-scale dynamic 

location model by relaxing this assumption. The proposed model used for 

dealing with large-scale systems where the number of facilities and demand 

nodes could be thousands.   

 Farahani et al. (2009) studied a multi-period location problem by 

considering multiple reallocation opportunities for one facility in a discrete 

planning horizon. The weight associated with a demand point was a function 

of traveling time. Different types of distances were taken into account in the 

analysis. Ghaderi and Jabalameli (2013) proposed a budget-constrained model 

to study the multi-period SCLP, with the objective of minimizing the traveling 
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and operational costs over the time horizon. The objective costs were not 

discounted over time though. The purpose of the budget constraints was to 

investigate the influences by real-world investment policies on the facility 

location and network design. For instance, whether or not unspent budget 

would be used in the next period was one consideration. Ghaderi and 

Jabalameli (2013) proposed a hybrid Simulated Annealing (SA) heuristic for 

solving the problem because of the complexity of the problem. Binary 

variables were mainly solved by Branch and Bound (B&B) algorithm, and the 

budget-constrained variables were systematically solved by heuristics. 

2.2.3 Miscellaneous Problems 

Apart from MCLP and SCLP, there are much work focusing on the design and 

management of EMS systems. These studies, however, cannot be simply 

categorized into MCLP or SCLP in terms of the objective functions. Such 

work is discussed in this subsection. 

Compared to single objective, multi-objective problems aim to find out 

solutions that are fit for different requirements, and some requirements may 

contradict. For instance, minimizing the number of facilities and maximizing 

the service level or covered demand nodes contradict in general. The solution 

for this combined objective is somewhere between the solutions for separate 

objectives. Alsalloum and Rand (2006) suggested a mathematical model with 

two goals that is introduced above. The objective function was expressed as a 
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goal constraint in a goal-programming framework: 
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 Chanta et al. (2011) proposed a bi-objective model for the design of EMS 

systems in rural area, where the second objective was not unique. This second 

objective could be one of the three options: minimizing the maximum 

traveling distance, minimizing the uncovered rural zones, and minimizing the 

uncovered zones. Regardless of the second objective, the main goal of the 

model was to maximize the expected number of covered requests. 

 Badri et al. (1998) discussed a multi-objective location problem with 

respect to fire stations. The model incorporated several objectives, such as, 

minimizing the total costs, maximizing the service of area required most, 

minimizing the traveling distance, minimizing the traveling time, etc. Some 

objectives could be represented in a similar way, like minimizing the traveling 

distance and traveling time. 

As part of decision-making processes, ambulance deployment and 

redeployment has received much attention recently. Gendreau et al. (2001) 

discussed a redeployment problem by considering several penalty cases. These 

cases were considered as constraints that could not be violated.  Rajagopalan 

et al. (2008) proposed a dynamic redeployment model, with the goal of 

minimizing the number of servers (e.g., ambulances, fire trucks) deployed. 

Yue et al. (2012) introduced a simulation-based approach based on greedy 
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algorithm for the dynamic ambulance allocation and redeployment problem. 

Sung and Lee (2012) proposed a modeling framework for EMS system design 

and examined different dispatch and redeployment policies, such as locally 

nearest one, shortest travel time, dynamic assignment, etc. 

The ambulance redeployment is also known as the dispatch policy for 

ambulances. McLay and Mayorga (2011) examined the impacts introduced by 

the dispatch policy on a maximal covering location problem. McLay and 

Mayorga (2013b) proposed a model based on Markov Decision Processes 

(MDP) for optimally dispatching ambulances to requests, with classification 

errors in patient priorities. The classification error is one that the patient true 

condition is misclassified. This error always exists because patients may not 

have the ability or professional knowledge to classify their conditions correctly. 

McLay and Mayorga (2013a) suggested a MDP model for service-to-customer 

systems by considering four types of equity inside the model - two of which 

were related to customers and two of which were related to servers. As a 

critical factor when deciding how to allocate public source, it is a challenging 

to balance both efficiency and equity. The proposed model considered these 

equity as compulsory constraints, and reflected them using MDP. The details 

could be found in McLay and Mayorga (2013a). 

Moreover, Rekik et al. (2013) developed a decision support system for 

EMS systems, embedding strategic-, tactical-, and operational-levels of 

decision-making processes. The decision support system was based on a 
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hierarchical structure, where strategic-level decisions were on the top and 

operational-level decisions were at the bottom. The objectives of 

decision-making processes at each level were optimized according to their 

unique requirements. To the strategic-level, for instance, the goal is to 

minimize the number of stations. The decision support system was built for 

reflecting the real-world EMS system, and it thus had a high complexity.  

2.2.4 Thesis Position within Design and Management of EMS Systems 

The proposed approach intends to offer decision makers an opportunity to 

design the EMS system incorporating the concept of flexibility. It focuses on 

the strategic and tactical levels decision making processes and uses decision 

rules to analyze and exercise the flexibility. Operational level decision making 

processes however are not the concern. This thesis thus fits best within the 

area of long-term (multiple periods) design problems regarding EMS systems.  

2.3 Siting Problems of Nuclear Power Plant 

According to Wikipedia, a nuclear power plant (NPP) is one type of thermal 

power stations where the heat source is a nuclear power reactor. The nuclear 

reactor is a fundamental device to release nuclear energy, and thereby generate 

electricity. Nuclear energy or nuclear power is known as a green energy for the 

generation of electricity with low carbon emission, along with other 

sustainable energy source (e.g., solar, wind). Nuclear power has the ability to 
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stably generate a large amount of electricity, which is the main advantage of 

nuclear power versus other sustainable energy source. Solar energy and wind 

power, by contrast, could only steadily generate electricity under specific 

environmental conditions. Hydropower may have the ability to stably generate 

electricity, but the installation of hydropower plants and dams seriously breaks 

ecological equilibrium alongside the water source (Walsh, 2007). In addition, 

the capacity of a single nuclear reactor is 600 – 1400 MW, which is much 

greater than the capacity of a wind turbine or a solar panel. The average 

capacity factor of a nuclear power plant is as well typically higher than other 

power plants such as wind farms and hydropower plants. 

As for now, nuclear power is one of the two major sustainable energy 

source for the generation of electricity (the other one is hydropower). The 

international atomic energy agency (IAEA) reports that there are 440 

operational nuclear reactors in 30 countries in 2015 (Power Reactor 

Information System (IAEA), 2015). This number will be increasing in the near 

future due to the growth in electricity demand, even though some debate about 

the use of nuclear power remains ever since this energy source has been used 

for electricity generation. The debate is focusing on safety related issues of 

using nuclear energy, severe nuclear accidents, as well as waste disposal and 

management. Although nuclear power is typically considered as safe, nuclear 

accidents with extremely low probability such as the ones in Chernobyl and 

Fukushima can be disasters to the world. Such accidents have profound 
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implications for human health, environmental protection, industrial production, 

etc. A disaster anywhere around the world may impact policy making in any 

country. For instance, Germany and Switzerland planned to gradually shut 

down all NPPs in operation till 2025 in the wake of the Fukushima disaster, 

while China and India delayed their construction of new NPPs (Joskow & 

Parsons, 2012).  

As part of the design and management of NPP, the siting problem has 

received much attention from society including academia and industry. 

Grimston et al. (2014) suggested six types of factors that could be considered 

in the siting of NPPs: Radiological and safety factors, Economic factors, 

Technical factors, Social factors, Environmental factors, and ‘Political’ factors. 

Again, one may ask a similar question as in Section 2.2 regarding the 

possibility of improving system performance in terms of total costs. For 

instance, one may ask: “could the concept of flexibility help improve the 

expected performance of a nuclear power plant system?” 

This section provides an overview of economic assessment of siting 

problems for NPPs under uncertainty. The existing research that applying real 

option analysis as a means to deal with uncertainty in the siting problem is 

discussed. This section also provides an overview of social acceptance 

recognized in the context of nuclear energy systems.  
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2.3.1 Uncertainty in Investments on Nuclear Power Plants 

Uncertainty is inevitable in the siting of NPPs, as in any other siting projects 

of large-scale industrial facilities (e.g., EMS systems). Kessides (2010) 

identified economic uncertainty and risks in fundamental elements regarding 

investments on nuclear power. More specifically, Kessides (2010) proposed a 

framework to identify underlying uncertainties and quantify their impacts on 

the costs of nuclear power. In general, the costs consist of four major 

components: construction costs, operations and management (O&M) costs, 

fuel costs, and back-end costs (Joskow, 2006). The costs of nuclear power are 

driven by high up-front construction costs (or capital costs), which 

approximately represent 60% of the total costs. Fuel costs accounts for 20% of 

the total costs, while O&M plus back-end costs account for the rest 20% 

(OECD/NEA, 2003). 

Uncertainty in construction costs 

Construction costs contain any costs incurred during the stages of “planning, 

preparation and construction of a new nuclear power plant” (Kessides, 2010). 

However, there is no internationally unified definition of construction (capital) 

costs of nuclear power plants, even though much work has been done with 

regard to standardize the costs of nuclear power over past four decades (DTI, 

2007). There are several reasons that influence the estimation of construction 

costs. Firstly, not all the relevant data required for the estimation are available. 

Du and Parsons (2009) emphasized that collecting market data for both 



56 
 

projects completed in recent years and under implementation from developed 

and developing countries (e.g., US, Japan, France, China, India) can be really 

helpful for such estimation. Although construction time and operating 

performance is open to the public (Rothwell, 1998), construction costs and 

other costs data are not available except for the commercial US nuclear fleet 

(Hultman et al., 2007). The possible methods for such “blind” estimation 

could only rely on adjusted data announced by the government and/or the 

bidding data provided by vendors. The government however due to political 

and nationalistic reasons may present optimistic cost estimates. Vendors also 

have incentives to present biased contract price for winning the bid. All these 

make estimating the construction costs difficult. 

Secondly, the construction of a nuclear power plant requires a large 

amount of on-site engineering. On-site engineering is a notorious barrier for 

economic assessment of large-scale projects, and it accounts for a significant 

proportion of the construction costs of nuclear plants (Thomas, 2005). Thirdly, 

a major part of construction costs heavily depends on the type of reactor 

chosen by system designers, and the selection of nuclear reactors ultimately 

influences the costs. There are four generations of nuclear reactors until now, 

and Generation IV is still under development (Grimston et al., 2014). 

Generation I is the early prototype of power reactors, such as the Magnox 

power stations in UK and the Fermi 1 power stations in US. Generation II 

nuclear reactors that are most common reactors in use include pressurized 
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water reactor, boiling water reactor, advanced gas-cooled reactor, and so on 

(Grimston, 2006). PWR and BWR are cooled by water during the operation, 

while advanced gas-cooled reactor is cooled by gas instead. A Generation III 

reactor is an improvement of any Generation II reactors done by improving 

fuel technology, thermal efficiency, passive safety, etc. The first Generation III 

reactor used for generating electricity is Kashiwazaki in 1996. The selection of 

reactors also influences the geological consideration and thus influence 

construction costs, as well as back-end costs within O&M costs. 

Uncertainty in O&M costs 

Operations and management costs discussed here contain typical costs 

associated with administration, management, support and upkeep of a power 

plant plus back-end costs. The costs of license and regulatory compliance is 

independent from the capacity of a NPP, while the costs of planned 

maintenance, insurance, contractor services, security, and corporate overhead 

are dependent on the scale of a NPP. The above costs included in the O&M 

costs can be considered as the known costs once the capacity of a NPP is 

determined. 

On the other hand, back-end costs, the costs of human health and 

environmental protection, and the supply and maintenance costs of unplanned 

shut down of reactors are uncertain in the O&M costs. Back-end costs include 

the costs related to decommissioning and dismantling of nuclear facilities at 

the end (or even middle) of their operating time, and the long-term costs 
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related to disposal and management of radioactive waste (Joskow, 2006). The 

costs related to decommissioning and dismantling could be understood as 

depreciation costs, depending on the scale and the age of nuclear power plants. 

This cost is estimated as 10-15% of the construction costs (Rose, 1985). The 

costs related to disposal and management of radioactive waste however is 

dependent on “the sequence and timing of various stages of the program” 

(World Nuclear Assocation, 2015). The lifetime of a typical Generation II 

reactor is 30 or 40 years, but some reactors are being life-extended to 50 or 60 

years in United States. The actual operating time is longer than the anticipated 

life time in this case, and the costs for disposal and management of radioactive 

waste thus are smaller than the expected due to decreasing radioactivity.  

In addition to the costs discussed above, there is another uncertain costs 

associated with the unplanned shut down of power generators. For ease of 

maintenance, a nuclear reactor is planned to shut down regularly and it does 

not influence the output of electricity for the power plant. The unplanned shut 

down can be caused by human mistakes or any issue regarding the nuclear 

reactor. This can affect the output of electricity, as the redundant device needs 

a while for warming up and generating electricity. Between this time gaps, the 

output of electricity of the power plant is definitely lower than the anticipated 

output. In some electricity market (e.g., UK), this short of the contracted sales 

can cause a lot of expense for buying electricity from the competitors (Steer et 

al., 2011) Additional supply and maintenance costs are required accordingly as 
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well. 

Uncertainty in fuel costs 

Rothwell (2009, 2010) suggested that fuel costs could be inferred from public 

information including reactor technology, nuclear fuel fabrication, the length 

of refueling outage, etc. Most nuclear fuels contain fissile elements such as 

uranium-235 (235U), plutonium-239 (239P), plutonium-241 (241P), etc. The 

quantity of these fissile elements required by reactors are different, as well as 

the type of fissile elements. A typical Pressurized Water Reactor would have 

about 150-250 assemblies of 200 to 300 rods each, and the reactor would 

require 80-100 tons of uranium in all glass (Glasstone & Sesonske, 1994). A 

modern Boiling Water Reactor, by contrast, would have 800 assemblies of 74 

to 100 rods each, requiring 140 tons of low-enriched uranium. The fuel costs 

heavily depend on the selection of nuclear reactors.   

2.3.2 Real Options in Nuclear Power Systems 

As discussed in Subsection 2.3.1, uncertainty exists in nuclear power systems 

and affects the investment assessment. To pro-actively deal with uncertainty, 

real options theory (or flexibility in design) is considered as a means for 

economic analysis and improvement in nuclear power systems design and 

management. Cavender (2011) provided an overview of the methods for 

economic analysis in valuing nuclear power plants under uncertainty, 

including the discussion and comparison between typical DCF and ROA. DCF 



60 
 

is an economic method for valuing a project by using the ideas of the time 

value of money, but it does not handle uncertainty well, even though it is 

widely used in cash flow analysis. This is because in traditional DCF (e.g., 

standard NPV rule) approaches, an expected or most likely scenario is 

projected and used to model the cash flows. The approach presumes of 

management’s passive commitment to a rigid deployment strategy, which is 

not an adequate representation of reality. For example, a capital project may be 

initiated immediately and operated continuously at the same scale at the 

beginning until the end of the life cycle, although in reality managers may 

seek to adjust capacity as needed over time, so as to adjust to changing needs. 

On the other hand, many real world applications showed that the ideas of 

flexibility could improve the expected life cycle performance by 10-30% on 

average (de Neufville & Scholtes, 2011). However, design for flexibility is not 

fully accepted by researchers in the context of nuclear technology due to 

several misconceptions introduced by Martinez-Cesena et al. (2013):  

1. Real options theory is similar to a black box that is difficult to 

understand it really works without strong background in mathematics 

and/or finance; 

2. Real options theory is one tool used to enlarge the value of projects, 

despite the projects being flexible or not; 

3. Real options theory prefers risky projects (designs or systems) rather 

than safe ones; 
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4. Real options theory is only applicable for tradable assets; 

5. Real options theory may be a good idea conceptually but do not work 

practically. 

However, these misconceptions are not difficult to address. For instance, 

there is much research meant to provide accessible tools for applying real 

options under a wide range of circumstances, of which one approach is the use 

of managerial decision rules, as proposed in this thesis. In addition, real 

options theory only develops value within a flexible project or system. If the 

project is inflexible, real options theory cannot bring any additional value at 

all. Moreover, if the value of flexibility for a relatively safe project is not 

favorable or even negative, that indicates that design for flexibility is not 

necessarily needed in this particular case. As can be found in de Neufville and 

Scholtes (2011), there are some real cases applying real options theory that are 

not tradable.  

In the broader literature, Louberge et al. (2002) investigated an optimal 

stopping problem with respect to geological disposal of nuclear waste using a 

real option model. The embedded flexibility is the option of switching from 

surface storage to deep geological disposal. The decision-making processes 

was represented and modeled by a GBM, where the objective is to minimize 

the expected net present value of waste management, under uncertainty of 

costs of future accidents, institutional control, and hazard management. 

Kiriyama and Suzuki (2004) proposed a real option model to analyze an 
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optimal stopping problem under the uncertainty of CO2 emission by 

considering the phasing flexibility. The model was a simplified diffusion 

model based on the work of Pindyck (2000) by replacing the original technical 

uncertainty with the CO2 emission, and it was solved by DP for determining 

the optimal timing to construct new a power plant in order to reduce the rate of 

CO2 emission in excess of the cap. Gollier et al. (2005) examined a phasing 

flexibility through a real option, where the capacity of nuclear power plants 

deployed at different times were not necessarily the same. The model aimed at 

determining the optimal timing for investing the first module and the sizable 

effect on the value of modularity. Siddiqui and Fleten (2010) examined the 

value of a staged commercialism program for a unconventional energy 

technology by taking the real option approach, motivated by concerns about 

CO2 emissions. Jain et al. (2013) focused on the small and medium size 

reactors (SMRs) and investigated the economic impact of modular 

construction of such reactors. Locatelli et al. (2015) discussed a 

load-following problem with SMRs and demonstrated its viability based on 

the real option approach. 

In addition to DP and DCF, simulation is considered as an important tool 

in analyzing the value of flexibility in nuclear power systems. Rothwell (2006) 

considered three uncertain sources in valuing the investment of new nuclear 

power plants using a real option approach: price volatility, capacity factor risk, 

and cost volatility. The capacity factor of a power plant is defined as a ratio of 
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the output of a specific power plant, and it shows great variation during the 

life cycle of a power plant (Du & Parsons, 2012). These uncertain parameters 

were estimated based on available real data and sampled in the Monte-Carlo 

simulation for sensitivity analysis. The target system was a dual-unit advanced 

Boiling Water Reactor, where managers had the option to decide whether or 

not to invest the second reactor. Abdelhamid et al. (2009) also analyzed the 

deferral option in siting the first nuclear power plant in Tunisia using the 

similar approach. Zhu (2012) established a simulation-based model for the 

economic assessment of investing nuclear power plants in China. Several 

uncertain sources, such as technological and economic uncertainty, were taken 

into account in the analysis. Uncertainty factors were explicitly modeled using 

different mathematical models, and the proposed model was solved by Least 

Squares Monte-Carlo simulation. The results showed that Generation III 

reactors were not worth investing, unless the total investment costs of such 

reactor could reduce to 1.2 times to that of current domestic reactors and the 

electricity price increase by 30%. Besides, Cardin et al. (2012) investigated an 

innovative nuclear technology (i.e., ADSR) by considering the uncertainty of 

unplanned shut downs caused by nuclear reactor cores, and then solved the 

real option model via decision tree analysis.           

2.3.3 Social Acceptance of Nuclear Power 

Social acceptance or public acceptance can be understood as “essential for any 
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activity that affects large sectors of a nation” (Golay, 2001). The applied 

objects of social acceptance can be human beings, abstract concepts, real 

technologies, etc. For nuclear power, the corresponding social acceptance is 

represented as the public support for maintaining existing NPPs and escalating 

more NPPs nationwide. Abrecht et al. (1977) discussed some ethical issues 

that can affect the public acceptance of nuclear power, including the public 

appraisal and risks of nuclear technology. More specifically, these issues 

contained nuclear waste disposal, catastrophic accidents, releases of 

radioactive substances, and the threat of nuclear weapons. This acceptance is 

obviously regional, because the factors that could influence it are different 

across the world, such as the national economic condition (e.g., Gross 

Domestic Product (GDP)), recognition of current nuclear technology, etc. 

Kidd (2013) introduced that some western countries, such as the USA and UK, 

were not obviously constrained by public acceptance issues, as other 

developed countries like Germany and Switzerland. The public acceptance 

nevertheless still plays a role in affecting the capital investment cost, which is 

currently the major problem for the escalation.  

Among the above-mentioned factors, historical local and/or foreign 

nuclear events are ones that could significantly reduce the public support for 

nuclear power. The Chernobyl disaster in Ukraine was the worst NPP accident 

since nuclear power had been used as an alternative energy source, in terms of 

cost and casualties. This catastrophe ultimately cost 18 billion rubles and 
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involved over 500,000 workers, while 31 people died during the accident itself 

(Gorbachev, 1996). Thirteen countries was contaminated by radioactive 

substances, and 985,000 premature deaths as a result of radioactive released 

was reflected between 1986, the year of the accident, and 2004. After the 

Chernobyl disaster, the escalation of NPPs had been slowed down 

significantly across the globe until 2005. In 2011, the other disaster at 

Fukushima Daiichi NPP in Japan received much attention from the outside, as 

it was considered as the second worst accident in terms of the level of 

radioactive materials. The accident occurred when the power plant was hit by 

a tsunami, and it resulted in a nuclear meltdown of three nuclear reactors 

(Wakatsuki, 2014). 300,000 people evacuated the contaminated zone and 

about 18,500 people died during the evacuation in this accident due to the 

earthquake and tsunami (Aliyu et al., 2015). The estimates of the economic 

losses (including the total disaster and consequence) range from $250 billion 

to $650 billion US dollar (Lavelle, 2012). Influenced by the Fukushima 

accident, Germany immediately closed 8 oldest NPPs, and will shut down the 

remaining plants gradually till 2025 (Joskow & Parsons, 2012). Switzerland 

government made similar decisions at the same moment under this 

circumstance. Other countries like the USA, Sweden, China, and India delayed 

or did nothing with ongoing projects even though they were confronted with 

social acceptance as a key issue when they made decisions regarding nuclear 

power (Mishra, 2012). The South Korean government just continued to 
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operate 20 existing NPPs and will establish more NPPs by 2015 (Song et al., 

2013). 

For technology recognition, Golay (2001) questioned the proposition that 

creating demonstrably safer technology could gain the social acceptance of 

nuclear power. The original argument would be true if the safer technology is 

demonstrated with satisfied performance by trustable organizations or 

communities. The exact social acceptance gained by the corresponding 

technology, however, is uncertain and difficult to quantify. In addition, the 

social acceptance of nuclear power does not vary directly or inversely with the 

GDP. The United States had the highest GDP around the world in 2008, but 

India had the highest public acceptance index  at that moment (IAEA, 2008). 

An inverse conclusion related to the USA and Germany can be drawn 

according to the same source. There might be some relationship between the 

social acceptance of nuclear power and the GDP. Such relationship, however, 

has not been confirmed yet. 

International Nuclear Events Scale (INES) 

As discussed above, current literature shows that the historical data of nuclear 

events could be an applicable tool for some countries to estimate the future 

social acceptance of nuclear power. For instance, the social acceptance of 

nuclear power in Germany is obviously affected by the recent nuclear disasters, 

while countries like the USA and UK are not. Despite other factors such as the 

GDP and technology recognition, one may consider to project the social 
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acceptance by taking into account the historical data of recent nuclear disasters 

in a numerical way. That is, qualifying the safety significance of nuclear 

events (incidents or accidents) first before going to further steps, such as 

regression analysis and hypothesis test. 

To enable prompt communication of safety significance to the public, the 

International Atomic Energy Agency introduced the International Nuclear 

Events Scale (INES) in 1990 (World Nuclear News, 2015). Similar to the 

Moment Magnitude Scale  used to measure the earthquake, the INES is also 

designed to be logarithmic such that the severity of an event is approximately 

ten times greater for each increase in the level of the scale, which aims to 

“keep the public as well as nuclear authorities accurately informed on the 

occurrence and consequences of reported events” (International Atomic 

Energy Agency, 2015). There are eight levels in total on the INES scale. For 

seven nonzero levels, three of them are incident-levels and the rest are 

accident-levels. IAEA also provided at least one example for each level in 

order to facilitate the qualification of nuclear events. 

As an important indicator suggested by IAEA, INES has been applied for 

studying the risk perception of a nuclear power plant in contexts of different 

countries. Huang et al. (2013) studied how the Fukushima accident impacts on 

the risk perception of residents near nuclear power plants in China. Four 

perception factors (i.e., knowledge, perceived risk, benefit and trust) were 

considered in a structural equation model, and three levels of nuclear events 
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(i.e., level 1 to 3 of INES) were taken into account for assessing the median 

public acceptable frequencies. It showed that this accident in Japan had 

significant impacts on risk perception, and the most sensitive groups of 

residents were those not in public service, those with low income, and those 

living near the plant. Research participants were required to go through survey 

for gathering data where INES provided them better understanding on the 

classification of nuclear events. Similar study of He et al. (2013) showed that 

the public in China did not lose trust in government authorities (not include 

state-owned enterprises), even after the Fukushima accident. However, such 

trust was waning due to information asymmetries (i.e., lack of transparency) 

and information incompleteness (i.e., lack of information sources). A strategy 

that aimed at dealing with those issues would be developed in the near future 

by the Chinese government. Case studies in both papers were with respect to 

the nuclear power plant at Lianyunguang and Haiyang, respectively, which 

were relatively new candidates for establishing nuclear power plants. Besides, 

Webb et al. (2006) reviewed the nuclear events over 50 years at the Sellafield 

nuclear installation in England, and accessed past events referring to the levels 

of INES in a unified system of off-site impact rating. Each event was noted in 

a specific INES level with detailed description, helping people better 

understand the INES User’s Manual. This study too demonstrated that the 

current INES rating scheme was probably applicable for various radiological 

events. 
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2.3.4 Thesis Position within Siting Nuclear Power Plants 

The proposed approach is applied in a deployment problem with regards to 

nuclear power plants. To the best of our knowledge, no existing work 

considers the uncertain factor of social acceptance of nuclear power 

technology when evaluating the investment of siting nuclear power plants. 

This factor, however, is valuable for consideration as the social acceptance 

could affect the decision-making processes, such as the capacity deployed at a 

plant initially and the time for expanding its capacity over the life cycle. The 

social acceptance within the second application is simplified, being expressed 

in the INES rating scheme. It is assumed that decision-making processes of 

this siting problem will be significantly affected by such acceptance. That is, if 

the social acceptance is too low to tolerate, existing plants will be shut down 

immediately. It is further assumed that existing plants will not be allowed to 

extend their service life if the social acceptance falls into a medium level of 

severity, even though they are permitted to keep operating. Therefore, this 

thesis fits best within the long term siting problem of nuclear power plants 

incorporating strategic-level flexibility.          

2.4 Research Opportunities 

2.4.1 Related to Design and Management of Infrastructure Systems 

There is an opportunity to enhance the current design and management of 

infrastructure system in terms of the long term (e.g., 10+ years) life cycle 
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performance by incorporating the idea of strategic-level flexibility. The 

opportunity arises because this idea performs well in the design of typical 

infrastructure systems, and the strategic-level decision-making processes of 

infrastructure systems are similar to those of typical ones. The goal in this case 

is to find appropriate flexible design alternatives to improve expected long 

term life cycle performance of infrastructure systems, as demonstrated in 

many case studies of typical infrastructure systems (de Neufville & Scholtes, 

2011).  

Table 2.1 provides some examples of designs in the literature regarding an 

urban system that fits along the four features of interests. The first column on 

the left shows the example studies, and the other four list the features. As can 

be seen, very few of them cover all these features and some of them even are 

not infrastructure systems. Except for Cardin and Hu (2016), there is not much 

work that addresses all the engineering system features considered. This is 

where this thesis hopes to make a contribution. Also, the concept of flexibility 

is not well applied in the infrastructure system sector. 

A typical infrastructure system consists of some infrastructures (e.g., 

stations, power plants) and/or multiple network links (e.g., roads, power grids). 

The system aims at distributing corresponding resources - such as emergency 

vehicles and electricity – to the customers in order to satisfy certain 

predetermined requirements. Uncertainty sources like customer demand and 

supply volatility significantly affect the expected system performance in the 
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long term. Plenty of work demonstrates that design for robustness has 

considerable impacts on dealing with uncertainty in the downside; see, for 

example, Farahani et al. (2012). The typical designs, however, cannot change 

themselves according to the external situations, and thus lose the opportunities 

in the upside. The flexible design, in contrast to typical designs, has the ability 

to pro-actively deal with uncertainty, and adapt to changing future conditions.  
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Table 2.1 Example studies of different designs aiming at infrastructure systems. 

 Design Features 

Example studies System details infrastructure 

system 

Long term life cycle Strategic-level flexibility With uncertainty 

Tseng and Graydon (2002) Power plant     

de Neufville et al. (2006) Parking garage     

Guma et al. (2009) Real estate     

Urich and Rauch (2014) Urban water infrastructure     

Zhou et al. (2015) Electric power system     

Cardin and Hu (2016) Waste-to-energy plant     

This thesis EMS and nuclear systems     
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2.4.2 Related to Real Option Analysis 

There is a clear opportunity to enhance and complement existing approaches 

used in real option analysis to help identify best flexible systems design 

concepts by means of performance quantification (i.e. economic or others). 

This can be done by developing a framework systematically for valuing the 

flexibility under uncertainty, by determining the stochastically optimal initial 

configuration and the best implementation plan. Standard ROA methods may 

be difficult to use for the evaluation of flexibility in infrastructure systems for 

the reasons discussed below.  

Typical DCF valuation methods do not account well for inevitable change 

of uncertainty drivers during the lifetime of an engineering system. It is 

usually assumed that the deployment path or management strategy is 

determined at ݐ ൌ 0 over the long term life cycle of the system. However, the 

uncertain factors keep changing since the start of the project and 

managers/planners have to operate the system based on the best available 

condition, in order to maximize the profit or minimize the loss. This is not 

captured in typical DCF valuation methods, and it can affect investment 

decisions on large-scale systems significantly.  

For the lattice-based model, there are some assumptions implicit in it, 

which may not be realistic for use in an engineering context. Firstly, it is 

assumed that path independence holds in the model. That is, the value of a 
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node at period ݐ  with an up-down movement in previous two periods 

ݐ) െ ݐ ,ݐ∆2 െ  is equivalent to that of a down-up movement. While this is (ݐ∆

fine in the context of financial options valuation, this assumption may not hold 

true in an engineering context because one may act differently in those two 

scenarios. For instance, decision makers may expand system capacity if 

demand rises, in which case the system may have extra capacity when demand 

drops, leading to a different performance and value for the system than if a 

down-up movement occurs. In this case, decision makers may not expand 

system if demand drops first, and the system may thus have no extra capacity 

when demand rises. This highlights some of the path dependencies that are 

inherent to the analysis of complex engineering systems, which is not captured 

well in a lattice model.  

Secondly, considering more than one uncertainty source in a binominal 

lattice model can be challenging. Quadranominal and even multinominal 

lattice approaches have been developed to deal with multiple uncertainty 

sources, however at the expense of a higher curse of dimensionality, which 

increases computational complexity, and detracts from the main advantages of 

a recombining lattice (Copeland & Antikarov, 2001). Also, it is challenging 

when multiple flexibility strategies are considered in the design. The 

computational time may be consideraly large when more than one strategies 

are taken into account, because decision makers need to determine the 

appropriate positions to exercise flexibility strategies by fitting historical data 



75 
 

based on a pre-determined recursive formula. It may already be challenging 

for decision-makers to determine the optimal strategy at any given time, it 

becomes even more difficult to do so when considering a multinomial lattice. 

In the case of a simple lattice, the decision-maker must determine its state and 

stage in the lattice by fitting historical data, project the up-down movement 

based on this state, and then apply a recursive backward induction process to 

determine the best strategy at that particular time (e.g., exercise option, do not 

exercise). This may be challenging if the decision-maker does not have prior 

training in this advanced mathematical technique. This problem is exacerbated 

if the decision-maker needs to find the optimal strategy in a multinomial 

lattice space. Also, due to the nature of the model (with ݑ ൐ 0, ݀ ൐ 0), the 

performance of the system will never be negative. However, the expected 

value (i.e., ܧ௧,௡) sometimes could be negative when the profit of a system is 

the aim. 

Finally, it is normally challenging to analyze several systems 

simultaneously (i.e., infrastructures in a complex system) using lattice-based 

approaches. Although it is possible to describe each system with a single 

lattice model, it is unclear how the interactions between systems can be 

explicitly considered in those models. These interactions however can heavily 

affect decision makings with regards to implementing the flexibility strategies. 

For example, each fire station can be considered as an individual system in an 

EMS system. The emergency incidents covered by one station could be 



76 
 

covered by other stations, too. Assigning one incident to different stations may 

produce different situations and ultimately affects the implementation of 

flexibility strategies. Unfortunately, lattice-based approaches may prove 

difficult to use to address this issue, and therefore may not suitable for the 

analysis of flexibility in infrastructure systems. 

Table 2.2 summarizes engineering applications making use of different 

ROA methods for valuing the flexibility. The second to the fourth columns list 

the typical methods applied for evaluating the flexibility. The term “CCS” is 

the abbreviation of carbon capture, transport, and storage. The idea of decision 

rules is considered as an implementation of flexibility strategies in the second 

column on the right. Check marks indicate the approach used in a given study, 

or whether decision rules are used as an implementation method with the 

optimal configuration. It is shown that little work making use of decision rules, 

and even less with the optimal configuration (i.e., initial configuration plus 

best decision rules). 
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Table 2.2 Engineering applications of studies making use of ROA methods for flexibility evaluation. 

  Real Option Analysis Methods Method 

Example studies System details Decision analysis Dynamic programming Simulation Decision 

rules 

Optimal 

settings 

Babajide et al. (2009) Oil      

Wang et al. (2014) Biomass power      

Ajak and Topal (2015) Mining      

Kelly (1998) Mining      

Khansa and Liginlal (2009) Security process innovation      

Eckhause and Herold 

(2014) 

CCS system      

Chow and Regan (2011) Transportation network      

Pringles et al. (2015) Electricity grid      

Melese et al. (2015)  CCS system      

Cardin et al. (2015c) On-shore LNG      

Cardin	and	Hu	(2016)	 Waste‐to‐energy	plant	 	 	 	 	 	
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2.4.3 Related to EMS Systems 

There is an opportunity to analyze EMS systems incorporating the idea of 

flexibility dedicated to the issue of improving expected system performance in 

terms of key performance indicators (KPIs) such as total costs and/or incident 

coverage rate. This opportunity arises due to the limits of current design and 

management strategies in EMS systems, as captured in the literature – and 

practice to some extent. Most existing analyses typically consider full capacity 

deployment (i.e., emergency vehicles and stations) at once at the beginning of 

the system life cycle (i.e., ݐ ൌ 0) and consider short term demand fluctuations 

as the main uncertainty driver. Those solutions (or designs) do not account 

well for fluctuations in emergency calls or incidents in the long term (e.g., 

5-10 years) (Başar et al., 2012; Goldberg, 2004). As a result, an EMS system 

may function well for the first few years, but then start underperforming later 

if adjustments are not made to accommodate changing incident patterns in 

light of changing demographics, economic situations, regulatory environments, 

and technology. 

A few studies account for designing an EMS system in the long term. An 

important issue in such work is that long term demand of emergency calls or 

incidents is considered as a deterministic parameter rather than an uncertainty 

driver. The projection of the long term incidents is obtained from the analysis 

regarding historical or artificial data. This so-called forecast can be biased and 
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incorrect for some reasons (Morgan & Henrion, 1992). Thus, it is most likely 

that the future will not turn out as planned for the whole project life cycle, and 

thus the system may be in a less than ideal configuration quite rapidly. Even if 

the forecasts are correct, which is highly unlikely, the idea of “Flaw of 

Averages” (Savage, 2002) indicates that decision based on the “most likely” or 

“average” scenario is usually inappropriate and may lead to bad investment, 

unless the engineering system response is purely linear. Such flaw is the 

consequence of Jensen’s inequality for non-linear systems: 

 [ ( )] ( [ ])E f x f E x   (2.17) 

In short, this inequality represents that the expectation of a system output 

(i.e., left hand side) is not the same as the system output evaluated based on an 

expected input ݔ  (i.e., right hand side). Since an EMS system almost 

necessarily does not have a linear performance response, the “Flaw of 

Averages” may have significant impacts on the expected performance 

associated with typical designs where expected emergency incidents are used 

as input parameters to the modeling. Besides, the EMS system might be called 

to adapt its configuration flexibly to achieve better life cycle performance and 

reduce costs over time. This may pose a challenge when the system has been 

designed and planned based on rigid deterministic projections of future needs, 

so that flexible adaptations may be more costly. 

To address the issues stated above, this thesis proposes a novel design 

approach and applies it to a design problem within EMS systems. The 
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proposed flexible design allows the system to deploy capacity over time and 

space such that the system is able to adapt to the realization of uncertainty. The 

flexible system considers long term uncertainty in the design process, and it is 

thus able to perform well in the long term. Table 2.3 summarizes an overview 

of current designs and studies for EMS systems with the considerations of 

different features of interest. The second and third columns on the left indicate 

the types of objective functions for the design. As can be seen, most work 

focuses on short-term planning or daily operation (i.e., location and relocation) 

under uncertainty, and little focus on long term planning. Also, the uncertainty 

driver like emergency calls is typically not considered in the long term. 

Furthermore, none of them considers strategic-level flexibility as a means to 

deal with long term uncertainty.
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Table 2.3 Example studies of current designs for EMS systems. 

 Design Features 

Example studies Obj. of Min. Obj. of Max. Long term planning With uncertainty Strategic-level flexibility 

Toregas et al. (1971)      

Schilling et al. (1979)      

Daskin (1983)      

Ball and Lin (1993)      

Beraldi and Bruni (2009)      

McLay (2009)      

Gendreau et al. (2001)      

Gunawardane (1982)      

Başar et al. (2011)      

Ghaderi and Jabalameli (2013)      

This thesis      
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2.4.4 Related to Economic Assessment of Siting Nuclear Power Plants 

There is an opportunity to develop a novel approach to site nuclear power 

plants flexibly under long term uncertainty. The new approach should aim to 

site nuclear power plants in an optimal way based on the realization of 

uncertainty drivers, and over time and space, while past designs do not 

account well for long term uncertainty. More specifically, the concept of 

flexibility or real option can be considered as a means to deal with uncertainty 

pro-actively and increase the system’s adaptability. Applicable strategic level 

flexibility includes investment deferral, phased deployment, capacity 

expansion, etc. Table 2.4 provides an overview of example applications using 

real option theory to deal pro-actively with uncertainty. The first column on 

the left represents the example studies, and the second one shows the 

uncertainty driver of social acceptance. As observed, real option strategy of 

deferral is in favor of siting nuclear power plants. Other flexibility strategies 

such as phased deployment and switching between technologies are also 

considered as alternatives to deal with uncertainty. To the author’s knowledge, 

no study has yet focuses on the siting of nuclear power plant with the 

consideration of public/social acceptance as an important uncertainty driver 

potentially impacting future performance, in addition to standard uncertainty 

drivers like electricity demand.    
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Table 2.4 Example studies of capacity deployment in the nuclear engineering sector. 

 Uncertainty Real Option Strategies 

Example studies Social acceptance Deferral Switching Phased 

deployment 

Capacity 

expansion 

Life 

extension 

No real 

options 

Louberge et al. (2002)        

Kiriyama and Suzuki (2004)        

Rothwell (2006)        

Abdelhamid et al. (2009)        

Zhu (2012)        

Cardin et al. (2012)        

Siddiqui and Fleten (2010)        

Jain et al. (2013)        

Abudeif et al. (2015)        

Kojo and Richardson (2014)        

Erol et al. (2014)        

This thesis        
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One reason creating this opportunity is that existing approaches consider long 

term demand fluctuation as a deterministic projection based on historical data, 

which could be incorrect. In addition to demand, there are many uncertainty 

factors involved in this siting problem, such as construction costs and time, 

price of electricity and fuel, etc. Deploying capacity once and all could 

underperform after a few years since the start of the project if the uncertainty 

parameters are far from expectations. This may cause a huge loss because the 

investment of nuclear power plants is capital intensive. On the one hand, 

deploying too much capacity which cannot be fully utilized in early stages will 

significantly increase construction costs, and expose system operator/owner to 

potential losses. On the other hand, deploying less capacity which cannot 

satisfy required demand of electricity will introduce contractual costs or 

penalty costs for losing demand. Both cases would affect the long term system 

performance in terms of the total costs.  

Another reason for creating this opportunity is that the impacts on the 

investment caused by social or public acceptance of nuclear technology are 

typically not considered in the valuation of the investment. Studies show that 

nuclear accidents/disasters that occurred outside one region or country could 

have significant impacts on the investment of nuclear power plants inside a 

given region or country, even though how significant the impacts are is not 

confirmed yet, depending on which region or country it is (Joskow & Parsons, 

2012). The social acceptance is somehow influenced by those nuclear events 
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as they could harm public confidence on the safety issue with respect to 

nuclear technology. As a result, nuclear power may lose the support from the 

public and the funds for investing new plants from the government. Past 

research, however, has not paid enough attention to this issue. This thesis 

explicitly considers social acceptance in terms of cumulative INES in Chapter 

6 and analyzes the value of flexibility under such assumptions.  

One last reason for exploring this opportunity is based on the observation 

of past studies. Most of the work applying real option focuses on the issue of 

deferring investment until favorable market condition arises. These studies can 

be seen as examples of real option “on” projects. Nuclear power plants are 

partially deployed at the beginning of the life cycle of the project. Once the 

market condition is favorable, the remainder capacity will be deployed to 

satisfy the customers’ need. There are two potential issues included in the past 

research. One issue is that the consideration of flexibility is correct but not 

comprehensive. Besides investment deferral, real option “in” projects such as 

capacity expansion and technology switch could also be valuable for the 

investment, as they did in other engineering contexts (de Neufville et al., 2006; 

Marreco & Carpio, 2006). The other issue is that none of those studies, to the 

author’s knowledge, consider social acceptance as an uncertainty driver in 

their analysis. As an important factor, social acceptance may call off a nuclear 

project when the public do not favor or even be scared with this technology. It 

is an uncertainty source that is exogenous to decision-makers, and may not be 
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ignored. The valuation of the investment using real option/flexibility as a 

means to deal with uncertainty is also influenced by this lack of consideration.  

2.5 Anticipated Contributions 

This section explicitly discusses the main contributions of this thesis. The 

main contributions are twofold. First, this thesis proposes a novel design 

approach for infrastructure systems to further improve long term system 

performance under uncertainty. The proposed design approach incorporates 

the concept of flexibility instead of robustness, and the flexibility strategies are 

exercised based on managerial decision rules. Secondly, the proposed 

approach aims to address issues that exist in typical ROA approaches, such as 

path independency and the curse of dimensionality. The proposed design could 

then be more practical and easier for use by people lacking advanced 

mathematical knowledge. In addition, the proposed approach is applied to two 

engineering sectors – EMS and nuclear power plant systems – to analyze the 

value of flexibility systematically. The results shown later in Chapter 5 and 

Chapter 6 demonstrate that the proposed design approach can indeed help 

improve long term system performance. 

2.5.1 An Approach for the Design of Infrastructure Systems 

This thesis aims to provide system designers a novel design approach to 

developing infrastructure systems that can be adaptable to the rapid change of 
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economic condition, demographics, technology, etc. The new approach 

addresses the issue that typical designs often function well for the first few 

years, but then may underperform later if the system cannot adjust itself to 

accommodate changing uncertainty patterns. The approach introduces the 

concept of flexibility, also known as real option, to make the system capable of 

this adjustment easily in the face of uncertainty. Strategic, tactical, and 

operational levels of flexibility strategies are possible to be embedded in an 

infrastructure system, depending on the design problems. The anticipated 

contributions discussed in this section could be considered as domain 

contributions.  

The proposed approach addresses some of the concerns discussed in 

Section 2.4.1 as to how to improve expected performance of an infrastructure 

system in the long term under uncertainty. The proposed approach can be used 

in general to develop an infrastructure system and incorporate flexibility into 

the whole design according to the specific requirements and situations. 

Compared to the concept of robustness, not only flexibility limits downside 

risks by reducing exposure to possible losses, it also enables a system to 

pro-actively deal with uncertainty to gain on upside opportunities. For 

example, a flexible EMS system can, on the one hand, capture increasing 

emergency calls by deploying more capacity and emergency vehicles over 

time and space – thus improving response time. This system also can, on the 

other hand, reduce unnecessary costs by deploying less capacity and 
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emergency vehicles in early periods, and limiting capacity deployment and/or 

vehicles if the number of emergency incidents increases slowly. As 

demonstration, two applications regarding an EMS system and a nuclear 

power plant system are described in Chapter 5 and Chapter 6, respectively. 

Typical designs for EMS systems focus on deploying capacity based on a 

fixed and short term plan, while designs for nuclear power plant systems focus 

on deploying capacity based on deterministic long term projection of 

electricity demand. As a contrary, the proposed design deploys the capacity 

over time and space, and considers long term uncertainty at the same time. 

Note that the flexible design may not always be better than non-flexible design 

due to the cost premium introduced by enabling flexibility. The flexibility is 

worth using only if the value of flexibility is greater than or equal to this cost 

premium. Also, the value of flexibility is not constant as well, depending on 

the assumption of significant parameters used in the design procedures.    

2.5.2 A Modeling Framework for Flexible Infrastructure Systems 

This section discusses the methodological contributions of this thesis. That is, 

a novel approach is described as a modeling framework based on the SAA 

scheme in Chapter 4 to help managers, planners, and/or designers developing 

flexible infrastructure systems incorporating ideas of flexibility. The flexibility 

used in the design is analyzed via managerial decision rules, and captured by 

non-anticipative constraints inside of the multi-stage stochastic integer 
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programming model. The objective of the mathematical model for an 

infrastructure system is to find the stochastically optimal initial configuration 

as well as the best value of significant parameters for decision rules. The value 

of flexibility will be analyzed through a systematic and rigorous procedure 

extended upon the typical four-step procedure, which is applied in various 

engineering sectors (Cardin et al., 2015c; Cardin et al., 2012; Deng et al., 

2013). 

The proposed framework addresses some concerns described in Section 

2.4.2, with respect to the valuation of flexibility, as well as it implementation 

in operations. Compared to standard approaches based on dynamic 

programming and simulation, the proposed approach is developed based on 

mathematical modeling (more specifically stochastic programming), and 

analyzed via managerial decision rules. Compared to lattice-based approach, a 

multi-period stochastic programming has its advantages in dealing with many 

issues discussed above. Firstly, no path independence is strictly required in 

developing a mathematical model, and the objective value of such model of 

course could be negative if necessary. Uncertainty sources can be described 

either in analytical or approximation forms in the constraints. Secondly, the 

dimension of the mathematical model increases much slower than that of 

lattice-based approaches. So the curse of dimensionality could be eliminated 

in some sense. In addition, the exercise policy for flexibility strategies is based 

on managerial decision rules, emulating the actual decision-making process. 
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The mathematical model is theoretically able to find the stochastically optimal 

initial configuration as well as best decision rules among tens of thousands of 

combinations in a much shorter computational time, as compared to 

lattice-based approaches. The proposed approach is then better for estimating 

the value of flexibility strategies than lattice-based approaches from the 

pratical point of view. Moreover, the interactions existing in an infrastructure 

system can be explicitly captured in the constraints by properly defining sets 

of fire stations based on the vehicle fleet size. For example, ௜ܰ denotes the set 

of districts that can cover district ݅. The constraint ∑ ௜௝௧௝∈ே೔ݕ ൑ 1 indicates 

that one district can only be assigned to one fire station. Lattice-based 

approaches however cannot account easily for such interactions, which is 

inherent to infrastructure systems. The proposed framework can provide 

managers, planners, and/or designers information on how to enable and use 

flexibility appropriately without relevant knowledge of more advanced 

mathematical techniques such as backward induction (used in DP-based 

approaches to determine when it is optimal to exercise a particular source of 

flexibility). In contrast to a simulation-based approach, it helps planners 

identify a stochastically optimal initial configuration and best decision rules so 

that the system can have better expected performance over its life cycle, 

compared to typical designs. Note that due to the complexity of the design 

problems regarding large-scale engineering systems, the global optimal 

solution may not always be found in finite or acceptable time. The proposed 
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framework, however, is still helpful in finding good practical solutions within 

a short amount of time by applying heuristic algorithms (e.g., Tabu Search, 

Genetic Algorithm).  

The valuation of flexibility for the proposed framework is based on an 

extension of an existing four-step methodology. The solutions obtained in the 

step of Uncertainty Analysis (i.e., step 2) and Flexibility Analysis (i.e., step 3) 

is by solving the stochastic model with consideration of multiple 

representative scenarios. The Post-optimality Analysis of step 4 consists of 

several parts, such as out-of-sample analysis, sensitivity analysis, and Pareto 

test. The solutions obtained in step 2 and 3 will be used in this step as the input, 

while significant parameters will be modified accordingly in order to find their 

impacts on the long term expected performance over system’s life cycle. For 

instance, in EMS systems the requirement on incident coverage rate and the 

expected growth rate of emergency incidents are two significant parameters 

that could affect the system performance considerably. One can eventually 

find the value of flexibility and most sensible parameters for an infrastructure 

system though this valuation procedure. 
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Chapter 3 RESEARCH QUESTIONS AND APPROACHES 

“If we knew what it was we were doing, it would not be called research, would 

it?” – Albert Einstein (1879 – 1955) 

 

This chapter revisits and discusses the research questions investigated in this 

thesis, and the research approaches used to address them. To answer the 

research questions of interest, three research areas are identified and discussed 

in details. Both general and specific research questions are formulated in this 

chapter, indicating the anticipated contributions this thesis hopes to make. It is 

not expected that all questions can be fully answered here. The goal is to 

structure a novel framework for the design of infrastructure systems, and for 

inspiring further research on a longer timescale in this engineering sector. 

The first research area focuses on the design of infrastructure systems over 

their life cycle, incorporating the idea of flexibility to pro-actively deal with 

long term uncertainty, discussed in Section 3.1. The second area is about the 

real options analysis approaches. The third and the fourth research areas are 

concerned with the development of a flexible system in the context of EMS 

systems and nuclear power systems, which are described in Sections 3.3 and 

3.4, respectively. These two engineering systems are selected examples of 

infrastructure systems, used for demonstrating the feasibility and value of 

flexibility in design and management of such systems.   
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3.1 Area 1: Design of Flexible Infrastructure Systems 

The first research area is motivated by the research opportunities identified in 

Chapter 2, focusing on the issue of how to design and manage infrastructure 

systems under uncertainty, especially by exploiting the emerging idea of 

flexibility. It is anticipated that the novel design can improve the system’s 

expected performance in terms of KPIs over its life cycle. This broader general 

research interest is formulated as the following question: 

“What is the best design for an infrastructure system to make it adaptable 

to the changing environment such as market condition and demographics, and 

to improve the anticipated performance over the life cycle of the system under 

uncertainty?” 

It is postulated that incorporating the concept of flexibility or real options 

into the design of infrastructure systems and analyze flexibility via managerial 

decision rules, can help achieve these goals. To determine whether or not 

design the system for flexibility, one may want to find out the value for 

enabling flexibility. The more specific research question discussed in this 

thesis is: 

“How can one design a flexible system with a stochastically optimal 

initial configuration as well as best decision rules, and evaluate the 

corresponding value of flexibility compared to benchmark design (i.e., typical 

design without flexibility)?” 
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The notion of “stochastically optimal” is necessary to measure the quality 

of a flexible design in the face of a large number of uncertainty scenarios. The 

initial configuration, on the one hand, is the decision-making process 

regarding how to deploy capacity at the beginning of the life cycle (ݐ ൌ 0). It 

is assumed that decision-making processes are only affected by observations 

about previous decisions, because the information in the future cannot be 

known before it really occurs. This initial configuration is considered as a 

fixed plan and independent from the realization of scenarios. The decision 

rules, on the other hand, are guidance for planners to change the system based 

on the realization of scenarios so that the system can perform well on average. 

The initial configuration and decision rules will be determined by the 

proposed modeling framework and solved to optimality. The framework is 

described explicitly in Chapter 4. In addition, the valuation procedure for 

flexibility is extended upon the typical four-step methodology, and is 

demonstrated through two applications in Chapter 5 and Chapter 6. 

3.2 Area 2: Real Options Analysis Approaches 

As discussed in Section 2.4.2, typical real options analysis approaches do not 

sufficiently account for long term uncertainty. The commonly used approaches 

have implicit assumptions that make them unrealistic, like path independence. 

Problems regarding the design and management of infrastructure systems 

usually have a high level of complexity, and long term uncertainty (even 
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multiple uncertainty drivers) is inevitably involved. It is anticipated that the 

proposed novel approach could handle the design problem by relaxing those 

assumptions. To do so, one may ask the following question: 

“Can one develop a different modeling framework that is suitable for the 

analysis of flexibility and real options in infrastructure systems?” 

 Throughout the literature review, it is found that operations research 

techniques could be a useful supplement to ROA approaches. Mathematical 

programming, Markov decision processes, and queuing theory are possible 

approaches to systematically analyze the value of flexibility. Also, these 

methodologies do explicitly account for uncertainty, but in different manners, 

and none of them rely on the assumption of path independence. In addition to 

the above question, one may want to know: 

“Why is stochastic programming based on the sample average 

approximation selected as the approach to analyze the design problem in this 

thesis?”  

Since the flexibility strategies are exercised via managerial decision rules, 

it is better for decision makers to have stochastically optimal rules with fixed 

parameters (e.g., when to exercise the rule). Modeling the design problem 

using stochastic programming could directly embed the decision rules into the 

model and then solve it to optimality to obtain the rules anticipated. Sample 

average approximation provides a relatively easy way to solve the stochastic 

programming by considering a few representative sample scenarios, which 
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makes the proposed approach applicable. 

3.3 Area 3: Design and Management of Flexible EMS Systems 

EMS systems include all necessary features such as the resources (e.g., 

stations and emergency vehicles), links (e.g., roads), and customers (e.g., 

patients) to serve as good example for the analysis of infrastructure systems. 

Typical design planning and solutions for an EMS system is to deploy capacity 

all and once at the initial period based on a deterministic or stochastic analysis. 

Such designs probably perform well in the first few moment of operations, but 

may soon underperform because they cannot be adjusted to accommodate the 

changing uncertainty patterns. As demonstrated in a traditional engineering 

contexts in industry sectors like aerospace and real estate, flexibility can 

improve the expected system performance over its life cycle by 10-30% (de 

Neufville & Scholtes, 2011). One may ask the following question associated 

with the broader interest of this area: 

“Can one develop an EMS system incorporating flexibility so that it can 

stochastically dominate existing rigid designs (i.e., the benchmark) in terms of 

KPIs such as total costs and/or incident coverage rate?”  

To answer the above research question, a case study is described in 

Chapter 5 where a proposed flexible system is compared to two rigid systems. 

A flexible design “dominates stochastically” a rigid design if the expected 

performance of this flexible system obtained via out-of-sample analysis is 
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better than that of the rigid design. Note that improving multiple KPIs may 

require considerations of a trade-off between the different objectives. For 

instance, higher incident coverage rate may imply higher total costs, while it 

actually worsens the performance associated with these costs. The more 

specific research question therefore is: 

“From an economic view, is a flexible design always better than a 

non-flexible design?” 

The reason that this question arises is because there is a cost premium for 

enabling flexibility. The flexible design may not be the preferred one from an 

economic, if this premium is greater than the expected benefit from design for 

flexibility. To answer this question, one may need to assess the value of 

flexibility for a specific design problem with given assumptions on the main 

uncertainty drivers characterized by a specific set of parameters. The value of 

flexibility can be obtained through a systematical and rigorous procedure, as 

described in Chapter 5.  

3.4 Area 4: Design and Management of Flexible Nuclear Systems 

Energy systems also represent another typical example of infrastructure 

systems. The resource is the electricity generated by the power plants in the 

system, and the links are the power grids connected between cities, towns, and 

individual houses. This thesis selected nuclear power as the source for 

generating electricity instead of traditional thermal power, mostly due to its 
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ability to limit CO2 emissions, and ensure better sustainability. In particular, 

the design problem considered focuses on siting nuclear power plants in a 

region or country, as described in Chapter 6. Social acceptance of nuclear 

technology is considered as one of the major uncertainty drivers in this thesis. 

Similar to the EMS system, a broader research interest is summarized with the 

following research question: 

“Can one site nuclear power plants flexibly so that this energy system can 

have good anticipated performance in terms of total costs under uncertainty?” 

The notion “good” anticipated performance is necessary to measure the 

plan (or design) of siting plants incorporating the concept of flexibility. A 

design is good in siting nuclear power plants if it minimizes the expected total 

costs or expected LCOE over the lifetime of the energy system. Flexibility is 

introduced in the design in light of its past performance in other engineering 

sectors. The more specific research questions addressed in this thesis are: 

“What flexibility strategy can one consider in the design to improve the 

anticipated performance of the energy system? If multiple real options 

strategies are taken into account, which one benefits the system mostly?” 

The above research questions are concerned with the flexibility 

specifically embedded in the design, and are explicitly discussed in Chapter 6. 

A particular flexibility can be defined as a strategic-, tactical-, or 

operational-level one depending on which level of decision it belongs to. Due 

to the huge expenses for siting nuclear power plants, it is necessary to find out 
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the most valuable flexibility as the most preferred option if budget is limited. 

Besides, one distinctive feature of the novel design proposed is the 

consideration of social acceptance. The more specific research question 

therefore is: 

“What is the influence of social acceptance on the expected performance 

for a nuclear system, as well as decision-making processes?” 

The hypothesis is that the social acceptance at least has significant 

impacts on the expected performance, for both rigid and flexible systems. To 

answer this question, a comprehensive case study is described in Chapter 6, 

where social acceptance is considered as an uncertainty that can be turned 

on/off. It is also anticipated that the flexible system is affected less than the 

rigid system when social acceptance turns on. This is due to the nature of 

flexibility as demonstrated in past studies. 
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Chapter 4 MODELING FRAMEWORK FOR INFRASTRUCTURE 

SYSTEMS 

“Good tools are essential to do the job well.” – Confucius (c. 551 – 479 BC, 

the Analects)  

 

This chapter explains explicitly the modeling framework for designing 

infrastructure systems exploiting the idea of flexibility under long term 

uncertainty. The proposed framework is represented as a multi-stage mixed 

integer stochastic programming based on a sample average approximation 

scheme, where decision-making processes and decision rules are captured by 

integer/binary decision variables and non-anticipative constraints, respectively. 

This framework builds upon and extends the typical resource allocation model 

with considerations of flexibility, and suggests that it can be applied more 

generally to support the design of infrastructure systems. The purpose of this 

framework is to provide system planners a novel design approach that can be 

used to find the stochastically optimal design configuration as well as best 

decision rules for enabling and implementing flexibility easily and 

appropriately in infrastructure systems. 

The proposed framework consists of defining design variables, identifying 

modeling restrictions, and performing the numerical analysis. Section 4.1 

describes the major decisions that are involved in an infrastructure system, 
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shown as design variables in the mathematical model. Section 4.2 introduces 

internal and/or external factors that may influence the regular operations of an 

infrastructure system. These factors are then captured by constraints in the 

model. The numerical analysis procedure is described in Section 4.3. this 

procedure is based upon the standard four-step methodology used in various 

applications (de Neufville & Scholtes, 2011). It aims at finding the 

stochastically optimal initial configuration as well as best decision rules for 

the flexible design, the value of flexibility under specific assumptions of 

uncertainty drivers, and determining the parameters which affect the expected 

performance and the value of flexibility mostly.    

4.1 Defining Design Variables 

This section explicitly describes the issue regarding defining design or 

decision variables which are used for representing different levels of decisions 

in general involved in the design of infrastructure systems. The decision 

variable can be either discrete or continuous, depending on the variable itself. 

If the variable denotes whether to install a new station, it should be a binary 

variable. The variable could also be continuous if it denotes the capacity to be 

deployed. It should be noted that the type of decision variable does not depend 

on the point in time that the decision is made. In particular, general decisions 

are described as follows. 

1. Decisions regarding where and/or when to allocate infrastructures used 
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for generating and/or storing resources. This is one of the most 

important decisions made for the design of infrastructure systems, 

because the availability of resources depends on the availability of 

infrastructures. This strategic-level decision is about determining the 

appropriate locations to install infrastructures and the best time to start 

this installation. Infrastructures in such systems may have different 

functions. For instance, a station in an EMS system is used for parking 

emergency vehicles when they are idle, while a nuclear power plant is 

used for generating electricity. One may formulate this decision either 

as an integer or a binary variable in each candidate site.  

2. Decisions regarding how much capacity to be deployed for each 

available infrastructure and when to do that. This is also an important 

decision, as it directly influences the output of an infrastructure system. 

The term “capacity” has different meanings in different systems. It 

represents the number of emergency vehicles in an EMS system, or 

represents the power output of a plant in an energy system. One may 

model this as an integer variable.  

3. Decisions regarding infrastructure closure over the life cycle. The 

infrastructure of an infrastructure system always has a lifetime in 

practice, and it is also feasible to close an infrastructure before its 

service life if needed. This issue about infrastructure closure would be 

considered when the life cycle of the system is longer than the lifetime 
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of the infrastructure. One may use a binary variable to describe this 

decision. 

4. Decisions regarding how much capacity of resource will be deployed 

to a specific customer or a group of customers. This is a tactical level 

decision that directly links to the customers who are involved in the 

system. Note that the resource (e.g., electricity) from an infrastructure 

could be shared by different customers at any one time period. It is also 

true that in some systems resources can only serve one customer at a 

time (e.g., emergency vehicles). Formulating this decision either as an 

integer or a binary variable is acceptable. 

5. Decisions regarding the concept of flexibility incorporated in the 

system. This decision is applicable only in the flexible system due to 

the special constructional feature, for instance, the strong pillar of a 

parking garage for enabling capacity expansion (de Neufville et al., 

2006). It is introduced by the flexibility embedded in the design, and 

can be represented by an integer or a binary variable.    

4.2 Identifying Design Restrictions 

The constraints used in the model represent the real-world requirements and 

limits involved in the design and management of infrastructure systems. 

Typical requirement is about the service satisfaction with the system, e.g., the 

incident coverage rate in an EMS system. Such requirement usually introduces 
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penalty costs if the system cannot respond in a timely manner. Besides, there 

are various limits in practice if one would like to design an infrastructure 

system. Those limits are inevitable due to the boundary of current technology 

and/or physical structure. For instance, one station with three units’ capacity 

cannot operate and maintain four vehicles at a time. The causal relationship 

between decision-making processes also needs to be represented as constraints 

so that the model may capture reality. A nuclear power plant, for example, 

cannot be closed if it is not installed yet.  

The entire constraints can be separated into two groups. The first group of 

constraints consists of numbers of basic requirements and common limits 

which are not related to flexibility in the design of infrastructure systems. This 

group of constraints is fundamental for designing infrastructure systems in 

general, whilst the specific representations of the requirement between 

systems are not necessarily the same. 

The other group of constraints represents the decision-making processes 

regarding the flexibility considered in the design. The constraints are 

formulated as logical expressions since it is assumed that flexibility is 

analyzed via managerial decision rules. The “IF-THEN-ELSE” statements can 

be explicitly described in an integer-based programming model. More detailed 

examples can be found in the case studies introduced in Chapter 5 and Chapter 

6, where mathematical formulations about the decision rules are explicitly 

discussed. Note that the complexity of developing constraints associated with 
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flexibility heavily depends on the definition of the corresponding decision 

rules.   

4.3 Numerical analysis 

The approach used for numerical analysis in this thesis follows a standard 

four-step methodology. In addition, Cardin et al. (2015a) proposed a design 

catalog as a systematic approach to improve the design and evaluation of 

engineering systems by exploiting the concept of flexibility. A similar 

four-step methodology was applied in their study as well. This four-step 

methodology is therefore used in this thesis for the evaluation of flexibility 

strategies in the design of infrastructure systems. It is anticipated that after the 

numerical analysis there is a clear understanding on how to design and manage 

a flexible infrastructure system if the value of flexibility is favorable. This 

approach can be summarized as follows. 

1. Deterministic analysis. This step focuses on finding the best rigid 

design based on a deterministic projection of the main uncertainty 

drivers. The expected or most likely value of those uncertain 

parameters is usually chosen to create the projection. The design is 

normally developed based on professional or past experience, while it 

is found by solving the simplified model to optimality in this thesis.  

2. Uncertainty analysis. In contrast to considering deterministic values 

for the uncertainty modeling parameters, this step focuses on finding 
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the best rigid design based on various scenarios. The optimal design 

is determined by solving the stochastic model, which may differ from 

typical methods used in practice. The optimal solution of the rigid 

design under uncertainty will be analyzed in the out-of-sample test to 

gain significant information on the distribution of the design solution 

for a large number of uncertainty sample scenarios, as well as the 

mean and standard deviation. The purpose of this out-of-sample 

analysis is to estimate the performance of the solution based on 

forecasts calibrated using historical data. 

3. Flexibility analysis. This step aims at finding the stochastically 

optimal initial configuration as well as the best decision rules. The 

procedure is similar to step 2, while the difference is in the model 

analyzed in this step. The mathematical model incorporating 

flexibility will be solved to optimality by considering multiple 

representative scenarios at a time based on the SAA scheme. Similar 

to step 2, the optimal solution will also be subject to an out-of-sample 

analysis due to the same reason as stated in last paragraph. The value 

of flexibility will then be calculated by comparing the results (i.e., 

expected performance) for the flexible and deterministic designs in 

the out-of-sample analysis. This comparison is fair because it uses a 

considerably large sample size (e.g., 1,000 sample scenarios) to avoid 

the situation where one design may be favorable for particular 
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scenarios. 

4. Sensitivity analysis. A comprehensive sensitivity analysis will be 

conducted to find out which parameter influence most the expected 

performance of a given design solution. The purpose of the sensitivity 

analysis is to find the most significant parameter influencing the 

variability in the inputs’ assumptions. That is, how the objective value 

will change when we change the value of the input parameters. In this 

thesis, the sensitivity analysis consists of two consecutive 

sub-analyses: 1) evaluate the influence of several input parameters of 

interest based on a one-factor-at-a-time approach, and then 2) 

evaluate the most influential input parameter by slightly adjusting its 

value. The most influential parameters will be selected for a Pareto 

test to see how the expected performance evolves alongside with 

possible changes in those underlying parameters. 
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Chapter 5 CASE STUDY ONE – DESIGN AND MANAGEMENT OF 

FLEXIBLE EMS SYSTEMS 

“The truth of the sea, and let not found things to lie down in front of my eyes, 

let I to explore.” – Sir Isaac Newton (1642 – 1726)  

 

This chapter describes a case study about the design and management of an 

EMS system under uncertainty, considering the concept of flexibility. It 

describes explicitly the proposed multi-stage set covering location problem 

(MSCLP) considering multiple periods and the numerical analysis, as 

explained generically in Chapter 4. Section 5.1 introduces the design problem 

in details, while Section 5.2 explicitly discusses the mathematical model 

including notations, variables, and constraints. Section 5.3 describes a specific 

analysis of the numerical analysis based on a hypothetical city.  

5.1 Step 1: Design Problem Description 

In recent decades, much research has been dedicated to the issue of designing 

a cost-effective EMS system to quickly and efficiently respond to patients’ 

emergency calls. An EMS system is a type of emergency services that is 

dedicated to providing out-of-hospital acute medical care, and transporting the 

patient to the nearest available hospital for definitive care. Ong et al. (2009) 

show that delivering fast defibrillation in out-of-hospital care to emergency 
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patients could significantly increase their survival rate. Population, 

demographic structure, and the environment influence the spatial distribution 

of emergency incidents. This distribution is therefore uncertain and changes 

over time in terms of incident rates. The current designs of EMS infrastructure 

and vehicle systems, however, often focus on an optimal configuration that 

may not account well for fluctuations in emergency incidents in the long term 

(i.e., 5-10 years). Consequently, an EMS system may function well for the first 

few years, but then start underperforming later if adjustments are not made to 

accommodate changing incident patterns in light of changing demographics, 

economic situations, regulatory environments, and technology. The EMS 

system might be called to adapt flexibly to achieve better life cycle 

performance and reduce costs over time. This may pose a challenge when the 

system has been designed and optimally planned based on rigid deterministic 

projections of future needs, so that flexible adaptations may be more costly. 

This case study is about the design and management of an EMS system in 

the context of a hypothetical city. This city could be thought of a small or 

medium-sized one like many cities in the central and western regions of China 

or other emerging and urbanizing countries. The system planner focuses on 

developing a flexible EMS system that can satisfy the requirements on patients 

over life cycle, and optimizing the expected performance in terms of KPIs. In 

this case study, it is assumed that land can be “reserved” for the possibility of 

deploying a new station in the future. Even though this may not be always true 
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in reality, it is still applicable because the land reserved right now could still be 

used to build other facilities in the future, as long as the facility has the ability 

to house emergency vehicles (e.g., reserved position for parking). Also, the set 

of candidate sites may or may not be fixed during the system life cycle, 

depending on the real situation. This set is assumed to be fixed in this case 

study for simplicity. The proposed model, however, is clearly able to account 

for cases where the set of candidate sites changes over time.   

5.2 Step 2: Analytical Model 

The proposed flexible design alternative considers strategic- and tactical-level 

flexibility and is analyzed under a stochastic programming framework. 

Compared to typical models, strategic- and tactical-level decision-making 

should occur on different time scales. As shown in Figure 5.1, it is assumed 

that tactical-level decisions occur four times as frequently (e.g., once every 

quarter) as strategic-level decisions (e.g., once every year). This asymmetry 

reflects reality based on discussions with a local EMS provider, and is not 

limited to EMS systems. To make the alternative practical, these two types of 

decisions are distinguished. 

 

Figure 5.1 An illustration of strategic and tactical decision horizons. 
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5.2.1 Symbols and Terminology 

The flexible alternative deals pro-actively with uncertainty by leveraging the 

concept of flexibility. Here, the term “flexible” has the meaning that the 

infrastructure and vehicles in an EMS system can change and adapt according 

to variations in emergency incident rates over time. To realize this, 

strategic-level flexibility is introduced. First, the model accounts for a flexible 

phased deployment of station capacity over time and space. Instead of 

deploying all stations at once, the flexible design allows the deployment of 

stations over time, depending on the realization of the uncertainty scenario.  

Second, flexible capacity expansion at any given strategic period is 

studied. Once a station is deployed, the capacity can be increased when needed, 

which benefits from special attention to the design of the infrastructure (e.g., 

designing for smaller capacity first, and carefully planning for expansion in 

the future by buying a collocated piece of land, for instance). The phased 

structure of EMS stations allows the system to expand an existing station to a 

particular phase, or deploy a new station with pre-determined phase, as needed. 

Each phase in this model indicates a specific capacity to a station, which is 

related to its ability to maintain and operate a given number of emergency 

vehicles. The following list summarizes the modeling notation (sets and 

parameters): 

ܵ ൌ the set of strategic periods in a complete lifecycle ሺݏ ∈ ܵሻ; 

ଵܵ ൌ the set of strategic periods in which ݏ ൌ 1; 
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ܵଶ ൌ the set of strategic periods in which ݏ ൒ 2; 

ܵଷ ൌ the set of strategic periods in which ݏ ൌ |ܵ|; 

ܶ ൌ the set of tactical periods ሺݐ ∈ ܶሻ, partitioned into |ܵ| subsets, noted as 

௦ܶ; 

ܶଵ ൌ the set of tactical periods in which ݐ ൌ 1; 

௦ܧ ൌ the length of a strategic period. It may range from one to several years;  

௧ܧ ൌ the length of a tactical period. It may ranges from several weeks to 

several months; 

ܧ ൌ the set of length of review periods ሺ݁ ∈  ሻ. The maximal length isܧ

denoted as ܽ௠, which equals to ܧہ௦ ⁄௧ܧ  ;ۂ

ܫ ൌ the set of districts to be covered in the system ሺ݅ ∈  ;ሻܫ

ܬ ൌ the set of candidate sites to allocate stations ሺ݆ ∈  ;ሻܬ

ܰ ൌ the set of emergency incident scenarios ሺ݊ ∈ ܰሻ; 

ܮ ൌ the set of station phases ሺ݈ ∈  ሻ. The corresponding capacity, installationܮ

cost and operation cost of a phase ݈ station are denoted as ௟ܷ, ܿ௟ and ݉௟, 

respectively; 

ଵܮ ൌ the set of station phases with the minimum capacity (i.e., ௟ܷ ൌ 1); 

ଶܮ ൌ the set of station phases with the maximum capacity (i.e., ௟ܷ ൌ  ;(|ܮ|

ଷܮ ൌ the set of station phases when ௟ܷ ൏  ;|ܮ|

௜ܰ ൌ  the set of candidate sites that can cover district ݅ . That is, the 



113 
 

ambulances allocated in station ݆ ∈ ௜ܰ  can respond to the incidents in ݅ 

within a predetermined time (e.g., 11 minutes in Singapore), usually to satisfy 

the EMS provider’s required key performance indicator (KPI) (e.g., serve a 

given percentage of call within a given time); 

௝ܯ ൌ the set of districts that can be covered by candidate site ݆. The number 

of elements in this set is denoted as หܯ௝ห; 

ܿ௩,݉௩ ൌ  the unit cost of the medical vehicle and its corresponding 

maintenance cost; 

ܿ௨ ൌ the unit cost per phase for capacity expansion; 

௜௝ݍ ൌ the corresponding cost of assigning district ݅ to candidate site ݆; 

ܸ݋ܥ ൌ the required incident coverage rate; 

,௧ݎ ௦ݎ ൌ  the discount rate for tactical period ݐ  and strategic period ݏ , 

respectively; 

௡݌ ൌ the corresponding probability of scenario ݊; 

݄ ൌ the number of hours in a tactical period; 

ܯ,ߝ ൌ a small tolerance and an arbitrary large integer, used to ensure a given 

constraint is always or never satisfied. 

In addition, the following random variables are considered in the model: 

݀௜௧௡ ൌ the average number of emergency incidents per hour (i.e., the incident 

arrival rate) in district ݅ within tactical period ݐ under scenario ݊. This is a 

random variable that will be captured by the GBM process. 
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5.2.2 Mathematical Formulations 

There are several assumptions in the flexible design alternative. Firstly, two 

levels of decision-making processes are implemented in different time periods. 

Secondly, opening a station is instantaneous, while closing an open station is 

not considered. In reality, this new installation is not instantaneous due to 

construction delays. However, some buildings or facilities can be used as 

emergency stations and the time for this change is negligible. For instance, 

emergency vehicles could be temporarily or permanently allocated in fire 

stations, such as is done in Singapore. Closure is not allowable in this model 

because simply closing a station is definitely not a good choice because 

installation costs too much. The decision making regarding open – closure – 

reopen, however, makes the design problem too complicated. The 

mathematical model can be too complex to be solved if all these possibilities 

are considered together. Also, every decision is made at the beginning of either 

a strategic or tactical period. The number of missing incidents or the total 

number of incidents in a district is considered as a criterion for implementing 

the corresponding decision rules and exercising the real option strategies. The 

following notations denote the decision variables considered in the MSCLP 

model: 

௝௟݋
ଵ ൌ 1 if a phase ݈ station is opened at site ݆ when strategic period ݏ ∈ ଵܵ, 

and zero otherwise; 

௝௟௦௡݋
ଶ ൌ 1 if a phase ݈  station is opened at site ݆  when strategic period  
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ݏ ∈ ܵଶ under scenario ݊, and zero otherwise; 

௝݋
௢ ൌ the capacity to be deployed at site ݆ if ݋௝௟௦௡

ଶ ൌ 1; 

௝௟௦௡ݔ ൌ 1 if a phase ݈ station at site ݆ at strategic period ݏ under scenario 

݊; 

௝௟௦௡ݑ ൌ 1 if the station at site ݆ is expanded ݈ unit when strategic period 

ݏ ∈ ܵଶ under scenario ݊, and zero otherwise; 

௜௝௧௡ݕ ൌ 1  if district ݅  is assigned to site ݆  at tactical period ݐ  under 

scenario ݊, and zero otherwise; 

௝݋
௨ ൌ the capacity to be expanded at site ݆ if ݑ௝௟௦௡ ൌ 1; 

ଵݒ ൌ number of vehicles purchased when strategic period ݏ ∈ ଵܵ; 

௦௡ଶݒ ൌ number of vehicles purchased when strategic period ݏ ∈ ܵଶ  under 

scenario ݊; 

௝௧௡ݓ ൌ number of vehicles allocated at site ݆  at tactical period ݐ  under 

scenario ݊; 

௝ߜ
ௗ ൌ  the amount of lost incidents to trigger the flexibility of capacity 

expansion at site ݆; 

௝ߜ
௢ ൌ the amount of incidents for phased deployment at site ݆ when strategic 

period ݏ ∈ ܵଶ; 

௝߱௧௡, ௝௧௡ߦ ൌ non-negative variables, used to express absolute value of other 

variables. 

The objective of the MSCLP model is to minimize the expected total costs 

over the life cycle. This model consists of two groups of constraints. The first 
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group is typically found in EMS systems resource allocation models, which is 

used to represent the relationship between stations and vehicles. The other 

group consists of the so-called “IF-THEN-ELSE” decision rule statements, 

modeling strategic-level flexibility via non-anticipative constraints. The 

mathematical formulation of the MSCLP model is as follows: 
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 1 2

1 1 2,  1,... ,  ,  , ;
ijtn ijtn

y y i I j J t T n n N       (5.23) 

The problem (5.1)-(5.23) describes the flexible design under the 

multi-stage stochastic programming framework. The objective function is the 

expected total costs over the life cycle, including costs for installation, 

capacity expansion, vehicle purchase as well as operations. Inequalities (5.2)

-(5.3) indicate the boundary for making decision regarding installation and 

capacity expansion. Formulations (5.5)-(5.6) show how to calculate the 

capacity of a station at one site over the life cycle. Inequality (5.7) captures the 

condition in which the decision about capacity expansion cannot be made. 

Specially, such decision making is impossible if there is no station yet. 
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Formulations (5.8)-(5.9) indicate the relationship between strategic-level 

decisions, while (5.10)-(5.12) introduce the boundary for assigning districts to 

candidate sites. The tactical-level flexibility in this model is that each station 

should be fully utilized. In other words, the number of vehicles allocated to a 

station is equal to its capacity, which can be found in (5.10). Note that 

operational-level decisions (e.g., dispatch policy) are not explicitly considered 

in the model. The policy for vehicles to respond to incidents is similar to the 

one introduced by Beraldi and Bruni (2009), i.e., each district is assigned to no 

more than one station that is able to respond to it within a predetermined time 

(see (5.11)-(5.12)). Inequality (5.13) is the restriction regarding predetermined 

KPI that is required to be satisfied under different scenarios. The loss of 

demand in each tactical period is shown in (5.14). Inequalities (5.15)-(5.16) 

and (5.17)-(5.18) are model the “IF-THEN-ELSE” statements used in 

managerial decision rules regarding capacity expansion and station installation 

(i.e., phasing), respectively. More specifically, variable ݑ௝௟௦௡ ൌ 1  if the 

number of missing incidents per strategic period at site ݆ (i.e., ݄∑ ௝߱௧௡௧∈ ೞ்
) 

is greater than or equal to the threshold ߜ௝
ௗ, and the station has not reached its 

upper bound (i.e., ݔ
௝௟′,௦ିଵ,௡

് 0). Similarly, a new station would be installed 

at site ݆ if the number of incident arrivals exceeds the threshold ߜ௝
௢ and this 

site has not been used before (i.e., ݔ௝௟∗,௦ିଵ,௡ ൌ 0). The rule for capacity 

expansion is that station ݆ will be expanded by ݋௝
௨ unit capacity if it loses 

௝ߜ
ௗ unit number of incidents in the assigned district over a strategic period. 
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The rule for phased deployment is that a new station will be installed with ݋௝
௢ 

unit capacity at site ݆ if the demand of a strategic period at that site is greater 

than or equal to ߜ௝
௢ . The remaining four constraints represent the 

mathematical technique used to model a general formulation ݕ ൌ  where ,݀ݔ

variables ݕ  and ݔ  are continuous or integer while variable ݀  is binary. 

These constraints are used to guarantee that the unit capacity deployed at site 

݆ for phasing at different time is identical, as well as for capacity expansion. 

The last constraint indicates the consistency in the decision-making processes, 

i.e., the demand should be assigned to the same station at the first tactical 

period. It should be noted that the decision rules considered in the model are 

not necessarily applicable everywhere. The application of the decision rules 

relies on available data and specific operation policy. For example, if an 

emergency vehicle could respond to an incident outside the coverage of the 

station where it is located, the decision rule regarding capacity expansion 

would then be meaningless for focusing on missing incidents for a particular 

station. If that is the case, one possible decision rule could be: IF the total 

number of missing incidents is greater than or equal to a specific number ߜ, 

THEN the station that has the most covered incidents (i.e.,	∑ ௝݀௧௡௧∈ ೞ்
 is the 

largest among all candidate sites) should be expanded until it reaches the 

upper bound; OTHERWISE, do nothing.  
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5.2.3 Rigid Designs Formulations 

This section introduces the mathematical formulations of two other design 

alternatives that were compared in numerical analysis – referred to as rigid 

designs. The rigid designs represent sensible strategies to deploy capacity and 

manage such system over time, and aim to capture best practices. The first 

design deploys all resources (i.e., stations and vehicles) at once at the 

beginning of the project, and reallocates vehicles accordingly over the system 

life cycle in an optimal manner. Thus, this alternative can be called the “least 

flexible” design (i.e., it embeds some level of operational flexibility in terms 

of vehicle reallocation). The least flexible design is a simple multi-period 

extension of Beraldi and Bruni (2009) where only emergency vehicles can be 

deployed over time. The second alternative is also a multi-period extension of 

Beraldi and Bruni (2009) in which both stations and vehicles can be deployed 

over time instead of all at once. It can be called the “less flexible” design 

because the resources are deployed gradually based on a calculated plan, but 

not according to specific realization of uncertainty. The less flexible design 

captures to some extent a robust design philosophy, finding the deployment 

path that can deal best with a wide range of scenarios, without requiring the 

system to be changed dynamically over time (Jugulum & Frey, 2007). 

Compared to the above designs, the flexible design gradually deploys and 

allocates resources according to the decision rules, which is more dynamic as 

it adapts to the uncertainty realizations. The MSCLP model described in 
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Section 5.2.2 can be generalized as Problem (5.24)-(5.27): 

 m in  ( )f x   (5.24) 

Subject to: 
1 1 1A x b   (5.25) 

 1Cx d   (5.26) 

 2 2 2 2

2 2 3 2

, if  1

, if  0

A x b x

A x b x

 
 

  (5.27) 

Formulations (5.25)-(5.26) represent the typical constraints in such 

problem, and inequality (5.27) represents the decision rules-related constraints. 

ݔ ൌ ሺݔଵ,  ଶሻ denotes the solution vector of the optimization problem, whereݔ

ଵݔ  and ݔଶ  represent regular and decision rule variables, respectively. 

Constraint (5.27) shows the coupled formulations to illustrate the managerial 

decision rules, as shown and discussed in constraints (5.15)-(5.18). For the 

two rigid designs, (5.27) is not included in the models and the original 

decision variables, such as o௝௟௦௡
ଶ  and ݔ௝௟௦௡ , will be redefined. More 

specifically, the problem (5.28)-(5.36) describes the least flexible design under 

uncertainty, where most constraints are similar to ones in the problem (5.1)

-(5.23) (e.g., (5.10) and (5.30), (5.11)-(5.14) and (5.32)-(5.35)). ݔ௝௟ ൌ 1 if 

there is a phase ݈ station opened at site ݆ over the life cycle. 

 

1min  ( )

        +

l jl v t v jt l jlj l j t l

n t ij ijtnn t j i

c x c v r m w m x

p r q y

      
   

  (5.28) 

Subject to: 1 ;jll
x j J    (5.29) 

 ,  ;jt l jll
w U x j J t T     (5.30) 
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 1 2

1 1 2,  ,  ,  , ;
ijtn ijtn
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The less flexible design is captured in problem (5.37)-(5.46). In this 

design, the stations can be deployed in phases over time based on a fixed plan. 

Decision variable ݔ denotes the decision-making processes regarding station 

installation over the life cycle, and it thus has the subscript ݏ. Formulation 

(5.39) indicates that a phase ݈ station opened at site ݆ since strategic period 

 will remain open until the end of the project. As can be seen, this less ݏ

flexible system is developed based on the same basic restrictions with small 

modifications in order to realize more specific features. The three alternatives 

(two rigid and one flexible) are analyzed numerically in the following section. 
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Subject to: 1 , ;jlsl
x j J s S     (5.38) 
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  , , ;ijtn jty w i I j J t T      (5.42) 

 1 ,  ,  ;
i

ijtnj N
y i I t T n N


      (5.43) 

 ,  ,  ;
j

itn ijtn jt jtn jtni M
d y w j J t T n N 


        (5.44) 

 ;jt jtn itnt j t i
w CoV d n N        (5.45) 

 1 2

1 1 2,  ,  ,  , ;
ijtn ijtn

y y i I j J t T n n N       (5.46) 

 The least and less flexible designs are extensions of the existing model 

because it may not be fair to compare the proposed model based on long term 

planning with models based on short term planning. The consideration of the 

uncertainty drivers is limited in short term models due to the planning horizon, 

and thus may bias the results of a comparison. 

5.3 Step 3: Numerical Analysis 

The proposed case study is about the design and management of an EMS 

system in the context of a hypothetical city. This city could be thought of a 

small or medium-sized one like many cities in the central and western regions 

of China or other emerging and urbanizing countries. The current EMS system 

operating in this city was designed based on historical demographics, and 

operates only one station. Since the population grows annually, system 

capacity needs to be increased in order to have an acceptable incident 

coverage rate. The city is divided into 10 districts and, for the purpose of this 

analysis, each district is geographically abstracted as a demand node – see 
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Table 5.1. The coordinates of the nodes are listed as follows, which are 

adapted from the 36 node example problem in Batta et al. (1989). The problem 

considers how to design and manage the EMS system capacity over the next 

10 years. 

Table 5.1 The (x, y) coordinates for the 10 nodes of the city. 

Node Location (x, y) Node Location (x, y) 

1 (32, 31) 6 (27, 29) 

2 (29, 32) 7 (24, 33) 

3 (27, 36) 8 (34, 30) 

4 (29, 29) 9 (29, 21) 

5 (32, 29) 10 (33, 28) 

 

The current station operates at node no.3 with 1 unit capacity – meaning 

that it can operate and maintain only one emergency vehicle. This station is a 

typical one and thus its capacity cannot be expanded flexibly. The other nine 

nodes are able to open new stations if needed. To calculate the coverage rate of 

each node, a Euclidean metric is used for distance measurements. The distance 

standard for coverage is 10 units. The assignment cost ݍ௜௝ is proportional to 

the distance between two nodes. Table 5.2 summarizes the assumptions of 

parameters used in the MSCLP model and rigid designs. The order of 

magnitude and relative scale of the parameter values are based on discussions 

with a collaborating EMS provider – although the actual values cannot be 

disclosed. 

The two rigid designs share these assumptions together as well as the 
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flexible design. The construction cost of a flexible station is normally higher 

than that of a rigid station. This cost is assumed to be the same in this study in 

order to reveal the value of enabling flexibility. That is, the difference between 

the expected total costs of a rigid design and a flexible design is the upper 

bound of the value of enabling flexibility if the difference is positive, see 

(5.48). This value is the most that decision-makers should be willing to pay to 

enable the flexibility (e.g. purchase extra land, pay for shared infrastructures in 

an expandable station, etc.) The specific formula used to calculate the 

installation and expansion costs is as follows: 

 0
b

l lc c U   (5.46) 

Eq. (5.46) incorporates economies of scale (EoS) into the calculation of 

costs, where ܾ is the EoS factor. The average number of incidents per hour is 

used as the value of ݀௜௧௡ . This value is generated through a Geometric 

Brownian Motion (GBM) process with a particular expected growth rate (ߤ) 

and volatility (ߪ), as shown in Eq. (5.47). ௧ܹ is a Wiener process or so-called 

Brownian motion. 
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Table 5.2 List of assumptions for the flexible alternative. 

Parameters Value Definition 

  Number of strategic periods 10  ࡿ

  Number of tactical periods 40  ࢀ

 year The length of a strategic period 1  ࢙ࡱ

 months The length of a tactical period 3  ࢀࡱ

  Number of scenarios 10  ࡺ

  Number of station phases 4  ࡸ

݈ Unit capacity of a phase 4 ,3 ,2 ,1  ࢒ࢁ  station 

ሺ݈ ൌ 1…4ሻ 

 2, 3.73, 5.38, 6.96 Installation costs for a phase ݈ station (million$) ࢒ࢉ

 ,0.01, 0.02, 0.03  (million$) ࢒࢓

0.04 

Operation costs for a phase ݈  station per 

tactical period 

 2, 3.73, 5.38 Costs for expanding ݈ unit phase (million$) ࢛ࢉ

 0.1 Costs for purchasing one unit emergency (million$) ࢜ࢉ

vehicle 

 0.01 Maintenance costs per emergency vehicle (million$) ࢜࢓

per tactical period 

 Required incident coverage rate 0.95  ࢂ࢕࡯

 Discount rate per strategic period 12%  ࢙࢘

 Discount rate per tactical period 2.83%  ࢚࢘

 Number of hours per tactical period 2160  ࢎ

 Small tolerance and large integer 106 ,10-3  ࡹ,ࢿ

 Coverage radius for a station 10  ࡾ

 Number of tactical periods for flexibility 4  ࢖࢞ࢋ࢚

regarding capacity expansion  

 Number of tactical periods for flexibility 4  ࢖ࢋࢊ࢚

regarding phased deployment 

 GBM is a continuous-time stochastic process in which the logarithm of 

the randomly varying quantity follows a Brownian motion (also called a 

Wiener process) with drift (Ross, 2014). It is fairly safe to generate uncertain 
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demand using the GBM process, since it consists of a mean growth rate (the 

drift – which is based on the idea that populations grow slowly in the long 

term) plus a random shock (the volatility – which can be normally distributed 

around the mean growth rate to simulate the iid process, since each 

evolutionary scenario might differ). The assumption of a growing population 

in the long term is reasonable because an emerging country or a developing 

district is considered in the thesis. Also, GBM is a Markov process, which 

means that the future, given the present state, is independent of the past. This 

process is thus useful for modeling cases where one thinks that the percentage 

changes (and not the absolute changes) are independent and identically 

distributed (Ross, 1995), e.g., the incident arrival rate in year 5 may have some 

connections with that in year 4, but it may have little or even no connection 

with that in year 1. Therefore, it is safe to make such assumptions and use the 

GBM process to capture the randomness of the uncertainty drivers (e.g., 

incident arrival rate, electricity demand, etc.) of interest. 

 
2

,0exp
2itn i td d t W
 

  
       

  (5.47) 

For modeling incident arrivals, it is assumed that the incident arrivals in 

each district are iid (independently and identically distributed), except for the 

initial starting point d୧,଴. In addition, each scenario is assigned the same 

weight, meaning that the probability of occurrence is the same. Table 5.3 

shows the values of the corresponding parameters in sequences, which are 
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fictitious data. Figure 5.2 shows 1,000 samples generated for the 

out-of-sample test (described later), illustrating some outcomes of the GBM 

process. 

Table 5.3 Parameters of uncertainty (i.e. incident rate per hour). 

Parameter Value Definition 

 Quarterly expected growth rate %5  ࣆ

 Volatility %10  ࣌

1  ࢔࢖ |ܰ|⁄  Probability of scenario ݊ ሺܰ ൌ 10ሻ 

 

The value of flexibility is the difference between the expected total costs of the 

flexible design and a rigid design, as shown in Eq. (5.48). 

 
   

 
Flex { Rigid

                              Flex ,0}

E Value max E Total

E Total

      
   

  (5.48) 

where the expected value of total costs can be obtained through an 

out-of-sample analysis as introduced later. Since there is no cost premium for 

a flexible station considered here, this difference indicates the upper bound on 

the cost premium the decision-maker should be willing to pay to enable the 

flexibility in the EMS system. This cost may vary depending on the system, 

location, economic conditions, and therefore cannot be detailed here. The max 

condition captures the fact that if flexibility does not create positive value (e.g. 

cost savings), it will not be embedded – and therefore the lower bound is 0. 
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Figure 5.2 1,000 samples of incident rate in district No.1 throughout the 

system life cycle. 

 

The computational analysis is run on a desktop machine with a 3.30 GHz 

CPU and 8.0 GB of random access memory (RAM). The design alternatives 

are coded in AIMMS 4.2 (AIMMS, 2014) and CPLEX 12.6 is used as the 

linear programming (LP) and mixed integer programming (MIP) solver. The 

default algorithm for MIP is the standard Branch and Bound (B&B), which 

terminates either when the relative gap is satisfied by the predetermined one 

(e.g., 1%) or the number of iterations reaches an upper bound (e.g., four 

millions). 

5.3.1 Deterministic Analysis 

This section describes the results of the analysis for the three designs based on 

the deterministic projection. The demand considered in this analysis is the 

expected growth over life cycle. Table 5.4 shows the characteristics and results 
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of the three designs. The flexible design is somewhat (i.e., 1.1%) worse than 

the less flexible design, while the least flexible design performs the worst of 

three designs. The solving procedure for all designs terminate when the 

relative gap is less than or equal to the boundary before running out of time. It 

is observed that the flexible design is not necessarily the best in a deterministic 

case, because this analysis do not account for uncertainty and the ability to 

adapt. Based on decision rules, phased deployment and capacity expansion 

may be exercised if the rule is triggered. This may result in a higher incident 

coverage rate than expected (i.e., 0.95) and also more costs.    

Table 5.4 Comparison for characteristics and results of three design 

alternatives based on the deterministic projection. 

Alternatives No. of 

constraints 

No. of 

integer 

variables 

Best LP 

bound 

($million) 

Best 

Solution 

($million) 

Gap 

ሺ%ሻ 

CPLEX 

Time 

(sec) 

Least Flex 5,256 4,441 13.92 14.05 0.98 38.34 

Less Flex 5,706 4,810 13.65 13.79 0.99 55.58 

Flex 6,841 5,444 13.80 13.94 1.00 230.41 

 

5.3.2 Uncertainty Analysis 

This section explicitly describes the analysis for rigid designs under 

uncertainty. For ease of comparison, the characteristics of the three 

alternatives in terms of the problem size and optimization results are shown 

together in Table 5.5. The expected total costs for the less flexible design is 0.7% 

worse than that of the least flexible design, considering the best solutions. The 
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flexible design performs the worst across all three designs. The solution gap of 

the flexible design is consequently greater (e.g., 9.39% vs. 0.98% or 7.01%). 

This may be because the default algorithm terminates before finding a good 

solution. 

Table 5.5 Comparison for characteristics and results of three design 

alternatives based on the stochastic projection. 

Alternatives No. of 

constraints 

No. of 

integer 

variables 

Best LP 

bound 

($million) 

Best 

Solution 

($million) 

Gap 

ሺ%ሻ 

CPLEX 

Time 

(sec) 

Least Flex 49,365 40,441 15.64 15.79 0.98 3,368.8 

Less Flex 49,815 40,810 14.78 15.90 7.01 9,031.4 

Flex 69,175 53,846 14.61 15.98 9.39 24,754.0 

 

Table 5.6 and Table 5.7 summarize the design solutions for rigid systems, 

where columns 2 to 11 show the capacity (i.e., number of emergency vehicles) 

deployed in each district over the system’s life cycle. As can be seen in Table 

5.6, since the least flexible design deploys all capacity at once at the beginning 

of the life cycle, the capacity for a district does not change over time (no 

matter whether it is zero or nonzero). The less flexible design, in contrast, can 

deploy capacity based on a fixed plan. For instance, the planner may open a 

station in district 5 at the beginning of the second strategic period (year 2), and 

opens a station in district 7 at the beginning of the seventh strategic period 

(year 7) (see Table 5.7).  
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Table 5.6 Summary of the output for the least flexible design. 

District S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 1 1 1 1 1 1 1 1 1 1 

4 1 1 1 1 1 1 1 1 1 1 

5 2 2 2 2 2 2 2 2 2 2 

6 0 0 0 0 0 0 0 0 0 0 

7 1 1 1 1 1 1 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

 

The out-of-sample analysis for rigid designs was conducted in order to find 

out the statistical properties about the optimal solutions. The corresponding 

results are shown in Table 5.10 and Figure 5.3 in Section 5.3.3. In generic 

statistics, an out-of-sample analysis is used to estimate a mathematical or 

statistical model based on the forecast of historical data. In this thesis, this 

analysis evaluates the optimal solution under various sample scenarios based 

on the same GBM process that are generated by Monte-Carlo simulation and 

were not considered in the solving procedure. 
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Table 5.7 Summary of the output for the less flexible design. 

District S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 

3 1 1 1 1 1 1 1 1 1 1 

4 2 2 2 2 2 2 2 2 2 2 

5 0 1 1 1 1 1 1 1 1 1 

6 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 

9 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 

 

5.3.3 Flexibility Analysis 

The analysis for the flexible design is described in this section. Specifically, 

Table 5.8 summarizes the design solution for the flexible design. As can be 

seen, columns 2 to 5 list the values of the corresponding parameters in the 

decision rules for the flexible system. For example, to summarize the flexible 

solution for district no. 8, the planner should deploy initially ଼݋
ଵ ൌ 1 unit 

capacity at the beginning of the life cycle in period 1 (ܵ ൌ 1). The value of ݋௝
ଵ 

here is simply equal to the summation of ௟ܷ݋௝௟
ଵ  over ݈. If the number of 

missed incidents per year ଼ߜ
ௗ ൌ 50 is exceeded in 4 consecutive tactical 

periods (i.e., one strategic period), the station will deploy ଼݋
௨ ൌ 1 unit of 

additional capacity. If the planner did not open a station in period 1 (which is 

recommended), they then should open a station in a later strategic period when 



134 
 

the sum of the incident arrival rate in this period is greater than or equal to 

଼ߜ
௢ ൌ 3.676. For the other districts where ݋௝

ଵ ൌ 0, initial capacity is deployed 

based on satisfying the flexible decision rule with the corresponding 

parameters. That is, if the sum of the incident arrival rate at site ݆ in one 

strategic period is greater than or equal to ߜ௝
௢ and there is no station open yet, 

then the planner should consider opening one at this site at the beginning of 

the next strategic period. Note that the value of 0.001 in column 2 is the lower 

bound of ߜ௝
௢ and the value of 50 in column 4 is the upper bound of ߜ௝

ௗ, 

respectively. Table 5.9 shows the solution for the flexible design in a particular 

sample scenario. 

Table 5.8 Summary of the output for the flexible design. 

District ࢐ࢾ
࢐࢕ ࢕

࢐ࢾ ࢕
ࢊ ࢐࢕

࢐࢕ ࢛
૚

1 0.486 1 50 1 0 

2 0.001 1 50 1 1 

4 0.793 1 50 1 0 

5 0.85 1 50 1 0 

6 3.319 1 50 1 1 

7 2.492 1 50 1 0 

8 3.676 1 50 1 1 

9 1.106 1 50 1 0 

10 0.001 1 50 1 1 
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Table 5.9 Summary of the output for the flexible design in sample scenario 1. 

District S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

1 0 0 0 0 0 0 0 0 0 0 

2 1 1 1 2 2 2 2 2 2 2 

3 1 1 1 1 1 1 1 1 1 1 

4 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 

6 1 1 1 1 1 1 1 1 1 1 

7 0 0 0 0 0 0 1 1 1 1 

8 1 1 1 1 1 1 1 1 1 1 

9 0 0 0 0 0 0 0 0 0 0 

10 1 1 1 1 1 1 1 2 2 2 

 

The out-of-sample analysis summarized below shows that the flexible 

design performs the best of all alternatives (see column 4 in Table 5.10). The 

results show that the flexible system is more adaptable to unforeseen scenarios 

– which is one of the purposes of a flexible solution – even though it is not the 

best in the optimization analysis. The expected total costs of the flexible 

design are 4.6% less than for the least flexible design, while it is quite close to 

the expected total costs of the less flexible design. This study shows, 

nevertheless, that the flexible design is more adaptable to all 1,000 

out-of-sample scenarios. The least and the less flexible designs are infeasible 

in some scenarios, leading the solver to output value cost 0. The expected 

value of solutions thus decreases artificially but non-negligibly due to the 

reduction in the percentage of feasible solutions, and affects the performance 

measures (e.g., mean, standard deviation (STD)). To make a fair comparison, 
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1,000 scenarios are selected to be feasible for all three design alternatives. As 

can be seen in Table 5.10, the expected total cost of the flexible design is 4.9% 

and 0.9% less than those of rigid design solutions. The expected cost 

differences between the design alternatives are all statistically significant 

according to the corresponding t-test. For example, the p-value for the 

comparison between the flexible and less flexible designs is 0.003023, which 

is much less than 0.05. In fact, the number of samples considered in the 

out-of-sample analysis (i.e., ݊ ൌ 1,000) is much higher than t-tests and other 

statistical tests are designed to deal with (i.e., ݊ ൑ 30 samples). The flexible 

design also has the lowest costs for P5 and P95 of three designs. The terms P5 

and P95 are abbreviation of the 5th and 95th percentiles. A percentile is a 

statistical measure indicating the value below which a given percentage of 

observations in a group of observations fall. For example, the 95th percentile 

is the value below which 95 percent of the observations are found. The reason 

that the flexible design has the greatest standard deviation is because the 

flexible system could allocate budget anywhere if necessary. Rigid designs, on 

the other hand, do not have much flexibility to allocate budget since the 

capacity is deployed based on a fixed plan.  

Figure 5.3 provides an illustration of the out-of-sample analysis in terms 

of cumulative density function. As can be seen, there is a clear benefit from 

designing for flexibility in terms of the whole cumulative distribution and the 

mean value, compared to the least flexible design. The value of flexibility 
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between the flexible and the less flexible designs is, however, not as much as 

expected under current assumptions of uncertainty drivers and parameters (i.e., 

14.91 െ 14.77 ൌ 0.14 $million). 

 

Figure 5.3 Cumulative density function of the out-of-sample analysis (ܸ݋ܥ = 

0.95, |ܰ| = 1,000). 
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Table 5.10 Characteristics and results for the out-of-sample analysis (1,000 = |ܰ| ,0.95 = ܸ݋ܥ). 

Alternatives No. of 

constraints 

No. of integer 

variables 

Mean 

($million) 

STD 

($million) 

STD error 

($million) 

P5 ($million) P95 ($million) Total time 

(sec) 

Least Flex 4,082 4,000 15.53 0.776 0.025 14.74 17.03 866.4 

Less Flex 4,802 4,000 14.91 0.988 0.031 13.95 16.74 1,184.7 

Flexible 6,179 4,972 14.77 1.023 0.032 13.06 16.49 2,470.4 

Best? - - Flex Least Flex Least Flex Flex Flex Lease Flex 
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5.3.4 Sensitivity Analysis 

The sensitivity analysis next evaluates how uncertainty in the performance 

output is affected by variability in input parameter assumptions. To see how 

the significant parameters (e.g., incident coverage rate, station coverage radius) 

influence the expected system performance, a one-factor-at-a-time (OFAT) 

approach is used and the results are shown as Tornado diagrams in Figure 5.4. 

The three terms “base”, “low”, and “high” represent different values for 

different parameters, which are shown in Table 5.11. The low and high values 

equal െ/൅ 50% the base value, except for incident coverage rate. This is 

because such variation makes little sense in the coverage rate when ܸ݋ܥ ൑ 

0.8. 

Table 5.11 Values for the significant parameters in sensitivity analysis. 

 Low Base High

Incident coverage rate (ࢂ࢕࡯) 0.90 0.95 0.98 

Coverage radius 5 10 15 

Discount rate factor per year 6% 12% 18% 

Mean growth rate (ࣆ) 2.5% 5% 7.5% 

Volatility (࣌) 15 %10 %5% 

 

Of the five parameters, the mean growth rate (μ) is the most influential for 

all three designs (refer to Figure 5.4). This makes sense because when incident 

rates grow fast (slow), the planner has to spend more (less) on assignment 

costs (in rigid designs) or may enable more (less) flexibility (in the flexible 

design) in order to satisfy the requirement on incident coverage rate (i.e., 0.95). 
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It indicates that the flexible design may be more favorable than the other 

designs if the population of the region or city of interest grows quite rapidly 

(i.e., more people leads to more incidents). This also implies that the rigid 

systems may not perform as well as it was designed to due to the increasing 

incident rate. This is because the capacity of stations is deployed based on the 

previous forecast and it cannot be changed over time. When demand increases, 

maintaining the required coverage rate may be impossible in some cases. The 

coverage rate ܸ݋ܥ and discount rate are also influential on both low and high 

sides for all three designs, especially for rigid ones. Rigid designs cannot 

change the system capacity accordingly, and thus lack the ability to meet 

higher coverage rates if requested. As ܸ݋ܥ increases (decreases), expected 

total cost naturally increases (decreases). An increasing (decreasing) discount 

rate reduces (increases) the net present value of costs. On the other hand, the 

flexible design is less sensible to the change of volatility σ than rigid designs. 

As the flexible design has the ability to change according to the realization of 

different uncertainty scenarios, it manages to save costs through deploying 

and/or expanding capacity in later periods when needed, thereby mitigating 

unnecessary capacity deployment. It again indicates that the flexible design 

may be a better choice when dealing with a situation that the emergency 

incident arrival rate is highly unstable, either it grows fast or it fluctuates 

frequently, or even both. The above analysis also shows that the flexible 

design may be more suitable for a developed city as those input parameters are 
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usually less stable (and thus difficult to forecast accurately) in such region. 

Figure 5.5 shows the results for sensitivity analysis focusing on the value 

of flexibility. This value is defined in Eq. (5.48), which is the difference 

between the expected total costs of a rigid design and the flexible design. The 

value of flexibility is affected mostly by the mean growth rate, and then by the 

volatility, and ܸ݋ܥ . Again, the faster the incident rate grows, the more 

valuable flexibility is in the face of growing uncertainty. As volatility increases, 

flexibility is also worth more, as it enables the system to deal better with 

changing conditions. At the other end of the spectrum, little volatility brings 

little value of flexibility, since there is no need for change. Interestingly, the 

results show that flexibility is more valuable when there is a higher 

requirement on coverage. When comparing the flexible to the least flexible, 

the value of flexibility increases with an increasing discount rate because a 

higher discount rate provides more incentives to defer capacity deployment to 

later – thereby making more use of the flexibility. The impact of the discount 

rate is reduced when compared to the less flexible design, since capacity is 

deployed over time in both cases. 
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Figure 5.4 Tornado charts for expected total costs of three designs. 

 

 



143 
 

 

 

Figure 5.5 Tornado charts for value of flexibility. 

 

The results from the main analysis are obtained under the assumption that 

the required coverage rate is 0.95. There is a clear tradeoff between coverage 

and budget (e.g., in the limit, an infinite budget would converge towards 100% 

coverage). For a comprehensive comparison among the three designs, a 

sensitivity analysis is also conducted by increasing gradually coverage rate 

requirement from 0.8 to 0.99, and a Pareto set is introduced in Figure 5.6 

where the coverage rate and the amount of the total costs are the x- and y-axis, 

respectively. The dots represent the average total costs correlating to a specific 

design and coverage rate, whose value is obtained through the exact same 

procedure as the example out-of-sample test above. The curve shows the 
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corresponding shape of the total costs for each design alternative. 

 

Figure 5.6 The outcome of the Pareto analysis for three designs. 

 

The flexible design dominates the other two alternatives when the 

required coverage rate is greater than 0.9. Thus, a flexible EMS design 

performs much better than more rigid alternatives when the required coverage 

rate is considerably high (i.e., ܸ݋ܥ from 0.95 to 0.99). To achieve such a 

high-level coverage rate, one needs to deploy capacity at different sites with 

more than one unit (i.e., the least flexible design), or deploy capacity over time 

and space (i.e., less flexible and flexible designs). The flexible design 

performs better than the two rigid alternatives because it deploys capacity 

based on uncertainty realizations. In contrast, the performance of the flexible 

design is worse than the less flexible design when the required coverage rate is 

less than 0.9, and it is even worse than the least flexible design when the rate 

is less than 0.88. In this model, it is assumed that a decision regarding station 

installation must be implemented if the rule is triggered, as well as for capacity 

expansion. This makes the flexible design more expensive when the system 
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requires less coverage rate (thus less capacity). This assumption makes sense, 

however, in the system management process, as decisions can only be made 

considering information available at any given time. In addition, one may 

expect that the least and less flexible designs would not reach the coverage 

requirements if there are out-of-sample scenarios (i.e., not used in the 

optimization process). Those are clearly handled better by the flexible design, 

as demonstrated by the results of the out-of-sample study.   
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Chapter 6 CASE STUDY TWO – STRATEGIC FLEXIBILITY 

ANALYSIS REGARDING THE DEPLOYMENT OF NUCLEAR 

POWER PLANTS UNDER UNCERTAINTY 

“Mind and hand.” – Wang Shouren (1472 – 1529) 

 

This chapter explicitly describes an engineering application about how to best 

site nuclear power plants under uncertainty under demand and public/social 

acceptance by taking into account the expected long term life cycle 

performance, and the concept of flexibility as a means to deal with such 

uncertainty drivers. In addition to the requirement on electricity demand, 

public or social acceptance is considered as a significant factor that can 

terminate the project in this study. This nuclear system with regards to site 

nuclear power plants was analyzed based on the methodology described in 

Chapter 4, as the energy system is an example of infrastructure systems. More 

specifically, a two-stage multi-period mathematical model based on the SAA 

scheme is developed to find out the stochastically optimal initial configuration 

(e.g., how much capacity to be deployed at the beginning of the project), and 

the best decision rules for exercising the corresponding flexibility (e.g., when 

to expand the capacity for a nuclear power plant). Section 6.1 explicitly 

describes the background information about the nuclear project. Section 6.2 
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presents the mathematical model in details, with explanations for notations, 

the objective function, and constraints. The results are explicitly shown in the 

remaining sections. In Section 6.3, electricity demand is the main uncertainty 

driver, while both electricity demand and public acceptance are uncertainty 

drivers in Section 6.4. The numerical analysis follows the procedure described 

in Section 4.3. 

6.1 Step 1: Design Problem Description 

The global demand for electricity has rapidly increased in recent decades. The 

world electricity consumption was 13,174 TWh in 2000, and increased to 

20,301 TWh (54% growth) in 2014 (Enerdata, 2015). According to the Global 

Energy Statistical Yearbook 2015, China and the United States are the only 

two countries that have consumed more than 1,000 TWh per year since 2000, 

and the BRIC (Brazil, Russia, India, and China) countries shared 37% of 

world electricity consumption in 2014. Also, there is clear growth in the 

demand for electricity in developing countries such as China and India. 

Traditional thermal power plants generate electricity from the combustion of 

fossil fuels and thus contribute significantly to CO2 emissions. In the hope of 

reducing global warming caused by greenhouse effects, renewable or green 

energy sources with little or zero CO2 emissions have been receiving much 

attention. Compared to expanding renewable energy sources like solar or wind 

power, nuclear power has a relatively stable output of electricity because it 
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requires no specific weather or environmental conditions to generate electricity. 

Furthermore as a generator with high fixed costs and very low marginal costs 

baseload generation is favored even if load-following operation is technically 

possible (Pouret et al., 2009). Even though it has potential safety issues, for 

example concerning the large amount of energy stored in the nuclear reactor 

core and the need to cool the reactor system even after shutdown. And noting 

ongoing concerns around long term waste management, nuclear power is still 

a significant energy source for generating electricity in most countries. For 

now, nuclear power is one of the two main sustainable, dependable, and 

low-emission sources of energy (the other is hydropower). 

There is, however, much uncertainty and risks associated with siting 

nuclear power plants from an economic standpoint (Kessides, 2010). This 

uncertainty will ultimately affect the total costs or the levelized cost of 

electricity (LCOE) generation, which are metrics for evaluating economic 

performance. More specifically, the total costs consist of four major 

components: construction costs, operations and management (O&M) costs, 

fuel costs, and back-end costs, where construction costs represent 

approximately 60% of the total costs (Joskow, 2006). In addition to the 

economic and safety factors discussed above, there are several other factors 

that may be involved in the problem of siting nuclear power plants. Compared 

to technological or economic factors, the effect of social factors is difficult to 

measure and quantify. Social factors that may affect the decision-making 
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processes include public acceptance of nuclear technology and government 

support. Public or social acceptance is “essential for any activity that affects 

large sectors of a nation” (Golay, 2001). It represents the public intention of 

siting more/less nuclear power plants. Although nuclear power is said to be 

safe, nuclear accidents with extremely low probability, such as the ones in 

Chernobyl and Fukushima, can be worldwide disasters. Such catastrophes can 

affect public acceptance of nuclear energy in distant countries. For example, 

after the Fukushima accident occurred in Japan, both Germany and 

Switzerland announced plans to gradually shut down all nuclear power plants 

in use by 2025 (Joskow & Parsons, 2012). 

6.2 Step 2: Analytical Model 

The flexible design deals pro-actively with uncertain drivers by leveraging 

strategic-level flexibility. More specifically, three strategic-level real options 

are introduced in the design so that the nuclear power system can change and 

adapt according to variations in demand as well as external nuclear events 

over time. Firstly, the model accounts for a flexible phased deployment of 

plant capacity over time and space. The flexible design allows the deployment 

of plants over time, depending on the realization of the uncertainty scenario. In 

addition to flexible phased deployment, flexible capacity expansion at any 

strategic period is studied. Once a plant is deployed, the capacity can be 

increased (or uprated) when needed and when external circumstance is 
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allowable. This flexible expansion benefits from special attention in terms of 

architecture and the design of the infrastructure (e.g., designing for smaller 

capacity first, and carefully planning for expansion in the future by installing 

new nuclear reactor, for instance). The capacity of a nuclear power plant is 

related to its ability to generate a given amount of electricity. Thirdly, the 

flexible design allows the life extension of a plant when it is supposed to be 

closed, depending on the external circumstance at that moment (i.e., whether 

the cumulative INES (international nuclear events scale) is below the 

threshold or not). INES is a tool for promptly and consistently communicating 

the safety significance of events associated with sources of ionizing radiation 

to the public. The cumulative INES is the summation of INES indices for past 

several years. Compared to a single INES index, this cumulative index helps 

represent the historical impact of nuclear events in a reasonable timeframe. 

6.2.1 Symbols and Terminology 

The following list summarizes the modeling notation (sets and parameters): 

ܶ = the set of strategic periods in a complete life cycle (ݐ ∈ ܶ); 

ଵܶ = the set of strategic periods excluding the first period (i.e., ݐ ൒ 1). 

݆) the set of candidates to site nuclear power plants = ܬ ∈  ;(ܬ

ܵ = the set of uncertainty scenarios (ݏ ∈ ܵ); 

ܸ = the set of plant phases (ݒ ∈ ܸ); 

 ;discount rate factor per strategic period = ݎ
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 ;ݏ ௦ = the corresponding probability of scenario݌

,∗ݒ  ;the smallest and biggest phases of a plant, respectively = ∗∗ݒ

ܷᇱ, ܷ∗ = the smallest and biggest capacity of a plant, respectively; 

,௙௜௫ܥ ,௥௔௖ܥ ,௩௔௥ܥ  ௙௨௘௟ = the fixed costs, unit cost of a nuclear reactor, unitܥ

variable cost, and unit cost for fuel, respectively; 

 ௣ = the unit cost of losing demand for electricity. The penalty cost wouldܥ

occur when power plants cannot generate enough electricity to meet the 

requirement on demand; 

,௖ݐ ,௘ݐ  ,௟ = the delay periods for new plant construction and capacity expansionݐ

and the additional period for life extension, respectively. For instance, a plant 

is decided to be deployed at strategic period ݐ ൌ 0, and this plant will be 

available for use starting from ݐ ൌ  ;௖ݐ

 ௗ = the review period for the decision rules regarding phased deploymentݐ

and capacity expansion;  

 ;௅ா = the first period that life extension is availableݐ

 ;݆ ௝ = transmission loss factor of electricity for a plant at siteߠ

 a small tolerance and an arbitrary large integer, used to ensure a given = ܯ,ߝ

constraint is always or never satisfied. 

The random variables considered in the model are as follows: 

݀௧௦ = the demand for electricity within strategic period ݐ under scenario ݏ; 

 .ݏ under scenario ݐ ௧௦ = the cumulative INES factor in strategic periodܫ
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6.2.2 Mathematical Formulations 

Several assumptions must be made when describing a flexible design via a 

mathematical model. First, a plant will not be used again if it is closed, and 

this closure is effective immediately. Physically the plant cannot be shut down 

immediately because there are many things needs to do after the normal 

closure (e.g., waste management). This closure however can be considered 

effective immediately from the economic standpoint of view, as the plant will 

not generate electricity after its closure. Second, decisions are made at the 

beginning of a strategic period and only observed information can be used for 

the decision-making processes. When the cumulative INES falls into the dead 

zone, the whole project will be terminated immediately. When the cumulative 

INES falls into the warning zone, the project can still operate, but 

strategic-level decisions can only be made when the cumulative index returns 

to safe zone. In other words, flexible phased deployment, capacity expansion, 

and life extension of a plant are only available when public acceptance is 

fairly positive (i.e., the cumulative INES falls into the safe zone). Moreover, 

the land is assumed to be reserved for a fairly long period because the 

geographical requirement for installing a nuclear power plant is strict. There 

will be only a few candidate sites that are acceptable, and thus they need to be 

reserved for further investment. The specific decision variables used in this 

model are as follows: 

௝௩݋
ଵ  = 1 if a phase ݒ plant is deployed at site ݆ in strategic period ݐ ൌ 0; 
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௝௧௦݋
ଶ  = 1 if a plant is deployed at site ݆ in strategic period ݐ ൒ 1 under 

scenario ݏ; 

 ௝௧௦ = 1 if the capacity of a plant is expanded at site ݆ in strategic periodݑ

ݐ ൒ 1 under scenario ݏ; 

௝݈௧௦ = 1 if the life cycle of a plant is extended at site ݆ in strategic period 

ݐ ൒ 1 under scenario ݏ; 

 under ݐ plant is open at site ݆ in strategic period ݒ ௝௩௧௦ = 1 if a phaseݔ

scenario ݏ; 

ௗݔ ∈ ሺ0,1ሻ , the threshold for triggering decision rules regarding phased 

deployment and capacity expansion; 

,ଵݍ  ଶ = integers, the thresholds for partitioning the cumulative INES indexݍ

into three zones, e.g., if this index is greater than or equal to ݍଶ, it indicates 

that the cumulative index in ݐ has fallen into the dead zone; 

݊௖, ݊௘ = integers, the number of plants to be deployed or expanded if the 

decision rule is triggered, respectively; 

݉௖,݉௘  = integers, the capacity of a plant that should be deployed or 

expanded if the decision rule is triggered, respectively; 

ܥ ௝ܱ௧௦,  ௝௧௦ = integers, the capacity of a plant to be deployed or expanded atܧܥ

site ݆ in strategic period ݐ under scenario ݏ; 

௧௦ଵݕ , ௧௦ଶݕ  = 1 if the cumulative INES factor falls into the warning or dead zones 

in strategic period ݐ under scenario ݏ, respectively;  

 ;binary, decision rules related variables = ܴܦ
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߱௧௦,  ௧௦ = non-negative, used to express the difference between the demandߦ

for electricity and the electricity generated by plants; 

 .binary, indicator variable = ߜ

The objective of the model is to minimize the expected total costs over the 

life cycle of the system. The total costs comprise fixed costs, variable 

operation and maintenance costs, variable fuel costs, and penalty costs. The 

costs spent since period 1 are discounted back to period 0. 

 
*

1 1 2

2
var

min  ( ) ( [

       ( ) ( ) ] )

fix rac jv s t fix jtsjvj v s t j

rac jts jts fuel jvts p tsv

C o C o p r C o

C CO CE C C x C w

 

    

    


  (6.1) 

 

Formulations (6.2)-(6.4) describe the relationships and limits of the 

decision variables. More specifically, inequalities (6.2) and (6.4) indicate that 

a plant has the ability to generate an amount of electricity that is less than or 

equal to the capacity of this plant. Inequality (6.3) shows that a plant can only 

be installed once at a site. 

Subject to: 1 1
, 1 , , ;j v j vo o j J v V      (6.2) 

 *

21 1 , ;jtstjv
o jo J s S      (6.3) 

 , 1, , , , ;j v ts jvtsx x j J v V t T s S        (6.4) 

The following inequalities imply the relationship within the 

decision-making processes. Formulations (6.5)-(6.8) indicate that the capacity 

to be initially deployed at a candidate site from period 1 is a constant, and so is 

the capacity of expansion. The number of plants to be deployed or expanded at 
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different time should be consistent, as shown in (6.9)-(6.12). ܴܦ௧௦
௖ ൌ 1 

indicates that the decision rule regarding flexible phased deployment is 

triggered. 

 *
1, ,? ;jts jts jtsU o U CO U o j J t T s S        (6.5) 

      2 * 2
11 1  ,? ,jts c jts jtsU o U m CO U o j J t T s S           (6.6) 

 *
1 , , ;jts jts jtsU u U CE U u j J t T s S        (6.7) 

      *
11 1  ,? ,jts e jts jtsU u U m CE U u j J t T s S           (6.8) 

 2
1  , ;c c

ts jts tsj
DR o J DR t T s S      (6.9) 

  2
11 1  , ;c c

ts c jts tsj
DR n o J DR t T s S         (6.10) 

 1   , ;e e
ts jts tsj

DR u J DR t T s S      (6.11) 

   11 1  , ;e e
ts e jts tsj

DR n u J DR t T s S         (6.12) 

Constraints (6.13)-(6.18) indicate how to determine the value of variables 

regarding the cumulative INES factors. When this cumulative factor falls into 

the dead zone, the entire project is terminated immediately. Therefore, the 

restriction regarding the decision-making processes when ݕ௧௦
ଵ ൌ 1 still holds 

for ݕ௧௦ଶ ൌ 1, as shown in (6.17) and (6.18). Variable ݕ௧௦ଵ  can be 0 only if the 

current cumulative INES is less than the threshold ݍଵ and the last cumulative 

INES did not fall into the dead zone ((6.13)-(6.14)). 

 1 2
1    , ;ts ts tsI q My My t T s S        (6.13) 

  1 2
1 1 ; ,ts ts tsI q M y My t T s S        (6.14) 

 2 2
2 1, , ; ts ts t sI q My My t T s S         (6.15) 
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  2 2
2 1,  1 , ;ts ts t sI q M y My t T s S        (6.16) 

 2 1  , ;ts tsy y t T s S     (6.17) 

 2 2
1,  , ;t s tsy y t T s S      (6.18) 

There are several cases when the decision rules regarding flexible phased 

deployment and capacity expansion are not allowed even though the condition 

of the rules are satisfied. First, the cumulative acceptance of the system (or 

project) should be within the safe zone (see (6.19)). Besides, any construction 

of new plants or expansion of current plants would make the decision rules 

unavailable, as can be found in (6.20) and (6.21). If the capacity of the system 

is fully deployed, or all the plants expire after life extension, the embedded 

decision rules are not allowed either. Inequality (6.24) shows the condition 

when decision rules are available for this system. 

 1
1, 1 1 , ;A

ts t sDR y t T s S      (6.19) 

 1
11 , ; A DR

ts tsDR t T s S      (6.20) 

 2
11 , ; A DR

ts tsDR t T s S      (6.21) 

 3
11 , ; A DR

ts tsDR t T s S      (6.22) 

 4
11 , ; A DR

ts tsDR t T s S      (6.23) 

 1 1 2 3 4
1, 11 , ;A DR DR DR DR

ts t s ts ts ts tsDR y t T s S             (6.24) 

The following formulations explicitly describe the conditions when the 

indicator variables, with respect to decision rule availability, can be 1. For 

example, constraints (6.25) and (6.26) show that indicator variables will be 1 

if an expansion was implemented in previous ݐ௘ periods, and 0 otherwise. 
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Similarly, indicator variables will be 1 if an initial installation or phased 

deployment was implemented within previous ݐ௖ periods, see (6.27)-(6.30). 

When all candidate sites are fully occupied by plants with maximal capacity, 

no decision rule regarding phased deployment and capacity expansion needs to 

be considered. When all plants are finished operation after life extension, the 

decision rules will also be unavailable. These cases can be found in (6.31)

-(6.34). 

 1 1
11
, ; 

e

t DR
jts tst t j

u M t T s S

 
      (6.25) 

  1 1
11

1  , ;
e

t DR
jts tst t j

u M t T s S 

 
        (6.26) 

  *

1 2 1 2
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t DR
jts ts cjvt t j

o o M t t s S

 
        (6.27) 

  *

1 2 1 2

1
( ) 1 0, , , ;

c
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o o M t t s S 

 
          (6.28) 

 1 2

1
1 , , , ;

c

t DR
jts ts ct t j

o M t t T s S

 
        (6.29) 

  1 2 2

1
1 ? 1, , , ;

c

t DR
jts ts ct t j

o M t t T s S 

 
          (6.30) 

 **
3 , ; DR

tsjv tsj
x J M t T s S        (6.31) 

  **
31  , ;DR

tsjv tsj
x J M t T s S       (6.32) 

 3 4 , , , ; LE DR
jts ts LEj

J M t t T s S          (6.33) 

  3 41  , , , ;LE DR
jts ts LEj

J M t t T s S         (6.34) 

The difference between the demand for electricity and the capacity of the 

plants is described in (6.35)-(6.37). If the system loses ݔௗ% demand for ݐௗ 

consecutive periods, then the decision rules regarding phased deployment and 

capacity expansion will be triggered (see (6.38)-(6.41)). However, these rules 
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can only be implemented when they are both necessary available and triggered. 

This idea is represented in (6.42)-(6.44). 

  , ; ts j jvts ts tsj v
d U x T s St          (6.35) 

  , ;D
ts tsM t T s S      (6.36) 

  1  , ;D
ts tsM t T s S       (6.37) 

  , ;DM
ts ts d tsd x M Tt s S         (6.38) 

  1  , ;DM
ts ts d tsd x M t T s S        (6.39) 

 1
, ;

d

t DM T
ts d tst t

t MDR T st S 


       (6.40) 

  1
1  , ;

d

t DM T
ts d tst t

t M DR t T s S


       (6.41) 

 , ; Tr T
ts tsDR DR t T s S     (6.42) 

 , ; Tr A
ts tsDR DR T St s     (6.43) 

 1 , ;Tr T A
ts ts tsDR DR DR t T s S       (6.44) 

In several cases, flexible phased deployment and capacity expansion 

cannot possibly be implemented. If there is no plant in the system, capacity 

expansion is of course unavailable. Similarly, if all sites are occupied, phased 

deployment becomes unavailable. These are represented in (6.45)-(6.46) and 

(6.50)-(6.51). When these conditions are false and the decision rules can be 

implemented, planners will first consider implementing capacity expansion. 

Flexible phased deployment will be implemented if capacity expansion is 

forbidden, as shown in (6.47)-(6.49) and (6.52)-(6.55). 

    * ** 1  , ;E
tsjv ts jv tsj

x x M t T s S         (6.45) 
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  * **  , ;E
tsjv ts jv tsj

x x M t T s S      (6.46) 

  , ;e E
ts tsDR t T s S     (6.47) 

  , ;e Tr
ts tsDR DR t T s S     (6.48) 

 1 , ;e E Tr
ts ts tsDR DR t T s S       (6.49) 

  *

3  , ;LE C E
jts ts tsjv tsj

x J M M T s St            (6.50) 

    *

3 1 , ;LE C E
jts ts tsjv tsj

x J M M t T s S           (6.51) 

 1 , ; C E
ts ts t T s S       (6.52) 

  , ;c C
ts tsDR t T s S     (6.53) 

  , ;c Tr
ts tsDR DR t T s S     (6.54) 

 1 , ;c C Tr
ts ts tsDR DR t T s S       (6.55) 

Formulations (6.56)-(6.60) show the condition when life extension can be 

implemented. Specifically, if public acceptance is favorable and a plant is 

ready for extension, planners should consider implementing this flexibility. 

Constraints (6.61)-(6.68) indicate that site-specific life extension is ongoing, 

while constraints (6.69)-(6.70) imply that such extension is finished.  

 1
1,  1 , , , , ;jts t s LEl y J t t T sj S        (6.56) 

 *
1 1

1, , ; ,jts t s LEjv
l o My j J t t s S       (6.57) 

 *
1 1

1, , ; ,jts t s LEjv
l o My j J t t s S       (6.58) 

 2 1
, 1, 1,  , 1, , , ;

LEjts j t t s t s LEjl o My J t t T s S           (6.59) 

 2 1
, 1, 1,  , 1, , , ;

LEjts j t t s t s LEl o My j J t t T s S           (6.60) 
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 *
2 1 , , ; LE

jts jts LEjv
o l j J t t s S        (6.61) 

 *
2 1 , , ; LE

jts jts LEjv
o l j J t t s S        (6.62) 

 *
2 1 , , ;LE

jts jts LEjv
l o j J t t s S        (6.63) 
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2 12 , , ; LE

jts jts LEjv
o l j J t t s S         (6.64) 
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jts j t t s jts LEo l j J t t T s S           (6.65) 
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  1 1
1, ,

1
, , , , ;

2 l

LE LE
jts jt s jt t s LE ll j J t t t T s S            (6.70) 

Constraints (6.71)-(6.74) show when regular operation (including life 

extension) is done at a site. Formulations (6.75)-(6.79) are used to describe the 

conditions when decision-making regarding deployment and expansion are 

impossible at a specific site. 

 3 1 2 3
1,  , , ;LE LE LE LE

jts jts jts jt s j J t T s S            (6.71) 

 3 1  , , ;LE LE
jts jts j J t T s S       (6.72) 
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1 1 , , ;jts jv ts
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161 
 

 3
1 1 , , ;LE

jts jtsu j J t T s S       (6.78) 

 2 3
1 1 , , ;LE

jts jtso j J t T s S       (6.79) 

The last inequalities explicitly show the relationship between the capacity 

of a plant and corresponding decisions, such as deployment and expansion. 

The capacity of a plant in period ݐ will be equal to the capacity of this plant 

in the last period plus the expected capacity by deployment and/or expansion, 

when public acceptance is favorable and the plant (system) is still in operation. 

Otherwise, the capacity will be 0 until the end of the project. 
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  2
1, 11  , , ;jvts t sv

x M y j J t T s S       (6.82) 

  11  , , , , ;LE
jvts jts LEv

x M j J t t T s S        (6.83) 

  21  , , , , .LE
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x M j J t t t T s S         (6.84) 

6.3 Step 3a: Numerical Analysis – One Uncertainty Driver 

In the next two sections, four alternative design solutions are analyzed and 

compared in two numerical studies. Study 1 accounts for uncertainty in 

electricity demand only, and rely on an optimistic projection for social 

acceptance. Study 2 accounts for uncertainty in both electricity demand and 

social acceptance. Table 6.1 summarizes the strategic-level decisions involved 
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in the four designs alternatives considered across two case studies. The first 

design is termed the “rigid design” and it, deploys all resources (i.e., nuclear 

power plants) at once at the beginning of the system’s life cycle in an optimal 

manner in light of anticipated scenarios in social acceptance and electricity 

demand. This one represents a robust approach to capacity deployment under 

uncertainty, and aims at maximizing cost effectiveness considering a wide 

range of uncertainty scenarios. The second and third designs are simplified 

versions of a fully flexible design and strategic-level flexibility is only 

partially embedded. More specifically, the second design only considers the 

ability to deploy capacity in phase along with flexible capacity expansion 

subject to electricity demand uncertainty, while the third design only takes life 

extension into account as flexibility in the face of uncertainty in social 

acceptance. Thus, the second and third options are referred to as “flexible 

design A” and “flexible design B”, respectively. The flexible design alternative 

that considers all strategic-level flexibility is called “flexible design C”. It 

should be noted that rigid and Flex A designs do not incur any extension under 

both case studies. Designs Flex B-C incur a “forced” life extension in case 

study 1 (i.e. social acceptance is assumed satisfactory so operations can 

continue longer), while under case study 2 life extension is flexible, and 

governed by decision rules. In case study 2, all designs have an added 

flexibility of early shutdown if social acceptance is not satisfactory. The 

purpose of comparing flexible design C to the three other alternatives is to 



163 
 

determine: 1) the significance of embedded flexibility strategies and 2) the 

value of flexibility based on uncertainty realization. The assumptions for the 

case studies are listed below and have been adapted from the paper by Steer et 

al. (2012). Note that several figures are valid as of 2006, and some cost figures 

might have changed since then. It is assumed that the salvage value of the 

equipment is approximately equal to the disposal costs for radioactive waste 

management. 

Table 6.1 The design features of the four design alternatives across the two 

case studies. 

Alternatives  Case 1 Case 2 

Rigid All capacity deployed at 

time 0, no life extension 

All capacity deployed at time 0, 

early shutdown, no life extension 

Flex A Phased deployment + 

capacity expansion, no life 

extension 

Phased deployment + capacity 

expansion, early shutdown, no life 

extension 

Flex B All capacity deployed at 

time 0, forced life extension 

All capacity deployed at time 0, 

early shutdown, flexible life 

extension 

Flex C Phased deployment + 

capacity expansion, forced 

life extension 

Phased deployment + capacity 

expansion, early shutdown, flexible 

life extension 

 

There are two uncertainty drivers considered in this model, namely 

electricity demand (݀௧௦) and public acceptance of nuclear technology (ܫ௧௦). In 

this analysis, the demand is generated through a Geometric Brownian Motion 

(GBM) process with a particular expected growth rate (ߤ) and volatility (ߪ), as 
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shown in Eq. (5.47). Public acceptance is captured by the INES factor. Since 

this factor is intended to be logarithmic, it is assumed that it is generated 

through Eqs. (6.85) and (6.86). Parameter ݅ denotes the level of INES factor, 

and ݌ሺ݅ሻ is the corresponding probability. More specifically, the probability 

of one level is approximately 1 ⁄ߚ  that of the previous level. Parameter ߚ is 

referred here as a magnification factor on the logarithmic INES scale. 

      0 1, 7;ip i p i     (6.85) 

   1 0, 7.
i

p i i     (6.86) 

 

 

Figure 6.1: Demand for electricity throughout plant lifetime over 1,000 

scenarios. 
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Table 6.2 List of assumptions for the numerical analysis (£million). 

Parameter Assumption 

Declared net capacity (DNC) of a nuclear reactor  600 MWe per reactor 

Pre-development costs (PD) £250 in 2006 money 

Construction period of initial deployment (ࢉ࢚) 6 years 

Construction period of capacity expansion (ࢋ࢚) 3 years 

Additional period of life extension (࢒࢚) 10 years 

Construction costs of a nuclear power plant (w/o 

reactor) (࢞࢏ࢌ࡯) 

Nominally £524 = £250 (PD) + 

£274 (IDC) 

Costs of reactor (ࢉࢇ࢘࡯) Per reactor: nominally £975  

O&M costs of reactors (࢘ࢇ࢜࡯) Nominally £3.85/MWh per 

plant, followed by a £3.85/MWh 

per reactor 

Fuel supply costs for thorium (࢒ࢋ࢛ࢌ࡯) Nominally £1.1/MWh 

Contractual costs for losing demand (࢖࡯) Nominally £200/MWh 

Number of uncertainty scenarios (|ࡿ|) 1,000 scenarios 

Corresponding probability for each scenario (࢙࢖) (1/1,000) 0.001 

Maximal phase (or number of reactors)  for a 

nuclear plant (|ࢂ|) 

4 reactors 

Review period for flexible phased deployment and 

capacity expansion (ࢊ࢚) 

3 years 

Review period for life extension 6 years 

Costs of capital or discount rate (࢘) Per period: nominally 10% 

Small tolerance (ࢿ) Nominally 10ିଷ 

Large integer (ࡹ) Nominally 10଺ 

Table 6.3 summarizes the assumptions for the significant parameters in 

Eqs., (6.85) and (6.86), as well as in the GBM process. The values of these 

parameters are based on communications with domain experts. Changes in 

these values assumptions are analyzed in the sensitivity analysis done later in 

this section. Figure 6.1 illustrates some outcomes of the GBM process 
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generated for the out-of-sample analysis. 

Table 6.3 List of assumptions for uncertainty drivers. 

Parameter Assumption 

Initial demand per hour in period 0 

 (૙ࢊ)

Nominally 2,000 MWh 

Expected growth rate (ࣆ) Per period: nominally 1% 

Volatility (࣌) Nominally 5% 

Magnification (ࢼ) Nominally 3.5 

 

Two case studies are presented in the following two sections. In the first 

case study, the long term demand for electricity is the only uncertainty driver 

considered; in the second case study, both long term demand and public 

acceptance are considered. The purpose of the case studies is to find out the 

value of flexibility under different assumptions for uncertainty. This value is 

thus the difference between the expected total costs of any flexible design and 

the rigid design, as shown in Eq. (5.48). The assumption about cost premium 

for enabling flexibility is the same as the design for EMS systems in Chapter 5. 

This cost may vary depending on various issues like the system; location, 

technology, the need for shared infrastructure to plan for capacity expansion, 

purchase additional land, and other socio-economic conditions that are 

difficult to detail here, and are out of scope. The expected value of total costs 

can be obtained through out-of-sample analysis, which will be introduced 

later. 

This case focuses on how to site and manage the nuclear power system 
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capacity over the next 40 years, considering long term demand for electricity 

as the main uncertainty driver. It aims to site nuclear power plants in a 

hypothetical developing country that wishes to further develop and expand 

nuclear power capacity. The number of candidate sites for the plants is 

relatively small due to the availability in the country. This project is intended 

to generate sufficient electricity to satisfy the electricity needs of this 

hypothetical country. Table 6.4 shows the assumptions for case study 1. The 

electricity generated by a plant can be transmitted via the power grid network 

to customers. The corresponding transmission loss factor is simply assumed to 

be inversely proportional to the distance. 

Table 6.4 List of specific assumptions for case study 1. 

Parameter Assumption 

Number of candidates (|ࡶ|) 3 

Operational lifetime of the project (|ࢀ|) 40 years 

Operational lifetime of a power plant 20 years 

Transmission loss factor of electricity (࢐ࣂ) 1 (site 1), 0.98 (site 2), and 0.95 (site 3) 

 

The computational analysis was run on a desktop machine with a 3.30 

GHz CPU and 8.0 GB of random access memory (RAM). All design 

alternatives were coded in AIMMS 4.2 (AIMMS, 2014) and CPLEX 12.6 was 

used as the MIP solver. The default algorithm for MIP is Branch and Bound 

(B&B), which terminates when the relative gap is smaller than or equal to 0.01, 

or the number of iterations reaches an upper bound (e.g., 20 million), or the 

computation time reaches an upper bound (e.g., 10,000 seconds). 
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6.3.1 Deterministic Analysis 

This section describes the analysis based on a deterministic projection (e.g., 

the expected value) of demand for electricity over life cycle. As can be seen, 

flexible design B performs the best of the four designs, which is about 9.95% 

less than that of the rigid design. It is interesting that flexible design C is not 

the best. This is because the expected demand for electricity is relatively flat, 

and the phased deployment and capacity expansion thus are not as much 

valuable as expected.  

Table 6.5 Characteristics and results for deterministic analysis in case study 1. 

Alternative No. of 

constraints 

No. of 

integer 

variables 

Best LP 

bound 

(£billion) 

Best 

solution 

(£billion) 

Gap 

(%) 

CPLX 

time 

(sec) 

Rigid 1,966 976 25.47 25.47 0.00 0.06 

Flex A 4,302 1,464 25.45 25.45 0.00 2.29 

Flex B 1,888 976 23.19 23.19 0.00 0.19 

Flex C 4,393 1,479 23.66 23.66 0.00 1.47 

 

6.3.2 Uncertainty Analysis 

Table 6.6 shows the characteristics of four alternatives (one rigid design plus 

three flexible designs) in terms of the problem size and optimization results, 

for the ease of comparison. The rigid design performs the worst of four design 

alternatives in terms of the expected total costs.  

 

 



169 
 

Table 6.6 Characteristics and results for design alternatives under uncertainty 

in case study 1. 

Alternative No. of 

constraints 

No. of 

integer 

variables 

Best LP 

bound 

(£billion) 

Best 

solution 

(£billion) 

Gap 

(%) 

CPLX 

time 

(sec) 

Rigid 19,543 9,652 27.04 27.04 0.00 1.28 

Flex A 42,903 14,496 24.78 24.78 0.00 224.17 

Flex B 19,543 9,652 24.76 24.76 0.00 3.39 

Flex C 43,813 14,646 24.28 24.28 0.00 299.6 

 

6.3.3 Flexibility Analysis 

This section describes the expected performance of flexible designs. The results are shown in 

Table 6.6. The expected total costs for  flexible design C are 10.21%  less than  for the rigid 

design, considering the best solutions. The performance measures (e.g., mean, STD) can be 

found in Table 6.8. It is also better than flexible designs A‐B. Figure 6.2 and   

 

Table 6.7 illustrate the solutions obtained for the four designs. As can be seen 

for the rigid design solution, four units of capacity is deployed at site 1 at year 

0 (which will be available at year 6), and retired in year 26. For the flexible 

design A, 3 unit capacity is deployed at site 2 (i.e., ݋ଶ,ଷ
ଵ ൌ 1) at the beginning 

of the life cycle, while 4 unit capacity is deployed at site 1 (i.e., ݋ଵ,ସ
ଵ ൌ 1) for 

flexible designs B-C. For flexible design A (C), if installed capacity is not able 

to provide for more than ݔௗ ൌ 0.0001% (2.16%) of the electricity demand 

for 3 consecutive years, the planner may expand capacity by  ݉௘ ൌ 1 (1) 

unit capacity at ݊௘ ൌ 1 (1) non-empty sites, or deploy ݉௖ ൌ 3 (1) unit 

capacity at ݊௖ ൌ 1  (1) empty sites, depending on the feasibility of the 
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expansion phase. That is, if there are power plants that are not fully deployed, 

the capacity expansion will be implemented. Otherwise, new power plants will 

be installed at empty sites. Note that if all candidate sites are non-empty and 

the power plants are fully deployed, the flexibility strategies will not be 

implemented even if the condition is satisfied. Since no social acceptance is 

considered in case study 1, the life extension strategy is always implemented. 

The performance measures for the out-of-sample analysis (e.g., mean, STD) 

can be found in Table 6.8 based on 1,000 scenarios generated through the 

GBM process. 

Flexible design C is the best of the four designs in terms of all 

performance measures except P5. This is because the benefit of phased 

deployment and capacity expansion may not be greater than the cost for 

enabling those flexibility strategies when the electricity demand increases 

slowly or even decreases in the long term. However, the difference of the 

expected total costs between flexible design C and flexible design B is not 

statistically significant (p-value = 0.07067) under current assumptions. This 

indicates that flexible design B may be as good as flexible design C when the 

discount rate is equal to 10%. The expected value of flexibility for flexible 

design A is £26.38 – £25.97 = £0.41 billion pounds and the expected value of 

flexibility for flexible design B is £26.38 – £24.24 = £2.14 billion pounds. 

This demonstrates that life extension is more valuable than flexible phased 

deployment and capacity expansion under the current assumptions. 
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Furthermore, the value of flexibility for flexible design C is less than the linear 

sum of the values of flexibility for flexible designs A and B (i.e., £2.32 < £0.41 

+ £2.14 = £2.55). This shows that enabling different real option strategies in 

one system can decrease the value of flexibility because those may interact in 

some cases (e.g. flexible design A may be lagging or deploying capacity not 

fast enough under some scenarios, and therefore life extension may not be as 

profitable in some cases). Figure 6.3 provides an illustration of the 

out-of-sample analysis in terms of cumulative density functions. 

 
Figure 6.2 Graphic illustration of the solution obtained for the rigid system in 

case study 1 (ݎ ൌ 10%). 

 

 

 

Table 6.7 Tabular illustration of solutions obtained by the flexible designs in 

case study 1. 

Alternatives Initial 

configurations

 ࢉ࢔ ࢋ࢔ ࢉ࢓ ࢋ࢓ ࢊ࢞

Flex A ݋ଶ,ଷ
ଵ ൌ 1 0.000001 1 3 1 1 

Flex B ݋ଵ,ସ
ଵ ൌ 1 N.A N.A N.A N.A N.A 

Flex C ݋ଵ,ସ
ଵ ൌ 1 0.021573 1 1 1 1 
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Table 6.8 Results for out-of-sample analysis in case study 1 (£billion). 

Alternativ

e 

Mean  STD  STD 

error 

P5  P95  Value of 

flexibility  

Rigid  26.38 2.83 0.089 23.12 32.03 - 

Flex A 25.97 2.42 0.077 22.49 30.35 0.41 

Flex B 24.24 2.71 0.086 21.30 29.75 2.14 

Flex C 24.06 1.58 0.050 22.10 27.21 2.32 

Best? Flex C Flex C Flex 

C 

Flex B Flex C Flex C 

 

 

Figure 6.3 Cumulative density functions for out-of-sample analysis in case 

study 1. 

 

6.3.4 Sensitivity Analysis 

The sensitivity analysis shows how uncertainty in the output is affected by 

variability in the input parameter assumptions. A one-factor-at-a-time (OFAT) 

approach is applied to identify how the significant parameters (e.g., expected 

growth rate, discount rate) influence the expected system performance. The 
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corresponding results are shown as Tornado diagrams in Figure 6.4. The terms 

“base”, “low”, and “high” represent different values for the significant 

parameters, which are listed in Table 6.9. The low and high values equal -/+50% 

of the base value, except for the magnification. This is because such variation 

makes little sense in the magnification when ߚ ൑ 3 is taken into account (i.e., 

the probability of occurrence for the high level events is considerably large). 

Of the four parameters, the penalty costs for losing demand are the most 

influential for all the design alternatives. This is because the greater (lower) 

the penalty costs, the greater (lower) the expected total costs spent on the 

system. The rigid design only allows the system to operate for a certain period, 

and it cannot satisfy the contractual demand in the last 14 years. Flexible 

designs B and C have the ability to operate 10 more years, and these designs 

are thus penalized much less than the rigid one. The discount rate is also 

influential for the designs, especially the rigid design (see Figure 6.4). This 

makes sense because for the rigid design, all capacity is deployed when the 

project begins, while for flexible designs A and C, such capacity can be 

deployed in later periods, and thus lowering expected total costs. Although 

flexible design B cannot deploy capacity over time and space as the other two 

flexible designs, it allows for life extension with 0 costs at a fixed later period, 

thereby reducing the total expected costs because the operational cost is much 

less than the penalty cost (i.e., the contractual penalty cost for losing demand). 

Since flexible design C is the combination of flexible designs A and B, it has 
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all three real option strategies and can as well reduce the total expected costs. 

The expected growth rate μ is also influential on both the low and high sides 

for designs without options for flexible phased deployment and capacity 

expansion. 

Table 6.9 Values for the significant parameters in the sensitivity analysis. 

Parameter Low Base High 

Discount rate 5% 10% 15% 

Expected growth rate (ࣆ) 0.5% 1% 1.5% 

Volatility (࣌) 2.5% 5% 7.5% 

Magnification (ࢼ)4 3.5 3 1 

Contractual or penalty costs for losing demand (࢖࡯) 100 200 300 
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Figure 6.4 Tornado charts for the expected performance in case study 1. 

 

Figure 6.5 shows the results of the sensitivity analysis focusing on the 

value of flexibility, which is defined in Eq. (5.48). The value of flexibility is 

considered as the difference between the expected total costs of the flexible 

design and the rigid design. As can be seen, the value of flexibility is most 
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affected by the discount rate, then by the expected growth rate and volatility. 

Again, the lower (higher) the discount rate, the more (less) valuable flexibility 

is in the face of uncertainty. When the discount rate is lower (high), costs 

occurring later on weigh more (less) in the present value term – see Eq. (6.1). 

Therefore, the ability to avoid unnecessary cost deployment as enabled by the 

flexible alternatives should have a bigger (lower) impact in terms of expected 

discounted cost savings when the discount rate is lower (higher). Because the 

amount of flexibility increases in flexible designs A-C as compared to the rigid 

design, this is also why the value of flexibility increases between the flexible 

designs when the discount rate is varied by the same amount across all three 

flexible alternatives. 

 

The value of flexibility also decreases when the penalty cost decreases. 

This makes sense because the planner can consider losing some demand 

instead of deploying new capacity to satisfy the demand. When the penalty 

cost is low, it eventually results in more savings for the rigid design, and thus 

reduces the value of flexibility. As the expected growth rate increases, 

flexibility also becomes worth more as it enables the system to deal better with 

changing conditions. At the other end of spectrum, a small expected growth 



177 
 

rate results in lower value for flexibility, since there is no need for change. The 

results show that flexible design B is slightly affected by expected growth rate 

and volatility. This is because in case study 1, decision-making regarding life 

extension is not related to the demand for electricity. Since there is no such 

public acceptance (and therefore no INES index) considered in this first case 

study, this strategy will always be exercised if the nuclear power plant is 

available for the extension. 

 

 
Figure 6.5 Tornado charts for value of flexibility in case study 1. 

 

The results of the main analysis were obtained under the assumption that 

the discount rate is 10% and the penalty cost is £200/MWh. The sensitivity 

analysis demonstrates that the value of flexibility is significantly affected by 

the discount rate. Also, there is a clear tradeoff between implementing 

flexibility and paying penalty costs. In order to make a clear comparison of 
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these designs, a sensitivity analysis was also conducted by gradually 

decreasing the discount rate from 10% to 0%. Figure 6.6 shows the results of 

this sensitivity analysis when the contractual or penalty costs for losing 

demand are equal to £100/MWh, £200/MWh, and £300/MWh. The x 

coordinate denotes the discount rate, while the y coordinate denotes the 

expected total costs. The dots represent the expected total costs correlating to a 

specific design and discount rate under the same assumption of penalty costs. 

The value of the dots is obtained by the exact same procedure as the example 

for the out-of-sample analysis shown above. 

 

 

 

Figure 6.6 The outcomes of the Pareto analysis in case study 1. 
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As can be seen, flexible design C performs the best of the four designs. 

More specifically, flexible design C performs much better than the others 

when the discount rate is less than or equal to 4%. Compared to the rigid 

design, the value of flexibility (i.e., the difference between a given curve and 

the curve for the rigid system) is considerably high when the discount rate is 

less than or equal to 8%, and it increases along with increasing penalty costs. 

This makes sense because the embedded flexibility can reduce the costs due to 

losing demand. In addition, life extension is more valuable than flexible 

phased deployment and capacity expansion in this system, as shown in Figure 

6.5. This is because life extension can be implemented with no additional costs 

(i.e., others than continuing to pay existing costs longer), while implementing 

phased deployment and capacity is not free (e.g., construction costs, reactor 

costs). The value of flexibility for phased deployment and capacity expansion 

is especially negligible when the penalty costs are quite low (e.g., less than 

100/MWh) and the discount rate is fairly small (e.g., less than 5%). This also 

makes sense because the planner would prefer to pay the penalty costs for 

losing demand than to implement flexibility in such conditions. Moreover, the 

rigid design performs the worst across all four designs, even though the gap 

between the rigid design and flexible designs decreases along with the 

decreasing penalty costs. It is possible that the rigid design may be the solution 

when the penalty cost is fairly small (e.g., equal to the selling price for 

electricity), which may not be realistic.  
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6.4 Step 3b: Numerical Analysis – Two Uncertainty Drivers 

The background information for case study 2 is similar to case study 1, except 

for the assumptions about the uncertainty drivers. In this case study, both 

electricity demand and public acceptance are considered. As a significant input, 

the impact of public acceptance of nuclear technology on decision-making 

regarding nuclear power plants is our major concern. In the proposed model, 

decision-making processes are heavily affected by public acceptance. That is, 

ongoing processes may immediately be terminated if nuclear technology is no 

longer in favor with the public (e.g., typically occurs when the cumulative 

INES falls into the dead zone). Also, the lower bounds for the warning and 

dead zones are fairly low at 5 and 7, respectively. This means that any nuclear 

event that reaches level 7 can end the project. The assumptions about other 

significant parameters, such as correlated costs and annual demand for 

electricity, are the same as in case study 1. 

6.4.1 Deterministic Analysis 

This section describes explicitly the results based on a deterministic analysis, 

considering the expected value of demand for electricity and INES as inputs. 

The results are shown in Table 6.10. It is found that the results are the same as 

ones in Table 6.5. This is because the expected INES for each year is too small, 

which can be considered as 0 in general. Therefore, the impact of INES is not 

fully revealed and the deterministic version of case study 2 is the same as that 
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of case study 1.  

Table 6.10 Characteristics and results for deterministic analysis in case study 

2. 

Alternative No. of 

constraints 

No. of 

integer 

variables 

Best LP 

bound 

(£billion) 

Best 

solution 

(£billion) 

Gap 

(%) 

CPLX 

time 

(sec) 

Rigid 1,966 976 25.47 25.47 0.00 0.06 

Flex A 4,302 1,464 25.45 25.45 0.00 2.29 

Flex B 1,888 976 23.19 23.19 0.00 0.19 

Flex C 4,393 1,479 23.66 23.66 0.00 1.47 

	 	 	 	 	 	 	

6.4.2 Uncertainty Analysis 

As did in Section 6.3.2, the characteristics and results of uncertainty analysis 

and flexibility analysis are combined in a single table for comparison shown in 

Table 6.11 in this section, while Figure 6.8 in Section 0 is used for illustrating 

the out-of-sample analysis of rigid and flexible designs.  

Table 6.11 Characteristics and results for design alternatives in case study 2. 

Alternative No. of 

constraints 

No. of 

integer 

variables 

Best LP 

bound 

(£billion) 

Best 

solution 

(£billion) 

Gap 

(%) 

CPLX 

time 

(sec) 

Rigid 24,383 13,015 27.59 27.59 0.00 1.75 

Flex A 54,453 16,698 27.60 27.60 0.00 4.57 

Flex B 24,723 11,044 25.76 25.76 0.00 2.35 

Flex C 55,353 16,698 25.77 25.77 0.00 5.35 

 

6.4.3 Flexibility Analysis 

This section describes explicitly the analysis regarding flexible designs. Table 
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6.11 lists the characteristics of the four design alternatives for case study 2, 

while Figure 6.7 and Table 6.12 illustrate the solutions obtained for the four 

designs. More specifically, Figure 6.7 compares the capacity evolution at site 1 

under two sample scenarios, out of the ten scenarios considered for the 

optimization. The plant at site 1 is closed at period 18 (which is earlier than its 

life time) because public acceptance is not favorable in sample scenario 2, as 

the cumulative INES falls into the dead zone at that time. For flexible design 

A, 3 units of capacity are deployed at site 1 (i.e., ݋ଵ,ଷ
ଵ ൌ 1) at the beginning of 

the life cycle, while 4 units of capacity are deployed at site 1 (i.e., ݋ଵ,ସ
ଵ ൌ 1) 

for flexible designs B-C. For flexible design A (C), if capacity installed loses 

more than ݔௗ ൌ 0.0001% (1.796%) of electricity demand for 3 consecutive 

years, the planner may expand capacity ݉௘ ൌ 1 (1) unit capacity at ݊௘ ൌ 1 

(1) non-empty sites, or deploy ݉௖ ൌ 4 (1) unit capacity at ݊௖ ൌ 1 (1) empty 

sites, depending on the feasibility of the expansion. If the cumulative INES is 

greater than or equal to ݍଵ ൌ 5 but less than ݍଶ ൌ 6, the system can still be 

operated but no strategic-level decisions can be implemented. When the 

cumulative INES is greater than or equal to ݍଶ ൌ 6, the system will be shut 

down immediately. 
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Figure 6.7: Graphic illustration of the solution at site 1 obtained for the rigid 

system in case study 2 (ݎ ൌ 10%). 

 

Table 6.12 Tabular illustration of solutions obtained by the flexible designs in 

case study 2. 

Alternatives Initial 

configurations 

૚ࢗ ࢉ࢔ ࢋ࢔ ࢉ࢓ ࢋ࢓ ࢊ࢞  ૛ࢗ

Flex A ݋ଵ,ଷ
ଵ ൌ 1 0.0001 1 4 1 1 5 7 

Flex B ݋ଵ,ସ
ଵ ൌ 1 N.A N.A N.A N.A N.A 5 7 

Flex C ݋ଵ,ସ
ଵ ൌ 1 0.018 1 1 1 1 5 7 

 

Table 6.13 shows the values of the significant performance measures. As can 

be seen, flexible design B has the lowest expected total costs for all designs, 

which are 6.43% less than the highest cost. The expected costs for flexible 

design C, however, are close to the expected costs for flexible design B and 

are about the same for flexible design A and the rigid design (see Figure 6.8). 

The statistical analysis shows that the difference between flexible design C 

and flexible design B, as well as the difference between flexible design A and 

the rigid design, are not statistically significant. The difference between 
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flexible design C and flexible design A, however, is statistically significant in 

terms of its p-value (2.03 ൈ 10ିଶଵ). In other words, both “couples” are 

statistically different from one another. If one compares to case study 1, this 

shows that flexible phased deployment and capacity expansion does not add as 

much value to the system when public acceptance is taken into account. This 

makes sense because the whole project may be stopped whenever acceptance 

is unfavorable. The implemented flexibility may or may not result in enough 

financial return (i.e. cost savings) from the investment. If that is the case, the 

planner may consider not implementing flexibility in the first place. Life 

extension, in contrast to other flexibility, is assumed to incur very low costs to 

implement and thus is always valuable. Besides, the CPLEX time is much 

shorter as compared to case study 1. This is because the consideration of 

public acceptance reduces the size of the solution space, and thus decreases 

the time for searching the optimal solution.   

 

Table 6.13 Results for out-of-sample analysis in case study 2 (£billion). 

Alternative Mean   STD  STD 

error 

P5  P95  Value of 

flexibility 

Rigid  27.64  5.41 0.171 23.14 38.04 - 

Flex A 27.67  5.47 0.173 23.14 38.5 0 

Flex B 25.89  5.83 0.184 21.39 37.81 1.75 

Flex C 25.98  5.88 0.186 21.39 38.04 1.66 

Best? Flex B  Rigid Rigid Flex B-C Flex B Flex B 
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Figure 6.8 Cumulative density functions for the out-of-sample analysis in case 

study 2. 

 

6.4.4 Sensitivity Analysis 

The following sensitivity analysis in this section focuses on the evaluation of 

the performance affected by variability in the input assumptions. The terms in 

the Tornado diagrams are listed in Table 6.9 and were discussed in case study 

1. As can be seen in Figure 6.9, the expected total costs are mostly affected by 

the discount rate and penalty costs for losing demand, then by the 

magnification and expected growth rate. This situation is similar to that of case 

study 1. It is interesting that the change of magnification did not affect the 

performance as much as expected. This is because the probability for events 

higher than or equal to level 4 are considerably small in the three cases (i.e., 

0.0122 (low) vs. 0.0066 (base) vs. 0.0039 (high)). Since the lower and upper 

bounds for the different zones are predetermined by the planner, the change of 

magnification could only influence the expected performance in a fairly small 
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way. 

 

 

 

 

Figure 6.9 Tornado charts for the expected performance of design alternatives 

in case study 2. 

 

Figure 6.10 illustrates variations in the value of flexibility between the 

rigid and flexible designs. The discount rate affects the value of flexibility 

most for the three designs. This makes sense because a smaller discount rate 
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can increase the weight of future cost in the discounted cash flow analysis, and 

therefore the ability to avoid unnecessary capacity deployment with the 

flexible systems is worth increasingly more. Once again, the most flexible 

design B is affected most by the discount rate, as shown by the largest 

variations in value for flexibility. The rigid design may not necessarily be the 

worst in terms of expected total costs if the discount rate is large enough (e.g., 

discount rate > 15%). The penalty costs for the rigid design increase more than 

those of the flexible designs when the penalty increases, since flexibility can 

reduce the amount of lost demand while the rigid design can do nothing with it. 

As magnification decreases, the probability of high level events (level 4 and 

above) decreases, and flexible designs B and C can reap more rewards by 

exercising the flexibility strategies, especially life extension. Overall, flexible 

design B is the best alternative under the current assumptions. 
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Figure 6.10 Tornado charts for the value of flexibility in case study 2. 

 

In case study 2, the lower bounds for determining the warning and dead 

zones are significant to the value of flexibility, as discussed above and shown 

in Figure 6.10. The following sensitivity analysis aims to investigate how 

significant these lower bounds are. The lower bounds under the original 

assumption were 5 and 7, respectively. The bounds become 6 and 9 in the 

mid-level case, and 7 and 11 in the high-level case. The higher the lower 

bounds, the more public are in favor of nuclear technology. As can be seen in 

Figure 6.11, the expected total costs decrease when the lower bounds of public 
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acceptance increase. This makes sense because flexibility – such as phased 

deployment, capacity expansion, and life extension – could be implemented as 

needed if public environment is more conducive. If the lower bound is large 

enough, the system does not have to consider the effect of public acceptance 

as it will never fall into the warning and/or dead zones, which is similar to 

case study 1 where public acceptance is not a concern. The boundaries of 

public acceptance require input from the public, and so they may not be 

completely determined by experts. However, this analysis helps decision 

makers to determine the final boundaries in consideration of profit and public 

emotions. 

 

 

 

Figure 6.11 The outcomes of the Pareto analysis in case study 2. 
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Chapter 7 HYBRID HEURISTIC 

“The unexamined life is not worth living for a human being.” – Socrates (c. 

470 – 399 BC) 

 

This chapter explicitly describes the heuristic framework used to solve the 

two-stage multi-period stochastic models discussed in Chapter 5 and Chapter 6. 

The purpose is to 1) validate the solutions found to the two-stage multi-period 

stochastic programming problems using the standard Branch and Bound 

algorithm in AIMMS, and 2) to determine whether such solutions can be 

found faster, and with better quality. The framework is based on a two-phase 

structure, aiming to search for the optimal solution within an acceptable 

amount of time. The two-phase framework consists of two search algorithms: 

one regarding the initial configuration and managerial decision rules, and one 

regarding the capacity deployment over system’s life cycle. Section 7.1 

introduces the reasons for creating this framework and reviews the current 

applications of heuristic methods. Section 7.2 describes the inner and outer 

search algorithms and determines the criteria for stopping the algorithm and 

avoiding cycling. To validate the framework, this thesis compared it to the 

default algorithm (which is the standard Branch and Bound) embedded in 

commercial optimization software (e.g., AIMMS®). The design problem for 

EMS systems discussed in Chapter 5 is used as the benchmark. The results of 
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this comparison are shown and discussed in Section 7.3.  

7.1 Purpose of the Heuristic Algorithm 

This thesis proposes a novel design approach for infrastructure systems. This 

approach incorporates the concept of flexibility and managerial decision rules, 

and describes the design problem using a two-stage multi-period stochastic 

model based on the SAA scheme. The model thus consists of a large number 

of constraints and decision variables, which makes the problem difficult to 

solve. More specifically, the design problems for EMS systems (also known as 

location or relocation problems) are usually considered NP-complete problems 

because the size of the solution space for locating ݒ  stations/emergency 

vehicles in ݅ districts is ݅௩ (Saydam et al., 1994). The complexity of this 

combinational nature requires various attempts to explore and exploit 

near-optimal solutions for practical use by meta-heuristic search methods, as 

the default optimization solvers like CPLEX® and Gurobi® cannot obtain 

optimal solutions within a reasonable time (Rajagopalan et al., 2007). 

Heuristic methods play an important role in solving complex problems. As 

an example of infrastructure systems, the EMS system has been studied and 

systematically analyzed using heuristic search methods by many researchers. 

For example, Rajagopalan et al. (2007) considered four meta-heuristic search 

methods to help identify good solutions for MEXCLP. Their work investigated 

the evolutionary algorithm (EA), Tabu search (TS), simulation annealing (SA), 
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and hybridizing hill-climbing (HC) through an experimental comparative 

study of the expected performance of an EMS system. Tabu search was 

developed by Glover (1990) and is a unique meta-heuristic method that uses a 

list to store past searched or so called “violated” solutions during the search 

procedure. Revisiting those unsatisfactory solutions may cause a cycling 

problem and the search may not be able to get close to the global optima. To 

get rid of this cycling, “violated” solutions are stored in a list so that the 

algorithm will not take them as possible alternatives, and the algorithm thus is 

able to explore and exploit solution space more and deeper in a limited amount 

of time. For examples of TS applications in EMS systems, see Diaz and 

Rodriguez (1997), Gendreau et al. (1997), Gendreau et al. (2001), 

Rajagopalan et al. (2008), and Başar et al. (2009). TS accepts a worse solution 

due to pressure given by the Tabu list, while SA accepts a worse solution with 

some probability pre-defined by programmers (Kirkpatrick et al., 1983). This 

ability of SA to “go downhill” helps it escape local optima and thus explore 

more of the solution space. As a significant meta-heuristic method, SA has 

been applied in EMS systems in recent decades (Aboueljinane et al., 2013; 

Syam & Côté, 2010). Evolutionary algorithm is another meta-heuristic method 

that aims to explore very large search spaces using the concept of evolution (of 

which genetic algorithm (GA) is an example). There are various examples of 

how EA can be applied to complex systems (Aytug et al., 2003), including 

EMS systems (Aytug & Saydam, 2002; Jia et al., 2007b). Unlike the above 
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methods, HC is not a meta-heuristic based search method; rather, it is an 

iterative improvement method to exploit better solutions within a given search 

space. The mutation operators in HC help it to explore solution spaces and 

thus obtain better solutions. 

7.2 Algorithm Description 

This section describes the framework of the hybrid heuristics. This framework 

aims to obtain good practical solutions for the design and management of 

flexible infrastructure systems in a relatively short and acceptable time. Wang 

(2015) described a similar search heuristic and demonstrated it in a numerical 

analysis where a two-phase search approach can have better performance than 

the default algorithm of the solver (i.e., CPLEX) for an expected maximal 

covering location problem in the EMS sector, in terms of quality of solution 

and time to best solution. The benchmark problem discussed in Wang (2015) 

is an older version of the MSCLP proposed in Chapter 5 and an example of 

designing an infrastructure system for flexibility. This thesis modifies that 

approach by replacing the inner algorithm while keeping the outer part, and 

then compares the proposed hybrid heuristic to meta-heuristics such as genetic 

algorithms and simulated annealing.  

The framework consists of inner and outer search algorithms developed 

for different purposes. The inner search mainly focuses on finding the optimal 

capacity deployment plan given a group of decision rules and an initial 
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configuration. The outer search, in contrast, focuses on finding the 

stochastically optimal initial configuration and the best decision rules by 

changing corresponding parameters. The structure of the framework is shown 

in Figure 7.1. As can be seen in this flow chart, one may initially determine a 

basic feasible solution (BFS) for the outer search, and then send this BFS into 

the inner search to find the corresponding optimal solution for capacity 

deployment. The solutions of the outer and inner search are combined to 

calculate the objective value for the design problem. This objective value will 

be stored in RAM as a benchmark. The procedure to find this objective value 

continues and terminates due to some stopping criteria (e.g., time and/or 

iteration limit) or when no more progress can be made in a certain time. The 

inner and outer search methods are explicitly described in terms of procedure 

steps in Section 17.2.1 and Section 17.2.2, respectively. 

 

Figure 7.1 Flow chart for the two-phase search framework. 
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7.2.1 Inner Search Algorithm 

The purpose of the inner search heuristic is to optimize the design of an 

infrastructure system in terms of a specific measurement (e.g., NPV, expected 

incident coverage rate) based on the given initial configuration and decision 

rules. It is assumed that the scenarios considered in the modeling framework 

discussed in Chapter 4 are iid (i.e., identically and independently distributed). 

The original design problem can thus be divided into ܰ sub-problems, and 

each sub-problem focuses on optimizing the objective function without taking 

expectation. For example, the objective function of MSCLP can be generalized 

as min∑ ௡௡ܥ௡݌ , where ܥ௡ is the ݊th total discounted cost under scenario ݊. 

The objective function of the ݊th sub-problem is then min  .௡ܥ

The inner algorithm is based on the typical Branch and Boundmethod, 

which is an exact method for finding the optimal solution. This method was 

first proposed by Land and Doig (1960) and searches the solution space by 

enumerating new sub-problems (branching), deleting unsatisfactory 

sub-problems (pruning), and retaining acceptable sub-problems with an 

optimal solution (partitioning). It is known that the Branch and Bound method 

can be time-consuming, depending on the size of the problems and the 

efficiency of the estimation for the lower and upper bounds of a branch of the 

search space. In Wang (2015), the inner search heuristic consists of four steps: 

initialization, evaluation, generation of moves, and recording of results. The 

heuristic may be faster at finding a good solution than an exact method, but it 
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cannot guarantee the optimality of the solution. The reason that branch and 

bound was selected as an alternative method for the inner algorithm was 

because the sub-problem of the MSCLP could be solved to optimality 

efficiently within an acceptable amount of time (e.g., a few seconds to 

minutes).  

7.2.2 Outer Search Heuristic 

The outer search heuristic is dedicated to finding the optimal solution for the 

initial configuration and decision rules. It is anticipated that the combinations 

of parameters of decision rules within the possible range is considerably large. 

Thus, an exhaustive search is time-consuming and may be impractical. An 

experimental approach known as adaptive One-Factor-at-a-Time (aOFAT) 

(Frey & Wang, 2006) was applied in the framework to deal with this challenge. 

Figure 7.2 illustrates the specific process of the aOFAT method and shows it 

visually by a cube.  

 
Figure 7.2 Adaptive OFAT as applied to a system with three two-level factors 

(A, B, and C) (Frey & Wang, 2006). 
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Unlike typical OFAT, the interactions between different factors are 

considered in the adaptive OFAT approach. It is assumed that there are ݊ 

factors, and that there is a response ݕ which is a function of the factors (e.g., 

the objective function). Furthermore, it is assumed that the factors have two 

levels each, coded as ݅ݔ ∈ ሼെ1,൅1ሽ . The initial point (or the baseline 

observation) can be ܱ0 ൌ ,෥1ݔሺݕ ,෥2ݔ … ,  is toggled 1ݔ ,෥݊ሻ. After the first stepݔ

and we have the corresponding observation ܱ1 ൌ ,෥1ݔሺെݕ ,෥2ݔ … ,  ෥݊ሻ. The finalݔ

value of 1ݔ will be determined by taking the difference between ܱ0 and ܱ1, 

and is denoted as 1ݔ
∗ . Note that none of these interactions are exploited after 

this step. However, all of the factors except for 1ݔ  are toggled in the 

subsequent steps of the adaptive OFAT; their final state may be different from 

the state after the first step. In that case, the contributions due to interactions 

 may potentially be reversed as the process continues. In contrast, the first 1݆ߚ

main effect 1ߚ is exploited and its contribution is permanent. In the second 

step, we toggle 2ݔ to see whether there is improvement in the observation. 

The interaction 12ߚ  will not be affected in any way by subsequent 

experiments. The probability of exploiting the interaction 12ߚ will be greater 

than 50% for all systems with nonzero interactions (Frey & Wang, 2006), 

which is better than that provided by random chance. If 12ߚ is the largest 

interaction, this probability is no less than 75%. Because the number of 

experiments taken by aOFAT is only a small fraction to that of OFAT, if the 

number of factors is large (݊ ൐ 5ሻ, this probability is remarkably high. 
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Furthermore, Frey and Wang (2006) proved that the probability of exploiting 

any interaction ݆݅ߚ is no less than the probability of exploiting 12ߚ. The 

aOFAT approach accounts for the interaction at a rate of at least 50%. If a 

good initial point is selected by experience, the probability can be as good as 

75%. 

Taking the design problem of EMS systems as an example, there are five 

factors (i.e., ݋ଵ, ,௨݋ ,ௗߜ ,௢݋ ௢ߜ ) and their interactions that need to be 

considered. Instead of randomly selecting an initial point for ݋ଵ, a preprocess 

based on the demand inputs and incident coverage rate (i.e., fleet size) was 

implemented to determine a feasible initial point. For example, if the coverage 

requirement is no less than 90% of the total incident calls and the total hourly 

arrivals are 10, then the system requires at least nine units of capacity as an 

initial configuration. These nine units of capacity could be deployed in 

different combinations at the candidate sites. The outer algorithm will then 

find the best combination of the initial configuration using the aOFAT 

approach, as shown in the following diagram. The starting point is randomly 

selected subject to the capacity requirement. If the system requires nine units 

of capacity at the beginning of the life cycle, multiple points will be chosen to 

construct the initial configuration.  
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Figure 7.3 Graphic illustration of the search process w.r.t. ݋ଵ, the initial 

configuration (Wang, 2015). 

 

The variables regarding the units to be expanded (i.e., ݋௨) and installed 

(i.e., ݋௢) are explored next. A stepwise increase was used to search the 

optimal solution for both variables, where the value of the stepwise increase 

could be independent or dependent of the candidate sites. Note that ݋௢ only 

affects a subset of sites that were excluded from the initial configuration (i.e., 

the sites were not deployed capacity at time 0). The method used to search for 

the optimal ߜௗ and ߜ௢ was the same as the one used by Wang (2015); the 

value of ߜௗ decreases or increases by “a step value which is halved each 

iteration”. Since ߜ௢  is not necessarily an integer, the step value is 

considerably small (e.g., 0.05) and thus the number of iterations is large 

relative to ߜௗ. Any change in the factors can influence the objective value. If 

this change improves the value, it will be stored as a benchmark. A change will 

not be accepted if the objective value gets worse, and this factor will not be 
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changed any further. The overall search terminates after every factor has been 

changed exactly once.  

7.3 Numerical Analysis 

This section describes the performance of the hybrid heuristic compared to a 

commercial solver using the branch and bound algorithm (i.e., CPLEX) as 

well as generic meta-heuristics such as simulated annealing and genetic 

algorithms. The B&B method is considered the benchmark, which was 

introduced in Section 5.3, while SA and GA are considered alternative outer 

heuristics. All outer search heuristics were coded in AIMMS 4.2 and CPLEX 

12.6 was selected as the solver for implementing the inner search. All 

alternative methods were run on the same high performance workstation with 

2.60 GHz CPU and 32 GB RAM to make the comparison fair. Two important 

metrics – Quality of Solution (QoS) and Time-to-Best-Solution (TBS) – were 

used to measure the performance of the proposed heuristic. These metrics 

were discussed in Sections 7.3.1 and 7.3.2, respectively. Section 7.3.3 

discusses the results for the out-of-sample test of over 1,000 sample scenarios.  

7.3.1 Quality of Solution (QoS) 

The quality of solution is defined as the relative gap between the solution 

obtained from the optimization problem and the best LP bound. This bound is 

determined by the B&B method in the commercial solver (i.e., CPLEX). It is 
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known that the smaller the gap is, the better the quality of the solution. Figure 

7.4 shows a comparison of the results of four runs across different incident 

coverage rates. The form of the solutions is exactly the same as the one shown 

in Table 5.9 in Chapter 5, which consists of the initial configuration and the 

parameters for decision rules. As can be seen, the results for all the alternatives 

and the best LP bound increased alongside the incident coverage rate. This 

result makes sense because the system requires a greater budget to achieve a 

higher coverage rate.  

 
Figure 7.4 Comparison of results in terms of Quality of Solution across 

different incident coverage rates. 

 

As observed in the figure, the hybrid heuristic was generally the best of 

the four alternatives in terms of the gap between its solutions and bounds, 

while the standard B&B algorithm in AIMMS performed the worst in all cases. 

This may be because the standard B&B algorithm is a general algorithm and is 

thus not well-suited for this particular design problem. Besides, the results for 

the other two meta-heuristics were roughly the same when the coverage rate 
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was between 85% and 98%, and both results were a bit worse than those for 

the hybrid heuristic. This may be because the mechanism of SA and GA is 

based on random search, and there was no such initial treatment as there was 

for ݋ଵ in the hybrid method. The quality of solution thus heavily depends on 

the number of iterations defined initially; in general, the larger this number is, 

the better quality of solution will be obtained from SA and GA.  

7.3.2 Time to Best Solution (TBS) 

The time to best solution (TBS) is the exact time spent solving the 

optimization problem subject to iterations or gap limits which, as indicated in 

Section 5.3, were four million iterations and a 1% relative gap, respectively. 

The default upper bound of the solving time was 100,000 seconds (i.e., 

approximately 1 day and 4 hours), which may not be an acceptable time in 

practice. Figure 7.5 shows a comparison of the TBS results for the four 

alternative methods. Overall, it indicates that the hybrid method was generally 

faster than the other two meta-heuristics and the default algorithm. The 

solving time for the hybrid method was never more than 3,000 seconds, while 

only the SA method with a 80% coverage rate was close to this value (i.e., 

2,980.47 seconds). The TBS for the meta-heuristics was also less than that for 

the default method when the coverage rate did not exceed 98%, while SA cost 

less than GA when the incident coverage rate was relatively small (i.e., less 

than 95%).  



203 
 

 
Figure 7.5 Result comparison in terms of Time to Best solution across 

different incident coverage rates. 

 

It is interesting that only the TBS for SA increased alongside the incident 

coverage rate. This makes sense because SA searches the neighborhood 

solution in every iteration, while the solving time for each solution increased 

with the coverage rate. For GA, TBS did not consistently increase due to the 

randomness of making crossovers between the generated solutions and 

mutating new solutions. Although the TBS of the hybrid method was not 

dependent on the coverage rate and thus intractable, its value was relatively 

stable, fairly small (no more than one hour), and applicable in practice. 

7.3.3 Out-of-Sample Analysis 

An out-of-sample analysis was conducted to ensure that the results obtained 

from these heuristics, as compared to those obtained from the commercial 

solver, were reliable. This test is normally used to evaluate the performance of 

results in untested sample scenarios and it was applied in the engineering two 
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application studies on EMS and nuclear power systems in Chapter 5 and 

Chapter 6, respectively. Figure 7.6 shows the results for the four alternative 

methods across different incident coverage rates. As can be seen, the 

optimization solution obtained from the hybrid heuristic outperformed the 

other methods overall. The solution obtained from the B&B method in 

AIMMS also performed better than the meta-heuristics when the coverage rate 

was higher than or equal to 90%. Results for SA and GA followed the same 

order as in the analysis of QoS in Section 7.3.1. 

 

Figure 7.6 Results comparison in terms of the out-of-sample analysis across 

different incident coverage rates. 

 

Although the differences between the expected values of the hybrid and 

the default method (i.e., the standard Branch and Bound algorithm in AIMMS) 

generally became smaller when the coverage rate increased, the results for the 

hybrid method in the out-of-sample analysis are closer to the solutions 

obtained from the optimization problem than those from the default method. 
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This indicates that the hybrid method is more reliable and its solutions are 

more robust in the face of untested uncertainty scenarios. This makes sense 

because the hybrid method can find optimal solutions for the sub-problems in 

a fairly easy way, while the default method can only find approximations of 

optimal solutions.  

Table 7.1 Summary of results of the out-of-sample analysis (ܸ݋ܥ ൌ 0.9) 

($million). 

Alternative   Mean STD STD 

error 

P5 P95 Median 

Branch and 

Bound 

13.48 1.07 0.034 11.86 15.31 13.39 

Hybrid 13.19 0.91 0.029 11.80 14.73 13.15 

SA 14.13 1.00 0.032 12.44 15.84 14.10 

GA 14.08 0.98 0.031 12.56 15.80 13.58 

Best? Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid 

 

Table 7.1 summarizes the results of the out-of-sample analysis for all 

methods when the coverage rate was 90%. The smallest value in columns 2 to 

5 indicates the best solution. As can be seen, the hybrid method outperformed 

the other three methods in all significant parameters. The difference between 

the mean values for the Hybrid and Branch & Bound algorithms is statistically 

significant in terms of its p-value (0.002983 ൏ 0.05). Although the results of 

the standard B&B method were the second best overall, its standard deviation 

was the largest. This may be because the default method did not solve the 

sub-problems to optimality, as compared to the other heuristics. Again, the 
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results show that the hybrid method yielded more reliable solutions than other 

methods.  

Overall, the analysis of this chapter indicates that the proposed hybrid 

heuristic performs the best across all four alternatives. The standard B&B 

algorithm could solve the design problem, but the quality of the solution 

heavily depends on the upper bound of the solving time as well as the 

requirement to the relative gap. However, the standard B&B method may not 

be efficient and effective when the scale of the problem is fairly large (e.g., a 

design problem with more than 15 districts). From an engineering standpoint, 

it may be necessary to have a heuristic to solve the design problem in an 

acceptable amount of time, while the optimal solution is approximately close 

to the global optima (i.e., relative gap is acceptably small). The proposed 

hybrid heuristic is demonstrated to be feasible in finding acceptable and 

reasonable solutions, and to be effective in solving the design problem faster 

than the standard B&B algorithm. The form of the solution obtained by 

applying the hybrid heuristic is the same as the one obtained by the standard 

B&B algorithm. The quality of the solution is also better than that of the 

standard B&B method when the incident coverage rate is required to be higher 

than or equal to 95%. On the one hand, the hybrid method may not be better 

than the default B&B method in a small scale problem because the hybrid 

algorithm is based on heuristic, which could not guarantee to find the global 

optima. The solving time for a small scale problem by using the default B&B 
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method is acceptable in both experiment and practice. This hybrid method, on 

the other hand, may be helpful in solving large scale problem and thus make 

the proposed mathematical framework be practical. Moreover, the proposed 

hybrid algorithm is a globally convergent heuristic. The inner algorithm based 

on B&B is arguably considered as globally convergent, which has been proved 

many times. Although the outer algorithm based on aOFAT requires a “good” 

BFS to find the optimal solution efficiently, it eventually converges for an 

arbitrary BFS as the algorithm stops by the same predetermined requirement. 

In other words, the proposed hybrid algorithm is also globally convergent. It is 

possible that this hybrid algorithm may not consider interactions and thus may 

miss the optimal solution. If the computational time is sufficient, the factorial 

approach could be a good alternative as it explicitly considers interactions. 

Adaptive OFAT is used in this thesis because computational time is always an 

issue in a practical context. The proposed algorithm could offer a good enough 

solution in a fairly small amount of time. 
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Chapter 8 FINDINGS AND DISCUSSION 

“One must sustain one’s effort when a task is nearing completion.” – Liu 

Xiang (c. 77 – 6 BC, Strategies of the Warring States) 

 

This chapter discusses the findings obtained from the numerical analyses in 

Chapter 5 to Chapter 7. The discussion here is not just a simple repetition of 

that in the above chapters. Instead, Sections 8.1 to 8.3 focus on answering the 

research questions introduced in Chapter 3 and determining whether they were 

well addressed, as well as discussing the potential of the results to impact 

architecture and decision-making at the highest level of policy-making for 

more general infrastructure systems. The discussion in this section also offers 

recommendations for system planners, managers, and academic researchers on 

how to understand and apply the approach proposed in this thesis to design 

flexible infrastructure systems in practice. Section 8.4 explicitly describes the 

potential of the proposed heuristic framework for dealing with more general, 

larger-scale problems in practice.  

8.1 Area 1: Design of Flexible Infrastructure Systems 

The research questions proposed in Section 3.1 are combined, reorganized, 

and restated as follows: 

“What is the best design for an infrastructure system to make it adaptable 

to the changing environment, and to improve the anticipated performance over 
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a system’s life cycle under uncertainty? How can one design a flexible system 

that can be easily applied to the real world, and evaluate the corresponding 

value of flexibility as compared to a benchmark design (i.e., typical design 

without flexibility)?” 

The results in Chapter 5 and Chapter 6 indicate that the proposed novel 

design approach incorporating the concept of strategic-level flexibility may 

produce better design alternatives for infrastructure systems, as compared to 

typical robust designs (i.e. stochastically optimal although rigid capacity 

designs). The results show that flexible designs outperformed robust designs in 

both case studies in terms of expected performance. The two case studies also 

demonstrated that the flexible design outperformed the competitors in terms of 

significant statistical indicators (e.g., STD, P5, P95), representing its ability to 

adapt to various realizations of uncertainty scenarios, protecting from 

downside conditions, and enabling a system to capitalize on upside 

opportunities. Flexible designs take advantage of change rather than resisting 

it, and thus have a better performance in different environments, according to 

the results of the sensitivity analyses in the above chapters.  

The methodology discussed in Chapter 4 can help system designers and 

planners in thinking about how to develop a flexible design that can be used in 

practice. Typical DP-based ROA approaches require the decision-maker to 

determine the current stage and state in a decision tree based on the past and 

existing state of the main uncertainty drivers, predict the states of these drivers 
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in the future, and then perform backward induction to determine the optimal 

policy at any given time. Thorough knowledge and understanding of dynamic 

programming is required to understand and carefully apply these operations to 

find, and also exercise the solution in operations. Further challenges include 

using these approaches when multiple uncertainty drivers are considered and 

determining the stochastically optimal initial configurations and the best 

decision rules for implementation within an acceptable amount of time.  

The proposed approach based on decision rules can handle these issues, as 

demonstrated in the case studies. Compared to the solution obtained via 

typical ROA approaches, the output vector of this approach is easy to 

understand and thus to implement, even without advanced knowledge of 

mathematical modeling or simulation. The recommended solution consists of 

an initial configuration and a set of decision rules. System planners can deploy 

capacity at the beginning of the life cycle, as suggested, and then manage the 

system by following the decision rules based on the realization of uncertainty 

scenarios - they do not necessarily require advanced training in the 

mathematical model or the mechanisms of behind the approach. All that the 

system planners have to do is collect past and current information (e.g., 

demand) to generate samples of uncertainty scenarios to make the solution 

more reliable. The planners are then able to design an infrastructure system 

incorporating favorable flexibility strategies by modifying the design variables 

and constraints accordingly. The decision rules are intuitive to use and do not 
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require high-level knowledge of mathematical programming and/or simulation. 

In addition, the modeling framework discussed in Chapter 4 contains a 

systematic evaluation method for valuing the flexibility strategies. This 

method was applied and verified in both case studies, and is feasible for 

practical use.  

8.2 Area 2: Design and Management of EMS Systems 

“Can one develop an EMS system incorporating flexibility so that it can 

stochastically dominate existing rigid designs (i.e., the benchmark) in terms of 

KPIs, such as total costs and/or incident coverage rate? If so, is it always 

worth developing a flexible EMS system to gain a better anticipated 

performance under uncertainty in the long term?” 

The results presented in Chapter 5 answer this research question in a 

numerical way. A novel design was proposed based on the new design 

approach by incorporating strategic-level flexibility and implemented via 

decision rules based on the realization of uncertainty scenarios. The objective 

in the mathematical model was to minimize the expected total cost. This 

objective makes sense because budget is always a concern for the issue of 

capacity deployment. Besides cost, the incident coverage rate (also referred to 

as fleet size) is another concern for system planners. One may determine the 

objective and corresponding constraints, and then develop a mathematical 

model following the framework for different purposes. 
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The benchmark design is a rigid one that deploys all capacity at once at 

the beginning of a system’s life cycle. This design is usually applied for 

short-term planning, as in the literature, and is not always the best solution for 

long term planning. The reason that this design is considered here is for the 

purpose of comparison. One may want to know how good the flexible design 

is compared to a typical robust design. In order to make the analysis more 

reliable, a long term robust design is considered as an alternative. This robust 

design is an extended, upgraded version of a short term design proposed by 

Beraldi and Bruni (2009). This long term design allows for capacity 

deployment over time and space based on a fixed plan. It does not have the 

ability to adapt itself to various conditions, and thus cannot benefit from 

upside opportunities. However, it is hard to say if the flexible design 

dominates stochastically the typical designs. Referring to the results in Section 

5.3, the flexible design had a better overall performance when the incident 

coverage rate was required to be higher than 90%. The flexible design may be 

favorable to system planners when the requirement for the system fleet size is 

considerably high. 

In addition, improvement to the objective of interest (i.e., value of 

flexibility) is not fixed and may vary significantly depending on the setting of 

the input parameters. The most influential parameter for such design problems 

is the discount rate. According to the results obtained in the above case studies, 

the higher the discount rate, the less valuable flexibility is in the face of 
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uncertainty. This makes sense because higher discount rates provide more 

incentives to defer decision-making regarding capacity deployment to later 

periods, and vice versa. If the discount rate is too small, the flexible design 

may not be valuable due to the cost premium for enabling flexibility. Although 

this parameter is usually a fixed number in analytical models, there is a 

possibility that its value may change over a system’s life cycle in the real 

world. This unexpected change could affect the ultimate expected performance 

and make the recommended design more or less valuable. One possible way to 

deal with this issue is to consider the discount rate as an uncertainty driver in 

the mathematical model. The recommended solution obtained by solving the 

problem to optimality is then more adaptable to various scenarios, and the 

value of flexibility is thus more robust. 

Another parameter that significantly influences the expected performance 

is the mean growth rate of long term demand. More specifically, the faster the 

demand grows, the more valuable flexibility is. This is true because typical 

robust designs need to deploy more capacity in early periods in order to meet 

growing demand in later periods, and thus cost more. The flexible design, by 

contrast, has the ability to deploy capacity later only if it is needed, and thus 

cost less than typical designs. It should be noted that flexibility may not be 

favorable if the mean growth rate is relatively low or even zero (i.e., the 

demand is constant over time). This is because the proposed flexibility 

strategies, such as phased deployment and capacity expansion, are 
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implemented after losing appropriate coverage of incidents (i.e. demand). 

When the mean growth rate is too small, the flexible design cannot benefit 

enough from its adaptable strategies to offset the cost of enabling flexibility 

and/or the penalty for losing demand. System planners must be careful when 

considering the flexible design when the demand is relatively stable in the 

long term. Also, the volatility of long term demand could affect the value of 

flexibility in a similar way. The flexible design could no longer be the best 

choice when the long term demand of the system is flat. 

Besides the general parameters discussed in the above paragraphs, one 

may care about special parameters like the coverage radius used in the model. 

Such special parameters have the potential to make the original design 

solution infeasible if they are not consistent with the values considered in the 

mathematical model. For example, the radius of a station is unlikely to be a 

constant over a system’s life cycle due to population growth and changing 

traffic conditions in the long term. System planners may need to solve the 

problem more than once based on the new inputs of those parameters in order 

to find a more suitable solution. 

This thesis introduced a novel approach for the design and management of 

infrastructure systems in the long term. This approach explicitly considers 

long term uncertainty drivers during the design process and deals pro-actively 

with such drivers by incorporating the concept of strategic-level flexibility. 

The approach is demonstrated by case studies in two engineering contexts 
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where it improved significantly the long term expected performance over 

typical robust design approaches. It was also demonstrated that this approach 

has the potential to be applied to the issue of capacity deployment for different 

infrastructure systems over time and space by changing some of the design 

variables and constraints. Again, the proposed modeling framework is capable 

of testing different decision rules by modifying the corresponding 

non-anticipative constraints accordingly.  

8.3 Area 3: Design and Management of Nuclear Systems 

The research questions for the design and management of nuclear systems are 

similar to those for EMS systems, and are restated as follows: 

“Can one site nuclear power plants flexibly so that these energy systems 

can have good anticipated performance under uncertainty? What flexibility 

strategies can one consider in the design and which one most benefits the 

system? What is the influence of social acceptance on the expected 

performance of a nuclear system, as well as the decision-making processes?” 

The results presented in Chapter 6 indicate that the modeling framework 

can be used for developing more general infrastructure systems. The flexible 

design considers three flexibility strategies – phased deployment, capacity 

expansion, and life extension – to deal pro-actively with uncertainty drivers 

such as demand for electricity and social acceptance. These strategies were 

also implemented via decision rules, as was done for EMS systems. The 
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objective was to minimize the expected total cost over the system’s life cycle. 

This objective can be replaced by other monetary objectives, like the levelized 

cost of electricity, if needed. 

The benchmark design for siting nuclear power plants deploys all capacity 

at once at period 0, similar to the benchmark design for EMS systems. This 

benchmark represents the planning of such capacity deployment in the real 

world, as described in the relevant literature. In order to analyze the 

importance of flexibility strategies, the flexible design was reorganized as two 

sub-flexible designs where each partially considered a real option strategy. The 

results indicate that the most flexible design – that which considered all 

flexibility strategies – outperformed the other three designs, no matter if social 

acceptance was considered or not. The life extension strategy was more 

valuable than phased deployment or capacity expansion because there is no 

cost premium for enabling it (in reality this cost would be very negligible, as 

compared to the capital costs involved). All of the flexible designs 

stochastically dominated the benchmark when the discount rate was less than 

10%, indicating that flexibility is favorable to this nuclear system in most 

cases. 

It is, however, not always worth investing in the flexible design. The value 

of flexibility is not obvious unless the discount rate is sufficiently small (i.e., 

less than or equal to 6%). If the cost premium for enabling flexibility strategies 

is not smaller than the value of flexibility, there may not be an incentive to site 
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the power plants in a way that exploits flexibility. Thus, system planners need 

to be careful about the discount rate at the time when they initiate the whole 

project. To them, flexibly siting nuclear power plants may be of lesser interest 

than it would be to China or Russia, because nuclear systems in the these 

countries are mainly operated by the government and thus may have quite 

small discount rates (e.g., 3-4%). 

In addition, the results show that consideration of social acceptance indeed 

increased the expected total cost. It also decreased the value of flexibility 

because: 1) flexibility strategies cannot be implemented if social acceptance is 

unfavorable, and 2) the system may be shut down earlier than expected. For 

countries that care highly about acceptance, the flexible design may not be the 

best choice. On the contrary, the novel design approach may be favorable to 

countries that require faster development and are thus less concerned about 

social acceptance.  

8.4 Proposed Hybrid Heuristic 

The hybrid heuristic proposed in this thesis helps find the optimal solution 

faster than simply using a commercial solver (e.g. standard Branch and Bound 

algorithm in AIMMS), and it thus makes the design approach more practical. 

The hybrid method consists of inner and outer search algorithms, iteratively 

searching for the optimal solutions for sub-problems by a given vector of the 

initial configuration as well as decision rule parameters. The inner search uses 
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the Branch and Bound algorithm, while the outer search is based on adaptive 

OFAT. In addition to the default algorithm embedded in the software (e.g., 

standard Branch and Bound), two other methods using meta-heuristics were 

applied for comparison. These methods were developed based upon the same 

two-phase framework as the hybrid method, while the outer search methods 

were based on SA and/or GA. 

The results show that the hybrid method was both efficient and effective 

in terms of quality of solution and time to best solution. In general, the hybrid 

method was about five times faster than the default method, while the solving 

time of the hybrid method was half and one quarter of that of SA and GA, 

respectively (see Figure 7.5). The form of the solutions obtained by three 

heuristic methods (the hybrid heuristic plus SA and GA) is the same as the one 

obtained by using the default Branch and Bound algorithm. On the other hand, 

the relative gap of the solutions obtained by the hybrid method was fairly 

small compared to the three other methods, and much smaller than the gap of 

the default method as well. Moreover, the solution of the hybrid method was 

the most reliable one in terms of the significant statistical parameters (e.g., 

mean, standard deviation, etc.). It was demonstrated by the numerical analysis 

that the hybrid method could make the proposed modeling framework more 

practical in the real world. It should be noted that the default B&B method is 

able to solve a problem with relatively small scale (e.g., number of districts is 

no more than 10) and the time spent for the solving procedure is acceptable. 
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This B&B algorithm is theoretically guaranteed to find the global optima if the 

solving time is no longer a restriction. It is therefore best suited for a small 

scale problem (i.e., less districts), or a problem with less interactional 

behaviors (e.g., the design problem in Chapter 6). The siting problem 

considered in Chapter 6 can be well solved by the default method (i.e., gap = 0) 

in a very small amount of time. When the problem becomes big (e.g., a real 

large scale design problem), or the interactions becomes complicated between 

facilities (e.g., emergency stations), the proposed hybrid method is practically 

useful for finding good or approximate solutions in an acceptable time. The 

quality of the solution, however, could not be guaranteed because the method 

is based on heuristic. The quality of the solution could heavily depend on the 

initial treatment, number of decision variable and constraints, as well as type 

of the model (e.g., linear or nonlinear). 

The efficiency and effectiveness of the hybrid method was affected by the 

initial treatment for determining the starting point (i.e., a basic feasible 

solution). A good starting point close to the true optimal solution may help 

accelerate the entire search process. Currently, this treatment is based on data 

analysis of historical incident arrival rates at the beginning of the life cycle. 

The combination of initial points could still be too high if the number of 

candidate sites is fairly large. In that case, considering a priority mechanism 

could be an effective way to find better starting points among the tens of 

thousands of potential sites. That is, a candidate site that could cover more 
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incident calls would have a higher priority to deploy capacity.  

Furthermore, meta-heuristics like SA and GA did not perform well in the 

numerical analysis. Even though the results obtained by solving the 

optimization problem for SA and GA were better than those obtained by the 

default method, these two heuristics were not consistently good in terms of 

TBS and also performed poorly in the out-of-sample analysis. This makes 

sense because these meta-heuristics are generic methods that need to be 

specifically developed and optimized. In light of the results for QoS, the 

methods based on these meta-heuristics must be further improved. One 

possible way to improve them is by using the same idea of initial treatment to 

find a good starting point.  
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Chapter 9 CONCLUSION 

“Reach the same goal by different routes.” – Classic of Changes (c. 1100) 

 

“Tact is the knack of making a point without making an enemy.” – Sir Isaac 

Newton (1643 – 1727) 

 

This thesis demonstrated that the proposed modeling framework, 

incorporating the concept of strategic-level flexibility, can be a novel design 

approach for infrastructure systems with the consideration of uncertainty 

drivers over the system’s life cycle. The thesis answered research questions 

regarding the methodology and application domains with two engineering case 

studies. Results of the two case studies demonstrated that this framework was 

helpful in modeling new flexible designs, and systematically valuing the 

corresponding flexibility strategies. Results also demonstrated that proposed 

flexible designs significantly improved anticipated long term system 

performance over its life cycle in terms of key performance indicators (KPIs). 

Moreover, comparison results for alternative solving methods demonstrated 

that the proposed hybrid heuristic based on a two-phase framework 

significantly improved solutions in term of the quality and the search time, as 

compared to the default Branch and Bound algorithm as well as 

meta-heuristics. It also demonstrated that the proposed modeling framework 

was suitable for use in practice.  
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An important finding is that the concept of strategic-level flexibility can 

significantly improve anticipated long term performance for an infrastructure 

system by dealing pro-actively with uncertainty, as it does for typical 

(site-specific) engineering systems (e.g. oil platforms, real estate development 

project, etc.) An infrastructure system is of course complex, and involves 

massive interactions between elements (e.g., emergency stations and vehicles, 

power plants) during the system operations. Uncertainty drivers such as long 

term demand and traffic/power transmission conditions significantly affect the 

system performance over its life cycle. Strategic-level flexibility like phased 

deployment and capacity expansion were demonstrated to be useful for 

dealing with those uncertainty drivers, by deploying capacity in phases over 

time and space, instead of deploying them all at once. The discounted 

expected system performance thus benefits from such strategies because they 

could save money in the early stages but still maintain a high-level system 

performance overall as expected.  

The modeling framework represents an important tool for the design and 

evaluation of strategic-level flexibility in the urban context. The concept of 

flexibility is captured by an analytical model – a mixed integer one – in the 

form of stochastic programming, and the embedded flexibility strategies are 

analyzed via managerial decision rules. Decision rules are referred to as 

“IF-THEN-ELSE” statements and thus are intuitive to understand and exercise. 

The understandability and usability may be favorable for system planners who 
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lack the required knowledge in DP-based ROA methods. Besides, the 

systematic four-step evaluation procedure was demonstrated to be helpful and 

applicable in valuing the flexibility under different circumstances for making 

the final decisions. Note that flexibility may not always be better than typical 

robust designs, especially when uncertainty drivers are less fluctuating in the 

long term. The sensitivity analysis within the evaluation procedure provides an 

opportunity to know better on how the system is influenced by input 

parameters and the order of influence for them.  

The hybrid heuristic was demonstrated to be the most effective and 

efficient method across four alternative methods by a fair and systematic 

comparison. The solution gap for the hybrid method is the smallest in general, 

and the solving time is also the shortest. This showed that the proposed 

heuristic has the potential to make the modeling framework practical in use, as 

its solving time is about hours not days or weeks. Compared to the default 

method as well as meta-heuristics, the solutions obtained from the hybrid 

method are also more reliable in terms of statistical significance.  

9.1 Limitations of Current Approach 

There are several shortcomings in this thesis that may fuel opportunities for 

future work. First of all, the modeling framework is a stochastic one based on 

a scheme of sample average approximation. It thus inherits weaknesses from 

the sample average approximation method, i.e., the observed performance 
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differs when out-of-sample scenarios are used, even though the flexible 

solution is shown to handle such cases much better than for the rigid 

alternative solutions. The optimal solution obtained by the stochastic model 

may even be infeasible in some extreme out-of-sample cases if they are not 

considered in the optimization problem. 

Secondly, the flexible design may not always be the best compared to the 

rigid designs in some realizations of uncertainty scenarios due to the 

assumption of the managerial decision rules. The definition of decision rules 

indicates that decision rules are only implemented when the corresponding 

requirement is satisfied. For example, an emergency station will expand a 

given number units of capacity if this station missed a certain number of 

emergency calls in the last strategic period. The implementation of decision 

rules only depends on the realization of the uncertainty drivers (e.g., 

incident/electricity demand, social acceptance), and is independent from prior 

relevant decision-making processes. Deploying more capacity at current 

periods due to the satisfaction of decision rules may not reap enough benefits 

compared to investment when long term demand is relatively flat with few 

consecutive peak points.  

The computational time for the optimization problem is always a concern 

for resource allocation or capacity deployment problems like the EMS systems 

and energy systems. The size of the computational problem increases 

significantly in terms of variables and constraints when more candidate sites 
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and scenarios are considered (e.g., |ܬ| ൒ 20 and |ܰ| ൒ 15). The model then 

becomes very difficult to solve by the default exact solution method within an 

acceptable and practical time. Also, the assumptions of the method for 

generating uncertain inputs (e.g., INES) in the case studies may be unrealistic. 

There is however no unique and ultimately accepted approach for generating 

such data at present in simulations. The outer algorithm based on adaptive 

OFAT also has a drawback that the interactions may not be considered totally 

(the chance is still there even it may be fairly small).  

9.2 Extending the Current Approach to General Urban Systems 

One important contribution of this thesis is the modeling framework. It is 

demonstrated that this framework can be a novel design approach for 

determining the optimal siting policy with respect to a capacity deployment 

problem in the urban context. To apply this approach to a general 

infrastructure system, one may consider designing the system following the 

given procedure by the framework. 

First, it is always good to investigate past typical designs without 

consideration of flexibility and find out the best one under the deterministic or 

stochastic condition. This design could be used as a benchmark for us to 

evaluate the value of flexibility. Second, system planners need to identify the 

potential uncertainty drivers. This is important because which flexibility 

strategy is going to be used in the design will depend on what uncertainty the 
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system is facing. Once uncertainty drivers are determined, approaches like 

DSM and prompting could be applied for determining the strategic-level 

flexibility considered in the design.  

To evaluate the theoretical value of flexibility, one may need to modify the 

stochastic model accordingly, based on a specific urban system, including 

design variables and constraints. Sensitivity analysis can be implemented after 

obtaining the optimal solution. The most influential parameters will then be 

determined in orders. If the scale of the design problem is fairly large and the 

solution looks bad in terms of QoS and TBS, the two-phase framework could 

be considered as an alternative to develop search heuristic specifically. It is 

recommended that the inner search method is better based on Branch and 

Bound method as it can guarantee optimality of the solution. For the outer 

search, there is no criterion to determine which method is the best. One may 

test different alternatives to decide which one is the most appropriate for the 

design problem. In terms of result comparisons in this thesis, adaptive OFAT 

may be the best at present, but other local search algorithms could be 

explored.   

9.3 Future Research Opportunities 

This thesis generates many opportunities for future research in the field of 

design and management of infrastructure systems. Using this modeling 

framework enables evaluation and comparison of other flexibility strategies or 
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objectives for general infrastructure systems. An interesting study in siting 

nuclear power plants could consider switching between different nuclear 

reactors as a main flexibility strategy to deal with uncertainty of social 

acceptance. It is assumed that a more advanced but expensive technology can 

be safer than existing ones in the face of unexpected safety issues, and thus it 

can keep operation even social acceptance is fairly low. There is clearly a 

trade-off between using new technology and the old one, depending on the 

realization of the uncertainty scenarios. The objective of such study could be 

to minimize the levelized cost of electricity, which is an economic metric for 

evaluating the performance of an energy system. 

It should be noted that mixed integer stochastic programming is not the 

only modeling method to capture the concept of strategic-level flexibility from 

a mathematical perspective. Another research avenue could be to use other 

methods to develop models based on the framework, for example, using 

constraint programming. It is observed that the procedure for establishing 

non-anticipative constraints regarding decision rules can be challenging if the 

logical relationship is complicated. Constraints programming is an alternative 

programming paradigm supported by various solvers. Using it with logical 

statements can be easily done in a just a few lines of code. This method 

however cannot guarantee the optimality of the solution. It would be feasible 

to apply it when the original problem is a small scaled one, or separating the 

original problem into multiple sub-problems, then solving them using exact 
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search methods (like the Branch and Bound). Also, it is possible to consider 

costs as an uncertainty driver in the modeling process. For many reasons such 

as technological improvement and/or supply shortage, costs may decrease or 

increase accordingly over time. Considering costs as a random variable could 

make the model more realistic. One possible way to capture this random 

variable is to use the so-called “learning effect”. This concept could be used to 

represent the economic relationship between costs and experience. Typically, 

costs decrease along with an increase in experience doing a particular thing. 

The relationship could be described by several main functions, such as the 

exponential growth or the power law. This learning effect can be applied to the 

installation of new stations/power plants and capacity expansion. 

One more research opportunity is to develop a decision support system for 

training engineers using the solution obtained from the approach proposed in 

this thesis. It could be the case that the solution performs very well in the 

mathematical model and out-of-sample analysis, but performs badly in reality 

when used by system operators. Regardless of the assumptions made in the 

model, the timing for implementing the flexibility strategies significantly 

affects the overall performance. Serious gaming and simulation games can 

then create environments for system planners and/or engineers to design and 

operate the system under uncertainty by given a set of best decision rules 

(Cardin et al., 2014; Cardin et al., 2015b; Ligtvoet & Herder, 2012). This 

platform provides engineers an opportunity to familiarize themselves with the 
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flexibility strategies and decision rules. They can operate the system in the 

platform based on either their past experience and/or recommended strategies, 

and compare results of system performances. The platform also provides a 

chance to realize how uncertainty could affect the system performance, and 

thus the potential of strategic-level flexibility to the design and management of 

infrastructure systems.    
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